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We study the nonlinear elliptic equation ∆u(x) + a(x)u(x) = g(x)f(u(x)) on the Sier-
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1. Introduction

Many physical problems on fractal domains lead to nonlinear models involving
reaction-diffusion equations, problems on elastic fractal media or fluid flow through
fractal regions, etc. The prevalence of fractal-like objects in nature has led both
mathematicians and physicists to study various processes on fractals.

In recent years there has been an increasing interest in studying nonlinear partial
differential equations on fractals, also motivated and stimulated by the consider-
able amount of literature devoted to the definition of a Laplace-type operator for
functions on fractal domains.

We cannot expect the solutions of partial differential equations on fractal
domains to behave like the solutions of their Euclidean analogues. For example,
Barlow and Kigami [1] proved that many fractals have Laplacian eigenfunctions
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vanishing identically on large open sets, whereas the eigenfunctions of the Laplace
operator are analytic in R

n. Among the recent contributions to the theory of non-
linear elliptic equations on fractals we refer to Bockelman and Strichartz [2], Fal-
coner [3], Falconer and Hu [5], Hu [7], Hua and Zhenya [8], Strichartz [16]. The main
tools used in these papers to prove the existence of at least one nontrivial solution
or of multiple solutions for nonlinear elliptic equations with zero Dirichlet bound-
ary conditions are certain minimax results (mountain pass theorems, saddle-point
theorems), respectively, minimization procedures.

In the present paper, we propose a different method to study these types of
equations. To apply this method we have to impose on the nonlinear term of
the elliptic equation other conditions such as those used in the papers mentioned
before. Instead of requiring that the nonlinear term should satisfy certain symme-
try properties, this term has to have an oscillating behavior. This method has been
used successfully to prove, in the framework of standard Sobolev spaces, the exis-
tence of infinitely many solutions, respectively, for Dirichlet problems on bounded
domains (Saint Raymond [14]), for one-dimensional scalar field equations and sys-
tems (Faraci and Kristály [6]), or for homogeneous Neumann problems (Kristály
and Motreanu [11]). The aim of the present paper is to show that the methods
used in Faraci and Kristály [6] can be successfully adapted to prove the existence of
infinitely many (weak) solutions for nonlinear elliptic equations with zero Dirichlet
boundary conditions on the Sierpinski gasket.

Notations. We denote by N the set of natural numbers {0, 1, 2, . . .}, by N
∗ :=

N\{0} the set of positive naturals, and by | · | the Euclidian norm on the spaces R
n,

n ∈ N
∗.

2. The Sierpinski Gasket

In its initial representation that goes back to the pioneering papers of the Polish
mathematician Waclaw Sierpinski (1882–1969), the Sierpinski gasket is the con-
nected subset of the plane obtained from an equilateral triangle by removing the
open middle inscribed equilateral triangle of 4−1 the area, removing the correspond-
ing open triangle from each of the three constituent triangles, and continuing this
way. The gasket can also be obtained as the closure of the set of vertices arising in
this construction. Over the years, the Sierpinski gasket showed both to be extraor-
dinarily useful in representing roughness in nature and man’s works. We refer to
Strichartz [15] for an elementary introduction to this subject and to Strichartz [17]
for important applications to differential equations on fractals.

We now rigorously describe the construction of the Sierpinski gasket in a general
setting. Let N ≥ 2 be a natural number and let p1, . . . , pN ∈ R

N−1 be so that
|pi − pj | = 1 for i �= j. Define, for every i ∈ {1, . . . , N}, the map Si : RN−1 →
R

N−1 by

Si(x) =
1
2
x +

1
2
pi.
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Obviously, every Si is a similarity with ratio 1
2 . Let S := {S1, . . . , SN} and denote

by F :P(RN−1) → P(RN−1) the map assigning to a subset A of R
N−1 the set

F (A) =
N⋃

i=1

Si(A).

It is known (see, for example, [4, Theorem 9.1]) that there is a unique non-empty
compact subset V of R

N−1, called the attractor of the family S, such that F (V ) = V

(that is, V is a fixed point of the map F ). The set V is called the Sierpinski gasket
(SG for short) in R

N−1. It can be constructed inductively as follows: Put V0 :=
{p1, . . . , pN}, Vm := F (Vm−1), for m ≥ 1, and V∗ := ∪m≥0Vm. Since pi = Si(pi) for
i = 1, N , we have V0 ⊆ V1. Hence F (V∗) = V∗. Taking into account that the maps
Si, i = 1, N , are homeomorphisms, we conclude that V∗ is a fixed point of F . On
the other hand, denoting by C the convex hull of the set {p1, . . . , pN}, we observe
that Si(C) ⊆ C for i = 1, N . Thus Vm ⊆ C for every m ∈ N, and so V∗ ⊆ C. It
follows that V∗ is non-empty and compact, and hence V = V∗. In the sequel V is
considered to be endowed with the relative topology induced from the Euclidean
topology on R

N−1. The set V0 is called the intrinsic boundary of the SG.
The family S of similarities satisfies the open set condition (see [4, p. 129]) with

the interior intC of C. (Note that intC �= ∅ since the points p1, . . . , pN are affine
independent.) Thus, by [4, Theorem 9.3], the Hausdorff dimension d of V satisfies
the equality

N∑
i=1

(
1
2

)d

= 1.

Hence d = ln N
ln 2 , and 0 < Hd(V ) < ∞, where Hd is the d-dimensional Hausdorff

measure on R
N−1. Let µ be the normalized restriction of Hd to the subsets of V ,

and so µ(V ) = 1. The following property of µ will be important for the proof of the
main result

µ(B) > 0, for every non-empty open subset B of V. (2.1)

In other words, the support of µ coincides with V . To prove (2.1), let B be a non-
empty open subset of V and fix an arbitrary element x ∈ B. Then (see [9, 3.1(iii)])
the equality F (V ) = V yields the existence of a function φ : N∗ → {1, . . . , N} such
that x is the unique element in the intersection of the members of the following
sequence of sets

V ⊇ Vi1 ⊇ Vi1i2 ⊇ · · · ⊇ Vi1i2···in ⊇ · · · ,
where Vi1···in := (Sφ(1) ◦ · · · ◦ Sφ(n))(V ) for every n ∈ N

∗. Assuming that

Vi1···in\B �= ∅, for every n ∈ N
∗,

there exists an element xn ∈ Vi1···in\B for every n ∈ N
∗. Since

|xn − x| ≤ diamVi1···in =
(

1
2

)n

diamV, for all n ∈ N
∗,
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the sequence (xn) converges to x. Thus there is an index n0 with xn ∈ B

for all n ≥ n0, that is, a contradiction. We conclude that there is n ∈ N
∗

such that

Vi1···in ⊆ B.

It follows that µ(Vi1···in) ≤ µ(B). On the other hand, by the scaling property of the
Hausdorff measure (see [4, 2.1]), we have that

µ(Vi1···in) =
(

1
2

)nd

· µ(V ) > 0,

and so µ(B) > 0.

3. The Space H1
0(V )

We retain the notations from the previous section and briefly recall from Fal-
coner and Hu [5] the following notions (see also Hu [7] and Kozlov [10] for the
case N = 3). Denote by C(V ) the space of real-valued continuous functions on V

and by

C0(V ) := {u ∈ C(V )|u|V0 = 0}.
The spaces C(V ) and C0(V ) are endowed with the usual supremum norm ‖ · ‖s.
For a function u :V → R and for m ∈ N let

Wm(u) =
(

N + 2
N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))2. (3.1)

We have Wm(u) ≤ Wm+1(u) for every natural m, and so we can put

W (u) = lim
m→∞Wm(u). (3.2)

Define now

H1
0 (V ) := {u ∈ C0(V ) |W (u) < ∞}.

It turns out that H1
0 (V ) is a dense linear subset of L2(V, µ) (equipped with the

usual ‖ · ‖2 norm). We now endow H1
0 (V ) with the norm

‖u‖ =
√

W (u).

In fact, there is an inner product defining this norm: For u, v ∈ H1
0 (V ) and m ∈ N let

Wm(u, v) =
(

N + 2
N

)m ∑
x,y∈Vm

|x−y|=2−m

(u(x) − u(y))(v(x) − v(y)).

Put

W(u, v) = lim
m→∞Wm(u, v).
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Then W(u, v) ∈ R and H1
0 (V ), equipped with the inner product W (which obviously

induces the norm ‖ · ‖), becomes a real Hilbert space. Moreover,

‖u‖s ≤ (2N + 3)‖u‖, for every u ∈ H1
0 (V ), (3.3)

and the embedding

(H1
0 (V ), ‖ · ‖) ↪→ (C0(V ), ‖ · ‖s) (3.4)

is compact.
We now state a useful property of the space H1

0 (V ) which shows, together with
the facts that (H1

0 (V ), ‖ · ‖) is a Hilbert space and that H1
0 (V ) is dense in L2(V, µ),

that W is a Dirichlet form on L2(V, µ). (In fact, it is the analogue in the case of
H1

0 (V ) of a property stated in Marcus and Mizel [13] for Sobolev spaces.)

Lemma 3.1. Let h :R → R be a Lipschitz mapping with Lipschitz constant L ≥ 0
and such that h(0) = 0. Then, for every u ∈ H1

0 (V ), we have h ◦ u ∈ H1
0 (V ) and

‖h ◦ u‖ ≤ L · ‖u‖.

Proof. It is clear that h ◦ u ∈ C0(V ). For every m ∈ N we have, by (3.1) and the
Lipschitz property of h, that

Wm(h ◦ u) ≤ L2 · Wm(u).

Hence W (h ◦u) ≤ L2 ·W (u), according to (3.2). Thus h ◦u ∈ H1
0 (V ) and ‖h ◦u‖ ≤

L · ‖u‖.

4. The Dirichlet Problem on the Sierpinski Gasket

We keep the notations from the previous sections. We also recall from Falconer
and Hu [5] (respectively, from Hu [7] and Kozlov [10] in the case N = 3) that one
can define in a standard way a linear, bijective and self-adjoint operator ∆ :D →
L2(V, µ), where D is a linear subset of H1

0 (V ) which is dense in L2(V, µ) (and dense
also in (H1

0 (V ), ‖ · ‖)), such that

−W(u, v) =
∫

V

∆u · vdµ, for every (u, v) ∈ D × H1
0 (V ).

The operator ∆ is called the weak Laplacian on V .
Given a : V → R, f :R → R and g : V → R, with appropriate properties, we can

formulate now the following Dirichlet problem on the SG: Find functions u ∈ H1
0 (V )

such that

(P)
{

∆u(x) + a(x)u(x) = g(x)f(u(x)), ∀x ∈ V \V0.

u|V0 = 0.

A function u ∈ H1
0 (V ) is called a weak solution of (P) if

W(u, v) −
∫

V

a(x)u(x)v(x)dµ +
∫

V

g(x)f(u(x))v(x)dµ = 0, ∀ v ∈ H1
0 (V ).
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The aim of the paper is to prove the following result concerning the existence of
multiple weak solutions of problem (P):

Theorem 4.1. Assume that the following conditions hold :

(C1) a ∈ L1(V, µ) and a ≤ 0 a.e. in V .
(C2) f : R → R is continuous such that

(1) There exist two sequences (ak) and (bk) in ]0,∞[ with bk+1 < ak <

bk, limk→∞ bk = 0 and such that f(s) ≤ 0 for every s ∈ [ak, bk].
(2) Either sup{s < 0 | f(s) > 0} = 0, or there is a δ > 0 with f |[−δ,0] = 0.

(C3) F : R → R, defined by F (s) =
∫ s

0
f(t)dt, is such that

(3) −∞ < lim infs→0+
F (s)
s2 ,

(4) lim sups→0+
F (s)
s2 = ∞.

(C4) g ∈ C(V ) with g ≤ 0 and such that the restriction of g to every open subset
of V is not identically 0.

Then, there is a sequence (uk) of pairwise distinct weak solutions of problem (P)
such that limk→∞ ‖uk‖ = 0. In particular, limk→∞ ‖uk‖s = 0.

Remark 4.2. The conditions (1) and (2) of Theorem 4.1 on the nonlinear term
f : R → R of problem (P) show that this function has an oscillating behavior at 0. In
Faraci and Kristály [6] there is given the following example for a function satisfying
the conditions (C2) and (C3) of the theorem: Let 0 < α < 1 < β and f : R → R

be such that f(0) = 0 and f(t) = |t|α max{0, sin |t|−1} + |t|β min{0, sin |t|−1} for
t �= 0.

5. Preparatory Results

Let a, g ∈ L1(V, µ) and f : R → R be continuous. Define F : R → R by F (s) =∫ s

0
f(t)dt. The map I : H1

0 (V ) → R defined by

I(u) =
1
2
‖u‖2 − 1

2

∫
V

a(x)u2(x)dµ +
∫

V

g(x)F (u(x))dµ, ∀u ∈ H1
0 (V ), (5.1)

will turn out to be under suitable assumptions the energy functional attached to
problem (P) (see Proposition 5.3 below). To see this we first recall a few basic
notions.

Definition 5.1. Let E be a real Banach space and T : E → R a functional. We
say that T is Fréchet differentiable at u ∈ E if there exists a continuous linear map
dT (u) :E → R, called the Fréchet differential of T at u, such that

lim
v→0

|T (u + v) − T (u) − dT (u)(v)|
‖v‖ = 0.

The functional T is Fréchet differentiable on E if T is Fréchet differentiable at every
point u ∈ E. A point u ∈ E is a critical point of T if T is Fréchet differentiable at
u and if dT (u) = 0.
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Remark 5.2. Note that if the functional T : E → R has in u ∈ E a local extremum
and if T is Fréchet differentiable at u, then u is a critical point of T .

Proposition 5.3. Suppose that a ∈ L1(V, µ), f : R → R is continuous and g ∈
C(V ). Then the functional I : H1

0 (V ) → R defined by (5.1) is Fréchet differentiable
on H1

0 (V ). Moreover, for every u, v ∈ H1
0 (V ) the following equality holds

dI(u)(v) = W(u, v) −
∫

V

a(x)u(x)v(x)dµ +
∫

V

g(x)f(u(x))v(x)dµ.

In particular, u ∈ H1
0 (V ) is a weak solution of problem (P) if and only if u is a

critical point of I.

Proof. See [5, Proposition 2.19].

Remark 5.4. If a ∈ C(V ), f : R → R is continuous and g ∈ C(V ), then, using the
regularity result in [5, Lemma 2.16], it follows that every weak solution of problem
(P) is also a strong solution (as defined in [5]).

We next do some preparation in order to state in Proposition 5.9 an important
property of the map I.

Definition 5.5. Let X be a topological Hausdorff space. A map h :X → R is
called sequentially lower semicontinuous at x ∈ X if for every sequence (xn) in X

converging to x the inequality

h(x) ≤ lim inf
n→∞ h(xn)

holds. The map h :X → R is sequentially lower semicontinuous on X if h is sequen-
tially lower semicontinuous at every point x ∈ X .

Lemma 5.6. Let a, g ∈ L1(V, µ) and let f : R → R be continuous. Then the func-
tional I : H1

0 (V ) → R defined by (5.1) is weakly sequentially lower semicontinuous
on H1

0 (V ).

Proof. We first prove that the maps u ∈ H1
0 (V ) �→ ∫

V
a(x)u2(x)dµ ∈ R and

u ∈ H1
0 (V ) �→ ∫

V
g(x)F (u(x))dµ ∈ R are both weakly sequentially continuous on

H1
0 (V ). To this end let u ∈ H1

0 (V ) and consider a sequence (un) weakly converging
to u in H1

0 (V ). Since the embedding (3.4) is compact, the sequence (un) converges
to u in C0(V ), and so does (u2

n) to u2. The relations∣∣∣∣
∫

V

a(x)u2
n(x)dµ −

∫
V

a(x)u2(x)dµ

∣∣∣∣ ≤
∫

V

|a(x)| · |u2
n(x) − u2(x)|dµ

≤ ‖u2
n − u2‖s ·

∫
V

|a(x)|dµ

show that the map u ∈ H1
0 (V ) �→ ∫

V
a(x)u2(x)dµ ∈ R is weakly sequentially

continuous at u, and hence on H1
0 (V ), because u was arbitrarily chosen.
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Since (un) converges to u in C0(V ), there is a positive constant ρ such that
‖u‖s ≤ ρ and ‖un‖s ≤ ρ for all n ∈ N. Use the notation c := maxt∈[−ρ,ρ] |f(t)|.
Then, for every n ∈ N,

|F (un(x)) − F (u(x))| =

∣∣∣∣∣
∫ un(x)

u(x)

f(t)dt

∣∣∣∣∣ ≤ c · ‖un − u‖s.

Hence∣∣∣∣
∫

V

g(x)F (un(x))dµ −
∫

V

g(x)F (u(x))dµ

∣∣∣∣ ≤ c · ‖un − u‖s ·
∫

V

|g(x)|dµ.

We conclude, as above, that the map u ∈ H1
0 (V ) �→ ∫

V g(x)F (u(x))dµ ∈ R is
weakly sequentially continuous on H1

0 (V ).
The map u ∈ H1

0 (V ) �→ ‖u‖2 ∈ R is continuous in the norm topology on H1
0 (V )

and convex. Thus, it is weakly sequentially lower semicontinuous on H1
0 (V ). We

conclude that I is also weakly sequentially lower semicontinuous on H1
0 (V ).

Lemma 5.7. Let X be a non-empty topological Hausdorff space and let h : X → R

be a map satisfying the following properties:

(i) h is sequentially lower semicontinuous on X,

(ii) h is bounded from below on X,

(iii) every sequence (xn) in X such that the sequence (h(xn)) is bounded has a
convergent subsequence.

Then h attains its infimum on X.

Proof. Let (xn) be a sequence in X such that limh(xn) = inf h(X). According
to (ii), the sequence (h(xn)) is bounded, and so, by (iii), there is a convergent
subsequence (xnk

) of (xn). Let x ∈ X be the limit point of this subsequence. Using
(i), we get

h(x) ≤ lim inf
k→∞

h(xnk
) = inf h(X),

and hence h(x) = inf h(X).

Remark 5.8. Let a, g ∈ L1(V, µ) be so that a ≤ 0 and g ≤ 0 a.e. in V , and let
f : R → R be continuous. Consider u ∈ H1

0 (V ) and d, b ∈ R such that d ≤ u(x) ≤ b

for every x ∈ V . According to the fact that g ≤ 0 a.e. in V , we then have∫
V

g(x)F (u(x))dµ ≥ max
s∈[d,b]

F (s) ·
∫

V

g(x)dµ. (5.2)

For later use we state the following relations concerning the functional I : H1
0 (V ) →

R defined by (5.1): The inequalities (5.2) and a ≤ 0 a.e. in V imply that

I(u) ≥ max
s∈[d,b]

F (s) ·
∫

V

g(x)dµ (5.3)
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and
1
2
‖u‖2 ≤ I(u) − max

s∈[d,b]
F (s) ·

∫
V

g(x)dµ. (5.4)

We also note that for every x ∈ V

F (u(x)) ≤ |F (u(x))| =

∣∣∣∣∣
∫ u(x)

0

f(t)dt

∣∣∣∣∣ ≤ max
t∈[d,b]

|f(t)| · ‖u‖s.

As above, we then conclude that

I(u) ≥ max
t∈[d,b]

|f(t)| · ‖u‖s ·
∫

V

g(x)dµ (5.5)

and
1
2
‖u‖2 ≤ I(u) − max

t∈[d,b]
|f(t)| · ‖u‖s ·

∫
V

g(x)dµ. (5.6)

Proposition 5.9. Let a, g ∈ L1(V, µ) be so that a ≤ 0 and g ≤ 0 a.e. in V, and let
f : R → R be continuous. Consider d, b ∈ R so that d < 0 < b and put

M := {u ∈ H1
0 (V ) | d ≤ u(x) ≤ b, ∀x ∈ V }.

Then the functional I : H1
0 (V ) → R defined by (5.1) is bounded from below on M

and attains its infimum on M .

Proof. Obviously the set M is non-empty (it contains the constant 0 function) and
convex. Since the inclusion (3.4) is continuous, M is closed in the norm topology on
H1

0 (V ). It follows that M is also closed in the weak topology on H1
0 (V ). Consider

M to be endowed with the relative weak topology. We will show that the restriction
I|M of I to M satisfies the hypotheses (i)–(iii) of Lemma 5.7. Condition (i) results
from Lemma 5.6, and (ii) is a consequence of (5.3). Hence I is bounded from
below on M . To verify (iii), let (un) be a sequence in M such that the sequence
(I(un)) is bounded. Inequality (5.4) then yields that (un) is (norm) bounded. By
the reflexivity of the Hilbert space H1

0 (V ) and the closedness of M in the weak
topology we conclude that the sequence (un) has a weakly convergent subsequence
in M . Lemma 5.7 implies now that I attains its infimum on M .

6. Proof of Theorem 4.1

Throughout this section we assume that the conditions C(1)–C(4) in the hypotheses
of Theorem 4.1 are satisfied.

Case 1. Suppose first that the equality sup{s < 0 | f(s) > 0} = 0 in condition
(2) of (C2) holds. Then there exists a strictly increasing sequence (ck) of
negative reals such that lim ck = 0 and f(ck) > 0 for every natural k. By
continuity of f there exists another sequence (dk) such that dk < ck < dk+1

and f(t) > 0 for every t ∈ [dk, ck] and every natural k.
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Case 2. If we have in (2) that there is a δ > 0 with f |[−δ,0] = 0, then choose a
strictly increasing sequence (ck) of negative reals greater than −δ such
that lim ck = 0. Construct the sequence (dk) such that dk < ck < dk+1

and f(t) = 0 for every t ∈ [dk, ck] and every natural k.
In both cases, since F (s) =

∫ s

0
f(t)dt for every s ∈ R, it follows that

F (s) ≤ F (ck), for every s ∈ [dk, ck]. (6.1)

Using condition (1) of (C2), we have that

F (s) ≤ F (ak), for every s ∈ [ak, bk]. (6.2)

For every k ∈ N set now

Mk := {u ∈ H1
0 (V ) | dk ≤ u(x) ≤ bk, ∀x ∈ V }.

The proof of Theorem 4.1 includes the following main steps contained in the next
lemmas:

(i) we show that the map I :H1
0 (V ) → R defined by (5.1) has at least one critical

point in each of the sets Mk;
(ii) we will show that there are infinitely many pairwise distinct such critical points;
(iii) by Proposition 5.3 we know that each of these critical points is a weak solution

of problem (P).

Lemma 6.1. For every k ∈ N there is an element uk ∈ Mk such that the following
conditions hold:

(i) I(uk) = inf I(Mk),
(ii) ck ≤ uk(x) ≤ ak, for every x ∈ V .

Proof. Fix k ∈ N. According to Proposition 5.9, there is an element ũk ∈ Mk such
that I(ũk) = inf I(Mk). Define h :R → R by

h(t) =




ck, t < ck

x, t ∈ [ck, ak]

ak, t > ak.

Note that h(0) = 0 and that h is a Lipschitz map with Lipschitz constant L = 1.
According to Lemma 3.1 the map uk := h ◦ ũk belongs to H1

0 (V ) and

‖uk‖ ≤ ‖ũk‖. (6.3)

Moreover, uk belongs to Mk and obviously satisfies condition (ii) to be proved. We
next show that (i) also holds. For this set

V1 := {x ∈ V | ũk(x) < ck}, V2 := {x ∈ V | ũk(x) > ak}.
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Then

uk(x) =




ck, x ∈ V1

ũk(x), x ∈ V \(V1 ∪ V2)
ak, x ∈ V2.

It follows that

(uk(x))2 ≤ (ũk(x))2, for every x ∈ V. (6.4)

Furthermore, if x ∈ V1 then ũk(x) ∈ [dk, ck[, and hence F (ũk(x)) ≤ F (ck) =
F (uk(x)), by (6.1). Analogously, if x ∈ V2, then (6.2) yields F (ũk(x)) ≤ F (ak) =
F (uk(x)). Thus

F (ũk(x)) ≤ F (uk(x)), for every x ∈ V. (6.5)

The inequalities (6.3)–(6.5) imply, together with the fact that a ≤ 0 and g ≤ 0 a.e.
in V , that

I(ũk) − I(uk) =
1
2
‖ũk‖2 − 1

2
‖uk‖2 − 1

2

∫
V

a(x)(ũ2
k(x) − u2

k(x))dµ

+
∫

V

g(x)(F (ũk(x)) − F (uk(x)))dµ ≥ 0.

Thus I(ũk) ≥ I(uk). Since I(ũk) = inf I(Mk) and since uk ∈ Mk, we conclude that
I(uk) = inf I(Mk), and thus (i) is also fulfilled.

Lemma 6.2. For every k ∈ N let uk ∈ Mk be a function satisfying the conditions
(i) and (ii) of Lemma 6.1. The functional I has then in uk a local minimum (with
respect to the norm topology on H1

0 (V )), for every k ∈ N. In particular, (uk) is a
sequence of weak solutions of problem (P).

Proof. Fix k ∈ N. Suppose to the contrary that I has not in uk a local minimum.
This implies the existence of a sequence (wn) in H1

0 (V ) converging to uk in the
norm topology such that

I(wn) < I(uk), for every n ∈ N.

In particular, wn /∈ Mk, for all n ∈ N. Choose a real number ε such that

0 < ε <
1
2

min{bk − ak, ck − dk}.
In view of (3.3), the sequence (wn) converges to uk in the supremum norm topology
on C(V ). Hence there is an index m ∈ N such that

‖wm − uk‖s ≤ ε.

For every x ∈ V we then have according to (ii) of Lemma 6.1

wm(x) = wm(x) − uk(x) + uk(x) ≤ ε + uk(x) ≤ bk − ak

2
+ ak < bk
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and

wm(x) = wm(x) − uk(x) + uk(x) ≥ −ε + uk(x) ≥ dk − ck

2
+ ck > dk.

Thus wm ∈ Mk, that is a contradiction. We conclude that I has in uk a local
minimum. The last assertion of the lemma follows now from Remark 5.2 and
Proposition 5.3.

Lemma 6.3. For every k ∈ N put γk := inf I(Mk). Then γk < 0 for all k ∈ N and
limk→∞ γk = 0.

Proof. Lemma 3.1 implies that |u| ∈ H1
0 (V ) whenever u ∈ H1

0 (V ). Thus we can
pick a function u ∈ H1

0 (V ) such that u(x) ≥ 0 for every x ∈ V and such that there
is an element x0 ∈ V with u(x0) > 1. It follows that D := {x ∈ V | u(x) > 1} is
a non-empty open subset of V . Let h :R → R be defined by h(t) = min{t, 1}, for
every t ∈ R. Then h(0) = 0 and h is a Lipschitz map with Lipschitz constant L = 1.
Lemma 3.1 yields that v := h ◦ u ∈ H1

0 (V ). Moreover, v(x) = 1 for every x ∈ D,
and 0 ≤ v(x) ≤ 1 for every x ∈ V .

On the other hand, condition (3) of (C3) implies the existence of real numbers
ρ > 0 and c such that F (s)

s2 > c for every s ∈ ]0, ρ[. It follows that

F (s) ≥ cs2, for every s ∈ [0, ρ[. (6.6)

Condition (4) of (C3) yields the existence of a sequence (rn) in ]0, ρ[ such that
limn→∞ rn = 0 and

lim
n→∞

F (rn)
r2
n

= ∞. (6.7)

We then have for every n ∈ N

I(rnv) =
r2
n

2
‖v‖2 − r2

n

2

∫
V

a(x)v2(x)dµ + F (rn)
∫

D

g(x)dµ

+
∫

V \D

g(x)F (rnv(x))dµ.

Using (6.6) and the fact that g ≤ 0 in V , we get for every n ∈ N

I(rnv) ≤ r2
n

2
‖v‖2 − r2

n

2

∫
V

a(x)v2(x)dµ + F (rn)
∫

D

g(x)dµ

+ cr2
n

∫
V \D

g(x)v2(x)dµ.

Thus

I(rnv)
r2
n

≤ 1
2
‖v‖2 − 1

2

∫
V

a(x)v2(x)dµ +
F (rn)

r2
n

∫
D

g(x)dµ + c

∫
V \D

g(x)v2(x)dµ.



July 18, 2011 12:9 WSPC/S0219-5305 176-AA S0219530511001844

The Dirichlet Problem on the Sierpinski Gasket 247

Condition (C4) and (2.1) imply that
∫

D
g(x)dµ < 0, and so we get from (6.7) and

the above inequality that

lim
n→∞

I(rnv)
r2
n

= −∞.

Thus there is an index n0 such that I(rnv) < 0 for every n ≥ n0. Fix now k ∈ N.
Since limn→∞ ‖rnv‖s = 0, we get an index p ≥ n0 such that rpv ∈ Mk. Hence
γk ≤ I(rpv) < 0.

Let uk ∈ Mk be so that γk = I(uk). Since Mk ⊆ M0, relation (5.5) yields

γk = I(uk) ≥ max
t∈[d0,b0]

|f(t)| · ‖uk‖s ·
∫

V

g(x)dµ,

and hence

0 > γk ≥ max
t∈[d0,b0]

|f(t)| · max{bk, |dk|} ·
∫

V

g(x)dµ.

Since limk→∞ bk = limk→∞ dk = 0, we conclude that limk→∞ γk = 0.

Proof of Theorem 4.1 concluded. From Lemma 6.2 we know that there is
a sequence (uk) of weak solutions of problem (P) such that γk = I(uk), where
γk = inf I(Mk), for every natural k. Using relation (5.6) and the fact that γk ≤ 0,
we obtain

1
2
‖uk‖2 ≤ − max

t∈[d0,b0]
|f(t)| · max{bk, |dk|} ·

∫
V

g(x)dµ.

Using once again that limk→∞ bk = limk→∞ dk = 0, we conclude that
limk→∞ ‖uk‖ = 0. Thus also limk→∞ ‖uk‖s = 0, by (3.3).

We know from Lemma 6.3 that I(uk) = γk < 0, for every natural k, and
that limk→∞ γk = 0. Thus we can find a subsequence (ukj ) of the sequence (uk)
consisting of pairwise distinct elements.

Remark 6.4. (1) If to the hypotheses of Theorem 4.1 one adds the requirement
that a ∈ C(V ), then Theorem 4.1 and Remark 5.4 yield the existence of a
sequence of pairwise distinct strong solutions of problem (P) converging to 0.

(2) By the same method, one can prove (see also [6]) an analogous result in the case
when the nonlinear term f : R → R has an oscillating behavior at ∞. In this
case one obtains a sequence (uk) of pairwise distinct weak solutions of problem
(P) such that limk→∞ ‖uk‖ = ∞.
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