Remarks on a polyharmonic eigenvalue problem

Remarques sur un problème poly-harmonique de valeurs propres

Patrizia Pucci, Vicențiu Radulescu

Università degli Studi di Perugia, Dipartimento di Matematica e Informatica, Via Vanvitelli 1, 06123 Perugia, Italy
Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 014700 Bucharest, Romania
Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania

Abstract

This Note deals with a nonlinear eigenvalue problem involving the polyharmonic operator on a ball in \(\mathbb{R}^n \). The main result of this Note establishes the existence of a continuous spectrum of eigenvalues such that the least eigenvalue is isolated.

Résumé

On considère un problème non linéaire de valeurs propres associé à l’opérateur polyharmonique sur une boule dans \(\mathbb{R}^n \). Dans cette Note on montre l’existence d’un spectre continu de valeurs propres tel que la valeur propre principale est isolée.

Let \(B \) be a ball of radius \(R \) in \(\mathbb{R}^n \) and let \(K \) be an integer strictly positive. In this Note we study the nonlinear eigenvalue problem

\[
\begin{aligned}
(-\Delta)^K u &= \lambda f(x, u) & \text{in } B, \\
u &= Du = \cdots = D^{K-1} u = 0 & \text{on } \partial B.
\end{aligned}
\]

On suppose que \(\lambda \) est un paramètre positif et que la fonction \(f \) est définie par

\[
f(x, t) = \begin{cases} t, & \text{si } t < 0, \\
h(x, t), & \text{si } t \geq 0,
\end{cases}
\]

where \(h : B \times \mathbb{R}^+ \to \mathbb{R} \) is a Carathéodory function such that \(H(x, t) := \int_0^t h(x, s) \, ds \), then the following conditions are satisfied:

\((H_1) \) \quad \text{there exists } c \in (0, 1) \text{ such that } |h(x, t)| \leq ct \text{ for all } t \in \mathbb{R} \text{ and p.p. } x \in B; \\
(\text{H}_2) \quad \text{there exist } t_0 > 0 \text{ such that } H(x, t_0) > 0 \text{ for p.p. } x \in B; \\
(\text{H}_3) \quad \lim_{t \to \infty} \frac{h(x, t)}{t} = 0 \text{ uniformly on } B \setminus \bar{C}, \text{ where } \mu(C) = 0.
\[1631-073X(10) \text{-- see front matter} \quad \text{© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.}
doi:10.1016/j.crma.2010.01.013]
On démontre que les valeurs de λ pour lesquelles le problème (1) admet une solution sont liées à la première valeur propre du problème linéaire
\[
\begin{align*}
(-\Delta)^K u &= \lambda u \\
|u| &= D u = \cdots = D^{K-1} u = 0 & \text{in } B,
\end{align*}
\]
(3)

et il existe $\mu_1 > \lambda_1$ tel que chaque $\lambda \in (\mu_1, \infty)$ est une valeur propre du problème (1).

Les étapes principales dans la démonstration de ce résultat sont les suivantes :

(i) si $\lambda > 0$ est une valeur propre associée au problème (1), alors $\lambda \geq \lambda_1$;

(ii) la première valeur propre λ_1 du problème linéaire (3) est aussi une valeur propre du problème non linéaire (1) et, de plus, l'ensemble associé de fonctions propres est un cône dans l'espace de Hilbert $H^k_B (B)$ muni du produit scalaire
\[
(u, v)_K = \begin{cases}
\int_B (\Delta^m u) (\Delta^m v) \, dx, & \text{si } K = 2m, \\
\int_B (D^{\Delta^m} u) (D^{\Delta^m} v) \, dx, & \text{si } K = 2m + 1;
\end{cases}
\]

(iii) λ_1 est isolée dans l'ensemble de valeurs propres du problème (1);

(iv) il existe $\lambda^* > 0$ tel que $\inf_{H^k_B (B)} I_2 (u) < 0$ pour tout $\lambda \geq \lambda^*$, où
\[
I_2 (u) := \frac{1}{2} \| u \|^2_K - \lambda \int_B H (x, u, \partial u) \, dx, \quad u \in H^k_B (B)
\]
est l'énergie associée au problème (1).

1. Introduction

Let B be any ball of \mathbb{R}^n centered at the origin and of fixed radius $R > 0$. Consider the linear eigenvalue problem
\[
\begin{align*}
(-\Delta)^K u &= \lambda u \\
|u| &= D u = \cdots = D^{K-1} u = 0 & \text{in } B,
\end{align*}
\]
(4)

where K is a positive integer. Then the lowest eigenvalue λ_1 of problem (4) is simple, that is, the associated eigenfunctions are merely multiples of each other. Moreover they are radial, strictly monotone in $r = |x|$ and never change sign in B. We refer to Pucci and Serrin [3] for further properties of eigenvalues of polyharmonic operators.

In this paper we are concerned with the nonlinear eigenvalue problem
\[
\begin{align*}
(-\Delta)^K u &= \lambda f (x, u) \\
|u| &= D u = \cdots = D^{K-1} u = 0 & \text{in } B,
\end{align*}
\]
(5)

where λ is a positive parameter and the nonlinear function f is given by
\[
f (x, t) = \begin{cases}
t, & \text{if } t < 0, \\
h (x, t), & \text{if } t \geq 0,
\end{cases}
\]
(6)

where $h : B \times \mathbb{R}_0^+ \to \mathbb{R}$ is a Carathéodory function, $H (x, t) := \int_0^t h (x, s) \, ds$, and the following conditions are fulfilled:

(H1) There exists $c \in (0, 1)$ such that $|h (x, t)| \leq c t$ for all $t \in \mathbb{R}$ and a.a. $x \in B$;

(H2) There exists $t_0 > 0$ such that $H (x, t_0) > 0$ for a.a. $x \in B$;

(H3) $\lim_{t \to \infty} \frac{h (x, t)}{t} = 0$ uniformly in $B \setminus \mathcal{O}$, with $\mu (\mathcal{O}) = 0$.

As already highlighted in [2], functions h verifying (H1)–(H3) are given in $B \times \mathbb{R}_0^+$, e.g., by $h (x, t) = \sin (ct)$, $h (x, t) = c \log (1 + t)$, $h (x, t) = g (x) [t^{q (x)} - t^{p (x)}]$ where $c \in (0, 1)$, $p, q : \overline{B} \to (1, 2)$ continuous in \overline{B}, $\max_{\overline{B}} p (x) < \min_{\overline{B}} q (x)$, $g \in L^\infty (B)$, $\| g \|_\infty = c$. For the relevance of these examples in applications, as well as for a wide list of references, we refer to [2].

The main result of this Note is the following:
Theorem 1.1. Suppose that f is of type (6) and that (H1)–(H3) are fulfilled. Then the first eigenvalue λ_1 of (4) is an isolated eigenvalue of problem (5) and the corresponding set of eigenfunctions is a cone. Moreover, any $\lambda \in (0, \lambda_1)$ is not an eigenvalue of (5), while there exists $\mu_1 > \lambda_1$ such that any $\lambda \in (\mu_1, \infty)$ is an eigenvalue of (5).

2. Proof of Theorem 1.1

Consider the standard higher order Hilbertian Sobolev space $H^K_0 = H^K_0(B)$, endowed with the scalar product

$$(u, v)_K = \begin{cases} \int_B (\Delta^m u)(\Delta^m v) \, dx, & \text{if } K = 2m, \\ \int_B (D\Delta^m u)(D\Delta^m v) \, dx, & \text{if } K = 2m + 1, \end{cases}$$

and denote by $\| \cdot \|_K$ the corresponding norm. As in [1, Section 3], the decomposition method of Moreau and the comparison principle of Boggio in H^K_0 substitute the decomposition in the positive and negative part which is no longer admissible in the higher order Sobolev spaces when $K \geq 2$. Indeed, for any $u \in H^K_0$ there exists a unique couple $(u_1, u_2) \in \mathcal{K} \times \mathcal{K}'$ such that $u = u_1 + u_2$ and $(u_1, u_2)_K = 0$, where \mathcal{K} is the convex closed cone of positive functions

$$\mathcal{K} = \{ v \in H^K_0 : v(x) \geq 0 \text{ a.e. in } B \},$$

while \mathcal{K}' is the dual cone of \mathcal{K}, that is

$$\mathcal{K}' = \{ w \in H^K_0 : (w, v)_K \leq 0 \text{ for all } v \in \mathcal{K} \}.$$

By [1, Lemma 2] we know that \mathcal{K}' is contained in the cone of negative functions, in other words $w(x) \leq 0$ a.e. in B if $w \in \mathcal{K}'$. The number $\lambda > 0$ is an eigenvalue of problem (5), with f of the type (6), if there exists $u \in H^K_0 \setminus \{0\}$ such that

$$(u, v)_K = \lambda \int_B f(x, u)v \, dx$$

for any $v \in H^K_0$.

Lemma 2.1. If $\lambda > 0$ is an eigenvalue of (5), then $\lambda \geq \lambda_1$.

Proof. Assume that $\lambda > 0$ is and eigenvalue of (5), with corresponding eigenfunction $u \in H^K_0 \setminus \{0\}$. Letting $v = u$ in (7), and putting $B_- = \{ x \in B : u(x) \leq 0 \}$ and $B_+ = \{ x \in B : u(x) \geq 0 \}$, we get by (H1)

$$\|u\|^2_K = \lambda \left[\int_{B_+} h(x, u)u \, dx + \int_{B_-} u^2 \, dx \right] \leq \lambda \left[c \int_{B_+} u^2 \, dx + \int_{B_-} u^2 \, dx \right] \leq \lambda |u|^2_2,$$

being $c \in (0, 1)$. By the definition of λ_1

$$\lambda_1 |u|^2_2 \leq \|u\|^2_K \leq \lambda |u|^2_2.$$

Since $u \neq 0$, then the above inequality shows that $\lambda \geq \lambda_1$. \square

Lemma 2.2. The first eigenvalue λ_1 of (4) is also an eigenvalue of (5) and the set of the corresponding eigenfunctions is a cone of H^K_0.

Proof. As already noted in the introduction the lowest eigenvalue λ_1 of (4) is simple, so that there exists a first eigenfunction $\varphi \in H^K_0 \setminus \{0\}$, with $\varphi < 0$ in B. Hence φ is an eigenfunction also of (5), since clearly satisfies (7) with $\lambda = \lambda_1$, being $(\varphi, v)_K = \lambda_1 \int_B \varphi v \, dx = \lambda_1 \int_B f(x, \varphi)v \, dx$ by (6). Moreover the set of the corresponding eigenfunctions lies in a cone of H^K_0. \square

Lemma 2.3. The first eigenvalue λ_1 of (4) is isolated in the set of eigenvalues of (5).

Proof. Let $\lambda > 0$ be an eigenvalue of (5) whose corresponding eigenfunction u has Moreau's decomposition with $u_1 \neq 0$. Then, being $u_1 \in H^K_0$, we take $v = u_1$ in (7), and by the definition of λ_1 and (H1) we get

$$\lambda_1 |u_1|^2_2 \leq \|u_1\|^2_K = \lambda \left[\int_{B_+} h(x, u_1)u_1 \, dx + \int_{B_-} u_1^2 \, dx \right] \leq \lambda c |u_1|^2_2.$$

Hence $\lambda \geq \lambda_1/c > \lambda_1$, being $c \in (0, 1)$. In particular, any eigenfunction u corresponding to an eigenvalue $\lambda \in (0, \lambda_1 / c)$ has decomposition $u = u_2$, so that u is also an eigenfunction of (4), since $u = u_2 \leq 0$ a.e. in B. It is known, as noted in the
introduction, that \(\lambda_1 < \lambda_2 \), where \(\lambda_2 \) is the second eigenvalue of (4). Hence any \(\lambda \in (\lambda_1, \delta) \), with \(\delta = \min[\lambda_1/c, \lambda_2] \), cannot be eigenvalue of (4) and in turn is not an eigenvalue of (5), by the argument above. This completes the proof. \(\square \)

As already noted, \(\lambda > 0 \) is an eigenvalue of the problem

\[
\begin{align*}
(\Delta)^K u &= \lambda h(x, u_+) \quad \text{in } B, \\
\lambda u &= Du = \cdots = D^{K-1} u = 0 \quad \text{on } \partial B,
\end{align*}
\]

(8)

if there exists \(u \in H_0^K \setminus \{0\} \) such that \((u, v)_K = \lambda \int_B h(x, u_+) v \text{d}x \) for all \(v \in H_0^K \), that is if and only if \(u = 0 \) is a nontrivial critical point of the \(C^1 \) functional \(I_{\lambda} : H_0^K \to \mathbb{R} \), defined by

\[
I_{\lambda}(u) = \frac{1}{2} \|u\|^2 - \frac{1}{2} \int_B H(x, u) \text{d}x.
\]

If \(\lambda > 0 \) is an eigenvalue of (8), with corresponding eigenfunction \(u = u_1 + u_2 \), then taking as test function \(v = u_2 \) by (H1) we get, being \((u_1, u_2)_K = 0 \) and \(h(x, 0) = 0 \) a.e. in \(B \),

\[
\|u_2\|^2_2 = (u, u)_K = \lambda \int_B h(x, u_+) u_2 \text{d}x = \lambda \int_B h(x) u_2 \text{d}x \leq 0,
\]

being \(u_2 \leq 0 \) a.e. in \(B \), that is \(u = u_1 \geq 0 \) in \(B \) and \(u \neq 0 \). In particular, any eigenvalue \(\lambda \) of (8) is also an eigenvalue of (5).

Assumption (H2) implies that for every \(\lambda > 0 \) there exists \(C_\lambda > 0 \) such that \(\lambda h(x, t) \leq C_\lambda + \lambda_1 t^2/4 \) for a.a. \(x \in B \) and all \(t \in \mathbb{R} \), where \(\lambda_1 \) is the first eigenvalue of (4). Hence, by the definition of \(\lambda_1 \), we have that for all \(u \in H_0^K \)

\[
I_{\lambda}(u) \geq \frac{1}{2} \|u\|^2_2 - \frac{\lambda_1}{4} \|u\|^2_2 - C_\lambda |B| \geq \frac{1}{4} \|u\|^2_2 - C_\lambda |B|,
\]

in other words \(I_\lambda \) is bounded from below, weakly lower semi-continuous and coercive on \(H_0^K \).

Lemma 2.4. There exists \(\lambda^* > 0 \) such that \(\inf_{H_0^K} I_{\lambda}(u) < 0 \) for all \(\lambda > \lambda^* \).

Proof. By (H2) there exists \(t_0 > 0 \) such that \(h(x, t_0) > 0 \) a.e. in \(B \). Let \(\Omega \subset B \) be a compact subset, sufficiently large, such that \(|B \setminus \Omega| \leq \int_B h(x, t_0) \text{d}x/c_\lambda^2 \), where \(c \in (0, 1) \) is given in (H1). Take \(u_0 \in C^\infty(B) \), with \(u_0(x) = t_0 \) if \(x \in \Omega \) and \(0 \leq u_0(x) \leq t_0 \) if \(x \in B \setminus \Omega \). Hence, by (H1),

\[
\int_B H(x, u_0(x)) \text{d}x \geq c_\lambda^2 \int_B H(x, t_0) \text{d}x - c_\lambda^2 |B \setminus \Omega| > 0,
\]

and so \(I_\lambda(u_0) < 0 \) for \(\lambda > 0 \) sufficiently large. The lemma follows at once. \(\square \)

Now, we return to the proof of Theorem 1.1. Since \(I_\lambda \) is bounded from below, weakly lower semi-continuous and coercive on \(H_0^K \), then Lemma 2.3 and [4, Theorem 1.2] show that \(I_\lambda \) has a negative global minimum for \(\lambda > 0 \) sufficiently large. This means that all such \(\lambda \) are eigenvalues of problem (8) and, consequently, of (5). This fact and Lemmas 2.1–2.3 complete the proof of Theorem 1.1.

Acknowledgements

P. Pucci has been supported by the Italian MIUR project “Metodi Variazionali ed Equazioni Differenziali non Lineari”. V. Rădulescu has been supported by the Romanian Grant CNCSIS PNII–79/2007 “Procese Nelineare Degenerate și Singulare”.

References

