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Abstract. We are concerned with the study of the following nonlinear eigen-
value problem with Robin boundary condition−div (a(x,∇u)) = λb(x, u) in Ω

∂A

∂n
+ β(x)c(x, u) = 0 on ∂Ω.

The abstract setting involves Sobolev spaces with variable exponent. The main
result of the present paper establishes a sufficient condition for the existence

of an unbounded sequence of eigenvalues. Our arguments strongly rely on the

Lusternik-Schnirelmann principle. Finally, we focus to the following particular
case, which is a p(x)-Laplacian problem with several variable exponents:−div (a0(x)|∇u|p(x)−2∇u) = λb0(x)|u|q(x)−2u in Ω

|∇u|p(x)−2 ∂u

∂n
+ β(x)|u|r(x)−2u = 0 on ∂Ω.

Combining variational arguments, we establish several properties of the eigen-

values family of this nonhomogeneous Robin problem.

1. Introduction. Let Ω be a bounded domain with smooth boundary in RN . As-
sume that the functions a(x, ξ) : Ω × RN → RN , b(x, y) : Ω × R → R, c(x, y) :
∂Ω×R→ R are the derivatives with respect to the second variable of the mappings
A, B, C respectively. Let ∂A

∂n denote the outer normal derivative of A on ∂Ω and
assume that β : R→ [0,+∞) is a given function such that L∞(∂Ω).

In this work, we are concerned with the following eigenvalue problem with Robin
boundary condition space as follows

(R)

{ −div (a(x,∇u)) = λb(x, u) in Ω
∂A

∂n
+ β(x)c(x, u) = 0 on ∂Ω.
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40 VICENŢIU D. RĂDULESCU AND SOMAYEH SAIEDINEZHAD

The study of nonlinear eigenvalue problems is of central interest in nonlinear
analysis, starting with the pioneering papers of F. Browder [4, 5, 6, 7]. In the present
paper, by considering the corresponding energy functional and seeking the weak
solutions, we establish the existence of eigenfunctions corresponding to eigenvalues
in some appropriate Banach space.

The Sobolev space W 1,p(Ω), where p is constant, is suitable for studying of many
problems in physics and mechanics. In some cases the standard approach based on
the theory of classical Lp and W 1,p Lebesgue and Sobolev spaces is not adequate in
the framework of material with non-homogeneities. For instance, electro-rheological
fluids (sometimes referred to as “smart fluids”) or phenomena in image processing
are described in a correct manner by mathematical models in which the exponent
p is allowed to vary. This leads us to the study of variable exponents Lebesgue and
Sobolev spaces, Lp(x) and W 1,p(x), where p is a real-valued function. The study of
differential equations and variational problems involving p(x)-growth conditions is
a consequence of their applications. Materials requiring such more advanced theory
have been studied experimentally since the middle of the last century. The first ma-
jor discovery in electrorheological fluids was due to Willis Winslow in 1949. These
fluids have the interesting property that their viscosity depends on the electric field
in the fluid. Winslow noticed that in such fluids (for instance lithium polymeta-
chrylate) viscosity in an electrical field is inversely proportional to the strength of
the field. The field induces string-like formations in the fluid, which are parallel
to the field. They can raise the viscosity by as much as five orders of magnitude.
This phenomenon is known as the Winslow effect. Electrorheological fluids have
been used in robotics and space technology. The experimental research has been
done mainly in the USA, for instance in NASA laboratories. These relevant appli-
cations motivate the growing interest of mathematicians for the study of nonlinear
problems with p(x)-growth conditions; we refer, e.g., to [1, 2, 12, 20, 22, 25, 28] and
the references therein.

We deal with boundary data which is a combination of Dirichlet and Neumann
conditions. This is called Robin boundary condition (or third type boundary condi-
tion), named after the French mathematician Victor Gustave Robin. This boundary
condition is commonly used in solving Sturm-Liouville problems, which appear in
many contexts in science and engineering. In addition, the Robin boundary condi-
tion is a general form of the insulating boundary condition for convectiondiffusion
equations. For instance, in many physical problems such as heat conduction or che-
mical reaction, the flow across the boundary surface is proportional to the difference
between the surrounding density and the density just inside Ω. Consider ∂u/∂ν as
the outward normal derivative of u on ∂Ω and denote the surrounding density by
ρ0(x, t). According to [17, pp. 5-6],

∂u

∂ν
= β(ρ0 − u),

where β is a proportionality constant, which can vary from point to point on ∂Ω.
Since ρ0 is known, the boundary condition can be written as

∂u

∂ν
+ βu = ρ(x, t) for x ∈ ∂Ω, t > 0,

where ρ = βρ0. We also point out that the most often used boundary condition
in optical imaging is the Robin boundary condition, which is also referred as the
partial current boundary condition; see [3, 23].
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The paper is organized as follows. We first present some of the main properties
of variable exponent Lebesgue and Sobolev spaces as well as the abstract Lusternik-
Schnirelmann (L-S) principle [15]. Then we establish the existence of infinitely many
eigenpairs in relationship with the L-S principle. Section 4 includes an illustration of
the main result in the particular case of p(x)-Laplace operators. The final section
of this paper is devoted to study of the infimum of the eigenvalue set and some
related properties.

2. Preliminaries. Let p ∈ C(Ω) and

1 ≤ p− := ess infx∈Ωp(x) ≤ p+ := ess supx∈Ωp(x) <∞.

The variable exponent Lebesgue space is

Lp(x)(Ω) = {u : u : Ω −→ R is measurable and

∫
Ω

|u|p(x)dx <∞},

which is a Banach space with the norm

|u|Lp(x)(Ω) = inf

{
σ > 0 :

∫
Ω

|u
σ
|p(x)dx ≤ 1

}
.

The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

which is a Banach space with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).

Throughout this paper, we use the symbols X, E and E instead of W 1,p(x)(Ω),
Lp(x)(Ω) and Lp(x)(∂Ω) respectively.

We refer to [13, 18, 19] for basic information about the variable exponent spaces
but we recall in the following some of their relevant properties:

(i) The space (E, |.|E) is a separable, uniform convex Banach space and its con-
jugate space is E′ := Lq(x)(Ω), where 1

q(x) + 1
p(x) = 1. Moreover, for all u ∈ E

and v ∈ E′, we have∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

q−
)|u|E |u|E′ ,

which is the Hölder inequality for variable exponents.
(ii) If p1, p2 ∈ C(Ω) and 1 < p1(x) ≤ p2(x) for any x ∈ Ω, then the embedding

Lp2(x)(Ω) ↪→ Lp1(x)(Ω) is continuous.
(iii) For all u ∈ E we have

min(|u|p
+

E , |u|p
−

E ) ≤
∫

Ω

|u|p(x)dx ≤ max(|u|p
+

E , |u|p
−

E ).

(iv) X is a separable, reflexive Banach space.
(v) There is a compact and continuous embedding X ↪→↪→ Lq(.)(Ω), where q ∈

C(Ω), 1 ≤ q(x) < p∗(x) for all x ∈ Ω and

p∗(x) =


Np(x)

N − p(x)
if p(x) < N

∞ if p(x) ≥ N.
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(vi) There is a constant C > 0, such that

|u|E ≤ C|∇u|E for all u ∈ E.
Thus we can use |∇u|E as an equivalent norm of u that is ‖u‖X .

(vii) If Ω has a smooth boundary ∂Ω and p ∈ C(Ω) then there exists a compact
embedding X ↪→↪→ Lq(.)(∂Ω), where q ∈ C(∂Ω), 1 ≤ q(x) < p∂(x) for any
x ∈ ∂Ω and

p∂(x) =


(N − 1)p(x)

N − p(x)
; p(x) < N

∞; p(x) ≥ N.
As pointed out in [19, pp. 8-9], the function spaces with variable exponent have

some striking properties, such as:
(i) If 1 < p− ≤ p+ <∞ and p : Ω→ [1,∞) is smooth, then the formula∫

Ω

|u(x)|pdx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity property.

More precisely, if p is continuous and nonconstant in an open ball B, then there
exists a function u ∈ Lp(x)(B) such that u(x + h) 6∈ Lp(x)(B) for all h ∈ RN with
arbitrary small norm.

(iii) The function spaces with variable exponent are never translation invariant.
The use of convolution is also limited, for instance the Young inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

holds if and only if p is constant.

2.1. Lusternik-Schnirelmann principle. We recall a version of the L-S prin-
ciple, which was discussed in Browder [7] and Zeidler [26, 27]. Let X be a real
reflexive Banach space and F , G be two functionals on X. Consider the following
eigenvalue problem:

F ′(u) = µG′(u); u ∈ SG, µ ∈ R, (1)

where SG,α = {u ∈ X;G(u) = α} is the α-level set of G for α > 0.
Then u is a solution of (1), if and only if u is critical point of F with respect to

SG,α.

We assume that the following hypotheses are fulfilled:

(LS1) F,G are even functionals and F,G ∈ C1(X,R) with F (0) = G(0) = 0.
(LS2) F ′ is strongly continuous, that is, un ⇀ u in X implies F ′(un) → F ′(u).

Moreover, 〈F ′(u), u〉 = 0, u ∈ coSG,α implies F (u) = 0, where coSG,α is the
closed convex hull of SG,α.

(LS3) G′ is continuous, bounded and satisfies (S0) condition, that is,

un ⇀ u, G′(un) ⇀ v, 〈G′(un), un〉 → 〈v, u〉 imply un → u.

(LS4) The level set SG,α is bounded and u 6= 0 implies

〈G′(u), u〉 > 0, lim
t→+∞

G(tu) = +∞, inf
u∈SG,α

〈G′(u), u〉 > 0.

For n ∈ N, let An denote the class of all compact, symmetric subsets K of SG,α
such that F (u) > 0 on K and

γ(K) := inf{k ∈ N;∃h : K → Rk\{0} such that h is continuous and odd} ≥ n.
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Let

an,α :=

{
supH∈An

infu∈H F (u) if An 6= ∅
0; if An = ∅.

We now present L-S principle and we refer to Zeidler [26] for more details.

Theorem 2.1. Under assumptions (LS1)-(LS4), the following assertions hold:

(i) If an,α > 0, then problem (1) possesses a pair (±un,α, µn,α) of eigenpairs such

that F (un,α) = an,α and µn,α =
<F ′(un,α),un,α>
<G′(un,α),un,α>

.

(ii) For all α we have ∞ > a1,α ≥ a2,α ≥ ... ≥ 0 and an,α → 0 as n→∞.

Definition 2.2. The functional T is called conjugational function on a Banach
space E provided that for any u ∈ E we have T (u) ∈ E′, where E′ is the conjugate
(dual) space of E.

For example, if u ∈ Lp(Ω) then T (u) = |u|p−1 ∈ Lq(Ω) where 1
p + 1

q = 1, so T is

a conjugational function on Lp(Ω).

Let us consider the following assumptions:

(1) a(x, ξ) : Ω × RN → RN , b(x, y) : Ω × R → R, c(x, y) : ∂Ω × R → R are the
continuous derivatives with respect to their second variable of the mappings
A, B, C respectively; namely, there exist A(x, ξ) : Ω × RN → R, B(x, y) :
Ω × R → R and C(x, y) : ∂Ω × R → R such that a(x, ξ) = ∇ξA(x, ξ),

b(x, y) = ∂B
∂y and c(x, y) = ∂C

∂y .

(2) A,B,C are even with respect to their second component and A(x, 0) =
B(x, 0) = C(x, 0) = 0. Moreover, A and C are coercive with respect to
second component, that is, limt→∞A(x, tξ) = limt→∞ C(x, ty) = ∞ for any
ξ ∈ RN and y ∈ R.

(3) a(x, ξ) is conjugational function with respect to ξ on E and b(x, y), c(x, y) are
continuous conjugational on the Banach spaces E and E respectively.

(4) There exists a positive constant γ such that a(x, ξ) · ξ ≥ γA(x, ξ) ≥ 0,
b(x, y)y ≥ γB(x, y) ≥ 0 and c(x, y)y ≥ γC(x, y) ≥ 0; for any x, y ∈ R
and ξ ∈ RN .

(5) There exists a function r = r(x, t) : Ω × R −→ R where for any fixed x ∈ Ω

we have p(x) = O(r(x, t)), (that is, limt−→0
r(x,t)
tp(x)

6= 0) and

A(x,
ξ + ψ

2
) ≤ 1

2
A(x, ξ) +

1

2
A(x, ψ)− r(x, |ξ − ψ|),

for all x ∈ Ω and ξ, ψ ∈ RN .
(6) β : ∂Ω −→ [0,+∞) belongs to L∞(∂Ω).

3. Main existence result. A pair (u, λ) ∈ X\{0} × R is called eigenpair of pro-
blem (R) if for all v ∈ X,∫

Ω

a(x,∇u)∇vdx+

∫
∂Ω

β(x)c(x, u)vds = λ

∫
Ω

b(x, u)vdx. (2)

In this section, by using the Lusternik-Schnirelmann principle, we find an un-
bounded sequence of eigenpairs for problem (R), as it is stated the following result.
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Theorem 3.1. Consider problem (R) and assume that hypotheses (1)-(6) are ful-
filled. Then for any α > 0 there exists a nondecreasing sequence of nonnegative
eigenvalue {λn,α} of (R) such that

λn,α =
1

µn,α
→∞ as n→∞.

Moreover, every µn,α is an eigenvalue of the corresponding equation F ′(u) = µG′(u),
where

F (u) =

∫
Ω

B(x, u)dx, G(u) =

∫
Ω

A(x,∇u)dx+

∫
∂Ω

β(x)C(x, u)ds. (3)

Lemma 3.2. Let F as defined in (3). Then F ′ satisfies hypotheses (LS1) and
(LS2).

Proof. Let un ⇀ u, hence by the compact embedding X ↪→↪→ E we obtain un → u
in E. Thus, by the variable exponent Hölder inequality combined with hypothesis
(3) we have

|〈F ′(un)− F ′(u), v〉| ≤
∫

Ω

|(b(x, un)− b(x, u))v|dx

≤ κ‖b(x, un)− b(x, u)‖E′‖v‖E → 0.

Moreover by condition (4), we conclude the entire assertions.

The proof of the following lemma is inspired by the proof of Lemma 3.11 from
[16].

Lemma 3.3. Let G be defined in (3). Then hypothesis (LS3) is satisfied.

Proof. Using the variable exponent Hölder inequality combined with the compact
embedding X ↪→↪→ E and hypothesis (3) we have

‖G′‖X∗ = sup{|〈G′(u), v〉|; ‖v‖ ≤ 1}

≤ sup |
∫

Ω

a(x,∇u)∇vdx+

∫
∂Ω

β(x)c(x, u)vds|

≤ κ‖a(x,∇u)‖E′‖v‖E + β+‖c(x, u)‖E′‖v‖E
≤ κ‖a(x,∇u)‖E′‖v‖E + κβ+‖c(x, u)‖E′‖v‖ <∞.

It follows that G′ is bounded.
Next, we suppose that un ⇀ u, G′(un) ⇀ v and 〈G′(un), un〉 → 〈v, u〉 for some

v ∈ X∗ and u ∈ X and we prove that un → u. Since X is uniformly convex Banach
space, a weak convergence and norm convergence imply strong convergence in the
norm topology. Therefore to prove that un → u in X, we only need to show that
‖un‖ → ‖u‖. By Sobolev compact embedding we have un → u in E and so

〈G′(un)−G′(u), un − u〉 → 0 as n→∞.
We have

〈G′(un)−G′(u), un − u〉 =

∫
Ω

(a(x,∇un)− a(x,∇u))(∇un −∇u)dx

+

∫
∂Ω

β(x)(c(x, un)− c(x, u))(un − u)ds.

By hypothesis (3) the second term in the right-hand side of the above relation tends
to zero and hence ∫

Ω

(a(x,∇un)− a(x,∇u))(∇un −∇u)dx→ 0. (4)
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Fix ε > 0. By hypothesis (5) we deduce that u 7→
∫

Ω
A(x,∇u)dx is a convex

functional. Therefore∫
Ω

A(x,∇v)dx ≥
∫

Ω

A(x,∇u)dx+

∫
Ω

a(x,∇u)(∇v −∇u)dx

≥
∫

Ω

A(x,∇u)dx−
∫

Ω

|a(x,∇u)||(∇v −∇u)|dx

≥
∫

Ω

A(x,∇u)dx− κ‖a(x,∇u)‖E′‖‖∇v −∇u‖E

≥
∫

Ω

A(x,∇u)dx− κ′‖u− v‖ ≥
∫

Ω

A(x,∇u)dx− ε,

(5)

for all v ∈ X with ‖u − v‖ < ε
κ′ . The positive constants κ, κ′ are derived from

Hölder’s inequality and the boundedness of a(x,∇u) in E′. We conclude that u 7→∫
Ω
A(x,∇u)dx is lower semi-continuous and so weakly lower semi-continuous. Thus

by definition, if un ⇀ u in X we have∫
Ω

A(x,∇u)dx ≤ lim inf

∫
Ω

A(x,∇un)dx.

On the other hand, from (4) and (5) we conclude that∫
Ω

A(x,∇u)dx = lim

∫
Ω

A(x,∇un)dx.

Taking into account that un+u
2 ⇀ u in X and using the previous argument we

obtain ∫
Ω

A(x,∇u)dx ≤ lim inf

∫
Ω

A(x,∇(
un + u

2
))dx. (6)

If un were not converge strongly in X, there exist ε > 0 and a subsequence of
un, still denoted by un, such that ‖un−u‖ > ε. Next, by assumption (5) we deduce
that

1

2

∫
Ω

A(x,∇u)dx+

∫
Ω

1

2
A(x,∇un)dx

≥
∫

Ω

A(x,
∇un +∇u

2
)dx+

∫
Ω

r(x, |∇un −∇u|)dx

≥
∫

Ω

A(x,
∇un +∇u

2
)dx+ κ0

∫
Ω

(∇un −∇u)p(x)dx

≥
∫

Ω
A(x, ∇un+∇u

2 )dx+ κ0ε
p0 ,

where p0 is equal to p− if ‖un − u‖ > 1 and is p+ in otherwise. Taking n→∞ we
deduce that ∫

Ω

A(x,∇u)dx− κ0ε
p0 ≥ lim sup

∫
Ω

A(x,
∇un +∇u

2
)dx,

which contradicts (6). It follows that un converges strongly to u in X, so hypothesis
(LS3) is fulfilled.

Proof of Theorem 3.1. In the view of conditions (3) and (4) we see that the
functionals F,G are well defined on X and that they belong to C1(X,R) with the
derivatives given by

〈F ′(u), v〉 =

∫
Ω

b(x, u)vdx,

〈G′(u), v〉 =

∫
Ω

a(x,∇u)∇vdx+

∫
∂Ω

β(x)c(x, u)vds,

for all v ∈ X.
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Then SG,α is bounded and for u 6= 0, 〈G′(u), u〉 > 0 , limt→+∞G(tu) = +∞ and
infu∈SG,α〈G′(u), u〉 > 0.

The eigenvalue problem F ′(u) = µG′(u) is equivalent to∫
Ω

b(x, u)vdx = µ(

∫
Ω

a(x,∇u)∇vdx+

∫
∂Ω

β(x)c(x, u)vds)

for any v ∈ X. Equivalently, we have for all v ∈ X∫
Ω

a(x,∇u)∇vdx+

∫
∂Ω

β(x)c(x, u)vds =
1

µ

∫
Ω

b(x, u)vdx.

Finally, by Lemmas 3.2 and 3.3 combined with Theorem 2.1, we conclude the
proof.

4. A special case in the p(x)-Laplacian class. One of the most important
eigenvalue problems are those concerned with the p-Laplace operator

∆pu = div (|∇u|p−2∇u),

with different boundary conditions. We now consider the more general differential
p(x)-Laplace operator defined as

∆p(x)u = div (|∇u|p(x)−2∇u).

Nonlinear eigenvalue problems for p(x)-Laplacian operator similar to eigenvalue
problems for p-Laplacian with Dirichlet, Neumann and Steklov boundary condition
have been investigated previously, see, e.g., [8, 9, 10, 19].

In this section, we consider the following class of degenerate p(x)-Laplacian pro-
blems with Robin boundary condition

(P1)

−div (a0(x)|∇u|p(x)−2∇u) = λb0(x)|u|q(x)−2u in Ω

|∇u|p(x)−2 ∂u

∂n
+ β(x)|u|r(x)−2u = 0 on ∂Ω,

where p, q : Ω → [1,∞) belong to C(Ω), such that 1 ≤ p− ≤ p+ < ∞ and 1 ≤
q(x) < p∗(x) for all x ∈ Ω. We assume that r : ∂Ω → [1,∞) belongs to C(∂Ω)
such that 1 ≤ r(x) < p∂(x) for all x ∈ ∂Ω. The potentials a0, b0 : Ω → [0,∞) and
β : ∂Ω→ [0,∞) belong to L∞(Ω) and L∞(∂Ω) respectively.

It is obvious that by setting a(x, ξ) := a0(x)|ξ|p(x)−2ξ, b(x, y) := b0(x)|y|q(x)−2y
and c(x, y) := |y|r(x)−2y in problem (R), conditions (1)-(5) are satisfied.

We check in what follows hypothesis (LS3). For this purpose, we first recall the
following Simon inequalities [24](|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ 1

2p
|ξ − η|p if p ≥ 2

(|ξ|p−2ξ − |η|p−2η)(ξ − η)(|ξ|+ |η|)2−p ≥ (p− 1)|ξ − η|p if 1 < p < 2.
(7)

We refer to [11] for some applications of Simon’s inequalities.
Next, applying Simon’s inequalities to

In(x) := (a(x,∇un)− a(x,∇u))(∇un −∇u),

we obtain

In(x) ≥
(
a0(x)

2p(x)
|∇un −∇u|p(x)

)
χΩ+(x)

+a0(x)(p(x)− 1)
|∇un −∇u|2

(|∇un|+ |∇u|)2−p(x)
χΩ−(x),

(8)
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where Ω+ = {x ∈ Ω; p(x) ≥ 2} and Ω− = Ω\Ω+. Consequently, for some positive
constant κ we have ∫

Ω+

|∇un −∇u|p(x)dx ≤ κ
∫

Ω

In(x)dx. (9)

From the last term in (8), we get∫
Ω−
|∇un −∇u|p(x)dx ≤ κ

∫
Ω−

In(x)
p(x)
2 (|∇un|+ |∇u|)(2−p(x))

p(x)
2 dx =: κJ.

Since limn→∞ In = 0, we can assume that 0 ≤
∫

Ω
In(x)dx < 1. By Young’s

inequality, we obtain

J =

∫
Ω−

In(x)
p(x)
2 (

∫
Ω

In(y)dy)−
p(x)
2 (|∇un|+ |∇u|)(2−p(x))

p(x)
2 (

∫
Ω

In(y)dy)
p(x)
2 dx

≤ (

∫
Ω

In(y)dy)
1
2

∫
Ω−

p(x)

2
(In(x)(

∫
Ω

In(y)dy)−1) +
2− p(x)

2
(|∇un|+ |∇u|)p(x)dx

≤ (

∫
Ω

In(y)dy)
1
2 (1 +

∫
Ω

(|∇un|+ |∇u|)p(x)dx).

Hence by inserting (9), we obtain∫
Ω

|∇un −∇u|p(x)dx ≤ κ
(∫

Ω

In(y)dy

)1/2(
1 +

∫
Ω

(|∇un|+ |∇u|)p(x)dx

)
.

Thus
∫

Ω
|∇un −∇u|p(x)dx→ 0 as n→ 0, and so un → u in X.

By the above argument we have the following result.

Theorem 4.1. Consider problem (P1) with the above mentioned assumptions on
p, q, r, a0, b0, β. Then for any α > 0 there exists a nondecreasing sequence of non-
negative eigenvalue for (P1), named {λn,α} such that λn,α →∞ as n→∞.

5. The set of eigenvalues. Set

Λ := {µ ∈ R;µ is an eigenvalue of F ′(u) = µG′(u)}.

Then

Λ =

∞⋃
n=1

⋃
α>0

µn,α;

where for any α > 0, {µn,α}∞n=1 is the eigenvalue sequence of F ′(u) = µG′(u) in
α-level set of G.

In all eigenvalue problems, the infimum of the eigenvalue set Λ is a central topic
in nonlinear spectral theory. In the process of finding eigenvalues by (L-S) principle,
if all eigenvalues µn,α are independent of α, we have

0 = inf Λ < max Λ = µ1,α =: µ1. (10)

However, in the general case we do not know if Λ∗ := sup Λ <∞. In fact,

Λ∗ = sup
α>0

µ1,α. (11)
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Now consider the eigenvalue set of problem (R), which is denoted by ΛR. We
observe that for λ ∈ ΛR then there exists u = uλ ∈ X\{0} such that

λ =

∫
Ω
a(x,∇u)∇udx+

∫
∂Ω
β(x)c(x, u)uds∫

Ω
b(x, u)udx

. (12)

Moreover, there exist n ∈ N and α > 0 such that λ = λn,α, u = uλ ∈ SG,α, that is,∫
Ω

A(x,∇u)dx+

∫
∂Ω

β(x)C(x, u)ds = α .

Thus, by taking into account assumption (4) we have

λ = λn,α ≥ γ
α∫

Ω
b(x, u)udx

. (13)

Since the last term is dependent on α then we cannot conclude inf ΛR is equal to
zero or not. On the other hand, it is obvious that sup ΛR =∞, by the first equality
in (10).

It is known that in the case p = q = r ≡constant we have inf ΛP1 > 0, see [14].
In the following we present some sufficient conditions for problem (P1) in order

to obtain that inf ΛP1
is either zero or positive. Let us to refer [8, 9], where related

arguments are provided. We start with the following preliminary result.

Lemma 5.1. Consider problem (P1) and the set

Π :=

{∫
Ω
a0(x)|∇u|p(x)dx+

∫
∂Ω
β(x)|u|r(x)ds∫

Ω
b0(x)|u|q(x)dx

; u ∈ X\{0}

}
.

Then inf ΛP1
> 0 if and only if inf Π > 0.

Proof. The necessity is obvious, since by (12) we have ΛP1
⊆ Π and so inf Π ≤

inf ΛP1
.

Recall that in problem (P1) we have

〈F ′(u), v〉 =

∫
Ω

b0(x)|u|q(x)−2uvdx

and

〈G′(u), v〉 =

∫
Ω

a0(x)|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

β(x)|u|r(x)−2uvds,

where F (u) =
∫

Ω
b0(x)
p(x) |u|

q(x)dx and G(u) =
∫

Ω
a0(x)
p(x) |∇u|

p(x)dx+
∫
∂Ω

β(x)
r(x) |u|

p(x)ds.

Let Π := {G(u)
F (u) ;u ∈ X\{0}}. Note that if inf Π = 0 then inf Π = 0, since

q−

max{p+, r+}
inf Π ≤ inf Π ≤ q+

min{p−, r−}
inf Π.

So for any ε > 0 there exists uε ∈ X\{0} such that G(uε)
F (uε)

< ε. Let G(uε) = α.

By the definition of a1,α we have α
a1,α

≤ G(uε)
F (uε)

< ε and so λ1,α ≤ max{p+,r+}
q− ε.

Moreover from (11), we know that inf ΛP1 = infα>0 λ1,α. Since ε is arbitrary we
conclude that inf ΛP1 = 0.

Proposition 1. Consider problem (P1) and suppose that there exists an open subset
U of Ω such that p has either a local minimum or a local maximum at x0 ∈ U and
p(x0) > q(x0). Moreover, for some εr, εq > 0, we assume that r−B(∂U,εr)∩∂Ω >

q+
B(x0,εq)

. Then inf ΛP1
= 0.
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Proof. Assume that p has a local minimum at x0 ∈ U , the other case being similar.
Since p(x0) > q(x0), there exists ε0 > 0 such that p(x0)− q(x0) > ε0

2 . Without loss

of generality, suppose that U ⊂ Ω and p(x) > p(x0) for all x ∈ ∂U .
So there exists εp > 0 such that

p(x)− ε0 > p(x0) for all x ∈ B(∂U, εp). (14)

Also, there exists ε′q > 0 such that

|q(x)− q(x0)| < ε0

2
for all x ∈ B(x0, ε

′
q). (15)

Define u0 ∈ C∞(Ω) with |∇u0| ≤ C0 and 0 ≤ u0(x) ≤ 1 for any x ∈ Ω where
u0(x) = 0 for x 6∈ U∪B(∂U, ε) and u0(x) = 1 on U\B(∂U, ε); where ε = min(εp, εr).
Obviously, for any α > 0 there exists t > 0 such that tu0 ∈ SG,α, i.e., G(tu0) = α;
and t→ 0 as α→ 0.

Using (12), we have

inf ΛP1 ≤ λ1,α ≤ κ
F (tu0)

G(tu0)
≤ κ

∫
Ω
a0(x)|∇tu0|p(x)dx+

∫
∂Ω
β(x)|tu0|r(x)ds∫

Ω
b0(x)|tu0|q(x)dx

= κ

∫
B(∂U,ε)∩Ω

a0(x)tp(x)|∇u0|p(x)dx+
∫
∂Ω∩B(∂U,ε)

β(x)tr(x)|u0|r(x)ds∫
(U∪B(∂U,ε))∩Ω

b0(x)tq(x)|u0|q(x)dx

≤ κ
tp(ξ1)

∫
B(∂U,ε)∩Ω

a0(x)|∇u0|p(x)dx+ tr(ξ2)
∫
∂Ω∩B(∂U,ε)

β(x)|u0|r(x)ds

tq(ξ3)
∫
B(x0,ε1)

b0(x)|u0|q(x)dx

≤ κ
C1a

+
0 (C0t)

p(ξ1) + tr(ξ2)
∫
∂Ω∩B(∂U,ε1)

β(x)|u0|r(x)ds

C3b
−
0 t
q(ξ3)

,

for some positive constants κ, ξ1 ∈ B(∂U, ε)∩Ω, ξ2 ∈ ∂Ω∩B(∂U, ε), ξ3 ∈ B(x0, ε1),
C1 = |B(∂U, ε)∩Ω|, C3 = |B(x0, ε1)| and ε1 = min(εq, ε

′
q). Using (14) and (15) we

obtain p(ξ1)− q(ξ3) > ε0. Moreover r(ξ2)− q(ξ3) > 0, Thus we get

λ1,α ≤ Ctp(ξ1)−q(ξ3) + C ′tr(ξ2)−q(ξ3) → 0

as t→ 0, which this complete the proof.

Theorem 5.2. Consider problem (P1) and suppose that for an open subset U of
Ω and a compact subset V of U with positive measure we have q+(V ) < p−(U\V ).
Then λ1,α → 0 as α→ 0 and consequently inf Λp1 = 0.

Proof. For any δ > 0 define Uδ := {x ∈ U ; dist(x, ∂U) < δ}. So there exists δ > 0
such that V ∩ Uδ = ∅ and q+(V ) < p−(Uδ). Let u0 ∈ X such that u0(x) = 0 for
x ∈ Ω\U and u0(x) = 1 for x ∈ U\Uδ. Moreover, for all α > 0 there exists t = tα
such that tu0 ∈ SG,α and t→ 0 as α→ 0. So we have

λ1,α ≤
∫

Ω
a0(x)|∇tu0|p(x)dx+

∫
∂Ω
β(x)|tu0|r(x)ds∫

Ω
b0(x)|tu0|q(x)dx

≤
tp
−(Uδ)

∫
Uδ
a0(x)|∇u0|p(x)dx

tq+(V )
∫
V
b0(x)|u0|q(x)dx

→ 0;

as t→ 0. So the proof is complete.

By a similar method we can derive the following theorem.
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Theorem 5.3. Consider problem (P1) and suppose that for an open subset U of
Ω and a compact subset V of U with positive measure we have q−(V ) > p+(U\V ).
Then λ1,α → 0 as α→∞ and consequently inf ΛP1

= 0.

Denote (P̃1) for problem (P1) when q(·) := p(·).

Proposition 2. (i) If N = 1 and p is monotone then inf Λ
P̃1
> 0.

(ii) If N > 1 and there is a vector l ∈ RN\{0} such that for any x ∈ Ω the function
f(t) = p(x+ tl) is monotone for t ∈ Ix = {t;x+ tl ∈ Ω}, then inf Λ

P̃1
> 0.

Proof. We have∫
Ω
a0(x)|∇u|p(x)dx+

∫
∂Ω
β(x)|u|r(x)ds∫

Ω
b0(x)|u|q(x)dx

≥
∫

Ω
a0(x)|∇u|p(x)dx∫

Ω
b0(x)|u|q(x)dx

.

By Theorems 3.2 and 3.3 of [10], we have

inf
u∈X\{0}

∫
Ω
a0(x)|∇u|p(x)dx∫

Ω
b0(x)|u|q(x)dx

> 0,

so we conclude the assertions by Lemma 5.1.

Definition 5.4. An eigenvalue λ is called principal eigenvalue if there exists a
nonnegative eigenfunction corresponding to λ, that is, there exists u ∈ X\{0} such
that u ≥ 0 and (u, λ) is a solution of corresponding problem. Denote the set of
principal eigenvalues by Λ+.

In the case where p, q, r are constant functions in problem (P1), it is well known
that the first eigenvalue is principal, in fact if u is a first eigenfunction, so is |u|.
When we deal with variable exponent case we consider the set Λ1P1 := {λ1,α;α >
0}. Then for any λ ∈ Λ1P1 there exists uλ,α ∈ SG,α with F (uλ,α) = supv∈SG,α F (v).

It is obvious that for any α > 0, the function |uλ,α|, where uλ,α is corresponding
eigenfunction to λ1,α ∈ Λ1P1, is also eigenfunction corresponding to λ1,α and so
every element of Λ1P1 also belongs to Λ+P1 (the set of principal eigenvalues of
problem P1)

Proposition 3. Suppose that inf Λ+

P̃1
> 0 and there exists ε > 0 such that q(x)+ε ≤

p(x) for a.e. x ∈ Ω. Then Λ+
P1

= (0,∞).

Proof. We show that for all λ > 0 problem (P1) has a nontrivial, nonnegative
solution uλ. Since inf Λ+

P̃1
> 0, we obtain

ϑ := inf

∫
Ω
a0(x)
p(x) |∇u|

p(x)dx+
∫
∂Ω

β(x)
r(x) |u|

r(x)ds∫
Ω
b0(x)
p(x) |u|p(x)dx

> 0 . (16)

Moreover, by our hypotheses we deduce that there exists R > 0 large enough such
that

λ|t|q(x)

q(x)
<
ϑ|t|p(x)

2p(x)
for |t| > R and a.e. x ∈ Ω. (17)
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Hence by (16) and (17), the energy functional Iλ corresponding to problem (P1)
is coercive, that is, Iλ(u)→∞ as ‖u‖ → ∞. Indeed, for all u ∈ X,

Iλ(u) =

∫
Ω

a0(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

r(x)
|u|r(x)ds− λ

∫
Ω

b0(x)

q(x)
|u|q(x)dx

=

∫
Ω

a0(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

r(x)
|u|r(x)ds

− λ
∫

Ω+
R

b0(x)

q(x)
|u|q(x)dx− λ

∫
Ω−R

b0(x)

q(x)
|u|q(x)dx

≥
∫

Ω

a0(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

r(x)
|u|r(x)ds− ϑ

2

∫
Ω

b0(x)

p(x)
|u|p(x)dx− C

≥ 1

2

(∫
Ω

a0(x)

p(x)
|∇u|p(x)dx+

∫
∂Ω

β(x)

r(x)
|u|r(x)ds

)
− C

≥ 1

2

∫
Ω

a0(x)

p(x)
|∇u|p(x)dx− C,

where C is positive constant, Ω+
R = Ω ∩ {x; |u(x)| > R} and Ω−R = Ω ∩ {x; |u(x)| ≤

R}. It follows that Iλ has a global minimizer u0. Moreover, by Theorem 5.2, we
have inf ΛP1 = 0 and so inf Π = 0. Thus, there exists uλ ∈ X\{0} such that
G(uλ)
F (uλ) < λ and hence Iλ(uλ) = G(uλ) − λF (uλ) < 0. We deduce that Iλ(u0) < 0

and thus u0 6= 0. Since |u0| is also a global minimizer of Iλ, we get λ ∈ Λ+
P1

, and so

Λ+
P1

= (0,∞).
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