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Abstract Under an appropriate oscillating behavior either at zero or at infinity of the
nonlinear data, the existence of a sequence of weak solutions for parametric quasilinear
systems of the gradient-type on the Sierpiński gasket is proved. Moreover, by adopting
the same hypotheses on the potential and in presence of suitable small perturbations, the
same conclusion is achieved. The approach is based on variational methods and on certain
analytic and geometrical properties of the Sierpiński fractal as, for instance, a compact
embedding result due to Fukushima and Shima.
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1 Introduction

A particular interest has been given in the last few decays to the study of various nonlinear
partial differential equations on fractal domains. For instance, many physical problems lead
to nonlinear models involving reaction-diffusion equations, problems on elastic fractal media or
fluid flow through fractal regions. We also point out relevant applications of the fractal theory
to topology, differential geometry, functional and harmonic analysis, and probability theory.
For recent advances in the theory of nonlinear elliptic equations on fractals we refer to Barlow
and Kigami [2], Bockelman and Strichartz [6], Falconer [24], Falconer and Hu [26], Hu [30], Hua
and Zhenya [31], and Strichartz [44–45]. The main tools used in some of these papers to prove
the existence of nontrivial solutions or multiple solutions to nonlinear elliptic equations with
zero Dirichlet boundary conditions defined on fractals are certain minimax results (mountain
pass or saddle point type theorems), results from genus theory, and minimization procedures.
A particular concern has been devoted to PDEs on the Sierpiński gasket.
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∗Vicenţiu Rădulescu was supported by Grant CNCS PCE 47/2011 (Qualitative and Numerical Analysis
of Nonlinear Problems on Fractals). The second author was supported by the GNAMPA Project
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In the present paper, we are interested in Dirichlet gradient-type systems of the form
⎧⎨
⎩

Δu1(x) + a1(x)u1(x) = λg(x)Fu1 (u1(x), u2(x)), x ∈ V \ V0,
Δu2(x) + a2(x)u2(x) = λg(x)Fu2 (u1(x), u2(x)), x ∈ V \ V0,
u1|V0 = u2|V0 = 0,

(Sλ)

where V stands for the Sierpiński gasket, V0 is its intrinsic boundary, Δ denotes the weak
Laplacian on V and λ is a positive real parameter.

We assume that F : R
2 → R is a C1-function such that F (0, 0) = 0, and Fui denotes the

partial derivative of F with respect to ui. Finally, the variable potentials a1, a2, g : V → R

satisfy the following conditions:
(h1) ai ∈ L1(V, μ) and ai ≤ 0 (i = 1, 2) almost everywhere in V ;
(h2) g ∈ C(V ) with g ≤ 0 such that the restriction of g to every open subset of V is not

identically zero.
Here μ denotes the restriction to V of the normalized log N

log 2 -dimensional Hausdorff measure
on V , so that μ(V ) = 1; see, for more details, the recent work [18].

The nonlinear problem (Sλ) is closely related to physical phenomena such as reaction-
diffusion problems and elastic properties of fractal media and flow through fractal regions.
There is an extensive theory for the study of nonlinear elliptic equations (Sλ) on classical
domains, that is, on open sets of R

N , using Sobolev spaces and Sobolev embedding theorems
etc. (see [3–5, 20, 23, 29]). Many solvability conditions are given, such as the conditions in the
fibering method introduced by Pohozaev and the study of the Nehari manifold for some classes
of quasilinear elliptic systems involving a pair of Laplacian operators (see [16, 47]).

A natural question arises of how to establish an appropriate framework to cope with (Sλ) on
fractal domains. Here we work on a specific fractal, the Sierpiński gasket V in R

N−1 (N ≥ 2),
which is typical one of the more general class of post-critically finite fractals.

Over the years, the Sierpiński gasket showed to be extraordinarily useful in representing
roughness in nature and man’s works. We refer to [44] for an elementary introduction to this
subject and to [46] for important applications to differential equations on fractals. We also
refer to the excellent monograph [19] for a thorough introduction to relevant applications of the
nonlinear analysis.

Moreover, this geometrical object represents one of the most familiar examples of fractal
domains and it gives insight into the turbulence of fluids. According to [33], this notion was
introduced by Mandelbrot [37] in 1977 to design a class of mathematical objects which are not
collections of smooth components.

The importance of fractals is given by their utility in physics, chemistry or biology. Moreover,
the study of the Laplacian on fractals originated in physics literature, where the so-called
spectral decimation method was developed in [1, 40–41]. For completeness we recall that the
Laplacian on the Sierpiński gasket was first constructed as the generator of a diffusion process
(see [28, 35]).

Here we are interested in the existence of infinitely many solutions for a system of gradient-
type (Sλ) by using variational methods. In our main results, just requiring an oscillating
behavior of the term F either at zero or at infinity, we prove, without symmetry assumptions,
that the problem (Sλ) admits a sequence of pairwise distinct weak solutions, see Theorems
3.1–3.2 below. Our method strongly relies on the following critical points theorem, which is a
more precise version of [42, Theorem 2.5].

Theorem 1.1 (see [9, Theorem 2.1]) Let E be a reflexive real Banach space, and let
Φ, Ψ : E → R be two Gâteaux differentiable functionals such that Φ is strongly continuous,
sequentially weakly lower semi-continuous and coercive, and Ψ is sequentially weakly upper
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semi-continuous. For every r > infE Φ, put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

sup
v∈Φ−1(]−∞,r[)

Ψ(v) − Ψ(u)

r − Φ(u)

and
γ := lim inf

r→+∞ ϕ(r), δ := lim inf
r→(infE Φ)+

ϕ(r).

Then, one has

(a) If γ < +∞ then, for each λ ∈ ]
0, 1

γ

[
, the following alternative holds:

Either
(a1) Jλ := Φ − λΨ possesses a global minimum,
or
(a2) there exists a sequence {wn} of critical points (local minima) of Jλ such that
lim

n→∞ Φ(wn) = +∞.

(b) If δ < +∞ then, for each λ ∈ ]
0, 1

δ

[
, the following alternative holds:

Either
(b1) there exists a global minimum of Φ which is a local minimum of Jλ,
or
(b2) there exists a sequence {wn} of pairwise distinct critical points (local minima) of Jλ

which weakly converges to a global minimum of Φ, with lim
n→∞Φ(wn) = inf

w∈E
Φ(w).

The above theorem assures the existence of a sequence of pairwise distinct critical points
for Gâteaux differentiable functionals under the assumptions that, when we consider the energy
functional associated to (Sλ), are satisfied just assuming an appropriate oscillating behavior on
the potential of the nonlinearity either at infinity or at zero (see Theorems 3.1–3.2).

This method has been used successfully to prove, in the context of certain Sobolev spaces,
the existence of infinitely many solutions for Dirichlet and Neumann equations (see [7–8, 10,
12–13, 21–22]). In the present paper, we are able to show that the methods used in [11] can be
successfully adapted to prove the existence of infinitely many (weak) solutions also for nonlinear
elliptic systems of the gradient-type on fractal domains.

Many technical difficulties are overcome in our approach by using suitable analytic properties
arising from the geometry of the Sierpiński gasket (see Remark 3.1). For instance, a careful
analysis of the normalized measure μ, proved by Breckner, Rădulescu and Varga in [17], will be
essential to proving that, under certain hypotheses, the energy functional associated to (Sλ) is
unbounded from below (see the proof of Theorem 3.1).

In Corollaries 3.1–3.2, we discuss the case of a two-parametric Dirichlet system (Sλ,μ),
showing the existence of well-determined open interval of parameters λ and μ for which problem
(Sλ,μ) admits infinitely many solutions (see [22] for related topics).

Further, existence results, analogous of Theorems 3.1–3.2, for sign-changing potential, can
be obtained requiring an additional hypothesis on the nonlinearity either at infinity or at zero
(see Remarks 3.2–3.3).

Finally, we observe that if the data of our problems are sufficiently regular, every weak
solution is a strong solution (see Remark 2.2 and Lemma 2.16 of Falconer and Hu [26]).

The plan of the paper is as follows. In Section 2 we recall some basic facts on suitable
Sobolev spaces associated to the Sierpiński gasket. Successively, Section 3 is devoted to the
main theorems. A direct application is presented in the final section of this paper.
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We cite the very recent monograph [34] as a general reference for the basic notions used
in the paper. Finally, we denote by N the set of natural numbers {0, 1, 2, · · · } and by | · | the
Euclidian norm on the space R

N .

2 Preliminaries

The Sierpiński gasket has the origin in a paper by Sierpiński [43] and in a very simple manner
can be described as a subset of the plane obtained from an equilateral triangle by removing the
open middle inscribed equilateral triangle of 1

4 of the area, removing the corresponding open
triangle from each of the three constituent triangles and continuing in this way. This fractal
can also be obtained as the closure of the set of vertices arising in this construction.

Let V be the Sierpiński gasket in R
N−1 (N ≥ 2) of an intrinsic boundary V0. For a direct

construction and more details on this topics, see the paper [18].
Denote by C(V ) the space of real-valued continuous functions on V and

C0(V ) := {u ∈ C(V ); u|V0 = 0}.

The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ ·‖∞. For a function
u : V → R and for m ∈ N, let

Wm(u) =
(N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))2. (2.1)

We have Wm(u) ≤ Wm+1(u) for very natural m. So we can put

W (u) = lim
m→∞Wm(u). (2.2)

Define
H1

0 (V ) := {u ∈ C0(V ); W (u) < ∞}.
It turns out that H1

0 (V ) is a dense linear subset of L2(V, μ) equipped with the ‖ · ‖2 norm. We
now endow H1

0 (V ) with the norm
‖u‖ =

√
W (u).

In fact, there is an inner product defining this norm: for u, v ∈ H1
0 (V ) and m ∈ N, let

Wm(u, v) =
(N + 2

N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))(v(x) − v(y)).

Kigami’s idea (see [32–33]) is to approximate the fractal from within by a sequence of finite
graphs. The Laplace operator on the fractal is then the renormalized limit of graph Laplacians.
This construction is described in what follows. We first define

W(u, v) = lim
m→∞Wm(u, v).

Then W(u, v) ∈ R and the space H1
0 (V ), equipped with the inner product W , which induces

the norm ‖ · ‖, becomes a real Hilbert space.
Moreover,

‖u‖∞ ≤ (2N + 3)‖u‖ for every u ∈ H1
0 (V ), (2.3)
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and the embedding

(H1
0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖∞) (2.4)

is compact. We refer to [27] for further details.

Remark 2.1 As pointed out by Falconer and Hu [26], we just observe that if a ∈ L1(V )
and a ≤ 0 in V , then from (2.3), the norm

‖u‖∗ :=
(
W(u, u) −

∫
V

a(x)u2dμ
) 1

2

is equivalent to
√

W (u) in H1
0 (V ).

We now state a useful property of the space H1
0 (V ) which shows, together with the facts

that (H1
0 (V ), ‖ ·‖) is a Hilbert space and H1

0 (V ) is dense in L2(V, μ), that W is a Dirichlet form
on L2(V, μ).

Lemma 2.1 Let h : R → R be a Lipschitz mapping with the Lipschitz constant L ≥ 0 such
that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and ‖h ◦ u‖ ≤ L‖u‖.

Proof It is clear that h ◦ u ∈ C0(V ). For every m ∈ N, by (2.1) and the Lipschitz property
of h, we have that

Wm(h ◦ u) ≤ L2Wm(u).

Hence W (h ◦ u) ≤ L2W (u), according to (2.2). Thus h ◦ u ∈ H1
0 (V ) and ‖h ◦ u‖ ≤ L‖u‖.

Following Falconer and Hu [26], a standard way we can define in a linear self-adjoint operator
Δ: Z → L2(V, μ), where Z is a linear subset of H1

0 (V ), which is dense in L2(V, μ) (and dense
also in (H1

0 (V ), ‖ · ‖)), such that

−W(u, v) =
∫

V

Δu · vdμ for every (u, v) ∈ Z × H1
0 (V ).

The operator Δ is called a weak Laplacian on V .
Precisely, let H−1(V ) be the closure of L2(V, μ) with respect to the pre-norm

‖u‖−1 = sup
h∈H1

0(V )
‖h‖=1

|〈u, h〉|,

where
〈v, h〉 =

∫
V

vhdμ,

v ∈ L2(V, μ) and h ∈ H1
0 (V ). Then H−1(V ) is a Hilbert space, and the relation

−W(u, v) = 〈Δu, v〉, ∀v ∈ H1
0 (V )

uniquely defines a function Δu ∈ H−1(V ) for every u ∈ H1
0 (V ).

Fix λ > 0. We say that a function (u1, u2) ∈ H1
0 (V ) × H1

0 (V ) is called a weak solution of
(Sλ) if

2∑
i=1

[(
W(ui, vi) −

∫
V

ai(x)ui(x)vi(x)dμ
)

+ λ

∫
V

g(x)Fui(u1(x), u2(x))vi(x)dμ
]

= 0

for every (v1, v2) ∈ H1
0 (V ) × H1

0 (V ).
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While we mainly work with the weak Laplacian, there is also a directly defined version. We
say that Δs is the standard Laplacian of u if Δsu : V → R is continuous and

lim
m→∞ sup

x∈V \V0

|(N + 2)m(Hmu)(x) − Δsu(x)| = 0,

where
(Hmu)(x) :=

∑
y∈Vm

|x−y|=2−m

(u(y) − u(x))

for x ∈ Vm.
We say that (u1, u2) ∈ C0(V ) × C0(V ) is a strong solution of (Sλ) if Δsu1 and Δsu2 exist

and are continuous for all x ∈ V \ V0, in addition to⎧⎨
⎩

Δsu1(x) + a1(x)u1(x) = λg(x)Fu1 (u1(x), u2(x)), x ∈ V \ V0,
Δsu2(x) + a2(x)u2(x) = λg(x)Fu2 (u1(x), u2(x)), x ∈ V \ V0,
u1|V0 = u2|V0 = 0.

The existence of the standard Laplacian of a function u ∈ H1
0 (V ) implies the existence of

the weak Laplacian Δ, see, for completeness, Falconer and Hu [26].

Remark 2.2 If a1, a2 ∈ C(V ), arguing as in Lemma 2.16 of [26], it follows that every weak
solution of the problem (Sλ) is also a strong solution.

3 Main Results

In this section, we assume that F : R
2 → R is a C1-function such that F (0, 0) = 0 and

Fui denotes the partial derivative of F with respect to ui. Moreover, the variable potentials
a1, a2, g : V → R satisfy the following conditions:

(h1) ai ∈ L1(V, μ) and ai ≤ 0 (i = 1, 2) almost everywhere in V ;
(h2) g ∈ C(V ) with g ≤ 0 such that the restriction of g to every open subset of V is not

identically zero.
For every ξ > 0, set

Q(ξ) :=
{
(t1, t2) ∈ R

2 :
2∑

i=1

|ti| ≤ ξ
}

and
R

2
+ = {(t1, t2) ∈ R

2 : ti ≥ 0, ∀i = 1, 2}.
With the above notations, we have the following existence result in the case of nonlinearities
oscillating at infinity.

Theorem 3.1 Let F be nonnegative on R
2
+. Further, assume that

A∞ := lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞ (F 1

∞)

and

lim sup
(t1, t2) → ∞
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

= +∞. (F 2
∞)
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Then, for every

λ ∈
]
0,− 1

8(2N + 3)2
( ∫

V

g(x)dμ
)
A∞

[
,

there exists an unbounded sequence of weak solutions of the problem (Sλ).

Proof Let us define the functionals Φ, Ψ : E → R by

Φ(u1, u2) =
1
2

2∑
i=1

(
‖ui‖2 −

∫
V

ai(x)ui(x)2dμ
)

and

Ψ(u1, u2) = −
∫

V

g(x)F (u1(x), u2(x))dμ,

respectively, where the product space E := H1
0 (V ) × H1

0 (V ) is endowed by the norm

‖(u1, u2)‖ :=
2∑

i=1

(
W (ui) −

∫
V

ai(x)ui(x)2dμ
) 1

2

for every (u1, u2) ∈ E. Now, in order to achieved our goal, fix λ as in the conclusion. Clearly,
with the above notations, set Jλ := Φ − λΨ. First of all, we observe that the functional
Jλ ∈ C1(E, R).

Further, fixing (u1, u2) ∈ E, one has

J ′
λ(u1, u2)(v1, v2) =

2∑
i=1

(
W(ui, vi) −

∫
V

ai(x)ui(x)vi(x)dμ
)

+ λ

2∑
i=1

∫
V

g(x)Fui(u1(x), u2(x))vi(x)dμ

for each (v1, v2) ∈ E. In particular, (u1, u2) ∈ E is a weak solution of the problem (Sλ) if and
only if (u1, u2) is a critical point of Jλ. Clearly, Φ is obviously coercive. Moreover, standard
computations ensure that the functionals Φ and Ψ are sequentially weakly lower semi-continuous
on E. Hence, we seek for weak solutions of problem (Sλ) by applying part (a) of Theorem 1.1.

Now let us verify that γ < +∞. For our purpose, let {cn} be a sequence (of positive
numbers), such that lim

n→∞ cn = +∞ and

lim
n→∞

max
(t1,t2)∈Q(cn)

F (t1, t2)

c2
n

= A∞.

Put rn := c2
n

8(2N+3)2 for every n ∈ N. Due to the compact embedding of H1
0 (V ) into C0(V ), we

have

{(v1, v2) ∈ E : Φ(v1, v2) < rn} ⊆
{

(v1, v2) ∈ E :
2∑

i=1

|vi(x)| ≤ cn, ∀x ∈ V
}
.

Indeed, taking into account (2.3), for every vi ∈ H1
0 (V ) (i = 1, 2), one has

max
x∈V

|vi(x)|2 ≤ (2N + 3)2‖vi‖2.
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Consequently,

max
x∈V

2∑
i=1

|vi(x)|2
2

≤ (2N + 3)2
( 2∑

i=1

‖vi‖2

2

)
= (2N + 3)2Φ(v1, v2).

At this point, from the above inequality, if Φ(v1, v2) < rn, a direct computation ensures that
m∑

i=1

|vi(x)| ≤ cn, for every x ∈ V .

Therefore, taking into account that 0E ∈ Φ−1(]−∞, rn[) for every n ∈ N, since F (0, 0) = 0,
one has

ϕ(rn) = inf
2∑

i=1

‖ui‖2

2 <rn

sup
2∑

i=1

‖vi‖2

2 <rn

Ψ(v1, v2) − Ψ(u1, u2)

rn −
( 2∑

i=1

‖ui‖2

2

)

≤

sup
2∑

i=1

‖vi‖2

pi
<rn

∫
V

−g(x)F (v1(x), v2(x))dx

rn

≤ −8(2N + 3)2
( ∫

V

g(x)dμ
) max

(t1,t2)∈Q(cn)
F (t1, t2)

c2
n

.

Thus, bearing in mind that

lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞,

we deduce

γ ≤ lim inf
n→∞ ϕ(rn) ≤ −8(2N + 3)2

( ∫
V

g(x)dμ
)

lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞.

Let us verify that the functional Jλ is unbounded from below. For our goal, fix a function
u ∈ H1

0 (V ) such that there is an element x0 ∈ V with u(x0) > 1. It follows that

D := {x ∈ V ; u(x) > 1}
is a non-empty open (from the continuity of u) subset of V . Moreover, from relation (2.1)
in [18], one has μ(D) > 0. Define h : R → R as follows

h(t) = |min{t, 1}|
for every t ∈ R.

Then h(0) = 0, and h is a Lipschitz function whose Lipschitz constant L is equal to 1.
Hence, by using Lemma 2.1, it follows that v := h ◦ u ∈ H1

0 (V ). Moreover, v(x) = 1 for every
x ∈ D, and 0 ≤ v(x) ≤ 1 for every x ∈ V . As the condition (F 1

∞) holds, there exist two positive
real sequences {ξ1,n} and {ξ2,n} such that

lim
n→∞

√√√√ 2∑
i=1

ξ2
i,n = +∞
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and

lim
n→∞

F (ξ1,n, ξ2,n)
2∑

i=1

ξ2
i,n

= +∞. (3.1)

Consider the sequence of functions {(ξ1,nv, ξ2,nv)} ⊂ E. Thus

Jλ(ξ1,nv, ξ2,nv) =
ξ2
1,n

2
‖v‖2 − ξ2

1,n

2

∫
V

a1(x)v(x)2dμ

+
ξ2
2,n

2
‖v‖2 − ξ2

2,n

2

∫
V

a2(x)v(x)2dμ

+ λ

∫
V

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ. (3.2)

Now, since F and g are respectively nonnegative (on R
2
+) and nonpositive (on V ), it follows

that ∫
V

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ

= F (ξ1,n, ξ2,n)
∫

D

g(x)dμ +
∫

V \D

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ

≤ F (ξ1,n, ξ2,n)
∫

D

g(x)dμ. (3.3)

Further, putting

ϑ(v) := max
{
‖v‖2 −

∫
V

a1(x)v(x)2dμ, ‖v‖2 −
∫

V

a2(x)v(x)2dμ
}
,

from (3.2)–(3.3) one has

Jλ(ξ1,nv, ξ2,nv) ≤
(1

2

2∑
i=1

ξ2
i,n

)
ϑ(v) + λF (ξ1,n, ξ2,n)

∫
D

g(x)dμ,

which means

Jλ(ξ1,nv, ξ2,nv)
2∑

i=1

ξ2
i,n

≤ ϑ(v)
2

+ λ
F (ξ1,n, ξ2,n)

2∑
i=1

ξ2
i,n

∫
D

g(x)dμ. (3.4)

At this point, since from (3.1) one has

lim
n→∞

F (ξ1,n, ξ2,n)
2∑

i=1

ξ2
i,n

∫
D

g(x)dμ = −∞,

(note that
∫

D g(x)dμ < 0) inequality (3.4) implies that

lim
n→∞

Jλ(ξ1,nv, ξ2,nv)
2∑

i=1

ξ2
i,n

= −∞.
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In conclusion
lim

n→∞Jλ(ξ1,nv, ξ2,nv) = −∞,

and the functional Jλ is unbounded from below. Applying Theorem 1.1 we deduce that the
functional Jλ admits a sequence of critical points which is unbounded in E. Hence, our claim
is proved, and the conclusion is achieved.

Remark 3.1 It is worth noting that the above statements and the proof of our method
are related to the corresponding ones in [11]. Clearly, the abstract framework introduced in
the above mentioned paper is adaptable to our context by using the geometric and analytic
properties of the Sierpiński fractal as the Sobolev-type inequality

sup
x,y∈V∗

|u(x) − u(y)|
|x − y|σ ≤ (2N + 3)

√
W (u), (3.5)

where

σ :=
log

(
N+2

N

)
2 log 2

,

(see, for more details in [26, Lemma 2.4]).
We note that the estimate (3.5) allows all u : V∗ → R of finite energy to have a continuous

extension to V . Moreover, through (3.5) and by using the Ascoli-Arzéla theorem, the compact
embedding (2.4) is achieved.

Remark 3.2 We explicitly observe that, exploiting the proof of Theorem 3.1, one can see
that the statements of our result are still true also for sign-changing functions F : R

2 → R that
satisfy assumptions (F 1

∞) and (F 2
∞) in addition to

lim inf
(t1,t2)→∞

F (t1, t2)
2∑

i=1

t2i

> −∞.

Indeed, if

lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞,

one has that γ < +∞. On the other hand, consider the sequence of functions {(ξ1,nv, ξ2,nv)} ⊂
E as in the proof of Theorem 3.1. From

lim inf
(t1,t2)→∞

F (t1, t2)
2∑

i=1

t2i

> −∞,

there exist 
, k > 0 such that

F (t1, t2)
2∑

i=1

t2i

≥ −k, if
2∑

i=1

t2i > 
. (3.6)

Moreover, one has

Jλ(ξ1,nv, ξ2,nv) =
ξ2
1,n

2
‖v‖2 − ξ2

1,n

2

∫
V

a1(x)v(x)2dμ +
ξ2
2,n

2
‖v‖2 − ξ2

2,n

2

∫
V

a2(x)v(x)2dμ

+ λF (ξ1,n, ξ2,n)
∫

D

g(x)dμ + λ

∫
V \D

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ
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for every n ∈ N.
Moreover∫

V \D

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ =
∫

G�∩(V \D)

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ

+
∫

G�∩(V \D)

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ,

where

G� :=
{
x ∈ V : 0 ≤

( 2∑
i=1

ξ2
i,n

)
v(x)2 ≤ 


}

and

G� :=
{
x ∈ V :

( 2∑
i=1

ξ2
i,n

)
v(x)2 > 


}
.

Now, by using the mean value theorem, it follows that
∫

G�∩(V \D)

g(x)F (ξ1,nv(x), ξ2,nv(x))dμ ≤ C, (3.7)

where
C := 2‖g‖∞ max

(t1,t2)∈[0,
√

�]2
|∇F (t1, t2)|
.

Then, relations (3.6) and (3.7) yield

Jλ(ξ1,nv, ξ2,nv) ≤
(1

2

2∑
i=1

ξ2
i,n

)
ϑ(v) + λF (ξ1,n, ξ2,n)

∫
D

g(x)dμ

+ 2λ‖g‖∞ max
(t1,t2)∈[0,

√
�]2

|∇F (t1, t2)|


− kλ
( 2∑

i=1

ξ2
i,n

)∫
V \D

g(x)v2(x)dμ

for every n ∈ N.
Thus, it is easy to see that the above inequality and our assumptions imply

lim
n→∞

Jλ(ξ1,nv, ξ2,nv)
2∑

i=1

ξ2
i,n

= −∞.

Then Jλ is unbounded from below. The proof is attained from part (a) of Theorem 1.1.

Now, as a direct consequence of Theorem 3.1, we show that an appropriate oscillating
behavior of the nonlinear term F , even under certain small perturbations, ensures again the
existence of infinitely many solutions.

Denote by FV the set of functions G : R
2 → R such that:

(g1) G is a C1-function such that G(0, 0) = 0 and Gui denotes the partial derivative of G

with respect to ui;
(g2) G(t1, t2) ≥ 0 for every (t1, t2) ∈ R

2
+.

We have the following existence result.
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Corollary 3.1 Under assumptions of Theorem 3.1, for each

λ ∈
]
0,− 1

8(2N + 3)2
( ∫

V

g(x)dμ
)
A∞

[
,

for every G ∈ FV satisfying

(g∞) G∞ := lim
ξ→+∞

max
(t1,t2)∈Q(ξ)

G(t1, t2)

ξ2
< +∞,

and for every μ ∈ [0, μG,λ[, where

μG,λ := − 1

8(2N + 3)2
(∫

V

g(x)dμ
)
G∞

(
1 + 8λ(2N + 3)2

( ∫
V

g(x)dμ
)
A∞

)
,

the problem (namely (Sλ,μ)) given by
⎧⎨
⎩

Δu1(x) + a1(x)u1(x) = g(x)(λFu1 (u1(x), u2(x)) + μGu1(u1(x), u2(x))), x ∈ V \ V0,
Δu2(x) + a2(x)u2(x) = g(x)(λFu2 (u1(x), u2(x)) + μGu1(u1(x), u2(x))), x ∈ V \ V0,
u1|V0 = u2|V0 = 0,

admits a sequence of weak solutions which is unbounded in H1
0 (V ) × H1

0 (V ).

Proof Fix λ ∈]0, λ2[, where

λ2 := − 1

8(2N + 3)2
(∫

V

g(x)dμ
)
A∞

,

and let G ∈ FV be a function satisfying hypothesis (g∞). In the non-perturbed case, that is
μ = 0, the assertion is trivial. Otherwise, one has

μG,λ := − 1

8(2N + 3)2
(∫

V

g(x)dμ
)
G∞

(
1 + 8λ(2N + 3)2

( ∫
V

g(x)dμ
)
A∞

)
> 0.

Take 0 < μ < μG,λ and put

η2 := − 1

8(2N + 3)2
(∫

V

g(x)dμ
)(

A∞ +
μ

λ
G∞

) .

If G∞ = 0, clearly one has η2 = λ2 and

λ ∈ Λ� :=]0, η2[.

Otherwise, if G∞ �= 0, from μ < μg,λ, it follows that

−8(2N + 3)2
(∫

V

g(x)dμ
)(

A∞λ + G∞μ
)

< 1,

which means
λ < − 1

8(2N + 3)2
(∫

V

g(x)dμ
)(

A∞ +
μ

λ
G∞

) = η2.
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Hence, also in this case, one has
λ ∈ Λ� :=]0, η2[.

Now, put

H(t1, t2) := F (t1, t2) +
μ

λ
G(t1, t2)

for every t1, t2 ∈ R.
Taking into account that the potential G is a nonnegative function, we obtain

lim sup
(t1, t2) → ∞
(t1, t2) ∈ R

2
+

H(t1, t2)
2∑

i=1

t2i

≥ lim sup
(t1, t2) → ∞
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

= +∞,

and then

lim sup
(t1, t2) → ∞
(t1, t2) ∈ R

2
+

H(t1, t2)
2∑

i=1

t2i

= +∞.

Moreover, since

max
(t1,t2)∈Q(ξ)

H(t1, t2)

ξ2
≤

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
+

μ

λ

max
(t1,t2)∈Q(ξ)

G(t1, t2)

ξ2
,

taking into account hypothesis (g∞), it follows that

lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

H(t1, t2)

ξ2
≤ lim inf

ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
+

μ

λ
G∞ < +∞.

Hence, owing to

λ ∈ Λ� ⊆
]
0,− 1

8(2N + 3)2
(∫

V

g(x)dμ
)
H∞

[
,

where

H∞ := lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

H(t1, t2)

ξ2
,

from Theorem 3.1, there exists an unbounded sequence of infinitely many solutions for problem
(Sλ,μ). The proof is complete.

By the same method, applying part (b) instead of part (a) of Theorem 1.1, one can prove
the analogue of Theorem 3.1 in presence of a smooth nonlinear term F : R

2 → R with a suitable
oscillating behavior at zero.

Theorem 3.2 Let F be nonnegative on R
2
+. Further, assume that

A0 := lim inf
ξ→0+

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞ (F 1

0 )

and

lim sup
(t1, t2) → (0, 0)
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

= +∞. (F 2
0 )
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Then, for every

λ ∈
]
0,− 1

8(2N + 3)2
( ∫

V

g(x)dμ
)
A∞

[
,

there exists a sequence {(u1,n, u2,n)} ⊂ H1
0 (V ) × H1

0 (V ) of pairwise distinct weak solutions of
problem (Sλ) such that lim

n→∞ ‖(u1,n, u2,n)‖ = 0.

Proof The strategy of the proof is very similar to the previous one. Hence, in the sequel,
we omit the details and we use the notations adopted in Theorem 3.1. Then, from hypothesis

lim inf
ξ→0+

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
< +∞,

by direct computations, it follows that δ := lim inf
r→0+

ϕ(r) < +∞. On the other hand, by

lim sup
(t1, t2) → (0, 0)
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

= +∞,

there exist two positive real sequences, namely {ξ1,n} and {ξ2,n}, such that

lim
n→∞

√√√√ 2∑
i=1

ξ2
i,n = 0,

and
lim

n→∞
F (ξ1,n, ξ2,n)

2∑
i=1

ξ2
i,n

= +∞.

Now, consider the sequence of functions {(ξ1,nv, ξ2,nv)} ⊂ E. Arguing as in Theorem 3.1, we
obtain

lim
n→∞

Jλ(ξ1,nv, ξ2,nv)
2∑

i=1

ξ2
i,n

= −∞.

Thus Jλ(ξ1,nv, ξ2,nv) < 0 for every n sufficiently large. Since Jλ(0E) = Φ(0E) − λΨ(0E) = 0,
the last inequality means that 0E is not a local minimum of Jλ. Moreover, since Φ has 0E as
the unique global minimum, Theorem 1.1 ensures the existence of a sequence {(u1,n, u2,n)} ⊂ E

of pairwise distinct critical points of the functional Jλ, such that

lim
n→∞

2∑
i=1

(
‖ui,n‖2 −

∫
V

ai(x)ui,n(x)2dμ
)

= 0.

Hence, one has that lim
n→∞ ‖(u1,n, u2,n)‖ = 0. The proof is complete.

Remark 3.3 Theorem 3.2 also holds for sign-changing functions F : R
2 → R that satisfy

assumptions (F 1
0 ) and (F 2

0 ) in addition to

lim inf
(t1, t2) → (0, 0)
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

> −∞.
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The next result can be viewed as an analogue of Corollary 3.1.

Corollary 3.2 Under assumptions of Theorem 3.2, for each

λ ∈
]
0,− 1

8(2N + 3)2
(∫

V

g(x)dμ
)
A0

[
,

for every G ∈ FV satisfying

(g0) G0 := lim
ξ→0+

max
(t1,t2)∈Q(ξ)

G(t1, t2)

ξ2
< +∞, and for every μ ∈ [0, μ�

G,λ[, where

μ�
G,λ := − 1

8(2N + 3)2
(∫

V

g(x)dμ
)
G0

(
1 + 8λ(2N + 3)2

( ∫
V

g(x)dμ
)
A0

)
,

the problem (namely (Sλ,μ)) given by
⎧⎨
⎩

Δu1(x) + a1(x)u1(x) = g(x)(λFu1 (u1(x), u2(x)) + μGu1(u1(x), u2(x))), x ∈ V \ V0,
Δu2(x) + a2(x)u2(x) = g(x)(λFu2 (u1(x), u2(x)) + μGu1(u1(x), u2(x))), x ∈ V \ V0,
u1|V0 = u2|V0 = 0

admits a sequence {(u1,n, u2,n)} ⊂ H1
0 (V )×H1

0 (V ) of pairwise distinct weak solutions such that
lim

n→∞ ‖(u1,n, u2,n)‖ = 0.

We want to conclude with this explicative application.

Example 3.1 Consider the increasing sequence of positive real numbers given by

a1 := 2, an+1 := n!a2
n + 2

for every n ≥ 1. Define the C1-function F : R
2 → R as follows

F (t1, t2) :=

⎧⎨
⎩

a4
n+1e

− 1
1−[(t1−an+1)2+(t2−an+1)2]

+1
, if (t1, t2) ∈

⋃
n≥1

B((an+1, an+1), 1),

0, otherwise,

where B((an+1, an+1), 1) denotes the open unit ball of center (an+1, an+1).
By definition F is non-negative and F (0, 0) = 0. We will denote by Fu1 and Fu2 the partial

derivative of F with respect to u1 and u2, respectively. Now, for every n ∈ N, the restriction
F (t1, t2)|B((an+1,an+1),1) attains its maximum at (an+1, an+1), and one has F (an+1, an+1) =
a4

n+1. Clearly

lim sup
(t1, t2) → ∞
(t1, t2) ∈ R

2
+

F (t1, t2)
2∑

i=1

t2i

= +∞,

owing to

lim
n→∞

F (an+1, an+1)
2a2

n+1

= +∞.

On the other hand, by setting yn = an+1 − 1 for every n ∈ N, one has

max
(t1,t2)∈Q(yn)

F (t1, t2) = a4
n, ∀n ∈ N.
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Then

lim
n→∞

max
(t1,t2)∈Q(yn)

F (t1, t2)

(an+1 − 1)2
= 0

and

lim inf
ξ→+∞

max
(t1,t2)∈Q(ξ)

F (t1, t2)

ξ2
= 0.

The previous computations ensure that all the hypotheses of Theorem 3.1 are satisfied. Then,
for every λ ∈]0, +∞[, the following problem⎧⎨

⎩
−Δu1(x) = λFu1 (u1(x), u2(x)), x ∈ V \ V0,
−Δu2(x) = λFu2 (u1(x), u2(x)), x ∈ V \ V0,
u1|V0 = u2|V0 = 0

(S′
λ)

admits a sequence of (strong) solutions which is unbounded in H1
0 (V ) × H1

0 (V ).

Remark 3.4 Fix an integer m ≥ 1. Moreover, let F : R
m → R be a C1-function such that

F (0, · · · , 0) = 0, and Fui denotes the partial derivative of F with respect to ui. We explicitly
observe that our results hold also for Dirichlet systems of the form{

Δuk(x) + ak(x)uk(x) = λg(x)Fuk
(u1(x), · · · , um(x)), x ∈ V \ V0, 1 ≤ k ≤ m,

u1|V0 = · · · = uk|V0 = 0,

assuming that the functions ak, g satisfy conditions like (h1) and (h2). For instance, for every
ξ > 0, set

Qm(ξ) :=
{
(t1, · · · , tm) ∈ R

m :
m∑

i=1

|ti| ≤ ξ
}

and
R

m
+ = {(t1, · · · , tm) ∈ R

m : ti ≥ 0, ∀i = 1, · · · , m}.
Requiring that

A∞ := lim inf
ξ→+∞

max
(t1,··· ,tm)∈Qm(ξ)

F (t1, · · · , tm)

ξ2
< +∞

and

lim sup
(t1, · · · , tm) → ∞
(t1, · · · , tm) ∈ R

m
+

F (t1, · · · , tm)
m∑

i=1

t2i

= +∞,

for every

λ ∈
]
0,− 1

2m2(2N + 3)2
( ∫

V

g(x)dμ
)
A∞

[
,

there exists an unbounded sequence of weak solutions
(
in

m∏
k=1

H1
0 (V )

)
of the above problem.

From the above remark one clearly has that Theorem 3.1 extends [15, Theorem 3.2] in the
gradient type setting.

Finally, for completeness, among the contributions to the theory of nonlinear elliptic equa-
tions on fractals we mention in [18, 24, 26, 30–31, 45]. The main tools used in these papers to
prove the existence of at least one nontrivial solution or multiple solutions for nonlinear elliptic
equations with zero Dirichlet boundary conditions are certain minimax results (mountain pass
theorems, saddle-point theorems), respectively, and minimization procedures.
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[27] Fukushima, M. and Shima, T., On a spectral analysis for the Sierpiński gasket, Potential Anal., 1, 1992,
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