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In this Note, we study the existence of low- or high-energy solutions for a class of elliptic
problems containing a nonlinear term that oscillates either near the origin or at infinity.
We point out the competition effect between the oscillatory nonlinearity, a polynomial
growth term, and the values of a real parameter. The proofs combine related variational
methods.
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r é s u m é

Dans cette Note, nous étudions l’existence de solutions à basse ou à haute énergie pour
une classe de problèmes elliptiques contenant un terme non linéaire oscillatoire autour
de l’origine ou à l’infini. Nous mettons en évidence l’effet de compétition entre la non-
linéarité oscillatoire, le terme à croissance polynomiale et les valeurs d’un paramètre réel.
Les preuves combinent des méthodes topologiques et variationnelles.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit Ω ⊂ RN (N � 3) un domaine borné et régulier, β ∈ L∞(Ω), λ ∈ R, q > 0 et f : [0,∞) → R une fonction continue
qui oscille autour de l’origine ou à l’infini. Nous supposons que A : Ω × RN → RN est une fonction continue telle que, pour
tout (x, ξ) ∈ Ω × RN ,

A(x, ξ) · ξ � Γ1|ξ |p et
∣∣A(x, ξ)

∣∣ � Γ2|ξ |p−1,

où p > 1 et Γ1,Γ2 > 0.
Dans cette Note, nous étudions le problème non linéaire :
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⎧⎨
⎩

−div A(x,∇u) = λβ(x)uq + f (u) dans Ω

u � 0 dans Ω

u = 0 sur ∂Ω.

(P)

Le premier résultat de cette Note porte sur le cas où f a des oscillations autour de l’origine. Nous montrons d’abord
que le problème (P) a une infinité de solutions « à basse énergie » si q � p − 1 et au moins un nombre fini de solutions si
0 < q < p − 1. Plus précisément, si q � p − 1, nous montrons l’existence d’une suite {u j} ⊂ W 1,p

0 (Ω) de solutions faibles du
problème (P) telle que :

lim
j→+∞

‖u j‖W 1,p
0 (Ω)

= lim
j→+∞

‖u j‖L∞(Ω) = 0.

Dans le cas où f a des oscillations à l’infini, il existe une infinité de solutions {u j} ⊂ W 1,p
0 (Ω) si 0 < q � p − 1 et au

moins un nombre fini de solutions si q > p − 1. De plus, si 0 < q � p − 1, alors lim j→+∞ ‖u j‖L∞(Ω) = +∞.

1. Introduction

Competition phenomena in elliptic equations have been widely studied in the literature in different contexts. After the
seminal work [1], where Ambrosetti, Brezis and Cerami studied a Laplacian equation involving a concave–convex nonlinear-
ity, a lot of papers appeared on this subject. Also when dealing with singular terms, the interactions with different type of
nonlinearities were investigated: see, for instance, Ghoussoub and Yuan [3], Pucci and Servadei [5,6] for equations involving
superlinear and subcritical terms.

In this Note, we are interested in problems driven by general operators of p-Laplacian type involving oscillatory terms,
in the presence of a concave or convex power. Usually, equations involving oscillatory nonlinearities give infinitely many
distinct solutions, but the presence of an additional term may alter the situation.

Let Ω ⊂ RN (N � 3) be a bounded domain with smooth boundary, q > 0, λ ∈ R, and let f : [0,+∞) → R be a continuous
function. Suppose that β ∈ L∞(Ω) is a potential that is indefinite in sign. We also assume that A : Ω × RN → RN is a
continuous function such that:

A(x, ξ) · ξ � Γ1|ξ |p and
∣∣A(x, ξ)

∣∣ � Γ2|ξ |p−1 for all (x, ξ) ∈ Ω × RN ,

for some p > 1 and 0 < Γ1 � Γ2. Suppose that A derives from a potential, namely A = ∇ξ a, where a : Ω × RN → R is
continuous, a(x,0) = 0, a(x, ξ) = a(x,−ξ) for all (x, ξ) ∈ Ω × RN , and a(x, ·) is strictly convex in RN for all x ∈ Ω .

We are concerned with the nonlinear Dirichlet problem:⎧⎨
⎩

−div A(x,∇u) = λβ(x)uq + f (u) in Ω

u � 0 in Ω

u = 0 on ∂Ω.

(1)

2. Oscillation near the origin

Set F (s) := ∫ s
0 f (t)dt and assume that:

lim inf
s→0+

f (s)

sp−1
=: −�0 ∈ [−∞,0), −∞ < lim inf

s→0+
F (s)

sp
� lim sup

s→0+

F (s)

sp
= +∞. (2)

Examples. (i) Assume that α, σ , γ ∈ R satisfy 1 < σ + 1 < α < p and γ > 0. Define:

f (s) =
{

αsα−1(1 − sin s−σ ) + σ sα−σ−1 cos s−σ − pγ sp−1 if s > 0
0 if s = 0.

(3)

(ii) Assume that α, σ and γ ∈ R are such that 1 < α < p, σ > 0, α − σ > 1 and γ > 0. Define:

f (s) =
{

αsα−1 cos2 s−σ − 2σ sα−σ−1 cos s−σ sin s−σ − pγ sp−1 if s > 0
0 if s = 0.

(4)

Then the functions defined by relations (3) and (4) have oscillation near the origin, in the sense described by hypothe-
sis (2).

The main result in this section is the following.

Theorem 2.1. Assume that f satisfies condition (2). If either

a) q = p − 1, �0 ∈ (0,+∞) and λβ(x) < λ0 a.e. x ∈ Ω for some λ0 ∈ (0, �0) or
b) q = p − 1, �0 = +∞ and λ ∈ R is arbitrary or
c) q > p − 1 and λ ∈ R is arbitrary,
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then there exists a sequence {u j} j in W 1,p
0 (Ω) of distinct weak solutions of problem (1) such that:

lim
j→+∞

‖u j‖W 1,p
0 (Ω)

= lim
j→+∞

‖u j‖L∞(Ω) = 0.

Assume that 0 < q < p − 1. Then for every k ∈ N there exists Λk > 0 such that problem (1) has at least k distinct weak solutions
u1, . . . , uk ∈ W 1,p

0 (Ω) such that ‖u j‖W 1,p
0 (Ω)

� 1/ j and ‖u j‖L∞(Ω) � 1/ j for all j = 1, . . . ,k, provided that |λ| < Λk.

Sketch of the proof. Consider the auxiliary problem{ −div A(x,∇u) + K (x)|u|p−2u = h(x, u) in Ω

u = 0 on ∂Ω.
(5)

Throughout this Note we assume that K ∈ L∞(Ω) with ess infx∈Ω K (x) > 0, while h : Ω × [0,+∞) → R is a Carathéodory
function satisfying h(x,0) = 0 for a.e. x ∈ Ω . Set H(x, s) := ∫ s

0 h(x, t)dt , for all s ∈ R.
A key ingredient in the proof of Theorem 2.1 if q � p − 1 is the following multiplicity property.

Lemma 2.2. Assume that the following hypotheses are fulfilled:

there exists s̄ > 0 such that sup
s∈[0,s̄]

∣∣h(·, s)
∣∣ ∈ L∞(Ω); (6)

there exist two sequences {δ j} j and {η j} j with 0 < η j+1 < δ j < η j and lim
j→+∞

η j = 0 such that h(x, s) � 0

for a.e. x ∈ Ω and for every s ∈ [δ j, η j], j ∈ N; (7)

−∞ < lim inf
s→0+

H(x, s)

sp
� lim sup

s→0+

H(x, s)

sp
= +∞ uniformly for a.e. x ∈ Ω. (8)

Then there exists a sequence {u j} j ⊂ W 1,p
0 (Ω) of distinct non-trivial non-negative weak solutions of problem (5) such that

lim j→+∞ ‖u j‖W 1,p
0 (Ω)

= lim j→+∞ ‖u j‖L∞(Ω) = 0.

Returning to the proof of Theorem 2.1, let us first assume that q = p − 1, �0 ∈ (0,+∞), and λ ∈ R is such that λβ(x) < λ0
a.e. x ∈ Ω for some λ0 ∈ (0, �0). Let us choose λ̃0 ∈ (λ0, �0) and let K (x) := λ̃0 − λβ(x) and h(x, s) := λ̃0sp−1 + f (s).

Next, we assume that q = p − 1, �0 = +∞, and λ ∈ R. In this case we choose λ̃0 ∈ (λ0, �0) and set K (x) := λ̃0 and
h(x, s) := (λβ(x) + λ̃0)sp−1 + f (s).

If q > p − 1 and λ ∈ R, we take λ̃0 ∈ (0, �0) and define K (x) := λ̃0 and h(x, s) := λβ(x)sq + λ̃0sp−1 + f (s).
In all these cases, by straightforward computation, we deduce that K and h satisfy the assumptions of Lemma 2.2.

Thus, problem (5) has infinitely many solutions {u j} j satisfying lim j→+∞ ‖u j‖W 1,p
0 (Ω)

= lim j→+∞ ‖u j‖L∞(Ω) = 0. Due to

the choice of K and h, we also obtain that u j is a weak solution of problem (1).

Let us now assume that 0 < q < p −1. We associate with problem (5) the energy functional EK , h : W 1,p
0 (Ω) → R defined

by EK ,h(u) = ∫
Ω

a(x,∇u(x))dx + 1
p

∫
Ω

K (x)|u(x)|p dx − ∫
Ω

H(x, u(x))dx.
The key ingredient in this case is the following result.

Lemma 2.3. Assume that the following hypotheses are fulfilled:

there exists M > 0 such that
∣∣h(x, s)

∣∣ � M for a.e. x ∈ Ω and for any s � 0; (9)

there exist δ and η,with 0 < δ < η, such that h(x, s) � 0 for a.e. x ∈ Ω and for any s ∈ [δ,η]. (10)

Then

i) the functional EK ,h is bounded from below on W η and its infimum is attained at some uη ∈ W η , where W η := {u ∈
W 1,p

0 (Ω): ‖u‖L∞(Ω) � η}, and η is the positive parameter given in (10);
ii) uη ∈ [0, δ], where δ is the positive parameter given in (10);

iii) uη is a non-negative weak solution of problem (5).

Fix λ̃0 ∈ (0, �0) and define K (x) := λ̃0 and h(x, s, λ) := λβ(x)sq + λ̃0sp−1 + f (s). Using the fact that h(x, s,0) = λ̃0sp−1 +
f (s), we deduce that there exist sequences {δ j} j , {η j} j , {s j} j and {λ j} j such that λ j > 0, 0 < η j+1 < δ j < s j < η j < 1,
lim j→+∞ η j = 0, and h(x, s, λ) � 0 a.e. x ∈ Ω , for all s ∈ [δ j, η j], λ ∈ [−λ j, λ j] and j ∈ N large enough.

For any j ∈ N, we define h j(x, s, λ) := h(x, τη j (s), λ) and H j(x, s, λ) := ∫ s
0 h j(x, t, λ)dt , for x ∈ Ω , s � 0 and λ ∈ [−λ j, λ j].

By straightforward computation, we deduce that h j satisfies all the assumptions of Lemma 2.3 for j large, with δ = δ j and
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η = η j . For any j ∈ N, let E j,λ be the energy functional E j,λ := EK ,h j(·,·,λ) . By Lemma 2.3, we deduce that for j sufficiently
large and provided that |λ| � λ j , there exists u j,λ ∈ W η j such that:

min
u∈W η j

E j,λ(u) = E j,λ(u j,λ) (11)

u j,λ(x) ∈ [0, δ j] for a.e. x ∈ Ω, (12)

and

u j,λ is a non-negative weak solution of (5) with h = h j. (13)

Since for j sufficiently large, 0 � u j,λ(x) � δ j < η j a.e. x ∈ Ω , we have h j(x, u j,λ(x), λ) = h(x, u j,λ(x), λ), so that u j,λ is a
non-negative weak solution of problem (1), provided that j is large and |λ| � λ j .

It remains to prove that for any k ∈ N, problem (1) admits at least k distinct solutions for suitable values of λ. At this
purpose, we note that for any u ∈ W 1,p

0 (Ω):

E j,λ(u) =
∫
Ω

a
(
x,∇u(x)

)
dx − λ

q + 1

∫
Ω

β(x)
∣∣u(x)

∣∣q+1
dx −

∫
Ω

F
(
u(x)

)
dx

= E j,0(u) − λ

q + 1

∫
Ω

β(x)
∣∣u(x)

∣∣q+1
dx.

Claim. There exists an increasing sequence {θ j} j such that θ j < 0, lim j→+∞ θ j = 0 and θ j−1 < E j,0(u j,0) < θ j for j � j∗ ,
with j∗ ∈ N.

First, note that the function (x, s) 	→ h(x, s,0) = λ̃0sp−1 + f (s) verifies all the assumptions of Lemma 2.2. Thus, there exist
� > 0 and ζ ∈ (0, η1) such that F (s) � −�sp for all s ∈ (0, ζ ) and there is a sequence {s̃ j} j such that 0 < s̃ j → 0 as j → +∞
such that for all L > 0, F (s j) > Lsp

j for j ∈ N large enough. Also, since δ j ↘ 0 as j → +∞, we can choose a subsequence of
{δ j} j , still denoted by {δ j} j , such that s̃ j � δ j for all j ∈ N.

Now, for any s > 0 we need to define the function zs as follows:

zs(x) :=
⎧⎨
⎩

0 if x ∈ Ω \ B(x0, r)
2s
r (r − |x − x0|) if x ∈ B(x0, r) \ B(x0, r/2)

s if x ∈ B(x0, r/2),

(14)

which is such that zs � 0 in Ω , zs ∈ W 1,p
0 (Ω) and ‖zs‖L∞(Ω) = s. Here x0 ∈ Ω and r > 0 is such that B(x0, r) ⊂ Ω . In the

following, we denote: z̃ j := zs̃ j
.

Now, let us fix j ∈ N sufficiently large. We have E j,0(u j,0) � E j,0(z̃ j) < 0 and

E j,0(u j,0) � −
∫
Ω

F
(
u j,0(x)

)
dx � −

∫
Ω

u j,0(x)∫
0

∣∣ f (s)
∣∣ ds dx � −

∫
Ω

δ j∫
0

∣∣ f (s)
∣∣ ds dx � d j.

Note that {c j} j and {d j} j are such that d j < c j < 0 for any j ∈ N and lim j→+∞ c j = lim j→+∞ d j = 0. Thus, we can extract
two subsequences, still denoted by {c j} j and {d j} j , such that the above properties hold true and the sequences {c j} j and
{d j} j are non-decreasing. Now, we define:

θ j :=
{

c j if j ∈ N is even

d j if j ∈ N is odd.

We deduce that for i large enough θ2i−1 = d2i−1 � d2i < E2i,0(u2i,0) < c2i = θ2i , which proves the claim.
Now, for any j � j∗ , let:

λ′
j := (q + 1)(E j,0(u j,0) − θ j−1)

(‖β‖L∞(Ω) + 1)L(Ω)
, λ′′

j := (q + 1)(θ j − E j,0(u j,0))

‖β‖L1(Ω) + 1
. (15)

Note that λ′
j and λ′′

j are strictly positive and they are independent of λ. For any fixed k ∈ N, let:

Λk := min
{
λ j∗+1, . . . , λ j∗+k, λ

′
j∗+1, . . . , λ

′
j∗+k, λ

′′
j∗+1, . . . , λ

′′
j∗+k

}
.

Of course, Λk > 0 is independent of λ. Also, if |λ| � Λk , then |λ| � λ j for any j = j∗ +1, . . . , j∗ +k. As a consequence of this,
for any λ ∈ R with |λ| � Λk , u j,λ is a non-negative weak solution of problem (1) for any j = j∗ + 1, . . . , j∗ + k. Let us show
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that these solutions are distinct. At this purpose, note that u j,λ ∈ W η j and so E j,0(u j,0) = minu∈W η j E j,0(u) � E j,0(u j,λ).
Thus, for any λ such that |λ| � Λk , we obtain:

E j,λ(u j,λ) = E j,0(u j,λ) − λ

q + 1

∫
Ω

β(x)
∣∣u j,λ(x)

∣∣q+1
dx � E j,0(u j,0) − |λ|

q + 1
‖β‖L∞(Ω)η

q+1
j L(Ω)

� E j,0(u j,0) − Λk

q + 1
‖β‖L∞(Ω)L(Ω) � E j,0(u j,0) − λ′

j

q + 1
‖β‖L∞(Ω)L(Ω) = θ j−1, (16)

for any j = j∗ + 1, . . . , j∗ + k. On the other hand, using the fact that ‖z̃ j‖L∞(Ω) = s̃ j � δ j < η j < 1, for any λ with |λ| � Λk
we deduce that:

E j,λ(u j,λ) = min
u∈W η j

E j,λ(u) � E j,λ(z̃ j) = E j,0(z̃ j) − λ

q + 1

∫
Ω

β(x)
∣∣z̃ j(x)

∣∣q+1
dx

� E j,0(z̃ j) − λ

q + 1

∫
{x∈Ω: λβ(x)<0}

β(x)
∣∣z̃ j(x)

∣∣q+1
dx � E j,0(z̃ j) − λ

q + 1

∫
{x∈Ω: λβ(x)<0}

β(x)dx

� E j,0(z̃ j) + |λ|
q + 1

∫
{x∈Ω: λβ(x)<0}

∣∣β(x)
∣∣ dx � E j,0(z̃ j) + λ

q + 1

∫
Ω

∣∣β(x)
∣∣ dx

� E j,0(z̃ j) + Λk

q + 1
‖β‖L1(Ω) � E j,0(z̃ j) + λ′′

j

q + 1
‖β‖L1(Ω) = θ j (17)

for any j = j∗ + 1, . . . , j∗ + k.
Hence, by (16), (17) and the properties of {θ j} j , we deduce that for any j = j∗ + 1, . . . , j∗ + k

θ j−1 < E j,λ(u j,λ) < θ j < 0, (18)

which yields that E1,λ(u1,λ) < · · · < Ek,λ(uk,λ) < 0. Thus, the solutions {u1,λ, . . . , uk,λ} are all distinct and non-trivial, pro-
vided that |λ| � Λk .

Finally, we estimate the W 1,p
0 -norm of u j,λ . For all j = j∗ + 1, . . . , j∗ + k and |λ| � Λk , we have:

Γ1

p
‖u j,λ‖p

W 1,p
0 (Ω)

� E j,λ(u j,λ) + λ

q + 1

∫
Ω

β(x)
∣∣u j,λ(x)

∣∣q+1
dx +

∫
Ω

F
(
u j,λ(x)

)
dx

< θ j + |λ|
q + 1

‖β‖L∞(Ω)δ
q+1
j +

∫
Ω

δ j∫
0

∣∣ f (s)
∣∣ ds dx <

Λk

q + 1
‖β‖L∞(Ω)δ j + C̄δ j,

for a suitable positive constant C̄ . It follows that ‖u j,λ‖W 1,p
0 (Ω)

� C̃δ
1/p
j , where C̃ > 0. Since δ j → 0 as j → +∞, without loss

of generality, we may assume that δ j � min{C̃−p,1}1/ jp , and this gives ‖u j,λ‖W 1,p
0 (Ω)

� 1/ j for all j = j∗ + 1, . . . , j∗ + k,

provided that |λ| � Λk . This completes the proof of Theorem 2.1. �
3. Oscillation at infinity

In this section, we assume that the nonlinear term f satisfies the following assumptions:

lim inf
s→+∞

f (s)

sp−1
=: −�∞ ∈ [−∞,0); (19)

−∞ < lim inf
s→+∞

F (s)

sp
� lim sup

s→+∞
F (s)

sp
= +∞. (20)

A function satisfying these conditions is f (s) = αsα−1(1 − sin sσ ) − σ sα+σ−1 cos sσ − pγ sp−1, where α, σ and γ are
such that α > p, σ > 0 and γ > 0.

In this setting, the counterpart of Theorem 2.1 can be stated as follows.

Theorem 3.1. Assume that f satisfies relations (19), (20), and f (0) = 0. If either

a) q = p − 1, �∞ ∈ (0,+∞) and λβ(x) < λ∞ a.e. x ∈ Ω for some λ∞ ∈ (0, �∞) or
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b) q = p − 1, �∞ = +∞ and λ ∈ R is arbitrary or
c) 0 < q < p − 1 and λ ∈ R is arbitrary,

then there exists a sequence {u j} j in W 1,p
0 (Ω) of distinct weak solutions of problem (1) such that

lim
j→+∞

‖u j‖L∞(Ω) = +∞.

Assume that q > p − 1. Then for every k ∈ N there exists Λk > 0 such that problem (1) has at least k distinct weak solutions
u1, . . . , uk ∈ W 1,p

0 (Ω) satisfying ‖u j‖L∞(Ω) � j − 1 for all j = 1, . . . ,k, provided that |λ| < Λk.

We refer to [4] for the proof and several related results. We also refer to the marvelous recent book by Ciarlet [2] for
the rigorous qualitative analysis of many models described by nonlinear partial differential equations.
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