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Abstract
We study the following fractional Navier boundary value problem:

⎧
⎪⎨

⎪⎩

Dα (Dβu)(x) + u(x)f (x,u(x)) = 0, 0 < x < 1,

limx→0+ Dβ–1u(x) = 0, limx→0+ Dα–1(Dβu)(x) = ξ ,

u(1) = 0, Dβu(1) = –ζ ,

where α,β ∈ (1, 2], Dα and Dβ stand for the standard Riemann-Liouville fractional
derivatives, and ξ ,ζ ≥ 0 are such that ξ + ζ > 0.
Our purpose is to prove the existence, uniqueness, and global asymptotic behavior

of a positive continuous solution, where f : (0, 1)× [0,∞) → [0,∞) is continuous and
dominated by a function p satisfying appropriate integrability condition.

MSC: 34A08; 34B15; 34B18; 34B27

Keywords: fractional Navier differential equations; positive solutions; Green’s
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1 Introduction
The existence, uniqueness, and global asymptotic behavior of positive continuous solu-
tions related to fractional differential equations have been studied by many researchers.
Many fractional differential equations subject to various boundary conditions have been
addressed; see, for instance, [–] and the references therein. It is known that fractional
differential equations serve as a good tool to model many phenomena in various fields
of science and engineering (see [–] and references therein for discussions of various
applications).

In [], the authors proved the existence and uniqueness of a positive solution to the
following fractional boundary value problem:

⎧
⎨

⎩

Dαu(x) = u(x)ϕ(x, u(x)),  < x < ,

limx→+ Dα–u(x) = –ξ , u() = ζ ,
(.)

where  < α ≤ , ξ , ζ ≥  are such that ξ + ζ > , and ϕ(x, s) ∈ C+((, ) × [,∞)) satisfies
appropriate conditions. Inspired by the above-mentioned paper, we aim at studying similar
problem in the case of fractional Navier boundary value problem. More precisely, we are
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concerned with the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβu)(x) + u(x)f (x, u(x)) = ,  < x < ,

limx→+ Dβ–u(x) = , limx→+ Dα–(Dβu)(x) = ξ ,

u() = , Dβu() = –ζ ,

(.)

where α,β ∈ (, ], and ξ , ζ ≥  are such that ξ + ζ > . The nonlinear term f (x, s) is re-
quired to be a nonnegative continuous function in (, ) × [,∞) dominated by a function
p belonging to the class Jα,β defined as follows.

Definition . Let α,β ∈ (, ]. A nonnegative measurable function p on (, ) belongs to
the class Jα,β iff

∫ 


tβ–( – t)αp(t) dt < ∞. (.)

Next, we introduce the following notation.
(i) B+((, )) is the set of nonnegative measurable functions in (, ).

(ii) Let X be a metric space, we denote by C(X) (resp. C+(X)) the set of continuous
(resp. nonnegative continuous) functions in X .

(iii) For γ ∈ (, ], C–γ ([, ]) = {w ∈ C((, ]) : x → x–γ w(x) ∈ C([, ])}.
(iv) For γ ∈ (, ], Gγ (x, s) is the Green function of the operator u → –Dγ u, with

boundary data limx→+ Dγ –u(x) = u() = . From [], Lemma , we have

Gγ (x, s) =


�(γ )
(
xγ –( – s)γ – –

(
(x – s)+)γ –), (.)

where x+ = max(x, ).

Proposition . (see []) Let  < γ ≤  and ϕ ∈ B+((, )). Then we have
(i) For (x, s) ∈ (, ] × [, ],

(γ – )
�(γ )

H(x, s) ≤ Gγ (x, s) ≤ 
�(γ )

H(x, s), (.)

where H(x, s) := xγ –( – s)γ –( – max(x, s)).
(ii) The function x → Gγ ϕ(x) :=

∫ 
 Gγ (x, s)ϕ(s) ds belongs to C–γ ([, ]) if and only if

∫ 
 ( – s)γ –ϕ(s) ds < ∞.

(iii) If the map s → ( – s)γ –ϕ(s) ∈ C((, )) ∩ L((, )), then Gγ ϕ belongs to
C–γ ([, ]), and it is the unique solution of the problem

⎧
⎨

⎩

Dγ u(x) = –ϕ(x),  < x < ,

limx→+ Dγ –u(x) = u() = .

Throughout this paper, for α,β ∈ (, ], let G(x, s) be the Green function of the operator
u → Dα(Dβu) with Navier boundary conditions limx→+ Dβ–u(x) = limx→+ Dα–(Dβu)(x) =
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u() = Dβu() = . Then we have

G(x, s) =
∫ 


Gβ (x, t)Gα(t, s) dt. (.)

For a given function p in B+((, )), we put

κp := sup
x,s∈(,)

∫ 



G(x, t)G(t, s)
G(x, s)

p(t) dt, (.)

and we will prove that κp < ∞ if and only if p ∈ Jα,β .
From here on, let ξ , ζ be two nonnegative constants such that ξ + ζ > , and θ (x) be the

unique solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβu)(x) = ,  < x < ,

limx→+ Dβ–u(x) = , limx→+ Dα–(Dβu)(x) = ξ ,

u() = , Dβu() = –ζ .

(.)

We can easily verify that, for x ∈ (, ], θ (x) = ξh(x) + ζh(x), where

h(x) =
∫ 


Gβ (x, t)Gα(t, ) dt

=


(α – )�(α + β – )
xβ–( – xα

)
+


�(α + β)

xβ–(xα+ – 
)

(.)

and

h(x) =
∫ 


Gβ (x, t)tα– dt =

�(α – )
�(α + β – )

xβ–( – xα
)
. (.)

Note that from (.), (.), and (.) it follows that there exists a constant c >  such
that, for each x ∈ (, ],


c

xβ–( – x) ≤ θ (x) ≤ cxβ–( – x). (.)

To state our existence results, a combination of the following hypotheses are required.

(A) f is in C+((, ) × [,∞)).
(A) There exists p ∈ Jα,β ∩ C+((, )) with κp ≤ 

 such that, for each x ∈ (, ),
the map s → s(p(x) – f (x, sθ (x))) is nondecreasing on [, ].

(A) For each x ∈ (, ), the function s → sf (x, s) is nondecreasing on [,∞).

Our main results are the following.

Theorem . Under conditions (A)-(A), problem (.) admits a solution u ∈ C–β ([, ])
such that

cθ (x) ≤ u(x) ≤ θ (x),  < x ≤ , (.)

where c ∈ (, ).
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Moreover, this solution is unique if hypothesis (A) is also satisfied.

Corollary . Let α,β ∈ (, ], and h be a nonnegative function in C([,∞)) such that
the map s → �(s) = sh(s) is nondecreasing on [,∞). Let q ∈ C+((, )) and assume that the
function q̃(x) := q(x) max≤t≤θ (x) �

′(t) belongs to Jα,β . Then for λ ∈ [, 
κq̃

), the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβu)(x) + λq(x)u(x)h(u(x)) = ,  < x < ,

limx→+ Dβ–u(x) = , limx→+ Dα–(Dβu)(x) = ξ ,

u() = , Dβu() = –ζ ,

(.)

admits a unique solution u ∈ C–β ([, ]) such that

( – λκq̃)θ (x) ≤ u(x) ≤ θ (x),  < x ≤ .

Our paper is organized as follows. In Section , we establish some properties of G(x, s).
In particular, we prove the existence of a constant c >  such that, for all x, t, s ∈ (, ),


c

tβ–( – t)α ≤ G(x, t)G(t, s)
G(x, s)

≤ ctβ–( – t)α .

This implies that κp < ∞ if and only if p ∈ Jα,β . In Section , for a given function p ∈ Jα,β

with κp ≤ 
 , we construct the Green function H(x, s) of the operator u → Dα(Dβu) + p(x)u

with boundary conditions limx→+ Dβ–u(x) = limx→+ Dα–(Dβu)(x) = u() = Dβu() = ,
and we derive some of its properties including the following:

( – κp)G(x, s) ≤H(x, s) ≤ G(x, s) for all (x, s) ∈ (, ] × [, ]

and

Wϕ = Wpϕ + Wp(pWϕ) = Wpϕ + W (pWpϕ) for ϕ ∈ B+(
(, )

)
,

where W and Wp are defined by

Wϕ(x) :=
∫ 


G(x, s)ϕ(s) ds and Wpϕ(x) :=

∫ 


H(x, s)ϕ(s) ds, x ∈ (, ].

Exploiting these results, we prove our main results by means of a perturbation argument.

2 Estimates on the Green function
We recall the definition of the Riemann-Liouville derivative.

Definition . (see [, , ]) The Riemann-Liouville derivative of fractional order
γ >  of a function g is defined as

Dγ g(x) :=


�(n – γ )

(
d

dx

)n ∫ x


(x – s)n–γ –g(s) ds,

where n –  ≤ γ < n ∈N.
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Next, we prove some properties of G(x, s).

Proposition . Let α,β ∈ (, ]. Then there exist two constants m >  and M >  such
that, for all (x, s) ∈ (, ] × [, ], we have

mxβ–( – x)( – s)α– ≤ G(x, s) ≤ Mxβ–( – x)( – s)α–. (.)

Proof Using (.) and (.), we have

G(x, s) =
∫ 


Gβ (x, t)Gα(t, s) dt

≤ 
�(β)

∫ 


xβ–( – x)( – t)β–Gα(t, s) dt

≤ xβ–( – x)
�(β)�(α)

∫ 


( – t)β–tα–( – s)α– dt

= Mxβ–( – x)( – s)α–.

On the other hand, using again (.), (.), and the inequality  – max(x, s) ≥ ( – x)( – s),
we get

G(x, s) =
∫ 


Gβ (x, t)Gα(t, s) dt

≥ (β – )
�(β)

(α – )
�(α)

∫ 


xβ–( – x)( – t)β tβ–( – s)α– dt

= mxβ–( – x)( – s)α–. �

Using Proposition ., we deduce the following.

Corollary . Let α,β ∈ (, ]. Then there exists a constant c >  such that, for all x, t, s ∈
(, ), we have


c

tβ–( – t)α ≤ G(x, t)G(t, s)
G(x, s)

≤ ctβ–( – t)α . (.)

Proposition . Let α,β ∈ (, ], and p be a function in B+((, )).
(i) There exists a constant c >  such that


c

∫ 


tβ–( – t)αp(t) dt ≤ κp ≤ c

∫ 


tβ–( – t)αp(t) dt, (.)

where κp is given by (.).
In particular,

κp < ∞ if and only if p ∈ Jα,β . (.)

(ii) For x ∈ (, ], we have

W (θp)(x) ≤ κpθ (x), (.)

where θ (x) := ξh(x) + ζh(x), and h and h are given respectively in (.) and (.).
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Proof Let p be a function in B+((, )).
(i) Inequalities in (.) follow immediately from (.) and (.).

(ii) Since θ (x) := ξh(x) + ζh(x), it suffices to prove (.) for h and h. To this end,
observe that from (.) it follows that, for each x, s ∈ (, ),

lim
r→

G(s, r)
G(x, r)

=
G(s, )
G(x, )

=
h(s)
h(x)

.

So by Fatou’s lemma and (.) we deduce that

∫ 


G(x, s)

h(s)
h(x)

p(s) ds ≤ lim inf
r→

∫ 


G(x, s)

G(s, r)
G(x, r)

p(s) ds ≤ κp,

that is,

W (hp)(x) ≤ κph(x) for x ∈ (, ].

Similarly, we prove that W (hp)(x) ≤ κph(x) by observing that

lim
r→

G(s, r)
G(x, r)

=
h(s)
h(x)

.

This ends the proof. �

Corollary . Let α,β ∈ (, ] and ϕ ∈ B+((, )). Then x → Wϕ(x) ∈ C–β ([, ]) if and
only if

∫ 
 ( – s)α–ϕ(s) ds < ∞.

Proof The assertion follows from (.) and the dominated convergence theorem. �

Proposition . Let α,β ∈ (, ] and ϕ ∈ B+((, )) be such that s → ( – s)α–ϕ(s) ∈
C((, )) ∩ L((, )). Then Wϕ is the unique nonnegative solution in C–β ([, ]) of

⎧
⎨

⎩

Dα(Dβu)(x) = ϕ(x),  < x < ,

limx→+ Dβ–u(x) = limx→+ Dα–(Dβu)(x) = u() = Dβu() = .

Proof Let ϕ ∈ B+((, )). From (.) and the Fubini-Tonelli theorem we obtain

Wϕ(x) =
∫ 


Gβ (x, t)Gαϕ(t) dt, (.)

where Gαϕ(t) =
∫ 

 Gα(t, s)ϕ(s) ds.
Since the function s → ( – s)α–ϕ(s) ∈ C((, ))∩L((, )), we deduce by Proposition .

that Gαϕ is the unique solution in C–α([, ]) of

⎧
⎨

⎩

Dαv(x) = –ϕ(x),  < x < ,

limx→+ Dα–v(x) = v() = .
(.)
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On the other hand, by using (.) we deduce that

∫ 


( – t)β–Gαϕ(t) dt ≤ 

�(α)

∫ 


( – t)β–

(∫ 


tα–( – s)α–ϕ(s) ds

)

dt

≤ �(β)
(α – )�(α + β – )

∫ 


( – s)α–ϕ(s) ds < ∞.

Hence, the function t → ( – t)β–Gαϕ(t) ∈ C((, )) ∩ L((, )). Therefore, using (.)
and Proposition ., we deduce that Wϕ is the unique solution in C–β ([, ]) of

⎧
⎨

⎩

Dβu(x) = –Gαϕ(x),  < x < ,

limx→+ Dβ–u(x) = u() = .
(.)

Combining (.) and (.), we obtain the required result. �

3 Proofs of main results
Let α,β ∈ (, ]. For (x, s) ∈ (, ] × [, ], put H(x, s) = G(x, s) and

Hn(x, s) =
∫ 


G(x, t)Hn–(t, s)p(t) dt, n ≥ . (.)

Now, let H : (, ] × [, ] →R be defined by

H(x, s) =
∞∑

n=

(–)nHn(x, s), (.)

provided that the series converges.

Lemma . Let α,β ∈ (, ] and m, M >  be as in (.). Let p ∈ Jα,β with κp < . Then on
(, ] × [, ], we have

(i) Hn(x, s) ≤ κn
p G(x, s) for each n ∈N.

So, H(x, s) is well defined in (, ] × [, ].
(ii) For each n ∈N,

lnxβ–( – x)( – s)α– ≤ Hn(x, s) ≤ rnxβ–( – x)( – s)α–, (.)

where

ln = mn+
(∫ 


tβ–( – t)αp(t) dt

)n

and rn = Mn+
(∫ 


tβ–( – t)αp(t) dt

)n

.

(iii) Hn+(x, s) =
∫ 

 Hn(x, t)G(t, s)p(t) dt for each n ∈ N.
(iv)

∫ 
 H(x, t)G(t, s)p(t) dt =

∫ 
 G(x, t)H(t, s)p(t) dt.

Proof By simple induction we prove (i), (ii), and (iii).
(iv) By Lemma .(i) we have

 ≤ Hn(x, t)G(t, s)p(t) ≤ κn
p G(x, t)G(t, s)p(t) for n ≥  and all x, t, s ∈ (, ].
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Therefore, the series
∑

n≥
∫ 

 Hn(x, t)G(t, s)p(t) dt converges.
So by applying the dominated convergence theorem we deduce that

∫ 


H(x, t)G(t, s)p(t) dt =

∞∑

n=

∫ 


(–)nHn(x, t)G(t, s)p(t) dt

=
∞∑

n=

∫ 


(–)nG(x, t)Hn(t, s)p(t) dt

=
∫ 


G(x, t)H(t, s)p(t) dt. �

Proposition . Let α,β ∈ (, ] and p ∈ Jα,β with κp < . Then the function (x, s) →
x–βH(x, s) ∈ C([, ] × [, ]).

Proof Clearly, the function (x, s) → x–βH(x, s) ∈ C([, ] × [, ]).
Assume that the function (x, s) → x–βHn–(x, s) ∈ C([, ] × [, ]).
Using Lemma .(i) and (.), we have, for all (x, s, t) ∈ [, ] × [, ] × (, ],

x–βG(x, t)Hn–(t, s)p(t) ≤ κn–
p x–βG(x, t)G(t, s)p(t)

≤ M( – x)( – t)α–tβ–( – t)( – s)α–p(t)

≤ Mtβ–( – t)αp(t).

So by (.) and the dominated convergence theorem we conclude that the function
(x, s) → x–βHn(x, s) ∈ C([, ] × [, ]).

From Lemma .(i) and (.) we deduce that

x–βHn(x, s) ≤ κn
p x–βG(x, s) ≤ Mκn

p . (.)

Therefore, the series
∑

n≥(–)nx–βHn(x, s) is uniformly convergent on [, ] × [, ],
and so the function (x, s) → x–βH(x, s) ∈ C([, ] × [, ]). �

Lemma . Let α,β ∈ (, ] and p ∈ Jα,β with κp ≤ 
 . Then for (x, s) ∈ (, ] × [, ], we

have

( – κp)G(x, s) ≤H(x, s) ≤ G(x, s). (.)

Proof Let p ∈ Jα,β with κp ≤ 
 . By Lemma .(i) we deduce that

∣
∣H(x, s)

∣
∣ ≤

∞∑

n=

(κp)nG(x, s) =


 – κp
G(x, s). (.)

Now, from the expression of H we have

H(x, s) = G(x, s) –
∞∑

n=

(–)nHn+(x, s). (.)
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Since the series
∑

n≥
∫ 

 G(x, t)Hn(t, s)p(t) dt converges, we conclude by (.) and (.)
that

H(x, s) = G(x, s) –
∞∑

n=

(–)n
∫ 


G(x, t)Hn(t, s)p(t) dt

= G(x, s) –
∫ 


G(x, t)

( ∞∑

n=

(–)nHn(t, s)
)

p(t) dt,

namely,

H(x, s) = G(x, s) – W
(
pH(·, s)

)
(x). (.)

On the other hand, since

W
(
pH(·, s)

)
(x) ≤ 

 – κp
W

(
pG(·, s)

)
(x)

=


 – κp
H(x, s) ≤ κp

 – κp
G(x, s), (.)

we deduce that

H(x, s) ≥ G(x, s) –
κp

 – κp
G(x, s) =

 – κp

 – κp
G(x, s) ≥ .

Hence, H(x, s) ≤ G(x, s), and by (.) we have

H(x, s) ≥ G(x, s) – W
(
pG(·, s)

)
(x) ≥ ( – κp)G(x, s). �

Corollary . Let α,β ∈ (, ] and p ∈ Jα,β with κp ≤ 
 .

Let ϕ ∈ B+((, )). Then

Wpϕ ∈ C–β

(
[, ]

)
if and only if

∫ 


( – s)α–ϕ(s) ds < ∞.

Proof The assertion follows from Proposition ., (.), and (.). �

Lemma . Let α,β ∈ (, ] and p ∈ Jα,β with κp ≤ 
 .

Let h ∈ B+((, )). Then we have, for x ∈ (, ],

Wh(x) = Wph(x) + Wp(pWh)(x) = Wph(x) + W (pWph)(x). (.)

In particular, if W (ph) < ∞, then

(
I – Wp(p·))(I + W (p·))h =

(
I + W (p·))(I – Wp(p·))h = h. (.)

Proof Let (x, s) ∈ (, ] × [, ]. Then by (.) we have

G(x, s) = H(x, s) + W
(
pH(·, s)

)
(x).
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Let h ∈ B+((, )). Using the Fubini theorem, we obtain

Wh(x) =
∫ 



(
H(x, s) + W

(
pH(·, s)

)
(x)

)
h(s) ds

= Wph(x) + W (pWph)(x).

Using Lemma .(iv) and again the Fubini theorem, we have

∫ 



∫ 


H(x, t)G(t, s)p(t)h(s) dt ds =

∫ 



∫ 


G(x, t)H(t, s)p(t)h(s) dt ds,

that is,

Wp(pWh)(x) = W (pWph)(x).

So

Wh(x) = Wph(x) + W (pWph)(x) = Wph(x) + Wp(pWh)(x). �

Proposition . Let α,β ∈ (, ] and p ∈ Jα,β ∩ C((, )) with κp ≤ 
 . Let ϕ ∈ B+((, ))

be such that s → ( – s)α–ϕ(s) ∈ C((, )) ∩ L((, )). Then Wpϕ ∈ C–β ([, ]), and it is
the unique nonnegative solution of the problem

⎧
⎨

⎩

Dα(Dβu)(x) + p(x)u(x) = ϕ(x),  < x < ,

limx→+ Dβ–u(x) = limx→+ Dα–(Dβu)(x) = u() = Dβu() = ,
(.)

satisfying

( – κp)Wϕ ≤ u ≤ Wϕ. (.)

Proof By Corollary . the function x → p(x)Wpϕ(x) ∈ C((, )).
Using (.) and (.), we have that there exists c ≥  such that

Wpϕ(x) ≤ Wϕ(x) ≤ M
∫ 


xβ–( – x)( – s)α–ϕ(s) ds = cxβ–( – x). (.)

Therefore,

∫ 


( – s)α–p(s)Wpϕ(s) ds ≤ c

∫ 


sβ–( – s)αp(s) ds < ∞.

Hence, by Proposition . the function u = Wpϕ = Wϕ –W (pWpϕ) satisfies the equation

⎧
⎨

⎩

Dα(Dβu)(x) = ϕ(x) – p(x)u(x),  < x < ,

limx→+ Dβ–u(x) = limx→+ Dα–(Dβu)(x) = u() = Dβu() = .

By integration of inequalities (.) we obtain (.).
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Let us prove the uniqueness. Let v ∈ C–β ([, ]) be another solution of problem (.)
satisfying v ≤ Wϕ.

Put ṽ := v + W (pv). Since the function s → ( – s)α–p(s)v(s) ∈ C((, )) ∩ L((, )), then
by Proposition . it follows that

⎧
⎨

⎩

Dα(Dβ ṽ)(x) = ϕ(x),  < x < ,

limx→+ Dβ–ṽ(x) = limx→+ Dα–(Dβ ṽ)(x) = ṽ() = Dβ ṽ() = .

From the uniqueness in Proposition . we conclude that

ṽ := v + W (pv) = Wϕ.

So

(
I + W (p·))((v – u)+)

=
(
I + W (p·))((v – u)–)

,

where (v – u)+ = max(v – u, ) and (v – u)– = max(u – v, ).
From (.), (.), (.), and (.), there exists a constant c̃ > , such that

W
(
p|v – u|) ≤ c̃W (pθ ) ≤ c̃κpθ < ∞.

Therefore, u = v by Lemma .. �

Proof of Theorem . Consider ξ ≥  and ζ ≥  with ξ + ζ > . Let α,β ∈ (, ] and
p ∈ Jα,β ∩ C((, )) be such that (A) is satisfied.

Let

S :=
{

u ∈ B+(
(, )

)
: ( – κp)θ ≤ u ≤ θ

}
,

where θ (x) := ξh(x) + ζh(x), and h and h are defined respectively by (.) and (.).
Define the operator F on S by

Fu = θ – Wp(pθ ) + Wp
((

p – f (·, u)
)
u
)
.

By (.) and (.) we have

Wp(pθ ) ≤ W (pθ ) ≤ κpθ ≤ θ . (.)

Using (A), we get

 ≤ f (·, u) ≤ p for all u ∈ S . (.)

Next, we prove that FS ⊆ S . Indeed, using (.) and (.), we have, for u ∈ S ,

Fu ≤ θ – Wp(pθ ) + Wp(pu) ≤ θ
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and

Fu ≥ θ – Wp(pθ )

≥ ( – κp)θ .

Observe that, by (A), F becomes nondecreasing on S .
Define the sequence {vn} by v = ( – κp)θ and vn+ = Fvn for n ∈ N. Since FS ⊆ S , we

have v = Fv ≥ v, and by the monotonicity of F we deduce that

( – κp)θ = v ≤ v ≤ · · · ≤ vn ≤ vn+ ≤ θ .

Using (A)-(A) and the dominated convergence theorem, we deduce that the sequence
{vn} converges to a function u ∈ S satisfying

u =
(
I – Wp(p·))θ + Wp

((
p – f (·, u)

)
u
)
,

that is,

(
I – Wp(p·))u =

(
I – Wp(p·))θ – Wp

(
uf (·, u)

)
,

and by (.) we have W (pu) ≤ W (pθ ) ≤ θ < ∞. Therefore, by Lemma . we deduce that

u = θ – W
(
uf (·, u)

)
. (.)

We claim that u is a solution.
Indeed, from (.) and (.), there exists a constant c >  such that

( – s)α–u(s)f
(
s, u(s)

) ≤ ( – s)α–θ (s)p(s) ≤ csβ–( – s)αp(s). (.)

So, by Proposition . the function W (uf (·, u)) ∈ C–β ([, ]). This implies by (.) that
u ∈ C–β ([, ]).

Now, since the function s → ( – s)α–u(s)f (s, u(s)) ∈ C((, )) ∩ L((, )), we deduce by
Proposition . that u is a solution.

It remains to prove the uniqueness. Let v be another solution in C–β ([, ]) to problem
(.) satisfying (.). Since v ≤ θ , we deduce by (.) that

 ≤ v(s)f
(
s, v(s)

) ≤ θ (s)p(s) ≤ csβ–( – s)p(s).

This implies that s → ( – s)α–v(s)f (s, v(s)) ∈ C((, )) ∩ L((, )). Let ṽ := v + W (vf (·, v)).
By Proposition ., we have

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβ ṽ)(x) = ,  < x < ,

limx→+ Dβ–ṽ(x) = , limx→+ Dα–(Dβ ṽ)(x) = ξ ,

ṽ() = , Dβ ṽ() = –ζ .
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Hence,

v = θ – W
(
vf (·, v)

)
. (.)

Let ω : (, ) →R be defined by

ω(z) =

⎧
⎨

⎩

v(z)f (z,v(z))–u(z)f (z,u(z))
v(z)–u(z) if v(z) 
= u(z),

 if v(z) = u(z).

By (A), ω ∈ B+((, )) and from (.) and (.) we deduce that

(
I + W (ω·))((v – u)+)

=
(
I + W (ω·))((v – u)–)

,

where (v – u)+ = max(v – u, ) and (v – u)– = max(u – v, ).
From (A) we have ω ≤ p. So by using (.) and (.) we obtain

W
(
ω|v – u|) ≤ W (pθ ) ≤ κpθ < ∞.

Hence, u = v by (.). �

Proof of Corollary . The statement follows from Theorem . with f (x, t) = λq(x)h(t),
�(t) = th(t) and p(x) := λq(x) max≤t≤θ (x) �

′(t). �

Example . Let σ ≥ , ν ≥ , and q ∈ C+((, )) be such that

∫ 


t(β–)(+σ+ν)( – t)α+σ+νq(t) dt < ∞.

Let �(t) = tσ+ ln( + tν) and q̃(t) := q(t) max≤s≤θ (t) �
′(s). Since q̃ ∈ Jα,β , then for ξ ≥ ,

ζ ≥  with ξ + ζ >  and λ ∈ [, 
κq̃

), the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβu)(x) + λq(x)uσ+(x) ln( + uν(x)) = ,  < x < ,

limx→+ Dβ–u(x) = , limx→+ Dα–(Dβu)(x) = ξ ,

u() = , Dβu() = –ζ ,

has a unique solution u ∈ C–β ([, ]) such that

( – λαq̃)θ (x) ≤ u(x) ≤ θ (x) for x ∈ (, ].
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