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Introduction

Insight must precede application.
Max Planck (1858–1947),

Nobel Prize in Physics 1918

Answering the needs of specific applied problems, Nonlinear Analysis emerged as a
separate field of research within Mathematical Analysis immediately after World
War II, when Linear Functional Analysis (primarily Banach space theory) had
reached a rather mature stage. Years of accumulated experience has convinced
people that theory can no longer afford the luxury of dealing with linear, smooth
and well-posed models. In many applications of interest, such requirements either
exclude many important aspects of the problem or, even more dramatically, fail
completely to provide a satisfactory model for the phenomena under investigation.
Such considerations led to the development of Nonlinear Analysis, which today has
developed significantly and is one of the most active areas of research. The advent
of Nonlinear Analysis led to unifying theories describing different classical prob-
lems and permitted the investigation of a whole new range of applications. The
theories, methods and techniques of Nonlinear Analysis proved to be indispensable
tools in the analysis of various problems in many other fields. For this reason,
Nonlinear Analysis eventually acquired an interdisciplinary character and it is a
prerequisite for many nonmathematicians who want to conduct an in depth analysis
of problems they face. This leads to an increasing demand for books that summarize
the recent developments in various parts of Nonlinear Analysis.

Make no mistake, Nonlinear Analysis is a very broad subject and every such
book focuses only on a part of it. Here the emphasis is on those aspects that are
useful in the study of boundary value problems. In fact, Volume II will be devoted
to the study of such problems. Given the orientation of this book project, it is
natural to start in Chap. 1 with Sobolev Spaces, which are the main tools in the
analysis of both stationary and nonstationary problems. Sobolev spaces play a
central role in the modern theory of partial differential equations and they lead to a
significant broadening of the notion of solution of a boundary value problem. They
provide a natural analytical framework for the study of linear and nonlinear
boundary value problems. We provide a concise but complete introduction to the
subject, emphasizing those parts of the theory which are relevant to the study of

vii



boundary value problems. We deal with both functions of one and several variables.
In the last section we also discuss capacities, which arise in the study of small sets
in R

N and of the fine properties of Sobolev functions. We also present some related
results which will be of interest to people dealing with boundary value problems.

In Chap. 2 we deal with Compact Operators and Operators of Monotone Type.
Compact operators are in fact the starting point of Nonlinear Analysis, going back
to the celebrated work of Leray and Schauder in the 1930s. Compactness was
introduced as a first attempt to deal with infinite-dimensional nonlinear operator
equations, since by its nature compactness (in all its forms) approximates infinite
objects by finite objects. In parallel we develop the corresponding linear theory,
leading to the spectral theorem for compact self-adjoint operators on a Hilbert
space. This theorem is the basis of the spectral analysis of linear elliptic operators
under different boundary conditions. Of course, compact operators have serious
limitations, which researchers tried to overcome by introducing new classes of
nonlinear maps. A broader framework for the analysis of infinite-dimensional
problems is provided by monotone operators, which extend to an infinite-
dimensional context the classical notion of an increasing real function. Monotone
operators are rooted in variational problems. Of special interest are the so-called
maximal monotone operators, which exhibit remarkable surjectivity properties.
However, the development of a coherent theory of maximal monotone maps leads
necessarily to multivalued maps (multifunctions). For this reason, in Sect. 2.5 we
have a detour to Set-Valued Analysis. We point out that multivalued analysis
provides basic tools in many applied areas such as optimization, optimal control,
mathematical economics, game theory, etc. The “differential” theory of nonsmooth
convex functions leads to a special class of multivalued maximal monotone oper-
ators (convex subdifferential). At the end of the chapter we also discuss useful
generalizations of the notion of monotonicity.

In Chap. 3, we conduct a detailed study of the main degree theories. We start
with Brouwer’s theory (finite-dimensional spaces), following the analytical
approach that goes back to the work of Nagumo in the 1950s. Brouwer’s original
approach to the definition of the degree was based on combinatorial and algebraic
topology. Since most problems of interest are infinite-dimensional, it was necessary
to extend Brouwer’s theory to infinite-dimensional maps. This was done by Leray
and Schauder in the 1930s, who used compact operators (namely operators
of the form I � K with I being the identity map and K a compact operator). The
Leray–Schauder degree theory and its consequences are examined in Sect. 3.2.
After that we examine degree theories for set-valued maps and for operators of
monotone type. All these are recent theories and were introduced to deal with
infinite-dimensional nonlinear problems for which the Leray–Schauder theory fails
to address. At the end of the chapter, we also discuss some alternative general-
izations of the Leray–Schauder theory using measures of noncompactness (con-
densing maps) and we examine the index of a n-point.
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Chapter 4 deals with Fixed Point Theory and with some important Variational
Principles. There is an informal classification of fixed-point theorems to “metric
fixed points”, “topological fixed points” and “order fixed points”. Since the latter
class involves some order structure in the underlying space (usually a Banach
space), in Sect. 4.1 we start with a general discussion of cones and of the partial
order they induce on the ambient space. Then we start discussing the three afore-
mentioned classes of fixed points. Metric fixed-point theorems are always formu-
lated in a metric space setting and the methods involved in their study exploit the
metric structure and geometry of the spaces involved together with the metric
properties of the maps. In contrast to the topological fixed point theory, the topo-
logical properties of the spaces and/or of the maps are involved. In particular, the
notion of compactness is important in our considerations there. In “order fixed point
theory”, the order on the space induced by a cone is the main ingredient and the
basic hypotheses and conditions are based around this notion, as well as the notion
of the “Leray–Schauder fixed point index”. We also discuss fixed points of mul-
tifunctions. In Sect. 4.6 we discuss some important abstract variational principles.
Special emphasis is given on the celebrated “Ekeland variational principle” and its
many interesting consequences. We conclude the chapter with a discussion of
Young measures that arise in a large class of variational problems. When the direct
method of the calculus of variations fails, the minimizing sequences (or appropriate
subsequences of them) have a limit behavior (usually more and more oscillatory),
which is captured by embedding the original functions in the space of Young
measures (or parametric probabilities). This is the process of “relaxation”, familiar
to people studying optimal control problems.

In Chap. 5 we study Critical Point Theory. When using variational methods, we
are trying to find solutions of a given nonlinear equation, by looking for critical
stationary points of a functional (energy or Euler functional) defined on the function
space in which we want the solutions to be. If this functional is bounded from
below, as above, we can look for local extrema and the direct method enters into
play. If the functional is indefinite, we cannot expect to have local extrema and so
other methods for locating critical points need to be found. These methods are
based on minimax principles, which lead to critical points. These minimax methods
are derived either using the deformation approach or the Ekeland variational
principle. Here we follow the deformation approach which uses the change of the
topological structure of the sublevel sets of the Euler functional along the flow
produced by a kind of negative gradient vector field. We conduct a detailed study of
critical point theory including an analysis of the structure of the critical set at the
end of the chapter.

In Chap. 6, continuing the theme of locating and counting critical points of a
given functional, we discuss Morse Theory and Critical Groups, which provide the
tools to prove multiplicity theorems. Since these topics make use of tools from
Algebraic Topology, in Sect. 6.1 we review the needed background from that field.
Then we proceed with a self-contained presentation of the Morse theory related to
the study of the existence and multiplicity of solutions for variational problems. Our
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presentation is rather complete, including continuity and homotopy invariance
properties, which are valuable tools in the computation of critical groups.

Finally, we mention that each chapter has a final section called Remarks, which
discusses the literature on the subject. We have tried to include a rather complete
bibliography, although such a task seems impossible given the volume of the
existing literature. We acknowledge the support of the Slovenian Research Agency
program P1-0292 and grants J1-7025, J1-8131, N1-0064, and N1-0083 and ....

September 2018 Nikolaos S. Papageorgiou
Vicenţiu D. Rădulescu

Dušan D. Repovš
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Chapter 1
Sobolev Spaces

Pour atteindre les limites du possible, il faut rêver l’impossible.
René Thom (1923–2002), Fields Medal 1958

Sobolev spaces have been very important in the development of partial differential
equations. They are based on the notion of “weak derivative”, which defines partial
derivatives for L p-functions which are not differentiable in the classical sense. The
weak derivative is based on the simple idea of integration by parts. In this way we
transfer the burden of differentiation from a “bad” (nonsmooth) function, to a “good”
(smooth) function. In this chapter, we do not conduct an exhaustive study of Sobolev
spaces. This can be found in the specialized books included in the bibliography (see
the Remarks at the end of the chapter). Instead, we focus on those items of the theory
which are essential in the study of boundary value problems and which we will use
in later chapters.

Throughout this chapter, � is a nonempty open set in R
N (N � 1). Additional

conditions on � will be introduced as needed.

1.1 Definitions, Density, and Approximation Results

First we fix some standard notation and terminology. An element α ∈ N
N , α =

(αk)
N
k=1, is called a “multi-index”. Given a multi-index α and an element ẑ =

(zk)
N
k=1 ∈ R

N , we introduce the following notation:

|α| =
N∑

k=1

αk (the length of the multi-index) ,

zα = zα1
1 . . . zαN

N , Dα = ∂|α|

∂zα1
1 . . . ∂zαN

N

.

© Springer Nature Switzerland AG 2019
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2 1 Sobolev Spaces

Mollifiers and regularizations by convolutions are two useful tools in the study of
Sobolev spaces, since they allow us to approximate L p-functions by smooth ones.

Definition 1.1.1 Let ρ : R
N → [0,+∞) be a bounded function such that

supp ρ ⊆ B1(0) = {z ∈ R
N : ‖z‖RN � 1} and

∫

RN

ρ(z)dz = 1.

For ε ∈ (0, 1)we set ρε(z) = 1
εN ρ
(

z
ε

)
for all z ∈ R

N . Evidently supp ρε ⊆ Bε(0) and
the functions {ρε}ε∈(0,1) are called “mollifiers”. Given u ∈ L1

loc(R
N ), we consider the

convolution

uε(z) = (u ∗ ρε)(z) =
∫

RN

u(y)ρε(z − y)dy for all z ∈ R
N .

The function uε(·) is a “mollification” or “regularization” of u(·).
Remark 1.1.2 The following function ρ(·) can be used to generate mollifiers:

ρ(z) =

⎧
⎪⎨

⎪⎩
c exp

(
1

‖z‖2
RN − 1

)
if ‖z‖RN � 1

0 if ‖z‖RN > 1.

Here c > 0 is such that
∫
RN ρ(z)dz = 1. The corresponding family of mollifiers are

called “standard mollifiers”. Usually this is the family of mollifiers that we employ.
When u ∈ L1

loc(�), we may define

uε(z) = (u ∗ ρε)(z) =
∫

�

u(y)ρε(z − y)dy for all z ∈ �ε,

where�ε is the open set given by�ε = {z ∈ � : d(z, ∂�) > ε}. If z ∈ �, then uε(z)
is well-defined for all 0 < ε < d(z, ∂�) and so it makes sense to consider the limit
lim

ε→0+
uε(z). In what follows we denote by Cc(�) the space of continuous functions

with compact support.

Proposition 1.1.3 (a) If u ∈ C(RN ), then uε → u as ε → 0+ uniformly on compact
sets.

(b) If u ∈ L p(RN ),1 � p < ∞, then uε → u as ε → 0+ in L p(RN )and pointwise
at every Lebesgue point of u.

Proof (a) Let K ⊆ R
N be a compact set. Then given η > 0, we can find δ =

δ(η, k) > 0 such that

|u(z − y) − u(z)| < η for all z ∈ K and all ‖y‖RN < δ. (1.1)
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We have

uε(z) − u(z) =
∫

RN

[u(z − y) − u(z)]ρε(y)dy (since
∫

RN

ρε(y)dy = 1)

=
∫

Bε(0)
[u(z − y) − u(z)]ρε(y)dy (since supp ρε ⊆ Bε(0)).

Then from (1.1) and for ε ∈ (0, δ), we have

|uε(z) − u(z)| � η

∫

RN

ρε(y)dy = η for all z ∈ K

⇒ uε → u as ε → 0+ uniformly on compact sets in R
N .

(b) Exploiting the density of Cc(R
N ) in L p(RN ), given η > 0, we can find û ∈

Cc(R
N ) such that ‖u − û‖p < η. From part (a), we know that

ûε → û as ε → 0+ uniformly on compact subsets of R
N . (1.2)

We have

supp ûε ⊆ supp û + Bε(0) ⊆ supp û + B1(0) a compact subset of R
N

⇒ ‖ûε − û‖p → 0 as ε → 0+ (see (1.3)). (1.3)

Then

‖uε − u‖p � ‖uε − ûε‖p + ‖ûε − û‖p + ‖û − u‖p

� 2‖û − u‖p + ‖ûε − û‖p � 3η for all ε ∈ (0, 1) small (see (1.3)).

Therefore we conclude that uε → u in L p(RN ) as ε → 0+.
Finally, if z ∈ � is a Lebesgue point of u, we have

lim
ε→0+

1

εN

∫

Bε(z)
|u(y) − u(z)|dy = 0.

But note that

|uε(z) − u(z)| =
∣∣∣∣
∫

�

u(y)ρε(z − y)dy − u(z)

∣∣∣∣

� ‖ρ‖∞
1

εN

∫

Bε(z)
|u(y) − u(z)|dy → 0 as ε → 0+.

So, we deduce the pointwise convergence on the set of Lebesgue points of u (recall
that this set has full measure). �
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Remark 1.1.4 If p = ∞, then part (b) of the above proposition is no longer true since
the uniform limit of continuous functions is continuous. Also, given u ∈ C(�), in
general ‖uε − u‖C(�) � 0 as ε → 0+. However, the following is true:

“If u ∈ C(�) and �0 ⊂⊂ � (that is, �0 is compact and �0 ⊆ �), then ‖uε −
u‖C(�0)

→ 0 as ε → 0+.”

In the study of Sobolev spaces, the space C∞
c (�) of C∞-functions with compact

support (test functions) is important. From the theory of L p-spaces we know that

C∞
c (�) is dense in L p(�) for all 1 � p < ∞.

Proposition 1.1.5 If u ∈ L1
loc(�) and

∫
�

u(z)ϑ(z) dz = 0 for all ϑ ∈ C∞
c (�), then

u(z) = 0 a.e. in �.

Proof Let g ∈ L∞(RN ) be a function with compact support contained in � and let
gn = g ∗ ρn (here ρn = ρ1/n). Then for n � 1 large we have gn ∈ C∞

c (�). Hence by
hypothesis

∫

�

ugn dz = 0 for all n � 1 large.

From Proposition 1.1.3 (b), we know that gn → g ∈ L1(RN ) and so, by passing to
a suitable subsequence if necessary, we may assume that gn(z) → g(z) for a.a. z ∈
R

N . Also, we have ‖gn‖∞ � ‖g‖∞ for all n � 1. Therefore, applying the Lebesgue
dominated convergence theorem, we have

∫

�

ug dz = 0. (1.4)

Given K a compact set in �, we set g(z) =
{
sign u if z ∈ K
0 if z ∈ R

N \ K .
Then from

(1.4) we have
∫

K |u| dz = 0. Since K is arbitrary, we conclude that u(z) = 0 a.e.
in �. �

We now introduce the basic notion behind the Sobolev spaces, namely that of
weak derivatives.

Definition 1.1.6 Letα be amulti-index and suppose that for u, v ∈ L1
loc(�)we have

∫

�

u(Dαϑ)dz = (−1)|α|
∫

�

vϑdz for all ϑ ∈ C∞
c (�).

Then v is called the “weak” or “distributional” partial derivative of u and is denoted
by Dαu. Clearly v is uniquely defined up to sets of measure zero.

Remark 1.1.7 From the above definition, we see that in order to define Dαu, we
do not need the existence of derivatives of smaller order (as is the case with classi-
cal derivatives). Moreover, for smooth functions, the weak and classical derivatives
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coincide. Finally, note that the weak derivative is a global notion and, unlike the
classical derivative, it cannot be defined at a point.

Proposition 1.1.8 If u ∈ L1
loc(�), then for all ε ∈ (0, 1), uε ∈ C∞(�ε) (recall that

�ε = {z ∈ � : d(z, ∂�) > ε}) and for every multi-index α, we have

∂αuε

∂zα
(z) =

(
u ∗ ∂αρε

∂zα

)
(z) =

∫

RN

u(y)
∂αρε

∂zα
(z − y)dy for all z ∈ �ε.

Proof We fix z ∈ �ε and λ ∈ (0, d(z, ∂�) − ε). Let {ek}N
k=1 be the canonical basis

of R
N . For every h ∈ R with 0 < |h| < λ, we have

uε(z + hek) − uε(z)

h
−
∫

�

u(y)
∂ρε

∂zk
(z − y)dy

=
∫

�

[
ρε(z + hek − y) − ρε(z − y)

h
− ∂ρε

∂zk
(z − y)

]
u(y)dy

=
∫

�

(
1

h

∫ h

0

∂ρε

∂zk
(z − y + sek)ds − ∂ρε

∂zk
(z − y)

)
u(y)dy

= 1

h

∫ h

0

∫

Bε+λ(z)

(
∂ρε

∂zk
(z − y + sek) − ∂ρε

∂zk
(z − y)

)
u(y)dy ds

(by Fubini’s theorem and since supp ρε ⊆ Bε(0)).

Since uε ∈ C∞
c (RN ), its partial derivatives are uniformly continuous functions.

So, given any η > 0, we can find δ = δ(z,λ, η, ε) > 0 such that

∣∣∣∣
∂ρε

∂zk
(v) − ∂ρε

∂zk
(y)

∣∣∣∣ �
η

1 + ‖u‖L1(Bε+λ(z))
for all v, y ∈ Bε+λ(z) with ‖v − y‖ � δ.

Then for 0 < |h| � min{λ, δ}, we have
∣∣∣∣
uε(z + hek) − uε(z)

h
−
∫

�

∂ρε

∂zk
(z − y)u(y)dy

∣∣∣∣ � η

⇒ ∂uε

∂zk
(z) =

∫

�

∂ρε

∂zk
(z − y)u(y)dy.

In the above argument, we only used that ρε ∈ Cc(R
N ) and that supp ρε ⊆ Bε(0). So,

the argument above remains valid if we replace ρε by
∂ρε

∂zk
. Therefore, by induction,

for every multi-index α, we have

∂αuε

∂zα
(z) =

(
u ∗ ∂αρε

∂zα

)
(z) =

∫

�

u(y)
∂αρε

∂zα
(z − y)dy.

The proof is now complete. �
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The next result essentially says that the operator Dα is closed.

Proposition 1.1.9 Assume that {un}n�1 ⊆ L1
loc(�) and for every ϑ ∈ C∞

c (�) we
have

∫

�

unϑdz →
∫

�

uϑdz and
∫

�

(Dαun)ϑdz →
∫

�

vϑdz.

Then v = Dαu.

Proof By Definition 1.1.6, we have

∫

�

un(Dαϑ)dz = (−1)|α|
∫

�

(Dαun)ϑdz

⇒
∫

�

u(Dαϑ)dz = (−1)|α|
∫

�

vϑdz for all ϑ ∈ C∞
c (�)

⇒ Dαu = v (see Definition 1.1.6),

which concludes the proof. �

We are now ready to introduce the Sobolev spaces.

Definition 1.1.10 Let m � 0 be an integer and p ∈ [1,∞]. The Sobolev space
W m,p(�) is defined by

W m,p(�) = {u ∈ L p(�) : Dαu ∈ L p(�) for every multi-index α with |α| � m}.

The space W m,p(�) is equipped with the norm

‖u‖m,p =
⎡

⎣
∑

|α|�m

‖Dαu‖p
p

⎤

⎦
1/p

when 1 � p < ∞,

‖u‖m,∞ = max
|α|�m

‖Dαu‖∞ when p = ∞.

Remark 1.1.11 When p = 2, we write H m(�) for the space W m,2(�), to emphasize
the Hilbert space structure of the space, which is induced by the inner product

(u, v)m =
∫

�

∑

|α|�m

(Dαu)(Dαv)dz for all u, v ∈ H m(�).

We also have local versions of the Sobolev spaces. Namely, u ∈ W m,p
loc (�) if and

only if u ∈ W m,p(�0) for all �0 ⊂⊂ � (that is, �0 has compact closure contained
in �). Other equivalent norms that can be used on W 1,p(�) are the following
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u → ‖u‖p +
N∑

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥
p

and u → ‖u‖p + ‖Du‖L p(�,RN ),

where for u ∈ W 1,p(�), we set Du =
(

∂u
∂z1

, . . . , ∂u
∂zN

)
(the gradient of u).

Proposition 1.1.12 (a) For m � 0 and 1 � p � ∞, W 1,p(�) is a Banach space
which is separable if 1 � p < ∞ and reflexive and uniformly convex if 1 < p < ∞.

(b) For m � 0 and p = 2, H m(�) = W m,2(�) is a separable Hilbert space.

Proof (a) Let {un}n�1 ⊆ W m,p(�) be a Cauchy sequence. For any multi-index α
with |α| � m we have

‖Dαun − Dαuk‖p � ‖un − uk‖m,p for all n, k � 1

⇒ {Dαun}n�1 ⊆ L p(�) is Cauchy.

Therefore we have

un → u and Dαun → v in L p(�) as n → ∞
⇒ v = Dαu (see Proposition 1.1.9).

It follows that u ∈ W m,p(�) and that un → u in W m,p(�).
Let n̂ be the number of multi-indices α satisfying 0 � |α| � m ordered in some

convenient way. Then let T : W m,p(�) → L p(�)n̂ be the map defined by

T (u) = (Dαu)|α|�m .

We have ‖T (u)‖L p(�)n̂ = ‖u‖m,p and so the Sobolev space W m,p(�) is isometrically
isomorphic to a closed subspace of L p(�)n̂ . This implies that W m,p(�) is separable
for 1 � p < ∞ and uniformly convex (hence reflexive, too) for 1 < p < ∞.

(b) We set (u, v)m = ∫
�

uvdz + ∫
�
(Du, Dv)RN dz for all u, v ∈ H m(�). Then

(·, ·)m is an inner product on H m(�) and ‖u‖2m,2 = (u, u)m for all u ∈ H m(�). Using
(a) we conclude that H m(�) is a separable Hilbert space. �

Remark 1.1.13 Let {un}n�1 ⊆ W 1,p(�) and suppose that

un → u in L p(�) and Dun → h in L p(�, R
N ).

We have u ∈ W 1,p(�) and un → u in W 1,p(�). Furthermore, if 1 < p < ∞, un →
u in L p(�) and {Dun}n�1 ⊂ L p(�, R

N ) is bounded, then u ∈ W 1,p(�).

The following subspace of W m,p(�) is important in the study of boundary value
problems.
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Definition 1.1.14 Set W m,p
0 (�) = C∞

c (�)
‖·‖m,p for every integer m � 0 and for 1 �

p � ∞.

Remark 1.1.15 As we will see later in this chapter, this space consists of those
Sobolev functions that vanish in some sense on the boundary ∂�. This will be made
precise after the introduction of the notion of the trace of a Sobolev function. Note
that since uniform convergence preserves continuity, the elements of W m,∞(�) are
necessarily of classCm . In particular then W 1,∞

0 (�) does not contain piecewise affine
functions. For this reason some authors prefer to define W 1,∞

0 (�) as the closure of
C∞

c (�) with respect to the weak topology of W 1,p(�). The two definitions are
different. Finally, for p = 2, we write H m

0 (�) for the space W m,2
0 (�).

Example 1.1.16 Let � = (−1, 1) (that is, N = 1) and for r ∈ (0, 1) we consider
the function u(t) = |t |r for all t ∈ (−1, 1). Then a simple computation yields that
u′(t) = r sign t |t |r−1 (note that u(·), being locally Lipschitz, is differentiable a.e. in
� = (−1, 1)). Then

∫ 1

−1
(u′)2(t)dt = r2

∫ 1

−1
t2r−2dt.

The last integral is finite if r > 1
2 . Therefore u(·) = | · |r ∈ H 1(−1, 1) if and only if

r > 1
2 .

Proposition 1.1.17 If u ∈ W m,p
0 (�) and we set

û(z) =
{

u(z) if z ∈ �

0 if z ∈ R
N \ �,

then u ∈ W m,p
0 (�1) for every open set �1 ⊇ �; in particular û ∈ W m,p

0 (RN ) and
u → û is a linear isometry.

Proof From Definition 1.1.14, we know that we can find {un}n�1 ⊆ C∞
c (�) such

that un → u in W m,p(�). Let ûn(z) =
{

un(z) if z ∈ �

0 if z ∈ R
N \ �

. Then ûn ∈ C∞
c (�1)

and ûn → û in W m,p(�1) (note that ‖ûn − û‖W m,p(�1) = ‖un − u‖W m,p(�)). Hence
û ∈ W m,p(�1). Clearly, u → û is a linear isometry. �

Remark 1.1.18 In fact using the above proposition, we see at once that for every
u ∈ W m,p

0 (�) we have uε → u in W m,p(�) as ε → 0+. If u ∈ W m,p(�) is arbitrary
and û(·) is defined as above, then in general û(·) does not have weak derivatives.
Therefore, in general we have W m,p(�) �= W m,p

0 (�). However, for� = R
N equality

holds. To show this, first we prove the following generalization of the well-known
Leibnitz differentiation rule for the product of two functions.

Lemma 1.1.19 If u ∈ W 1,p(�) and ϕ ∈ C∞
c (�), then ϕu ∈ W 1,p(�) and we have

∂
∂zk

(ϕu) = ϕ ∂u
∂zk

+ u ∂ϕ
∂zk

for all k ∈ {1, . . . , N }.
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Proof Let ϑ ∈ C∞
c (�). From the classical differentiation rule we have

∂

∂zk
(ϕϑ) = ϕ

∂ϑ

∂zk
+ ϑ

∂ϕ

∂zk
.

Then

∫
�

ϕu ∂ϑ
∂zk

dz =
∫

�

u
∂

∂zk
(ϕϑ)dz −

∫

�

uϑ
∂ϕ

∂zk
dz

= −
∫

�

∂u

∂zk
(ϕϑ)dz −

∫

�

uϑ
∂ϕ

∂zk
dz (since ϕϑ ∈ C∞

c (�))

= −
∫

�

[
ϕ

∂u

∂zk
+ u

∂ϕ

∂zk

]
ϑdz for all ϑ ∈ C∞

c (�).

Note that ϕ ∂u
∂zk

+ u ∂ϕ
∂zk

∈ L p(�). So, from Definition 1.1.10 we conclude that

ϕu ∈ W 1,p(�) and
∂

∂zk
(ϕu) = ϕ

∂u

∂zk
+ u

∂ϕ

∂zk
for all k ∈ {1, . . . , N }.

The proof is now complete. �

Now we can prove the stated result about the Sobolev spaces on R
N .

In the sequel we will use the notion of the support of an L p-function. Since L p

consists of equivalence classes of functions, the usual definition of the support of u
(as the closure of the set {z ∈ � : u(z) �= 0}) is not adequate. We need a definition
which is “intrinsic” in the sense that if u1 = u2 a.e. in �, then supp u1 = supp u2.
The next definition achieves this.

Definition 1.1.20 Let u : R
N → R be a function and {Vi }i∈I be the family of all

open subsets of R
N such that u

∣∣
Vi

= 0 a.e. Let V = ∪
i∈IVi . Then u

∣∣
V

= 0 a.e. and we

define the support of u (denoted by suppu) to be the complement of the open set V .

Theorem 1.1.21 For any 1 � p � ∞ and any integer m � 0 we have

W m,p(RN ) = C∞
c (RN )

‖·‖m,p
(that is, W m,p(RN ) = W m,p

0 (RN )).

Proof For simplicity in the presentation, we assume that m = 1. Let ϕ ∈ C∞
c (RN )

such that ϕ(0) = 1 and let ϕn(z) = ϕ( z
n ) for all n � 1. Then ϕn ∈ C∞

c (�) and for
all z ∈ R

N , limn→∞ ϕn(z) = ϕ(0) = 1.
Given u ∈ W 1,p(RN ), we set un = ϕnu for all n � 1. We see that supp un ⊆

suppϕn ⊆ n suppϕ and so un has compact support. Also

∫

RN

|un|pdz � ‖ϕ‖p
∞

∫

RN

|u|pdz < ∞, that is, un ∈ L p(�) for all n � 1.(1.5)
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From Lemma 1.1.19 we have

∂un

∂zk
= ϕn

∂u

∂zk
+ u

∂ϕn

∂zk
for all k ∈ {1, . . . , N }, that is,

∂un

∂zk
∈ L p(�). (1.6)

From (1.5) and (1.6) it follows that un ∈ W 1,p(RN ).
Using the Lebesgue dominated convergence theorem, we have

∫

RN

|un − u|pdz =
∫

RN

|1 − ϕn|p|u|pdz → 0 as n → ∞. (1.7)

Moreover, again by the Lebesgue dominated convergence theorem, we have

ϕn
∂u

∂zk
→ ∂u

∂zk
in L p(RN ). (1.8)

In addition, we have

∣∣∣∣u(z)
∂ϕn

∂zk
(z)

∣∣∣∣ �
1

n

∥∥∥∥
∂ϕ

∂zk

∥∥∥∥∞
|u(z)| a.e. in �

⇒
∥∥∥∥u

∂ϕn

∂zk

∥∥∥∥
p

� 1

n

∥∥∥∥
∂ϕ

∂zk

∥∥∥∥∞
‖u‖p → 0 as n → ∞. (1.9)

From (1.8), (1.9) and Lemma 1.1.19 it follows that

∂un

∂zk
→ ∂u

∂zk
in L p(�) for all k ∈ {1, . . . , N }. (1.10)

From (1.7) and (1.10), we conclude

un → u in W 1,p(RN ) and supp un is compact for all n � 1. (1.11)

In view of (1.11) it suffices to show that any v ∈ W 1,p(RN ) of compact support
can be approximated in W 1,p(RN ) by a sequence in C∞

c (RN ).
To this end let {ρn}n�1 be a sequence of mollifiers and let vn = v ∗ ρn . Then by

virtue of Proposition 1.1.8 we have vn ∈ C∞(RN ) and supp vn ⊆ supp v + B 1
n
(0),

hence vn ∈ C∞
c (RN ).

Let ηn(y) = −ρn(z − y). We have

∂ηn

∂zk
(y) = lim

λ→0

1

λ
[ηn(y + λzk) − ηn(y)]

= lim
λ→0

1

−λ
[ρn(z − y − λzk) − ρn(z − y)]

= ∂ρn

∂zk
(z − y).

(1.12)
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Then using Proposition 1.1.8 and (1.12), we can write

∂vn

∂zk
(z) =

∫

RN

v(y)
∂ηn

∂zk
(y)dy

= −
∫

RN

∂v

∂zk
(y)ηn(y)dy (since u ∈ W 1,p(�))

=
∫

RN

∂v

∂zk
(y)ρn(z − y)dy

⇒ ∂vn

∂zk
=
(

∂v

∂zk

)
∗ ρn

⇒ ∂vn

∂zk
→ ∂v

∂zk
in L p(�) as n → ∞ (see Proposition 1.1.3 (b)).

Since vn → v in L p(RN ) (again by Proposition 1.1.3 (b)), we conclude that vn → v

in W 1,p(RN ) and this proves the theorem (note that the convergence is pointwise on
the set of Lebesgue points of u). �

Nevertheless, we can always approximate Sobolev functions in W 1,p(�) by
smooth functions. This is the so-called “Meyers–Serrin theorem”. To prove it, we
will need the following simple lemma.

Lemma 1.1.22 If u ∈ W 1,p(�) with 1 � p < ∞, then

lim
ε→0+

[‖u − uε‖L p(�ε) + ‖Du − Duε‖L p(�ε,RN )

] = 0;

in particular if �0 ⊆ � and d(�0, ∂�) > 0, then uε → u in W 1,p(�0) as ε → 0+.

Proof From Proposition 1.1.8 we know that uε ∈ C∞(�ε) and for z ∈ �ε and k ∈
{1, . . . , N } we have ∂uε

∂zk
= u ∗ ∂ρε

∂zk
. Moreover, in the proof of Theorem 1.1.21 we

established that u ∗ ∂ρε

∂zk
= ∂u

∂zk
∗ ρε. Then invoking Proposition 1.1.3 (b), we deduce

the desired convergence. �

Theorem 1.1.23 (Meyers–Serrin) If 1 � p < ∞ and m � 0 is an integer, then
W m,p(�) ∩ C∞(�) is dense in W m,p(�).

Proof For every integer k � 1 we define �k = {z ∈ � : ‖z‖RN � k and d(z, ∂�) >
1
k } and �0 = ∅. Let Uk = �k+1 ∩ (�k−1)

c. Evidently {Uk}k�1 is an open cover of
�. Let {ψk}k�1 be a C∞ partition of unity subordinate to the open cover {Uk}k�1.
So, we have

suppψk ⊆ Uk, ψk ∈ C∞
c (Uk), ψk � 0 and

∑

k�1

ψk = 1.

Let u ∈ W m,p(�) and consider the truncated function ψku. As in the proof of Theo-
rem 1.1.21 we have ψku ∈ W 1,p

0 (Uk). We set (ψku)(z) = 0 for all z ∈ R
N \ Uk and

we have an element of W m,p(RN ) (see Proposition 1.1.17 and Theorem 1.1.21).
Consider a sequence {ρn}n�1 of mollifiers. Then for n = n(k) � 1 large, we have
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‖(ψku) ∗ ρ̇n(k) − ψku‖m,p <
ε

2k
with ε > 0 (1.13)

and supp[(ψku) ∗ ρn(k)] ⊆ Uk .

Let v =∑k�1(ψku) ∗ ρn(k) and note that for z ∈ Uk we have

v(z) =
1∑

i=−1

[
(ψk+i u) ∗ ρn(k+i)

]
(z).

So, v ∈ C∞(�) and we have

‖v − u‖m,p =
∥∥∥∥∥∥

∑

k�1

(
(ψku) − (ψku) ∗ ρn(k)

)
∥∥∥∥∥∥

m,p

�
∑

k�1

‖(ψku) − (ψku) ∗ ρn(k)‖m,p � ε (see 1.13).

This proves that W m,p(�) ∩ C∞(�) is dense in W m,p(�). �

Proposition 1.1.24 If u ∈ W 1,p(�) (1 � p < ∞) and has compact support, then
u ∈ W 1,p

0 (�).

Proof Let ϕ ∈ C∞
c (�) such that ϕ

∣∣
supp u = 1. By virtue of Theorem 1.1.23, we

can find {ψk}k�1 ⊆ W 1,p(�) ∩ C∞(�) such that ψk → u in W 1,p(�). Let ηk =
ϕψk, k � 1. Then ηk ∈ C∞

c (�) and we have ηk → ϕu = u in W 1,p(�). This proves
that u ∈ W 1,p

0 (�). �

Another approximation by smooth functions of Sobolev functions is provided by
the so-called “Friedrichs theorem”. It is a partial extension of Theorem 1.1.21.

Theorem 1.1.25 (Friedrichs) If u ∈ W 1,p(�) with 1 � p < ∞, then there exists a
sequence {un}n�1 ⊆ C∞

c (RN ) such that

un → u in L p(�) and
∂un

∂zk

∣∣∣∣
�0

→ ∂u

∂zk

∣∣∣∣
�0

in L p(�0)

for every k ∈ {1, . . . , N } and every �0 ⊂⊂ � (that is, �0 has compact closure which
is contained in �).

Proof Let u denote the extension by zero outside of � of the function u ∈ W 1,p(�)

and let {ρε}ε∈(0,1) be a family of mollifiers. Then we have u ∗ ρε → u in L p(RN ) (see
Proposition 1.1.3 (b)). Hence u ∗ ρε → u in L p(�). Let α be any multi-index with
|α| = 1 and �0 ⊂⊂ �. Then d0 = d(�0, ∂�) > 0 and we take ε ∈ (0, d0). Then
for all z ∈ �0 we have (u ∗ ρε)(z) = (u ∗ ρε)(z) and so Dα(u ∗ ρε) = (Dαu) ∗ ρε in
�0 (see the proof of Theorem 1.1.21), hence Dα(u ∗ ρε) ∈ L p(�). We have Dα(u ∗
ρε) → Dαu in L p(�0) and so we conclude that u ∗ ρε → u in W 1,p(�0).
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Let εn ↓ 0 and let vn = u ∗ ρεn for all n � 1. We have

vn → u in L p(�) and
∂vn

∂zk

∣∣∣∣
�0

→ ∂u

∂zk

∣∣∣∣
�0

in L p(�0) (k ∈ {1, . . . , N })

for every �0 ⊂⊂ �. Let η ∈ C∞
c (RN ) such that 0 � η � 1, η

∣∣
B1(0)

= 1 and supp

η ⊆ B2(0) (such a function is usually called a “cut-off function”). Let {ηn}n�1 be
defined by ηn(z) = η( z

n ) for all z ∈ R
N . Then un = ηnvn ∈ C∞

c (RN ) for all n � 1
and {un}n�1 is the desired sequence. �

Remark 1.1.26 If � = R
N , then from the above proof it is clear that we can find

{un}n�1 ⊆ C∞
c (RN ) such that un → u in W 1,p(RN ), which is precisely the result of

Theorem 1.1.21.

1.2 The One-Dimensional Case

In this section, � = I = (a, b) is an open interval, possibly unbounded.
We start with a simple property.

Lemma 1.2.1 If u ∈ L1
loc(I ) and u′ = 0 in the distributional sense, then there exists

a c∗ ∈ R such that u(t) = c∗ for a.a. t ∈ I .

Proof Since u′ = 0 in the distributional sense, we have

∫ b

a
u(t)ϑ′(t)dt = 0 for all ϑ ∈ C∞

c (I ). (1.14)

Let D = {ϑ′ : ϑ ∈ C∞
c (I )}. It is easy to see that D = {ϕ ∈ C∞

c (I ) : ∫ b
a ϕ(t)dt =

0}. Moreover, ϕ ∈ D if and only if there exist ϑ ∈ C∞
c (I ) and ξ ∈ C∞

c (I ) with∫ b
a ξ(t)dt = 1 such that

ϕ(t) = ϑ(t) −
(∫ b

a
ϑ(s)ds

)
ξ(t) for all t ∈ I. (1.15)

Rewriting (1.14) in terms of D, we have

∫ b

a
u(t)ϕ(t)dt = 0 for all ϕ ∈ D

⇒
∫ b

a
u(t)ϑ(t)dt =

(∫ b

a
ϑ(s)ds

)∫ b

a
u(t)ξ(t)dt (see (1.15)). (1.16)



14 1 Sobolev Spaces

Let c∗ = ∫ b
a u(t)ξ(t)dt . Then from (1.16) we have

∫ b

a
[u(t) − c∗]ϑ(t)dt = 0 for all ϑ ∈ C∞

c (I )

⇒ u(t) = c∗ for a.a. t ∈ I (see Proposition 1.1.5),

which completes the proof. �

This leads to the following important property of the one-dimensional Sobolev
functions.

Theorem 1.2.2 If u ∈ W 1,p(I ) with 1 � p � ∞, then there exists a û ∈ C(I ) such
that u(t) = û(t) for a.a. t ∈ I and

û(t) − û(τ ) =
∫ t

τ

u′(s)ds f or all t, τ ∈ I = [a, b].

Proof Let u′ ∈ L p(I ) be the weak (distributional) derivative of u ∈ W 1,p(I ). Let

û(t) =
∫ t

a
u′(s)ds.

This function is continuous. In fact, when p ∈ (1,+∞], it is Hölder continuous.
To see this, let t, τ ∈ I . Then

|û(t) − û(τ )| =
∣∣∣∣
∫ t

τ

u′(s)ds

∣∣∣∣ �
∫ t

τ

|u′(s)|ds

� |t − τ |1/p′
(∫ t

τ

|u′(s)|pds

)1/p

(by Hölder’s inequality)
� ‖u′‖L p(I )|t − τ |1/p′

.

For every ϑ ∈ C∞
c (I ) we have

∫ b

a
û(s)ϑ′(s)ds =

∫ b

a

(∫ s

a
u′(r)dr

)
ϑ′(s)ds =

∫ b

a

(∫ b

a
χ[a,s](r)u′(r)dr

)
ϑ′(s)ds

=
∫ b

a
u′(r)

(∫ b

a
χ[a,s](r)ϑ′(s)ds

)
dr

(by Fubini’s theorem)

=
∫ b

a
u′(r)

(∫ b

r
ϑ′(s)ds

)
dr

=
∫ b

a
u′(r)ϑ(r)dr (since ϑ(b) = 0).

It follows that û′ = u′, hence (û − u)′ = 0.
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Invoking Lemma 1.2.1, we have that û − u = c∗ for some c∗ ∈ R. Therefore the
function û(·) has the desired properties. �

Remark 1.2.3 From the above proof, we see that if 1 < p < ∞, then û ∈ C0,β(I )

with β = 1
p′

(
1
p + 1

p′ = 1
)
, hence |û(t) − û(τ )| � c0|t − τ |β for all t, τ ∈ I and

some c0 > 0. In general the continuous representative û of u ∈ W 1,p(I ) is in fact
absolutely continuous and it is unique up to an additive constant. In the sequel,
when dealing with Sobolev functions of one variable, we always identify a function
u ∈ W 1,p(I ) with its continuous representative. Keeping this in mind, note that if
u ∈ W 1,p(I ) and u′ ∈ C(I ), then u ∈ C1(I ).

As a direct consequence of the fundamental theorem of the Lebesgue calculus,
we have the converse of Theorem 1.2.2.

Proposition 1.2.4 Assume that u ∈ L p(�) with 1 � p � ∞ and there exists an
h ∈ L p(�) such that

u(t) − u(τ ) =
∫ t

τ

h(s)ds f or a.a. t, τ ∈ I.

Then u ∈ W 1,p(I ) and u′ = h in the weak sense.

1.3 Duals of Sobolev Spaces

To better describe the duals of Sobolev spaces, we need to introduce the notion of
distribution (in the sense of L. Schwartz). For this purpose we consider the usual
space of test functions C∞

c (�). We introduce a notion of sequential convergence on
C∞

c (�) and this will be the only topological notion on C∞
c (�) that we will use.

Definition 1.3.1 A sequence {un}n�1 ⊆ C∞
c (�) is said to converge to u ∈ C∞

c (�)

in the “D-sense” if and only if the following conditions hold:

(a) There exists a compact set K contained in� such that supp un ⊆ K for all n � 1
and supp u ⊆ K .

(b) For every multi-index α, Dαun → Dαu uniformly on K .

Remark 1.3.2 In fact, this is a topological notion. That is, there exists a locally convex
topology τ̂ on C∞

c (�) for which the closed sets are the D-sequentially closed sets.
Then a linear functional L on C∞

c (�) is continuous if and only if it isD-sequentially
continuous, that is, if un → u in C∞

c (�) in the D-sense, then L(un) → L(u). This
topology is first countable and complete, but not metrizable. Usually in the literature,
the space of test functions C∞

c (�) equipped with this topology is denoted byD(�).
This explains the use of the symbol D in the above definition.

Using this mode of convergence, we can introduce the notion of distribution.
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Definition 1.3.3 A“distribution” on� is a linear functional onC∞
c (�)which is con-

tinuous in the following sense: if {un, u}n�1 ⊆ C∞
c (�) and un → u in the D-sense,

then L(un) → L(u). Therefore the distributions are the elements of
(
C∞

c (�), τ̂
)∗
.

Example 1.3.4 Every function g ∈ L1
loc(�) defines a distribution Lg : C∞

c (�) →
R

N by setting

Lg(ϑ) =
∫

�

g(z)ϑ(z)dz for all ϑ ∈ C∞
c (�).

Using the elementary tools of integration by parts (see also Definition 1.1.6), for a
distribution L : C∞

c (�) → R
N , we can define derivatives of all orders.

Definition 1.3.5 Let L be a distribution and α a multi-index. The αth-derivative of
L is defined by

(DαL) (ϑ) =
(

∂αL

∂zα

)
(ϑ) = (−1)|α|L

(
∂αϑ

∂zα

)
for all ϑ ∈ C∞

c (�).

It can be easily verified that DαL = ∂α L
∂zα is still a distribution.

Remark 1.3.6 In particular if g ∈ L1
loc(�) and α is a multi-index, then DαLg (see

Example 1.3.4) is the weak or distributional derivative of g introduced in Definition
1.1.6.

Now we turn our attention to the study of the dual of the Sobolev spaces W 1,p(�)

and W 1,p
0 (�). The idea is to view W 1,p(�) as a closed subspace of L p(�, R

N+1).
Thus, by the Hahn–Banach theorem, every element L ∈ W 1,p(�)∗ can be extended
to an element of L p(�, R

N+1)∗. Then the Riesz representation theorem for the dual
of L p(�, R

N+1) will give us a representation for the extension of L , hence for L
too. We do the analysis for W 1,p(�) just for simplicity. Analogous results also hold
for the Sobolev spaces W m,p(�) with m � 2.

Theorem 1.3.7 If L ∈ W 1,p(�)∗ with 1 � p < ∞, then there exist functions

{ fk}N
k=0 ⊆ L p′

(�)
(

1
p + 1

p′ = 1
)

such that

L(u) =
∫

�

[
f0(z)u(z) +

N∑

k=1

fk(z)
∂u

∂zk
(z)

]
dz for all u ∈ W 1,p(�). (1.17)

and

‖L‖∗ =
(

N∑

k=0

‖ fk‖p′
p′

)1/p′
(‖ · ‖∗ denotes the norm of W 1,p(�)∗

)
.

Proof Let A : W 1,p(�) → L p(�, R
N+1) be defined by A(u) = (u, Du). Evidently

A is continuous, injective and preserves the norm (that is, ‖A(u)‖L p(�,RN+1) =
‖u‖1,p for all u ∈ W 1,p(�)). Then V = A

(
W 1,p(�)

)
is a closed subspace of
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L p(�, R
N+1). Given L ∈ W 1,p(�)∗, let L0 : V → R be defined by L0

({gk}N
k=0

) =
L
(

A−1({gk}N
k=0)
)
for all {gk}N

k=0 ∈ L p(�, R
N+1). Evidently L0 is linear, continuous

and ‖L0‖V ∗ = ‖L‖∗. Invoking the Hahn–Banach theorem, we can find a continuous
linear extension L̂0 : L p(�, R

N+1) → R of L0 which preserves the norm, that is

‖L̂0‖L p(�,RN+1) = ‖L0‖V ∗ = ‖L‖∗.

Since V is not dense in L p(�, R
N+1) (it is a closed subspace), this extension is not

unique.
Invoking the Riesz representation theorem for L p(�, R

N+1)∗, we can find unique
functions f0, . . . , fN ∈ L p′

(�) such that

L̂0
({gk}N

k=0

) =
∫

�

[
f0g0 +

N∑

k=1

fkgk

]
dz f or all {gk}N

k=0 ∈ L p(�, R
N+1)

and ‖L‖∗ = ‖L̂0‖L p(�,RN+1)∗ =
(

N∑

k=0

‖ fk‖p′
p′

)1/p′

.

Then for all u ∈ W 1,p(�)

L(u) =
∫

�

[
f0u +

N∑

k=1

fk
∂u

∂zk

]
dz.

�

Remark 1.3.8 Every element L ∈ W 1,p(�)∗ (1 � p < ∞) is an extension to the
Sobolev space W 1,p(�) of a distribution L0 ∈ C∞

c (�)∗. To see this, suppose that
L is given by (1.17) for some {gk}N

k=0 ∈ L p(�, R
N+1) and define the distributions

(L0)gk , L0 by

(L0)gk (ϑ) =
∫

�

gk(z)ϑ(z)dz and L0 = (L0)g0 −
N∑

k=1

∂(L0)gk

∂zk
, (1.18)

for all ϑ ∈ C∞
c (�).

Evidently L is an extension of L0. On the other hand, suppose that L0 is a distri-
bution having the form (1.18) for some {gk}N

k=0 ∈ L p(�, R
N+1). Then L0 admits a

possibly nonunique extension to W 1,p(�). However, it admits a unique extension to
W 1,p

0 (�). Indeed, if u ∈ W 1,p
0 (�), then we can find {ϑn}n�1 ⊆ C∞

c (�) such that

‖ϑn − u‖1,p → 0 as n → ∞ (see Definition 1.1.14).

Then we have
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|L0(ϑn) − L0(ϑm)| =
∣∣∣∣∣(L0)g0(ϑn − ϑm) −

N∑

k=1

∂(L0)gk

∂zk
(ϑn − ϑm)

∣∣∣∣∣

� ‖ϑn − ϑm‖p‖g0‖p′ +
N∑

k=1

∥∥∥∥
∂

∂zk
(ϑn − ϑm)

∥∥∥∥
p

‖gk‖p′

� c‖ϑn − ϑm‖1,p‖{gk}N
k=0‖L p′

(�,RN+1) for some c > 0,

hence {L0(ϑn)}n�1 is Cauchy.
Thereforewe have L0(ϑn) → L(u), since the limit is easily seen to be independent

of the particular approximating sequence from C∞
c (�). Evidently, L is linear and

|L(u)| = lim
n→∞ |L0(ϑn)| � c‖ϑn‖1,p‖{gk}N

k=0‖L p′
(�,RN+1)

= c‖u‖1,p‖{gk}N
k=0‖L p′

(�,RN+1)

⇒ L ∈ W 1,p
0 (�)∗.

This uniqueness of the extension of the distribution L0 defined in (1.18) leads to the
following representation theorem for W 1,p

0 (�)∗.

Theorem 1.3.9 The dual W 1,p
0 (�)∗ = W −1,p′

(�)
(

1
p + 1

p′ = 1 wi th 1 � p < ∞
)

can be identified with the subspace of distributions L0 of the form

L0 = (L0)g0 −
N∑

k=1

∂(L0)gk

∂zk
(1.19)

for some {gk}N
k=0 ∈ L p′

(�, R
N+1). So, we have

L0(u) =
∫

�

g0(z)u(z)dz +
N∑

k=1

∫

�

gk(z)
∂u

∂zk
dz f or all u ∈ W 1,p

0 (�).

Remark 1.3.10 Why the notation W −1,p′
(�) for the dual of W 1,p

0 (�)? Note that if
y ∈ W m,p′

(�), then its first derivatives belong to W m−1,p′
(�). We would like this

feature to be preserved for all integers. In particular, if y ∈ L p′
(�), then its first

derivative must belong to W −1,p′
(�). Then from (1.19) we see why the notation

W −1,p′
(�) is justified. For p = ∞, we use the Yosida–Hewitt theorem describing

the dual of L∞(�) (see, for example, Denkowski et al. [143, p. 330]), in order to
obtain a representation of the dual space W 1,∞

0 (�)∗. So, L ∈ W 1,∞
0 (�)∗ if and only

if there exist unique, bounded, finitely additive signed measures μ0,μ1 . . . ,μN on
�, all absolutely continuous with respect to the Lebesgue measure such that

L(u) =
∫

�

udμ0 +
N∑

k=1

∫

�

∂u

∂zk
dμk for all u ∈ W 1,p

0 (�).
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1.4 Absolute Continuity on Lines, the Chain Rule
and Consequences

In Theorem 1.2.2 we saw that the Sobolev functions of one variable admit a con-
tinuous (in fact, absolutely continuous) representative. When the dimension N � 2,
the situation is more complex and in general the elements of W 1,p(�) do not have a
continuous representative. In this subsection, we see what can be said in this context.
So, we obtain an analog of Theorem 1.2.2.

In what follows, given z′
k ∈ R

N−1 and a set C ⊆ R
N , we write

Cz′
k
= {zk ∈ R : (z′

k, zk) ∈ C}.

Also if u : � → R is Lebesgue integrable and �z′
k
= ∅, then we set

∫

�z′k

u(z′
k, zk)dzk = 0

while by Fubini’s theorem, we have

∫

�

u(z)dz =
∫

RN−1

∫

�z′k

u(z′
k, zk)dzkdz′

k . (1.20)

Finally, for every m � 2 we denote by λ̂m the Lebesgue measure on R
m . If m = 1,

then we simply write λ̂.

Theorem 1.4.1 A function u ∈ L p(�) (1 � p < ∞) belongs to the Sobolev space
W 1,p(�) if and only if it has a representative û which is absolutely continuous
on λ̂N−1-a.e. line segment of � that is parallel to the coordinate axes and whose
first-order (classical) partial derivatives belong to L p(�). Moreover, the (classical)
partial derivatives of û agree λ̂N -a.e. in � with the weak (distributional) derivatives
of u.

Proof First suppose that u ∈ W 1,p(�).

Let {ρε}ε∈(0,1) be a family of mollifiers and let uε = u ∗ ρε be defined on �ε =
{z ∈ � : d(z, ∂�) > ε}. From Lemma 1.1.22 we have

lim
ε→0+

∫

�ε

‖Duε(z) − Du(z)‖p
RN dz

⇒ lim
ε→0+

∫

RN−1

(∫

(�ε)z′k

‖Duε(z
′
k, zk) − Du(z′

k, zk)‖p
RN dzk

)
dz′

k = 0 (see (1.20),

for all k ∈ {1, . . . , N }.
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So, we can find a sequence εn → 0+ such that for all k ∈ {1, . . . , N } and for
λ̂N−1-a.a. z′

k ∈ R
N−1, we have

lim
n→∞

∫

(�εn )z′k

‖Duεn (z
′
k, zk) − Du(z′

k, zk)‖p
RN dzk = 0. (1.21)

Let un = uεn and consider the set

C = {z ∈ � : lim
n→∞ un(z) exists in R}.

We claim that C contains all the Lebesgue points of u. Indeed, let z ∈ � be a
Lebesgue point of u, that is,

lim
ε→0+

1

εN

∫

Bε(z)
|u(y) − u(z)|dy = 0. (1.22)

We have

|un(z) − u(z)| =
∣∣∣∣
∫

�

u(y)ρεn (z − y)dy

∣∣∣∣ = 1

εN
n

∣∣∣∣∣

∫

Bεn (z)
[u(y) − u(z)]ρ

(
z − y

εn

)
dy

∣∣∣∣∣

� ‖ρ‖∞
1

εN
n

∫

Bεn (z)
|u(y) − u(z)|dz → 0

(see (1.22)).

This proves that C contains the Lebesgue points of u. Therefore λ̂N (� \ C) = 0. So,
if we introduce the function û : � → R defined by

û(z) =
{

lim
n→∞ un(z) if z ∈ C

0 if z ∈ � \ C,

then û is a representative of u. We need to show that û has the properties claimed by
the theorem.

We first observe that Fubini’s theorem implies that for all k ∈ {1, . . . , N }, we have
∫

RN−1

(∫

�z′k

‖Du(z′
k, zk)‖RN dzk

)
dz′

k < ∞

and
∫

RN−1
λ̂
({zk ∈ �z′

k
: (z′

k, zk) /∈ C}) dz′
k = 0.

So, we can find Nk ⊆ R
N−1, λ̂N−1-null such that for all z′

k ∈ R
N−1 \ Nk for which

�z′
k
is nonempty, we have
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∫

�z′k

‖Du(z′
k, zk)‖p

RN dzk < ∞. (1.23)

Relation (1.23) holds for all k ∈ {1, . . . , N } and (z′
k, zk) ∈ C for λ̂-a.a. zk ∈ �z′

k
.

We consider a rectangle R =
N∏

k=1
[ak, bk] ⊆ �, with ak, bk rational numbers. Note

that d(R, ∂�) > 0 and so R ⊆ �ε for ε ∈ (0, 1) sufficiently small. Then by (1.21)
for all k ∈ {1, . . . , N } and for all z′

k ∈ R
′
k \ Nk where R = R′

k × [ak, bk], we have

lim
n→∞

∫ bk

ak

‖Dun(z
′
k, zk) − Du(z′

k, zk)‖RN dzk = 0. (1.24)

Let yn(t) = un(z′
k, t) with t ∈ [ak, bk]. Let t0 ∈ [ak, bk] such that (z′

k, t0) ∈ C. Then
yn(t0) → û(z′

k, t0). Since yn ∈ C∞([ak, bk]), we have

yn(t) = yn(t0) +
∫ t

t0

y′
n(s)ds for all t ∈ [ak, bk], all n � 1.

From (1.24) it follows that for all t ∈ [ak, bk] the following limit exists

lim
n→∞ yn(t) = lim

n→∞

[
yn(t0) +

∫ t

t0

y′
n(s)ds

]

= û(z′
k, t0) +

∫ t

t0

∂u

∂zk
(z′

k, s)ds = y(t).

It follows that

{z′
k} × [ak, bk] ⊆ C (1.25)

and

û(z′
k, t) = y(t) = û(z′

k, t0) +
∫ t

t0

∂u

∂zk
(z′

k, s)ds for all t ∈ [ak, bk]. (1.26)

From (1.26) and the fundamental theorem of Lebesgue calculus, we deduce that
û(z′

k, ·) is absolutely continuous on [ak, bk] and ∂û
∂zk

(z′
k, t) = ∂u

∂zk
(z′

k, t) for λ̂-a.a.
t ∈ [ak, bk].

If
∼
R =

N∏
k=1

[ ∼
ak,

∼
bk] is another rectangle contained in � and such that [ak, bk] ∩

[ ∼
ak,

∼
bk] �= ∅, taking z′

k which is admissible for both R and
∼
R and t0 ∈ [ak, bk] ∩

[ ∼
ak,

∼
bk] it follows from (1.25) and (1.26) that y is absolutely continuous on [ak, bk] ∪

[ ∼
ak,

∼
bk].
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Now, note that � can be expressed as the countable union of such rectangles and
a countable union of λ̂N−1-null sets is λ̂N−1-null. So, from (1.23), (1.26) and the
Banach–Zaretsky theorem we can conclude that for λ̂N−1-a.a. z′

k ∈ R
N−1 \ Nk for

which �z′
k
is nonempty, the function y is absolutely continuous on any maximal

interval of �z′
k
.

Now assume that u admits a representative as postulated by the theorem.
Fix k ∈ {1, ..., N } and let z′

k ∈ R
N−1 be such that û(z′

k, ·) is absolutely continuous
on the open set �z′

k
. Then by integration by parts, for every ϑ ∈ C∞

c (�) we have

∫

�z′k

û(z′
k, t)

∂ϑ

∂zk
(z′

k, t)dt = −
∫

�z′k

∂û

∂zk
(z′

k, t)ϑ(z′
k, t)dt.

This holds for λ̂N−1-a.a. z′
k ∈ R

N−1 for which �z′
k
�= ∅. Integrating over R

N−1

and using Fubini’s theorem, we obtain

∫

�

û(z)
∂ϑ

∂zk
(z)dz = −

∫

�

∂û

∂zk
(z)ϑ(z)dz

⇒ ∂û

∂zk
∈ L p(�) is the weak partial derivative of û = u a.e. in �

⇒ u ∈ W 1,p(�).

Moreover, the classical and weak partial derivatives of u coincide λ̂N -a.e. in �. �

Using this theorem, we have a chain rule for Sobolev functions. Recall that the
composition of a Lipschitz function f : R → R with an absolutely continuous func-
tion u : [a, b] → R, is absolutely continuous (see Natanson [315, p. 245]) and the
chain rule holds (see Leoni [262, p. 104]). Then, invoking Theorem 1.4.1, we have
the following chain rule for Sobolev functions.

Proposition 1.4.2 Assume that u ∈ W 1,p(�) (1 � p � ∞), f : R → R is Lipschitz
continuous, and in addition f (0) = 0 if λ̂N (�) is infinite. Then f ◦ u ∈ W 1,p(�)

and we have
D( f ◦ u)(z) = f ∗(u(z))Du(z) for a.a. z ∈ �,

where f ∗ : R → R is any Borel function such that f ∗ = f ′ a.e. in R.

Remark 1.4.3 The above chain rule remains true if W 1,p(�) is replaced by W 1,p
0 (�).

Proposition 1.4.4 If u ∈ W 1,p(�) (resp. u ∈ W 1,p
0 (�)) with 1 � p < ∞, then

u+, u−, |u| ∈ W 1,p(�) (resp. u+, u−, |u| ∈ W 1,p
0 (�)) and we have

Du+(z) =
{
0 for a.a. z ∈ {u � 0}
Du(z) for a.a. z ∈ {u > 0}
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Du−(z) =
{−Du(z) for a.a. z ∈ {u < 0}
0 for a.a. z ∈ {u � 0}

D|u|(z) =
⎧
⎨

⎩

−Du(z) for a.a. z ∈ {u < 0}
0 for a.a. z ∈ {u = 0}
Du(z) for a.a. z ∈ {u > 0}.

Proof We apply Proposition 1.4.2 (the chain rule) with f (t) = |t |. Recall that

u+ = |u| + u

2
and u− = |u| − u

2
.

�

Proposition 1.4.5 Assume that u, v ∈ W 1,p(�) (resp. u, v ∈ W 1,p
0 (�)) with 1 �

p < ∞. Then ĥ = max{u, v} and h̃ = min{u, v}, both belong to W 1,p(�) (resp. to
W 1,p

0 (�)) and we have

Dĥ(z) =
{

Du(z) for a.a. z ∈ {u � v}
Dv(z) for a.a. z ∈ {u � v}

Dh̃(z) =
{

Du(z) for a.a. z ∈ {u � v}
Dv(z) for a.a. z ∈ {u � v}.

Proof Note that ĥ = max{u, v} = u + (v − u)+ and h̃ = min{u, v} = u −
(u − v)+. Hence the result is a direct consequence of Proposition 1.4.4. �

Corollary 1.4.6 If u ∈ W 1,p
loc (�) (1 � p < ∞) and ϑ ∈ R, then Du(z) = 0 for a.a.

z ∈ {z ∈ � : u(z) = ϑ}.
Remark 1.4.7 More generally, we can say that “if u ∈ W 1,p(�) (1 � p < ∞) and
D ⊆ R is Lebesgue-null, then Du(z) = 0 for a.a. z ∈ u−1(D)”. The result is known
as “Stampacchia’s theorem” (see Stampacchia [385]).

Proposition 1.4.8 Assume that {un}n�1 ⊆ W 1,p(�) (resp. {un}n�1 ⊆ W 1,p
0 ) with

1 � p < ∞ and

û = sup
n�1

un ∈ L p(�), h = sup
n�1

‖Dun‖RN ∈ L p(�).

Then û ∈ W 1,p(�) (resp. û ∈ W 1,p
0 (�)).

Proof Since un = u+
n − u−

n , without any loss of generality we may assume that
un � 0 for all n � 1. Let vm = max

1�n�m
un . Then from Proposition 1.4.5 we have that

vm ∈ W 1,p(�) (resp. vm ∈ W 1,p
0 (�)) and for a.a. z ∈ �, we have for all m � 1
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0 � vm(z) � û(z) for all m � 1, vm(z) ↑ û(z) and ‖Dvm(z)‖RN � h(z).

(1.27)

From (1.27) and the dominated convergence theorem, we deduce that vm →
û in L p(�).

Also, from (1.27) and at least for a subsequence, we have

Dvm
w→ g in L p(�, R

N ).

Using the definition of weak derivative (see Definition 1.1.6), we obtain g = Dû.
Therefore û ∈ W 1,p(�) (resp. û ∈ W 1,p

0 (�)). �

Proposition 1.4.9 The maps u → |u| and u → u+ are continuous in W 1,p(�) (1 <

p < ∞).

Proof Since u± = 1
2 [|u| ± u], it is enough to show that u → |u| is continuous. So,

suppose un → u in W 1,p(�). Then |un| → |u| in L p(�). Evidently ‖D|un|‖p =
‖Dun‖p for all n � 1 (see Proposition 1.4.4). So ‖D|un|‖p → ‖D|u|‖p and

{D|un|}n�1 ⊆ L p(�, R
N ) is bounded. Hence we may assume that D|un| w→ g in

L p(�, R
N ) and using Definition 1.1.6, we see that g = D|u|. Therefore D|un| w→

D|u| in L p(�, R
N ). Since 1 < p < ∞, the space L p(�, R

N ) has the Kadec–
Klee property and so Dun → Du in L p(�, R

N ). We conclude that un → u in
W 1,p(�). �

Corollary 1.4.10 (a) If u ∈ W 1,p(�) (1 < p < ∞) and u � 0, then we can find
{un}n�1 ⊆ W 1,p(�) ∩ C∞(�), un � 0 such that un → u in W 1,p(�).

(b) If u ∈ W 1,p
0 (�) (1 < p < ∞) and u � 0, then we can find {un}n�1 ⊆ C∞

c (�),
un � 0 such that un → u in W 1,p

0 (�).

Proof (a) From Theorem 1.1.23, we can find {vn}n�1 ⊆ W 1,p(�) ∩ C∞(�) such
that vn → u in W 1,p(�). Then from Proposition 1.4.9, we have v+

n → u in W 1,p(�).

Let {ρεn }n�1 be a family of mollifiers and let un(z) =
∫

�

vn(y)ρεn (z − y)dy. Then

un ∈ C∞(�), un � 0 and un → u in W 1,p(�).
(b) Similar as (a) using Definition 1.1.14. �

Corollary 1.4.11 If {un, vn}n�1 ⊆ W 1,p(�) (1 < p < ∞) and un → u, vn → v in
W 1,p(�), thenmax{un, vn} → max{u, v}andmin{un, vn} → min{u, v} in W 1,p(�).

Proof Recall that

max{un, vn} = un + (vn − un)
+ and min{un, vn} = un − (un − vn)

+

and use Proposition 1.4.9. �

Proposition 1.4.12 If u ∈ W 1,p
0 (�) (1 < p < ∞) and 0 � v(z) � u(z) a.e. in �,

then v ∈ W 1,p
0 (�).



1.4 Absolute Continuity on Lines, the Chain Rule and Consequences 25

Proof Let {un}n�1 ⊆ C∞
c (�), un � 0 for all n � 1 such that un → u in W 1,p(�)

(see Corollary 1.4.10 (b)). Let vn = min{v, un}, n � 1. Evidently vn has compact
support and so by virtue of Proposition 1.1.24, we have vn ∈ W 1,p

0 (�). Moreover,
from Corollary 1.4.11 we have vn → v in W 1,p(�), hence v ∈ W 1,p

0 (�). �
The product rule holds for bounded Sobolev functions.

Proposition 1.4.13 If u, v ∈ W 1,p(�) ∩ L∞(�) (1 � p < ∞), then uv ∈ W 1,p(�)

and D(uv) = vDu + u Dv; the result remains true if W 1,p(�) is replaced by
W 1,p

0 (�).

Proof From Theorem 1.1.25, we know that we can find sequences {un}n�1,

{vn}n�1 ⊆ C∞
c (RN ) such that

un → u, vn → v in L p(�) and for a.a. z ∈ �,

Dun → Du, Dvn → Dv, in L p(�0, R
N ) for all �0 ⊂⊂ �.

From the proof of Theorem 1.1.25, we have

‖un‖L∞(RN ) � ‖u‖L∞(�) and ‖vn‖L∞(RN ) � ‖v‖L∞(�) for all n � 1. (1.27′)

Also, we have

∫

�

unvn
∂ϑ

∂zk
dz = −

∫

�

[
vn

∂un

∂zk
+ un

∂vn

∂zk

]
ϑdz

for all k ∈ {1, ..., N }, all ϑ ∈ C∞
c (�).

Passing to the limit as n → ∞ and using the Lebesgue dominated convergence
theorem (see (1.27′)), we obtain

∫

�

uv
∂ϑ

∂zk
dz = −

∫

�

[
v

∂u

∂zk
+ u

∂v

∂zk

]
ϑdz for all ϑ ∈ C∞

c (�),

hence D(uv) = vDu + u Dv.
The assertion for Sobolev functions in W 1,p

0 (�) follows as above by requiring
that {un}n�1, {vn}n�1 ⊆ C∞

c (�). �

Proposition 1.4.14 Assume that u ∈ W 1,p
0 (�) (1 � p < ∞) and |v(z)| � |u(z)| for

a.a. z ∈ � \ K with K a compact subset of �. Then v ∈ W 1,p
0 (�).

Proof Let η ∈ C∞
c (�) such that 0 � η � 1 and η|K = 1. We set û = (1 − η)|u| +

ηv+. From Proposition 1.4.4 we have that (1 − η)|u| ∈ W 1,p
0 (�). Also, since ηv+

has compact support, Proposition 1.1.24 implies that ηv+ ∈ W 1,p
0 (�). Therefore

û ∈ W 1,p
0 (�). Also, 0 � v+ � û a.e. in �. Then Proposition 1.4.12 implies that

v+ ∈ W 1,p
0 (�). Similarly we show that v− ∈ W 1,p

0 (�). Hence we conclude that
v = v+ − v− ∈ W 1,p

0 (�). �
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Proposition 1.4.15 If � is bounded and u ∈ W 1,p(�) (1 � p < ∞) satisfies
lim
z→y

u(z) = 0 for all y ∈ ∂�, then u ∈ W 1,p
0 (�).

Proof Since u = u+ − u−, without any loss of generalitywemay assume that u � 0.
For ε > 0 let uε = max{u + ε, 0}. Then uε ∈ W 1,p(�) and has compact support (due
to the hypotheses). Then Proposition 1.1.24 implies that uε ∈ W 1,p

0 (�). Finally, note
that uε → u in W 1,p(�) as ε → 0+ and so we conclude that u ∈ W 1,p

0 (�). �

1.5 Trace Theory

The study of boundary value problems calls for a rigorous definition of the concept of
u|∂� for a Sobolev function u ∈ W 1,p(�). In general, the fact that u ∈ L p(�) is not
sufficient information to make sense of u|∂�, since the set ∂� is Lebesgue-null (pro-
vided it is a smooth enough topological manifold) and L p(�)-functions are defined
modulo sets of measure zero. So, we need to exploit the additional information we
have, namely that Du ∈ L p(�, R

N ). If N = 1, there is no problem since the Sobolev
functions have a C(�)-representative (see Theorem 1.2.2). However, as we already
remarked for N � 2, this is no longer true.

The studyof the boundary behavior of Sobolev functions imposes somehypothesis
on the geometry of the boundary ∂�.

Definition 1.5.1 We say that ∂� is Lipschitz if for each z ∈ ∂� we can find r > 0
and a Lipschitz function ξ : R

N−1 → R such that upon rotating and relabeling the
coordinate axes if necessary, we have

� ∩ Rr (z) = {z ∈ � : ξ(z1, ..., zN−1) < zN } ∩ Rr (z),

where Rr (z) = {y = (yk)
N
k=1 ∈ � : |yk − zk | < r for all k ∈ {1, ..., N }}.

Remark 1.5.2 According to this definition near every z ∈ ∂�, the boundary ∂� is
the graph of a Lipschitz function. Then by Rademacher’s theorem (see, for example,
Gasinski and Papageorgiou [182, p. 56]), we see that the outer unit normal n(z) exists
for H N−1-a.a. z ∈ ∂� (here H N−1 denotes the (N − 1)-dimensional Hausdorff
measure on ∂�).

In the Meyers–Serrin theorem (see Theorem 1.1.23), we approximated Sobolev
functions by other Sobolev functions which are smooth in �. Next, under additional
conditions on �, we improve this to approximation by Sobolev functions which are
smooth all the way up to the boundary. This global approximation will make possible
the interpretation of the expression u|∂� for a Sobolev function u ∈ W 1,p(�).

Theorem 1.5.3 Assume that � is bounded with Lipschitz boundary ∂� and 1 �
p < ∞. Then C∞(�)

‖·‖1,p = W 1,p(�).
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Proof Given z ∈ ∂�, let r > 0 and ξ : R
N−1 → R be the Lipschitz function as in

Definition 1.5.1. We write R = Rr (z) and R̂ = Rr/2(z).
Let u ∈ W 1,p(�) and assume that u vanishes near� ∩ ∂ R̂. For y ∈ � ∩ R̂, ε � 0

and β = Lip (ξ) + 2 (Lip (ξ) is the Lipschitz constant of ξ), we define

yε = y + εβeN ,

where {ek}N
k=1 is the canonical basis of R

N . We have Bε(yε) ⊆ � ∩ R, provided that
ε > 0 is small enough.

We consider a family {ρε}ε∈(0,1) of mollifiers and define

uε(y) =
∫

�

u(yε − z)ρε(z)dz

= 1

εN

∫

Bε(yε)

u(y)ρ

(
y − z

ε
+ βeN

)
dz for all y ∈ � ∩ R̂.

We have

uε ∈ C∞(� ∩ R̂) and un → u in W 1,p(� ∩ R̂) as ε → 0+.

Since u = 0 near � ∩ ∂ R̂, for sufficiently small ε > 0 we also have uε = 0 near
� ∩ ∂ R̂. Hence, we can extend uε to be 0 on � ∩ ∂ R̂.

The set ∂� is compact and so we can find a cover {R̂k = R̂rk/2(zk)}m
k=1 of ∂�.

Then we can find smooth functions {ϕk}m
k=0 such that

0 � ϕk � 1, suppϕk ⊆ R̂k for all k ∈ {1, ..., m},

0 � ϕ0 � 1, suppϕ0 ⊆ � and
m∑

k=1

ϕk = 1 in �.
(1.28)

We set uk = ϕku for all k ∈ {0, . . . , m}. We fix δ > 0 and as before, using mol-
lification, we produce {vk = (uk)εk }m

k=1 ⊆ C∞(�) such that for all k ∈ {1, ..., m}

supp vk ⊆ � ∩ Rk and ‖vk − uk‖W 1,p(�∩Rk ) <
δ

2m
. (1.29)

We alsomollify u0 and as in the proof of Theorem1.1.23,we produce v0 ∈ C∞
c (�)

such that

‖v0 − u0‖1,p <
δ

2
.

Then we set

v =
m∑

k=0

vk ∈ C∞(�). (1.30)
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We have

‖v − u‖1,p � ‖v0 − u0‖1,p +
m∑

k=1

‖vk − uk‖W 1,p(�∩Rk ) < δ (see (1.28), (1.29), (1.30)).

This proves the density of C∞(�) in W 1,p(�). �
This stronger density property of W 1,p(�) leads to the result that gives meaning

to the expression u|∂� for u ∈ W 1,p(�).

Theorem 1.5.4 Assume that � is bounded with Lipschitz boundary ∂� and 1 � p <

∞. Then there exists a bounded linear operator γ0 : W 1,p(�) → L p(∂�,H N−1)

such that γ0(u) = u|∂� for all u ∈ W 1,p(�) ∩ C(�); the map γ0 is called the trace
operator of order zero.

Proof First we consider u ∈ C1(�) ⊆ W 1,p(�). Let z ∈ ∂� and let r > 0 and ξ :
R

N−1 → R be a Lipschitz function as in Definition 1.5.1.
Let R = Rr (z) and assume momentarily that u = 0 in � \ R. Note that

− (eN , n)RN � (1 + Lip (ξ)2)−
1
2 > 0, H N−1-a.e. on ∂� ∩ R. (1.31)

We fix ε > 0 and set

με(t) = (t2 + ε2)
1
2 − ε for all t ∈ R. (1.32)

We have
∫

∂�

με(u)dH N−1 =
∫

∂�∩R
με(u)dH N−1

� c
∫

∂�∩R
με(u)(−(eN , n)RN )dH N−1 with c > 0 (see (1.31))

� −c
∫

�∩R

∂

∂zN
(με(u))dz (by the divergence theorem)

� c
∫

�∩R
|μ′

ε(u)|‖Du‖RN dz

� c
∫

�

‖Du‖RN dz (since |μ′
ε(t)| � 1 for all t ∈ R, see (1.32)).

Let ε → 0+ to obtain

∫

∂�

|u|dH N−1 � c
∫

�

‖Du‖RN dz. (1.33)

We have proved (1.33) under the assumption that u = 0 on � \ R. In the general
case we cover ∂U by a finite number of cubes {Rk}m

k=1 (recall that ∂� is compact).
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Then we consider a partition of unity subordinate to this cover and as in the proof of
Theorem 1.5.3, we show that

∫

∂�

|u|pdH N−1 � c
∫

�

(|u|p + ‖Du‖p
RN )dz for all u ∈ C1(�). (1.34)

So, if we set γ0(u) = u|∂�, by relation (1.34) we obtain that γ0 : C1(�) →
L p(∂�,H N−1) is linear and continuous. The density of C1(�) in W 1,p(�) (see
Theorem 1.5.3) finally gives a linear continuous map γ0 : W 1,p(�) → R such that
γ0(u) = u|∂� for all u ∈ W 1,p(�) ∩ C(�). �

As a direct consequence of Theorems 1.5.3 and 1.5.4, we have the following
generalized integration by parts formula.

Proposition 1.5.5 Assume that � is bounded with ∂� Lipschitz and 1 � p < ∞.
Then for all η ∈ C1(RN , R

N ) and all u ∈ W 1,p(�) we have

∫

�

u(div η)dz +
∫

�

(Du, η)RN dz =
∫

∂�

γ0(u)(η, n)RN dH N−1.

Proposition 1.5.6 Assume that � is bounded with Lipschitz boundary ∂� and 1 �
p < ∞. Then W 1,p

0 (�) = ker γ0.

Proof If u ∈ C∞
c (�), then γ0(u) = 0. Since W 1,p

0 (�) is the ‖ · ‖1,p–closure of
C∞

c (�) (seeDefinition 1.1.14) and γ0 is continuous onW 1,p(�) (see Theorem1.5.4),
we infer that γ0(u) = 0 for all u ∈ W 1,p

0 (�). Therefore

W 1,p
0 (�) ⊆ ker γ0.

Next, let u ∈ ker γ0. Using partitions of unity and flattening out ∂�, without any
loss of generality, we may assume that � = R

N+ = {z = (z′, zN ) : z′ ∈ R
N−1, zN �

0} and u = 0 for all z ∈ R
N+ , with ‖z‖RN � M > 0. For z ∈ R

N we define

û(z) =
{
0 if zN � 0
u(z) if zN > 0.

We have
∫

RN

û
∂ϑ

∂zk
dz =

∫

R
N+

u
∂ϑ

∂zk
dz = −

∫

R
N+
ϑ

∂u

∂zk
dz for all ϑ ∈ C∞

c (RN )

for all k ∈ {1, ..., N }

⇒û ∈ W 1,p(RN ) and
∂û

∂zk
(z) =

⎧
⎨

⎩

0 if zN � 0
∂u

∂zk
(z) if zN > 0

for all k ∈ {1, . . . , N }.
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For t > 0 and z ∈ R
N , let

ût (z) = û(z′, zN − t) (translation of û upwards).

We see that supp ût is compact and contained in R
N−1 × ( t

2 ,∞). Given δ > 0 we
can find t > 0 small such that

‖u − ût‖W 1,p(RN+ ) � δ. (1.35)

Using regularization throughmollification, we can find 0 < ε < t
4 small such that

‖(ût )ε − ûε‖W 1,p(RN+ ) � δ. (1.36)

If {ρε}ε∈(0,1) is the family of mollifiers used above, then for all z ∈ R
N we have

(ût )ε(z) =
∫

RN

ût (y)ρε(z − y)dy =
∫

RN−1×( t
2 ,∞)

ût (y)ρε(z − y)dy.

Since supp ρε ⊆ Bε(0), it follows that if 0 < zN < ε, then (ût )ε(z) = 0.
Therefore ûε ∈ C∞

c (RN+) and so we conclude that u ∈ W 1,p
0 (RN+) (see (1.35) and

(1.36) and recall that δ > 0 is arbitrary). �

The trace theorem (see Theorem 1.5.4) leads to an extension of Green’s theorem
to Sobolev functions in H 1(�) with � ⊆ R

N bounded with Lipschitz boundary ∂�.
In what follows, we denote by n(z) the outward unit normal on ∂�. We already
remarked that the assumption on the boundary ∂� implies that n(z) is defined
uniquely for H N−1-a.a. z ∈ ∂� (Rademacher’s theorem). We write generically
n(z) = (nk(z))N

k=1.

Theorem 1.5.7 Assume that � is bounded with Lipschitz boundary ∂�. Then for
all u, v ∈ H 1(�) and all k ∈ {1, ..., N }, we have

∫

�

u
∂v

∂zk
dz +

∫

�

v
∂u

∂zk
dz =

∫

∂�

γ0(u)γ0(v)nkdH N−1.

Proof From Theorem 1.5.3, we know that there exist {un}n�1, {vn}n�1 ⊆ C∞(�)

such that

un → u and vn → v in H 1(�). (1.37)

Then from the classical Green’s theorem, we have

∫

�

un
∂vn

∂zk
dz +

∫

�

vn
∂un

∂zk
dz =

∫

∂�

unvnnkdH N−1 for all n � 1.
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Passing to the limit as n → ∞ and using (1.37) and the continuity of the trace
map, we obtain

∫

�

u
∂v

∂zk
dz +

∫

�

v
∂u

∂zk
dz =

∫

∂�

γ0(u)γ0(v)nkdH N−1. (1.38)

�

Setting u ≡ 1 and v = vk ∈ H 1(�), from Theorem 1.5.7 we have

∫

�

∂vk

∂zk
dz =

∫

∂�

vknkdH N−1 for all k ∈ {1, ..., N }. (1.39)

So, if we set v̄ = (vk)
N
k=1 ∈ H 1(�, R

N ), then from (1.39), we have

∫

�

div v̄dz =
∫

∂�

(v̄, n)RN dH N−1,

which is the divergence theorem. If u ∈ H 2(�) and in (1.38) we replace u by ∂u
∂zk

,
then ∫

�

∂u

∂zk

∂v

∂zk
dz +

∫

�

v
∂2u

∂z2k
dz =

∫

∂�

∂u

∂zk
nkdH N−1.

If u is smooth, then
N∑

k=1

∂u

∂zk
nk = (Du, n)RN = ∂u

∂n
(the directional derivative in

the outward normal direction on ∂�). Exploiting the continuity of the trace operator
(see Theorem 1.5.4) and the density of C∞(�) in H 1(�) (see Theorem 1.5.3), we
reach the following Green’s identity.

Proposition 1.5.8 Assume that � is bounded with Lipschitz boundary ∂�, u ∈
H 2(�), and v ∈ H 1(�). Then

∫

�

(Du, Dv)RN dz +
∫

�

(�u)vdz =
∫

∂�

(
∂u

∂n

)
vdH N−1.

Next, we extend this formula to all Sobolev spaces W 1,p(�) (1 < p < ∞) and
drop the extra regularity condition u ∈ H 2(�). To do this, we need to introduce
Sobolev spaces of fractional order on manifolds.

Definition 1.5.9 Let M be a compact manifold in R
N . For s ∈ (0, 1), p ∈ [1,+∞)

and u ∈ C∞(M), we define

‖u‖W s,p(M) =
[ ∫

M
|u(z)|pdσ +

∫

M×M

|u(z) − u(y)|p

‖z − y‖N−1+sp
RN

dσdσ

]1/p
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with σ being the surface measure on the manifold. This is a norm.
We define the Sobolev space of fractional order W s,p(M) to be the completion

of C∞(M) for this norm. For any s > 0, we write s = k + η with k a nonnegative
integer and η ∈ (0, 1) (if s is not an integer). We define

W s,p(M) = {u ∈ W k,p(M) : Dαu ∈ W η,p(M) for all |α| = k}.

Remark 1.5.10 This definitionmakes sense for any bounded open set� ⊆ R
N . Also,

if s = 0, then W 0,p(M) = L p(M).
Using this extended class of Sobolev spaces, we obtain the full version of the trace

theorem (see Adams [2]).

Theorem 1.5.11 Assume that � is bounded with Lipschitz boundary ∂�, m � 1
is an integer, and 1 � p < ∞. Then there exists a unique bounded linear operator
γ = (γk)

m−1
k=0 : W m,p(�) → L p(∂�, R

m) such that

(a) if u ∈ C∞(�), then γk(u) = ∂k u
∂nk for all k ∈ {1, ..., m − 1};

(b) range γ =
m−1∏

k=0

W m−k− 1
p′ ,p

(∂�);

(c) ker γ = W m,p
0 (�).

Remark 1.5.12 In particular, from this theorem we infer that the zero order trace

operator γ0 is not surjective. In fact, we have γ0(W 1,p(�)) = W
1
p′ ,p

(∂�) (recall that
1
p + 1

p′ = 1).

To have the desired generalization of Green’s formula for p ∈ (1,+∞) and drop
the requirement that u ∈ H 2(�) (see Proposition 1.5.8), we introduce the following
space

Vp(div,�) = {u ∈ L p(�, R
N ) : div u ∈ L p(�)} ,

where, as before, � is a bounded open set in R
N with Lipschitz boundary. The space

Vp(div,�) is endowed with the norm

‖u‖Vp =
[
‖u‖p

L p(�,RN )
+ ‖div u‖p

p

] 1
p

.

Proposition 1.5.13 The space Vp(div,�) is separable, reflexive and C∞(�, R
N ) is

a dense subspace.

Proof The separability and reflexivity of Vp(div,�) are obvious. Moreover, from
the classical Riesz representation theorem, we have that if L ∈ Vp(div,�)∗, then
there exist g ∈ L p′

(�, R
N ) and f ∈ L p′

(�) such that

L(u) =
∫

�

(g(z), u(z))RN dz +
∫

�

f (z) div u(z)dz for all u ∈ Vp(div,�). (1.40)
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To prove the density of C∞(�, R
N ) in Vp(div,�), we show that

“L|C∞(�,RN ) = 0 ⇒ L ≡ 0.′′ (1.41)

From (1.40) and (1.41), we have

−〈D f, y〉 =
∫

�

f div ydz = −
∫

�

gydz for all y ∈ C∞
c (�, R

N )

⇒ D f = g (see Definition 1.1.6)

⇒ f ∈ W 1,p(�).

From (1.41) and Proposition 1.5.5, we obtain

0 =
∫

�

f (div u)dz +
∫

�

(D f, u)RN dz =
∫

∂�

γ0( f )(u, n)RN dH N−1

for all u ∈ C∞(�, R
N )

⇒ 0 =
∫

∂�

γ0( f )
∂v

∂n
dH N−1 for all v ∈ C∞(�).

(1.42)

But { ∂v
∂n : v ∈ C∞(�)} is dense in L p(∂�). Then from (1.42) it follows that

γ0( f ) = 0, hence f ∈ W 1,p
0 (�). So, we can find { fn}n�1 ⊆ C∞

c (�) such that
fn → f in W 1,p(�). From (1.40) we have

L(u) =
∫

�

(D f, u)RN dz +
∫

�

f (div u)dz

= lim
n→∞

[ ∫

�

(D fn, u)RN dz +
∫

�

fn(div u)dz

]
= 0 for all u ∈ Vp(div,�)

⇒ L ≡ 0 and this proves the density of C∞(�, R
N ) in Vp(div,�).

The proof is now complete. �
Proposition 1.5.14 Assume that � is bounded with Lipschitz boundary ∂� and 1 <

p < ∞. Then there exists a unique continuous map γn : Vp(div,�) → W − 1
p ,p

(∂�)

such that γn(u) = (u, n)RN for all u ∈ C∞(�, R
N ). Moreover, we have∫

�

(Dy, u)RN dz +
∫

�

y(div u)dz = 〈γn(u), γ0(y)〉∂� for all u ∈ Vp(div,�), all y ∈
W 1,p′

(�) and with 〈·, ·〉∂� being the duality brackets for the pair (W − 1
p ,p

(∂�) =
W

1
p ,p′

(∂�)∗, W
1
p ,p′

(∂�)).

Proof From Proposition 1.5.5 we know that for all u ∈ C∞(�, R
N ) and all y ∈

W 1,p′
(�), we have

∫

�

(Dy, u)RN dz +
∫

�

y(div u)dz =
∫

∂�

γ0(y)(u, n)RN dH N−1. (1.43)
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Using Hölder’s inequality, we have

∣∣∣∣
∫

∂�

γ0(y)(u, n)RN dH N−1

∣∣∣∣ � ‖u‖Vp ‖γ0(y)‖
W

1
p ,p′

(∂�)
.

Recalling that im γ0 = W
1
p ,p′

(∂�) (see Theorem 1.5.11), we deduce that for all
h ∈ W

1
p ,p′

(∂�)

∣∣∣∣
∫

∂�

h(u, n)RN dH N−1

∣∣∣∣ � ‖u‖Vp ‖h‖
W

1
p ,p′ (∂�) (see (1.43)). (1.44)

By virtue of (1.44), given u ∈ C∞(�, R
N ) we identify γn(u) = (u, n)RN with an

element of W − 1
p ,p

(∂�) = W
1
p ,p′

(∂�)∗. We have

‖γn(u)‖
W − 1

p ,p
(∂�)

� ‖u‖Vp for all u ∈ C∞(�, R
N )

⇒ ‖γn(u)‖
W − 1

p ,p
(∂�)

� ‖u‖Vp for all u ∈ Vp(div,�) (see Proposition 1.5.13).

The proof is now complete. �

Remark 1.5.15 In fact, using the theory of maximal monotone maps (see Chap.2),

one can show that im γn = W − 1
p ,p

(∂�) and ‖γn‖L = 1. For details, see Casas and
Fernandez [105].

Consider a quasilinear differential operator A defined by

A(u) = −
N∑

i=1

Dkak(z, u, Du) + a0(z, u, Du), (1.45)

where a0, ak : � × R × R
N → R (k ∈ {1, ..., N }) are Carathéodory functions (that

is, for all (x, y) ∈ R × R
N , z → a0(z, x, y), ak(z, x, y) are measurable and for a.a.

z ∈ �, (x, y) → a0(z, x, y), ak(z, x, y) is continuous) satisfying

|a0(z, x, y)|, |ak(z, x, y)| � c(|x |p−1 + ‖y‖p−1
RN + ξ(z))

for all a.a. z ∈ �, all (x, y) ∈ R × R, with ξ ∈ L p′
(�).

Corollary 1.5.16 Assume that � is bounded with Lipschitz boundary ∂�, u ∈
W 1,p(�) (1 < p < ∞), and A(u) ∈ L p′

(�). Then there exists a unique element

of W − 1
p∗ ,p′

(∂�), which by extension is denoted by ∂u
∂na

=
N∑

k=1
ak(z, u, Du)nk, that

satisfies the following nonlinear Green’s identity
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N∑

k=1

∫

�

ak(z, u, Du)Dkv dz +
∫

�

a0(z, u, Du)Dv dz

=
∫

�

A(u)v dz +
〈

∂u

∂na
, γ0(v)

〉

∂�

for all v ∈ W 1,p(�).

Aparticular case of interest iswhenak(z, x, y) = ||y||p−2yk for all k ∈ {1, . . . , N }
and a0 = 0. Then the corresponding differential operator is the p-Laplacian defined
by

�pu = div (||Du||p−2Du) for all u ∈ W 1,p(�) .

Then Corollary 1.5.16 takes the following form.

Corollary 1.5.17 Assume that � is bounded with Lipschitz boundary ∂�, u ∈
W 1,p(�) (1 < p < ∞) and �pu ∈ L p′

(�). Then there exists a unique element of

W − 1
p′ ,p′

(∂�), which by extension is denoted by

∂u

∂n p
= ‖Du‖p−2

RN (Du, n)RN = ‖Du‖p−2 ∂u

∂n
,

that satisfies the following nonlinear Green identity

∫

�

(�pu)vdz +
∫

�

(Du, Dv)RN dz = 〈 ∂u

∂n p
, γ0(v)

〉
∂�

for allv ∈ W 1,p(�).

1.6 The Extension Operator

In Proposition 1.1.17 we saw that starting with u ∈ W 1,p
0 (�) and extending it by zero

on R
N \ �, we still get a Sobolev function, that is, the extended function belongs in

W 1,p(RN ) = W 1,p
0 (RN ) (see Theorem 1.1.21). We remarked that this is no longer

true if u ∈ W 1,p(�). In fact, the true situation for W 1,p(�) is more delicate and in
this case the geometry of the boundary plays an important role.

Theorem 1.6.1 Assume that � is bounded with Lipschitz boundary ∂�, 1 � p <

∞, and � ⊂⊂ �1. Then there exists a bounded linear operator P : W 1,p(�) →
W 1,p(RN ) such that

Pu|� = u and supp Pu ⊆ �1,

‖Pu‖L p(RN ) � c‖u‖p and ‖Pu‖W 1,p(RN ) � c‖u‖1,p for all u ∈ W 1,p(�), with c > 0
depending only on � and p.

Proof We start by fixing our notation.
For z = (zk)

N
k=1 ∈ �, we write z = (z′, zN ) with z′ = (zk)

N−1
k=1 ∈ R

N−1 and zN ∈
R. Also for z ∈ R

N and r, η > 0, we define the cylinder
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C(z, r, η) = {y ∈ R
N : ‖y′ − z′‖RN−1 < r, |yN − zN | < η}.

Exploiting the fact that ∂� is Lipschitz (see Definition 1.5.1), we can find r, η > 0
and a Lipschitz function ξ : R

N−1 → R such that
⎧
⎪⎪⎨

⎪⎪⎩

max{|ξ(y′) − zN | : ‖y′ − z′‖RN−1 < r} <
η

4
,

� ∩ C(z, r, η) = {y ∈ � : ‖y′ − z′‖RN−1 < r, ξ(y′) < yN < zN + η},
C(z, r, η) ⊆ �1.

⎫
⎪⎪⎬

⎪⎪⎭
(1.46)

Fix z ∈ ∂� and r, η, ξ as in (1.46). We set

C = C(z, r, η), Ĉ = C(z,
r

2
,
η

2
), �+ = � ∩ Ĉ, �− = Ĉ \ �.

We first suppose that u ∈ C1(�) and assume that supp u ⊆ � ∩ Ĉ . Let

u+(y) = u(y) for all y ∈ �+,

u−(y) = u(y′, 2ξ(y′) − yN ) for all y ∈ �−.

Then u+ = u− = u on ∂� ∩ Ĉ .

Claim 1. We have ‖u−‖W 1,p(�−) � c‖u‖1,p.
Let ϑ ∈ C∞

c (�−) and let {ξn}n�1 be a sequence of C∞-functions such that

⎧
⎨

⎩

ξn � ξ, ξn → ξ uniformly on R
N−1,

Dξn(z) → Dξ(z) a.e. in R
N−1, sup

n�1
‖Dξn‖L∞(RN−1) < ∞.

⎫
⎬

⎭ (1.47)

For every k ∈ {1, ..., N − 1}, we have
∫

�−
u− ∂ϑ

∂zk
dz =

∫

�−
u(z′, 2ξ(z′) − zN )

∂ϑ

∂zk
dz

= lim
n→∞

∫

�−
u(z′, 2ξn(z′) − zN )

∂ϑ

∂zk
dz

= − lim
n→∞

∫

�−

[
∂u

∂zk
(z′, 2ξn(z′) − zN )

+2
∂u

∂zN
(z′, 2ξn(z′) − zN )

∂ξn

∂zk
(z′)
]

ϑdz

= −
∫

�−

[
∂u

∂zk
(z′, 2ξ(z′) − zN ) + 2

∂u

∂zN
(z′, 2ξ(z′) − zN )

∂ξ

∂zk
(z′)
]
ϑdz

(see (1.47)).

Similarly we show that

∫

�−
u− ∂ϑ

∂zN
dz =

∫

�−

∂u

∂zN
(z′, 2ξ(z′) − zN )ϑdz.
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From (1.47) and using the change of variables formula, we have

∫

�−
‖Du(z′, 2ξ(z′) − zN )‖p

RN dz � c0

∫

�

‖Du‖p
RN dz < ∞

with c0 > 0 (depending on � and p). This proves Claim 1.
We define

Pu(z) = ū(z) =
⎧
⎨

⎩

u+(z) if z ∈ �+
u−(z) if z ∈ �−
0 if z ∈ R

N \ (�+ ∪ �−).

Evidently Pu ∈ C(RN ).
Claim 2. We have Pu ∈ W 1,p(RN ), supp Pu ⊆ Ĉ ⊆ �1 and

‖Pu‖W 1,p(RN ) � c‖u‖1,p .

Let ϑ ∈ C1
c (Ĉ). For k ∈ {1, ..., N } we have

∫

Ĉ
ū

∂ϑ

∂zk
dz =

∫

�+
u+ ∂ϑ

∂zk
dz +

∫

�−
u− ∂ϑ

∂zk
dz

= −
∫

�+

∂u+

∂zk
ϑdz −

∫

�−

∂u−

∂zk
ϑdz +

∫

∂�

[γ0(u+) − γ0(u
−)]ϑnkdH N−1

(see Theorem 1.5.7)

= −
∫

�+

∂u+

∂zk
ϑ dz −

∫

�−

∂u−

∂zk
ϑdz (since γ0(u

+) = γ0(u
−) = γ0(u)).

It follows that ‖Pu‖W 1,p(RN ) � c‖u‖1,p (see Claim 1). This proves Claim 2.
So, we have proved the theorem for u ∈ C1(�) with supp u ⊆ � ∩ Ĉ . Now we

remove the support restriction. The boundary ∂� is compact and so it can be covered
by a finite number of cylinders {Ck = C(zk, rk, ηk)}m

k=1. Let {ϕk}m
k=0 be a partition of

unity as in the proof of Theorem 1.5.3 (see (1.29)). From the previous step, we can

define P(ϕku) for all k ∈ {1, ..., m} and so finally we set Pu = ϕ0u +
m∑

k=1

P(ϕku).

Finally, if u ∈ W 1,p(�), then we use the approximation theorem 1.5.3 and the
fact that for C∞(�) functions the result is true as we just proved. �

Using this theorem, we have an alternative simpler proof of Theorem 1.5.3.

Corollary 1.6.2 Assume that � is bounded with Lipschitz boundary ∂� and 1 �
p < ∞. Then C∞(�)

‖·‖1,p = W 1,p(�).

Proof Let u ∈ W 1,p(�). By Theorem 1.6.1, Pu ∈ W 1,p(RN ). FromTheorem 1.1.21
we know that there exists a sequence {un}n�1 ⊆ C∞

c (RN ) such that un → Pu in
W 1,p(RN ). Then un|� ∈ C∞(�) and un|� → Pu|� = u in W 1,p(�). �
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In fact, there is an extension operator even if � is not bounded, provided we
further strengthen the regularity of the boundary.

Definition 1.6.3 Let � ⊆ R
N be an open set. We say that its boundary ∂� is “uni-

formly Lipschitz”, if there exist ε, L > 0,m0 ∈ N, and a locally finite countable open
cover {Un}n�1 of ∂� such that

(a) if z ∈ ∂�, then Bε(z) ⊆ Un for some n � 1;
(b) no point z ∈ R

N is contained in more than m0 of the sets {Un}n�1;
(c) for each n � 1, there exist local coordinates z = (z′, zN ) ∈ R

N−1 × R and a
Lipschitz function ξ : R

N−1 → R (both depending on n) with Lip ξ � L such
that

Un ∩ � = Un ∩ {(z′, zN ) ∈ R
N−1 × R : ξ(z′) < zN }.

Remark 1.6.4 If� ⊆ R
N is open with ∂� bounded, then ∂� is uniformly Lipschitz

if and only if it is Lipschitz (see Definition 1.5.1). If � is unbounded with uniformly
Lipschitz boundary, then λN (�) = ∞.

The proof of the next theorem can be found in Leoni [262, p. 356].

Theorem 1.6.5 Assume that � has a uniformly Lipschitz boundary and 1 � p <

∞. Then there exists a bounded linear operator P : W 1,p(�) → W 1,p(RN ) such
that for all u ∈ W 1,p(�) we have Pu|� = u, ‖Pu‖L p(RN ) � (1 + 2m0)‖u‖p and
‖Du‖L p(RN ,RN ) � c(1 + m0(1 + L))( 1

ε
‖u‖p + ‖Du‖p).

1.7 The Rellich–Kondrachov Theorem

The Rellich–Kondrachov theorem is the main compactness theorem for Sobolev
spaces. To prove it, we need to recall the Kolmogorov compactness theorem for
L p(RN ). In what follows, given u ∈ L p(RN ) and h ∈ R

N , we denote by τh(u) the
translation by h of u, namely the function τh(u)(z) = u(z − h) for all z ∈ R

N .

Theorem 1.7.1 (Kolmogorov) A set C ⊂ L p(RN ) (1 � p < ∞) is relatively com-
pact if and only if the following conditions are satisfied:

(a) C is bounded in L p(RN );

(b) lim
η→+∞ sup

u∈C

∫

{‖z‖
RN >η}

|u(z)|dz → 0;

(c) lim
h→0

sup
u∈C

‖τh(u) − u‖L p(RN ) = 0.

Proof “⇓”: Suppose that C is relatively compact in L p(RN ).
Then C is bounded and so (a) is true. Also, C is totally bounded. So, given

ε > 0 we can find {uk}n
k=1 ⊆ L p(RN ) such that for each u ∈ L p(RN ) we can find

k ∈ {1, ..., n} such that ‖u − uk‖L p(RN ) � ε. Let {sk}n
k=1 be simple functions such
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that ‖uk − sk‖L p(RN ) � ε for all k ∈ {1, ..., n}. Simple functions have their values in
a ball. So, for η > 0 large, we have for all u ∈ L p(RN ), all k ∈ {1, ..., N }

(∫

{‖z‖
RN >η}

|u(z)|pdz

) 1
p

�
(∫

{‖z‖
RN >η}

|u(z) − sk(z)|pdz

) 1
p

⇒
(∫

{‖z‖
RN >η}

|u(z)|pdz

) 1
p

� ‖u − sk‖L p(RN ) � 2ε for all u ∈ C.

This proves that (b) holds.
Next, note that (c) holds for simple functions. Therefore for any u ∈ C we have

lim sup
h→0

(∫

RN

|τh(u)(z) − u(z)|pdz

) 1
p

� lim sup
h→0

(∫

RN

|τh(u)(z) − τh(uk)(z)|pdz

) 1
p

+ lim sup
h→0

(∫

RN

|τh(uk)(z) − τh(sk)(z)|pdz

) 1
p

+ lim sup
h→0

(∫

RN

|τh(sk)(z) − sk(z)|pdz

) 1
p

+ lim sup
h→0

(∫

RN

|sk(z) − uk(z)|pdz

) 1
p

+ lim sup
h→0

(∫

RN

|uk(z) − u(z)|pdz

) 1
p

� ε + ε + 0 + ε + ε = 4ε.

This proves statement (c).
“⇑”: Now we assume that statements (a), (b), (c) hold.
By virtue of (b), we know that given ε > 0, we can find η > 0 large such that

∫

{‖z‖
RN >η}

|u(z)|pdz � ε for all u ∈ C. (1.48)

Let {ρn}n�1 be a sequence of mollifiers. From Proposition 1.1.3 we have for all
u ∈ L p(RN ), all n � 1

‖u − u ∗ ρn‖p
L p(RN )

�
∫

RN

‖u − τh(u)‖p
L p(RN )

ρn(z)dz

⇒ ‖u − u ∗ ρn‖L p(RN ) � sup

[
‖u − τh(u)‖L p(RN ) : ‖h‖RN � 1

n

]
.

By virtue of statement (c), we can find an integer n0 = n0(ε) � 1 such that

‖u − u ∗ ρn0‖L p(RN ) � ε for all u ∈ C. (1.49)
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Also for any u ∈ L p(RN ), any z, z′ ∈ R
N and any integer n � 1, we have

|(u ∗ ρn)(z) − (u ∗ ρn)(z
′)| �

∫

RN

|u(z − y) − u(z′ − y)|ρn(y)dy

� ‖τz−z′(u) − u‖L p(RN )‖ρn‖L p′
(RN ) (1.50)

(due to the translation invariance of the Lebesgue measure).
In addition, we have

|(u ∗ ρn)(z)| � ‖u‖L p(RN )‖ρn‖L p′
(RN ) for all z ∈ �, all n � 1. (1.51)

We consider the family D = {u ∗ ρn0 : B̄η(0) → R : u ∈ C}. Conditions (a) and
(c) and (1.50), (1.51) imply that we can apply the Arzela–Ascoli theorem and infer
that D is relatively compact in C(B̄η(0)). So, we can find {uk}m

k=1 ⊆ C such that

D ⊆
m⋃

k=1

B
εη

− N
p
(uk ∗ ρn0).

So, given u ∈ C , we can find a k ∈ {1, ..., m} such that

|(u ∗ ρn0)(z) − (uk ∗ ρn0)(z)| � ε(λN (B̄η(0)))
− 1

p for all z ∈ B̄η(0). (1.52)

We have

‖u − uk‖L p(RN ) �
(∫

{‖z‖
RN >η}

|u|pdz

) 1
p

+
(∫

{‖z‖
RN >η}

|uk |pdz

) 1
p

+ ‖u − u ∗ ρn0‖L p(RN ) + ‖uk − uk ∗ ρn0‖L p(RN )

+ ‖u ∗ ρn0 − uk ∗ ρn0‖L p(B̄η(0)). (1.53)

Note that
‖u ∗ ρn0 − uk ∗ ρn0‖L p(B̄η(0)) �
[ ∫

B̄η(0)
|(u ∗ ρn0)(z) − (uk ∗ ρn0)(z)|pdz

] 1
p

� ε (see 1.52).

(1.54)

So, returning to (1.53) and using (1.48), (1.49) and (1.54), we obtain

‖u − uk‖L p(RN ) � 5ε

⇒ C is relatively compact in L p(RN ) (being totally bounded). �

Remark 1.7.2 Condition (c) is an integral “equicontinuity” condition analogous to
the equicontinuity assumption involved in the Arzela–Ascoli theorem.
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The next estimate makes precise statement (c) in the above theorem and it will be
useful in the proof of the Rellich–Kondrachov theorem for W 1,p

0 (�) (see Theorem
1.7.4).

Proposition 1.7.3 If u ∈ W 1,p(RN ) (1 � p < ∞), then

‖τh(u) − u‖L p(RN ) � ‖Du‖L p(RN ,RN )‖h‖RN for all h ∈ R
N .

Proof Since C∞
c (RN ) is dense in W 1,p(RN ) (see Theorem 1.1.21), it suffices to

prove the estimate for u ∈ C∞
c (RN ). We have

τh(u)(z) − u(z) = u(z − h) − u(z) = −
∫ 1

0
(Du(z − th), h)RN dt

⇒ |τh(u)(z) − u(z)|p � ‖h‖p
RN

∫ 1

0
‖Du(z − th)‖p

RN dt (by Jensen’s inequality)

⇒ ‖τh(u) − u‖p
L p(RN )

� ‖Du‖p
L p(RN ,RN )

‖h‖p
RN ,

using Fubini’s theorem and the translation invariance of the Lebesgue measure in
R

N . �

Now we can state the Rellich–Kondrachov theorem for the Sobolev space
W 1,p

0 (�). In that space the only requirement on � is that it is bounded. No reg-
ularity condition is assumed on the boundary ∂�. The reason for this is that in this
case the extension by zero on R

N \ � works (see Proposition 1.1.17).

Theorem 1.7.4 (Rellich–Kondrachov) Assume that � ⊂ R
N is bounded. Then

W 1,p
0 (�) is embedded in L p(�) compactly, that is, every bounded subset of W 1,p

0 (�)

is relatively compact in L p(�).

Proof Let P0 : W 1,p
0 (�) → W 1,p(RN ) be the extension by zero on R

N \ � oper-
ator. From Proposition 1.1.17, P0 is linear isometry. Also, the restriction operator
R0 : L p(RN ) → L p(�) defined by R0(u) = u|� is clearly linear continuous, with
‖R0‖L � 1. Finally, let i0 : W 1,p

0 (�) → L p(�) and i : W 1,p(RN ) → L p(RN ) be
the embedding operators. We have

i0 = R0 ◦ i ◦ P0.

Let B1 be the open unit ball in the Sobolev space W 1,p
0 (�). Evidently, we need to

show that i(P0(B1)) is relatively compact. To this end, we use Theorem 1.7.1.
First note that the continuity of both i and P0 implies that

(i ◦ P0)(B1) ⊆ L p(RN ) is bounded. (1.54′)

Since by hypothesis � is bounded, we can find η > 0 big such that � ⊆ Bη(0).
Then for all u ∈ B1 we have P0(u) = 0 on R

N \ Bη(0) and so

∫

{‖z‖
RN >η}

|P0(u)|pdz = 0 for all u ∈ B1. (1.55)
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Finally, note that R0(B̄1) is contained in the unit ball of W 1,p(RN ). So, from
Proposition 1.7.3 we see that we can find c > 0 such that

‖τh(u) − u‖L p(RN ) � c‖h‖RN for all u ∈ B1. (1.56)

Relations (1.54′), (1.55), (1.56) allow us to use Theorem 1.7.1 and so we con-
clude that (i ◦ P0)(B1) = i(P0(B1)) ⊆ L p(RN ) is relatively compact. This proves
the compact embedding of W 1,p

0 (�) into L p(�). �
Another useful consequence of Theorem 1.7.1 is the following result.

Proposition 1.7.5 Assume that C ⊆ L p(RN ) (1 � p < ∞) and

(i) C is L p(RN )-bounded;

(ii) lim
η→+∞ sup

u∈C

∫

{‖z‖
RN >η}

|u(z)|pdz = 0.

Then C is relatively compact in L p(RN ).

Proof Hypotheses (i), (ii) and Proposition 1.7.3 make possible the use of Theorem
1.7.1 and so we conclude that C is relatively compact in L p(RN ). �

We know that for the space W 1,p(�) the extension by zero on R
N \ � does

not work. So, we need to employ the extension operator (see Theorem 1.6.1). This
requires that we impose some regularity assumption on the boundary of �.

Theorem 1.7.6 (Rellich–Kondrachov) Assume that � is bounded with Lipschitz
boundary and 1 � p < ∞. Then W 1,p(�) is embedded compactly in L p(�).

Proof Let {un}n�1 ⊆ W 1,p(�) be bounded. We need to show that it admits a subse-
quence which converges strongly in L p(�). Choose η > 0 big such that � ⊆ Bη(0)
and let ϕ ∈ C∞

c (RN ) be such that ϕ|B̄η(0) = 1 and ϕ|RN \B2η(0) ≡ 0 (cut-off function).
Also, let P : W 1,p(�) → W 1,p(RN ) be the extension operator produced in The-
orem 1.6.1. We consider the sequence {ϕP(un)}n�1 ⊆ W 1,p(RN ). This sequence
is bounded and zero on R

N \B2η(0). So, we can apply Proposition 1.7.5 and infer
that {ϕP(un)}n�1 ⊆ L p(RN ) is relatively compact. By passing to a subsequence if
necessary, we may assume that

ϕP(un) → u in L p(RN ).

But note that ϕP(un)|� = un . Therefore un → u in L p(�) and this proves that
W 1,p(�) is embedded compactly in L p(�). �
Remark 1.7.7 Both Rellich–Kondrachov theorems (see Theorems 1.7.4 and 1.7.6)
remain true if instead of � being bounded we assume that � has finite Lebesgue
measure.

Corollary 1.7.8 Assume that � is bounded with Lipschitz boundary ∂� and 1 �
p < ∞. Then un

w−→ u in W 1,p(�) if and only if un → u in L p(�), Dun
w−→ Du

in L p(�, R
N ).
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1.8 The Poincaré and Poincaré–Wirtinger Inequalities

The Poincaré inequality is a basic tool in the study of Dirichlet boundary value
problems. We start with a formulation which can be proved easily using Theorem
1.7.6 (the Rellich–Kondrachov theorem for W 1,p(�)).

Theorem 1.8.1 Assume that � is bounded connected (that is, a bounded domain)
with Lipschitz boundary ∂� and V ⊆ W 1,p(�) (1 � p < ∞) is a closed linear
subspace such that the only constant function belonging to V is the identically zero
function. Then there exists a constant c > 0 such that

||u||p � c||Du||L p(�,RN ) for all u ∈ V .

Proof We argue by contradiction. So, suppose the theorem is not true. Then we can
find a sequence {un}n�1 ⊆ V , un �= 0 such that

||un||p > n||Dun||L p(�,RN ) for all n � 1. (1.57)

Let yn = un
||un ||p

, n � 1. Then {yn}n�1 ⊆ V and ||yn||p = 1 for all n � 1. From (1.57)
we have

||Dyn||L p(�,RN ) <
1

n
for all n � 1. (1.58)

So, {yn}n�1 ⊆ V ⊆ W 1,p(�) is bounded and by Theorem 1.7.6 we may assume that

yn
w−→ y in W 1,p(�), yn → y in L p(�), y ∈ V . (1.59)

From (1.58) we have that Dyn → 0 in L p(�, R
N ), hence Dy = 0 (see (1.59)). Since

� is connected, y is constant in �. Because y ∈ V , we must have y = 0 and so

yn → 0 in L p(�),

which contradicts the fact that ||yn||p = 1 for all n � 1. �

Remark 1.8.2 Apossible choice isV = W 1,p(�). Also, let�be bounded, connected
with Lipschitz boundary ∂� and let �̂ be a subset of ∂� such that H N−1(�̂) > 0.
Let

V = {u ∈ W 1,p(�) : γ0(u) = 0 on �̂}.

Then the only constant function belonging to V is the identically zero function.
Still a third possibility for the subspace V is

V =
{

u ∈ W 1,p(�) :
∫

�

u dz = 0

}
.
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This choice leads to the so-called “Poincaré–Wirtinger inequality”, which is a useful
tool in the study of Neumann and periodic boundary value problems.

Theorem 1.8.3 Assume that � is bounded connected with Lipschitz boundary and
1 � p < ∞. Then there exists a constant c > 0 such that

||u − 1

λN (�)

∫

�

u(z)dz||p � c||Du||L p(�,RN ) for all u ∈ W 1,p(�).

Proof Let V = {u ∈ W 1,p(�) : ∫
�

u(z)dz = 0}. Evidently V is a closed linear sub-
space of W 1,p(�) and u ≡ 0 is the only constant function belonging to V . Now note
that for any u ∈ W 1,p(�), u(·) − 1

λN (�)

∫
�

u dz ∈ V and so Theorem 1.8.1 implies
that there exists a c > 0 such that

||u − 1

λN (�)

∫

�

u dz||p � c||Du||L p(�, RN ) for all u ∈ W 1,p(�).

�

In fact, Theorem 1.8.1 can be stated for more general open sets � ⊆ R
N . More

precisely, we have the following general version of the Poincaré inequality.

Theorem 1.8.4 Assume that � is bounded in one direction (that is, lies between
two parallel hyperplanes) and 1 � p < ∞. Then ||u||p

p � d p

p ||Du||p
L p(�,RN )

for all

u ∈ W 1,p(�), where d is the distance between the two hyperplanes.

Proof By translating and rotating the coordinates if necessary, without any loss of
generality, we may assume that � lies between the two parallel hyperplanes zN = 0
and zN = d > 0. Let u ∈ C∞

c (�). We have

|u(z′, zN )| = |u(z′, zN ) − u(z′, 0)| =
∣∣∣∣
∫ zN

0

∂u

∂zN
(z′, s)ds

∣∣∣∣

� z1/p′
N

(∫ d

0

∣∣∣∣
∂u

∂zN
(z′, s)

∣∣∣∣
p

ds

)1/p

(by Hölder’s inequality).

Using Fubini’s theorem, we obtain

∫

RN−1x[0,d]
|u(z′, zN )|pdz �

∫

RN−1

∫ d

0
z

p
p′
zN

∫ d

0

∣∣∣∣
∂u

∂zN
(z′, s)

∣∣∣∣
p

ds dzN dz′

=
(∫

�

∣∣∣∣
∂u

∂zN
(z)

∣∣∣∣
p

dz

)(∫ d

0
z p−1

N dzN

)

= d p

p

∫

�

∣∣∣∣
∂u

∂zN
(z)

∣∣∣∣
p

dz.

(1.60)
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Recall that ∂u
∂zN

= (Du, n)RN , where n is the outward unit normal vector to the strip
containing �. Therefore

∫

�

∣∣∣∣
∂u

∂zN
(z)

∣∣∣∣
p

dz =
∫

�

|(Du(z), n(z))RN |pdz

�
∫

�

||Du(z)||p
RN dz = ||Du||p

L p(�,RN )
.

Returning to (1.60), we conclude that

||u||p � d p

p
||Du||L p(�,RN ) for all u ∈ W 1,p

0 (�).

The proof is now complete. �

Remark 1.8.5 Therefore, if � has finite width, then ||Du||L p(�,RN ) is an equivalent
norm on W 1,p

0 (�).

1.9 The Sobolev Embedding Theorem

In Theorem 1.2.2 we saw that every u ∈ W 1,p(a, b) (1 � p � ∞) admits a contin-
uous representative. This is no longer true in higher dimensions (that is, if N � 2).
In this section we examine when we can claim that W m,p(�) ↪→ C(�̄) and more
generally we establish embeddings of various Sobolev spaces into others.

To simplify the presentation, we will conduct the analysis for the space W 1,p(�)

and at the end we will formulate the general embedding theorem for the space
W m,p(�).

So, the fundamental question of this section is the following: “Given u ∈ W 1,p(�)

can we conclude that u belongs to certain other spaces (besides L p(�) of course)?”.
It turns out that the answer to this question depends on the relation between p and
N . In fact, we consider three distinct cases

1 � p < N , p = N and N < p � ∞,

which lead to different embeddings of W 1,p(�).
We want to find out for which exponents q we can assert that

||u||Lq (RN ) � c||Du||L p(RN ,RN ) for some c > 0, all u ∈ W 1,p(RN ).

A simple homogeneity argument reveals that q must have a specific value depending
on N and p. So, let u ∈ W 1,p(RN ), u �= 0 and define

uλ(z) = u(λz) with λ > 0.
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We have (∫

RN

|u(λz)|qdz

)1/q

� c

(∫

RN

λp||Du(λz)||p
RN dz

)1/p

.

We perform a change of variable y = λz. Then

1

λN/q
||u||Lq (RN ) � c

λ

λ
N
p

||Du||L p(RN ,RN )

⇒ ||u||Lq (RN ) � c λ

(
1− N

p + N
q

)

||Du||L p(RN ,RN ). (1.61)

Evidently, (1.61) makes sense only when

1 − N

p
+ N

q
= 0 ⇒ q = p∗ = N p

N − p
.

Indeed, if 1 − N
p + N

q > 0, then letting λ → 0 in (1.61), we reach a contradiction.

Similarly, if 1 − N
p + N

q < 0, then letting λ → +∞ again we have a contradiction

(since u = 0). In order for q = p∗ = N p
N−p to be positive, we need p < N .

Definition 1.9.1 For p < N , the number p∗ = N p
N−p is called the “Sobolev critical

exponent”.
So, we first deal with the case 1 � p < N .

Note that, if z = (zk)
N
k=1 ∈ R

N , then by z′
k we denote the R

N−1-vector obtained
by removing the kth component from z. By abuse of notation we write

z = (z′
k, zk) ∈ R

N−1 × R .

If k = N , then we recover the notation used in previous sections

z = (z′, zN ) ∈ R
N−1 × R.

Lemma 1.9.2 Assume that N � 2, uk ∈ L N−1(RN−1) with k ∈ {1, . . . , N − 1} and

u(z) = u1(z
′
1)u2(z

′
2) . . . uN (z′

N ) for all z ∈ R
N .

Then u ∈ L1(RN ) and ||u||L1(RN ) �
N∏

k=1
||uk ||L N−1(RN−1).

Proof The proof is by induction on N . First let N = 2. Then u(z) = u1(z2)u2(z1)
for all z = (z1, z2) ∈ R

2. Using Fubini’s theorem, we have
∫

R2
|u(z)|dz =

∫

R

|u1(z2)|dz2

∫

R

|u2(z1)|dz1 ,

and so we have verified the result.
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Next we assume that the result is true for N (induction hypothesis) and we will
prove that it also holds for N + 1. So, for uk ∈ L N (RN ), k ∈ {1, . . . , N + 1}, let

u(z) = u1(z
′
1)u2(z

′
2) . . . uN+1(z

′
N+1) for all z ∈ R

N+1.

We fix zN+1 ∈ R and integrate with respect to z1, . . . , zN . Then via Hölder’s
inequality, we have

∫

RN

|u(z)| dz1 . . . dzN � ||uN+1||L N (RN )×
(∫

RN

N∏

k=1

|uk(z
′
k)|

N
N−1 dz1 . . . dzN

) N−1
N

.

(1.62)

Expanding the notation introduced earlier, by z
′′
k we denote theR

N−1-vector obtained
by removing the last component from z′

k and again by abuse of notation,wewrite z′
k =

(z
′′
k, zN+1) ∈ R

N−1 × R. Since zN+1 is fixed, by the induction hypothesis applied to
the functions

ûk(z
′′
k) = |uk(z

′′
k, zN+1)| N

N−1 for all z
′′
k ∈ R

N−1

with k ∈ {1, . . . , N }, we obtain
∫

RN

N∏

k=1

|uk(z
′
k)|

N
N−1 dz1 . . . dzN �

N∏

k=1

||ûk ||L N−1(RN−1)

=
N∏

k=1

(∫

RN−1
|uk(z

′′
k, zN+1)|N dz

′′
k

) 1
N−1

.

Using this inequality, we obtain

∫

RN

|u(z)|dz1 . . . dzN � ||uN+1||L N (RN )

N∏

k=1

(∫

RN−1
|uk(z

′′
k, zN+1)|N dz

′′
k

) 1
N

.

Integrating both sides with respect to zN+1 and using Hölder’s inequality (gener-
alized version, see for example Denkowski et al. [143, p. 150]), we have

∫

RN+1
|u(z)|dz = ||u||L1(RN )

N+1∏

k=1

||uk ||L N (RN ).

This completes the induction and the proof of the lemma. �
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Now we are ready to prove the embedding theorem for the case 1 � p < N . The
result is known in the literature as the “Sobolev–Gagliardo–Nirenberg embedding
theorem” or the “Sobolev–Gagliardo–Nirenberg inequality”.

Theorem 1.9.3 (Sobolev–Gagliardo–Nirenberg) Assume that1 � p < N and p∗ =
N p

N−p (see Definition 1.9.1). Then W 1,p(RN ) is continuously embedded into L p∗
(RN );

more precisely we can find a constant c = c(p, N ) > 0 such that

||u||L p∗
(RN ) � c||Du||L p(RN ,RN ) for all u ∈ W 1,p(RN ). (1.63)

Proof We start with some simplifications.
First we show that it suffices to prove (1.63) for all u ∈ C∞

c (RN ). So, suppose for
the moment that (1.63) holds for all u ∈ C∞

c (RN ). According to Theorem 1.1.21,
given u ∈ W 1,p(RN ) we can find {un}n�1 ⊆ C∞

c (RN ) such that

un → u in W 1,p(RN ) and un(z) → u(z) a.e. in R
N . (1.64)

By hypothesis we have

||un||L p∗
(RN ) � c||Dun||L p(RN ,RN ) for all n � 1.

Passing to the limit as n → ∞ and using (1.64), we obtain

||u||L p∗
(RN ) � lim inf

n→∞ ||un||L p∗
(RN ) (by Fatou’s lemma)

� c lim
n→∞ ||Dun||L p(RN ,RN ) = c ||Du||L p(RN ,RN ).

So, we have established (1.63) also for all u ∈ W 1,p(RN ).
Now, the second simplification.We claim that it suffices to show (1.63) for p = 1,

that is, it is enough to show that there exists a c1(N ) > 0 such that

||u||L1∗ (RN ) � c1(N )||Du||L1(RN ,RN ) for all u ∈ W 1,1(RN ) (1.65)

and from this we can have (1.63) for all 1 � p < N .

So, suppose that (1.65) holds and let u ∈ C∞
c (RN ). Then |u| p∗

1∗ ∈ W 1,1(RN )

(p > 1). Indeed, note that 1∗ < p∗ (see Definition 1.9.1) and the function |u(·)| p∗
1∗ is

continuously differentiable with compact support. Hence |u| p∗
1∗ ∈ W 1,1(RN ) and we

have

D
(
|u| p∗

1∗
)

= p∗

1∗ |u| p∗
1∗ −2 u Du. (1.66)

In (1.65) we use |u| p∗
1∗ ∈ W 1,1(RN ). Then using (1.66), we have
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(∫

RN

|u|p∗
dz

)1/1∗

� c1(N )
p∗

1∗

∫

RN

|u| p∗
1∗ −1||Du||RN dz

� c1(N )
p∗

1∗

(∫

RN

|u|
(

p∗
1∗ −1

)
p′

dz

)1/p′

||Du||L p(RN ,RN )

(using Hölder’s inequality).

(1.67)

Note that 1
1∗ − 1

p∗ = 1
p′ , hence p∗ =

(
p∗
1∗ − 1

)
p′. So, (1.67) becomes

||u||L p∗
(RN ) � c1(N )

p∗

1∗ ||Du||L p(RN ),RN ,

which is (1.63) for any 1 � p < N with c(p, N ) = c1(N )
p∗
1∗ .

These two simplifications reduce the problem to showing (1.65) for all u ∈
C∞

c (RN ).
For any z = (zk)

N
k=1 ∈ R

N , we have

|u(z)| =
∣∣∣∣
∫ zk

−∞
∂u

∂zk
(z′

k, s)ds

∣∣∣∣ �
∫ zk

−∞

∣∣∣∣
∂u

∂zk
(z′

k, s)

∣∣∣∣ ds. (1.68)

Similarly, we have

|u(z)| �
∫ +∞

zk

∣∣∣∣
∂u

∂zk
(z′

k, s)

∣∣∣∣ ds. (1.69)

Adding (1.68) and (1.69), we obtain

|u(z)| � 1

2

∫ ∞

−∞

∣∣∣∣
∂u

∂zk
(z′

k, s)

∣∣∣∣ ds = gk(z
′
k) for all k ∈ {1, . . . , N }

⇒ |u(z)|N � 1

2N

N∏

k=1

gk(z
′
k).

(1.70)

Since 1∗ = N
N−1 , from (1.70) we have

|u(z)|1∗ � 1

2
N

N−1

N∏

k=1

gk(z
′
k)

1
N−1 . (1.71)

Note that if hk(z′
k) = gk(z′

k)
1

N−1 for all z′
k ∈ R

N−1, then hk ∈ L N−1(RN−1) and

||hk ||L N−1(RN−1) =
∥∥∥∥

∂u

∂zk

∥∥∥∥

1
N−1

L1(RN )

. (1.72)
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We return to (1.71) and use Lemma 1.9.2 and (1.72). Then

||u||1∗
L1∗ (RN )

� 1

2
N

N−1

∥∥∥∥∥

N∏

k=1

hk

∥∥∥∥∥
L1(RN )

� 1

2
N

N−1

N∏

k=1

||hk ||L N−1(RN−1)

(1.73)

� 1

2
N

N−1

N∏

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥

1
N−1

L1(RN )

⇒ ||u||L1∗ (RN ) � 1

2

N∏

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥

1
N

L1(RN )

, since 1∗ = N

N − 1
.

By the geometric-arithmetic mean inequality, we have

(
N∏

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥
L1(RN )

)1/N

� 1

N

N∑

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥
L1(RN )

.

So, relation (1.73) becomes

||u||L1∗ (RN ) � 1

2N

N∑

k=1

∥∥∥∥
∂u

∂zk

∥∥∥∥
L1(RN )

= 1

2N
||Du||L1(RN ,RN )

and so we have proved (1.65) for u ∈ C∞
c (RN ) and according to the previous dis-

cussion we have the theorem. �

Remark 1.9.4 The above proof suggests that c = c(p, N ) = 1
2N

p∗
1∗ = p(N−1)

2N (N−p)
.

However, this is not the best constant. The best constant is strictly less than the
above quantity and is given by

c(p, N ) = 1√
π

1

N
1
p

(
p − 1

N − p

) ⎡

⎣ �
(
1 + N

2

)
�(N )

�
(

N
p

)
�
(
1 + N − N

p

)

⎤

⎦

1
N

(see Aubin [23] and Talenti [399]). Moreover, equality is realized by the functions

u(z) =
(

a + b||z||p′
RN

)1− N
p
for all z ∈ R

N , with a, b > 0.

Corollary 1.9.5 Assume that 1 � p < N and p � q � p∗. Then W 1,p(RN ) is
embedded continuously in Lq(RN ).
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Proof Evidently, the corollary is true for q = p (see Definition 1.1.10) and for q =
p∗ (see Theorem 1.9.3). So, we assume that p < q < p∗. Then we can find t ∈ (0, 1)
such that

1

q
= t

p
+ 1 − t

p∗ .

Then the interpolation inequality implies

||u||Lq (RN ) � ||u||ϑL p(RN ) ||u||1−ϑ
L p∗

(RN )

� ||u||L p(RN ) + ||u||L p∗
(RN ) (by Young’s inequality)

⇒ ||u||Lq (RN ) � ||u||L p(RN ) + c ||Du||L p(RN ,RN ) (see Theorem 1.9.3)

� (1 + c) ||u||W 1,p(RN ),

which shows that the Sobolev space W 1,p(RN ) is continuously embedded in Lq(RN )

for all q ∈ [p, p∗]. �

Theorem 1.9.3 leads to the following Poincaré-type inequality valid for any open
set� ⊆ R

N not necessarily bounded in any direction (compare with Theorems 1.8.1
and 1.8.4). The result is often referred as the “Poincaré–Sobolev inequality”.

Proposition 1.9.6 Assume that � ⊆ R
N is an open set and 1 � p < N. Then

||u||p∗ � c(p, N )||Du||p for all u ∈ W 1,p
0 (�).

Proof Let u ∈ W 1,p
0 (�) and let û be its extension by zero on R

N \�. We know that
û ∈ W 1,p(�) (see Proposition 1.1.17). We apply Theorem 1.9.3 and have

||û||L p∗
(RN ) � c(p, N )||Dû||L p(RN ,RN )

⇒ ||u||L p∗
(�) � c(p, N )||Du||L p(�,RN ),

since û = 0, Dû = 0 on R
N \�. �

Remark 1.9.7 We stress that in the above inequality the constant c(p, N ) is inde-
pendent of the set�, in contrast to the usual Poincaré inequality (see Theorem 1.8.4)
where the constant depends on �. If in the above theorem we assume that � is
bounded, then we can easily recover the usual Poincaré inequality. To see this note
that

||u||p � λN (�)
1− p

p∗ ||u||p/p∗
p∗ (by Hölder’s inequality)

⇒ ||u||p � λN (�)
1
p − 1

p∗ c(p, N )||Du||p (see Theorem 1.9.3)

⇒ ||u||p � λN (�)
1
N c(p, N ) ||Du||p

(
since

1

p
− 1

p∗ = 1

N

)
.

From this we see that the constant in Theorem 1.8.4 satisfies c(λ�) = λ c(�) for
all λ > 0.

Proposition 1.9.6 leads to the following embedding result, which can be proved
as Corollary 1.9.5.
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Proposition 1.9.8 Assume that � ⊆ R
N is an open set, 1 � p < N and 1 � q �

p∗. Then W 1,p
0 (�) is embedded continuously in Lq(�).

This result can also be stated with W 1,p
0 (�) replaced by W 1,p(�) provided we

strengthen the regularity of the boundary∂� in order to exploit the extension operator
produced in Theorem 1.6.5, since extension by zero does not work in this case (see
the proof of Corollary 1.9.5).

Proposition 1.9.9 Assume that � has uniformly Lipschitz boundary ∂� and 1 �
p < N. Then there exists a c = c(p, N ,�) > 0 such that

||u||q � c ||Du||p for all u ∈ W 1,p(�) and all p � q � p∗.

In particular, W 1,p(�) is continuously embedded in Lq(�) for all q ∈ [p, p∗].
Next we consider the case p > N . We will show in this case that a Sobolev

function u ∈ W 1,p(RN ) is in fact Hölder continuous, possibly after a modification
on a Lebesgue-null set. The result is known in the literature as “Morrey’s inequality”
or “Morrey’s embedding theorem”.

Theorem 1.9.10 (Morrey) Assume that N < p � ∞. Then there exists a constant
c(p, N ) > 0 such that for all u ∈ W 1,p(RN ) we have

|u(y) − u(z)| � c(p, N ) ||Du||L p(RN )||y − z||α
RN for a.a. y, z ∈ R

N

withα = 1 − N
p > 0; in particular W 1,p(RN ) is embedded continuously in C0,α(RN )

and
||u||C0,α(RN ) � ĉ||u||W 1,p(RN )

for all u ∈ W 1,p(RN ) and some ĉ = ĉ(p, N ) > 0.

Proof First we assume that u ∈ W 1,p(RN ) ∩ C∞(RN ).
We consider a ball Br (z) ⊆ R

N . Let h ∈ ∂B1(0) and 0 < t < r . We have

|u(z + th) − u(z)| =
∣∣∣∣
∫ t

0

d

ds
u(z + sh) ds

∣∣∣∣

=
∣∣∣∣
∫ t

0
(Du(z + sh), h)RN ds

∣∣∣∣

�
∫ t

0
||Du(z + sh)||RN ds

⇒
∫

∂B1(0)
|u(z + th) − u(z)| dH N−1 �

∫ t

0

∫

∂B1(0)
||Du(z + sh)||RN dH N−1 ds

=
∫ s

0

∫

∂B1(0)
||Du(z + sh)||RN

s N−1

s N−1
dH N−1ds.
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We set y = z + sh and so s = ||y − z||RN . Therefore

∫

∂B1(0)
|u(z + th) − u(z)| d H H−1 �

∫

Br (z)

||Du(y)||RN

||y − z||N−1
RN

dy.

We multiply by t N−1 and integrate from 0 to r . Then

∫

Br (0)
|u(y) − u(z)| dy � r N

N

∫

Br (z)

||Du(y)||RN

||y − z||N−1
RN

dy

⇒ 1

λ̂N (Br (z))

∫

Br (z)
|u(y) − u(z)|dy � c

∫

Br (z)

||Du(y)||RN

||y − z||N−1
RN

dy (1.74)

with c > 0 depending only on N , p ( recall that λ̂N (Br (z)) = r N ξ(N ), where ξ(N )

is the volume of the unit ball given by ξ(N ) = �N/2

�( N
2 +1)

).

We fix z ∈ R
N . We have

|u(z)| � 1

λ̂N (B1(z))

∫

B1(z)
|u(z) − u(y)|dy + 1

λ̂N (B1(z))

∫

B1(z)
|u(y)| dy

� c1

∫

B1(z)

||Du(y)||RN

||y − z||N−1
RN

dy + c1||u||L p(RN )

for some c1 � c depending only on N , p (see (1.74))

� c1||Du||p

[∫

B1(z)

dy

||y − z||(N−1)p′

]1/p′

+ c1||u||L p(RN )

� c2||u||W 1,p(RN ) for some c2 � c1 depending only on N , p. (1.75)

To see this last inequality, note that since N < p, we have (N − 1)p′ < N (recall
that p′ = p

p−1 ). Therefore

∫

B1(z)

dy

||y − z||(N−1)p′ dy < ∞.

Since z ∈ R
N is arbitrary, from (1.75) it follows that

||u||L∞(RN ) � c2||u||W 1,p(RN ). (1.76)

Next, let y, z ∈ R
N and set r = ||y − z||RN , U = Br (y) ∩ Br (z). Then

|u(y) − u(z)| � 1

λN (U )

(∫

U
|u(y) − u(v)|dv +

∫

U
|u(v) − u(z)|dv

)
. (1.77)
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We estimate the two integrals on the right-hand side

1

λN (U )

∫

U
|u(y) − u(v)|dv � c3 r N

λN (Br (y))

∫

Br (y)
|u(y) − u(v)| dv

for some c3 > 0 depending only on N , p

� c4||Du||L p(RN ,RN ) r
(N−(N−1)p′) 1

p′ (see (1.74))

= c4 r
1− N

p ||Du||L p(RN ,RN ) (1.78)

for some c4 > 0 depending only on N , p.

Similarly, we obtain

1

λN (U )

∫

U
|u(y) − u(v)| dv � c4 r1−

N
p ||Du||L p(RN ,RN ). (1.79)

Returning to (1.77) and using (1.78) and (1.79), we have

|u(y) − u(z)| � c4 r1−
N
p ||Du||L p(RN ,RN ) (1.80)

= c4||y − z||1−
N
p

RN ||Du||L p(RN ,RN ).

From (1.76) and (1.80) we conclude that

||u||C0,α(RN ) � ĉ ||Du||L p(RN ,RN )

for all u ∈ C∞(RN ), some ĉ > 0 depending on N , p and with α = 1 − N
p > 0.

For general u ∈ W 1,p(RN ) we know that we can find {un}n�1 ⊆ C∞
c (RN ) such

that un → u in W 1,p(RN ) (see Theorem 1.1.21) and we have pointwise convergence
on the set of Lebesgue points of u (see the proof of Theorem 1.1.21 and Proposition
1.1.3(b)). Given y, z ∈ R

N Lebesgue points of u, from the first part of the proof we
have

|un(y) − u(z)| � ĉ ||y − z||1− N
p ||Dun||L p(RN ,RN )

|un(z)| � c2 ||un||W 1,p(RN ).

Passing to the limit as n → ∞ and recalling that the set of Lebesgue points of u has
Lebesgue-null complement, we conclude the proof of the theorem. �

Remark 1.9.11 From the above proof it is clear that if u ∈ W 1,p(RN ) and ū ∈
C0,α(RN ) is its Hölder continuous representative, then ū(z) → 0 as ||z||RN → ∞.

Theorem 1.9.12 Assume that � is bounded with Lipschitz boundary ∂� and N <

p < ∞. Then W 1,p(�) is embedded continuously in C0,α(�̄) with α = 1 − N
p > 0.
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Proof Theorem 1.6.1 implies that there exists a linear continuous map
P : W 1,p(�) → W 1,p(RN ) such that Pu|� = u and Pu has compact support. We
can find {ûn}n�1 ⊆ C∞

c (RN ) such that

ûn → Pu in W 1,p(RN ) (see Theorem 1.1.21). (1.81)

From Theorem 1.9.10, we have

||ûn − ûk ||C0,α(RN ) � ĉ ||ûn − ûk ||W 1,p(RN ) for all n, k � 1

⇒ ûk → û in C0,α(RN )

⇒ û = Pu (see (1.81)), that is û is a version of Pu.

Recall that

||ûn||C0,α(RN ) � ĉ ||ûn||W 1,p(RN ) for all n � 1 (see Theorem 1.9.10)

⇒ ||û||C0,α(RN ) � ĉ ||Pu||W 1,p(RN )

⇒ ||u||C0,α(�̄) � ĉ ||u||1,p (recall that P is continuous).

The proof is now complete. �

Finally, we treat the limit case p = N . Note that p∗ = N p
N−p → +∞ as p → N−.

So we may claim that in this limit case every u ∈ W 1,N (�) belongs to L∞(�).
However, this is not true if N � 2. To see this, let � = B1(0) and consider the

function u(z) = ln
(
ln
(
1 + 1

||z||
RN

))
. Then u ∈ W 1,N (�), but u /∈ L∞(�). For this

case, we have the following result.

Theorem 1.9.13 The space W 1,N (RN ) is continuously embedded in Lq(RN ) for all
q ∈ [N ,+∞).

Proof Let u ∈ W 1,N (RN ) and define y = |u|t with t > 1 to be determined so that
y ∈ W 1,1(RN ). Using Theorem 1.9.3 with p = 1 and Proposition 1.4.2, we have

(∫

RN

|u| t N
N−1 dz

) N−1
N

=
(∫

RN

|y| N
N−1 dz

) N−1
N

�
∫

RN

||Dy||RN dz

� t
∫

RN

|u|t−1||Du||RN dz

� t

(∫

RN

|u|(t−1)N ′
dz

) 1
N ′

||Du||L N (RN ,RN )

(by Hölder’s inequality).
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Therefore

(∫

RN

|u| t N
N−1 dz

) N−1
t N

� c

(∫

RN

|u|(t−1) N
N−1 dz

) N−1
t N

||Du|| 1
t

L N (RN ,RN )

� c

[(∫

RN

|u|(t−1) N
N−1 dz

) N−1
N

1
t−1

+ ||Du||L N (RN ,RN )

]

(by Young’s inequality).
(1.82)

Taking t = N , we have

(∫

RN

|u| N2

N−1 dz

) N−1
N2

� c
[||u||L N (RN ) + ||Du||L N (RN ,RN )

]

⇒ u ∈ L
N2

N−1 (RN ) with continuous embedding.

As in the proof of Corollary 1.9.5, using the interpolation inequality, we obtain

||u||Lq (RN ) � c ||u||W 1,p(RN ) for all q ∈
[

N ,
N 2

N − 1

]
. (1.83)

Taking t = N + 1 � N 2

N−1 in (1.82) and using (1.83), we show

(∫

RN

|u| N (N+1)
N−1 dz

) N−1
N (N+1)

� c ||u||W 1,p(RN )

⇒ W 1,p(RN ) is embedded continuously in Lq(RN ) for all q ∈
[

N ,
N (N + 1)

N − 1

]
.

Continuing in this way, taking t = N + 2, t = N + 3, etc., we have

W 1,p(RN ) ↪→ Lq(RN ) continuously for all q ∈ [N ,+∞) .

The proof is now complete. �

As before (see for example Proposition 1.9.9 and Theorem 1.9.12), using the
extension operator and Theorem 1.9.12, we obtain the following property.

Theorem 1.9.14 Assume that � is bounded with Lipschitz boundary ∂�. Then
W 1,N (�) is embedded continuously in Lq(�) for all q ∈ [1,+∞).

So, summarizing the situation for bounded sets, we can state the following theo-
rem, known as the “Sobolev embedding theorem”.

Theorem 1.9.15 Assume that � is bounded with Lipschitz boundary ∂�. Then the
following properties are true:
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(a) if 1 � p < N, then W 1,p(�) ↪→ Lq(�) for all q ∈ [1, p∗] and the embedding
is compact for q ∈ [1, p∗);

(b) if p = N, then W 1,N (�) ↪→ Lq(�) for all q ∈ [1,∞) and the embedding is
compact;

(c) if N < p � ∞, then W 1,N (�) ↪→ C(�̄) and the embedding is compact.

Proof (a)The continuous embedding ofW 1,p(�) into Lq(�) for q ∈ [1, p∗] follows
fromProposition1.9.9.Weneed to show that the embedding is compact ifq ∈ [1, p∗).
By virtue of Theorem 1.7.6, we need to consider only the case q ∈ (p, p∗).

Let {un}n�1 ⊆ W 1,p(�) be bounded. We may assume that

un
w−→ u in W 1,p(�). (1.84)

Let t ∈ (0, 1) such that 1
q = t

p + (1−t)
p∗ . From the interpolation inequality, we have

||un − u||q � ||un − u||tp ||un − u||1−t
p∗ �

c ||un − u||tp for some c > 0, all n � 1 (see (1.84))

⇒ ||un − u||q → 0 (see Theorem 1.7.6).

This proves the compactness of the embedding W 1,p(�) ↪→ Lq(�) for q ∈
[1, p∗).

(b) Let {un}n�1 ⊆ W 1,N (�) be bounded. We may assume that

un
w−→ u in W 1,N (�). (1.85)

Let N < q < r < ∞ and t ∈ (0, 1) such that 1
q = t

N + 1−t
r . Using the interpola-

tion inequality, we have

||un − u||q � ||un − u||tN ||un − u||1−t
r �

c ||un − u||tp for some c > 0, all n � 1 (see (1.85))
⇒ ||un − u||q → 0 (see Theorem 1.7.6).

This proves the compactness of the embedding W 1,N (�) ↪→ Lq(�) for q ∈
[1,+∞).

(c) From Theorem 1.9.12 we have a continuous embedding of W 1,p(�) into

the Hölder space C0,α(�̄)
(
α = 1 − N

p

)
. By virtue of the Arzela–Ascoli theorem

C0,α(�̄) is embedded compactly in C(�̄). So, we conclude the compact embedding
of W 1,p(�) into C(�̄). �

Remark 1.9.16 If � is not bounded, then the embedding W 1,p(�) ↪→ L p(�) is not
in general compact. In (a) the embedding of W 1,p(�) in L p∗

(�) is never compact.

Of course, we can also state the Sobolev embedding theorem for higher order
Sobolev spaces (see Adams [2]).
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Theorem 1.9.17 Assume that � is bounded with Lipschitz boundary ∂�, 1 �
p, q < ∞, and m > k � 0 integers. Then

(a) W m,p(�) ↪→ W k,q(�) continuously if d = 1
p − m−k

N � 1
q and compactly if d <

1
q ;

(b) W m,p(�) ↪→ Ck,α(�̄) continuously if α = m − k − N
p and compactly if α <

m − k − N
p .

Remark 1.9.18 Part (a) is still valid if W 1,p(�) is replaced by W 1,p
0 (�). In fact, in

this case � can have arbitrary boundary ∂�.

1.10 Capacities. Miscellaneous Results

Capacity theory allows the study of small sets in R
N . One can show that in R

N there
are Lebesgue-null sets with capacity strictly bigger than zero. So, it makes sense to
speak about the values of a function u ∈ W 1,p(�) on a set D ⊆ � with p-capacity
bigger than zero. Such a set can be for example the boundary of an open set. Capacity
theory is useful when p � N , because for p > N , we know that for � bounded with
Lipschitz boundary ∂�, we have W 1,p(�) ↪→ C(�̄) compactly and then the only
set with p-capacity zero is the empty set. For this reason, in this section we assume
that 1 < p < N .

Definition 1.10.1 Let � ⊆ R
N be an open set and 1 < p < N .

(a) Given any open set U ⊆ �, the “p-capacity of U with respect to �” is defined
by

Capp(U ) = inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u(z) � 1 a.e. in U

}
.

(b) We can extend the notion of p-capacity to any subset A ⊆ � by setting

Capp(A) = inf
[
Capp(U ) : U ⊇ A, U open

]
.

The next proposition provides equivalent formulations of the p-capacity Capp(A)

for an arbitrary set A ⊆ �. Wemention that u � 1 a.e. in a neighborhood of A means
there exists an open set U ⊇ A, U ⊆ � such that u � 1 a.e. in U .

Proposition 1.10.2 (a) For any A ⊆ �, we have

Capp(A) = inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 1 a.e. in a neighborhood of A

}
.
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(b) We have

Capp(A) =
inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 0, u = 1 a.e. in a neighborhood of A

}
.

Proof (a) Let u ∈ W 1,p
0 (�) be such that u � 1 a.e. in a neighborhood of A. So, by

definition there exists an open set U, A ⊆ U ⊆ �, such that u � 1 a.e. in U . From
Definition 1.10.1 (a) we have

Capp(U ) �
∫

�

||Du||p
RN dz (1.86)

and from Definition 1.10.1 (b) we have

Capp(A) � Capp(U ). (1.87)

Then from (1.86) and (1.87) we have

Capp(A) � inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 1 a.e. in a neighborhood of A

}
.

We need to show that the opposite inequality is also true. We may assume that
Capp(A) < +∞ or otherwise the reverse inequality is true. By virtue of Definition
1.10.1 (b) given ε > 0 we can find Uε open such that A ⊆ Uε ⊆ � and

Capp(Uε) � Capp(A) + ε. (1.88)

According to Definition 1.10.1 (a), we can find uε ∈ W 1,p
0 (�) such that uε � 1

a.e. in Uε and

∫

�

||Duε||p
RN dz � Capp(Uε) + ε . (1.89)

From (1.88) and (1.89) it follows that

∫

�

||Duε||p
RN dz � Capp(A) + 2ε (1.90)

with uε ∈ W 1,p
0 (�), uε � 1 a.e. in a neighborhood of A. Therefore

inf

{∫

�

|||Du|p
RN dz : u ∈ W 1,p

0 (�), u � 1 a.e. in a neighborhood of A

}
�

Capp(A) + 2ε (see (1.90)).
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We let ε → 0+ to obtain the opposite inequality. So, in fact we have equality.
(b)Let f : R → R be defined by f (s) = min{1, s+} (recall that s+ = max{s, 0}).

Evidently f (·) is nonexpansive, that is, | f (s) − f (τ )| � |s − τ | for all s, τ ∈ R.
Suppose that u ∈ W 1,p

0 (�) satisfies u � 1 a.e. in a neighborhood of A. Then f ◦ u ∈
W 1,p

0 (�) (see Proposition 1.4.2 and Remark 1.4.3), f ◦ u � 0 and f ◦ u = 1 a.e. in
a neighborhood of A. Moreover, Propositions 1.4.4 and 1.4.5 imply that

∫

�

||D( f ◦ u)||p
RN dz �

∫

�

||Du||p
RN dz. (1.91)

It follows that

inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 0, u = 1

a.e. in a neighborhood of A}
�
∫

�

||D( f ◦ u)||p
RN dz �

∫

�

||Du||p
RN dz (see (1.91))

⇒ inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 0, u = 1

a.e. in a neighborhood of A}
� inf

{∫

�

||Du||p
RN dz : u ∈ W 1,p

0 (�), u � 1 a.e. in a neighborhood of A

}

=Capp(A) (see (a)).

The opposite inequality is clearly true. Therefore finally we have equality. �

Next we show that the notion of p-capacity is in fact a particular case of a Choquet
capacity (see Choquet [121, 122]).

Proposition 1.10.3 (a) If k ⊆ � is compact, then

Capp(K ) = inf

{∫

�

||Du||p
RN dz : u ∈ C∞

c (�), u(z) � 1 for all z ∈ K

}
.

(b) For every U ⊆ � open we have

Capp(U ) = sup
{
Capp(K ) : K ⊆ �, K is compact

}
.

Proof (a)For ε > 0,we set Kε = {z ∈ � : d(z, K ) < ε}.We can choose ε > 0 small
such that Kε ⊆ �. Suppose u ∈ W 1,p

0 (�) satisfies u � 1 a.e. in a neighborhood of K .
Then we can findU open, K ⊆ U ⊆ �, such that u � 1 a.e. inU . So, for ε > 0 small
we have u � 1 a.e. in Kε. As in the proof of Theorem 1.1.12, through truncation of
the domain and mollification, we can find {un}n�1 ⊆ C∞

c (�) such that for all n � 1
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un � 1 a.e. in a neighborhood of K and ||Dun||p → ||Du||p.

It follows that

Capp(K ) = inf

{∫

�

||Du||p
RN dz : u ∈ C∞

c (�), u � 1 in a neighborhood of K

}

� inf

{∫

�

||Du||p
RN dz : u ∈ C∞

c (�), u � 1 on K

}
.

On the other hand the opposite inequality holds since Capp(K ) � inf
ε>0

Capp(Kε).

Therefore equality holds.
(b) Evidently, Capp(·) is a monotone set function. Hence

sup
{
Capp(K ) : K ⊆ U, K is compact

}
� Capp(U ).

To prove the opposite inequality, we assume that the left-hand side is finite. We
can find {Kn}n�1 compact subsets of U such that ∪n�1Kn = U . For every n � 1, by
virtue of part (a) we can find un ∈ C∞

c (�) such that

∫

�

||Dun||p
RN dz � Capp(Kn) + 1

n
and un � 1 on Kn.

It follows that {un}n�1 ⊆ W 1,p
0 (�) is bounded. So, we may assume that un

w−→ u
in W 1,p

0 (�) with u ∈ W 1,p
0 (�). By Mazur’s lemma we obtain u � 1 a.e. in U . We

also have

Capp(U ) �
∫

�

||Du||p
RN dz

� lim inf
n→∞

∫

�

||Dun||p
RN dz

� lim inf
n→∞ Capp(Kn)

� sup
{
Capp(K ) : K is compact, K ⊆ U

}
.

Therefore equality holds. �

Next we deal with restrictions of continuous functions on nodal domains.

Definition 1.10.4 Let � ⊆ R
N be an open set and u ∈ C(�). Let Z(u) = {z ∈

�; u(z) = 0}. Then a “nodal domain” of u is a connected component of �\Z(u).

Proposition 1.10.5 Assume that � is bounded, X = W 1,p
0 (�) or X = W 1,p(�), u ∈

X ∩ C(�), and U is a nodal domain of u. Then û = uχU ∈ X and Dû = (Du)χU

a.e. in U.

Proof By definition, û is strictly positive or strictly negative inU , so wemay assume
that u|U > 0. Then replacing u by u+ (note that u+ ∈ X , see Proposition 1.4.4), we
may assume that u � 0.
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First we assume that X = W 1,p
0 (�). Then by virtue of Corollary 1.4.10, we can

find {un}n�1 ⊆ C∞
c (�), un � 0 such that un → u in W 1,p

0 (�). Let hn = min{u, un}.
Then hn ∈ W 1,p

0 (�) ∩ C(�̄) and has compact support. We claim that hn|∂� = 0. To
see this, first consider z ∈ � ∩ ∂U . Then since U is a nodal domain, u(z) = 0. Next
consider z ∈ ∂� ∩ ∂U . Then hn(z) = 0 since un has compact support.

Let ĥn = hnχU ∈ W 1,p(�) ∩ C(�̄) and ĥn|∂� = 0. Therefore ĥn ∈ W 1,p
0 (�) for

all n � 1 (see Theorem 1.5.4). Moreover, we have

Dû = (Du)χU , Dĥn = (Dhn)χU and hn → u in W 1,p(�)

⇒ ĥn → û in W 1,p(�)

⇒ û ∈ W 1,p
0 (�).

Next assume that X = W 1,p(�). Let z ∈ �, B a ball centered at z such that
B̄ ⊆ � and ϕ ∈ C∞

c (B) such that ϕ ≡ 1 in a neighborhood of z. We have ϕû ∈
W 1,p(U ∩ B) ∩ C(U ∩ B) and ϕû|∂(U∩B) = 0. Therefore ϕû ∈ W 1,p

0 (U ∩ B) (see
Theorem 1.5.4). This proves that û ∈ W 1,p

loc (�). On the other hand we can easily see
that Dû = (Du)χU , hence ||Dû(z)||RN � ||Du(z)||RN for a.a. z ∈ �. We conclude
that û ∈ W 1,p(�). �

Proposition 1.10.6 Assume that � is bounded with Lipschitz boundary ∂�, u ∈
W 1,p(�) ∩ C(�̄), u has finitely many nodal domains, and U ⊆ � is such a nodal

domain. Then û = uχŪ ∈ W 1,p(�) ∩ C(�̄) and û|∂�(z) =
{

u(z) if z ∈ ∂� ∩ ∂U
0 if z ∈ ∂�\∂U.

Proof From Proposition 1.10.5 we know that û ∈ W 1,p(�) ∩ C(�̄).
Let �+ = {z ∈ � : u(z) > 0} and without any loss of generality assume that �+

has two connected components U1 and U2.
Let h1 = uχŪ1

and h2 = uχŪ2
. Let B be a ball containing � (recall that � is

bounded) and extend u to a function in C1
c (B) (using a cut-off function). Then we

can find two sequences {vn}n�1, {yn}n�1 ⊆ C1(�̄) such that

supp vn ⊆ Ū1, supp yn ⊆ Ū2 for alln � 1

and
vn → h1, yn → h2 inW 1,p(�).

Then γ0(vn) → γ0(h1) and γ0(yn) → γ0(h2) in L p(∂�) (here γ0 is the trace map,
see Theorem 1.5.4). Also vn + un → u+ in W 1,p(�), hence γ0(vn + yn) → γ0(u+)

in L p(∂�). We have

γ0(u
+) =

{
u(z) if z ∈ ∂� ∩ ∂U1 or z ∈ ∂� ∩ ∂U2

0 otherwise
(see Theorem 1.5.4).(1.92)

Since supp vn ⊆ Ū1, supp yn ⊆ Ū2 and U1, U2 are disjoint, it follows that
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hk |∂�(z) =
{

u(z) if z ∈ ∂� ∩ ∂Uk

0 otherwise
for k = 1, 2.

The proof is now complete. �

Continuing with the presentation of some useful general results about Sobolev
spaces, we give some equivalent norms for them.

The next proposition is a direct consequence of the Sobolev embedding theorem
(see Theorem 1.9.15).

Proposition 1.10.7 If � ⊆ R
N (N � 2) is bounded with Lipschitz boundary ∂�,

then |u| = ||u||q + ||Du||p is an equivalent norm for W 1,p(�) provided

1 � q � p∗ when p ∈ [1, N ) ,

1 � q < ∞ when p = N ,

1 � q � ∞ when p > N .

In the one-dimensional case (that is, N = 1 and so � = I = (a, b), possibly
unbounded) we know the following property (see Theorem 1.2.2 and Theorem
1.9.15).

Theorem 1.10.8 (a) The Sobolev space W 1,p(I ) (1 � p � ∞) is continuously
embedded in C( Ī ).

(b) If I is bounded, then W 1,p(I ) (1 < p � ∞) is compactly embedded in C( Ī )
and W 1,1(I ) is compactly embedded in Lq(I ) for all 1 � q < ∞.

Remark 1.10.9 The embedding W 1,1(I ) in C( Ī ) is always continuous (see Theorem
1.10.8 (a) and Theorem 1.2.2), but it is never compact (even if I is bounded). Nev-
ertheless, we have the so-called “Helly’s selection theorem” (see Denkowski et al.
[143, p. 229], Kolmogorov and Fomin [245, p. 372] and Leoni [262, p. 59]), which
says that:

“If {un}n�1 ⊆ W 1,1(I ) is bounded, then we can extract a subsequence
{unk }k�1 of {un}n�1 which converges to a limit for every t ∈ I .”

Also, if I is unbounded, then W 1,p(I ) (1 < p � ∞) is embedded continuously
but never compactly in L∞(I ). However, if {un}n�1 ⊆ W 1,p(I ) (1 < p � ∞) is
bounded, then we can extract a subsequence {unk }k�1 of {un}n�1 and a u ∈ W 1,p(I )
such that

unk → u in L∞(T ) for all T ⊆ I bounded.

Then we have the following equivalent norms for W 1,p(I ).

Proposition 1.10.10 Assume that I is a bounded interval and 1 � p, q � ∞. Then
|u| = ||u||q + ||u′||p is an equivalent norm for W 1,p(I ).

To produce additional equivalent norms for the Sobolev spaces, we will need the
following general theorem (see Mazja [294, p. 27]).
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Theorem 1.10.11 Assume that � is bounded with Lipschitz boundary, 1 � p < ∞,
m � 1 is an integer, and we set

|u| =
⎡

⎣
∫

�

∑

||=m

|Dαu(z)|pdz +
r∑

k=1

fk(u)p

⎤

⎦
1/p

for all u ∈ W 1,p(�),

where fk : W m,p(�) → R are seminorms such that

0 � fk(u) � c||u||m,p for all u ∈ W m,p(�), all k ∈ {1, . . . , r}

(recall that ||u||m,p =
(
∑

||�m
||Dαu||p

p

)1/p

for all u ∈ W m,p(�), see Definition

1.1.10). Assume that fk(P) = 0 for all k ∈ {1, . . . , r}, where P : R
N → R is a poly-

nomial of degree less or equal to m − 1, implies P = 0. Then | · | and || · ||m,p are
equivalent norms for W m,p(�).

Using this theorem, we can suggest some more equivalent norms for the Sobolev
space W 1,p(�).

Proposition 1.10.12 Assume that � is bounded with Lipschitz boundary ∂� and
1 � p < ∞. Then the following norms are equivalent to the original norm || · ||m,p

of W m,p(�):

[
N∑

k=1

||Dku||p
p +
∣∣∣∣
∫

�

u dz

∣∣∣∣
p
]1/p

,

[
N∑

k=1

||Dku||p
p +
∣∣∣∣
∫

∂�

u dH N−1

∣∣∣∣
p
]1/p

,

[
N∑

k=1

||Dku||p
p +
∫

∂�

|u|p dH N−1

]1/p

.

If N = 1 and � = I = (a, b), −∞ < a < b < ∞, then
∫
∂ I udH 0 = −u(a) +

u(b).

Proof This follows directly from Theorem 1.10.11. In this case P is a constant
polynomial. �

Proposition 1.10.13 Assume that u ∈ W 1,p(�) 1 < p � ∞. Then there exists a
c > 0 such that for all �0 ⊂⊂ � and all h ∈ R

N with ||h||RN � d(�0, ∂�) we have

||τh(u) − u||L p(�0) � c||h||RN ,

where τh(u)(z) = u(z + h); in fact, c can be taken to be ||Du||p.



1.10 Capacities. Miscellaneous Results 65

Proof Let u ∈ C∞
c (RN ) and h ∈ R

N . We set

ϑ(t) = u(z + th) for all t ∈ R .

Then we have
ϑ′(t) = (Du(z + th), h)RN .

Hence

u(z + h) − u(z) = ϑ(1) − ϑ(0) =
∫ 1

0
ϑ′(t)dt =

∫ 1

0
(Du(z + th), h)RN dt

⇒ |τh(u)(z) − u(z)|p � ||h||p
RN

∫ 1

0
||Du(z + th)||p

RN dt (by Jensen’s inequality)

⇒
∫

�0

|τh(u) − u|pdz � ||h||p
RN

∫

�0

∫ 1

0
||Du(z + th)||p

RN dt dz

= ||h||p
RN

∫ 1

0

∫

�0

||Du(z + th)||p
RN dz dt

(by Fubini’s theorem)

= ||h||p
RN

∫ 1

0

∫

�0+th
||Du(y)||p

RN dy

(by a change of variables).

If ||h||RN < d(�0, ∂�), then there exists an open set �̂0 ⊂⊂ � such that �̂0 +
th ⊆ �0 for all t ∈ [0, 1] and so

||τh(u) − u||p
L p(�) � ||h||p

RN ||Du||p

L p(�̂0)
.

This proves the proposition for u ∈ C∞
c (RN ). For general u ∈ W 1,p(�) (1 � p <

∞), we use Theorem 1.1.25 (Friedrichs’ theorem).
Finally, for p = +∞, we use the result just proved for all 1 � p < ∞ and let

p → +∞. �

Corollary 1.10.14 Assume that � is connected and u ∈ W 1,∞(�). Then u has a
Lipschitz continuous representative û satisfying

|û(z) − û(y)| � ||Du||∞d�(z, y),

where d�(·, ·) denotes the “geodesic distance” from z to y in �; if � is convex, then
d�(z, y) = ||z − y||RN .

Finally, we conclude this section by stating Hardy’s inequality (see Brezis [74,
p. 313]).
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Theorem 1.10.15 Assume that � is bounded with Lipschitz boundary and 1 < p <

∞. Then
∥∥ u

d

∥∥
p

� c||Du||p for all u ∈ W 1,p
0 (�) with d(z) = d(z, ∂�) for all z ∈ �.

Conversely, we have

u ∈ W 1,p(�) and
u

d
∈ L p(�) ⇒ u ∈ W 1,p

0 (�).

1.11 Remarks

1.1:The spacesW m,p(�)were introducedbySobolev [388] in themid1930s and they
turned out to be very important in the development of partial differential equations.
Similar spaces were also used byMorrey [305] and later by Dautray and Lions [137].
In the literature we can find several books devoted to the theory of Sobolev spaces.
We mention the books of Adams [2], Adams and Fournier [3], Burenkov [96], Leoni
[262] and Tartar [401]. Valuable information about Sobolev spaces can also by found
in the books of Brezis [74], Evans [163], Evans and Gariepy [164] and Ziemer [429].
Initially there were two different approaches to the definition of the Sobolev spaces.
The original one due to Sobolev based on weak derivatives (see Definition 1.1.10)
and another one based on the completion of the space {u ∈ C∞(�) : ||u||m,p <

∞}. In fact, the latter spaces were denoted by H m,p(�). The result of Meyers and
Serrin [296] (see Theorem 1.1.23) clarified the situation and established that the two
approaches are in fact equivalent.

1.2: For a more detailed presentation of the one-dimensional case, which is natu-
rally related to the study of absolutely continuous functions (see Theorem 1.2.2 and
Remark 1.2.3), we refer to Brezis [74, Chap. 8], Kannan and Krueger [228], and
Natanson [315].

1.3: The important step of definingmore general mathematical objects that permit
us to define derivatives of any order for any locally integrable function, extending
in this way the notion of weak derivative (see Definition 1.1.6), was performed by
L. Schwartz, resulting in the theory of distributions (seeSchwartz [377]). The analysis
of Sobolev spaces and the study of their properties was facilitated significantly by the
theory of distributions. This is evident in the description of W 1,p

0 (�)∗ = W −1,p′
(�)

(see Theorem 1.3.9) and why such a convenient representation is not available for
W 1,p(�)∗ (see Theorem 1.3.7 and Remark 1.3.8). In the theory of distributions, an
important role is played by the “Radon measures”. In fact, Schwartz considered dis-
tributions as the natural generalization of the previously developed Radon measures.

Definition 1.11.1 A Radon measure μ is a linear functional on Cc(�) such that for
every compact K ⊆ �, the restriction of μ on

CK (�) = {u ∈ Cc(�) : supp u ⊆ K }

is continuous, that is, there exists a constant CK > 0 such that
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|μ(u)| � CK ||u||∞ for all u ∈ CK (�).

Remark 1.11.2 To a Radon measure μwe associate its restriction to C∞
c (�). So, we

can define the distribution

Lμ(u) =
∫

�

u(z)dμ(z) for all u ∈ C∞
c (�).

Evidently, the density ofC∞
c (�) inCc(�) implies thatμ is determined completely

by the distribution Lμ. Therefore the space of Radon measure Mr (�) is embedded in
the space of distributionsC∞

c (�)∗. Radonmeasures are important in variational anal-
ysis, in particular in connection with the theory of relaxation of integral functionals
(see Buttazzo [97], Roubicek [365]).

1.4: Theorem 1.4.1 and the chain rule in Proposition 1.4.2 are due to Marcus and
Mizel [286].

Using this chain rule, Marcus and Mizel [287] also proved the following result.

Proposition 1.11.3 Assume that � ⊆ R
N is open and f : R → R is Lipschitz con-

tinuous with f (0) = 0when � is unbounded. Then for every 1 � p < ∞, the Nemyt-
skii (superposition) operator N f : W 1,p(�) → W 1,p(�) defined by

N f (u) = f ◦ u

is continuous.

1.5: Various other geometric conditions on the boundary ∂� more general than
the Lipschitz condition (see Definition 1.5.1), which can be used for the development
of the trace theory (as well as the embedding theorems), can be found in Adams [2,
Chap. IV]. We mention that the first systematic study of traces was conducted by
J.-L. Lions [274]. In fact it is Lions who first introduced the space Vp(div,�) (see
Lions [275, Sect. 2.4]). The generalized Green’s identities in Proposition 1.5.14,
Corollary 1.5.16 and Corollary 1.5.17 are due to Casas and Fernandez [105] and
Kenmochi [231].

1.6: In the construction of the extension operator (see Theorem 1.6.1), we fol-
low Evans and Gariepy [164] (see Sect. 4.4, Theorem 1). This method is based on
reflections on smooth boundaries and has its origin in the work of Lichtenstein [270]
and later of Hestenes [207] and Seeley [380]. There is an alternative approach due
to Calderon [99] based on the Calderon–Zygmund theorem of singular integrals.

1.7: The Rellich–Kondrachov compact embedding result (see Theorem 1.7.4 and
Theorem 1.7.6) originated in a lemma of Rellich [353] on the compactness in L2(�)

of a set bounded in the norm
∫

�

[
u2 + ||Du||2

RN

]
dz.
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It was proved specifically for Sobolev spaces W 1,p(�) (1 � p < ∞) by Kondra-
chov [246]. As we will see several times, such compact embeddings are a basic tool
in the spectral analysis of linear elliptic partial differential operators.

1.8: Apparently, the name of Poincaré is associated with this result because he
used this kind of inequality in his work on tides. An extensive treatment of the
Poincaré inequality can be found in the book of Ziemer [429].

Proposition 1.11.4 (a) The Poincaré inequality does not hold on W 1,p
0 (�), if �

contains arbitrarily large balls, that is, if we can find {zn}n�1 ⊆ � and {rn}n�1 ⊆
(0,∞) such that rn → ∞ and Brn (zn) ⊆ � for all n � 1.

(b) If V ⊆ W 1,p(�) and V ↪→ L p(�) compactly, then the Poincaré inequality
holds on V if and only if the constant function 1 does not belong to V .

Remark 1.11.5 If �1 ⊆ �2 and Poincaré’s inequality holds for W 1,p
0 (�2) it also

holds for W 1,p
0 (�1), since each function u ∈ W 1,p

0 (�1) can be extended by zero to
a function in W 1,p

0 (�2).

In the next proposition, we provide an explicit value for the constant c > 0 in
Theorem 1.8.3 (the Poincaré–Wirtinger inequality), see Gilbarg and Trudinger [187,
p. 164] and Leoni [262, Sect. 12.2] and the papers of Acosta and Duran [1] (where
p = 1), Bebendorf [40] and Chua and Wheeden [124]. In what follows for every
u ∈ L1(�) and every D ⊆ �, we write

ū D = 1

λN (D)

∫

D
u(z)dz.

Also, for z0 ∈ R
N and r > 0, we set

Q(z0, r) = z0 +
(
− r

2
,

r

2

)N
.

Finally, we say that D ⊆ R
N is star-shaped with respect to z0 ∈ D if

t y + (1 − t)z0 ∈ D for all t ∈ (0, 1), all y ∈ D.

Proposition 1.11.6 (a) If � = R =
N∏

k=1
(0, bk) (a rectangle) and 1 � p < ∞ then

||u − ū R||p � N max{bk}N
k=1 ||Du||p for all u ∈ W 1,p(R).

(b) If � is a bounded open convex set and 1 � p < ∞, then there exists a constant
c = c(p, N ) > 0 such that

||u − ū�||p � c (diam �) ||Du||p for all u ∈ W 1,p(�).

(c) If � is an open star-shaped set with respect to z0 ∈ � and

Q(z0, 4r) ⊆ � ⊆ BR(z0)
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for some r, R > 0 then there exists a constant c = c(N ) > 0 such that

||u − ū�||p � cR p

(
R

r

)N−1

||Du||p for all u ∈ W 1,p(�).

Remark 1.11.7 In (b) we can take c = 1
4 when p = 1 and c = 1

π2 when p = 2. If
N = 1, then these constants are optimal. Also in the scalar case N = 1, we have

||u||2∞ � b

12
||u′||22 for all u ∈ W 1,2(0, b) with

∫ b

0
u(t) dt = 0

and ||u||p
∞ � bp−1||u′||p

p for all u ∈ W 1,p(0, b) with
∫ b

0
u(t) dt = 0,

all 1 < p < ∞.

The constants are optimal.

For higher order Sobolev spaces, we have the following result.

Proposition 1.11.8 Assume that � is bounded, 1 � p < ∞ and 0 � k � m are
integers. Then there exists a constant c = c(k, m, p, diam�) such that

||Dku||p � c ||Dmu||p for all u ∈ W m,p
0 (�).

1.9: Theorem 1.9.3 is due to Sobolev [388] for p > 1 and due to Gagliardo [178]
and Nirenberg [318] for p = 1. The best constant in this inequality (see Remark
1.9.4), was obtained independently by Aubin [23] and Talenti [399]. The case N < p
(see Theorem 1.9.10) is due to Morrey [305]. For the case p = N (see Theorem
1.9.13), Trudinger [406] proved that

∫

�

exp
[
|u| N

N−1

]
dz < ∞ for all u ∈ W 1,N (�).

1.10:Amore detailed study of the p-capacity can be found in the books of Adams
and Hedberg [4], Evans and Gariepy [164], Heinonen et al. [204] and Ziemer [429].
In these books the reader can find applications in the study of fine properties of
functions. Friedrichs [173] proved that for � bounded, we have

||u||2 � c
[||Du||2 + ||u||L2(∂�)

]
for some c > 0, all u ∈ H 1(�)

from which the third equivalent norm in Proposition 1.10.12 follows at once for
p = 2.



Chapter 2
Compact Operators and Operators
of Monotone Type

What is now proved was once only imagined.
William Blake (1757–1827)

Compact maps constitute a class of maps to which we can extend many of the results
which are valid for maps between finite-dimensional spaces. Compactness plays a
central role in the infinite-dimensional extension of degree theory (Leray–Schauder
degree, see Chap. 3) and in fixed point theory (see Chap. 4). The needs of problems
in the calculus of variations and in nonlinear functional equations led to the class of
operators of monotone type, which provides a broader framework than the class of
compact maps.

2.1 Compact and Completely Continuous Maps

Definition 2.1.1 Let X , Y be Banach spaces, D a nonempty subset of X and f :
D → Y .

(a) We say that f is “compact” if it is continuous and maps bounded subsets of
D into relatively compact subsets of Y . We denote the set of compact maps by
K (D, Y ).

(b) We say that f is “completely continuous” if for every sequence {xn}n�1 ⊆
D such that xn

w−→ x in X with x ∈ D, we have f (xn) → f (x) in Y . So, a
completely continuous map is sequentially continuous from D with the relative
weak topology into Y with the strong topology.

Remark 2.1.2 A word of caution. Although the above terminology seems to be the
most popular among analysts, it is not universal. In the literature the names compact
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and completely continuous are used to denote different things. So, the reader should
check to see inwhich context each author uses these terms. In general, the two notions
introduced in the above definition are distinct. Nevertheless, in some particular cases
of interest, the two are related.

Proposition 2.1.3 If X is reflexive, D ⊆ X is nonempty, closed convex and f : D →
Y is completely continuous, then f : D → Y is compact.

Proof Evidently, f (·) is continuous. Let B ⊆ D be bounded.Wewill show that f (B)

is compact. So, let {yn}n�1 ⊆ f (B). We will show that {yn}n�1 admits a strongly
convergent subsequence. We have yn = f (xn) with xn ∈ B for all n � 1. Since X is
reflexive and B is bounded, by passing to a subsequence if necessary, wemay assume
that xn

w−→ x and x ∈ D (recall that D is closed and convex, hence it is w-closed).
So, the complete continuity of f implies yn = f (xn) → f (x) = y and proves the
compactness of f (·). �

The set of linear elements of K (X, Y ) will be denoted by Lc(X, Y ). So,

Lc(X, Y ) = L (X, Y ) ∩ K (X, Y ) .

As a direct consequence of Proposition 2.1.3, we have:

Proposition 2.1.4 If X is reflexive, then A ∈ Lc(X, Y ) if only if A is completely
continuous.

Clearly, K (X, Y ) is a vector space and it is closed under composition with a
continuous, bounded map (recall that bounded means that it maps bounded sets to
bounded sets).

Proposition 2.1.5 Assume that fn, f : D → Y , fn is compact and fn(x) → f (x)

in Y for all x ∈ D and the convergence is uniform on bounded subsets of D. Then
f ∈ K (D, Y ).

Proof Let B ⊆ D be nonempty and bounded. We need to show that f (B) is totally
bounded. By hypothesis, given ε > 0, we can find n0 � 1 such that

‖ f (x) − fn0(x)‖Y � ε

3
for all x ∈ B. (2.1)

Since fn0 is compact, fn0(B) is relative compact and so we can find {xk}m
k=1 ⊆

B such that

fn0(B) ⊆
m⋃

k=1

B ε
3
( f (xk))

(
B ε

3
( f (xk)) = {y ∈ Y : ‖y − f (xk)‖Y � ε

3
}
)

. (2.2)

Then for every x ∈ B, we can find k ∈ {1, 2, ...m} such that
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‖ f (x) − f (xk)‖Y � ‖ f (x) − fn0(x)‖Y + ‖ fn0(x) − fn0(xk)‖Y

+‖ fn0(xk) − f (xk)‖Y � ε (see (2.1), (2.2))

⇒ f (B) is totally bounded, hence relatively compact in Y

⇒ f ∈ K (D, Y ).

The proof is now complete. �

By Definition 2.1.1, we see that if Y is finite-dimensional, then every continuous
bounded map into Y is compact. This simple observation leads to the following
definition.

Definition 2.1.6 Let X , Y be Banach spaces, D ⊆ X a nonempty subset and f :
D → Y . We say that f is of “finite rank” if f is continuous, bounded and the range
of f is a finite-dimensional subspace of Y . The set of finite rank maps from X into
Y is denoted by K f (X, Y ).

The next theorem, known in the literature as the “Schauder approximation theo-
rem”, explains why the family of compact maps is the right one to consider in order
to extend results from the finite-dimensional theory.

Theorem 2.1.7 (Schauder) If D ⊆ X is bounded and f : D → Y , then the following
statements are equivalent:

(a) f ∈ K (D, Y );
(b) Given any ε > 0, we can find fε ∈ K f (D, Y ) such that

‖ fε(x) − f (x)‖Y � ε for all x ∈ D

range fε ⊆ conv f (D)

Proof (a) ⇒ (b) Since f ∈ K (D, Y ), f (D) is compact and so given ε > 0, we can
find {yk}m

k=1 ⊆ Y such that f (D) ⊆ ⋃m
k=1 Bε(yk) ((Bε(yk) = {y ∈ Y : ‖y − yk‖Y <

ε})).
Let {ϕk}m

k=1 be a continuous partition of unity subordinate to this cover, that is,
ϕk ∈ C(Y ), suppϕk ⊆ Bε(yk), 0 � ϕk � 1 for all k ∈ {1, ..., m} and∑m

k=1 ϕk(y) =
1 for all y ∈ f (D).

Let fε(x) = ∑m
k=1 ϕk( f (x))yk for all x ∈ D. Ifϕk( f (x)) > 0, thenϕk( f (x))yk ∈

Bε(yε) and

‖ fε(x) − f (x)‖Y = ‖
m∑

k=1

ϕk( f (x))yk − f (x)‖Y

= ‖
m∑

k=1

ϕk( f (x))(yk − f (x))‖Y (since
m∑

k=1

ϕk( f (x)) = 1)

� ε (since f (x) ∈ Bε(yk)).

Evidently, range fε ⊆ conv f (D).
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(b) ⇒ (a) According to statement (b), we can find { fn}n�1 ⊆ K f (D, Y ) such
that

fn → f uniformly on D.

Since K f (D, Y ) ⊆ K (D, Y ), we conclude from Proposition 2.1.5 that f ∈
K (D, Y ). �

Proposition 2.1.8 If D ⊆ X is bounded and f ∈ K (D, Y ), then f (x) = ∑
n�0

hn(x) for all x ∈ D, with hn ∈ K f (D, Y ) for all n � 0 and ‖hn(x)‖Y � ε
2n for all

x ∈ D and all n � 1, and ‖h0(x) − f (x)‖Y � ε
4 for all x ∈ D.

Proof According to Theorem 2.1.7, we can find fn ∈ K f (D, Y ) such that

‖ fn(x) − f (x)‖Y � ε

2n+2
for all x ∈ D and all n � 0.

Inductively, we define {hn}n�0 by

h0 = f0, hn = fn − fn−1, n � 1.

Then fn = ∑n
k=1 hk and fn = ∑n

k=1 hk → f on D. Also

‖hn(x)‖Y = ‖ fn(x) − fn−1(x)‖Y � ‖ fn(x) − f (x)‖Y + ‖ fn−1(x) − f (x)‖Y

� ε

2n+2
+ ε

2n+1
<

ε

2n

⇒
∑

n�0

‖hn(x)‖Y is uniformly convergent onD

⇒
∑

n�0

hn → f uniformly onD.

The proof is now complete. �

Compact maps admit compact extensions. This can be established using the fol-
lowing extension result, known in the literature as the “Dugundji extension theorem”.

Proposition 2.1.9 If (X, d) is a metric space, Y is a normed space, D ⊆ X is a
nonempty closed and f ∈ C(D, Y ), then there exists an f̂ ∈ C(X, Y ) such that
f̂ |D= f and f̂ (X) ⊆ conv f (D).

Proof For each x ∈ X \ D let Bx be an open ball with diam Bx < d(Bx , D). Then
{Bx }x∈X\D is an open cover of X \ D.We canfind a locally finite, continuous partition
of unity {ϕi }i∈J . Therefore

ϕi ∈ C(X \ D), suppϕi ⊆ Bx(i),
∑

i∈J

ϕi (x) = 1 for all x ∈ X \ D and (2.3)
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each x ∈ X \ D has a neighborhood V (x) such that all but finitely many ϕi ’s are
zero on V (x).

For each u ∈ X \ D, we choose hu ∈ D such that d(hu, Bu) < 2d(Bu, D) and
define

f̂ (x) =
⎧
⎨

⎩

f (x) if x ∈ D∑

i∈J
ϕi (x) f (hu(i)) if x ∈ X \ D. (2.4)

From (2.3) we see that f̂ is well defined and f̂ (x) ⊆ conv f (D) for all x ∈ X .
Note that f̂ (·) is continuous in intD (may be empty) and in X \ D. It remains to

show the continuity of f̂ on ∂D. Let x0 ∈ ∂D. Then f (x0) = f̂ (x0) (see (2.4)). If
x ∈ X \ D and ϕi (x) �= 0, then x ∈ Bu , where we set u = u(i). Using the triangle
inequality, we have

d(hu, x) � d(hu, Bu) + diam Bu � 3d(Bu, D) � 3d(x, x0)
⇒ d(hu, x0) � d(hu, x) + d(x, x0) � 4d(x, x0).

Since 0 � ϕi (x) � and ϕi (x0) = 0 for d(hu(i), x0) > 4d(x, x0), we have

|| f̂ (x) − f̂ (x0)||Y = ||
∑

i∈J
ϕi (x)( f (hu(i)) − f (x0))||Y

� sup
{|| f (hu(i)) − f (x0)||Y : i ∈ J, d(hu(i), x0) � 4d(x, x0)

}
.

If {xn}n�1 ⊆ X \ D and xn → x0 in (X, d), then the continuity of f implies

sup{‖ f (hu(i)) − f (x0)‖Y : i ∈ J, d(hu(i), x0) � 4d(xn, x0)} → 0

⇒ f̂ (xn) → f̂ (x0) in Y.

If {xn}n�1 ⊆ D and xn → x0, then f (xn) = f̂ (xn) and so f̂ (xn) → f̂ (x0) in Y.

This proves the continuity of f̂ . �

This leads to the following existence result for compact maps. Now we return to
the setting of Definition 2.1.1 with X, Y being Banach spaces.

Proposition 2.1.10 If D ⊆ X is closed and bounded and f ∈ K (D, Y ), then there
exists an f̂ ∈ K (X, Y ) such that f̂ |D= f and f̂ (X) ⊆ conv f (D).

Proof By virtue of Proposition 2.1.9 we already have a continuous extension f̂ of
f . We know that f̂ (X) ⊆ conv f (D) and f (D) is relatively compact (since f ∈
K (D, Y )) and hence so is conv f (D). So, we conclude that f̂ ∈ K (X, Y ). �

We also have an extension theorem without assuming that D ⊆ X is bounded.

Proposition 2.1.11 If D ⊆ X is closed, f ∈ K (D, Y ) and δ > 0, then there exists
an f̂δ ∈ K (X, Y ) such that f̂δ |D= f and d( f̂δ(x), conv f (D)) � δ for all x ∈ X.
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Proof By Proposition 2.1.8 we know that f = ∑
n�0

hn with hn ∈ K f (D, Y ) for all

n � 0 and ‖hn(x)‖Y � ε
2n for all n � 1. By the Tietze extension theorem, we can

find ĥn ∈ C(X, Yn) with dim Yn < ∞, ĥn |D= hn for all n � 0 and ‖ĥn(x)‖Y � ε
2n

for all x ∈ D and all n � 0, and ‖ĥ(x)‖Y � ‖ f (x)‖Y + ε
4 for all x ∈ D. So, for each

n � 0 ĥn is compact. We set

f̂ (x) =
∑

n�0

ĥn(x) for all x ∈ X. (2.5)

We have

d(ĥ0(x), conv f (D)) � ‖ĥ0(x) − f (x)‖Y �
∑

n�0

ε

2n
= ε. (2.6)

Also, for x ∈ conv h0(D), we have

x =
m∑

k=1

ϑkh0(xk) with ϑk ∈ [0, 1], xk ∈ D

⇒ ‖x −
m∑

k=1

ϑk f (xk)‖Y �
m∑

k=1

ϑk‖h0(xk) − f (xk)‖Y � ε.

Choosing ε = δ
3 , then f̂ is the desired extension, since f̂ is compact (see (2.5))

and
d( f̂ (x), conv f (D)) � ‖ f̂ (x) − ĥ0(x)‖Y + d(ĥ0(x), conv f (D))

�
∑

k�1

ε

2n
+ ε = 2ε < δ (see (2.5), (2.6)).

The proof is now complete. �

Proposition 2.1.12 If D ⊆ X is open and f ∈ K (D, Y ) is Fréchet differentiable in
D, then f ′(x) ∈ Lc(X, Y ) for all x ∈ D.

Proof Let x ∈ D. We have

f (x + h) = f (x) + f ′(x)h + w(x; h), (2.7)

where ‖w(x;h)‖Y
‖h‖X

→ 0 as ‖h‖X → 0. So, given ε > 0, we can find δ = δ(ε, x) >

0 such that

‖w(x; h)‖Y � ε‖h‖X for all ‖h‖X � δ. (2.8)

Then set B1 = {h ∈ X : ‖h‖X � 1} and B1(x) = x + B1. We have
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δ f ′(x)B1 ⊆ − f (x) + f (δB1) + δεB1 (see (2.7), (2.8))

⇒ f ′(x)B1 ⊆ −1

δ
f (x) + 1

δ
f (δB1) + εB1. (2.9)

Since 1
δ

f (δB1) − 1
δ

f (x) is relatively compact, it follows by (2.9) that f ′(x)B1

is relative compact and so f ′(x) ∈ Lc(X, Y ). �

2.2 Proper Maps and Gradient Maps

It iswell known that the direct image of a compact set by a continuousmap is compact.
In this section we study continuous maps whose inverse image of a compact set is
compact. Clearly not every continuous map has this property. The importance of this
class of continuous maps comes from fact that if f : X → Y is such a map, then the
solution set of the functional equation f (x) = y is compact.

Definition 2.2.1 Let X, Y be metric spaces and f ∈ C(X, Y ). We say that f is
“proper” if for any compact K ⊆ Y, f −1(K ) is compact in X .

Remark 2.2.2 It is immediately clear from the definition that if X, Y are normed
spaces and L ∈ L (X, Y ) is proper, then L has closed range.

In the next proposition,we present alternative equivalent definitions of properness.

Proposition 2.2.3 If X, Y are metric spaces and f ∈ C(X, Y ), then the following
statements are equivalent:

(a) f is proper;
(b) for every y ∈ Y, the set f −1(y) ⊆ X is compact and f is closed (that is, it maps

closed sets to closed sets);
(c) every sequence {xn}n�1 ⊆ X such that f (xn) → y in Y has a subsequence

{xnk }k�1 ⊆ X that converges to x ∈ X.

Proof (a) ⇒ (b)Since K = {y} ⊆ Y is compact,we have that f −1(K ) = f −1(y) ⊆
X is compact. We need to show that f is closed. So, let C ⊆ X be closed and let
{yn}n�1 ⊆ f (C) such that yn → y in Y with y ∈ Y . We have yn = f (xn) with xn ∈
C for all n � 1 and K = {yn, y}n�1 ⊆ X is compact. Then f −1(K ) is compact in
X and {xn}n�1 ⊆ f −1(K ). So, by passing to a subsequence if necessary, we may
assume that xn → x in X with x ∈ C (recall that C is closed in X). The continuity
of f implies y = f (x) and so y ∈ f (C), which proves that f is closed.

(b) ⇒ (c) Consider a sequence {xn}n�1 ⊆ X such that f (xn) → y in Y with
y ∈ Y . We will show that the sequence {xn}n�1 has a cluster point. So, let Dm =
{xn}n�m . Since f is by hypothesis closed, we have f (Dm) = f (Dm) for all m � 1.
Also, because f (xn) → y, we have
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{y} =
⋂

m�1

f (Dm) =
⋂

m�1

f (Dm).

If x ∈ C = f −1(y) then

f (x) ∈
⋂

m�1

f (Dm)

⇒ Em = C ∩ Dm is nonempty and closed for every m � 1.

But C is compact and the family of closed subsets {Em}m�1 of C has the finite
intersection property. Therefore ∩m�1Em = C ∩ (∩m�1Dm

) �= ∅ and so we con-
clude that {xn}n�1 has a cluster point.

(c) ⇒ (a) Let K ⊆ Y be compact and let {xn}n�1 ⊆ f −1(K ). It follows that
{ f (xn)}n�1 ⊆ K and so we may assume that f (xn) → y ∈ K . Then by hypothesis,
we can find a subsequence {xnk }k�1 of {xn}n�1 such that xnk → x ∈ X . Evidently,
f (xnk ) → f (x) = y ∈ K and so x ∈ f −1(K )which proves that f −1(K ) is compact
and so f is proper. �

If X, Y are finite-dimensional normed spaces, then properness is equivalent to
coercivity.

Proposition 2.2.4 If X, Y are finite-dimensional normed spaces and f ∈ C(X, Y ),
then the following properties are equivalent:

(a) f is proper;
(b) f is coercive (that is, ‖ f (x)‖Y → +∞ when ‖x‖X → ∞).

Proof (a) ⇒ (b) Recall that in finite-dimensional normed spaces, bounded sets are
relatively compact. Also, since f ∈ C(X, Y ), for every B ⊆ Y we have f −1(B) ⊆
f −1(B). Therefore the properness of f implies that the inverse image of a bounded
set in Y is a bounded set in X . This is a restatement of the property of coercivity.

(b) ⇒ (a) Let K ⊆ Y be compact. Then K is bounded and so the coercivity
of f implies that f −1(K ) is bounded, hence relatively compact in X . Note that
f −1(K ) ⊆ f −1(K ) = f −1(K ) (since f ∈ C(X, Y )) and so f −1(K ) is closed, hence
compact in X . This proves that f is proper. �

If the normed spaces X, Y are infinite-dimensional, then the above equivalence is
no longer true. Nevertheless, in some particular cases we can still have some relation
between coercivity and properness.

Proposition 2.2.5 If X, Y are normed spaces, f ∈ C(X, Y ) is coercive and f =
g + h with g proper and h compact, then f is proper.

Proof Let {xn}n�1 ⊆ X such that yn = f (xn) → y ∈ Y . The coercivity of f implies
that {xn}n�1 ⊆ X is bounded. Then the compactness of h implies that {h(xn)}n�1 is
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relatively compact in Y . So, we may assume that h(xn) → y ∈ Y . We have g(xn) =
yn − h(xn) → y − ŷ in Y. Since g is proper, from Proposition 2.2.3 we see that we
may assume that xn → x in X . The continuity of g implies g(xn) → g(x) in Y .
So g(x) = y − ŷ and f (x) = y, which proves the properness of f (see Proposition
2.2.3). �

Proposition 2.2.6 If X is a reflexive Banach space, Y is a normed space, f ∈
C(X, Y ) and is coercive and xn

w−→ x in X with { f (xn)}n�1 strongly convergent in
Y imply xn → x in X, then f is proper.

Proof Let {xn}n�1 such that f (xn) → y in Y . The coercivity of f implies that
{xn}n�1 ⊆ X is bounded. The reflexivity of X implies that we may assume that

xn
w−→ x in X . Then by hypothesis we have xn → x in X . Therefore by virtue of

Proposition 2.2.3, f is proper. �

Proposition 2.2.7 If X is a compact metric space, Y is a metric space and f ∈
C(X, Y ), then f is proper.

Proof The continuity of f implies for all y ∈ Y , f −1(y) is closed in X , hence
compact (recall that X is compact). Also, if C ⊆ X is closed, it is compact. Hence
f (C) is compact in Y , in particular then closed too. So, we have proved that f is
closed. By virtue of Proposition 2.2.3, f is proper. �

Proposition 2.2.8 If X, Y are metric spaces and f ∈ C(X, Y ) is injective, then the
following statements are equivalent:

(a) f is proper;
(b) f is closed;
(c) f is bicontinuous from X onto f (X).

Proof (a) ⇒ (b) See Proposition 2.2.3.
(b) ⇒ (c) Since f is closed, f (X) is closed in Y . Let C ⊆ X be closed. Then

f (C) = ( f −1)−1(C) (since f is bijective from X onto f (X)) is closed in Y and so
f −1 is continuous.

(c) ⇒ (a) See Proposition 2.2.3. �

The next proposition is an easy consequence of Definition 2.2.1 and Proposition
2.2.3.

Proposition 2.2.9 If X,Y,Z are metric spaces and f ∈ C(X, Y ), g ∈ C(Y, Z), then

(a) if f and g are proper, then g ◦ f is proper;
(b) if g ◦ f is proper, then f is proper;
(c) if g ◦ f is proper and f is surjective, then g is proper.

Proper maps f ∈ C(X, Y ) exhibit a stability property of the solution set

S( f, y) = {x ∈ X : f (x) = y}

as f and y vary.
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Proposition 2.2.10 If X, Y are metric spaces and f ∈ C(X, Y ) is proper, then

(a) for every y ∈ Y and every ε > 0, there exists a δ > 0 such that

dY ( f (x), y) � δ ⇒ dX (x, S( f, y)) � ε;

(b) for every ε > 0, there exists a δ > 0 > such that

g ∈ C(X, Y ) and dY (g(x), f (x)) � δ for all x ∈ X ⇒ dX (S(g, y), S( f, y)) � ε.

Proof (a) Arguing by contradiction, suppose that the statement is not true. Then we
can find ε > 0, y ∈ Y and {xn}n�1 ⊆ X such that

dY ( f (xn), y) � 1

n
and dX (xn, S( f, y)) � ε for all n � 1. (2.10)

Note that f (xn) → y in Y . Then the properness of f and Proposition 2.2.3 imply
that, passing to a suitable subsequence if necessary, we may assume that xn → x in
X with x ∈ X . The continuity of f implies f (x) = y, hence x ∈ S( f, y). On the
other hand, from (2.10), we have dX (x, S( f, y)) � ε, a contradiction.

(b) This is an immediate consequence of (2.10). �

Now we turn our attention to gradient maps.

Definition 2.2.11 Let X be a Banach space, X∗ its topological dual and D ⊆ X
an open set. We say that f ∈ C(D, X∗) is a “gradient map” if there is a function
F ∈ C1(D) such that F ′(x) = f (x) for all x ∈ D. We say that F is the “potential”
of f and we write f (x) = ∇F(x) = (grad F)(x).

The next example is important in the study of boundary value problems.

Example 2.2.12 Let � ⊆ R
N be an open set and consider a Carathéodory function

g : � × R → R (that is, for all x ∈ R the mapping z �→ g(z, x) is measurable and
for a.a. z ∈ � the mapping x �→ g(z, x) is continuous). Suppose that

|g(z, x)| � α(z) + c|x |p−1 for a.a. z ∈ �, all, x ∈ R, (2.11)

whereα ∈ L p′
(�) ( 1

p + 1
p′ = 1) and c > 0.LetG(z, x) = ∫ x

0 g(z, x)ds and consider
the functional F : L p(�) → R defined by

F(u) =
∫

�

G(z, u(z))dz for all u ∈ L p(�).

We will show that F is the potential of the Nemytskii operator Ng : L p(�) →
L p′

(�) defined by

Ng(u)(·) = g(·, u(·)) for all u ∈ L p(�).
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So, we will show that F ∈ C1(L p(�)) and ∇F(u) = Ng(u) for all u ∈ L p(�).
To this end, for every h ∈ L p(�), we have

G(z, (u + h)(z)) − G(z, u(z)) =
∫ 1

0

d

dt
G(z, (u + th)(z))dt =

∫ 1

0
g(z, (u + th)(z))h(z)dt

⇒ F(u + h) − F(u) =
∫

�

∫ 1

0
g(z, (u + th)(z))h(z)dtdz

⇒ F(u + h) − F(u) −
∫

�

g(z, u(z))h(z)dz

=
∫

�

∫ 1

0
[g(z, (u + th)(z)) − g(z, u(z))]h(z)dtdz.

(2.12)
We set

w(h) = F(u + h) − F(u) −
∫

�

g(z, u(z))h(z)dz for all h ∈ L p(�).

From (2.12) and using the Fubini theorem and Hölder’s inequality, we have

|w(h)| �
∫

�

∫ 1

0
|g(z + (u + th)(z)) − g(z, u(z))||h(z)|dtdz

�
∫ 1

0
‖Ng(u + th) − Ng(u)‖p′dt ‖h‖p .

(2.13)

Exploiting the continuity of the Nemytskii operator and invoking the Lebesgue
dominated convergence theorem (see (2.11)), we have

∫ 1

0
‖Ng(u + th) − Ng(u)‖p′dt → 0 as ‖h‖p → 0

⇒ |w(h)|
‖h‖p

→ 0 as ||h||p → 0 (see (2.13)).

Therefore we conclude that

F ∈ C1(L p(�)) and ∇F(u) = Ng(u) for all u ∈ L p(�).

Gradient operators are actually generalizations of self-adjoint operators.

Proposition 2.2.13 If X is reflexive Banach space, X∗ its topological dual, 〈·, ·〉 the
duality brackets for the pair (X∗, X), D ⊆ X is open, convex and contains the origin
and f ∈ C1(D, X∗), then the following statements are equivalent:
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(a) f is a gradient map;
(b)

∫
γ fds is independent of the path γ provided γ is simple and rectifiable in D;

(c)
∫ 1
0 〈 f (t x), x〉dt − ∫ 1

0 〈 f (tu), u〉dt = ∫ 1
0 〈 f (c(t)), x − u〉dt, where c(t) = t x +

(1 − t)u for all t ∈ [0, 1] and with x, u ∈ D.
(d) f ′(x) ∈ L (X, X∗) is self-adjoint for all x ∈ D.

Proof (a) ⇒ (b)Since f is a gradientmap,we canfind F ∈ C1(D) such that f (x) =
F ′(x) for all x ∈ D. Let γ be a simple, rectifiable curve in D and suppose that γ has
a parametric representation γ = {c(t) : 0 � t � 1}. We have

∫
γ f ds =

∫ 1

0
f (c(t))c′(t) dt =

∫ 1

0
F ′(c(t))c′(t)dt

=
∫ 1

0

d

dt
F(c(t))dt

= F(c(1)) − F(c(0)).

(b) ⇒ (c) Let γ1 be the path in D obtained by joining linearly the origin with
x and u. Also, let γ2 be the path obtained by joining linearly directly x and u. The
curve γ1 contains two line segment joining {0, x} and {0, u} and so it is parametrized
as follows:

γ1 : γ1 = γ1
x ∪ γ1

u with γ1
x : c1(t) = t x and γ2

u : c2(t) = tu for all t ∈ [0, 1].

Hence, as above, we have

∫

γ1

f ds =
∫

γ∗
1

f ds −
∫

γu
1

f ds =
∫ 1

0

d

dt
F(t x)dt −

∫ 1

0

d

dt
F(tu)dt

=
∫ 1

0
〈 f (t x), x〉dt −

∫ 1

0
〈 f (tu), u〉dt.

(2.14)

The parametric representation for γ2 is:

γ2 : c(t) = t x + (1 − t)u for all t ∈ [0, 1].

Then

∫

γ2

f ds =
∫ 1

0

d

dt
F(c(t))dt =

∫ 1

0
〈 f (c(t)), x − u〉dt. (2.15)

From (2.14), (2.15) and (b), we get the desired equality.
(c) ⇒ (d) Note that (c) implies

F(x + λh) − F(x) = λ

∫ 1

0
〈 f (x + tλh), h〉dt.
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Letting λ → 0+ we see that the Gâteaux derivative of F is F ′(x)(h) = 〈 f (x), h〉.
Since f ∈ C1(D, X∗), we see that F ∈ C2(D) and

F ′′(x)(h1, h2) = 〈 f ′(x)h1, h2〉 = 〈 f ′(x)h2, h1〉 for all h1, h2 ∈ X

⇒ f ′(x) ∈ L (X, X∗) is self-adjoint.

(d) ⇒ (a) Let F(x) = ∫ 1
0 〈 f (t x), x〉dt . We have

F(x + h) − F(x) =
∫ 1

0
〈 f (t x + th), h〉dt +

∫ 1

0
〈 f (t x + th) − f (t x), x〉dt.

(2.16)
Then

∫ 1

0
〈 f (t x + th) − f (t x), x〉dt

=
∫ 1

0

[∫ t

0

d

ds
〈 f (t x + sh), x〉ds

]
dt

=
∫ 1

0

∫ t

0
〈 f ′(t x + sh)x, h〉dsdt (see (d))

=
∫ 1

0

∫ 1

s
〈 f ′(t x + sh)x, h〉dtds (Fubini’s theorem)

=
∫ 1

0
〈 f (x + sh) − f (sx + sh), h〉ds

⇒ F(x + h) − F(x) =
∫ 1

0
〈 f (x + sh), h〉ds (see (2.16))

⇒ 1

‖x‖X
|F(x + h) − F(x) − 〈 f (x), h〉| → 0 as ‖h‖X → 0

⇒ F ′(x) = f (x) for all x ∈ D.

The proof is now complete. �

2.3 Linear Compact Operators

In this section we focus on linear operators which are compact. So, let X and Y be
Banach spaces.We consider the spaceLc(X, Y ), that is, the bounded linear operators
which are compact. In the case of linear operators, the definition of compactness (see
Definition 2.2.1) takes the following simple form.

Definition 2.3.1 Let X, Y be Banach spaces and A : X → Y a linear operator. We
say that A is “compact” if it maps the closed unit ball B1 = {x ∈ X : ‖x‖X � 1} onto
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a relatively compact set. The space of such operators is denoted byLc(X, Y ) and if
X = Y , then we write Lc(X).

Remark 2.3.2 Of course, not every linear operator is compact. For example, let X
be an infinite-dimensional Banach space and let I be the identity operator on X . This
operator is continuous but not compact.

Proposition 2.3.3 If X, Y are Banach spaces, then Lc(X, Y ) is a closed linear
subspace of L (X, Y ).

Proof This is an immediate consequence of Proposition 2.1.5 �
The next proposition says that Lc(X) is closed two sided ideal of the Banach

algebra L (X). Its proof is a straightforward consequence of Definition 2.1.1(a).

Proposition 2.3.4 If X is a Banach space, K ∈ Lc(X) and A ∈ L (X), then K A ∈
Lc(X) and AK ∈ Lc(X).

This result has an interesting consequence concerning the continuity of inverses.

Corollary 2.3.5 If X is an infinite-dimensional Banach space and K ∈ Lc(X) such
that K −1 exists, then K −1 is not continuous.

Proof Suppose that K −1 ∈ L (X). Then by Proposition 2.3.3, we obtain that I =
K −1K ∈ Lc(X), which contradicts the infinite-dimensionality of X . �

Next, we show that compactness is a property passed to the adjoint operator.

Theorem 2.3.6 (Schauder) If X, Y are Banach spaces and K ∈ Lc(X, Y ), then
K ∗ ∈ Lc(Y ∗, X∗).

Proof Let B
X
1 = {x ∈ X : ‖x‖X � 1} (the closed unit ball in X). Since K ∈ Lc

(X, Y ), we have that K (B X
1 ) ⊆ Y is compact.

Let {y∗
n }n�1 ⊆ B

Y ∗
1 = {y∗ ∈ Y ∗ : ||y∗||Y ∗ � 1}. Let ŷ∗

n = y∗
n |

K (B1
X
)
, n � 1. Then

{ŷ∗}n ⊆ C(K (B1
X )). For all y1, y2 ∈ K (B1

X ) we have

|ŷ∗
n (y1) − ŷ∗

n (y2)| = |〈y∗
n , y1 − y2〉Y ∗,Y | � ‖y1 − y2‖Y

(recall that ‖y∗
n‖Y ∗ � 1 for all n � 1).

So the sequence {ŷ∗
n }n�1 ⊆ C(K (B X

1 )) is equicontinuous and equibounded.
Invoking the Arzela–Ascoli theorem, we infer that {ŷ∗

n }n�1 is relatively compact

in C(K (B1
X
)). Hence we can find a subsequence {y∗

nk
}k�1 of {y∗

n }n�1 such that

{y∗
nk

}k�1 is convergent in C(K (B1
X
)). We have

sup{〈y∗
nk

− y∗
nm

, K (x)〉 : x ∈ B1
X } = ‖K ∗(y∗

nk
) − K ∗(y∗

nm
)‖X∗

for all k, m � 1

⇒ {K ∗(y∗
nk

)}k�1 is Cauchy in X∗, hence convergent in X∗.

This implies that K ∗ ∈ Lc(Y ∗, X∗). �
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In Theorem 2.1.7 we saw that every compact map can be approximated uniformly
on bounded sets by finite rank maps. Suppose that the original compact map is linear
(that is, it belongs toLc(X, Y )). It is natural to ask whether we can approximate it by
linear finite rank operators. This is in fact a famous problem of functional analysis,
which remained open for several decades.

Definition 2.3.7 A Banach space X is said to have the “approximation property” if
for every compact set C ⊆ X and every ε > 0, there is an A ∈ L f (X) such that

‖x − A(x)‖ < ε for every x ∈ C.

Remark 2.3.8 Some authors employ a different definition of this property (see, for
example, Megginson [295, p. 330]). So, they say that a Banach space X has the

“approximation property” if for every Banach space Y ,L f (Y, X)
‖·‖L = Lc(Y, X).

It turns out that the two definitions are in fact equivalent (see, for example, Linden-
strauss and Tzafriri [272]).

The question of whether every Banach space X has the approximation property
was first asked byHildebrandt andwas answered in the negative four decades later by
Enflo [162], who found a separable reflexive Banach space which lacks the approx-
imation property.

Nevertheless there are important classes of Banach spaces which exhibit the
approximation property.

Proposition 2.3.9 If H is a Hilbert space with inner product denoted by (·, ·)H , then
the following statements are equivalent:

(a) A ∈ Lc(H);
(b) there exists an ε > 0 and an orthonormal set {eα}α∈J ⊆ H such that

{α ∈ J : |(A(eα), eα)H | � ε} is finite;

(c) there exists a sequence {Ln}n�1 ⊆ L f (H) such that ‖A − Ln‖L → 0 as n →
∞.

Proof (a) ⇒ (b) Suppose that the implication is not true. Then we can find an
orthonormal sequence {en}n�1 ⊆ H and ε0 > 0 such that

|(A(en), en)H | � ε0 for all n � 1. (2.17)

Since A is compact,we canfind a sequence {enk }k�1 of {en}n�1 such that A(enk ) →
h in H . Without any loss of generality we may assume that

‖A(enk ) − x‖ � ε0

2
for all k � 1. (2.18)
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Then we have

|(A(enk ), enk )H − (x, enk )H | = |(A(enk ) − x, enk )H |
� ‖A(enk ) − x‖
� ε0

2
for all k � 1

(2.19)

(see (2.18) and recall that ‖enk ‖ = 1 for all k � 1). Then from (2.17) and (2.19) it
follows that ε0

2
� |(x, enk )H | for all k � 1,

which contradicts Bessel’s inequality.
(b) ⇒ (c) For n ∈ N, let S be the family of all orthonormal sets {eα}α∈J such

that

|〈A(eα), eα〉H | � 1

n
for all α ∈ J.

By virtue of (b), each such orthonormal set is finite. We partially order S by
inclusion and consider a chain C in S . Then the union of the elements of C is
still in S and is an upper bound for C . So, by the Kuratowski–Zorn lemma, S
has a maximal element denoted by {eγ}γ∈J . Since it belongs in S , it is finite. Let
V = span {eϑ}ϑ∈J . Then by virtue of the maximality of {eγ}γ∈J we have

|〈A(x), x〉H | <
1

n
for all x ∈ V ⊥, ‖x‖ = 1. (2.20)

Let Pn ∈ L (H) be the orthogonal projection of H onto V . Setting x = (I − Pn)(u)

(u ∈ H ) in (2.20), we obtain

|〈A(I − Pn)(u), (I − Pn)(u)〉H | <
1

n

⇒ |〈(I − Pn)A(I − Pn)(u), u〉H | <
1

n
for all u ∈ H with ‖u‖ � 1

⇒ ‖(I − Pn)A(I − Pn)‖L <
2

n
.

Let Ln = Pn A + APn − Pn APn ∈ L f (H). Then

‖A − Ln‖L <
2

n
⇒ Ln → A ∈ L (H).

(c) ⇒ (a) This implication follows from Proposition 2.1.5. �

More generally, we have the approximation property for Banach spaces with a
Schauder basis.
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Definition 2.3.10 Let X be an infinite-dimensional normed space. A sequence
{en}n�1 ⊆ X is said to be a “Schauder basis of X” if for every x ∈ X , there exists a
unique sequence of scalars {λn}n�1, called the coordinates of x , such that

x =
∑

n�1

λnen .

Remark 2.3.11 Evidently, the sequence {en}n�1 is a linearly independent set in X . A
Banach space X with a Schauder basis is automatically separable. Indeed, note that
the countable set of the finite rational combinations of the basic elements is dense
in X . For finite-dimensional Banach spaces, the Schauder basis coincides with the
algebraic (Hamel) basis. In his celebrated treatise [31] Banach asked whether every
separable Banach space admits a Schauder basis. The counterexample of Enflo [162]
provided a negative answer to this question.

Lemma 2.3.12 If X is a Banach space with a Schauder basis {en}n�1, then there
exists an M � 1 such that for any x = ∑

n�1
λnen we have

‖
m∑

n=1

λnen‖ � M‖
∑

n�1

λnen‖ for all m ∈ N.

Proof On X we introduce the following quantity:

|x | = sup

{
‖

m∑

n=1

λnen‖ : m ∈ N

}
.

It is easy to see that | · | is a norm on X and (X, | · |) is a Banach space. Note that

‖x‖ = ‖
∑

n�1

λnen‖ � sup [‖
m∑

n=1

λnen‖ : m ∈ N] = |x |.

So, from Banach’s theorem it follows that ‖ · ‖ and | · | are equivalent. Therefore,
we can find M � 1 such that

|x | � M‖x‖ for all x ∈ X

⇒ ‖
m∑

n=1

λnen‖ � M ||
∑

n�1

λnen‖ for all m ∈ N.

The proof is now complete. �
In the next lemma we denote by Pm ∈ L (X) the projection on the vector space

Xm = span {en}m
n=1,m ∈ N. So, if x = ∑

n�1
λnen , then Pm(x) =

m∑
n=1

λnen for allm � 1.
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Lemma 2.3.13 If X is a Banach space with a Schauder basis {en}n�1, then for every
C ⊆ X compact, we have lim

m→∞ sup
x∈C

‖x − Pm(x))‖ = 0.

Proof Since C is compact in X , it is totally bounded, So, given ε > 0, we can find
{xn}k

n=1 ⊆ C such that

C ⊆
k⋃

n=1

Bε(xn) (recall that Bε(xn) = {x ∈ X : ‖x − xn‖ < ε}).

Thus, given x ∈ C , we can find n0 ∈ {1, ..., k} such that ‖x − xn0‖ < ε. Also,
there exists an m0 ∈ N such that

‖xn0 − Pm(xn0)‖ < ε for all m � m0. (2.21)

Then for all m � m0, we have

‖x − Pm(x)‖ � ‖x − xn0‖ + ‖xn0 − Pm(xn0)‖ + ‖Pm(xn0) − Pm(x)‖
� (1 + ‖Pm‖L )‖x − xn0‖ + ‖xn0 − Pm(xn0)‖
� ε(2 + ‖Pm‖L ) (see (2.21)). (2.22)

From Lemma 2.3.12, we have

‖Pm(x)‖ = ‖
m∑

n=1

λnen‖ � M‖
∑

n�1

λnen‖ = M‖x‖ for all x ∈ X

⇒ ‖Pm‖L � M.

Therefore from (2.22) we see that

‖x − Pm(x)‖ � ε(2 + M) for all x ∈ C and all m � m0 (2.23)

⇒ lim
n→∞ sup

x∈C
‖x − Pm(x)‖ = 0.

The proof is now complete. �

Now we are ready to show that Banach spaces with a Schauder basis have the
approximation property (see Definition 2.3.7) and so compact linear operators can
be approximated by finite rank linear operators

Theorem 2.3.14 If X is a Banach space with a Schauder basis, then Lc(X) =
L f (X)

‖·‖L .

Proof Let A ∈ Lc(X). So, if B1 = {x ∈ X : ‖x‖ � 1}, then A(B1) is compact in X .
Hence by virtue of Lemma 2.3.13, given ε > 0, we can find m0 ∈ N such that
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‖A(x) − Pm(A(x))‖ � ε(2 + M) for all m � m0 (see (2.23))

⇒ ‖A − Pm A‖L � ε(2 + M) for all m � m0.

Evidently, Pm A ∈ L f (X) and so we conclude thatLc(X) = L f (X)
‖·‖L . �

2.4 Spectral Theory of Compact Linear Operators

Although in this book we consider linear spaces over the field of reals, in order to
develop a complete spectral theory for linear operators, we need to consider linear
spaces over C. So, in what follows X is a Banach space over the field C of complex
numbers.

Recall that A ∈ L (X) is regular if and only if A−1 exists and belongs inL (X).
If X is finite-dimensional, then the situation is rather simple and A−1 exists on
X if and only if A is injective (one-to-one). Moreover, the linearity of A and A−1

automatically implies their continuity. In infinite-dimensional spaces X , the situation
is more involved. The noninvertibility of A ∈ L (X) can happen if one of following
situations occurs:

• A is not injective;
• A is injective but A(X) is not dense in X ;
• A is injective, A(X) is dense in X , but A−1 is not continuous on A(X).

So, we are led to the following definition.

Definition 2.4.1 Let X be a complex Banach space and A ∈ L (X). The spectrum
of A is the set

τ (A) = {λ ∈ C : λI − A is not invertible}.

The spectrum of A can be decomposed into three disjoint components.
The point spectrum of A, which is the set

τρ(A) = {λ ∈ C : λI − A is not injective},

the residual spectrum of A, which is the set

τr (A) = {λ ∈ C : λI − A is injective but (λI − A)(X) is not dense in X},

and the continuous spectrum of A, which is the set

τc(A) = {λ ∈ D : λJ − A is injective (λI − A)(X) is dense in X but

(λI − A)−1 is not continuous on (λI − A)(X)}.

We have τ (A) = τρ(A) ∪ τr (A) ∪ τc(A) and the three component sets are disjoint.
The elements of τρ(A) are called “eigenvalues” of A.
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Remark 2.4.2 If X is finite-dimensional, then τ (A) = τρ(A). For an infinite-
dimensional Banach space X , we recall that if λI − A is injective, (λI − A)(X)

is dense in X and (λI − A)−1 is continuous on (λI − A)(X), then λI − A is sur-
jective and (λI − A)−1 ∈ L (X) (that is, λI − A is regular).

As a direct consequence of the above definition, we have:

Proposition 2.4.3 If A ∈ L (X), then λ ∈ τρ(A) if and only if the equation A(x) =
λx has a nontrivial solution.

Definition 2.4.4 For λ ∈ τρ(A), the nontrivial elements of N (λI − A) = ker (λI −
A) are called eigenvectors corresponding to the eigenvalue λ and N (λI − A) is the
corresponding eigenspace. The dimension of N (λI − A) is the geometric multiplic-
ity (or simply multiplicity) of the eigenvalue λ.

Example 2.4.5 Let X = l2 and let A ∈ L (l2) be the right shift operator defined by

A(s1, s2, ...) = (0, s1, s2, ...).

Then 0 ∈ τ (A), 0 /∈ τρ(A) and 0 ∈ τr (A), since clearly A(l2) is not dense in l2.

For the next observation concerning the spectrum of a bounded linear operator
we will need the following well-known fact from operator theory (see, for example,
Lang [258, p. 74]).

Proposition 2.4.6 The set of regular (invertible) elements of L (X) is open and if
A ∈ L (X) satisfies ‖I − A‖L < 1, then A is regular.

Using this fact, we can establish the topological properties of the set τ (A).

Proposition 2.4.7 If A ∈ L (X), then τ (A) is compact and in fact τ (A) ⊆ B‖A‖L =
{λ ∈ C : |λ| � ‖A‖L }.
Proof Let ξ : C → L (X) be the map defined by ξ(λ) = λI − A. We have

‖ξ(λ) − ξ(μ)‖L = |λ − μ|, hence ξ(·) is continuous.

Note that τ (A) is the inverse image of the set of singular (noninvertible) elements
under ξ. So, by virtue of Proposition 2.4.6, τ (A) is closed.

Next, let λ ∈ C such that |λ| > ‖A‖L . Then ‖ 1
λ

A‖
L

< 1 and so Proposition
2.4.6 implies that λI − A is regular. Hence we have τ (A) ⊆ B‖A‖L . Therefore τ (A)

is compact. �

Proposition 2.4.8 If H is a Hilbert space and A ∈ L (H) is self-adjoint, then
τρ(A) ⊆ R and eigenvectors corresponding to different eigenvalues are orthogonal.
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Proof Since A is self-adjoint, 〈A(x), x〉H ∈ R for all x ∈ H . Let λ ∈ τρ(A) and
x ∈ H be a corresponding eigenvector. Then

〈A(x), x〉H = 〈λx, x〉H = λ〈x, x〉H = λ‖x‖2

⇒ λ = 〈A(x), x〉
‖x‖2 ∈ R.

Also, let λ,μ ∈ τρ(A), λ �= μ and let x, u ∈ X be eigenvectors corresponding to
λ,μ respectively. We have

〈A(x), u〉H = 〈λx, u〉H = λ〈x, u〉H ,

〈A(x), u〉H = 〈x, A(u)〉H = 〈x,μu〉H = μ〈x, u〉H

(recall that A is self-adjoint and note that, as we just proved, λ,μ ∈ R).
So, we have

(λ − μ)〈x, u〉H = 0, hence 〈x, u〉H = 0 (since λ �= μ).

The proof is now complete. �

From Propositions 2.4.7 and 2.4.8, we obtain

Corollary 2.4.9 If H is a Hilbert space then

(a) for every A ∈ L (H) self-adjoint we have τ (A) ⊆ [−‖A‖L , ‖A‖L ];
(b) for every A ∈ L (H) self-adjoint and A � 0 (that is, 〈A(x), x〉H � 0 for all

x ∈ H), we have τ (A) ⊆ [0, ‖A‖L ].
Remark 2.4.10 For H a Hilbert space and A ∈ L (H) self-adjoint, we know that
‖A‖L = sup{|〈A(x), x〉H | : ‖x‖ � 1} (see for example, Brezis [65]).

Proposition 2.4.11 If H is a Hilbert space and A ∈ L (H) is self-adjoint, then
λ ∈ τ (A) if and only if inf{‖(λI − A)(x)‖ : ‖x‖ = 1} = 0.

Proof ⇐ Suppose λ �= τ (A). Then (λI − A)−1 ∈ L (H) and for every x ∈ H with
‖x‖ = 1, we have

1 = ‖x‖ = ‖(λI − A)−1(λI − A)x‖ � ‖(λI − A)−1‖L ‖(λI − A)(x)‖
⇒ 1

‖(λI − A)−1‖L
� ‖(λI − A)(x)‖ for all x ∈ H with ‖x‖ = 1.

⇒ Suppose that inf{‖(λI − A)(x)‖ : ‖x‖ = 1} = η > 0. Then

‖(λI − A)(x)‖ � η‖x‖ for all x ∈ H (2.24)

⇒ λI − A is an isomorphism onto (λI − A)(H).
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If we can show that λI − A is dense in H , then we are done. Arguing by contra-
diction, suppose that (λI − A)(H) is not dense in H . Then we can find û ∈ H \ {0}
such that

〈(λI − A)(x), û〉H = 0 for all x ∈ H
⇒ 〈x, (λI − A)(û)〉H = 0 for all x ∈ H (sinceAis self-adjoint)
⇒ (λI − A)(û) = 0, hence λ is an eigenvalue of A.

But from Proposition 2.4.8, we know that τρ(A) ⊆ R and so λ = λ. Hence

(λI − A)(û) = 0,

which contradicts (2.24) �

For compact operators, the spectrum has a very simple structure. This is a conse-
quence of the so-called “Fredholm alternative”, which says that in a Banach space X
for every A ∈ Lc(X)we have that I − A is injective if and only if I − A is surjective
(notice the similarity with the finite-dimensional case). To prove this theorem, we
need some auxiliary results.

Proposition 2.4.12 If X is a Banach space, A ∈ Lc(X) and I − A is injective, then
(I − A)−1 is continuous on (I − A)(X).

Proof We argue by contradiction. So, suppose that (I − A)−1 is not continuous on
(I − A)(X). Then we can find {xn}n�1 ⊆ X such that

‖(I − A)(xn)‖ <
1

n
‖xn‖ for all n � 1

⇒ ‖(I − A)

(
xn

‖xn‖
)

‖ <
1

n
for all n � 1. (2.25)

Since A ∈ Lc(X), it follows that {A( xn
‖xn‖‖}n�1

is relatively compact in X and so,

we may assume that

A(xn/‖xn‖) → u in X

⇒ xn

‖xn‖ → u in X (see (2.25)) and so ‖u‖ = 1

⇒ A(u) = u, which contradicts the injectivity of I − A.

The proof is now complete. �

Proposition 2.4.13 If X is a Banach space, A ∈ Lc(X) and I − A is injective, then
(I − A)(X) is a closed subspace in X.

Proof Proposition 2.4.12 implies that (I − A)(X) is isomorphic to X , which is a
Banach space. Hence (I − A)(X) is complete in X , hence it is a closed subspace of
X . �
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Proposition 2.4.14 If X is a Banach space and A ∈ Lc(X), then for each n � 1 we
have (I − A)n = I − Ln with Ln ∈ Lc(X).

Proof We have

(I − A)n =
n∑

n=0

(−1)k

(
n
k

)
Ak .

If we set

Ln = −
n∑

k=0

(−1)k

(
n
k

)
Ak,

then Ln ∈ Lc(X) (see Proposition 2.3.4) and

(I − A)n = I − Ln for all n � 1,

which completes the proof. �

Nowwe are ready to state and prove the so-called “Fredholm alternative theorem”.

Theorem 2.4.15 If X is a Banach space and A ∈ Lc(X), then I − A is injective if
and only if I − A is surjective

Proof ⇒ Let Xn = (I − A)n(X) for all n � 1. Then

X ⊇ X1 ⊇ . . . ⊇ Xn ⊇ . . . .

Suppose that Xn �= Xn+1 for every n � 1. Propositions 2.4.13 and 2.4.14 imply that
Xn+1 is closed in Xn for everyn � 0with X0 = X . Invoking theRiesz lemma (see, for
example, Brezis [65, p. 160]), we can find xn ∈ Xn , ‖xn‖ = 1 and d(xn, Xn+1) � 1

2 .
Then for n > m we have

‖A(xm) − A(xn)‖ = ‖xm − (I − A)(xm) − xn + (I − A)(xn)‖ � 1

2

since (I − A)(xm) + xn − (I − A)(xn) ∈ Xm+1. This means that {A(xn)}n�1 has
no convergent subsequence. This contradicts the fact that A is compact (note that
{xn}n�1 is bounded). This implies that there exists an m ∈ N such that Xm = Xm+1

and so Xn = Xn+1 for all n � m. The injectivity of I − A implies the injectivity of
(I − A)n for all n � 1. Given x ∈ X , we have

(I − A)m(x) = (I − A)2m(u) for some u ∈ X

⇒ (I − A)m[x − (I − A)m(u)] = 0

⇒ x = (I − A)m(u) (since (I − A)m is injective)

⇒ X = Xm and so we conclude that I − A is surjective.
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⇐ Let Vn = N ((I − A)n) = ker ((I − A)n) for all n � 1. We need to show that
V1 = {0}. Arguing by contradiction, suppose that this is not true. So, we can find
x1 ∈ V1, x1 �= 0. Suppose we have produced {xk}n

k=1 ⊆ X such that

(I − A)(xk+1) = xk and xk ∈ Vk \ Vk−1 for all k ∈ {1, .., n − 1}

(with V0 = {0}).
Then since I − A is surjective, we can find xn+1 ∈ X such that

(I − A)(xn+1) = xn

⇒ (I − A)n(xn+1) = (I − A)n−1(xn) = . . . = x1 �= 0

(by the induction hypothesis)

⇒ (I − A)n+1(xn+1 = (I − A)(x1) = 0.

So, by induction we have produced a sequence {xn}n�1 such that

(I − A)(xn+1) = xn and xn ∈ Vn \ Vn−1 for all n � 1.

But as in the first part of the proof, we can show that Vm = Vm+1 for some m � 1,
a contradiction �

Remark 2.4.16 Usually the Fredholm alternative is formulated as follows:
“For X a Banach space and A ∈ Lc(X), the equation A(x) − λx = h has a solution
for every h ∈ H if and only if the equation A(x) = λx has only the trivial solution
x = 0.”

The Fredholm alternative has the following implications on the spectrum of a
compact linear operator.

Proposition 2.4.17 If X is a Banach space, A ∈ Lc(X) and λ ∈ τ (A) \ {0}, then
λ ∈ τρ(A).

Proof Arguing by contradiction, suppose that λ /∈ τρ(A). Then ker (λI − A) = {0}
(see Proposition 2.4.3). Theorem 2.4.15 (the Fredholm alternative) implies that
range (λI − A) = X and so (λI − A) is invertible, hence λ /∈ τ (A), a contradic-
tion. �

Corollary 2.4.18 If X is a Banach space and A ∈ Lc(X), then τ (A) = τp(A) ∪ {0}.
The next propertywill complete the picture for the spectrumof a compact operator.

Wewill need the following lemma,which extendsProposition 2.4.6 toBanach spaces.

Lemma 2.4.19 If X is a Banach space and A ∈ L (X), then eigenvectors corre-
sponding to distinct eigenvalues are linearly independent.
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Proof We argue by induction. So, suppose that λ1, . . . ,λn are distinct eigenval-
ues and e1, ..., en are corresponding eigenvectors which we assume to be linearly
independent. Let λn+1 ∈ τp(A) \ {λk}n

k=1 and suppose that the eigenfunction en+1

corresponding to λn+1 is a linear combination of {ek}n
k=1. So, we have

en+1 =
n∑

k=1

ξkek with ξk ∈ R for all k ∈ {1, . . . , N }.

Then

n∑

k=1

λn+1ξkek = λn+1en+1 = A(en+1) =
n∑

k=1

λkξkek

⇒
n∑

k=1

(λn+1 − λk)ξkek = 0.

Since {ek}n
k=1 are linearly independent (induction hypothesis) and λn+1 �= λk for

all k ∈ {1, . . . , n}, it follows that ξk = 0 for all k ∈ {1, . . . , n}, hence en+1 = 0, a
contradiction. Therefore en+1 /∈ span {ek}n

k=1 and so we are done. �

Theorem 2.4.20 If X is a Banach space and A ∈ Lc(X), then for every ε > 0, A
has only finitely many eigenvalues with absolute value bigger than ε > 0.

Proof Arguing by contradiction, suppose that we can find {λn}n�1 ⊆ τp(A) such that
| λn |� ε for all n � 1. For everyλn , let en ∈ X be a corresponding eigenfunction.We
let Xn = span {ek}n

k=1. Then A(Xn) = Xn and Xn �= Xn+1 for all n � 1 (see Lemma
2.4.19).

Invoking the Riesz lemma, we can find un+1 ∈ Xn+1, ‖un+1‖ = 1 such that
d(un+1, Xn) � 1

2 for all n � 1. Let vn+1 = 1
λn+1

un+1. Then ‖vn+1‖ = 1
|λn+1| � 1

ε
and

we have

A(vn+1) = 1

λn+1
A(un+1) ∈ Xn+1. (2.26)

Also, since un+1 ∈ Xn+1, we have un+1 = ∑n+1
k=1 ξkek with ξk ∈ R. Then

un+1 − A(vn+1) =
n+1∑

k=1

(
1 − λk

λn+1

)
ξkek =

n∑

k=1

(
1 − λk

λn+1

)
ξkek ∈ Xn.

If n > m, then A(vm+1) ∈ Xm+1 ⊆ Xn and un+1 − A(vn+1) ∈ Xn (see (2.26)).
Therefore
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‖A(vn+1) − A(vm+1)‖ � d(A(vn+1), Xn)

= d(A(vn+1) + un+1 − A(vn+1), Xn)

= d(un+1, Xn) � 1

2
⇒ {A(vn)}n�1 has no convergent subsequence.

But this contradicts the compactness of A. �

So, summarizing the situation for the spectrumof a compact operator in an infinite-
dimensional Banach space, we have:

Corollary 2.4.21 If X is an infinite-dimensional Banach space and A ∈ Lc(x), then

(a) 0 ∈ τ (A);
(b) τ (A) \ {0} = τp(A) \ {0};
(c) one of the following holds

• τ (A) = {0},
• τ (A) \ {0} is a finite set,
• τ (A) \ {0} is a sequence converging to 0.

Moreover, if λk ∈ C \ {0} (k � 1) are the eigenvalues, then the correspond-
ing eigenspaces are finite-dimensional (that is, dim N (λk I − A) = dim ker (λk I −
A) < ∞).

Proof The only new information here is the finite-dimensionality of the eigenspaces.

To see this, let Ek = N (λk I − A) and let B1
Ek = {x ∈ Ek : ‖x‖ � 1}, B1 = {x ∈

X : ‖x‖ � 1}. Then
B

Ek

1 ⊆ A(B̄1)

and the latter is compact since A ∈ Lc(X). Therefore the closed unit ball in Ek is
compact, hence Ek is finite-dimensional. �

Next we turn our attention to the spectral properties of compact self-adjoint oper-
ators on a Hilbert space. We have already made some preliminary observations con-
cerning the spectrum of self-adjoint (not necessarily compact) operators on a Hilbert
space (see Proposition 2.4.8, Corollary 2.4.9 and Proposition 2.4.11). Now we will
see what happens if the property of compactness enters into the picture.

We start with a general result for self-adjoint operators (not necessarily compact),
which refines Proposition 2.4.7.

Proposition 2.4.22 If H is a Hilbert space, A ∈ L (H) is self-adjoint

m A = inf{〈A(x), x〉H : ‖x‖ = 1} and MA = sup{〈A(x), x〉H : ‖x‖ = 1},

then τ (A) ⊆ [m A, MA] and m A, MA ∈ τ (A).
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Proof By considering Â = A + μI for μ > 0 big enough if necessary (note that Â is
still self-adjoint and MÂ = MA + μ, m Â = m Â + μ), without any loss of generality,
we may assume that 0 � m A � MA.

In this case, by virtue of Remark 2.4.10, we have MA = ‖A‖L . Then Corollary
2.4.9 implies that τ (A) ⊆ [−MA, MA]. Let E > 0 and consider λ = m A − E . We
will show that λ /∈ τ (A). To see this, let x ∈ H with ‖x‖ = 1. We have

〈(A − λI )(x), x〉H = 〈A(x), x〉H − λ‖x‖2 � m A − λ = E . (2.27)

Also, we have

|〈(A − λI )(x), x〉H | � ‖(A − λI )(x)‖ ‖x‖ = ‖(A − λI )(x)‖
⇒ 0 < E � inf{‖(A − λI )(x)‖ : ‖x‖ = 1} see (2.27))
⇒ λ /∈ τ (A) (see Proposition 2.4.11).

So, we have proved that
τ (A) ⊆ [m A, MA].

Next we show that MA ∈ τ (A). To this end, let {xn}n�1 ⊆ X with ‖xn‖ =
1 for all n � 1 such that

〈A(xn), xn〉H ↑ M = ‖A‖L as n → ∞. (2.28)

Then for all n � 1 we have

0 � ‖(MA I − A)(xn)‖2 = M2
A‖xn‖2 + ‖A(xn)‖2 − 2MA〈A(xn), xn〉H

� 2M2
A − 2MA〈A(xn), xn〉H → 0 as

n → ∞ (see (2.28))

⇒ 0 = inf{‖(MA I − A)(xn)‖ : ‖x‖ = 1}
⇒ MA ∈ τ (A) (see Proposition 2.4.11).

Finally, let Â = A − MA I . Then m Â � MÂ = 0 and |m Â| = ‖ Â‖L . Arguing as
above, we show that m Â ∈ τ ( Â), hence m A ∈ τ (A). �

Corollary 2.4.23 If H is a Hilbert space and A ∈ L (H) is self-adjoint, then
‖A‖L = max{|m A|, |MA|} ∈ τ (A).

Now we can focus on compact self-adjoint operators.

Proposition 2.4.24 If H is a Hilbert space and A ∈ Lc(H) is self-adjoint, then
τp(A) �= ∅.

Proof If A = 0, then λ = 0 is an eigenvalue. So, suppose A �= 0. From Corollary
2.4.23 we have ‖A‖L ∈ τ (A) and so by Corollary 2.4.21 we obtain 0 �= ‖A‖L ∈
τp(A). �
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Proposition 2.4.25 If H is an infinite-dimensional Hilbert space and A ∈ Lc(H),

A �= 0, is self-adjoint, then H has an orthonormal basis consisting of eigenvectors
corresponding to the eigenvalues of A.

Proof Let λ ∈ τp(A) and let Bλ be an orthonormal basis for the eigenspace Eλ =
N (λI − A) = ker (λI − A). Proposition 2.4.8 implies that B = ⋃

˘∈øp(A)

Bλ is an

orthonormal set in H . We will show that H = span B. Suppose that H �= span B
and let V = [span B]⊥. Note that span B is A-invariant, hence so is V . We have
τ (A) = τ (A|span B) + τ (A|V ). But A|V has an eigenvalue (see Proposition 2.4.24),
hence an eigenvector v. Then v is also an eigenvector for A and so v ∈ V ∩ span B =
{0}, a contradiction. So, we conclude that H = span B. �

Now we can state and prove the so-called “spectral theorem” for compact self-
adjoint operators on a separable Hilbert space.

Theorem 2.4.26 If H is an infinite-dimensional separable Hilbert space and A ∈
Lc(H) is self-adjoint, then there is an orthonormal basis {en}n�1 of H such that each
en is an eigenvector corresponding to some eigenvalue λn ∈ R and for all x ∈ H,
we have

A(x) =
∑

n�1

λn〈x, en〉H en.

Also, for every λ /∈ τ (A) and x ∈ H, we have

(λI − A)−1(x) =
∑

n�1

〈x, en〉H

λ − λn
en .

Proof From Proposition 2.4.25 we know that we have a countable (since H is sepa-
rable) orthonormal basis consisting of eigenvectors of A. For any x ∈ H , the series∑

n�1

λn〈x, en〉H en converges, since

‖
m∑

n=k

λn〈x, en〉en‖2 =
m∑

n=k

λ2
n |〈x, en〉H |2 � ‖A‖L

m∑

n=k

|〈x, en〉H |2 → 0 as k, m → ∞.

Also, for x ∈ H, ‖x‖ � 1 and m ∈ N, we have

‖
m∑

n=1

λn〈x, en〉H en‖2 =
m∑

n=1

λ2
n|〈x, en〉H |2 � ‖A‖2L

m∑

n=1

|〈x, en〉H |2

� ‖A‖2L
∑

n�1

|〈x, en〉H |2

= ‖A‖2L ‖x‖2.
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So, if we define L(x) =
∑

n�1

λn〈x, en〉H en for all x ∈ H , then L ∈ L (H). Since

A(en) = λnen , we see that A(en) = L(en) for all n � 1 and so A = L .

Next, let λ /∈ τ (A). Recall that τ (A) is closed (Proposition 2.4.6). So, there exists
an η > 0 such that d(λ, τ (A)) > η. Hence |λ − λn| > η for all n � 1. Then

‖
m∑

n=k

〈x, en〉H

λ − λn
en‖2 =

m∑

n=k

|〈x, en〉H |2
|λ − λn|2 � 1

η2

m∑

n=k

|〈x, en〉H |2 → 0 as k, m → ∞.

So, we can define the linear operator

L(x) =
m∑

n=k

〈x, en〉H

λ − λn
en for all x ∈ H.

For x ∈ H with ‖x‖ � 1, we have

‖
m∑

n�1

〈x, en〉H

λ − λn
en‖2 =

m∑

n=1

|〈x, en〉H |2
|λ − λn|2 � 1

η2

m∑

n=1

|〈x, en〉H |2

� 1

η2

∑

n�1

|〈x, en〉H |2 = 1

η2
‖x‖2 � 1

η2

⇒ L ∈ L (H).

For x = ∑
n�1〈x, en〉H en , we have A(x) = ∑

n�1 λn〈x, en〉H en and

(λI − A)(x) =
∑

n�1

(λ − λn)〈x, en〉H en

⇒ (λI − A)(L(x)) =
∑

n�1

(λ − λn)〈
∑

i�1

〈x, ei 〉H

λ − λi
ei , en〉H en

=
∑

n,i�1

(λ − λn)
〈x, ei 〉H

λ − λi
〈en, ei 〉H en

=
∑

n�1

〈x, en〉H en (since {en}n�1 is orthonormal)

= x

⇒ L = (λI − A)−1.

The proof is now complete. �
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2.5 Multifunctions

In an attempt to produce a framework for the study of functional equations which is
broader than the one provided by compactmaps, in the next section, wewill introduce
nonlinear operators ofmonotone type.However, the development of a coherent theory
of monotone maps leads necessarily to multivalued maps. Also, certain classes of
problemswith unilateral constraints (most notablyvariational inequalities) are related
to nondifferentiable convex functionals, which in their analysis lead to multivalued
operators. Finally, many parts of applied analysis such as the calculus of variations,
optimal control, optimization, mathematical economics and game theory, employ as
an indispensable tool multivalued maps. For all these reasons it is a good idea to get
acquainted with some basic definitions and facts from multivalued analysis.

We start with some continuity concepts for multivalued maps (set valued maps).
Let X be a Hausdorff topological space.We introduce the following hyperspaces:

Pf (X) = {A ⊆ X : A �= ∅ and it is closed},
Pk(X) = {A ⊆ X : A �= ∅ and it is compact}.

Evidently, Pk(X) ⊆ Pf (X). Also, if X is a normed space, then we introduce the
following additional hyperspaces:

Pf c(X) = {A ∈ Pf (X) : A is convex},
P(w)kc(X) = {A ⊆ X : A �= ∅, A is (weakly-) compact and convex},
Pbf (c)(X) = {A ∈ Pf (X) : A is bounded (and convex)}.

In what follows if X is a Hausdorff topological space and x ∈ X , then by N (x)

we denote the filter of neighborhoods of x . If (X, d) is a metric space, then for all
x ∈ X and all r > 0, we set

Br (x) = {u ∈ X : d(u, x) < r} (the open r -ball centered at x ∈ X),

Br (x) = {u ∈ X : d(u, x) � r} (the closed r -ball centered at x ∈ X).

If X is a normed space and x = 0, then as before we write Br = Br (0) and
Br = Br (0).

Definition 2.5.1 Let X, Y be two sets and F : X → 2Y a multifunction.

(a) The “weak inverse image” of A ⊆ X under F is the set

F−(A) = {x ∈ X : F(x) ∩ A �= ∅}.

(b) The “strong inverse image” of A ⊆ X under F is the set

F+(A) = {x ∈ X : F(x) ⊆ A}.



2.5 Multifunctions 101

Using these notions, we can introduce the following continuity concepts for a
multifunction.

Definition 2.5.2 Let X, Y be Hausdorff topological spaces and F : X → 2Y a mul-
tifunction.

(a) We say that F is upper semicontinuous (usc for short) at x0 if for all V ⊆ Y
open such that F(x0) ⊆ V , we can find U ∈ N (x0) such that F(U ) ⊆ V . We
say that F is upper semicontinuous (usc) if it is usc at every x0 ∈ X .

(b) We say that F is lower semicontinuous (lsc for short) at x0 if for all V ⊆ Y open
such that F(x0) ∩ V �= ∅, we can find U ∈ N (x0) such that F(x) ∩ V �= ∅ for
all x ∈ V . We say that F is lower semicontinuous (lsc) if it is lsc at every x0 ∈ X .

(c) We say that F(·) is continuous (or Vietoris continuous) at x0 if it is both usc and
lsc at x0. We say that F is continuous (or Vietoris continuous) if it is continuous
at every x0 ∈ X .

The next propositions are straightforward consequences of the above definitions
and provide alternative characterizations of these notions.

Proposition 2.5.3 If X, Y are Hausdorff topological spaces and F : X → 2Y a
multifunction, then the following statements are equivalent:

(a) F is usc;
(b) for every C ⊆ Y closed, the set F−(C) is closed in X;
(c) if x ∈ X, {xα}α∈J is a net converging to x in X and V ⊆ Y is an open set such

that F(x) ⊆ V , then we can find α0 ∈ J such that for all α � α0, F(xα) ⊆ V .

Proposition 2.5.4 If X, Y are Hausdorff topological spaces and F : X → 2Y is a
multifunction, then the following statements are equivalent:

(a) F is lsc;
(b) for every C ⊆ Y closed, the set F+(C) is closed in X;
(c) if x ∈ X, {xα}α∈J is a net converging to x in X and V ⊆ Y is an open set such that

F(x) ∩ V �= ∅, then we can find α0 ∈ J such that for all α � α0 F(xα) ∩ V �=
∅;

(d) if {xα}α∈J is a net in X converging to x ∈ X and y ∈ F(x), we can find yα ∈
F(xα) (α ∈ J ) such that yα → y in Y .

Proposition 2.5.5 If X, Y are Hausdorff topological spaces and F : X → 2Y a
multifunction, then the following statements are equivalent:

(a) F is continuous;
(b) for every C ⊆ Y closed, the sets F−(C) and F+(C) are both closed;
(c) if {xα}α∈J is a net in X converging to x ∈ X and V ⊆ Y is open such that

F(x) ⊆ V or F(x) ∩ V �= ∅, then we can find α0 ∈ J such that for all α � α0,
F(xα) ⊆ V or F(xα) ∩ V �= ∅.

Remark 2.5.6 In the above definitions and propositions, the arbitrary open set V
can be replaced by a basic open set. The notions of upper and lower semicontinuity
are distinct and both coincide with continuity when F is single-valued. If ϕ,ψ :
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R → R,ϕ � ψ and F(x) = [ϕ(x),ψ(x)] then F is usc (resp. lsc), if ϕ is lower
semicontinuous and ψ is upper semicontinuous in the sense of single-valued maps
(resp. ϕ is upper semicontinuous and ψ is lower semicontinuous).

Definition 2.5.7 Let X, Y be Hausdorff topological spaces and F : X → 2Y a mul-
tifunction.

(a) The graph of F is the set Gr F = {(x, y) ∈ X × Y : y ∈ F(x)};
(b) We say that F is “closed” if Gr F ⊆ X × Y is closed.

Proposition 2.5.8 If X, Y are Hausdorff topological spaces with Y regular and
F : X → Pf (Y ) is usc, then F is closed.

Proof Let {(xα, yα)}α∈J ⊆ Gr F be a net and assume that (xα, yα) → (x, y) in X ×
Y . Suppose that y /∈ F(x). Since Y is regular, we can find open sets U ∈ N (y) and
V ⊇ F(x) such that U ∩ V = ∅. Because F is usc and yα → y in Y , we can find
α0 ∈ J such that for all α � α0, F(xα) ⊆ V and yα ∈ U . Therefore yα ∈ U ∩ V
for all α � α0, a contradiction. �

Remark 2.5.9 The converse is not true in general. To see this let X = R, Y = R
2 and

consider the multifunction F : R → Pf (R
2) defined by F(x) = {(t, xt) : t ∈ R}.

Then it is easy to see that F is closed but not usc.

Directly from Definition 2.5.2(b), we see that:

Proposition 2.5.10 If X, Y are Hausdorff topological spaces, V ⊆ Y is open, F :
X → 2Y \ {∅} is lsc and F(x) ∩ V �= ∅ for all x ∈ X, then

(a) x �→ F(x) ∩ V is lsc;

(b) if C ⊆ X is closed and F̂(x) =
{

F(x) ∩ V , if x ∈ C
F(x), if x ∈ X \ C,

then F is lsc.

We can extend part (a) of this proposition as follows:

Proposition 2.5.11 If X is Hausdorff topological space, Y is a topological vector
space, F : X → 2Y \ {∅} is lsc, V is a neighborhood of the origin in Y and u : X →
Y is a continuous map such that

F(x) ∩ [u(x) + V ] �= ∅ for all x ∈ X,

then the multifunction G : X → 2Y \ {∅} defined by

G(x) = F(x) ∩ [u(x) + V ]

is lsc.

Proof Let {xα}α∈J be a net in X converging to x ∈ X and let y ∈ G(x). We have

y ∈ F(x) and y ∈ u(x) + V .
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Let W be a balanced neighborhood of the origin in Y such that y + W + W ⊆
u(x) + V . From the continuity of u, we have u(xα) → u(x) in Y . Then we can find
α0 ∈ J such that

u(x) − u(xα) ∈ W for all α � α0.

For every w ∈ W and every α � α0, we have

y + (u(x) − u(xα)) + w ∈ u(x) + V

⇒ y + w ∈ u(xα) + V for all α � α0 and all w ∈ W

⇒ y + W ⊆ u(xα) + V for all α � α0. (2.29)

Since y ∈ F(x) and F(·) is lsc, Proposition2.5.4, implies thatwe canfind yα ∈ F(xα)

such that yα → y in Y . Then we can find α1 ∈ J such that α1 � α0 and

yα − y ∈ W for all α � α1

⇒ yα ∈ y + W ⊆ u(xα) + V for all α � α1 (see (2.29)).

Therefore

yα ∈ F(xα) ∩ [u(xα) + V ] = G(xα) for all α � α1

and so by virtue of Proposition 2.5.4, we conclude that G is lsc. �

Definition 2.5.12 Let X, Y be Hausdorff topological spaces and F : X → 2Y \ {∅}
a multifunction. A “continuous selection” of F(·) is a continuous map f : X → Y
such that f (x) ∈ F(x) for all x ∈ X .

A fundamental question in the topological theory of multifunctions is that of the
existence of a continuous selection for a given multifunction. The next example
suggests that upper semicontinuous multifunctions is not the right class to look for
continuous selections.

Example 2.5.13 Let F : R → Pf (R) be the multifunction defined by

F(x) =
⎧
⎨

⎩

−1 if x < 0
[−1, 1] if x = 0
1 if x > 0

(this is the subdifferential of the convex function x �→ |x | on R, see Sect. 2.7).
Evidently, F(·) is usc but it cannot have a continuous selection.

So, to produce continuous selections, we turn our attention to lsc multifunctions
and we have the following result, known in the literature as the “Michael selection
theorem”.

Theorem 2.5.14 If X is a paracompact space, Y is a Banach space and F : X →
Pfc(Y ) is an lsc multifunction, then F admits a continuous selection.
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Proof In the first part of the proof, we produce an approximate selection.
Fix ε > 0 and for every y ∈ Y , let Uy = F−(Bε(y)). By virtute of Definition

2.5.2(b),Uy is open. Then {Uy}y∈Y is an open cover of X and since X is paracompact,
we can find a locally finite refinement {U ′

y}y∈Y of {Uy}y∈Y (we can always choose the
refinement to be precise, that is, to be indexed by the same set, see Dugundji [150,
p. 162]). Let {py}y∈Y be a continuous partition of unity subordinate to this cover. Let

f̂ (x) =
∑

y∈Y

py(x)y. (2.30)

Clearly, f̂ is well-defined and continuous. Note that py(x) > 0 implies x ∈ U ′
y ⊆ Uy

and so y ∈ F(x) + εB1. Since F has convex values we have f̂ (x) ∈ F(x) + εB1 (see
(2.30)). So, we have produced an approximate continuous selection for F .

Now, let Vn = 1
2n B1, n � 1. Using induction we will produce a sequence of

continuous functions fn : X → Y, n � 1, such that

fn(x) ∈ fn−1(x) + 2Vn−1 for all x ∈ X, all n � 2, (2.31)

fn(x) ∈ F(x) + Vn for all n � 1. (2.32)

From thefirst part of the proof,weknow that there is a continuousmap f1 : X → Y
satisfying (2.32). Suppose we were able to construct continuous maps fn : X →
Y, n = 1, . . . , m, satisfying (2.31) and (2.32). We set Gm(x) = F(x) ∩ [ fm(x) +
Vm]. The induction hypothesis implies that Gm(x) �= ∅ for all x ∈ X , while by virtue
of Proposition 2.5.11 the mapping x �→ Gm(x) is lsc. So, we can apply the first part
of the proof (with data the multifunction G(·) and ε = 1

2m+1 ) and obtain a continuous
map fm+1 : X → Y such that

fm+1(x) ⊆ Gm(x) + Vm+1 ⊆ F(x) + Vm+1,

fm+1(x) ⊆ fm(x) + Vm + Vm+1 ⊆ fm(x) + 2Vm .

This completes the induction process.
So, we have a sequence of continuous maps fn : X → Y , n � 1, satisfying (2.31)

and (2.32). From (2.31) we infer that { fn(x)}n�1 is Cauchy, uniformly in x ∈ X . So,
there exists a continuous map f : X → Y such that

fn(x) → f (x) in Y as n → ∞.

From (2.32) in the limit as n → ∞, we have f (x) ∈ F(x) for all x ∈ X , that is, f (·)
is a continuous selection of F(·). �

We can also produce a continuous selection passing from a prescribed point of
Gr F .

Corollary 2.5.15 If X is a paracompact space, Y is a Banach space, F : X →
Pfc(Y ) is lsc and (x0, y0) ∈ Gr F, then there exists a continuous map f : X → Y
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such that

f (x0) = y0 and f (x) ∈ F(x) for all x ∈ X.

Proof Let G : X → Pfc(Y ) be the multifunction defined by

G(x) =
{

F(x) if x �= x0
{y0} if x = x0.

(2.33)

Evidently, G is lsc with values in Pfc(Y ). So, we can apply Theorem 2.5.14 and
produce a continuous map f : X → Y such that f (x) ∈ G(x) for all x ∈ X . From
(2.33) it follows that

f (x0) = y0 and f (x) ∈ F(x) for all x ∈ X.

The proof is now complete. �

When X is a metric space and Y is a separable Banach space, then Theorem 2.5.14
can be refined and have a whole sequence of continuous selections of F(·)which are
dense in F(x) for all x ∈ X .

Proposition 2.5.16 If X is a metric space, Y is a separable Banach space and
F : X → Pfc(Y ) is lsc then there exists a sequence of continuous selections fn :
X → Y, n � 1 of F(·) such that

F(x) = { fn(x)}n�1 for all x ∈ X.

Proof Let {yn}n�1 be dense in Y and let Vm = 1
2m B1, m � 1. We set Unm =

F−1(B2−m (yn)). Since F is lsc, the set Unm is open for all n, m � 1. In metric spaces
open sets are Fδ-sets. So, we have Unm =

⋃

k�1

Cnmk with Cnmk closed for all k � 1.

We define

Fnmk(x) =
{

F(x) ∩ B2−m (yn) for x ∈ Cnmk

F(x) for x ∈ X \ Cnmk .

FromDefinition 2.5.1, we know that Fnmk(·) is lsc and has values in Pfc (Y ). So,we
can apply Theorem 2.5.14 and find a continuous selection fnmk : X → Y of Fnmk(·).
We claim that { fnmk}n,m,k�1 is the desired dense sequence. Indeed, let y ∈ F(x) and
m � 1.We can find yn ∈ y + Vm+2. Then x ∈ Un(m+2) and so x ∈ Cm(m+2)k for some
k � 1.But then fn(m+2)k(x) ∈ yn + Vm+2 ⊆ yn + Vm+1 ⊆ y + Vm+2 + Vm+1 ⊆ y +
Vm and this completes the proof. �

In fact, in this setting we can relax the requirement that F(·) has values in Pfc(x).
So, we have the following result due to Michael [298] (see Theorem 3.1’’’, p. 368)
(see also Hu and Papageorgiou [218, p. 97]).
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Theorem 2.5.17 If X is a metric space, Y is a separable Banach space and
F : X → 2Y \ {∅} is an lsc multifunction with convex values which either have
nonempty interior or are finite-dimensional, then F(·) admits a continuous selection.

We already saw that usc multifunctions in general do not have a continuous selec-
tion. Nevertheless, as Example 2.5.13 suggests, we can have a continuous approxi-
mate selection. More precisely, we have the following result.

Theorem 2.5.18 If X is a metric space, Y is a Banach space and F : X → 2Y \ {∅}
is a usc multifunction with convex values, then given ε > 0 we can find a locally
Lipschitz function fε : X → Y such that

fε(X) ⊆ conv F(X)

and h∗(Gr fε,Gr F) = sup{d((x, y),Gr F) : y = fε(x)} < ε.

Proof Fix ε > 0. Since F is usc, by virtue of Definition 2.5.2(a), for every x ∈ X

we can find 0 < δ = δ(ε, x) <
ε

2
such that if x ′ ∈ Bδ(x)(x), then F(x ′) ⊆ F(x) +

ε

2
B1. The family {B δ(x)

4
(x)}x∈X is an open cover of X . So, we can find a precise

locally finite refinement {Ux }x∈X of this open cover and a corresponding locally
Lipschitz partition of unity {px }x∈X subordinate to this refinement. For each x ∈ X ,
let (zx , yx ) ∈ Gr F ∩ (Ux × Y ) and set

fε(z) =
∑

x∈X

px (z)yx for all z ∈ X.

Then fε : X → Y is well-defined and locally Lipschitz. Moreover, we have
fε(X) ⊆ conv F(X).
Fix z ∈ X . We have px (z) > 0 for all x ∈ J (z) ⊆ X . For every x ∈ J (z), let

v ∈ X such thatUv ⊆ B δ(v)

4
(v). Letw ∈ J (v) and set δw = max[δv : v ∈ J (z)]. Then

v ∈ B δw
2
(w) and so Uv ⊆ Bδw

(w). Hence for any v ∈ J (z) we have yv ∈ F(Uv) ⊆
F(w) + ε

2 B1. But the last set is convex. So, we have fε(z) ∈ F(w) + ε
2 B1. Therefore

we can find y ∈ F(w) such that ‖ fε(z) − y‖ < ε, which implies that (z, fε(z)) ∈
Gr F + εB1 and so we conclude that h∗(Gr fε,Gr F) < ε. �

Another version of this approximate selection theorem is the following:

Theorem 2.5.19 If X is a metric space, Y is a Banach space, U ⊆ X is open, K ⊆ U
is compact and F : U → 2Y \ {∅} is a usc multifunction with convex values, then for
every ε > 0, there is an open neighborhood Vε of K and a locally Lipschitz function
fε : Vε → conv F(K ) with finite-dimensional range such that for every x ∈ Vε we
have fε(x) ∈ F(K ∩ Bε(x)) + εB1.

Proof We keep the notation from the proof of Theorem 2.5.18.
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Since K is compact, from the cover {Bδ(x)(x)}x∈X we can extract a finite subcover
{Bδ(xn)(xn)}m

n=1.We can find a locally Lipschitz partition of unity {pn}m
n=1 subordinate

to this finite cover and yn ∈ F(xn) and then we define

fε(x) =
m∑

n=1

pn(x)yn for all x ∈ Vε =
m⋃

n=1

Bδ(xn)(xn).

Evidently, fε is locally Lipschitz and fε(x) ∈ conv f (K ) ∩ Yε with Yε =
span {xn}m

n=1.
Reasoning as in the proof of Theorem 2.5.18, we show that

fε(x) ∈ F(K ∩ Bε(x)) + εB1 for all x ∈ Vε,

which completes the proof. �

Next, we turn our attention to the measurability of multifunctions. We start by
introducing a class of functions of two variables, which appears in many different
situations in nonlinear analysis. In what follows, for any Hausdorff topological space
X , by B(X) we denote its Borel σ-field.

Definition 2.5.20 Let (�,�) be a measurable space, and X, Y Hausdorff topolog-
ical spaces. A function f : � × X → Y is said to be a “Carathéodory function”
if

(i) for all x ∈ X, ω �→ f (ω, x) is (�, B(Y ))-measurable;
(ii) for all ω ∈ �, x �→ f (ω, x) is continuous.

Theorem 2.5.21 If (�,�) is a measurable space, X is a separable metric space,
Y a metric space, and f : � × X → Y is a Carathéodory function, then f is (� ×
B(X), B(Y ))-measurable.

Proof Let D ⊆ X be a countable dense subset and letC ⊆ Y be closed.We introduce
the open set Cn = {y ∈ Y : dY (y, C) < 1

n } with dY being the metric of Y . We have
f (ω, x) ∈ C if and only if there exists a u ∈ D such that dX (x, u) < 1

n and f (ω, x) ∈
Cn (here dX is the metric on X ). So, it follows that

f −1(C) =
⋂

n�1

⋃

u∈D

[{ω ∈ � : f (ω, u) ∈ Cn} × {x ∈ X : dX (x, u) <
1

n
}]

∈ � × B(X)

⇒ f is (� × B(X), B(Y ))-measurable.

The proof is now complete. �

Remark 2.5.22 The result fails if the requirement that f (ω, x) is Carathéodory, is
replaced by the hypothesis that for all x ∈ X, ω �→ f (ω, x) is (�, B(Y ))-measurable
and for all ω ∈ �, x �→ f (ω, x) is lower or upper semicontinuous.
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Now we are ready to introduce the measurability notions for multifunctions.

Definition 2.5.23 Let (�,�) be a measurable space, X a Hausdorff topological
space and F : � → 2X \ {∅} a multifunction

(a) We say that F(·) is strongly measurable if for all C ⊆ X closed

F−(C) = {ω ∈ � : F(ω) ∩ C �= ∅} ∈ �.

(b) We say that F(·) is measurable if for all U ⊆ X open

F−(U ) = {ω ∈ � : F(ω) ∩ U �= ∅} ∈ �.

(c) We say that F(·) is graph measurable if

Gr F = {(ω, x) ∈ � × X : x ∈ F(ω)} ∈ � × B(X).

Proposition 2.5.24 If (�,�) is a measurable space, X a metric space and F : � →
2X \ {∅} is strongly measurable, then F(·) is measurable.

Proof In a metric space every open set is Fσ. So, ifU ⊆ X is open, thenU =
⋃

n�1

Cn

with Cn ⊆ X closed. Then

F−(U ) = F−(
⋃

n�1

Cn) =
⋃

n�1

F−(Cn) ∈ �

⇒ F(·) is measurable.

The proof is now complete. �

Proposition 2.5.25 If (�,�) is a measurable space, X a separable metric space
and F : � → 2X \ {∅}, then F(·) is measurable if and only if for all x ∈ R, the
mapping ω �→ d(x, F(ω)) is �-measurable (d being the metric on X).

Proof ⇒ Suppose that F(·) is measurable. For every λ > 0 let Lλ(x) = {ω ∈ � :
d(x, F(ω)) < λ}. Clearly Lλ(x) = F−(Bλ(x)) ∈ �, hence ω �→ d(x, F(ω)) is �-
measurable.

⇐ For every x ∈ X and λ > 0, by hypothesis

F−(Bλ(x)) = Lλ(x) = {ω ∈ � : d(x, F(ω)) < λ} ∈ �.

Now let U ⊆ X be open. Then U = ⋃
n�1 Bλn (xn) (recall that X is separable).

Hence

F−(U ) = F−(
⋃

n�1

Bλn (xn)) =
⋃

n�1

F−(Bλn (xn)) ∈ �

⇒ F is measurable.
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The proof is now complete. �

Proposition 2.5.26 If (�,�) is a measurable space, X is a separable metric space
and F : � → Pf (X) is a measurable multifunction, then F(·) is graph measurable.

Proof Note that

Gr F = {(ω, x) ∈ � × X : d(x, F(ω)) = 0}.

But by virtue of Proposition 2.5.25 (ω, x) �→ d(x, F(ω)) is a Carathéodory func-
tion. Hence invoking Theorem 2.5.21 we conclude that Gr F ∈ � × B(X). So, F(·)
is graph measurable. �

For compact-valued multifunctions, we can say more.

Proposition 2.5.27 If (�,�) is a measurable space, X is a separable metric space
and F : � → Pk(X) is a multifunction then F(·) is strongly measurable if and only
if F(·) is measurable.

Proof ⇒ This is Proposition 2.5.24.
⇐ Let C ⊆ X be closed. Since F(·) is Pk(X)-valued, we see that

X \ F−(C) = {ω ∈ � : d(F(ω), C) > 0}. (2.34)

If D is a countable dense subset of X , then

d(F(ω), C) = inf{d(x, F(ω)) : x ∈ C}
= inf{d(x, F(ω)) : x ∈ C ∩ D}

⇒ ω �→ d(F(ω), C) is �-measurable (see Proposition 2.5.25)

⇒ F−(C) ∈ � and so F is strongly measurable.

The proof is now complete. �

Proposition 2.5.28 If (�,�) is a measurable space, X is a separable metric space
and F : � → Pf (X) is a measurable multifunction, then

(a) for every K ⊆ X compact, F−(K ) ∈ �,
(b) if X is σ-compact, then F(·) is strongly measurable.

Proof (a) Recall that a separable metric space is homeomorphic to a subset of the
Hilbert cubeH = [0, 1]N (this is established in the proof of the Urysohnmetrization
theorem). So, we can think of X as a dense subset of a compact metric space V . Let

G : � → Pk(V ) be the multifunction defined by G(ω) = F(ω)
V
. Clearly, G(·) is

measurable. For K ⊆ X compact, we have

F−(K ) = {ω ∈ � : F(ω) ∩ K �= {∅}} = {ω ∈ � : G(ω) ∩ X ∩ K �= {∅}}
= G−(K ) ∈ � (see Proposition 2.5.27).
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(b) By hypothesis, X = ⋃
n�1 Kn with Kn compact. For every C ⊆ X closed we

have
F−(C) = F−(C ∩ (

⋃

n�1

Kn)) = F−(
⋃

n�1

C ∩ Kn)

=
⋃

n�1

F−(C ∩ Kn) ∈ � (see part (a))

⇒ F is strongly measurable.

The proof is now complete. �
Remark 2.5.29 So, if X is σ-compact and F(·) is Pk(X)-valued, the notions of
measurability and strong measurability are equivalent.

Next, we introduce two classes of spaces which are important in measure theory
in general and in the measurability properties of multifunctions in particular.

Definition 2.5.30 (a) A Hausdorff topological space X is a Polish space if it is
separable and there exists a metric on X for which the topology τ is complete.

(b) A Hausdorff topological space X is a Souslin space if there exists a Polish space
Y and a continuous surjection from Y onto X .

Remark 2.5.31 In a Polish space the metric d is not a priori fixed. We only know
that there exists one generating the topology of X which is complete. There are many
Hausdorff topological spaces that are Polish, but have no complete metric which is
particularly natural or simple. For example, an open set of a Polish space is itself
Polish, but it is not immediately clear which is the complete metric topologizing
the open set. An equivalent way to define a Souslin space is to say that it is a
Hausdorff topological space for which there exists a stronger (finer) topologymaking
the space homeomorphic to a quotient of a Polish space. A Souslin space is always
separable but need not to bemetrizable. Such a space is either an infinite-dimensional
separable Banach space furnished with the weak topology or its dual furnished with
the weak* topology. However, every locally compact Souslin space is Polish. The
Souslin subsets of a Polish space are called “analytic sets”.

Definition 2.5.32 Let (�,�) be a measurable space, X a Hausdorff topological
space and F : � → 2X \ {∅}. A “measurable selection” of F(·) is a map f : � → X
which is (�, B(X))-measurable and f (ω) ∈ F(ω) for all ω ∈ �.

The next result establishes the existence of such a selection. The result is known
in the literature as the “Kuratowski–Ryll-Nardzewski selection theorem”.

Theorem 2.5.33 If (�,�) is a measurable space, X is a Polish space and F : � →
Pf (X) is a measurable multifunction, then F(·) admits a measurable selection.

Proof As in the proof of theMichael selection theorem (see Proposition 2.5.24), first
we produce an approximate measurable selection.

Without any loss of generality we may assume that diam X < 1. Let {xk}k�1 be
dense in X . We construct a sequence of �-measurable maps fn : � → X , n � 0,
such that
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(a) d( fn(ω), F(ω)) < 1
2n for all n � 0 and all ω ∈ �,

(b) d( fn(ω), fn−1(ω)) < 1
2n−1 for all n � 1 and all ω ∈ �.

Define f0(ω) = x1 for all ω ∈ �. We have d( f0(ω), F(ω)) < 1 for all ω ∈ �

(recall that diam X < 1). Suppose that f0, . . . , fn−1 have been constructed and satisfy
(a), (b). We set

An
k = {ω ∈ � : d(xk, F(ω)) <

1

2n
},

Cn
k = {ω ∈ � : d(xk, fn−1(ω)) <

1

2n−1
} and Dn

k = An
k ∩ Cn

k for all k � 1.

We claim that � =
⋃

k�1

Dn
k . To this end, let ω ∈ �. From the induction hypoth-

esis we know that we can find z ∈ F(ω) such that d( fn−1(ω), z) < 1
2n−1 . Also, we

can find xk such that d(xk, z) < 1
2n and d(xk, z) + d(z, fn−1(ω)) < 1

2n−1 . So, by the
triangle inequality d(xk, fn−1(ω)) < 1

2n−1 . Therefore ω ∈ Dn
k for some k � 1 and we

have proved that � =
⋃

k�1

Dn
k . From Proposition 2.5.25, we have that An

k ∈ �. Also,

the measurability of fn−1(·) (by the induction hypothesis), implies that Cn
k ∈ �.

Therefore Dn
k ∈ �. We define fn : � → X by setting

fn(ω) = xk for all ω ∈ Dn
k \

k−1⋃

i=1

Dn
i .

Evidently, range fn = {xk}k�1 and fn is �-measurable. Moreover, from (b) we
have that { fn(ω)}n�0 ⊆ X isCauchyuniformly inω ∈ �. So,we canfind f : � → X
such that fn(ω) → f (ω) in X (recall that X is complete). Then f is �-measurable
and from (a) we see that f (ω) ∈ F(ω) for all ω ∈ �. �

Remark 2.5.34 A careful reading of the above proof reveals that we can drop the
hypothesis that X is Polish and instead assume that X is a separable metrizable space
and F(·) has complete values.

In fact, as we did with continuous selections (see Proposition 2.5.26), we can
improve Theorem 2.5.33 and produce a whole sequence of measurable selections
which is dense in F(ω) for all ω ∈ �.

Theorem 2.5.35 If (�,�) is a measurable space, X is a Polish space and F : � →
Pf (X), then the following statements are equivalent:

(a) F is measurable.
(b) There exists a sequence of �-measurable functions fn : � → X n � 1 such that

fn(ω) ∈ F(ω) for all ω ∈ �, all n � 1,

F(ω) = { fn(ω)}n�1 for all ω ∈ �.



112 2 Compact Operators and Operators of Monotone Type

Proof (a) ⇒ (b). Let {xn}n�1 be dense in X . For every k � 1 we define

Fnk(ω) =
{

F(ω) ∩ B2−k (xn) if ω ∈ F−(B2−k (xn))

F(ω) if ω ∈ � \ F−1(B2−k (xn)).
(2.35)

Note that themeasurability of F implies F−(B2−k (xn)) ∈ � and soω �→ Fnk(ω) is
measurable. Then Theorem 2.5.33 implies that we can find a �-measurable function
fnk : � → X such that fnk(ω) ∈ Fnk(ω) for all ω ∈ �.
We claim that F(ω) = { fnk(ω)}n,k�1 for all ω ∈ �. To this end, let x ∈ F(ω) and

ε > 0 be given. We choose k ∈ N such that 2−k � ε
2 and n ∈ N such that d(x, xn) <

2−k . Therefore

ω ∈ F−(B2−k (xn)) and fnk(ω) ∈ B2−k (xn) (see (2.35)).

So, finally we have

d( fnk(ω), x) � d( fnk(ω), xn) + d(xn, x) � 1

2k
+ ε

2
� ε

and this proves the claim.
(b) ⇒ (a). For every x ∈ X , we have d(x, F(ω)) = infn�1 d(x, fn(ω)) for all

ω ∈ �. Hence the functionω �→ d(x, F(ω)) is�-measurable and this by Proposition
2.5.25 implies the measurability of F(·). �

Definition 2.5.36 Let (�,�) be a measurable space. Given a measure μ on (�,�),
by �μ we denote the μ completion of �. Let �̂ =

⋂

μ

�μ for all finite measures μ.

Remark 2.5.37 The σ-field �̂ is known as the “universal σ-field”. In the definition
of �̂, in the intersection we limit ourselves to finite measures μ, since if μ is σ-finite
we can always find a finite measure with the same null sets. If (�,�,μ) is a σ-finite
measure space, then �̂ = �μ.

The next selection theorem is graph conditioned and is known in the literature as
the “Yankov–von Neumann–Aumann selection theorem”. For its proof we refer to
Hu and Papageorgiou [218, p. 158].

Theorem 2.5.38 If (�,�) is a measurable space, X is a Souslin space and F : � →
2X \ {∅} is graph measurable, then there exists a �̂-measurable function f : � → X
such that f (ω) ∈ F(ω) for all ω ∈ �.

So, summarizing the situation for measurable multifunctions with closed values,
we can state the following theorem.

Theorem 2.5.39 Let (�,�) be a measurable space, X a separable metrizable space
and F : � → Pf (X). We consider the following statements:
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(1) F is strongly measurable;
(2) F is measurable;
(3) for every x ∈ X, ω �→ d(x, F(ω)) is �-measurable;
(4) there exists a sequence fn : � → X (n � 1) of �-measurable selections such

that F(ω) = { fn(ω)}n�1 for all ω ∈ �;
(5) F is graph measurable.

We have the following implications:

(a) (1) ⇒ (2) ⇔ (3) ⇒ (5).
(b) If X is Polish, then (2) ⇔ (3) ⇔ (4).
(c) If X is σ-compact, then (1) ⇔ (2).
(d) If � = �̂ and X is Polish, then (1)–(5) are equivalent.

Remark 2.5.40 In case (d) (that is, � = �̂ and X Polish), statements (1)–(5)
are also equivalent to F−(A) ∈ � for all A ∈ B(X). Indeed, F−(A) = {ω ∈ � :
F(ω) ∩ A �= ∅} = proj�[Gr F ∩ (� × A)] ∈ �̂ by the projection theorem (see Hu
and Papageorgiou [218, p. 149]).

2.6 Monotone Maps: Definition and Basic Results

A function ϕ : R → R is monotone nondecreasing when t1 � t2 implies ϕ(t1) �
ϕ(t2). Equivalently, we can rewrite this condition as follows

(ϕ(t2) − ϕ(t1))(t2 − t1) � 0 for all t1, t2 ∈ R.

The advantage of this second definition of monotonicity is that it does not employ
the order structure on R. Hence, it can be extended to the more general setting of
a map from a Banach space X into its dual X∗, by replacing the product with the
duality brackets for the pair (X∗, X). So, we make the following definitions.

Definition 2.6.1 Let X be a Banach space, X∗ its topological dual, 〈·, ·〉 the duality
brackets for the pair (X∗, X) and A : X → 2X∗

.

(a) We say that A is monotone if for all x, u ∈ X and all x∗ ∈ A(x), u∗ ∈ A(u) we
have

〈u∗ − x∗, u − x〉 � 0.

(b) We say that A is strictly monotone if for all x, u ∈ X, x �= u and all x∗ ∈
A(x), u∗ ∈ A(u) we have

〈u∗ − x∗, u − x〉 > 0.

(c) The set {x ∈ X : A(x) �= ∅} is called the domain of A and is denoted by D(A);
the set Gr A = {(x, x∗) ∈ X × X∗ : x∗ ∈ A(x)} is called the graph of A; the
inversemap A−1 : X∗ → 2X is definedby A−1(x∗) = {x ∈ X : (x, x∗) ∈ Gr A}.
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(d) We say that A is maximal monotone if Gr A is not properly contained in the
graph of another monotone map Â : X → 2X∗

.

Remark 2.6.2 From the definition of maximal monotonicity, we see that
A : X → 2X∗

ismaximalmonotone if andonly if the inequality 〈u∗ − x∗, u − x〉 � 0
for all (x, x∗) ∈ Gr A implies that (u, u∗) ∈ Gr A.

From the remark the following simple observation follows at once.

Proposition 2.6.3 If X is a reflexive Banach space and A : X → 2X∗
, then A is

maximal monotone if and only if A−1 is maximal monotone.

Maximal monotone maps exhibit nice surjectivity properties, which of course are
very important in the study of nonlinear boundary value problems. For this reason we
will focus on them. Before continuing with our study of maximal monotone maps,
let us give some typical examples of monotone maps.

Example 2.6.4 (a) Let H be a Hilbert space, A ∈ L (H) and A � 0 (that is,
(A(x), x)H � 0 for all x ∈ H ). Then A is maximal monotone.

(b) Let H be a Hilbert space and T : H → H a nonexpansive map, that is,

‖T (x) − T (u)‖ � ‖x − u‖ for all x, u ∈ H.

Then A = I − T is maximal monotone map.
(c) Let X be a Banach space and letϕ : X → R = R ∪ {+∞} be a functionwhich

is convex lower semicontinuous, not identically +∞. The subdifferential of ϕ is the
set-valued map ∂ϕ : X → 2X∗

defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, u − x〉 � ϕ(u) − ϕ(x) for all u ∈ X}.

This map is maximal monotone. The subdifferential of convex functions will be
examined in more detail in Sect. 2.7.

(d) A monotone nondecreasing function ϕ : R → R is monotone, but to be max-
imal monotone, we need to have continuity of ϕ or otherwise pass to a set-valued
map by filling in the gaps at the jump discontinuity points.

(e) Let A : W 1,p(�) → W 1,p(�)∗ (1 < p < ∞) be defined by

〈A(u), y〉 =
∫

�

‖Du‖p−2
RN (Du, Dy)RN dz for all u, y ∈ W 1,p(�).

This map is maximal monotone and corresponds to the p-Laplace differential
operator defined by

−�pu = −div(‖Du‖p−2
RN Du) for all u ∈ W 1,p(�).

The monotonicity of A is a consequence of the following elementary inequalities
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(‖x‖p−2
Rn x − ‖v‖p−2

Rn v, x − v)Rm � cp

⎧
⎨

⎩

‖x − v‖2
Rm

(1 + ‖x‖Rm + ‖v‖Rm )2−p
if 1 < p < 2

‖x − v‖2
Rm if 2 � p

for all x, v ∈ R
m (m � 1), with cp > 0 a constant. The maximality of A is a conse-

quence of Proposition 2.6.12 below.

Proposition 2.6.5 If X is a Banach space and A : X → 2X∗
is a maximal monotone

map, then for every x ∈ X, A(x) is convex and w∗-closed in X∗ and Gr A is closed
in X × X∗

w∗ and Xw × X∗.

Proof Let u∗
0, u∗

1 ∈ A(u) and set u∗
t = (1 − t)u∗

0 + tu∗
1 for all t ∈ [0, 1]. For every

(x, x∗) ∈ Gr A we have

〈u∗
t − x∗, u − x〉 = (1 − t)〈u∗

0 − x∗, u − x〉 + t〈u∗
1 − x∗, u − x〉 � 0

⇒ u∗
t ∈ A(u) (sinceA is maximal monotone, see Remark 2.6.2)

⇒ A(u) is convex.

Let {(xα, x∗
α)}α∈J ⊆ Gr A be a net such that xα → x in X∗ and x∗

α

w∗→ x∗ in X∗.
For every (u, u∗) ∈ Gr A we have

〈x∗
α − u∗, xα − u〉 � 0 for all α ∈ J

⇒ 〈x∗ − u∗, x − u〉 � 0 for all (u, u∗) ∈ Gr A

⇒ (x, x∗) ∈ Gr A (due to the maximality ofA).

This proves that Gr A is closed in X × X∗
w∗ and so A(x) is w∗-closed. Similarly

we show the closedness of Gr A in Xw × X∗. �

Definition 2.6.6 Let X be a Banach space and X∗ its dual.

(a) A monotone map A : X → 2X∗
is locally bounded at x ∈ D(A) if we can find

M > 0 and r > 0 such that

‖x∗‖∗ � M for all x ∈ D(A) ∩ Br (x) and all x∗ ∈ A(x).

(b) A subset (not necessarily convex) C ⊆ X which contains the origin is said to be
absorbing if X = ⋃

˘>0
λC. Equivalently, C is absorbing if for every x ∈ X we can

find t > 0 such that t x ∈ C. A point x ∈ C is said to be an absorbing point of C
if C − x is an absorbing set. The set of absorbing points of C is called the core
of C and denoted by coreC .

Remark 2.6.7 Evidently every interior point of C is an absorbing point of C (that is,
int C ⊆ coreC).However, C can have absorbing points even if int C = ∅. Consider
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the set C = ∂B1 ∪ {0} (where ∂B1 = {x ∈ X : ‖x‖ = 1}). Then C is absorbing, 0 is
an absorbing point of C , but int C = ∅.

The next proposition establishes a fundamental property of monotone maps.

Proposition 2.6.8 If X is a Banach space, X∗ its dual and A : X → 2X∗
is monotone,

then A is locally bounded at every absorbing point of D(A).

Proof Let x∗ ∈ A(x) and consider instead of A the monotone map defined byu →
A(x + u) − x∗. So, without any loss of generality wemay assume that (0, 0) ∈ Gr A
and 0 is an absorbing point of D(A). Let

ϕ(x) = sup{〈u∗, x − u
〉 : u ∈ D(A), ‖u‖ � 1, u∗ ∈ A(u)}

and
C = {x ∈ X : ϕ(x) � 1}.

Note that since ϕ is the supremum of affine continuous functionals, it is convex
and lower semicontinuous. So, C is closed, convex and it contains the origin. Since
(0, 0) ∈ Gr A we see that ϕ � 0. Also, note that for all (u, u∗) ∈ Gr A from the
monotonicity of A we have

〈
u∗ − 0, u − 0

〉
� 0

⇒ ϕ(0) = 0.

Let D = C ∩ (−C).This is a closed, symmetric set.We claim that A is absorbing.
Recall that D(A) is absorbing. So, if x ∈ X, we can find t > 0 such that A(t x) �= ∅.
Let u∗ ∈ A(t x). If v ∈ D(A) and v∗ ∈ A(v), then

〈
v∗, t x − v

〉
�

〈
u∗, t x − v

〉

⇒ ϕ(t x) � sup [〈u∗, t x − v
〉 : v ∈ D(A), ‖v‖ � 1]

�
〈
u∗, t x

〉 + ‖u∗‖∗.

Let λ ∈ (0, 1) be such that λϕ(t x) < 1. The convexity of ϕ implies

ϕ(λt x) � λϕ(t x) + (1 − λ)ϕ(0) = λϕ(t x) < 1

⇒ λt x ∈ C.

Therefore C is absorbing as claimed and so it is a neighborhood of the origin (by
the Baire category theorem). Hence there exists an r > 0 such that ϕ(x) � 1 for all
‖x‖ � 2r. Therefore

‖x‖ � 2r ⇒ 〈
v∗, x

〉
�

〈
v∗, v

〉
for allv ∈ D(A) with ‖v‖ � 1, all v∗ ∈ A(v).

Then for v ∈ D(A) ∩ Br (0) and v∗ ∈ A(v) we have
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2r‖v∗‖∗ = sup [〈v∗, x
〉 : ‖x‖ � 2r ] � ‖v∗‖∗‖v‖ + 1 � r‖v∗‖∗ + 1

⇒ ‖v∗‖∗ � 1

r
.

The proof is now complete. �

Next, we present an important case when a monotone map is in fact maximal
monotone.

Proposition 2.6.9 If X is a Banach space, X∗ its dual and A : X → 2X∗
is a mono-

tone map with nonempty, convex andw∗-closed values and A is usc from line segments
in X into X∗

w∗ , then A is maximal monotone.

Proof By virtue of Remark 2.6.2 it suffices to show that

“if
〈
u∗ − x∗, u − x

〉
� 0 for all (x, x∗) ∈ Gr A, then (u, u∗) ∈ Gr A′′.

Arguing by contradiction, suppose that u∗ /∈ A(u). Since A(u) is w∗-closed and
convex, by the strong separation theorem, we can find h ∈ X \ {0} and ε > 0 such
that 〈

u∗, h
〉 − ε � sup{〈û∗, h

〉 : û∗ ∈ A(u)}. (2.36)

For t > 0, let xt = u + th and let x∗
t ∈ A(xt ). By virtue of Proposition 2.6.8, we see

that for t > 0 small ‖A(xt )‖∗ � M . So, by Alaoglu’s theorem, we may assume that

x∗
t

w∗−→ x∗ in X∗. Then our hypothesis on A and Proposition 2.5.8 imply x∗ ∈ A(u).
Since

〈
x∗

t − u∗, h
〉
� 0 for all t > 0

⇒ 〈
x∗ − u∗, h

〉
� 0,

which contradicts (2.36). �

When A is single-valued, the above continuity property has a special name.

Definition 2.6.10 An operator A : X → X∗ is said to be hemicontinuous at x ∈
D(A) if D(A) is convex and for every u ∈ D(A), the map t → A((1 − t)x + tu) is
continuous from [0, 1] into X∗

w∗ . We say that A is hemicontinuous if it is hemicon-
tinuous at every x ∈ D(A).

Remark 2.6.11 Evidently, the hemicontinuity of A at x ∈ D(A) is equivalent to the
continuity of the map t → A(x + tu) from [0, t0) into Xw∗ .

Then immediately from Proposition 2.6.9, we have:

Proposition 2.6.12 If X is a Banach space, X∗ its dual and A : X → X∗ is a mono-
tone, hemicontinuous operator with D(A) = X, then A is maximal monotone.

Another consequence of Proposition 2.6.8 is the following result.
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Proposition 2.6.13 If X is a Banach space, X∗ its dual and A : X → 2X∗
is a

maximal monotone map, then for all x ∈ int D(A), A(x) is convex and w∗ compact
and A is usc from X into X∗

w∗ .

Proof Combining Proposition 2.6.5 and Proposition 2.6.8 it follows that for every
x ∈ int D(A), A(x) is convex and w∗-compact.

Next let C ⊆ X∗ be w∗-closed. According to Proposition 2.5.3 we need to show
that A−(C) = {x ∈ int D(A) : A(x) ∩ C �= ∅} is closed in X . So, let {xα}α∈J be a
net in A−(C) such that xα → x ∈ int D(A). Then we can find x∗

α ∈ A(xα) ∩ C for
all α ∈ J . On account of Proposition 2.6.8, we may assume that {x∗

α}α∈J is bounded.

So, thanks to the Alaoglu theorem we may assume that x∗
α

w∗→ x∗ in X∗. Evidently
x∗ ∈ C . Also (x, x∗) ∈ Gr A (see Proposition 2.6.5). Therefore x∗ ∈ A(x) ∩ C and
so x ∈ A−(C). This proves the desired upper semicontinuity of A. �

2.7 The Subdifferential and Duality Maps

The subdifferential extends the classical concept of a derivative. Here we focus on
the subdifferential of convex functions, since it leads to maximal monotone maps.

From the duality theory of convex analysis, we know that a convex set in a Banach
space can be dually described using the notion of a supporting hyperplane. Just
recall that a closed convex set is the intersection of all closed half-spaces which
contain it. Suppose that the convex set is the epigraph of a convex function ϕ, that is,
C = epiϕ = {(x,λ) ∈ X × R : ϕ(x) � λ} with X being a Banach space. Then the
supporting hyperplanes are described by continuous affine functionals minorizing ϕ.
So, let ξ : X → R be a continuous affine functional defined by ξ(x) = 〈x∗, x〉 + η
with x∗ ∈ X∗ and η ∈ R. We require that ξ is an exact minorant of ϕ at x ∈ X , that
is,

ξ(u) � ϕ(u) for all u ∈ X and ξ(x) = ϕ(x)

⇒ η = ϕ(x) − 〈
x∗, x

〉
, and so ξ(u) = ϕ(x) + 〈

x∗, u − x
〉
.

Therefore we have

〈
x∗, u − v

〉
� ϕ(u) − ϕ(x) for all u ∈ X.

This leads to the following notion already mentioned in Example 2.6.4 (c).

Definition 2.7.1 Let X be aBanach space andϕ : X → R = R ∪ {+∞}be a convex
function not identically+∞.The subdifferential ofϕ is themultifunction ∂ϕ : X →
2X∗

defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈
x∗, u − x

〉
� ϕ(u) − ϕ(x) for all u ∈ X}.
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The elements of ∂ϕ(x) are called subgradients of ϕ at x .

Remark 2.7.2 In the terminology of ConvexAnalysis,R = R ∪ {+∞}-valued func-
tions which are not identically +∞ are called “proper”. However, in this book
we have reserved this name for a different class of maps (see Definition 2.2.1).
In the sequel when considering R-valued functions we will always assume that
they are not identically +∞. From Definition 2.7.1 it is clear that ∂ϕ(x) is always
a w∗-closed, convex set in X∗. It may be empty. The domain of ∂ϕ, denoted by
D(∂ϕ), is the set D(∂ϕ) = {x ∈ X : ∂ϕ(x) �= ∅}. Evidently, D(∂ϕ) ⊆ domϕ =
{x ∈ X : ϕ(x) < +∞} (the effective domain of ϕ) and this inclusion can be strict. If
x ∈ D(∂ϕ) then we say that ϕ is subdifferentiable at x . All this terminology reflects
the fact that if ϕ ∈ C1(X), then 〈ϕ′(x), u − x〉 � ϕ(u) − ϕ(x)for allu ∈ X and this
inequality characterizes ϕ′(x). It is easily seen that ∂ϕ : X → 2X∗

is monotone. In
fact, it is maximal monotone, but the proof of this basic result is postponed until the
next section.

Since the notion of subdifferential is linked with the duality theory of convex
functions, to better understand it, we will need some basic definitions and facts from
this theory.

Definition 2.7.3 Let X be a Banach space and ϕ : X → R = R ∪ {+∞} (recall
that we always assume ϕ �= +∞). The conjugate of ϕ is the function ϕ∗ : X∗ → R

defined by
ϕ∗(x∗) = sup{〈x∗, x

〉 − ϕ(x) : x ∈ X}.

Remark 2.7.4 Let x0 ∈ domϕ. Then ϕ∗(x∗) � 〈x∗, x0〉 − ϕ(x0). So, ϕ∗ admits a
continuous affine minorant and therefore we see that ϕ∗ cannot take the value −∞
(that is, ϕ∗ is R-valued). If u∗ ∈ domϕ∗, then we can find η ∈ R such that

〈
u∗, u

〉 − ϕ(u) � η for all u ∈ X

⇒ 〈
u∗, u

〉 − η � ϕ(u) for all u ∈ X.

Recall that if ϕ is convex and lower semicontinuous, then ϕ admits such a con-
tinuous affine minorant. Therefore for ϕ convex and lower semicontinuous, ϕ∗ is
not identically +∞ and being the supremum of affine continuous functionals, it is
convex and lower semicontinuous.

This remark suggests that we focus on convex and lower semicontinuous func-
tions. A basic result for this class of functions is the following (see, for example,
Ioffe and Tichomirov [221, p. 177]).

Proposition 2.7.5 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex
and lower semicontinuous, then ϕ is the supremum of all continuous affine functionals
minorizing ϕ.

Since ϕ∗ : X∗ → R = R ∪ {+∞} is convex and lower semicontinuous, we can
compute its conjugate ϕ∗∗ : X∗∗ → R, which is convex and lower semicontinuous.
Exploiting the canonical embedding of X into X∗∗, we can restrict ϕ∗∗ to X to obtain
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ϕ∗∗(u) = sup{〈u∗, u
〉 − ϕ∗(u∗) : u∗ ∈ X∗} for all u ∈ X.

Then we can reformulate Proposition 2.7.5 as follows:

Proposition 2.7.6 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex
and lower semicontinuous, then ϕ = ϕ∗∗ on X.

Example 2.7.7 Let X be a normed space and C ⊆ X a nonempty, closed convex set.
The indicator function of C is the function defined by

δC(x) =
{

0 if x ∈ C
+∞ if x ∈ X \ C.

This function is convex and lower semicontinuous. We have

(δC)∗(x∗) = sup{〈x∗, x
〉 − δC(x) : x ∈ X} = sup{〈x∗, x

〉 : x ∈ C} = σC(x∗).

So, the conjugate of δC is the support function of C . From Proposition 2.7.6 we
have

δC = (δC)∗∗ on X

⇒ δC(u) = sup{〈u∗, u
〉 − σC(u∗) : u∗ ∈ X∗}.

Note that u ∈ C if and only if δC(u) = 0. Hence

C = {x ∈ X : 〈
x∗, x

〉
� σC(x∗) for all x∗ ∈ X∗}.

Now we return to the study of the subdifferential.

Proposition 2.7.8 If X is a normed space and ϕ : X → R = R ∪ {+∞} is convex
and lower semicontinuous, then the following conditions are equivalent:

(a) x∗ ∈ ∂ϕ(x);
(b) ϕ(x) + ϕ∗(x∗) = 〈x∗, x〉.
Proof (a) ⇒ (b) From Definition 2.7.3 we see that we have

ϕ∗(x∗) �
〈
x∗, x

〉 − ϕ(x). (2.37)

Since x∗ ∈ ∂ϕ(x), we have 〈x∗, u − x〉 � ϕ(u) − ϕ(x) for all u ∈ X . Then

〈
x∗, u

〉 − ϕ(u) �
〈
x∗, x

〉 − ϕ(x) for all u ∈ X

⇒ ϕ∗(x∗) �
〈
x∗, x

〉 − ϕ(x)

⇒ ϕ(x) + ϕ∗(x∗) = 〈
x∗, x

〉
(see (2.37)).

(b) ⇒ (a) The continuous affine function
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u → ξ(u) = 〈
x∗, u

〉 + ϕ(x) − 〈
x∗, x

〉

minorizes ϕ (note that the constant term is by hypothesis equal to ϕ∗(x∗) ) and it is
exact at x . Therefore x∗ ∈ ∂ϕ(x). �

Proposition 2.7.9 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex
and lower semicontinuous, then 〈x, x∗〉 ∈ Gr ∂ϕ if and only if (x∗, x) ∈ Gr ∂ϕ∗.

Proof We have

(x, x∗) ∈ Gr ∂ϕ ⇔ x∗ ∈ ∂ϕ(x)

⇔ ϕ(x) + ϕ∗(x∗) = 〈
x∗, x

〉
(see Proposition 2.7.8)

⇔ ϕ∗∗(x) + ϕ∗(x∗) = 〈
x∗, x

〉
(see Proposition 2.7.6)

⇔ x ∈ ∂ϕ∗(x∗) (again Prop. 2.7.8).

The proof is now complete. �

Remark 2.7.10 Using the notation introduced inDefinition 2.6.1, we have (∂ϕ)−1 =
∂ϕ∗.

The next proposition provides a simple criterion for subdifferentiability of convex
functions.

Proposition 2.7.11 If X is a Banach space, ϕ : X → R = R ∪ {+∞} is convex,
x ∈ domϕ and ϕ is continuous at x, then ∂ϕ(u) �= ∅ for all u ∈ int domϕ and in
particular ∂ ϕ(x) �= ∅.

Proof Since ϕ is continuous at x , we have that int domϕ �= ∅ and ϕ |int domϕ is
continuous (in fact locally Lipschitz, see for example Gasinski and Papageorgiou
[182, p. 494]). So, it suffices to show that ∂ϕ(x) �= ∅.

The continuity of ϕ at x implies that int epiϕ �= ∅ (recall that epiϕ = {(x,λ) ∈
X × R : ϕ(x) � λ}) (the epigraph of ϕ). Since (x,ϕ(x)) ∈ ∂(epiϕ), by the weak
separation theorem we can find x∗ ∈ X∗ and η,μ ∈ R not all zero such that

〈
x∗, u

〉 + μλ � η = 〈
x∗, x

〉 + μϕ(x)for all (u,λ) ∈ epiϕ.

If μ = 0, then

〈
x∗, u − x

〉
� 0 for all u ∈ domϕ

⇒ x∗ = 0 (domϕ contains a neighborhood of x)

⇒ x∗ = 0 and μ = η = 0, a contradiction.

Therefore μ > 0 and then dividing by μ > 0, we have
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η

μ
−

〈
1

μ
x∗, u

〉
� ϕ(u) for all u ∈ domϕ, (2.38)

η

μ
−

〈
1

μ
x∗, x

〉
= ϕ(x). (2.39)

From (2.38) and (2.39) it follows that

〈
− 1

μ
x∗, u − x

〉
� ϕ(u) − ϕ(x) for all u ∈ X

⇒ − 1

μ
x∗ ∈ ∂ϕ(x), hence ∂ϕ(x) �= ∅.

The proof is now complete. �

Corollary 2.7.12 If X is a Banach space and ϕ : X → R is convex and lower semi-
continuous, then int domϕ ⊆ D(∂ϕ) ⊆ domϕ.

Proof Just recall that ϕ|int domϕ is continuous and use Proposition 2.7.11. �

As we already mentioned the subdifferential is a generalization of the classical
derivative. In the next results, we make this more precise.

Definition 2.7.13 Let X be a Banach space and ϕ : X → R = R ∪ {+∞}. We say
that

ϕ′(x; h) = lim
λ→0+

ϕ(x + λh) − ϕ(x)

λ
,

if it exists, is the directional derivative of ϕ at x in the direction h.

Remark 2.7.14 If ϕ is convex and x ∈ domϕ, then the quotient [ϕ(x + λh) −
ϕ(x)]/λ is nondecreasing as a function of λ and so the limit exists and we have

ϕ′(x; h) = lim
λ→0+

ϕ(x + λh) − ϕ(x)

λ
= inf

λ>0

ϕ(x + λh) − ϕ(x)

λ
. (2.40)

Moreover, for all x ∈ domϕ, the mapping h �→ ϕ′(x; h) is sublinear (that is,
positively homogeneous and subadditive). If ϕ is Gâteaux differentiable, then
ϕ′(x; ·) ∈ X∗.

Proposition 2.7.15 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex
and continuous at x ∈ X, then

ϕ′(x; h) = σ∂ϕ(x)(h) = sup{〈x∗, h
〉 : x∗ ∈ ∂ϕ(x)} for all h ∈ X.

Proof Let σ̂x (h) = ϕ′(x; h) and ϑλ(h) = ϕ(x+λh)−ϕ(x)

λ
for all h ∈ X and all λ > 0.

We have
σ̂x = inf

λ>0
ϑλ (see (2.40)).
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Directly from Definition 2.7.3 we obtain

(σ̂x )
∗ = sup

λ>0
ϑ∗

λ. (2.41)

For every h∗ ∈ X∗ we have

ϑ∗
λ(h

∗) = sup

{〈
h∗, h

〉 − 1

λ
(ϕ(x + λh) − ϕ(x)) : h ∈ X

}

= sup
1

λ
{〈h∗, u

〉 − ϕ(u) + ϕ(x) − 〈
h∗, x

〉 : u ∈ X}

= 1

λ
{ϕ∗(h∗) + ϕ(x) − 〈

h∗, x
〉}. (2.42)

According to Proposition 2.7.8, we have

∂ϕ(x) = {h∗ ∈ X∗ : ϕ∗(h∗) + ϕ(x) = 〈
h∗, x

〉}.

Therefore from (2.41) and (2.42) it follows that

(σ̂x )
∗(h∗) =

{
0 if h∗ ∈ ∂ϕ(x)

+∞ if h∗ /∈ ∂ϕ(x)

⇒ (σ̂x)
∗ = δ∂ϕ(x). (2.43)

Note that

〈
u∗, h

〉
� ϕ′(x; h) � ϕ(x + h) − ϕ(x) for all u∗ ∈ ∂ϕ(x) and all h ∈ X.

The continuity of ϕ(·) at x implies that ϕ′(x; ·) is finite and continuous on X .
Therefore, we have

(σ̂x)
∗∗ = σ̂x (see Proposition 2.7.6)

⇒ σ̂x(h) = σ∂ϕ(x)(h) for all h ∈ X (see Example 2.7.7).

The proof is now complete. �

Recall that a convex and lower semicontinuous function ϕ : X → R = R ∪
{+∞} is continuous in int domϕ. In fact an argument similar to that in the proof of
Proposition 2.6.8 reveals that ϕ is continuous on core domϕ (see Definition 2.6.6).

This observation leads to the following result, which is another illustration of the
power of the convexity condition, which although a purely algebraic condition, leads
to remarkable topological conclusions.
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Proposition 2.7.16 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex,
lower semicontinuous and also Gâteaux differentiable at x, then ϕ is continuous at
x.

Remark 2.7.17 For general functions ϕ : X → R it is well-known that Gâteaux dif-
ferentiability does not imply continuity. To see this, let us consider the function

ψ(x, u) =
⎧
⎨

⎩

x6

x8 + (u − x2)2
if (x, u) �= (0, 0)

0 if (x, u) = (0, 0).

The Gâteaux derivative of ψ at (0, 0) exists and it is zero. However, ψ(x, x2) = x−2

and so ψ is not continuous (and a fortiori not differentiable) at the origin.

Proposition 2.7.18 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is convex
and Gâteaux differentiable at x, then ϕ′(x) ∈ ∂ϕ(x).

Proof We have that 〈ϕ′(x), h〉 = lim
λ→0+

ϕ(x+λh)−ϕ(x)

λ
. Then the convexity ofϕ implies

that for all h ∈ ∂B1 = {x ∈ X : ‖x‖ = 1} and all t > 0, we have

〈ϕ′(x), th〉 � ϕ(x + th) − ϕ(x)

⇒ 〈ϕ′(x), u〉 � ϕ(x + u) − ϕ(x) for all u ∈ X

⇒ ϕ′(x) ∈ ∂ϕ(x) (see Definition 2.7.1).

The proof is now complete. �

Proposition 2.7.19 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is a con-
vex function continuous at x, then ϕ is Gâteaux differentiable at x if and only if
∂ϕ(x) ⊆ X∗ is a singleton.

Proof ⇒ If ϕ is Gâteaux differentiable at x , then ϕ′(x) ∈ ∂ϕ(x) (see Proposition
2.7.18). Suppose that u∗ ∈ ∂ϕ(x) and u∗ �= ϕ′(x). Then, for some h ∈ ∂B1, we
have

〈ϕ′(x), h〉 <
〈
u∗, h

〉
� 1

λ
[ϕ(x + λh) − ϕ(x)] for allλ > 0

⇒ 〈ϕ′(x), h〉 < ϕ′(x; h), a contradiction.

⇐ Suppose that ∂ϕ(x) = {x∗}. Then from Proposition 2.7.15 we have

ϕ′(x; h) = 〈
x∗, h

〉
for all h ∈ X,

hence ϕ is Gâteaux differentiable at x ∈ X and ϕ′(x) = x∗. �

In general, ifϕ ,ψ : X → R = R ∪ {+∞} are convex and lower semicontinuous,
then ∂ϕ(x) + ∂ψ(x) ⊆ ∂(ϕ + ψ)(x) for all x ∈ X . The inclusion may be strict.
However, we have a simple situation where equality holds.
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Proposition 2.7.20 If X is a Banach space,ϕ ,ψ : X → R = R ∪ {+∞} are convex
and lower semicontinuous and there exists an x ∈ dom ϕ ∩ dom ψ such that one of
them is continuous, then ∂(ϕ + ψ)(x) = ∂ϕ(x) + ∂ψ(x) for all x ∈ X.

Proof As we already mentioned, it is an easy consequence of Definition 2.7.1 that
∂ϕ(x) + ∂ψ(x) ⊆ ∂(ϕ + ψ)(x) for all x ∈ X . Let x∗ ∈ ∂(ϕ + ψ)(x) and assume
that ϕ is continuous at x . We have

〈
x∗, u − x

〉
� τ (u) − τ (x) for all u ∈ X, where τ = ϕ + ψ.

We introduce the setsC1 = {(u,λ) ∈ X × R : ϕ(u) − 〈x∗, u − x〉 − ϕ(x) � λ} and
C2 = {(u,λ) ∈ X × R : λ � ψ(x) − ψ(u)}. Both sets are convex, the continuity of
ϕ at x implies int C1 �= ∅ and int C1 ∩ C2 = ∅. So, by the weak separation theorem
we can find u∗ ∈ X∗ \ {0} and η ∈ R such that

ψ(x) − ψ(u) �
〈
u∗, u

〉 + η � ϕ(u) − 〈
x∗, u − x

〉 − ϕ(x) for all u ∈ X.

Choosing u = x , we obtain η = −〈u∗, x〉 and so

〈−u∗, u − x
〉
� ψ(u) − ψ(x) for all u ∈ X,〈

u∗ + x∗, u − x
〉
� ϕ(u) − ϕ(x) for all u ∈ X

⇒ −u∗ ∈ ∂ψ(x) and u∗ + x∗ ∈ ∂ϕ(x)

⇒ x∗ = x∗
1 + x∗

2 with x∗
1 = u∗ + x∗ ∈ ∂ϕ(x) , x∗

2 = −u∗ ∈ ∂ψ(x).

We have proved the desired equality. �

In this last part of this section, we focus on the duality map. Duality maps have
become an important tool in nonlinear analysis, in particular in connection with
monotone operators, and the geometry of Banach spaces.

Definition 2.7.21 Let X be a Banach space and let ϕ : X → R be the convex func-
tion defined by ϕ(x) = 1

2‖x‖2. The map x → J (x) = ∂ϕ(x) is the duality map for
the Banach space.

Remark 2.7.22 The continuity ofϕ implies that dom J = X . Also, J (·) is monotone
and, in fact, maximal monotone as we will prove in the next section.

Proposition 2.7.23 We have

J (x) = {x∗ ∈ X∗ : 〈
x∗, x

〉 = ‖x‖2 and ‖x∗‖∗ = ‖x‖}.

Proof Let τ (x) = ‖x‖ for all x ∈ X . Then ϕ′(x; h) = ‖x‖τ (x; h) for all x, h ∈ X .
So, if x = 0, then

ϕ′(x; h) = 0 for all h ∈ X

⇒ ∂ϕ(0) = 0 (see Proposition 2.7.15).
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So, suppose that x �= 0. Then x∗ ∈ ∂ϕ(x) if and only if 〈x∗, h〉 � ϕ′(x; h) for all

h ∈ X. Hence x∗ ∈ ∂ϕ(x) if and only if
〈

x∗
‖x‖ , h

〉
� τ ′(x; h) for all h ∈ X. The latter

inequality is equivalent to saying that x∗
‖x‖ = u∗ ∈ ∂τ (x). Therefore x∗ ∈ ∂ϕ(x) if

and only if 〈u∗, y − x〉 � τ (y) − τ (x) for all y ∈ X, with u∗ = x∗
‖x‖ .

In the last inequality, we choose y = x + v with ‖v‖ � 1. Then

〈
u∗, v

〉
� τ (x + v) − τ (x) � ‖v‖ (by the triangle inequality)

⇒ ‖u∗‖∗ � 1.

Also, if we take y = 0, then ‖x‖ � 〈u∗, x〉 � ‖u∗‖∗‖x‖, hence 1 � ‖u∗‖∗.So,we
conclude that ‖u∗‖∗ = 1 and 〈u∗, x〉 = ‖x‖. Therefore 〈x∗, x〉 = ‖x‖2 and ‖u∗‖∗ =
‖x‖.

Conversely, let ‖u∗‖∗ = 1 and 〈x∗, x〉 = ‖x‖. Then for all y ∈ X we have

〈
u∗, y − x

〉
� ‖y‖ − ‖x‖ = τ (y) − τ (x)

⇒ u∗ ∈ ∂τ (x) = 1

‖x‖ ∂ϕ(x).

The proof is now complete. �

Remark 2.7.24 In general, the duality map is multivalued. Also, the above proposi-
tion shows that the duality map depends on the norm considered on X or on X∗. So,
if we consider an equivalent norm on either of the spaces, the duality map changes.

Definition 2.7.25 (a) A Banach space X is said to be strictly convex (rotund) if for
all x, u ∈ X , x �= u, ‖x‖ = 1 = ‖u‖ we have

‖λx + (1 − λ)u‖ < 1 for all λ ∈ (0, 1).

(b) A Banach space X is said to be smooth if for every x ∈ X with ‖x‖ = 1 there
exists a unique x∗ ∈ X∗ such that ‖x∗‖ = 1 and 〈x∗, x〉 = 1.

Remark 2.7.26 Evidently, X is strictly convex if the boundary of the unit ball has
no flat parts. On the other hand, X is smooth if J (x) is single-valued for all x �= 0
and this is equivalent to saying that the norm of X is Gâteaux differentiable at every
x �= 0. We know that if X∗ is strictly convex (resp. smooth), then X is smooth (resp.
strictly convex), see Megginson [295, p. 481].

Proposition 2.7.27 If X is a reflexive Banach space with strictly convex dual X∗,
then the duality map J : X → X∗ is single-valued, maximal monotone bounded (that
is, maps bounded sets to bounded sets) and coercive (that is, ‖J (x)‖∗ → +∞ as
‖x‖ → +∞).

Proof Let x∗
1 , x∗

2 ∈ J (x). Then from Proposition 2.7.23 we have

〈
x∗

k , x
〉 = ‖x‖2 = ‖x∗

k ‖2∗ for k = 1, 2.
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Hence

2‖x∗
1‖∗‖x‖ � ‖x∗

1‖2∗ + ‖x∗
2‖2∗ = 〈

x∗
1 + x∗

2 , x
〉
� ‖x∗

1 + x∗
2‖∗‖x‖

⇒ ‖x∗
1‖∗ = ‖x∗

2‖∗ � 1

2
‖x∗

1 + x∗
2‖∗ .

The strict convexity of X∗ implies that x∗
1 = x∗

2 .

Suppose that xn → x in X . Then {J (xn)}n�1 ⊆ X∗ is bounded. Since X is reflex-
ive from the Eberlein–Smulian theorem, by passing to a subsequence if necessary,
we may assume that J (xn)

w→ u∗ in X∗. Then
〈
u∗, x

〉 = lim
n→∞ 〈J (xn), xn〉 = lim

n→∞ ‖xn‖2 = ‖x‖2. (2.44)

Also, for every h ∈ X we have

〈
u∗, h

〉 = lim
n→∞ 〈J (xn), h〉 = lim

n→∞ ‖xn‖‖h‖ = ‖x‖‖h‖. (2.45)

From (2.44), (2.45) andProposition 2.7.23,we infer that u∗ = J (x).ByUrysohn’s
criterion, for the original sequence we have J (xn)

w→ J (x) in X∗. Since J (·) is
monotone (see Remark 2.7.2), from Proposition 2.6.12 we infer that J (·) is maximal
monotone.

Finally, since ‖J (x)‖∗ = ‖x‖ for all x ∈ X , we conclude that J (·) is bounded and
coercive. �

Remark 2.7.28 Here we proved the maximal monotonicity using Corollary 2.7.12.
In fact, the maximal monotonicity is a consequence of the maximality of the sub-
differential map. However this important fact will be proved in the next section.
Moreover, the results of the next section will imply J (·) is also surjective.
Definition 2.7.29 (a) A Banach space X is said to be uniformly convex if for all
sequences {xn}n�1, {un}n�1 ⊆ X such that ‖xn‖ = ‖un‖ = 1 and ‖xn + un‖ → 2,
we have ‖xn − un‖ → 0 as n → ∞.

(b) A Banach space X is said to be locally uniformly convex if for every ‖x‖ = 1
and every sequence {xn}n�1 ⊆ X such that ‖xn‖ = 1 for all n � 1 and ‖xn + x‖ → 2
as n → ∞ we have ‖xn − x‖ → 0 as n → ∞.

Remark 2.7.30 By the Milman–Pettis theorem (see Megginson [295, p. 452]) every
uniformly convex Banach space is reflexive. Using the parallelogram identity, we
see that every Hilbert space is uniformly convex. Locally uniformly convex Banach
spaces exhibit the so-called Kadec–Klee property. Namely, if xn

w→ x in X and
‖xn‖ → ‖x‖, then xn → x in X . Of course, a uniformly convex Banach space is
locally uniformly convex.The converse is not true in general. To see this let {pn}n�1 ⊆
(1,+∞) , ‖ · ‖pn be the usual norm of l pn and let
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X =
⎧
⎨

⎩(xn)n�1 : xn ∈ l pn and ‖(xn)‖ = (
∑

n�1

‖(xn)‖2pn
)1/2 < ∞

⎫
⎬

⎭ .

This Banach space is locally uniformly convex, but it is uniformly convex if and
only if pn ∈ [a, b] for all n � 1 with 1 < a � b < ∞ (see Day [138, p. 146]). In
general, we have the following implications between Banach spaces:
X = Uniformly convex −→ X = locally Uniformly Convex

↓ ↓
X = Reflexive X = Strictly convex

�
X∗ = Reflexive

Proposition 2.7.31 If X is a reflexive Banach space with locally uniformly convex
dual X∗, then the duality map J : X → X∗ is continuous.

Proof Let xn → x in X . Then‖J (xn)‖∗ → ‖J (x)‖∗.Also, fromproof of Proposition
2.7.27, we know that J is sequentially continuous from X into X∗

w. Hence J (xn)
w→

J (x) in X∗. Then from the Kadec–Klee property (see Remark 2.7.30) we have that
J (xn) → J (x) in X∗ and this proves the continuity of J (·). �
Proposition 2.7.32 If X is a reflexive Banach space with locally uniformly convex
dual X∗, then the norm functional τ (u) = ‖u‖ for all u ∈ X is Fréchet differentiable
on X \ {0} and τ ′(u) = J (u)

‖u‖ for all u ∈ X \ {0}.
Proof Recall that J (x) = ϕ′(x) = ‖x‖τ (x) for all x ∈ X (see the proof of Proposi-
tion 2.7.23). FromProposition 2.7.31weknow that J is continuous, hence x → τ ′(x)

is continuous on X \ {0} and Gâteaux differentiable. Therefore we conclude that
τ (·) is Fréchet differentiable on X \ {0}. Moreover we have τ ′(x) = J (x)

‖x‖ for all
x ∈ X \ {0}. �
Proposition 2.7.33 If X is a reflexive Banach space and both X and its dual X∗ are
locally uniformly convex, then the duality map J : X → X∗ is a homeomorphism.

Proof From Proposition 2.7.31 we know that J is continuous. Also, from Remark
2.7.28 we know that J is surjective. Identifying X = X∗∗ (recall that X is reflexive)
we can consider the duality map Ĵ : X∗ → X , which is continuous (see Proposition
2.7.31).

We have
〈x∗, Ĵ (x∗)〉 = ‖x∗‖2∗ and ‖x∗‖∗ = ‖ Ĵ (x∗)‖.

Then from 2.7.23 and 2.7.27, we infer that

J ( Ĵ (x∗)) = x∗ and Ĵ (J (x)) = x for all x ∈ X

⇒ J−1 = Ĵ ,which is continuous by virtue of Proposition 2.7.31

⇒ J is a homeomorphism.

This completes the proof. �
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Remark 2.7.34 As a byproduct of the above proof, we have that in the setting of
Proposition 2.7.33, J−1 : X∗ → X is the duality map of X∗.

Proposition 2.7.35 If X is a reflexive Banach space with X∗ uniformly convex, then
the duality map J : X → X∗ is uniformly continuous on bounded sets of X.

Proof We first show that J is uniformly continuous on ∂B1 = {x ∈ X : ‖x‖ = 1}.
Arguing by contradiction, suppose that J |∂B 1 is not uniformly continuous. Then we
can find ε > 0 and {xn}n�1, {un}n�1 ⊆ ∂B1 such that

‖xn − un‖ → 0 as n → ∞ and ‖J (xn) − J (un)‖∗ � ε for all n � 1. (2.46)

For all x, u ∈ X we have

‖J (x) + J (u)‖∗ ‖x‖ � 〈J (x) + J (u), x〉
= 〈J (x), x〉 + 〈J (u), u〉 + 〈J (u), x − u〉
= ‖x‖2 + ‖u‖2 − ‖u‖‖x − u‖. (2.47)

In (2.47) let x = xn and u = un, n � 1. Then

1

2
‖J (xn) + J (un)‖∗ � 1 − 1

2
‖xn − un‖ . (2.48)

Note that ‖J (xn)‖∗ = 1 = ‖J (un)‖∗ for all n � 1. Then by virtue of (2.47) we
see that (2.48) contradicts the uniform convexity of X∗. This proves the uniform
continuity of J |∂B 1 .

Next, note that J (λx) = λJ (x) for all λ > 0 and all x ∈ X. Then for all x, u ∈
X \ {0} we have

‖J (x) − J (u)‖∗ = ‖‖x‖J (
x

‖x‖ ) − ‖u‖J (
u

‖u‖ )‖∗

� ‖x‖ ‖J (
x

‖x‖ ) − J (
u

‖u‖ )‖∗ + ‖x‖ ‖u‖ ‖J (
u

‖u‖ )‖. (2.49)

Then from the first part of the proof and (2.49), we see that J (·) is uniformly
continuous on bounded sets not containing the origin. Since J (0) = 0 and J (·) is
continuous at the origin, we conclude the uniform continuity of J (·) on any bounded
subset of X . �

We conclude with a renorming theorem due to Troyanski [405], which as we will
see in the next sections is a valuable tool in the study ofmaximalmonotone operators.

Theorem 2.7.36 (Troyanski) If X is a reflexive Banach space, then there exist equiv-
alent norms on X and X∗ such that both spaces (which remain dual to each other)
are locally uniformly convex.
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2.8 Surjectivity and Characterizations of Maximal
Monotonicity

The power of maximal monotone operators comes from their surjectivity proper-
ties. Surjectivity results correspond to existence results for nonlinear boundary value
problems. In this section, we present the main surjectivity results involving maximal
monotone maps. The approach is to start with the finite-dimensional case, estab-
lish the result there and then use Galerkin approximations to pass to the infinite-
dimensional case. For this reason, we start with a finite-dimensional result. First we
formally define a notion already encountered in Sect. 2.2 in the context of single-
valued proper maps.

Definition 2.8.1 Let X be a Banach space and A : X → 2X∗
a map.

(a) We say that A is coercive if D(A) is bounded or D(A) is unbounded and
inf{ ‖x∗‖∗ : x∗ ∈ A(x)} → +∞ as ‖x‖ → ∞, x ∈ D(A).

(b) We say that A is strongly coercive if D(A) is bounded or D(A) is unbounded
and

inf{〈x∗, x〉 : x∗ ∈ A(x)}
‖x‖ → +∞ as ‖x‖ → ∞, x ∈ D(A).

Remark 2.8.2 Evidently, strong coercivity implies coercivity. The duality map J :
X → 2X∗

is strongly coercive (see Proposition 2.7.23). Also, note that coercivity
implies that A−1 is locally bounded (see Definition 2.6.6 (a)).

Proposition 2.8.3 If X is a finite-dimensional Banach space, C ⊆ X is nonempty,
closed convex, A : X → 2X∗

is a monotone map with D(A) ⊆ C and F : C → X∗
is a monotone, continuous and strongly coercive map, then we can find x0 ∈ C such
that 〈

x∗ + F(x0), x − x0
〉
� 0 for all (x, x∗) ∈ Gr A.

Proof We may assume that (0, 0) ∈ Gr A. Indeed, if this is not the case, we fix
(x̂, x̂∗) ∈ Gr A and replace the maps A and F by

Â(x) = A(x + x̂) − x̂∗ andF̂(x) = F(x + x̂) − x̂∗.

Evidently these translations do not alter the properties of the original maps and so
Â remains monotone, while F̂ remains monotone, continuous and strongly coercive.
Moreover, we see that (0, 0) ∈ Gr Â.

Initially, we assume that D(A) is bounded. Then K = conv D(A). So, K is com-
pact and convex. Arguing by contradiction, suppose that the proposition is not true.
So for every u ∈ K , we can find (x, x∗) ∈ Gr A such that

〈
x∗ + F(u), x − u

〉
< 0.
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It follows that K = ⋃
(x,x∗)∈Gr A

{u ∈ K : 〈x∗ + F(u), x − u〉 < 0}. In this union

every set is open. So, by virtue of the compactness of K , we can find {(xk, x∗
k )}n

k=1 ⊆
Gr A such that

K =
n⋃

k=1

{u ∈ K : 〈
x∗

k + F(u), xk − u
〉
< 0}.

Let {ϕk}n
k=1 be a continuous partition of unity subordinate to this cover and con-

sider the map η : K → K defined by

η(u) =
n∑

k=1

ϕk(u)xk .

This map is continuous and so we can apply Brouwer’s fixed point theorem. So,
we can find x0 ∈ K such that η(x0) = x0. For every u ∈ K , we have

g(u) =
〈

n∑

k=1

ϕk(u)x∗
k + F(u), η(u) − u

〉

=
〈

n∑

k=1

ϕk(u)x∗
k + F(u),

n∑

m=1

ϕm(u)(xm − u)

〉
(recall that

n∑

m=1

ϕm(u) = 1)

=
n∑

k,m=1

ϕk(u)ϕm(u)
〈
x∗

k + F(u), xm − u
〉
.

If k = m and ϕk(u)2 �= 0, then u ∈ K and so
〈
x∗

k + F(u), xk − u
〉
< 0.

If k �= m and ϕk(u)ϕm(u) �= 0, then u ∈ {u ∈ K : 〈
x∗

k + F(u), xk − u
〉
< 0} ∩

{u ∈ K : 〈
x∗

m + F(u), xm − u
〉
< 0}. Exploiting the monotonicity of A we have

〈
x∗

k + F(u), xm − u
〉 + 〈

x∗
m + F(u), xk − u

〉 =〈
x∗

k + F(u), xk − u
〉 + 〈

x∗
m + F(u), xm − u

〉 + 〈
x∗

k − x∗
m, xm − xk

〉
< 0.

So, we see that
g(u) < 0 for all u ∈ K .

But note that for x0 ∈ K we have η(x0) = x0 and so g(x0) = 0, a contradiction.
Therefore, the proposition is true when D(A) is bounded.

Now we drop the boundedness hypothesis on D(A). From the previous case, we
know that we can find xn ∈ C such that

〈
x∗ + F(xn), x − xn

〉
� 0 for all (x, x∗) ∈ Gr A |B n

(Bn = {x ∈ X : ‖x‖ � n}).

Recall that (0, 0) ∈ Gr A. So we have
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〈F(xn), xn〉 � 0 for all n � 1.

The strong coercivity of F implies that {xn}n�1 ⊆ X is bounded. So, we may
assume that xn → x0 in X as n → ∞. Evidently, x0 ∈ C and

〈
x∗ + F(x0), x − x0

〉
� 0 for all (x, x∗) ∈ Gr A.

The proof is now complete. �
Using Galerkin approximations, we extend the result to infinite-dimensional

Banach spaces and then use the extension to establish surjectivity results for maximal
monotone maps.

Proposition 2.8.4 If X is a reflexive Banach space, C ⊆ X is nonempty, closed con-
vex, A : X → 2X∗

is a monotone map with D(A) ⊆ C and F : C → X∗ is monotone,
hemicontinuous, bounded and strongly coercive, then there exists an x0 ∈ C such that

〈
x∗ + F(x0), x − x0

〉
� 0 for all (x, x∗) ∈ Gr A.

Proof We will use finite-dimensional approximations (Galerkin approximations) in
order to exploit Proposition 2.8.3. So, let {Xα}α∈J be a directed family of finite-
dimensional Banach spaces such that X = ⋃

α∈J
Xα. Let pα ∈ L (X, Xα) be the corre-

sponding projection operator. Then p∗
α ∈ L (X∗

α, X∗) is the corresponding embed-
ding map. We introduce the Galerkin approximations of A , F and C , namely we
define

Aα = p∗
α ◦ A ◦ pα , Fα = p∗

α ◦ F ◦ pα andCα = C ∩ Xα , α ∈ J.

For each α ∈ J, we can apply Proposition 2.8.3 on the triple (Aα , Fα , Cα) and
find xα ∈ C such that

〈
x̂∗ + Fα(xα), x̂ − xα

〉
Xα

� 0 for all (x̂, x̂∗) ∈ Gr Aα

⇒ 〈
x∗ + F(xα), x − xα

〉
� 0 for all (x, x∗) ∈ Gr(A ◦ pα). (2.50)

Since (0, 0) ∈ Gr A, we have 〈F(xα), xα〉 � 0 for all α ∈ J and this by virtue of
the strong coercivity and boundedness of F implies that we can find M > 0 such
that

‖xα‖ � M and ‖F(xα)‖∗ � M for all α ∈ J.

The reflexivity of X and the Eberlein–Smulian theorem imply that we can find a
sequence {xαn = xn}n�1 ⊆ C such that

xn
w→ x0 in X and F(xn)

w→ x∗
0 in X∗, with (x0, x∗

0 ) ∈ C × X∗.

From (2.50) we have
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lim sup
n→∞

〈F(xn), xn〉 �
〈
x∗, x − x0

〉 + 〈
x∗
0 , x

〉
for all (x, x∗) ∈ Gr A. (2.51)

Using Zorn’s lemma, without any loss of generality we may assume that A is
maximal monotone on D(A). We claim that we can find (x̃, x̃∗) ∈ Gr A such that

〈x̃∗, x̃ − x0〉 + 〈
x∗
0 , x̃

〉
� 〈x∗

0 , x0〉 . (2.52)

Suppose that the claim is not true. Then

〈
x∗ + x∗

0 , x − x0
〉
> 0 for all (x, x∗) ∈ Gr A (2.53)

⇒ (x0,−x∗
0 ) ∈ Gr A (due to maximality of A on D(A)).

So, if in (2.53) we use (x0,−x∗
0 ) ∈ Gr A, we have a contradiction. Therefore

(2.52) holds for some (x̃, x̃∗) ∈ Gr A. Using (2.52) in (2.51), we have

lim sup
n→∞

〈F(xn), xn〉 �
〈
x∗
0 , x0

〉

⇒ lim sup
n→∞

〈F(xn), xn − x0〉 � 0. (2.54)

Let x ∈ D(A) and let xt = t xo + (1 − t)x with t ∈ [0, 1].Then xt ∈ C and themono-
tonicity of F implies that

〈F(xn) − F(xt ), xn − xt 〉 � 0 for all n � 1, all t ∈ [0, 1]
⇒ t 〈F(xn), xn − x0〉 + (1 − t) 〈F(xn), xn − x〉

� t 〈F(xt ), xn − x0〉 + (1 − t) 〈F(xt ), xn − x〉
⇒ lim inf

n→∞ 〈F(xn), xn − x〉 � 〈F(xt ), x0 − x〉 for all t ∈ [0, 1] see (2.54).

Because of the hemicontinuity of F(·), we have
lim inf
n→∞ 〈F(xn), xn − x〉 � 〈F(x0), x0 − x〉

⇒ lim inf
n→∞ 〈F(xn), xn − x〉 � 〈F(x0), x0 − x〉 + 〈

x∗
0 , x

〉
for all x ∈ D(A). (2.55)

From (2.51) and (2.55) it follows that

〈
x∗ + F(x0), x − x0

〉
� 0 for all (x, x∗) ∈ Gr A.

The proof is now complete. �

Now we are ready for the first surjectivity result.

Theorem 2.8.5 If X is a reflexive Banach space, C ⊆ X is nonempty, closed con-
vex, A : X → 2X∗

is monotone map with D(A) ⊆ C and F : C → X∗ is monotone,
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hemicontinuous, bounded and strongly coercive, then A + F is surjective (that is,
R(A + F) = X∗).

Proof Let x∗
0 ∈ X∗ and consider the map

Â(x) = A(x) − x∗
0 for all x ∈ D(A).

Evidently, Â is still monotone with D( Â) ⊆ C . We apply Proposition 2.8.4 on
the triple ( Â, F, C) and obtain x0 ∈ C such that

〈x̂∗ + F(x0), x − x0〉 � 0 for all (x, x̂∗) ∈ Gr Â

⇒ 〈
x∗ − (x∗

0 − F(x0)), x − x0
〉
for all (x, x∗) ∈ Gr A.

The maximal monotonicity of A implies

(x0, x∗
0 − F(x0)) ∈ Gr A

⇒ x∗
0 ∈ A(x0) + F(x0).

Since x∗
0 ∈ X∗ is arbitrary, we conclude that A + F is surjective. �

Now we present a necessary and sufficient condition for the surjectivity of maximal
monotone maps.

Theorem 2.8.6 If X is a reflexive Banach space and A : X → 2X∗
is a maximal

monotone map, then A is surjective if and only if A−1 is locally bounded.

Proof ⇒Recall that A−1 ismaximalmonotone (see Proposition 2.6.3) and so Propo-
sition 2.6.8 implies that A−1 is locally bounded.

⇐ We will show that R(A) ⊆ X∗ is both closed and open, hence R(A) = X∗.
First we show the closedness of R(A). So, let {x∗

n }n�1 ⊆ R(A) such that x∗
n → x∗

in X∗. We have x∗
n ∈ A(xn) n � 1. Since by hypothesis A−1 is locally bounded, it

follows that {xn}n�1 ⊆ X is bounded. Hence, due to the reflexivity of X , we may

assume that xn
w→ x in X . We have (xn, x∗

n ) ∈ Gr A for all n � 1. Then Proposition
2.6.5 implies (x, x∗) ∈ Gr A and so we have proved that R(A) is closed.

Next we show that R(A) is open. Invoking Theorem 2.7.36, we may assume that
both X and X∗ are locally uniformly convex. Of course, this does not affect the
maximal monotonicity of A.

Let x∗ ∈ A(x). Sincemaximalmonotonicity is invariant under translationwithout
any loss of generality, we may assume that x = 0. Since by hypothesis A−1 is locally
bounded, we can find r > 0 such that A−1|B∗

r (x∗) is bounded (here, B∗
r (x∗) = {u∗ ∈

X∗ : ||u∗ − x∗||∗ < r}). We will show that B∗
r/2(x∗) ⊆ R(A).

To this end, let u∗ ∈ B∗
r/2(x∗). Let λ > 0 and let F = λJ , with J being the duality

map. By virtue of Proposition 2.7.33 we can apply Theorem 2.8.5 for the triple
(A, F = λJ, X) and infer that there exists (uλ, u∗

λ) ∈ Gr A such that

u∗
λ + λJ (uλ) = u∗. (2.56)
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The monotonicity of A implies

〈
u∗ − λJ (uλ) − x∗, uλ

〉
� 0 (recall that x = 0)

⇒ λ||uλ|| � ||u∗ − x∗||∗ <
r

2

⇒ ||u∗ − u∗
λ||∗ = λ||J (uλ)||∗ = λ||uλ|| <

r

2
(2.57)

⇒ ||x∗ − u∗
λ||∗ < r for all λ > 0. (2.58)

Since A−1|B∗
r (x∗) is bounded and uλ ∈ A−1(u∗

λ), from (2.58) it follows that
{uλ}λ>0 ⊆ X is bounded. Then (2.57) implies that u∗

λ → u∗ in X∗ as λ → 0+.
We already know that R(A) is closed. So, u∗ ∈ R(A) and we have proved that
B∗

r/2(x∗) ⊆ R(A). This proves that R(A) is open, hence R(A) = X∗. �

Corollary 2.8.7 If X is a reflexive Banach space and A : X → 2X∗
is maximal

monotone and coercive, then A is surjective (that is, R(A) = X∗).

Proof The coercivity of A implies that A−1 is locally bounded. Hence we can apply
Theorem 2.8.6 and conclude that A is surjective. �

Corollary 2.8.8 If X is a reflexive Banach space and A : X → X∗ is monotone,
hemicontinuous coercive with D(A) = X, then A is surjective.

Proof Proposition 2.6.12 implies A is maximal monotone. So, we can apply Corol-
lary 2.8.7 and conclude that A is surjective. �

Theorem 2.8.5 leads to a convenient characterization of maximal monotonicity.

Theorem 2.8.9 If X is a reflexive Banach space such that both X and its dual X∗ are
strictly convex and A : X → 2X∗

is a monotone map, then A is maximal monotone
if and only if for every λ > 0 (equivalently for some λ > 0) A + λJ is surjective (J
is the duality map).

Proof ⇓ From Proposition 2.7.27 and its proof, we know that the duality map
J : X → X∗ is single-valued, monotone and sequentially continuous from X into
X∗

w∗ (this type of continuity is known as demicontinuity). In particular then J is hemi-
continuous and of course bounded and strongly coercive. So, we can use Theorem
2.8.5 and infer that R(A + λJ ) = X∗ for all λ > 0.

⇑ Suppose that for some λ > 0, we have R(A + λJ ) = X∗. Without any loss of
generality we may assume that λ = 1. Suppose that for some (x, x∗) ∈ X × X∗, we
have

〈
x∗ − u∗, x − u

〉
� 0 for all (u, u∗) ∈ Gr A. (2.59)

We can find (v, v∗) ∈ Gr A such that

v∗ + J (v) = x∗ + J (x) (recall that R(A + J ) = X∗). (2.60)
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Then in (2.59) we choose u = v and u∗ = v∗. We obtain

0 �
〈
v∗ + J (v) − J (x) − v∗, x − v

〉

= 〈J (v) − J (x), x − v〉 � 0.

Since X, X∗ are strictly convex, J is strictlymonotone and sowe conclude thatv =
x . Hence v∗ = x∗ (see (2.60)) and so (x, x∗) ∈ Gr A which proves the maximality
of A. �

Using this characterization, we can show the maximal monotonicity of the subd-
ifferential map.

Theorem 2.8.10 If X is a reflexive Banach space and ϕ : X → R = R ∪ {+∞} is
convex and lower semicontinuous, then ∂ϕ : X → 2X∗

is maximal monotone.

Proof On account of Theorem 2.7.36, wemay assume that both X and X∗ are locally
uniformly convex.According to Theorem2.8.9, it suffices to show that R(∂ϕ + J ) =
X∗. To this end, let x∗ ∈ X and consider the convex and lower semicontinuous
function ψ : X → R = R ∪ {+∞} defined by

ψ(x) = ϕ(x) + η(x) − 〈
x∗, x

〉
, where η(x) = 1

2
||x ||2 for all x ∈ X.

Recall that ϕ is bounded below by an affine continuous function x → 〈u∗, x〉 − c
for all x ∈ X . Then

ψ(x) � η(x) + 〈
u∗ − x∗, x

〉 − c � 1

2
||x ||2 − ||u∗ − x∗||∗||x || − c

⇒ ψ is coercive, that is, ψ(x) → +∞ as ||x || → ∞.

Invoking the Weierstrass theorem, we can find x̂ ∈ X such that

ψ(x̂) = inf{ψ(x) : x ∈ X}. (2.61)

From (2.61) and Definition 2.7.1 it follows that

0 ∈ ∂ψ(x̂). (2.62)

We have

∂ψ(x̂) = ∂ϕ(x̂) + ∂η(x̂) − x∗ = ∂ϕ(x̂) + J (x̂) − x∗ (2.63)

(see Definition 2.7.21).

Therefore, from (2.62) and (2.63) we infer that

x∗ ∈ ∂ϕ(x̂) + J (x̂).
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But x∗ ∈ X∗ is arbitrary. Hence

R(∂ϕ + J ) = X∗

⇒ ∂ϕ is maximal monotone (see Theorem 2.8.9).

The proof is now complete. �

Remark 2.8.11 In fact, the result is true for any Banach space, not necessarily reflex-
ive. For a proof of this more general result, we refer to Rockafellar [359].

Actually the subdifferential hasmore structurewhich distinguishes it fromgeneral
maximal monotone operators. To see this, we introduce the following notion.

Definition 2.8.12 Let X be a Banach space and X∗ its dual.

(a) A multivalued map A : X → 2X∗
is said to be n-cyclically monotone, (n � 2)

provided
n∑

k=1

〈
x∗

k , xk − xk−1
〉
� 0

whenever x0, x1, . . . , xn ∈ X, xn = x0, x∗
k ∈ A(xk) for all k ∈ {1, . . . , n}.

(b) A multivalued map A : X → 2X∗
is said to be cyclically monotone if it is n-

cyclically monotone for every n � 2.
(c) A multivalued map A : X → 2X∗

is maximal cyclically monotone, if A = S
whenever S : X → 2X∗

is cyclically monotone and Gr A ⊆ Gr S.

Remark 2.8.13 Clearly, a 2-cyclically monotone map is monotone. Also, a maximal
monotonemapwhich is cyclicallymonotone is necessarilymaximal cyclicallymono-
tone. The linear map A : R2 → R

2 defined by A(x, u) = (u,−x) is positive, hence
monotone, but it is not 3-monotone. To see this consider the points (1, 1), (0, 1) and
(1, 0).

It turns out that the subdifferentials are the only maximal cyclically monotone
maps.

Theorem 2.8.14 If X is a Banach space and A : X → 2X∗
, then the following state-

ments are equivalent

(a) A = ∂ϕ with ϕ : X → R = R ∪ {+∞} convex and lower semicontinuous;
(b) A is maximal cyclically monotone.

Proof (a) ⇒ (b) From Definition 2.7.1 we have

ϕ(xk−1) − ϕ(xk) �
〈
x∗

k , xk−1 − xk
〉

for x∗
k ∈ ∂ϕ(xk), k = 1, . . . , n, and xn = x0. Adding, we obtain
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0 �
n∑

k=1

〈
x∗

k , xk − xk−1
〉

⇒ ∂ϕ is maximal cyclically monotone (see Theorem 2.8.10 and Remark 2.8.13).

(b) ⇒ (a) Fix x0 ∈ D(A) and x∗
0 ∈ A(x0). Then for u ∈ X , we define

ψ(u) = sup
{〈

x∗
n , u − xn

〉 + 〈
x∗

n−1, xn − xn−1
〉 + . . . + 〈

x∗
0 , x1 − x0

〉}
,

where the supremum is taken over all finite sets of elements xk ∈ D(A) and x∗
k ∈

A(xk), k = 1, . . . , n and n � 1. Since ψ is the pointwise supremum of a family of
continuous affine functions, it follows that ψ : X → R = R ∪ {+∞} is convex and
lower semicontinuous. Also, the cyclical monotonicity of A implies that ψ(x0) = 0
and so we see that ψ is not identically +∞. To reach (a), it suffices to show that
Gr A ⊆ Gr ∂ψ. To this end, let (x, x∗) ∈ Gr A. We will have that (x, x∗) ∈ Gr ∂ψ,
provided we show that

〈
x∗, u − x

〉
� ψ(u) − λ for all u ∈ X and λ < ψ(x). (2.64)

From the definition of ψ, we know that there exist xk ∈ D(A) and x∗
k ∈ A(xk),

k = 1, . . . , n, such that

λ <
〈
x∗

n , x − xn
〉 + 〈

x∗
n−1, xn − xn−1

〉 + . . . + 〈
x∗
0 , x1 − x0

〉
. (2.65)

Let xn+1 = x and x∗
n+1 = x∗. Then by definition, for any u ∈ X we have

ψ(u) �
〈
x∗

n+1, u − xn+1
〉 + 〈

x∗
n , xn+1 − xn

〉 + . . . + 〈
x∗
0 , x1 − x0

〉

>
〈
x∗

n+1, u − xn+1
〉 + λ (see (2.65)).

From this inequality, relation (2.64) follows and so we have proved the
theorem. �

Remark 2.8.15 In (a) the function ϕ is unique up to an additive constant.

The sum of two maximal monotone maps need not be maximal monotone. So,
we need sufficient conditions for the maximality of the sum of maximal monotone
maps. The main result in this direction is the following theorem. Its proof can be
found in Barbu [32, p. 46] and Zeidler [427, p. 888].

Theorem 2.8.16 If X is a reflexive Banach space and A, F : X → 2X∗
are maximal

monotone maps such that D(A) ∩ int D(F) �= ∅, then A + F : X → 2X∗
is maximal

monotone.

Remark 2.8.17 Proposition 2.7.20 is a particular case of this theorem, if we observe
that int D(∂ϕ) = int domϕ.
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2.9 Regularizations and Linear Monotone Operators

When X = H is aHilbert space, then there are two useful single-valued andLipschitz
continuous maps associated with a maximal monotone operator. These maps are the
resolvent and the Yosida approximation. In this section we study these maps and at
the end we characterize linear monotone operators.

Definition 2.9.1 Let H be a Hilbert space and A : H → 2H a multivalued map.

(a) For every λ > 0, J A
λ = (I + λA)−1 is the resolvent of A.

(b) For every λ > 0, Aλ = 1
λ

(
I − J A

λ

)
is the Yosida approximation of A.

The next proposition shows that these operators are useful for monotone maps.

Proposition 2.9.2 If H is a Hilbert space and A : H → 2H is monotone, then A
is monotone if and only if for all (x, x∗) ∈ Gr A, (u, u∗) ∈ Gr A and all λ > 0 we
have ||x − u|| � ||(x − u) + λ(x∗ − u∗)||.
Proof ⇒ We have

||(x − u) + λ(x∗ − u∗)||2 = ((x − u) + λ(x∗ − u∗), (x − u) + λ(x∗ − u∗))H

= ||x − u||2 + 2λ(x∗ − u∗, x − u)H + λ2||x∗ − u∗||2
� ||x − u||2.

⇐ We have 2λ(x∗ − u∗, x − u)H + λ2||x∗ − u∗||2 � 0, hence

2(x∗ − u∗, x − u)H + λ||x∗ − u∗|| � 0.

Let λ → 0 to get (x∗ − u∗, x − u)H � 0 for all (x, x∗) ∈ Gr A, (u, u∗) ∈ Gr A,
hence A is monotone. �

From this proposition, we infer the following result.

Corollary 2.9.3 If H is a Hilbert space and A : H → 2H , then the following state-
ments are equivalent:

(a) A is monotone;
(b) J A

λ is nonexpansive for every λ > 0 (that is,
∥∥J A

λ (x) − J A
λ (u)

∥∥ � ||x − u|| for
all x, u ∈ R(I + λA)).

Often it is said that if H is a Hilbert space, then the duality map J is the identity.
Strictly speaking this is not correct. The Riesz–Fréchet theorem asserts that H and
its dual H∗ are isometrically isomorphic (in the case of complex Hilbert spaces the
canonical isometry is conjugate-linear). So, we may identify H with its dual H∗. We
often do this, but not always. In the next remark, we outline a situation arising in the
study of boundary value problems where this identification cannot be done.
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Remark 2.9.4 Let H be a Hilbert space and X ⊆ H a linear subspace which is
embedded continuously and densely into H , that is, there exists a c > 0 such that

||u||H � c||u||X for all u ∈ X.

Then there is a canonical map j : H∗ → X∗ defined by

〈
j (h∗), x

〉
X = 〈h∗, x〉H for all h∗ ∈ H∗, all x ∈ X

(so we simply consider the restriction to X of an element in H∗). We have

(a) || j (h∗)||X∗ � c||h∗||H∗ for all h∗ ∈ H∗;
(b) j is injective;
(c) if X is reflexive, then R( j) is dense in X∗.

Identifying H with its dual H∗ via the Riesz–Fréchet representation theorem, we
have

X ↪→ H = H∗ ↪→ X∗

with all injections being continuous and dense (under the condition that X is reflex-
ive). Such a triple of spaces (X, H, X∗) is often called an “evolution triple”, because
of their importance in the theory of evolution equations. Note that 〈·, ·〉X |H×X =
(·, ·)H . So, we see that when X is a Hilbert space too, since we identify H with
its dual, we cannot do the same thing for X . A typical example is the triple
(H 1

0 (�), L2(�), H−1(�)). The Hilbert space H for which we assume H = H∗
is called a “pivot Hilbert space”. In this section we always assume that the Hilbert
space H is pivot, that is, H = H∗. Hence J = I (the duality map is the identity).

With this remark in mind, the next proposition is a consequence of Theorem 2.8.9
and Corollary 2.9.3.

Proposition 2.9.5 If H is a Hilbert space and A : H → 2H , then the following
statements are equivalent:

(a) A is maximal monotone;
(b) A is monotone and D

(
J A
λ

) = R(I + λA) = H for all λ > 0.

Proposition 2.9.6 If H is a Hilbert space and A : H → 2H is maximal monotone,
then for all λ,μ > 0 we have the so-called resolvent identity

J A
λ = J A

μ ◦
[μ

λ
I +

(
1 − μ

λ

)
J A
λ

]
.

Proof Note that u = J A
λ (x) is equivalent to saying that 1

λ

[
x − J A

λ (x)
] ∈ A

(
J A
λ (x)

)

for all x ∈ H and all λ > 0. We rewrite the last inclusion as follows:

1

μ

[μ

λ
x +

(
1 − μ

λ

)
J A
λ (x) − J A

λ (x)
]

∈ A
(
J A
λ (x)

)
for all μ > 0
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and this is equivalent to

μ

λ
x +

(
1 − μ

λ

)
J A
λ (x) ∈ (I + μA)

(
J A
λ (x)

)
,

from which we deduce the resolvent identity. �

Proposition 2.9.7 If H is a Hilbert space and A : H → 2H is a maximal monotone
map, then D(A) is convex and lim

λ→0+
J A
λ (x) = projD(A)(x) (here projD(A) denotes the

metric projection on D(A)).

Proof Let C = conv D(A) and x ∈ H . Let uλ = J A
λ (x). Then 1

λ
(x − uλ) ∈ A(uλ).

From the monotonicity of A, we have

(
1

λ
(x − uλ) − v∗, uλ − v

)

H

� 0 for all (v, v∗) ∈ Gr A

⇒ ||uλ||2 � (x, uλ − v)H + (uλ, v)H − λ(v∗, uλ − x)H for all λ > 0(2.66)

⇒ {uλ}λ∈(0,1] ⊆ H is bounded.

So, we can find a subsequence {uλn = un}n�1 ⊆ H such that un
w→ û in H, λn →

0. From (2.66) we have

||û||2 � (x, û − v)H + (û, v)H for all v ∈ D(A).

We have

û ∈ C and (x − û, v − û)H � 0 for all v ∈ C

⇒ û = projC (x).

So, the uniqueness of the weak limit implies that uλ
w→ û in H as λ → 0+. Then

lim sup
λ→0+

||uλ||2 � (x, û − v)H + (û, v)H for all v ∈ C (see (2.66)).

Let v = û. Then

lim sup
λ→0

||uλ|| � ||û||. (2.67)

On the other hand, since uλ
w→ û in H , we have

||û|| � lim inf
λ→0+

||uλ||. (2.68)
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From (2.67) and (2.68) it follows that ||uλ|| → ||û|| as λ → 0+. The Kadec–Klee
property of Hilbert spaces (see Remark 2.7.30) implies that uλ → û = projC (x) in
H . Finally, note that if x ∈ C , then uλ ∈ D(A) and so it follows that D(A) = C. �

From Proposition 2.6.5 we know that if A : H → 2H is maximal monotone, then
for every x ∈ D(A) we have that A(x) is nonempty, convex and w-closed (hence
closed too). So, the next definition makes sense.

Definition 2.9.8 Let H be a Hilbert space and A : H → 2H a maximal monotone
map. The minimal section operator A0 : H → H is defined by

A0(x) = projA(x) (0) = {x∗ ∈ H : x∗ ∈ A(x), x∗ has minimal norm}.

Proposition 2.9.9 If H is a Hilbert space and A : H → 2H is a maximal monotone
map, then

(a) for every λ > 0, Aλ is single-valued maximal monotone and Lipschitz continu-
ous with constant 1

λ
;

(b) (Aλ)μ = Aλ+μ for all λ,μ > 0;
(c) for every x ∈ D(A), ||Aλ(x)|| increases up to ||A0(x)|| as λ → 0+, Aλ(x) →

A0(x) as λ → 0+ and

||Aλ(x) − A0(x)||2 � ||A0(x)||2 − ||Aλ(x)||2 for all λ > 0;

(d) for every x /∈ D(A), ||Aλ(x)|| is increasing and unbounded as λ → 0+.

Proof (a)Recall that 1
λ

[
x − J A

λ (x)
] ∈ A

(
J A
λ (x)

)
for all x ∈ H and all λ > 0. From

this and Definition 2.9.1, we have

(Aλ(u) − Aλ(x), u − x)H =(
Aλ(u) − Aλ(x), λ (Aλ(u) − Aλ(x)) + (

J A
λ (u) − J A

λ (x)
))

H �
λ||Aλ(u) − Aλ(x)||2 (since A is monotone).

Therefore Aλ is monotone and ||Aλ(u) − Aλ(x)|| � 1
λ
||u − x ||. So, Proposition

2.6.12 implies that Aλ is maximal monotone.
(b) This follows from the characterization of u = Aλ(x) by u ∈ A(x − λu).
(c) Let x ∈ D(A). Then

0 �
(

A0(x) − Aλ(x), x − Jλ(x)
)

H = λ
(

A0(x) − Aλ(x), Aλ(x)
)

H

⇒ ||Aλ(x)||2 �
(

A0(x), Aλ(x)
)

H

⇒ ||Aλ(x)|| � ||A0(x)||. (2.69)

Applying this inequality to Aμ together with (b), we have
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||Aλ+μ(u)||2 �
(

Aλ(x), Aλ+μ(x)
)

H for μ > 0

⇒ ||Aλ+μ(x)|| � ||Aλ(x)||
⇒ {||Aλ(x)||}λ>0 increases as λ > 0 decreases.

Also, we have

||Aλ(x) − Aλ+μ(x)||2 � ||Aλ(x)||2 − ||Aλ+μ(x)||2
for all λ,μ > 0 and all x ∈ H. (2.70)

If {||Aλ(x)||}λ>0 is bounded, then from (2.70) it follows that

lim
λ→0+

Aλ(x) = u in H.

Since λAλ(x) = (
I − J A

λ

)
(x), it follows that J A

λ (x) → x in H . Next, since(
J A
λ (x), Aλ(x)

) ∈ Gr A, it follows that (x, u) ∈ Gr A. Also

||u|| = lim
λ→0+

||Aλ(x)|| � ||A0(x)|| (see (2.69))

⇒ u = A0(x).

(d) Follows from the previous argument. �

Summarizing the main properties of the two operators introduced in Definition
2.9.1, we can state the following theorem.

Theorem 2.9.10 If H is a Hilbert space, A : H → 2H is a maximal monotone map
and λ > 0, then

(a) J A
λ is defined on all of H and it is nonexpansive;

(b) D(A) is convex and lim
λ→0+

Jλ(x) = projD(A)(x) for all x ∈ H;

(c) Aλ is defined on all of H, it is monotone and Lipschitz continuous with constant
1
λ

(hence maximal monotone, too) and

Aλ(x) ∈ A
(
J A
λ (x)

)
for all x ∈ H ;

(d) for all x ∈ D(A), we have

||Aλ(x)|| � ||A0(x)||,
{||Aλ(x)||}λ>0 is increasing as λ decreases,

Aλ(x) → A0(x) in H as λ → 0+.

Remark 2.9.11 Analogous regularizations can be defined in themore general setting
of a reflexive Banach space X such that both X and X∗ are locally uniformly convex.
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So, we consider a maximal monotone map A : X → 2X∗
. Then by virtue of Theorem

2.8.9 for every λ > 0 and every x ∈ X , the operator inclusion

0 ∈ J (u − x) + λA(u) (J being the duality map of X)

has a solution. The hypotheses on X and X∗ imply that this solution is unique. We
denote it by J A

λ (x). Also, we set Aλ(x) = 1
λ

J
(
x − J A

λ (x)
)
. These are the resolvent

and Yosida approximation operators. However, their properties are not as good as in
the Hilbert space case.

In the particular case where A = ∂ϕ with ϕ : H → R = R ∪ {+∞} convex and
lower semicontinuous, the resolvent and Yosida approximation of A are related to
some useful regularizations of ϕ.

Proposition 2.9.12 If H is a Hilbert space, ϕ : H → R = R ∪ {+∞} is convex and
lower semicontinuous, A = ∂ϕ and for every λ > 0 we define

ϕλ(x) = inf

{
ϕ(u) + 1

2λ
||u − x ||2 : u ∈ H

}
,

then

(a) ϕλ(x) = ϕ(Jλ(x)) + λ
2 ||Aλ(x)||2 for all x ∈ H and all λ > 0;

(b) ϕλ is convex and Fréchet differentiable and ϕ′
λ = ∂ϕλ = (∂ϕ)λ = Aλ;

(c) for every x ∈ H, ϕλ(x) increases as λ decreases and converges to ϕ(x) as
λ → 0+;

(d) if λn → 0+, xn → x in H and ∂ϕλn (xn)
w→ x∗ in H, then (x, x∗) ∈ Gr ∂ϕ;

(e) if λn → 0+, xn → x in H and {∂ϕλn (xn)}n�1 ⊆ H is bounded, then ϕλn (xn) →
ϕ(x) as n → ∞;

(f) ϕλ(x) � ϕλ(u) + ||∂ϕλ(x)|| ||x − u|| for all x, u ∈ H and all λ > 0;
(g) we have for all x, u, v ∈ H and all λ > 0

|ϕλ(x) − ϕλ(u)| �
(
2||∂ϕλ(v)|| + ||x − v||

λ
+ ||u − v||

λ

)
||x − u|| .

Proof (a) We claim that û ∈ H realizes the infimum involved in the definition of
ϕλ if and only if 1

λ
(x − û) ∈ ∂ϕ(û). To see this, note that if 1

λ
(x − û) ∈ ∂ϕ(û), then

û ∈ domϕ and

ϕ(u) − ϕ(û) � 1

λ
(x − û, u − û)H � 1

2
λ

[
||û − x ||2 − ||u − x ||2

]
for all u ∈ H

⇒ ϕ(û) + 1

2λ
||û − x ||2 � ϕ(u) + 1

2λ
||u − x ||2 for all u ∈ H.

Conversely, let w = (1 − t)û + tv with v ∈ H and t ∈ (0, 1). We have
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t[ϕ(v) − ϕ(û)] � ϕ(w) − ϕ(û) (due to the convexity of ϕ) �
1

2λ

[||û − x ||2 − ||(1 − t)û + tv − x ||2]

⇒ ϕ(v) − ϕ(û) � 1

λ
(x − û, v − û)H for all v ∈ H

⇒ 1

λ
(x − û) ∈ ∂ϕ(û).

From this claim it follows that the infimum is realized at J A
λ (x) and so

ϕλ(x) = ϕ
(
J A
λ (x)

) + 1

2λ
||x − J A

λ (x)||2 = ϕ
(
J A
λ (x)

) + λ

2
||Aλ(x)||2.

(b) Let x, u ∈ H . Recall that Aλ(x) ∈ ∂ϕ(Jλ(x)). So, we have

(Aλ(x), Jλ(u) − Jλ(x))H � ϕ(Jλ(u)) − ϕ(Jλ(x))

⇒ λ

2

[
||Aλ(u)||2 − ||Aλ(x)||2 + 2

λ
(Aλ(x), Jλ(u) − Jλ(x))H

]

� ϕλ(u) − ϕλ(x)

⇒ (Aλ(x), u − x)H � ϕλ(u) − ϕλ(x) (since Jλ = I − λAλ). (2.71)

Interchanging the roles of x, u ∈ H in the above argument, we also have

ϕλ(x) − ϕλ(u) � (Aλ(u), x − u)H = (Aλ(x), x − u)H

+(Aλ(u) − Aλ(x), x − u)H

⇒ 0 � ϕλ(u) − ϕλ(x) − (Aλ(x), u − x) � 1

λ
||x − u||2

(see (71))and Theorem 2.9.10(c))

⇒ ϕ′
λ(x) = Aλ(x).

This proves that ϕλ is continuously Fréchet differentiable and convex.
(c) Clearly for all 0 < λ < μ, we have

ϕμ(x) � ϕλ(x) � ϕ(x) for all x ∈ H (2.72)

and from (a) we also have

ϕ(Jμ(x)) � ϕμ(x). (2.73)

From Proposition 2.9.7 it follows that for each x ∈ D(A) we have Jλ(x) → x in
H as λ → 0+. Hence
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ϕ(x) � lim inf
λ→0+ ϕ(Jλ(x)) � lim inf

λ→0+ ϕλ(x) � lim sup
λ→0+

ϕλ(x) � ϕ(x) (see (2.72), (2.73))

⇒ ϕλ(x) ↑ ϕ(x) as λ → 0+ for all x ∈ D(A).

If x /∈ D(A), then ||x − Jλ(x)|| → ||x − projD(A)(x)|| > 0 as λ → 0+. We have

λ||Aλ(x)||2 = ||Aλ(x)|| ||x − Jλ(x)|| → +∞ as λ → 0+

(since ||Aλ(x)|| → ∞ and ||x − Jλ(x)|| � d(x, D(A))).

Therefore
ϕλ(x) → +∞ = ϕ(x) as λ → 0+.

(d) Recall that
(
Jλn (xn), ∂ϕλn (xn)

) ∈ Gr ∂ϕ and ||Jλn (xn) − Jλn (x)|| � ||xn −
x || for all n � 1. Therefore

Jλn (xn) −→ projD(A) (x) as n → ∞ (see Theorem 2.9.10(b)).

Note that

(∂ϕλ(xn), u − xn)H � ϕλn (u) − ϕλn (xn) � ϕ(u) − ϕλn (xn)

for all u ∈ H, all n � 1

⇒ ϕ
(
J A
λ (xn)

)
� ϕλn (xn) � M for some M > 0, all n � 1 (chose u ∈ domϕ)

⇒ x ∈ domϕ.

But from Corollary 2.7.12, we have D(A) = domϕ and so x ∈ D(A). Hence

Jλn (xn) → x in H

⇒ (x, x∗) ∈ Gr ∂ϕ (see Proposition (2.6.5)).

(e) From (a) we have

ϕλn (xn) = ϕ(Jλn (xn)) + λn

2
||Aλn (xn)||2.

By hypothesis,
{

Aλn (xn) = ∂ϕλn (xn)
}

n�1 ⊆ H is bounded. So

λn

2
||Aλn (xn)||2 → 0 as n → ∞.

Therefore

lim inf
n→∞ ϕλn (xn) = lim inf

n→∞ ϕ(Jλn (xn)) � ϕ
(
projD(A)(x)

)
. (2.74)
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If x /∈ D(A), then

λn||Aλn (x)||2 → +∞ (see the proof of (c))

and λn||Aλn (xn)|| � ||x − xn|| + λn||Aλn (xn)|| → 0 as n → ∞, a contradiction.
This proves that x ∈ D(A) and so

lim inf
n→∞ ϕλn (xn) � ϕ(x) (see ((2.74))). (2.75)

On the other hand from the convexity of ϕλn we have

ϕλn (x) − (∂ϕλn (xn), x − xn)H � ϕλn (xn) for all n � 1

⇒ ϕ(x) � lim sup
n→∞

ϕλn (xn). (2.76)

From (2.75) and (2.76) we conclude that

ϕλn (xn) → ϕ(x).

( f ) This follows directly from the definition of the subdifferential (see Definition
2.7.1).

(g) We have

||∂ϕλ(x)|| � ||∂ϕλ(x) − ∂ϕλ(v)|| + ||∂ϕλ(v)|| � 1

λ
||x − v|| + ||∂ϕλ(v)|| (2.77)

(see Theorem 2.9.10 (c)).

So, from ( f ) it follows that

ϕλ(x) − ϕλ(u) � ||∂ϕλ(x)|| ||x − u||
�

(
1

λ
||x − v|| + ||∂ϕλ(v)||

)
||x − u|| (see (2.77)). (2.78)

Similarly, we have

ϕλ(u) − ϕλ(x) �
(
1

λ
||u − v|| + ||∂ϕλ(v)||

)
||x − u||. (2.79)

From (2.78) and (2.79) we conclude that

|ϕλ(x) − ϕλ(u)| �
(
2||∂ϕλ(v)|| + 1

λ
||x − v|| + 1

λ
||u − v||

)
||x − u||

for all x, u, v ∈ H, all λ > 0.

The proof is now complete. �
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Remark 2.9.13 The regularization ϕλ of ϕ, is usually called the “Moreau–Yosida
regularization” of ϕ. The minimization involved in the definition of ϕλ in the
language of convex analysis is called “infimal convolution”. Finally, in part (e)
if we drop the requirement that {∂ϕλ(xn)}n�1 ⊆ H is bounded, then we have
ϕ(x) � lim inf

n→∞ ϕλn (xn).

An interesting by-product of this theorem is the following result:

Corollary 2.9.14 If H is a Hilbert space and ϕ : H → R = R ∪ {+∞} is convex
and lower semicontinuous, then D(∂ϕ) ⊆ domϕ ⊆ domϕ = D(∂ϕ).

Example 2.9.15 Suppose H is a Hilbert space and C ⊆ H a nonempty closed, con-

vex set. Let δC(x) =
{

0 if x ∈ C
+∞ if x /∈ C

(the indicator function of C , see Example

2.7.7). We know that δC : H → R = R ∪ {+∞} is convex and lower semicontinu-
ous. Also

∂δC(x) = {x∗ ∈ H : (x∗, u − x)H � 0 for all u ∈ C}.

So, ∂δC(x) is a closed, convex cone in H , known as the normal cone to C at x
and denoted by NC(x). If x /∈ C , then NC(x) = ∅ and x ∈ int C , then NC(x) = {0}.
The normal cone is the polar of the tangent cone TC(x) = ⋃

˘>0
λ(C − x). If A = ∂δC ,

then
J A
λ = (I + λ∂δC)−1 = projC .

Indeed, u = (I + λ∂δC)−1(x) ⇔ x − u ∈ λ∂δC(u) ⇔ (x − u, v − u)H � 0 for
all v ∈ C ⇔ u = projC(x).

Moreover, we have

Aλ(x) = 1

λ
[x − projC(x)] and (δC)λ(x) = 1

2λ
||x − projC(x)||2.

Finally, let us look at linear monotone operators.

Proposition 2.9.16 If H is a Hilbert space and A : H → H linear, unbounded,
maximal monotone, then A is cyclically monotone if and only if A = A∗ (that is, A
is self-adjoint); moreover, we have A = ∂ϕ with

ϕ(x) =
{ 1

2
||A1/2x ||2 if x ∈ D(A1/2)

+∞ otherwise.

Proof First recall that a linear maximal monotone operator has a unique linear max-
imal monotone square root A1/2 such that (A1/2)2 = A and if A is self-adjoint, then
so is A1/2 (see Kato [229, p. 281]).

⇒ Since by hypothesis A is cyclically monotone, by virtue of Theorem 2.8.14,
we can find ϕ : H → R = R ∪ {+∞} a convex and lower semicontinuous function
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such that A = ∂ϕ. Since A(0) = 0, without any loss of generality we may assume
that ϕ(0) = 0. From Proposition 2.9.12 we know that Aλ = (∂ϕ)λ = ∂ϕλ for all
λ > 0. Then by the chain rule, we have

d

dt
ϕλ(tu) = (Aλ(tu), u)H = t (Aλ(u), u)H for all u ∈ H

⇒ ϕλ(u) =
∫ 1

0
(Aλ(u), u)H t dt = 1

2
(Aλ(u), u)H (since ϕλ(0) = 0)

⇒ ∂ϕλ = Aλ = 1

2
(Aλ + A∗

λ).

So, we have Aλ = A∗
λ for all λ > 0, hence A = A∗.

⇐ Note that for all u ∈ D(A) and all v ∈ D(A1/2) we have

1

2
||A1/2v||2 + 1

2
||A1/2u||2 = (A(u), v)H = (A1/2(u), A1/2(v))H

⇒ A(u) ⊆ ∂ϕ(u), hence A = ∂ϕ (recall that A is maximal monotone).

�

We conclude with the following simple maximality criterion for linear monotone
operators. The result can be found in Kato [229, p. 279].

Proposition 2.9.17 If H is a Hilbert space and A : H → H is linear monotone,
then A is maximal monotone if and only if A is closed and A∗ is monotone.

Remark 2.9.18 A linear maximal monotone operator is necessarily densely defined
(see Kato [229, p. 279]).

2.10 Operators of Monotone Type

In this section we introduce some generalizations of maximal monotonicity which
are important in the study of nonlinear boundary value problems and in degree theory.

Definition 2.10.1 Let X be a reflexive Banach space and A : X → 2X∗
.

(a) The multivalued map A is said to be pseudomonotone if the following hold:

a1 For every x ∈ X, A(x) is nonempty, convex and w-compact;
a2 A is usc from every finite-dimensional subspace V of X into X∗

w (that is,
X∗ furnished with the weak topology);

a3 If xn
w→ x in X and x∗

n ∈ A(xn) satisfy lim sup
n→∞

〈
x∗

n , xn − x
〉
� 0, then for all

u ∈ X , we can find x∗(u) ∈ A(x) such that
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〈
x∗(u), x − u

〉
� lim inf

n→∞
〈
x∗

n , xn − u
〉
.

(b) Themultivaluedmap A is said to begeneralizedpseudomonotone if the following
is true:
“for every sequence (xn, x∗

n ) ∈ Gr A, n � 1, such that xn
w→ x in X, x∗

n
w→ x∗

in X∗ and
lim sup

n→∞
〈
x∗

n , xn − x
〉
� 0,

we have x∗ ∈ A(x) and
〈
x∗

n , xn
〉 → 〈x∗, x〉.”

Proposition 2.10.2 If X is a reflexive Banach space and A : X → 2X∗
is pseu-

domonotone, then A is generalized pseudomonotone.

Proof Let {(xn, x∗
n )}n�1 ⊆ Gr A and assume that

xn
w→ x in X, x∗

n
w→ x∗ in X∗ and lim sup

n→∞
〈
x∗

n , xn − x
〉
� 0. (2.80)

Since A is pseudomonotone, from [a3] of Definition 2.10.1(a), for every u ∈ X ,
we can find x∗(u) ∈ A(x) such that

〈
x∗(u), x − u

〉
� lim inf

n→∞
〈
x∗

n , xn − u
〉
. (2.81)

Note that {〈x∗
n , xn

〉}n�1 ⊆ R is bounded (see (2.80)). So, we may assume that

〈
x∗

n , xn
〉 −→ ϑ in R

⇒ lim sup
n→∞

〈
x∗

n , xn − x
〉 = ϑ − 〈

x∗, x
〉
� 0 (see (2.80)). (2.82)

Also, we have

ϑ − 〈
x∗, u

〉
� lim inf

n→∞
〈
x∗

n , xn − u
〉
�

〈
x∗(u), x − u

〉
(see (2.81))

⇒ 〈
x∗, x − u

〉
�

〈
x∗(u), x − u

〉
for all u ∈ X (see (2.82)). (2.83)

We show that x∗ ∈ A(x). Arguing by contradiction, suppose that x∗ /∈ A(x). Then
by the strong separation theorem, we can find h ∈ X\{0} such that

〈
x∗, h

〉
< m � inf{〈u∗, h

〉 : u∗ ∈ A(x)}. (2.84)

In (2.83) we choose u = x − h and have

〈
x∗(u), h

〉
�

〈
x∗, h

〉
with x∗(u) ∈ A(x),

which contradicts (2.84). This proves that x∗ ∈ A(x).
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Next, we show that
〈
x∗

n , xn
〉 → 〈x∗, x〉. By virtue of the pseudomonotonicity, by

choosing u = x , we have

0 � lim inf
n→∞

〈
x∗

n , xn − x
〉

⇒ 〈
x∗, x

〉
� lim inf

n→∞
〈
x∗

n , xn
〉
. (2.85)

On the other hand, from (2.80) we have

lim sup
n→∞

〈
x∗

n , xn
〉
�

〈
x∗, x

〉
. (2.86)

From (2.85) and (2.86) we conclude that

〈
x∗

n , xn
〉 → 〈

x∗, x
〉
.

So, we have that A is generalized pseudomonotone. �

By strengthening a little the conditions on A, we have a converse of this proposi-
tion.

Proposition 2.10.3 If X is a reflexive Banach space, A : X → 2X∗
is locally bounded

and generalized pseudomonotone and for all x ∈ X, A(x) is nonempty, closed and
convex, then A is pseudomonotone.

Proof Since A is locally bounded, we see that the values of A are nonempty, convex
and w-compact. So, condition [a1] in Definition 2.10.1 (a) is satisfied.

Let V ⊆ X be a finite-dimensional subspace and consider A|V : V → 2X∗
. Let

C ⊆ X∗ be nonempty, w-closed and let xn ∈ (A|V )−(C) = {x ∈ V : A(x) ∩ C �=
∅}, n � 1, such that xn → x in V . We can find x∗

n ∈ A|V (xn) ∩ C . Since A is locally
bounded, {x∗

n }n�1 ⊆ C is bounded. So, the reflexivity of X and the Eberlein–Smulian
theorem imply that by passing to a subsequence if necessary, we may assume that
x∗

n
w→ x∗ in X∗. Evidently x∗ ∈ C and the generalized pseudomonotonicity of A

implies x∗ ∈ A(x). Hence x ∈ (A|V )− (C) and so we conclude that A|V : V → 2X∗

is usc into X∗
w (see Proposition 2.5.3). So, condition [a2] in Definition 2.10.1 (a) is

satisfied.
Next, suppose that xn

w→ x in X, x∗
n ∈ A(xn) and lim sup

n→∞
〈
x∗

n , xn − x
〉
� 0. The

local boundedness of A implies that {x∗
n }n�1 ⊆ X∗ is bounded and sowemay assume

that x∗
n

w→ x∗ in X∗. The generalized pseudomonotonicity of A implies

x∗ ∈ A(x) and
〈
x∗

n , xn
〉 → 〈

x∗, x
〉
. (2.87)

Arguing by contradiction, suppose that condition [a3] in Definition 2.10.1 (a) is
not true. Then we can find u ∈ X such that
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lim inf
n→∞

〈
x∗

n , xn − u
〉
< inf

{〈
v∗, x − u

〉 : v∗ ∈ A(x)
}

⇒ 〈
x∗, x − u

〉
< inf[〈v∗, x − u

〉 : v∗ ∈ A(x)] (see (2.87)), a contradiction.

So [a3] holds and we have proved that A is pseudomonotone. �

Next, we show that the concepts introduced in Definition 2.10.1 extend the notion
of maximal monotonicity, at least for maps A with D(A) = X .

Proposition 2.10.4 If X is a reflexive Banach space and A : X → 2X∗
is maximal

monotone, then A is generalized pseudomonotone.

Proof Let {(xn, x∗
n )}n�1 ⊆ Gr A such that

xn
w→ x in X, x∗

n
w→ x∗ in X∗ and lim sup

n→∞
〈
x∗

n , xn − x
〉
� 0. (2.88)

For every (u, u∗) ∈ Gr A, we have

〈
x∗

n , xn
〉 = 〈

x∗
n − u∗, xn − u

〉 + 〈
x∗

n , u
〉 + 〈

u∗, xn
〉 − 〈

u∗, u
〉

�
〈
x∗

n , u
〉 + 〈

u∗, xn
〉 − 〈

u∗, u
〉

(since A is monotone)

⇒ 〈
x∗, x

〉
�

〈
x∗, u

〉 + 〈
u∗, x

〉 − 〈
u∗, u

〉
(see (2.88))

⇒ 〈
x∗ − u∗, x − u

〉
� 0

⇒ (x, x∗) ∈ Gr A (since A is maximal monotone).

Also, for every n � 1, we have

〈
x∗

n − x∗, xn − x
〉
� 0

⇒ lim
n→∞

〈
x∗

n − x∗, xn − x
〉 = 0 (see (2.88))

⇒ 〈
x∗

n , xn
〉 → 〈

x∗, x
〉
.

Therefore A is generalized pseudomonotone. �

Proposition 2.10.5 If X is a reflexive Banach space and A : X → 2X∗
is a maximal

monotone map with D(A) = X, then A is pseudomonotone.

Proof From Proposition 2.10.4 we know that A is generalized pseudomonotone.
From Proposition 2.6.8 we know that A is locally bounded, while from Proposition
2.6.13 we have that the values of A are nonempty, w-compact and convex. So, we
can apply Proposition 2.10.3 and conclude that A is pseudomonotone. �

Pseudomonotonicity is preserved under addition.

Proposition 2.10.6 If X is a reflexive Banach space and A, F : X → 2X∗
are pseu-

domonotone maps, then x → (A + F)(x) = A(x) + F(x) is pseudomonotone, too.
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Proof Clearly A + F has nonempty, closed and convex values. Also, for every finite-
dimensional subspace V ⊆ X, (A + F)|V is usc into Xw.

We need to verify condition [a3] in Definition 2.10.1 (a). So, let {(xn, x∗
n )}n�1 ⊆

Gr(A + F) such that

xn
w→ x in X and lim sup

n→∞
〈
x∗

n , xn − x
〉
� 0. (2.89)

We have

x∗
n = u∗

n + v∗
n with u∗

n ∈ A(xn), v∗
n ∈ F(xn) for all n � 1.

From (2.89) we have

lim sup
n→∞

[〈
u∗

n, xn − x
〉 + 〈

v∗
n , xn − x

〉]
� 0. (2.90)

We claim that (2.90) implies

lim sup
n→∞

〈
u∗

n, xn − x
〉
� 0 and lim sup

n→∞
〈
v∗

n , xn − x
〉
� 0. (2.91)

Arguing by contradiction, suppose that one of the limits in (2.91) does not hold.
To fix things assume that

lim sup
n→∞

〈
u∗

n, xn − x
〉
> 0.

By passing to a suitable subsequence if necessary, we can say that

lim
n→∞

〈
u∗

n, xn − x
〉
> 0.

Then (2.90) implies that

lim sup
n→∞

〈
v∗

n , xn − x
〉
� −ξ < 0. (2.92)

The pseudomonotonicity of F implies that for every h ∈ X , we can find v∗(h) ∈
A(x) such that 〈

v∗(h), x − h
〉
� lim inf

n→∞
〈
v∗

n , xn − h
〉
.

Choose h = x . Then

0 � lim inf
n→∞

〈
v∗

n , xn − x
〉
. (2.93)

Comparing (2.92) and (2.93), we reach a contradiction. This proves (2.91). Then
from the pseudomonotonicity of A and F , we know that given h ∈ X , we can find
u∗(h) ∈ A(x) and v∗(h) ∈ F(x) such that
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〈
u∗(h), x − h

〉
� lim inf

n→∞
〈
u∗

n, xn − h
〉
and

〈
v∗(h), x − h

〉
� lim inf

n→∞
〈
v∗

n , xn − h
〉
. (2.94)

Let x∗(h) = u∗(h) + v∗(h) ∈ (A + F)(x). Then

〈
x∗(h), x − h

〉
� lim inf

n→∞
〈
x∗(h), xn − h

〉
(see (2.94))

and this proves that A + F is pseudomonotone. �

The importance of pseudomonotone operators is due to their remarkable surjec-
tivity properties. In fact, as for maximal monotone maps (see Corollary 2.8.7), we
can show that pseudomonotonicity and strong coercivity imply surjectivity. To do
this we need some auxiliary results. The first auxiliary result shows that in a reflexive
Banach spacewithout any separability assumption, theweak closure of a bounded set
can be completely characterized byweakly convergent sequence. In general, even for
Hilbert spaces, it is impossible to characterize theweak closure of each unbounded set
by weakly convergent sequences. Consider the following counterexample attributed
to von Neumann.

Example 2.10.7 Let H = l2 and letC be the set of vectors xmn ∈ l2,m, n � 1,which
have coordinates

xmn(k) =
⎧
⎨

⎩

1 if k = m
m if k = n
0 otherwise.

Then 0 ∈ C
w
but there is no sequence of vectors in C weakly converging to 0.

Indeed, if we can find {xmk nk }k�1 ⊆ C such that xmk ,nk

w→ 0, then (u, xmk nk )l2 → 0
as k → ∞ for all u ∈ l2. Choosing u = (

1
k

)
k�1

∈ l2, we see that this cannot happen.

On the other hand, if U = {x ∈ l2 : (u, x)l2 < ε} for some u ∈ l2 and ε > 0 (a basic
weak neighborhood of the origin in l2), then we have that xmn ∈ U , if we take m � 1
such that |ym | < ε

2 and then n � 1 such that |yn| < ε
2m .

Proposition 2.10.8 If X is a reflexive Banach space, C ⊆ X is bounded and x ∈ C
w

,
then there exists a sequence {xn}n�1 ⊆ C such that xn

w→ x in X.

Proof First we produce a countable set D ⊆ C such that 0 ∈ D
w
. We fix m, n ∈ N

and consider (B1
∗
)m (=the product of m-copies of B1

∗ = {x∗ ∈ X∗ : ||x∗||∗ � 1}).
Since x ∈ C

w
, for every (x∗

k )m
k=1 ∈ (B

x
1)

m we can find u ∈ C such that

| 〈x∗
k , u − x

〉 | <
1

n
for all k = 1, . . . , m. (2.95)

For every u ∈ C , we introduce the set
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Umn(u) = {(x∗
k )m

k=1 ∈ (X∗)m : (2.95) holds}.

Clearly, Umn(u) is w-open in the reflexive Banach space (X∗)m . By Tychonov
and Alaoglu’s theorems, (B

∗
1)

m is a w-compact subset of (X∗)m . We have

(B
∗
1)

m ⊆
⋃

u∈C
Umn(u).

So, we can find a finite subset Fmn ⊆ C such that

(B
∗
1)

m ⊆
⋃

u∈Fmn

Umn(u). (2.96)

Let D = ⋃
m,n�1

Fmn . Then D is a countable subset of C .

We show that x ∈ D
w
. Let V be a weak neighborhood of x . Then there exist

m, n ∈ N and (x∗
k )m

k=1 ⊆ (B
∗
1)

m such that every u ∈ X which satisfies (2.95) belongs
to V . By (2.96) there exists a u ∈ Fmn such that (x∗

k )m
k=1 ∈ Umn(u). So, u satisfies

(2.95), hence u ∈ V . Therefore V ∩ D �= ∅ and this implies that x ∈ D
w
.

Let V = span D. Then V is a separable closed linear subspace of X . The weak
topology of V is the restriction on V of the weak topology of X . The weak topology
of D

w ⊆ V is metrizable. Since x ∈ D
w
, we can find {xn}n�1 ⊆ D ⊆ X such that

xn
w→ x in X . �

The second auxiliary result is the following surjectivity result for usc multifunc-
tions on finite-dimensional Banach spaces.

Proposition 2.10.9 If X is a finite-dimensional Banach space and F : X → Pkc(X∗)
is usc and strongly coercive, then F is surjective (that is, R(F) = X∗).

Proof Let h∗ ∈ X∗ and let F̂(x) = F(x) − h∗ for all x ∈ X . We introduce the fol-
lowing homotopy

F̂t (x) = t F̂(x) + (1 − t)x for all t ∈ [0, 1], all x ∈ X.

The strong coercivity of F(·) implies that we can find r > 0 such that

〈F̂(x), x〉 > 0 for all ||x || � r. (2.97)

Then we have

〈F̂t (x), x〉 = t〈F̂(x), x〉 + (1 − t)||x ||2 > 0 for all ||x || = r and all t ∈ [0, 1].

So, the homotopy invariance property of Brouwer’s degree for multifunctions (see
Sect. 3.1), implies that
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d̂B(F, Br , 0) = d̂B(I, Br , 0) = 1 (here Br = {x ∈ X : ||x || < r})
⇒ 0 ∈ F̂ x has a solution x ∈ Br

⇒ h∗ ∈ F(x).

Since h∗ ∈ X∗ is arbitrary, we conclude that F is surjective. �

Now we are ready for the surjectivity theorem for pseudomonotone maps.

Theorem 2.10.10 If X is a reflexive Banach space and A : X → 2X∗
is pseu-

domonotone and strongly coercive, then A is surjective (that is, R(A) = X∗).

Proof Again the proof is based on Galerkin approximations.
Let F be the family of finite-dimensional subspace of X partially ordered by

inclusion. Let V ∈ F and let iv ∈ L (V, X) be the inclusion (embedding) map of V
into X . Then i∗

V ∈ L (X∗, V ∗) is the corresponding projection operator of X∗ onto
V ∗. We consider the following finite-dimensional (Galerkin) approximations of A:

AV = i∗
V ◦ A ◦ iV : V → 2V ∗

.

Evidently, AV has nonempty, convex, compact values, it is usc and also strongly
coercive.

Given any u∗ ∈ X∗, we consider the map Au∗(x) = A(x) − u∗. This map has the
same properties as A. So, it suffices to show that 0 ∈ R(A).

Applying Proposition 2.10.9, for every V ∈ F , we can find xV ∈ V such that
0 ∈ AV (xV ). Then

0 = i∗
V x∗

V for same x∗
V ∈ A(xV ).

The strong coercivity of A implies that {xV }V ∈ F is bounded.
Let V ∈ F and introduce SV = ⋃

V′∈F
V′⊇V

{xV ′ }. Then SV ⊆ B M for some large M > 0.

The reflexivity of X and the finite intersection property imply

⋂

V∈F
SV

w �= ∅.

Let x0 ∈ ⋂
V∈ F

SV
w
and let u ∈ X . Choose V ∈ F such that {x0, u} ∈ V . Then

by virtue of Proposition 2.10.8 we can find {xVk = xk}k�1 ⊆ SV such that xk
w→ x0

in X . We have 〈
x∗

k , xk − u
〉 = 0 and x∗

k ∈ A(xk) for all k � 1.

The pseudomonotonicity of A implies that we can find x∗(u) ∈ A(x0) such that

〈
x∗(u), x0 − u

〉
� lim inf

〈
x∗

k , xk − u
〉 = 0. (2.98)

If 0 /∈ A(x0), then by the strong separation theorem, we can find u ∈ X such that
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0 < inf
{〈

x∗, x0 − u
〉 : x∗ ∈ A(x0)

}
. (2.99)

Comparing (2.98) and (2.99), we reach a contradiction. Hence 0 ∈ A(x0) and so
0 ∈ R(A). This proves the surjectivity of A. �

We introduce some additional monotonicity type conditions and some other
notions that are useful in connection with operators of monotone type.

Definition 2.10.11 Let X be a reflexive Banach space, D ⊆ X nonempty and A :
D → X∗.

(a) We say that A is an (S)+-map if for {xn, x}n�1 ⊆ D we have

“xn
w→ x and lim sup

n→∞
〈A(xn), xn − x〉 � 0 ⇒ xn → x in X.′′

(b) We say that A is a (P)-map if for {xn, x}n�1 ⊆ D we have

“xn
w→ x ⇒ lim sup

n→∞
〈A(xn), xn − x〉 � 0.′′

(c) We say that A is an (M)-map if for {xn, x}n�1 ⊆ D we have

“xn
w→ x in X, A(xn)

w→ x∗ in X∗ and lim sup
n→∞

〈A(xn), xn〉 �
〈
x∗, x

〉 ⇒ A(x) = x∗.′′

(d) We say that A is demicontinuous if for {xn, x}n�1 ⊆ D we have

“xn → x in X ⇒ A(xn)
w→ A(x) in X∗.′′

Remark 2.10.12 Sometimes, we say that A is an (S)+ (resp. (P), (M))-map on D
in order to emphasize that the property holds only on D and not on the whole space
X . Evidently, demicontinuity is sequential continuity from X into X∗

w, which we
already encountered in previous sections.

Proposition 2.10.13 If X is reflexive Banach and A, F : X → X∗, then

(a) when A is demicontinuous and (S)+, it is pseudomonotone;
(b) when A is monotone and F is completely continuous, A + F is a (P)-map.

Proof (a) Let xn
w→ x in X and assume that lim sup

n→∞
〈A(xn), xn − x〉 � 0. Since A

is an (S)+-map we have xn → x in X . Then the demicontinuity of A implies that
A(xn)

w→ A(x) in X∗. So, for every u ∈ X , we have

〈A(x), x − u〉 = lim
n→∞ 〈A(xn), xn − u〉

⇒ A is pseudomonotone (see Definition 2.10.1 (a)).
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(b) Suppose that xn
w→ x in X . The complete continuity of F implies F(xn) →

F(x) in X∗. Also, from the monotonicity of A, we have

〈A(xn), xn − x〉 � 〈A(x), xn − x〉 for all n � 1

⇒ lim inf
n→∞ 〈A(xn), xn − x〉 � 0.

So, finally lim sup
n→∞

〈A(xn) + F(xn), xn − x〉 � 0 and we conclude that A + F is

a (P)-map. �

Proposition 2.10.14 If X is a locally uniformly convex reflexive Banach space with
a strictly convex dual X∗, then the duality map J : X → X∗ is (S)+.

Proof Since X∗ is strictly convex, J is single-valued (see Proposition 2.7.27). Sup-
pose

xn
w→ x in X and lim sup

n→∞
〈J (xn), xn − x〉 � 0. (2.100)

Using Proposition 2.7.23, we have

(||xn|| − ||x ||)2 � 〈J (xn) − J (x), xn − x〉 for all n � 1

⇒ ||xn|| → ||x || (see (2.100))
⇒ xn → x in X (from the Kadec–Klee property, see Remark 2.7.30).

The proof is now complete. �

A compact map need not be an (M)-map.

Example 2.10.15 Let X = l2 and let A(x) = (
(2 − ||x ||)δk,1

)
k�1 (recall that δk,1 ={

1 if k = 1
0 if k �= 1

, theKronecker symbol) for all x ∈ l2.Clearly A : l2 → l2 is compact (in

fact it is finite rank). Let xn = (δk,n)k�1 ∈ l2. We have A(xn) = (δk,1)k�1 and xn →
0, A(xn) → (δk,1)k�1 in l2 and lim

n→∞(A(xn), xn)l2 = 0. Since A(0) = (2δk,1)k�1, the

map A is not an (M)-map (see Definition 2.10.11 (c)).

In particular, the above example shows that the sum of an (M)-map and a compact
map need not be an (M)-map (just note the zero map is an (M)-map).

Proposition 2.10.16 If X is a reflexive Banach space, A : X → X∗ is a demicon-
tinuous (S)+-map and K : X → X∗ is compact, then A + K is an (M)-map.

Proof Suppose that xn
w→ x in X, (A + K )(xn)

w→ x∗ in X∗ and

lim sup
n→∞

〈(A + K )(xn), xn〉 �
〈
x∗, x

〉
.
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The compactness of K implies that we can find a subsequence {xnk }k�1 of {xn}n�1

and v∗ ∈ X∗ such that K (xnk ) → v∗ in X∗. Then we have

lim sup
k→∞

〈
A(xnk ), xnk − x

〉
� 0

⇒ xnk → x in X (since A is (S)+).

The demicontinuity of A implies A(xnk )
w→ A(x) in X∗, while the continuity of

K implies K (xnk ) → K (x) = v∗ in X∗. So,

x∗ = (A + K )(x)

and this proves that A + K is an (M)-map. �

Corollary 2.10.17 If X is a locally uniformly convex reflexive Banach space with
strictly convex dual X∗ and K : X → X∗ is compact, then J + K : X → X∗ is an
(M)-map; in particular, if X = H = a Hilbert space and K : H → H is compact,
then x �→ x + K (x) is an (M)-map.

In general, (S)+-maps exhibit remarkable stability properties under perturbations.

Proposition 2.10.18 If X is a reflexive Banach space and A, F : D ⊆ X → X∗ are
demicontinuous maps, then

(a) if A is an (S)+-map on D and F is a (P)-map on D, then x �→ (A + F)(x) is
an (S)+-map on D;

(b) if A and F are both (S)+-maps on D = X, then A + F is an (S)+-map;
(c) if A is an (S)+ map on D and F is compact on D, then A + F is an (S)+-map.

Proof (a) This is immediate from Definitions 2.10.11 (a) and (b).
(b) From Proposition 2.10.13 (a), F is pseudomonotone. Then directly from the

definition of pseudomonotonicity, we have that F is a (P)-map. So, again we can
apply part (a) and conclude that A + F is an (S)+-map.

(c) A compact map on D is clearly a (P)-map. So, again we can apply
part (a). �

Proposition 2.10.19 If X is a reflexive Banach space, A : X → X∗ is an (M)-map
and F : X → X∗ is sequentially continuous from Xw into X∗

w and x → 〈F(x), x〉 is
sequentially weakly lower semicontinuous, then A + F : X → X∗ is an (M)-map.

Proof Let xn
w→ x in X, (A + F)(xn)

w→ x∗ in X∗ and lim sup
n→∞

〈(A + F)(xn) ,

xn〉 � 〈x∗, x〉. Then F(xn)
w→ F(x) in X∗ and A(xn)

w→ x∗ − F(x) in X∗. Hence
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lim sup
n→∞

〈A(xn, xn)〉 � lim sup
n→∞

〈(A + F)(xn), xn〉 − lim inf
n→∞ 〈F(xn), xn〉

�
〈
x∗ − F(x), x

〉

⇒ A(x) = x∗ − F(x) (since A is an (M)-map)

⇒ A(x) + F(x) = x∗ and so A + F is an (M)-map.

The proof is now complete. �

Remark 2.10.20 It is easy to check that if F : X → X∗ is monotone and sequentially
continuous from Xw into X∗

w, then x �→ 〈F(x), x〉 is sequentially weakly lower
semicontinuous.

The following notion will be useful in the degree theory of (S)+-maps which we
develop in Chap. 3.

Definition 2.10.21 Let X be a reflexive Banach space and {At }t∈[0,1] a family of
maps At : X → X∗. We say that {At }t∈[0,1] is an (S)t+-family if the following is true:

“for every {xn}n�1 ⊆ D and {tn}n�1 ⊆ [0, 1] satisfying xn
w→ x in X, tn → t and

lim sup
n→∞

〈
Atn (xn), xn − x

〉
� 0, we have xn → x in X .”

We show that affine homotopies of demicontinuous (S)+-maps satisfy this prop-
erty.

Proposition 2.10.22 If X is a reflexive Banach space and A0, A1 : X → X∗ are
demicontinuous (S)+-maps, then At (x) = t A0(x) + (1 − t)A1(x) for all x ∈ X and
all t ∈ [0, 1] is an (S)t+-family.

Proof Suppose that {xn}n�1 ⊆ X and {tn}n�1 ⊆ [0, 1] such that

xn
w→ x in X, tn → t and lim sup

n→∞
〈
Atn (xn), xn − x

〉
� 0. (2.101)

Recall that A0 and A1 are pseudomonotone (see Proposition 2.10.13 (a)). So,
from the inequality in (2.101) and reasoning as in the proof of Proposition 2.10.6
(see (2.90) and (2.91)) we obtain

lim sup
n→∞

〈A0(xn), xn − x〉 � 0 and lim sup
n→∞

〈A1(xn), xn − x〉 � 0

⇒ xn → x in X.

The proof is now complete. �

2.11 Remarks

2.1: The systematic study of compact maps was initiated by Schauder [372–374].
However, for linear operators, the notion can be traced back to the works of Hilbert
[IV] [208] and Riesz [354]. As we already mentioned in Remark 2.1.2, the termi-
nology is not uniform in the literature. See, for example, Granas and Dugundji [197,
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p. 112], where the use of the terms compact and completely continuous is different
from ours. Our terminology here is consistent with that of linear operators. Speaking
of linear operators, we should mention that another term for complete continuity
when dealing with linear operators between Banach spaces is “Dunford–Pettis oper-
ators” (see Megginson [295, p. 336]). Theorem 2.1.7 is the reason for the many
powerful properties of compact maps and it is due to Schauder [374]. It can be
extended to locally convex spaces (see Leray [264] and Nagumo [314]) and to vector
spaces that need not be locally convex (see Klee [237]). Proposition 2.1.9 and its
trivial consequence Proposition 2.1.10 are due to Dugundji [149]. It is a remarkable
generalization of the well-known Tietze extension theorem for R-valued continu-
ous functions. For more results of this type, we refer to the books of Bessaga and
Pelczynski [49] and Hu [216]. We mention two such extension results.

Proposition 2.11.1 If X is a paracompact (resp. normal) topological space, A ⊆ X
is closed, Y is a Banach space (resp., a separable Banach space) and f : A → Y is
continuous, then there exists a continuous map f̂ : X → Y such that f̂ |A = f.

2.2: Proper mappings are discussed in detail in Bourbaki [59, Section I.10]. Note
that in Bourbaki [59] the definition of properness is more general (see Proposition
6, p. 104). Proper maps are also considered by Berger [44]. Additional results on
gradient maps can be found in the survey paper of Rothe [364] and in the book of
Krasnoselskii [250].

2.3: As we already mentioned, the first to consider linear compact operators were
Hilbert [208] and Riesz [354]. Theorem 2.3.6 is due to Schauder [374]. Another
result relating properties of the adjoint of an operator A with the compactness of A
is the following (see Dunford and Schwartz [151] (Theorem 6, p. 486)).

Proposition 2.11.2 If X, Y are Banach spaces, A ∈ L (X, Y ) and A∗ : Y ∗ → X∗
is weak∗-to-norm continuous, then A ∈ Lc(X, Y ).

The notion of Schauder basis was introduced (of course) by Schauder [372]. In his
classical monograph Banach [31, p. 111] asked whether every infinite-dimensional
separable Banach space has a Schauder basis. This is known in Banach space the-
ory as the “basis problem”. This and the approximation problem initially asked by
T. Hildebrandt (1931) (see Remark 2.3.8) were answered in the negative by Enflo
[162]. We also have the following result.

Proposition 2.11.3 Every Banach space with a Schauder basis has the approxima-
tion property.

Remark 2.11.4 The converse is not in general true (see Szarek [396]).

2.4: The term “spectrum” is due to Hilbert, who made major contributions to
spectral theory in particular and to functional analysis in general, in a series of six
papers that appeared in the journal of the Academy of Sciences of Göttingen between
1904 and 1910. They appeared in book form in 1912. The book was reprinted in
1953, see Hilbert [208]. Note that Hilbert defined the spectrum of A as the set of λ
for which I − λA is not invertible. So, Hilbert’s spectrum consists of the reciprocals
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of the elements of σ(A) introduced in Definition 2.4.1. A more complete version of
the Fredholm alternative theorem (see Theorem 2.4.15) is given below:

Theorem 2.11.5 If X is a Banach space and A ∈ Lc(X), then

(a) N (I − A) = ker (I − A) is finite-dimensional;
(b) R(I − A) is closed and R(I − A) = N (I − A∗)⊥;
(c) N (I − A) = {0} if and only if R(I − A) = X;
(d) dim N (I − A) = dim N (I − A∗).

Remark 2.11.6 Note that if X, Y are Banach spaces and A ∈ L (X, Y ), then

(a) if either X or Y is finite-dimensional, we have

A is surjective if and only if A∗ is injective;

A is injective if and only if A∗ is surjective;

(b) if both X and Y are infinite-dimensional, we have

A is surjective ⇒ A∗ is injective;

A∗ is surjective ⇒ A is injective.

The description of the spectrum of a linear compact operator (see Theorem 2.4.20
and Corollary 2.4.21) is due to Riesz [354].

More on linear compact operators and their spectral properties can be found in
the books of Akhiezer and Glazman [7], Brezis [65], Kato [229], Reed and Simon
[352] and Yosida [418].

2.5: Multifunctions are an important tool in many applications, such as the cal-
culus of variations, optimal control, optimization and mathematical economics. The
notions introduced in Definition 2.5.1 are topological in the sense that we can intro-
duce topologies on the hyperspace 2Y which correspond to the notions of upper and
lower semicontinuity and to Vietoris continuity. This was done by Michael [1951].
Theorem 2.5.14 is due to Michael [298]. The approximate continuous selection the-
orem for usc multifunctions stated in Theorem 2.5.19 is due to Cellina [112]. This
result is the starting point for the extension of degree theory to multifunctions (see
Chap. 3). Dugundji’s extension theorem (see Proposition 2.1.9) has an analog for
usc multifunctions. This result is due to Ma [285].

Proposition 2.11.7 If X is a metric space, Y is a locally convex space, A ⊆ X is
nonempty closed and F : A → Pkc(Y ) is usc, then there exists a usc multifunction
F̂ : X → Pkc(Y ) such that F̂ |A = F and

F̂(x) ⊆ conv F(A) for all x ∈ X.
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For multifunctions with values in the Lebesgue–Bochner space L1(�, X), we
have a continuous selection theorem in which the convexity of the values is replaced
by the notion of decomposability.

Definition 2.11.8 Let (�.�,μ) be a σ-finite measure space and X a separable
Banach space. A set C ⊆ L1(�, X) is said to be decomposable if for every triple
(A, u1, u2) ∈ � × C × C , we have χAu1 + χAc u2 ∈ C .

Remark 2.11.9 Since χAc = 1 − χA, we see that the concept of decomposability
formally looks like that of convexity. Only now the coefficients in the “convex com-
bination” are characteristic functions. Decomposable sets are up to closure the set of
L1(�, X)-selectors of a measurable multifunction with closed values.

The “decomposable” version of Theorem 2.5.14 is due to Bressan and Colombo
[60] and Fryszkowski [174].

Theorem 2.11.10 If E is a separable metric space and F : E → Pf (L1(�, X)) is
an lsc multifunction with decomposable values, then there exists a continuous map
f : E → L1(�, X) such that

f (e) ∈ F(e) for all e ∈ E .

For a detailed study of decomposable sets and their relation to multifunctions we
refer to Fryszkowski [175].

Theorem2.5.33 is due toKuratowski andRyll-Nardzewski [254]. Theorem2.5.35,
modelled after the corresponding result for continuous selections of an lsc multi-
function (see Proposition 2.5.26, due to Michael [298]), was proved by Castaing
[106]. Theorem 2.5.38 as stated can be found in Saint-Beuve [369]. But earlier more
restricted versions were obtained byYankov [417], von Neumann [317] and Aumann
[24]. The result is also related to the so-called “Yankov–von Neumann–Aumann pro-
jection theorem”.

Theorem 2.11.11 If (�,�) is a measurable space, X is a Souslin space and E ∈
� × B(X) (recall that B(X) is the Borel σ-field of X), then proj�E ∈ �̂.

More about multifunctions (both in the topological and measure theoretic direc-
tions) can be found in the books of Aliprantis and Border [9], Aubin and Frankowska
[22], Castaing andValadier [108], Denkowski,Migorski and Papageorgiou [143], Hu
and Papageorgiou [218], Kisielewicz [236], Klein and Thompson [238] and Papa-
georgiou and Kyritsi [329].

2.6:Monotonemaps are rooted in the calculus of variations andwere introduced in
the early sixties in order to provide a framework broader than that of compact opera-
tors, for the study of nonlinear functional equations. The first use of the monotonicity
condition in Hilbert spaces can be traced back to Golomb [193, pp. 66–72], in the
study of nonlinear Hammerstein integral equations. Kachurovski [224] extended the
concept of monotonicity to maps from a Banach space into its dual (see Definition
2.6.1 (a)). The systematic study of monotone type maps started in the mid-sixties
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with theworks of Browder [78, 79, 81, 84] andMinty [300, 301]. The local bounded-
ness of monotone maps was first proved by Kato [229]. A detailed study of maximal
monotone maps and their generalizations can be found in the books of Barbu [32],
Bauschke and Combettes [39], Brezis [64], Denkowski, Migorski and Papageorgiou
[143], Gasinski and Papageorgiou [182], Hu and Papageorgiou [218], Papageorgiou
and Kyritsi [329], and Pascali and Sburlan [331].

2.7: Although affine continuous minorants of convex functions were considered
earlier, the systematic study of the subdifferential multifunction started with the
works of Moreau [303, 304] and Rockafellar [356, 357]. Also the duality theory of
convex functions started with the work of Fenchel [167], who extended the Legendre
transform to nondifferentiable functions on R

N . Extensions to general locally con-
vex spaces were produced by Brondsted [71], Moreau [304] and Rockafellar [356].
Detailed expositions of this duality theory can be found in the books of Barbu and
Precupanu [33], Ekeland and Temam [161], Gasinski and Papageorgiou [182], Ioffe
and Tichomirov [221], Laurent [260] and Rockafellar [358, 360]. The differentiabil-
ity properties of convex functions and their interplay with the geometry of Banach
spaces can be found in the books of Giles [188] and Phelps [341].

Thenotionof a dualitymap (seeDefinition2.7.21)wasfirst introducedbyBeurling
andLivingston [50] andwas studied in detail byAsplund [18], Browder [82], [87] and
Kachurovski [225]. Also, extensive discussions of the duality map can be found in
Cioranescu [125], Gasinski and Papageorgiou [182] and Zeidler [427]. For a detailed
discussion of the various geometric properties of the unit ball in a Banach space, we
refer to the books of Day [138] and Megginson [295].

Theorem2.7.36 is a consequenceof amoregeneral result ofTroyanski [405] andof
the Asplund averaging process (see Asplund [19]). See also the books of Cioranescu
[125, pp. 98, 108] and Diestel [147, pp. 111, 164]. In fact in Diestel [147, p. 164]
one can find the more general version of the Troyanski theorem mentioned above.

2.8: Proposition 2.8.3 is due to Debrunner and Floer [140] and for this reason
in some books it appears under the name “Debrunner–Floer Lemma”. Theorem
2.8.5 and 2.8.9 were first proved by Minty [300] for pivot Hilbert spaces H (that
is, H = H∗). Theorem 2.8.6 is due to Browder [84]. The maximal monotonicity
of the subdifferential map (see Theorem 2.8.10), was proved by Rockafellar [359].
Also, Rockafellar [355, 359] obtained the characterization of the subdifferential as
a maximal cyclically monotone map (see Theorem 2.8.14). More on the sum of
maximal monotone maps can be found in the work of Brezis and Nirenberg [68].

2.9: The resolvent and the Yosida approximation are basic to the study of accretive
andm-accretivemaps (seeBrezis, Crandall and Pazy [67]). Herewe restrict ourselves
to pivot Hilbert spaces, in which case m-accretivity coincides with maximal mono-
tonicity. Our presentation is based on the works of Brezis [63], [64]. Similarly, for
linear maximal monotone operators, we refer to Brezis [64].

2.10: The notion of pseudomonotonicity was introduced by Brezis [62, pp. 123–
124], but using nets instead of sequences. Here, in defining pseudomonotone and
generalized pseudomonotone maps (see Definition 2.10.1), we follow Browder and
Hess [91], who were the first to conduct a systematic study of these classes of
maps. Proposition 2.10.8 is attributed to Browder (see, for example, Dal Maso [134,
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p. 95]) and indeed it can be found in the book of Browder [86, p. 81]. However, it is a
particular case of a general result from functional analysis concerning angelic spaces
(see Floret [171, p. 30]). A Banach space with the weak topology is angelic (see also
Edwards [154, p. 549]). Theorem 2.10.10 is due to Browder and Hess [91]. Calvert
and Webb [100] call (P)-maps quasimonotone. Here we follow the terminology of
Hess [206] and Zeidler [426, p. 586]. In fact, property (P) is equivalent to saying
that xn

w→ x in X ⇒ lim inf
n→∞ 〈A(xn), xn − x〉 � 0. We mention that Skrypnik [382,

p. 35] calls (S)+-maps maps of class α(D). The (S)+-property was introduced by
Browder [85]. More details on these operators of monotone type can be found in
Pascali and Sburlan [331].



Chapter 3
Degree Theories

…the primary question was not What we know, but How do we
know it.

Aristotle (384–322 BCE)

Degree theory deals with an abstract equation of the form ϕ(u) = ξ. In many situ-
ations, we are interested not only in the existence of solutions for the equation, but
also in their multiplicity. This is, for example, the case in bifurcation theory, where
we want to determine the values of the parameter λ, where the number of solutions
of an equation of the form ϕ(u,λ) = ξ changes.

Given the equation ϕ(u) = ξ, with ϕ : � ⊆ X → X defined on a set � in an
appropriate space X and ξ ∈ X , the idea of topological degree is to assign to each
triple (ϕ,�, ξ) an integer d(ϕ,�, ξ) which will be a measure of the number of
solutions of the equation. In particular, the equationwill have solutions in�whenever
d(ϕ,�, ξ) �= 0. Also, we want the integer d(ϕ,�, ξ) to be stable with respect to
small perturbations of ϕ and ξ. The development of degree theory (which starts in
1912, with the seminal work of Brouwer [75], see also the Remarks) revealed that it is
useful to deal with certain fundamental properties that a “topological degree” should
have and from which the other useful properties that lead to interesting applications
can be deduced. This leads to an axiomatic scheme which firmly defines the notion
of “topological degree” and also justifies any new extensions.

We will start with the finite-dimensional theory, which is known as Brouwer’s
degree theory.

© Springer Nature Switzerland AG 2019
N. S. Papageorgiou et al., Nonlinear Analysis–Theory and Methods,
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3.1 Brouwer Degree

To develop the finite-dimensional degree theory (originally due to Brouwer), we will
follow the analytic approach developed by Heinz [205].

In what follows, � ⊆ R
N is a bounded open set, ∂� denotes the boundary of �,

ϕ : � → R
N and ξ ∈ R

N . If ϕ ∈ C1(�,RN ), then by Jϕ(x) we denote the Jacobian
of ϕ at x ∈ �, that is,

Jϕ(x) = det ϕ′(x) = det

[
∂ϕk

∂xi
(x)

]N

i,k=1

.

Definition 3.1.1 Suppose ϕ ∈ C1(�,RN ) ∩ C(�,RN ) and ξ /∈ ϕ(∂�). Let 0 <

ε < d(ξ,ϕ(∂�)) and ϑ ∈ (0,+∞) a function with compact support contained in
(0, ε) such that ∫

RN

ϑ(||x ||)dx = 1.

The Brouwer degree for the triple (ϕ,�, ξ) is defined by

d(ϕ,�, ξ) =
∫

�

ϑ(||ϕ(x) − ξ||)Jϕ(x)dx .

In order for this notion to be well-defined, we need to show that it is independent
of ε > 0 and ϑ ∈ C(0,∞).

To show that Definition 3.1.1 makes sense, we will need a series of technical
lemmata.

Lemma 3.1.2 If f : � → R
N−1 is a C2-function and we set

Dk = det
[
∂1 f, . . . , ∂k−1 f, ∂k+1 f, . . . , ∂N f

]

where ∂i f = ∂ f
∂xi

, then
N∑

k=1
(−1)k∂k Dk = 0.

Proof For 1 � k � N we set Ekk = 0, for i < k we set

Eki = det
[
∂1 f, . . . , ∂i−1 f, ∂ik f, ∂i+1 f, . . . , ∂k−1 f, ∂k+1 f, . . . , ∂N f

]
,

where ∂ik f = ∂ f
∂xi ∂xk

and for k < i we set

Eki = det
[
∂1 f, . . . , ∂k−1 f, ∂k+1 f, . . . , ∂i−1 f, ∂ik f, ∂i+1 f, . . . , ∂N f

]

Then we have ∂k Dk =
N∑
i=1

Eki . Let β =
N∑

k=1
(−1)k∂k Dk . Then
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β =
N∑

k,i=1

(−1)k Eki .

A simple calculation involving the properties of determinants, shows that Eki =
(−1)k+i−1Eik . So, it follows that

β =
N∑

k,i=1

(−1)k Eki =
N∑

k,i=1

(−1)i−1Eik = −β

⇒ β = 0.

The proof is now complete. �

Lemma 3.1.3 If h : � → R
N is a C2-function and Cki (x) is the cofactor of ∂khi (x)

in Jh(x), then for every fixed i ∈ {1, . . . , N } we have

N∑
k=1

∂kCki = 0.

Proof Recall that
Cki (x) = (−1)k+1 det[∂mh j ]m �=k, j �=i .

Fix i ∈ {1, . . . , N } and let f : � → R
N−1 bedefinedby f = (h1, . . . , hi−1, hi+1 ,

. . . , hN ). Evidently f is C2 and we can apply Lemma 3.1.2 to conclude that

N∑
k=1

∂kCki = 0.

The proof is now complete. �

Lemma 3.1.4 If ϕ ∈ C1(�,RN ) ∩ C(�,RN ), 0 /∈ ϕ(∂�), ϑ : R+ → R is con-
tinuous, supp ϑ ⊆ [0, ε] where 0 < ε < d(0,ϕ(∂�)) and

∫∞
0 r N−1ϑ(r)dr = 0, then∫

�
ϑ(||ϕ(z)||)Jϕ(z)dz = 0.

Proof Using regularization, we may assume that ϕ ∈ C2(�,RN ). We introduce the
function η : R+ → R defined by

η(0) = 0 and η(r) = 1

r N

∫ r

0
t N−1ϑ(t)dt.

Evidently, η ∈ C1(0,∞) and has compact support. Also

rη′ + Nη = ϑ. (3.1)

Let σ(x) = η(||x ||)x for all x ∈ R
N . Then
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div σ(x) = ||x ||η′(||x ||) + Nη(||x ||) = ϑ(||x ||) (see (3.1)). (3.2)

For z ∈ �, using Lemma 3.1.3, we have

N∑
k=1

∂k

N∑
i=1

Cki (z)σi (ϕ(z)) =
N∑

k=1

N∑
i=1

(∂kCki (z)σi (ϕ(z))) +
N∑

k=1

N∑
i=1

Cki (z)∂k(σk(ϕ(z))) =
N∑

k=1

N∑
i=1

Cki (z)
N∑

m=1

∂kϕk(z)
∂σi

∂xk
(ϕ(z)) =

N∑
i=1

N∑
m=1

(
N∑

k=1

Cki (z)∂kϕm(z)

)
∂σi

∂xk
(ϕ(z)). (3.3)

By Cramer’s rule, we have

N∑
k=1

Cki (z)∂kϕm(z) = δmi Jϕ(z) (δmi being the Kronecker symbol). (3.4)

Using (3.4) in (3.3), we obtain

N∑
k=1

∂k

N∑
i=1

Cki (z)σi (ϕ(z)) = Jϕ(z)div σ(ϕ(z)) for all z ∈ �. (3.5)

Therefore we have

ϑ(||ϕ(z)||)Jϕ(z) = Jϕ(z)
[
rη′(r) + Nη

]∣∣
r=ϕ(z) (see (3.1))

= Jϕ(z)div σ(ϕ(z))

=
N∑

k=1

∂k

N∑
i=1

Cki (z)σi (ϕ(z)) (see (3.5))

⇒
∫

�

ϑ(||ϕ(z)||)Jϕ(z)dz =
N∑

k=1

∫
�

∂k

(
N∑
i=1

Cki (z)σi (ϕ(z))

)
dz.

Note that σi (ϕ(z)) = 0 for all z in a neighborhood for ∂�. So, by integration by
parts we obtain ∫

�

ϑ(||ϕ(z)||)Jϕ(z)dz = 0,

which completes the proof �
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Nowwe can show that the definition of degree given in Definition 3.1.1 is actually
independent of ε ∈ (0, d(ξ,ϕ(∂�)) and ϑ, hence the notion is well-defined.

Proposition 3.1.5 If the triple (ϕ,�, ξ) and ε > 0, ϑ ∈ C(0,∞) are as in Defini-
tion 3.1.1, then d(ϕ,�, ξ) is independent of ε > 0 (provided ε < d(ξ,ϕ(∂�))) and
of the function ϑ ∈ C(0,+∞).

Proof Let ε̂ = d(ξ,ϕ(∂�)) and let ε1, ε2 ∈ (0, ε̂). Suppose that ϑ1,ϑ2 are two con-
tinuous functions with supports in (0, ε1) and (0, ε2) respectively and such that

∫
RN

ϑ1(||x ||)dx =
∫
RN

ϑ2(||x ||)dx = 1.

Wesetϑ = ϑ1 − ϑ2. Then
∫∞
0 r N−1ϑ(r)dr = 0 and sowe can apply Lemma3.1.4

with z → ϕ(z) − b, to obtain

∫
�

ϑ(||ϕ(z) − ξ||)Jϕ(z)dz = 0

⇒
∫

�

ϑ1(||ϕ(z) − ξ||)Jϕ(z)dz =
∫

�

ϑ2(||ϕ(z) − ξ||)Jϕ(z)dz.

The proof is now complete. �

We can also show the stability of ϕ → d(ϕ,�, ξ).

Proposition 3.1.6 Ifϕ1,ϕ2 ∈ C1(�,RN ) ∩ C(�,RN ), ξ /∈ ϕ1(∂�) ∪ ϕ2(∂�)and
ε > 0 satisfies

ε <
1

4
d(ξ,ϕ1(∂�) ∪ ϕ2(∂�)), ||ϕ1 − ϕ2||∞ < ε,

then d(ϕ1,�, ξ) = d(ϕ2,�, ξ).

Proof It is clear fromDefinition 3.1.1 that d(ϕ,�, ξ) = d(ϕ − ξ,�, 0) and sowith-
out any loss of generality, we may assume that ξ = 0. Let γ : R+ → [0, 1] be a
C∞-function such that

γ(r) =
{
1 if r ∈ [0, ε]
0 if r � 2ε.

Letϕ3(z) = (1 − γ(||ϕ1(z)||)ϕ1(z) + γ(||ϕ1(z)||)ϕ2(z) for all z ∈ �. Then ||ϕk −
ϕi ||∞ < ε for k, i ∈ {1, 2, 3}, ||ϕk(z)|| > 3ε for all z ∈ ∂�, all k ∈ {1, 2, 3} and

ϕ3(z) =
{

ϕ1(z) if ||ϕ1(z)|| > 2ε
ϕ2(z) if ||ϕ1(z)|| < ε.

According to Definition 3.1.1 and Proposition 3.1.5, we can find ϑ1,ϑ2 ∈
C(0,+∞) such that
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suppϑ1 ⊆ (2ε, 3ε),
∫
RN

ϑ1(||x ||)dx = 1, d(ϕ1.�, 0) =
∫

�

ϑ1(||ϕ1(z)||)Jϕ1(z)dz,

suppϑ2 ⊆ (0, ε),
∫
RN

ϑ2(||x ||)dx = 1, d(ϕ2,�, 0) =
∫

�

ϑ2(||ϕ2(z)||)Jϕ2(z)dz.

From these choices and the definition of ϕ3, we have

ϑ1(||ϕ3(z)||)Jϕ3(z) = ϑ1(||ϕ1(z)||)Jϕ1(z),

ϑ2(||ϕ3(z)||)Jϕ3(z) = ϑ2(||ϕ2(z)||)Jϕ2(z) for all z ∈ �.

So, we conclude that

d(ϕ3,�, 0) = d(ϕ1,�, 0) = d(ϕ2,�, 0).

The proof is now complete. �
This stability property of the degree d(ϕ,�, ξ) with respect to the function ϕ ∈

C1(�,RN ) ∩ C(�,RN ) permits the extension of the notion of topological degree to
functions ϕ ∈ C(�,RN ). Indeed, recall that according to Proposition 1.1.3(a), given
ϕ ∈ C(�,RN ), we can findϕε ∈ C1(RN ,RN ) such that ||ϕε − ϕ||∞ < ε. So, we can
find {ϕn}n�1 ⊆ C1(�,RN ) ∩ C(�,RN ) such that ||ϕn − ϕ||∞ → 0 as n → ∞.

Proposition 3.1.7 If ϕ,ϕn : � → R
N , n � 1, are as above and ξ /∈ ϕ(∂�), then

we can find n0 � 1 such that for all n, m � n0, d(ϕn,�, ξ) = d(ϕm,�, ξ).

Proof Since ξ /∈ ϕ(∂�) and ϕn → ϕ in C(�,RN ), we can find n̂ � 1 such that
ξ /∈ ϕn(∂�) for all n � n̂. So d(ϕn,�, ξ) is well-defined. We can find n0 � n̂ � 1
such that

||ϕn − ϕm ||∞ <
1

4
d(ξ,ϕn(∂�) ∪ ϕm(∂�)) for all n, m � n0.

Invoking Proposition 3.1.6, we have

d(ϕn,�, ξ) = d(ϕm,�, ξ) for all n, m � n0,

which completes the proof. �
Remark 3.1.8 It is routine to see that this stabilized value is in fact independent of
the approximating family {ϕn}n�1. This leads to the following extension of the notion
of the Brouwer topological degree to continuous functions.

Definition 3.1.9 Let � ⊆ R
N be a bounded open set, ϕ ∈ C(�,RN ) and ξ /∈

ϕ(∂�). The Brouwer topological degree of ϕ on � at ξ, is defined by

d(ϕ,�, ξ) = lim
n→∞ d(ϕn,�, ξ),

where {ϕn}n�1 ⊆ C1(�,RN ) ∩ C(�,RN ) satisfies ||ϕn − ϕ||∞ → 0 as n → ∞.
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Now, we will derive the main properties of this topological degree. We start with
an obvious one which results from Proposition 3.1.6 and Definition 3.1.9.

Proposition 3.1.10 If ϕ1,ϕ2 ∈ C(�,RN ), ξ /∈ ϕ1(∂�) ∪ ϕ2(∂�) and

||ϕ1 − ϕ2||∞ <
1

4
d(ξ,ϕ1(∂�) ∪ ϕ2(∂�)),

then d(ϕ1,�, ξ) = d(ϕ2,�, ξ).

A similar stability holds with respect to the reference point ξ ∈ R
N .

Proposition 3.1.11 If ϕ ∈ C(�,RN ), then d(ϕ,�, ·) is constant on the connected
components of RN \ϕ(∂�), that is, if ξ1, ξ2 belong to the same connected component
of RN \ϕ(∂�), then d(ϕ,�, ξ1) = d(ϕ,�, ξ2).

Proof Recall that d(ϕ,�, ξ) = d(ϕ − ξ,�, 0). So, if ε > 0 satisfies ε < 1
4

d(ξ,ϕ(∂�)), then by Proposition 3.1.10, we see that then when ||ξ1 − ξ2|| < ε we
have

d(ϕ,�, ξ1) = d(ϕ − ξ1,�, 0) = d(ϕ − ξ2,�, 0) = d(ϕ,�, ξ2).

Clearly then for all ξ1, ξ2 in the same connected component of RN \ϕ(∂�), we
have d(ϕ,�, ξ1) = d(ϕ,�, ξ2). �

Proposition 3.1.12 If ϕ ∈ C(�,RN ), ξ /∈ ϕ(∂�) and y ∈ R
N , then d(ϕ − y,�,

ξ − y) = d(ϕ,�, ξ).

To formulate the next property of the topological degree, we need to recall the
following notion from topology.

Definition 3.1.13 Let X, Y be Hausdorff topological spaces and assume thatϕ,ψ ∈
C(X, Y ). We say that ϕ and ψ are homotopic if there exists a continuous function h :
[0, 1] × X → Y such that h(0, x) = ϕ(x) and h(1, x) = ψ(x). The function h(·, ·)
is a homotopy between ϕ and ψ.

The next property is arguably the most important property of the topological
degree. It says that the Brouwer degree is homotopy invariant. It allows the compu-
tation of the topological degree of a function by performing the computation of the
degree of another function which is simple and easier.

Proposition 3.1.14 If h : [0, 1] × � → R
N is continuous and ξ /∈ h([0, 1] × ∂�),

then d(h(t, ·),�, ξ) = d(h(0, ·),�, ξ) for all t ∈ [0, 1].
Proof Let ε = 1

4d(ξ, h([0, 1] × ∂�)) and note that h is uniformly continuous on
[0, 1] × �. So, we can find δ = δ(ε) > 0 such that

|t1 − t2| < δ ⇒ |h(t1, x) − h(t2, x)| < ε for all x ∈ R
N .

Hence by virtue of Proposition 3.1.10, we have
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d(h(t1, ·),�, ξ) = d(h(t2, ·),�, ξ) for all t1, t2 ∈ [0, 1] such that |t1 − t2| < δ.

Since [0, 1] is compact, we can cover it by a finite number of integrals of length
δ > 0. So, the homotopy invariance property of the degree follows. �

As a consequence of the homotopy invariance property of the degree, we have the
next result which says that in degree theory what matters is the boundary behavior
of the functions.

Proposition 3.1.15 If ϕ,ψ ∈ C(�,RN ), ϕ|∂� = ψ|∂� and ξ /∈ ϕ(∂�), then
d(ϕ,�, ξ) = d(ψ,�, ξ).

Proof Consider the homotopy h : [0, 1] × R
N → R

N defined by

h(t, x) = (1 − t)ϕ(x) + tψ(x) for all t ∈ [0, 1], all x ∈ R
N .

Since ϕ|∂� = ψ|∂�, we have ξ /∈ h([0, 1] × ∂�) and so by Proposition 3.1.14,
we have

d(h(0, ·),�, ξ) = d(h(1, ·),�, ξ)

⇒ d(ϕ,�, ξ) = d(ψ,�, ξ).

The proof is now complete. �

Next, we want to examine the dependence of the degree on the domain �. To
do this we recall the following theorem due to Sard [370], which says that given
ϕ ∈ C1(�,RN ) a generic point ξ ∈ ϕ(�) should be a regular value.

Theorem 3.1.16 If � ⊆ R
N is bounded open, ϕ ∈ C1(�,RN ) and Sϕ = {z ∈ � :

Jϕ(z) = 0}, then ϕ(Sϕ) is Lebesgue-null.

Proof Consider a closed cube C contained in � of side a. We subdivide C into k N

(k � 1 an integer) subcubes each of side a
k . Then x → ϕ′(x) is uniformly continuous

on C and so, given ε > 0, we can find δ = δ(ε) > 0 such that

“for all z, y ∈ C with ||z − y|| < δ, we have ||ϕ′(z) − ϕ′(y)|| < ε”. (3.6)

We choose k � 1 such that
√

N a
k < δ (note that

√
N a

k is the diameter of each
subcube). From the mean value theorem we have

||ϕ(z) − ϕ(y)|| � sup
u∈C

||ϕ′(u)|| ||z − y||.

Let M = sup
u∈C

||ϕ′(u)||. Let z ∈ C ∩ Sϕ. Then we can find a subcube Ĉ of C which

contains z. We have
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||ϕ(z) − ϕ(y)|| � M
√

N
a

k
for all y ∈ Ĉ

⇒ ϕ(Ĉ) ⊆ B M
√

N a
k
(ϕ(z)).

Also, for all y ∈ Ĉ , we have

||ϕ(y) − ϕ(z) − ϕ′(z)(y − z)|| =
∥∥∥∥
∫ 1

0

[
ϕ′(z + t (y − z)) − ϕ′(z)

]
(y − z)dt

∥∥∥∥
� ε||y − z|| (see (3.6)).

Since z ∈ C ∩ Sϕ, we have Jϕ(z) = 0 and so ϕ′(z) is not invertible. This means
that ϕ′(z)(RN ) is contained in a subspace E of RN of dimension N − 1. Then

d(ϕ(y),ϕ(x) + E) � ε
√

N
a

k
for all y ∈ Ĉ .

So, ϕ(Ĉ) is in a cuboid of center ϕ(x) and volume 2ε
(√

N a
k

)N
. Hence

λ∗(ϕ(Ĉ)) � 2N M N−1N
N
2

aN

k N
ε (λ∗ is the Lebesgue outer measure)

⇒ λ∗(ϕ(C ∩ Sϕ)) �
∑

Ĉ∩Sϕ �=∅
λ∗(ϕ(Ĉ ∩ Sϕ)) �

∑
Ĉ∩Sϕ �=∅

λ∗(ϕ(Ĉ)) �

(
2N M N−1N

N
2 aN
)

ε =
β(N , C)ε. (3.7)

Since ε > 0 is arbitrary, from (3.7) it follows that ϕ(C ∩ Sϕ) is Lebesgue-null.
Since Sϕ can be covered by a finite family of sets of the form C ∩ Sϕ, we infer that
ϕ(Sϕ) is Lebesgue-null. �

Now we can establish an additive property with respect to the domain � ⊆ R
N .

Proposition 3.1.17 If �1,�2 ⊆ R
N are bounded open sets, �1 ∩ �2 = ∅, � =

�1 ∪ �2, ϕ ∈ C(�,RN ), and ξ /∈ ϕ(∂�1) ∪ ϕ(∂�2) = ϕ(∂�), then d(ϕ,�, ξ) =
d(ϕ,�1, ξ) + d(ϕ,�2, ξ).

Proof Let r = d(ξ,ϕ(∂�)) > 0. Then r � d(ξ,ϕ(∂�k)) for k = 1, 2. Let ψ ∈
C1(�,RN ) such that ||ψ − ϕ||∞ < r

2 . Then

d(ψ,�, ξ) = d(ϕ,�, ξ) and d(ψ,�k, ξ) = d(ϕ,�k, ξ) for k = 1, 2. (3.8)

The open ball with center ξ and radius 1
2d(ξ,ϕ(∂�)) contains an η /∈ ψ(Sψ)

(see Theorem 3.1.16). Evidently ξ and η are in the same connected component of
R

N \ψ(∂�) and of RN \ψ(∂�k) k = 1, 2. Then Proposition 3.1.11 implies that
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d(ψ,�, ξ) = d(ψ,�, η) and d(ψ,�k, ξ) = d(ψ,�k, η) for k = 1, 2. (3.9)

Then since η is a regular value of ψ (recall that η ∈ ψ(Sψ)), from Definition 3.1.1
(see also Lemma 3.1.23 below), we have

d(ψ,�, η) =
∑

z∈ψ−1(η)

sgn Jψ(z) =
∑

z∈ψ−1(η)∩�1

sgn Jψ(z)

+
∑

z∈ψ−1(η)∩�2

sgn Jψ(z)

⇒ d(ψ,�, η) = d(ψ,�1, η) + d(ψ,�2, η)

⇒ d(ϕ,�, ξ) = d(ϕ,�1, ξ) + d(ϕ,�2, ξ) (see (3.8), (3.9)).

The proof is now complete. �

An easy consequence of the above additivity property is the so-called excision
property.

Corollary 3.1.18 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), K ⊆ � is compact

and ξ /∈ ϕ(K ) ∪ ϕ(∂�), then d(ϕ,�, ξ) = d(ϕ,�\K , ξ).

The next property is very useful in establishing the existence of solutions for
the equation ϕ(x) = ξ. For this reason this property is often called the “existence
property”.

Proposition 3.1.19 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), ξ /∈ ϕ(∂�) and

d(ϕ,�, ξ) �= 0, then the equation ϕ(x) = ξ admits at least one solution.

Proof It suffices to show that if ϕ−1(ξ) = ∅, then d(ϕ,�, ξ) = 0. By virtue of Def-
inition 3.1.9, we may assume that ϕ ∈ C1(�,RN ). Let ε ∈ (0, d(ξ,ϕ(�))) and let
ϑ ∈ C(0,+∞) be as inDefinition 3.1.1with suppϑ ⊆ (0, ε). Then by that definition,
we have d(ϕ,�, ξ) = 0. �

Remark 3.1.20 So, as a by-product of the above proof, we can equivalently refor-
mulate the existence property as follows:

“If ξ /∈ ϕ(�), then d(ϕ,�, ξ) = 0”. (3.10)

Applying Proposition 3.1.19 to the identity map i(x) = x for all x ∈ �, we have
(see also (3.10)).

Corollary 3.1.21 If � ⊆ R
N is bounded open and ξ ∈ R

N , then

d(i,�, ξ) =
{
1 if ξ ∈ �

0 if ξ /∈ �
and d(−i,�, ξ) =

{
(−1)N if ξ ∈ �

0 if ξ /∈ �.

Corollary 3.1.22 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ) and ϕ(�) ⊆ H =

hyperplane, then for all ξ /∈ ϕ(∂�) we have d(ϕ,�, ξ) = 0.
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Finally, we show that the degree map is Z-valued. To this end, first we produce a
convenient expression of the degree for aC1-map (seeDefinition 3.1.1)when ξ ∈ R

N

is a regular value of ϕ. This is an easy consequence of Definition 3.1.1.

Lemma 3.1.23 If � ⊆ R
N is bounded open, ϕ ∈ C1(�,RN ) ∩ C(�,RN ), Sϕ =

{z ∈ � : Jϕ(z) = 0} and ξ /∈ ϕ(∂�) ∪ ϕ(Sϕ), then

d(ϕ,�, ξ) =
∑

z∈ϕ−1(ξ)

sgn Jϕ(z) ∈ Z.

Proof By virtue of (3.10), we assume that ϕ−1(ξ) �= ∅. Then the inverse func-
tion theorem implies that ϕ−1(ξ) = {zk}m

k=1. Choose r > 0 small such that Br (ξ) ∩
[ϕ(∂�) ∪ ϕ(Sϕ)] = ∅. From the inverse function theorem we know that for every
k ∈ {1, . . . , m}, we can find a neighborhood Uk of zk such that ϕ|Uk is a dif-

feomorphism and ϕ−1(Br (ξ)) =
N⋃

k=1
Uk . We choose ε > 0 small such that ε <

min{r, d(ξ,ϕ(∂�) ∪ ϕ(Sϕ))} and a function ϑ ∈ C(0,+∞) such that suppϑ ⊆
(0, ε) and

∫
RN ϑ(||x ||)dx = 1. Then according to Definition 3.1.1, we have

d(ϕ,�, ξ) =
∫

�

ϑ(||ϕ(z) − ξ||)Jϕ(z)dz

=
N∑

k=1

∫
Uk

ϑ(||ϕ(z) − ξ||)Jϕ(z)dz. (3.11)

We can perform a change of variables x = ϕ(z) − ξ since Jϕ|Uk �= 0. We have

dx = |Jϕ(z)|dz = sgn (Jϕ(z))Jϕ(z)dz.

Therefore, we have

∫
Uk

ϑ(||ϕ(z) − ξ||)Jϕ(z)dz = sgnJϕ(zk)

∫
Br (0)

ϑ(||y||)dy = sgnJϕ(zk)

for all k ∈ {1, . . . , m}.

Then from (3.11) it follows that

d(ϕ,�, ξ) =
N∑

k=1

sgnJϕ(zk) =
∑

z∈ϕ−1(ξ)

sgn Jϕ(z).

The proof is now complete. �

Proposition 3.1.24 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ) and ξ /∈ ϕ(∂�),

then d(ϕ,�, ξ) ∈ Z.
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Proof According to Definition 3.1.9, we can find ψ ∈ C1(�,RN ) ∩ C(�,RN ) such
that

d(ϕ,�, ξ) = d(ψ,�, ξ). (3.12)

Let Sψ = {z ∈ � : Jψ(z) = 0} (the singular set of ψ). Using Theorem 3.1.16, we
see thatRN \(ψ(∂�) ∪ ψ(Sψ)) is dense inRN \ψ(∂�). So, we can find ξ′ ∈ ψ(∂�) ∪
ψ(Sψ) such that ξ and ξ′ are in the same connected component of RN \ψ(∂�).
Invoking Proposition 3.1.11 we have

d(ψ,�, ξ) = d(ψ,�, ξ′). (3.13)

Moreover, Lemma 3.1.23 implies that

d(ψ,�, ξ′) ∈ Z. (3.14)

Finally from (3.12), (3.13) and (3.14), we conclude that d(ϕ,�, ξ) ∈ Z. �
So, summarizing the properties of Brouwer’s degree, we can formulate the following
theorem.

Theorem 3.1.25 If

τ = {(ϕ,�, ξ) : � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), ξ /∈ ϕ(∂�)

}
,

then there exists a map d : τ → Z, known as the Brouwer degree, such that

(a) Normalization: d(i,�, ξ) = 1 provided ξ ∈ �.
(b) Domain Additivity: d(ϕ,�, ξ) = d(ϕ,�1, ξ) + d(ϕ,�2, ξ) with �1,�2 dis-

joint open subsets of � and ξ /∈ ϕ(�\(�1 ∪ �2)).
(c) Homotopy Invariance: d(h(t, ·),�, ξ(t)) is independent of t ∈ [0, 1] when-

ever h ∈ C([0, 1] × �,RN ), ξ ∈ C([0, 1],RN ) and ξ(t) /∈ h(t, ∂�) for all
t ∈ [0, 1].

(d) Solution Property: d(ϕ,�, ξ) �= 0 implies ϕ−1(ξ) �= ∅.
(e) Continuity in (ϕ, ξ): ϕ → d(ϕ,�, ξ) is constant on BC(�)

ε (ϕ) = {ψ ∈ C(�) :
||ψ − ϕ||∞ < ε} where ε = d(ξ,ϕ(∂�)) > 0; ξ → d(ϕ,�, ξ) is constant on
every connected component of RN \ϕ(∂�).

(f) Dependence on Boundary Values: d(ϕ,�, ξ) = d(ψ,�, ξ) for every ψ ∈
C(�,RN ) with ϕ|∂� = ψ|∂�.

(g) Excision Property: d(ϕ,�, ξ) = d(ϕ,�1, ξ) for every open set �1 ⊆ � such
that ξ /∈ ϕ(�\�1).

Remark 3.1.26 Here we have stated the homotopy invariance property in a slightly
more general form since the reference point depends also on t ∈ [0, 1]. However, we
can easily see that this makes no difference if we recall that

d(h(t, ·),�, ξ(t)) = d(h(t, ·) − ξ(t),�, 0) for all t ∈ [0, 1].
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We also have another form of the homotopy invariance property, in which the
domain is also t-dependent (see Lloyd [283, p. 28]).

Proposition 3.1.27 If �∗ ⊆ [0, 1] × R
N is bounded open, �t = {z ∈ R

N : (t, z) ∈
�∗} for all t ∈ [0, 1], ϕ ∈ C(�

∗
,RN ), for every t ∈ [0, 1] ϕt is the map x →

ϕ(t, x) and ξ ∈ C([0, 1],RN ) such that ξ(t) /∈ ϕt (∂�t ) for all t ∈ [0, 1], then
d(ϕt ,�t , ξ(t)) is independent of t ∈ [0, 1].

In the above construction of Brouwer’s degree, we used the natural basis {ek}N
k=1

of RN , where ek = (eki = δki )
N
i=1. The natural basis is ordered. We obtain the same

degree function if instead we consider a different ordered basis {êk}N
k=1. This can

be easily verified using the transition matrix which corresponds to the change of
basis (ek)

N
k=1 → (êk)

N
k=1 and then the chain rule. So, if� ⊆ R

N is bounded open and
ϕ ∈ C1(�,RN ) ∩ C(�,RN ), then we define ẑ = A(z), where A is the transition
matrix, �̂ = A(�) and ϕ̂(ẑ) = Aϕ(A−1(ẑ)) for all ẑ ∈ �̂. The chain rule yields.

Jϕ̂(ẑ) = det A Jϕ(A−1(ẑ))det A−1 = Jϕ(A−1(ẑ)) = Jϕ(z)

⇒ sgn Jϕ̂(ẑ) = sgn Jϕ(z). (3.15)

So, if ξ /∈ ϕ(∂� ∪ Sϕ), then

d(ϕ,�, ξ) = d(AϕA−1, A(�), A(ξ)) = d(ϕ̂, �̂, A(ξ)) (3.16)

(see Lemma 3.1.23 and (3.15)).

The requirement that ξ /∈ ϕ(Sϕ) can be removed using Sard’s theorem (see Theo-
rem 3.1.16). Finally the passage to continuous functions can be achieved by approx-
imating a continuous function by smooth functions.

Arguing similarly, we can replace R
N by X , an N -dimensional normed (hence

Banach) space. So, we fix an ordered basis (xk)
N
k=1 of X . For every x ∈ R

N we have

x =
N∑

k=1

ck(x)xk, with ck(x) ∈ R (the kth coordinate of x).

Then, the map σ : X → R
N defined by σ(x) = (ck(x))N

k=1 is a homeomorphism.
Given � ⊆ X bounded open, ϕ ∈ C(�, X) and ξ /∈ ϕ(∂�). Since σ is a home-
omorphism if we set ψ = σϕσ−1 : σ(�) ⊆ R

N → R
N , then d(ψ,σ(�),σ(ξ)) is

well-defined. So, we can define

d(ϕ,�, ξ) = d(ψ,σ(�),σ(ξ)). (3.17)

For this definition to be valid, it should not depend on the homeomorphism σ (that
is, on the original choice of basis on X ). So, suppose that (x̂k)

N
k=1 is another ordered

basis of X and let σ̂ be the corresponding homeomorphism. Let A be the transition
matrix passing from (̂xk)

N
k=1 to (xk)

N
k=1. Then σ = Aσ̂ and so
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d(ψ,σ(�),σ(ξ)) = d(σϕσ−1,σ(�),σ(ξ))

= d(Aσ̂ϕσ̂−1A−1, Aσ̂(�), Aσ̂(ξ))

= d (̂σϕσ̂−1, σ̂(�), σ̂(ξ)) (see (3.16)).

This proves that (3.17) is well defined.
Therefore, we can make the following definition:

Definition 3.1.28 Let X be an N -dimensional Banach space and let

τ̂ = {(ϕ,�, ξ) : � ⊆ X is bounded open, ϕ ∈ C(�, X) and ξ /∈ ϕ(∂�)}.

Suppose that (xk)
N
k=1 is an ordered basis of X and (ek)

N
k=1 is the natural basis of

R
N .
Then we define the Brouwer degree on τ̂ by

d(ϕ,�, ξ) = d(σϕσ−1,σ(�),σ(ξ)),

where σ : X → R
N is the homeomorphism defined by σ(xk) = ek for all k ∈

{1, . . . , N }.
The previous discussion leads to the following theorem.

Theorem 3.1.29 The degree function d : τ̂ → Z defined in Definition 3.1.28 has all
the properties listed in Theorem 3.1.25.

Finally, suppose that X and Y are both real N -dimensional Banach spaces,� ⊆ X
is bounded, open, ϕ : � → Y is continuous and ξ ∈ Y\ϕ(∂�). We consider two
bases {ek}N

k=1 ⊆ X and {hk}N
k=1 ⊆ Y and the corresponding isomorphisms σ : X →

R
N and σ : Y → R

N . We set ψ = σ̂ϕσ−1 and we may define

d(ϕ,�, ξ) = d(ψ,σ(�), σ̂(ξ)).

Suppose we change the bases on X and Y . Then σ = Aσ̂, σ̂ = Bσ∗ and the new
function is B−1ψA. So, we have

d(B−1ψA, σ̂(�),σ∗(ξ)) = sgn (det A det B) d(ψ,σ(�), σ̂(ξ)).

So,we see that the definition of the degreewe gave earlier depends on the choice of
the bases. We say that two bases {ek}N

k=1 ⊆ X and {hk}N
k=1 have the same orientation

if the matrix A defined by

Aek = hk for all k ∈ {1, . . . , N }

has det A > 0. This introduces an equivalence relation with exactly two equivalence
classes. We call X oriented if we have chosen one class and ignore the other one.
Therefore, if X and Y are oriented, then det A > 0, det B > 0 and so the Brouwer
degree given above is well-defined.
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In the rest of this section, we present some important application of Brouwer’s
degree.

We start by recalling the following important notion from topology.

Definition 3.1.30 Let X be a Hausdorff topological space and C ⊆ X . We say that
C is a retract of X if there is a continuous map r : X → C such that r |C =identity
(that is, the identity map i : C → C admits a continuous extension r : X → C and
this extension is called a retraction).

Remark 3.1.31 Every retract is closed. By Proposition 2.1.9 every closed convex
set of a normal space, is a retract. The notion of retract is topologically invariant,
that is, if h : X → Y is a homeomorphism and C ⊆ X , then h(C) is a retract of Y
if and only if C is a retract of X . Evidently, ∂B1 = {x ∈ R

N : ||x || = 1} is a retract
of B1\{0} with a retraction given by x → x

||x || . This is no longer true if B1\{0} is
replaced by B1 = {x ∈ R

N : ||x || � 1}.
Proposition 3.1.32 ∂B1 = SN−1 is not a retract of B1.

Proof Arguing by contradiction suppose that ∂B1 is a retract of B1 and let r : B1 →
∂B1 be a retraction. Then from Theorem 3.1.25(f) and Corollary 3.1.21, we have

d(r, B1, 0) = d(i, B1, 0) = 1.

Invoking Theorem 3.1.25(d), we can find x ∈ B1 such that r(x) = 0, which is a
contradiction to the fact that r(·) has values in ∂B1. �

Remark 3.1.33 In contrast, in an infinite-dimensional normed space X , ∂B1 = {x ∈
X; ||x || = 1} is a retract of B1 = {x ∈ X : ||x || � 1}. To see this, let V be a dense
linear subspace and let D = ∂B1 ∩ V . Then D is dense ∂B1 and i |D has a continuous
extension g : B1 ∪ conv D ⊆ ∂B1 ∪ (B1 ∩ V ) ⊂ B1 (see Proposition 2.1.9 and its
proof). Now let x0 ∈ B1/3 − g(B1) and define r̂ : B1\{x0} → ∂B1, by

r̂(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 (x − x0) + ||x − x0||x0

|| 12 (x − x0) + ||x − x0||x0||
if 0 < ||x − x0|| < 1

2

x

||x || if ||x − x0|| � 1
2 .

Evidently, r̂g : B1 → ∂B1 is continuous and r̂g|∂B1 = identity.

The next result is the celebrated Brouwer’s fixed point theorem.

Theorem 3.1.34 If ϕ : B1 = {x ∈ R
N : ||x || � 1} → B1 is continuous, then there

exists an x ∈ B1 such that ϕ(x) = x (that is, ϕ admits a fixed point).

Proof If there exists an x ∈ ∂B1 such that ϕ(x) = x , then we are done. Therefore,
we may assume that x − ϕ(x) �= 0 for all x ∈ ∂B1. We consider the homotopy
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h(t, x) = x − tϕ(x) for all t ∈ [0, 1], all x ∈ B1.

Note that 0 /∈ h(1, ∂B1). Suppose that for some t ∈ [0, 1) and some x ∈ ∂B1, we
have

x − tϕ(x) = 0

⇒ t ||ϕ(x)|| = 1, a contraction.

Therefore 0 /∈ h(t, ∂B1) for all t ∈ [0, 1] and so Theorem 3.1.25(c) and Corollary
3.1.21 imply

d(i − ϕ, B1, 0) = d(i, B1, 0) = 1.

So, by virtue of Theorem 3.1.25(d), there exists an x ∈ B1 such that ϕ(x) = x . �

Remark 3.1.35 In fact, in the above theorem, we can replace B1 by any convex and
compact subset of RN (see also Sect. 4.1).

Proposition 3.1.36 Theorem 3.1.34 and Proposition 3.1.32 are equivalent.

Proof Theorem 3.1.34 ⇒ Proposition 3.1.32.
Suppose that ∂B1 is a retract of B1. Then we can find r : B1 → ∂B1 continuous

such that r |∂B1 = i . Consider the continuous map ϕ : B1 → B1 defined by ϕ(x) =
−r(x). Clearly, ϕ(·) has no fixed point, a contradiction to Theorem 3.1.34.

Proposition 3.1.32 ⇒ Theorem 3.1.34.
Suppose we can find a continuous function ϕ : B1 → B1 such that ϕ(x) �= x for

all x ∈ B1. For every x ∈ B1 let t (x) > 0 such that (1 − t (x))ϕ(x) + t (x)x ∈ ∂B1. It
is easy to see that x → t (x) is continuous on B1. Letψ(x) = ϕ(x) + t (x)(x − ϕ(x)).
Then ψ ∈ C(B1, ∂B1) and ψ|∂B1 = i , which contradicts Proposition 3.1.32. �

Another important result of Nonlinear Analysis which is equivalent to Theorem
3.1.25 (Brouwer’s fixed point theorem), is the following Hartman–Stampacchia the-
orem concerning variational inequalities.

Theorem 3.1.37 If C ⊆ R
N is nonempty, convex compact and ϕ : C → R

N is con-
tinuous, then there exists a û ∈ C such that (ϕ(û), u − û)RN � 0 for all u ∈ C.

Proposition 3.1.38 Theorems 3.1.34 and 3.1.37 are equivalent.

Proof Theorem 3.1.34 ⇒ Theorem 3.1.37
Let σ : C → C be the continuous map defined by σ(u) = projC (−ϕ(u) + u).

Then according to Theorem 3.1.34 (see also Remark 3.1.35), we can find û ∈ C
such that σ(û) = û. Hence

(−ϕ(û) + û − û, u − û)RN � 0

⇒ (ϕ(û), u − û)RN � 0 for all u ∈ C.
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Theorem 3.1.37 ⇒ Theorem 3.1.34
Consider a continuous map ϕ : B1 → B1 and let ψ = i − ϕ (i = identity map).

We apply Theorem 3.1.37 on ψ and so can find û ∈ B1 such that

(û − ϕ(û), u − û)RN � 0 for all u ∈ B1. (3.18)

If û ∈ B1, then we can find ε > 0 such that Bε(û) ⊆ B1. So, in (3.18) we choose
u = û + εh for h ∈ ∂B1. Then

(û − ϕ(û), h)RN � 0 for all h ∈ ∂B1

⇒ û = ϕ(û).

If û ∈ ∂B1, then from (ϕ(û) − û, u − û)RN � 0 for all u ∈ B1, we infer that
û = projB1

ϕ(û) and so ϕ(û) = λû for some λ � 1. Therefore

û − ϕ(û) = μû for some μ � 0

⇒ ϕ(û) = (1 − μ)û.

Since ϕ has values in B1, we have |1 − μ| � 1 ⇒ −1 � 1 − μ � 1 ⇒ μ � 0 ⇒
μ = 0 and so finally we have ϕ(û) = û. �

Proposition 3.1.39 Ifϕ,ψ ∈ C(�,RN ), h ∈ C([0, 1] × ∂�,RN ), ξ /∈ h(t, ∂�) for
all t ∈ [0, 1] and h(0, ·) = ϕ|∂�, h(1, ·) = ψ|∂�, then d(ϕ,�, ξ) = d(ψ,�, ξ).

Proof By the Tietze extension theorem,we can find ĥ ∈ C([0, 1] × �,RN ) such that
ĥ|[0,1]×∂� = h. Let ϕ̂ = h(0, ·) and ψ̂ = h(1, ·). Evidently, ϕ|∂� = ϕ̂|∂�, ψ|∂� =
ψ̂|∂�. So, from Theorem 3.1.25(f), we have

d(ϕ,�, ξ) = d(ϕ̂,�, ξ) and d(ψ,�, ξ) = d(ψ̂,�, ξ). (3.19)

On the other hand, the homotopy invariance property (see Theorem 3.1.25(c))
implies that

d(ϕ̂,�, ξ) = d(ψ̂,�, ξ). (3.20)

From (3.19) and (3.20), we conclude that d(ϕ,�, ξ) = d(ψ,�, ξ). �

Proposition 3.1.40 If ϕ ∈ C(RN ,RN ) and lim||u||→∞
(ϕ(u),u)

RN

||u|| = +∞, then ϕ is sur-

jective.

Proof Let y ∈ R
N and consider the homotopy

h(t, u) = tu + (1 − t)ϕ(u) − y for all (t, u) ∈ [0, 1] × R
N .
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For ||u|| = r , we have

(h(t, u), u)RN � r

[
tr + (1 − t)

(ϕ(u), u)RN

||u|| − ||y||
]

> 0

for all t ∈ [0, 1] and for large r > ||y||. So, from the homotopy invariance property
(see Theorem 3.1.25(c)), we have

d(ϕ, Br , y) = d(ϕ − y, Br , 0) = d(i, Br , 0) = 1 (see Corollary 3.1.21).

So, by the solution property (see Theorem 3.1.25(d)), we can find û ∈ R
N such

that
ϕ(û) = y.

Since y ∈ R
N is arbitrary, we conclude that ϕ is surjective. �

Proposition 3.1.41 If d(ϕ,�, ξ) �= 0, then ϕ(�) is a neighborhood of ξ.

Proof From Theorem 3.1.25(d), we can find u0 ∈ � such that ϕ(u0) = ξ. Let Uξ be
the connected component ofRN \ϕ(∂�) containing ξ. Then fromTheorem 3.1.25(e),
we have

0 �= d(ϕ,�, ξ) = d(ϕ,�, y) for all y ∈ Uξ

⇒ Uξ ⊆ ϕ(�) (again by Theorem 3.1.25(d))

⇒ ϕ(�) is a neighborhood of ξ.

The proof is now complete. �

Corollary 3.1.42 If ϕ(�) is contained in a proper linear subspace of RN , then
d(ϕ,�, ξ) = 0

The next result is useful in extending the notion of Brouwer’s degree to infinite
dimensions.

Proposition 3.1.43 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), ψ = i + ϕ, m �

N , ξ ∈ R
m and ξ /∈ ψ(∂�), then d(ψ,�, ξ) = d(ψ|�∩Rm ,� ∩ R

m, ξ).

Proof Note that ψ(� ∩ R
m) ⊆ R

m . Also, by virtue of Definition 3.1.9 and Theorem
3.1.16 (Sard’s theorem), we may assume that ϕ ∈ C1(�,Rn) ∩ C(�,RN ) and ξ /∈
ψ(Sψ). Suppose that ψ(u) = ξ for some u ∈ � ∩ R

m . Let ψm = ψ|�∩Rm . We have

Jψm (u) = det
[
Im − (∂kϕi (u))m

k,i=1

]
(Im = m × m identity matrix)

and Jψ(u) = det

[
Im − (∂kϕi (u))m

k,i=1

0

∣∣∣∣ −(∂kϕi (u))m
k,i=1

IN−m

]
.

Developing with respect to the last N − m rows, we obtain Jψ(u) = Jψm (u) and
so
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d(ψ,�, ξ) = d(ψm,� ∩ R
m, ξ) (see Lemma 3.1.23).

The proof is now complete. �

According to Theorem 3.1.25(d), in order to show the solvability of the equation
ϕ(u) = ξ, it suffices to show that d(ϕ,�, ξ) �= 0. In this direction, the so-called
Borsuk’s theorem is very useful.

Theorem 3.1.44 If � ⊆ R
N is bounded, open, symmetric (that is, � = −�), 0 ∈ �,

ϕ ∈ C(�,RN ) is odd and 0 /∈ ϕ(∂�), then d(ϕ,�, 0) is odd.

Proof We claim that wemay assume thatϕ ∈ C1(�,RN ) ∩ C(�,RN ) and Jϕ(0) �=
0. To this end we approximate uniformly ϕ by ψ1 ∈ C1(�,RN ) ∩ C(�,RN ) and
then consider the odd part ψ2(u) = 1

2 [ψ1(u) − ψ1(−u)]. We choose ϑ which is not
an eigenvalue of ψ′

2(0) and set ψ = ψ2 − ϑi ∈ C1(�,RN ) ∩ C(�,RN ) (i=identity
map). Evidently ψ is odd with Jψ(0) �= 0 and it is uniformly close to ϕ, if ϑ and
||ψ1 − ϕ||∞ are sufficiently small. We have d(ϕ,�, 0) = d(ψ,�, 0).

So, we assume thatϕ ∈ C1(�,RN ) ∩ C(�,RN ) and Jϕ(0) �= 0.Wewill produce
anoddmapψ ∈ C1(�,RN ) ∩ C(�,RN ), sufficiently close toϕ such that 0 /∈ ψ(Sψ).
This will be done by induction.

Let �k = {u ∈ � : ui �= 0 for some i � k} and let η ∈ C1(R) be odd such that
η′(0) = 0 and η(t) = 0 if and only if t = 0. Let ϕ̂(u) = ϕ(u)

η(u1)
for all u ∈ �1. By

Theorem 3.1.16, we can find a v′ /∈ ϕ̂(Sϕ̂) with ||v1|| as small as necessary for what
follows. Then 0 is a regular value for ψ1(u) = ϕ(u) − η(u1)v

1 for all u ∈ �1 (note
that ψ′

1(u) = η(u1)ψ̂(u) for all u ∈ �1 such that ψ1(u) = 0). Now suppose that we
have already produced an odd function ψk ∈ C1(�,RN ) ∩ C(�,RN ) close to ϕ on
� such that 0 /∈ ψk(Sψk ) for some k < n and set

ψk+1(u) = ψk(u) − η(uk+1)v
k+1

with ||vk+1|| sufficiently small such that 0 is a regular value of ψk+1 on {u ∈ � :
uk+1 �= 0}. Note that ψk+1 ∈ C1(�,RN ) ∩ C(�,RN ) is odd and uniformly close to
ϕ on �. If u ∈ �k+1 and uk+1 = 0, then u ∈ �k, ψk+1(u) = ψk(u) and ψ′

k+1(u) =
ψ′

k(u), hence Jψk+1(u) �= 0. It follows 0 /∈ ψk+1(Sψk+1). Therefore ψ = ψN is odd,
uniformly close to ϕ̂ on � and 0 /∈ ψ(Sψ) on �\{0} (note �N = �\{0}). But by the
induction hypothesis we know that ψ′(0) = ψ′

1(0) = ϕ′(0) and so 0 /∈ ψ(Sψ).
Therefore we have reduced the theorem to the case ϕ ∈ C1(�,RN ) ∩ C(�,RN ),

Jϕ(0) �= 0 and ϕ is odd. We have

ϕ−1(0) = {0} or ϕ−1(0) = {0} ∪ {(uk ′ − uk)}m
k=1 with uk ∈ �, uk �= 0.

In the first case we have d(ϕ,�, 0) = ±1 and in the second case we have
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d(ϕ,�, 0) = ±1 +
m∑

k=1

[
sgn Jϕ(uk) + sgn Jϕ(−uk)

]
(see Lemma 3.1.23)

= ±1 + 2
m∑

k=1

sgn Jϕ(uk) (since Jϕ is even).

Therefore in both cases we see that d(ϕ,�, 0) is odd. �

The following result is know as the “Borsuk–Ulam theorem”.

Theorem 3.1.45 If � ⊆ R
N is bounded, open, symmetric with 0 ∈ �, ϕ ∈

C(∂�,RN ) is odd and ϕ(∂�) is contained in a hyperplane H of RN , then there
exists a u ∈ ∂� such that ϕ(u) = 0.

Proof From the Tietze extension theorem, we can find ϕ̂ ∈ C(�, H) such that
ϕ̂|∂� = ϕ. Let

ϕ0(u) = ϕ̂(u) − ϕ̂(−u)

2
.

Thenϕ0 ∈ C(�, H) is odd. If 0 /∈ ϕ0(∂�), then fromTheorem 3.1.44 and Propo-
sition 3.1.41, we have that ϕ0(�) is a neighborhood of 0, which is a contradiction to
the fact that ϕ0(�) ⊆ H . �

Corollary 3.1.46 If � ⊆ R
N is bounded, open, symmetric with 0 ∈ �, ϕ ∈

C(∂�,RN ) and ϕ(∂�) is contained in a hyperplane H of RN , then there exists
a û ∈ ∂� such that ϕ(û) = ϕ(−û).

Proof Let ψ(u) = ϕ(u)−ϕ(−u)

2 for all u ∈ �. Then ψ is odd and so we can apply The-
orem 3.1.45 and obtain û ∈ ∂� such that ψ(û) = 0. It follows that ϕ(û) = ϕ(−û).
�

Theorem3.1.45permits us to distinguishbetween the spheres offinite-dimensional
Banach spaces. This is a consequence of Theorem 3.1.45, since every continuous odd
map from ∂B N

1 = {u ∈ R
N : ||u|| = 1} into ∂Bm

1 = {u ∈ R
m : ||u|| = 1} (m < N )

must vanish somewhere.

Corollary 3.1.47 If N > m, then there is no continuous odd map from ∂B N
1 into

∂Bm
1 .

The next result, also a consequence of Theorem3.1.44, is known as the “invariance
of domain theorem”. Recall that a map ϕ : RN → R

N is locally one-to-one if for
every x ∈ R

N , there exists a neighborhood U (x) such that ϕ|U (x) is one-to-one.

Theorem 3.1.48 If � ⊆ R
N is open and ϕ : � → R

N is continuous and locally
one-to-one, then ϕ is an open map.

Proof Let z0 ∈ �. By replacing � by � − z0 and ϕ by ϕ̂(z) = ϕ(z + z0) − ϕ(z0)
for all z ∈ �\{z0} if necessary, we may assume that z0 = 0 and ϕ(0) = 0.
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Since ϕ is locally one-to-one, we can find r > 0 such that ϕ|B̄r
is one-to-one. We

consider the homotopy

h(t, u) = ϕ

(
u

1 + t

)
− ϕ

(
− tu

1 + t

)
for all t ∈ [0, 1], all u ∈ B̄r .

Clearly, h is continuous and h(0, ·) = ϕ, h(1, u) = ϕ( 12u) − ϕ(− 1
2u). Hence

h(1, ·) is odd. If h(t, u) = 0 for some t ∈ [0, 1] and some u ∈ ∂Br , then

u

1 + t
= − tu

1 + t
(since ϕ|B̄r

is one-to-one)

⇒ u = 0, a contradiction.

Then by virtue of the homotopy invariance property of the degree (see Theorem
3.1.25(c)), we have

d(ϕ, Br , ξ) = d(h(1, ·), Br , 0) �= 0 (see Theorem 3.1.44)

for every ξ ∈ Bs , for some x > 0 and so Bs ⊆ ϕ(Br ). �

Remark 3.1.49 In fact, one can show that if � ⊆ R
N is bounded open and ϕ ∈

C(�,RN ) is one-to-one (injective), then for ξ ∈ ϕ(�) we have d(ϕ,�, ξ) = ±1
(see Lloyd [283, p. 51]).

We conclude this section with two nice results. The first essentially says that you
cannot comb a coconut.

Proposition 3.1.50 If � ⊆ R
N is bounded open with 0 ∈ �, N is odd, and ϕ ∈

C(∂�,RN \{0}), then there exist u ∈ ∂� and λ �= 0 such that ϕ(u) = λu.

Proof Thanks to the Tietze extension theorem, without any loss of generality we
may assume that ϕ ∈ C(�,RN ). From Corollary 3.1.21 and since N is odd, we have

d(−i,�, 0) = −1 (recall i is the identity map).

If d(ϕ,�, 0) �= −1, then the homotopy

h(t, u) = (1 − t)ϕ(u) − tu for all t ∈ [0, 1], all u ∈ �

must have a zero (t̂, û) ∈ (0, 1) × ∂�. Then ϕ(û) = t û
1−t and so the result follows

with λ = t
1−t > 0.

If d(ϕ,�, 0) = −1, then we apply same argument to the homotopy

h(t, u) = (1 − t)ϕ(u) + tu for all t ∈ [0, 1], all u ∈ �.

The proof is now complete. �
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The second result is known in the literature as the Ljusternik–Schnirelmann–
Borsuk theorem.

Proposition 3.1.51 If � ⊆ R
N is bounded open and symmetric with 0 ∈ � and

{Ck}m
k=1 is a closed covering of ∂� such that Ck ∩ (−Ck) = ∅ for all k ∈ {1, . . . , m},

then m � N + 1.

Proof Arguing by contradiction, suppose that m � N . Letϕk |Ck = 1ϕk |−Ck = 1 for
k ∈ {1, . . . , m − 1} andϕk |� = 1 for k ∈ {m, . . . , N }. For k ∈ {1, . . . , n}, extendϕk

continuously to � and then set ϕ = (ϕk)
N
k=1 a continuous map from � into RN . We

claim that
ϕ(−u) �= λϕ(u) for all u ∈ ∂�, all λ � 0.

If this is not true, then we can find u0 ∈ ∂� and λ0 > 0 such that ϕ(−u0) =
λ0ϕ(u0) (note that 0 /∈ ϕ(∂�)). Also u0 /∈ Ck ∪ (−Ck) for all k ∈ {1, . . . , m − 1}
since ϕk(−x) = −ϕk(x). So, u0 ∈ Cm . Then u0 /∈ −Cm and so −u0 ∈ Ck for some
k ∈ {1, . . . , m − 1}, hence u0 ∈ −Ck , a contradiction. Therefore ϕ(−u) �= λϕ(u)

for all u ∈ ∂� and all λ � 0. Consider the homotopy

h(t, u) = ϕ(u) − tϕ(−u) for all (t, u) ∈ [0, 1] × �.

By the homotopy invariance property and Theorem 3.1.44 we have

d(ϕ,�, 0) = d(ϕ0,�, 0) �= 0 where ϕ0(u) = ϕ(u) − ϕ(−u) odd.

So, we can find u ∈ � such that ϕ(u) = 0, a contradiction. �

3.2 The Leray–Schauder Degree

In most applications where we want to use degree theoretic techniques, the ambient
space is infinite-dimensional. So, we need to extend Brouwer’s degree to continu-
ous functions defined on an infinite-dimensional Banach space. The next example
illustrates that this is not possible.

Example 3.2.1 We consider the Hilbert space l2 and let B1 be the closed unit ball of
l2. We define ϕ : l2 → l2 by

ϕ(u) =
(√

1 − ||u||2, u1, u2, . . . , un, . . .
)
for all u = (uk)k�1 ⊆ l2.

Evidently, ϕ is continuous and ϕ(B1) ⊆ B1. If Brouwer’s degree admitted an
infinite-dimensional extension, then ϕ would have had a fixed point. So, suppose

ϕ(û) = û for some û = (ûk)k�1 ∈ l2.
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Then for n � 1, ûn+1 = ûn and û1 = √1 − ||u||2. Note that 1 = ||ϕ(û)|| = ||û||
hence û1 = 0 and so ûn = 0 for all n � 1. Therefore û = 0, a contradiction to the
fact that ||û|| = 1.

However, we can have a degree function exhibiting all the main properties listed
in Theorem 3.1.25 if we limit ourselves to maps of the form.

ϕ = i − f,

with i the identity map and f a compact map (see Definition 2.1.1(a)). This family
of maps is a reasonable candidate for the extension of Brouwer’s theory, due to the
possibility of approximating the compact map f by finite rank maps (see Theorem
2.1.7).

The Leray–Schauder degree will be defined on triples (ϕ,�, ξ), where

ϕ = i − f with f : � → X compact,

� ⊆ X bounded open and ξ ∈ X such that ξ /∈ ϕ(∂�).

Note that since X is an infinite-dimensional Banach space, � is never compact.
So, if we set r = d(ξ,ϕ(∂�)), then it is not immediately clear that r > 0. Indeed,
suppose that r = 0. Thenwe can find {un}n�1 ⊆ ∂� such thatϕ(un) → ξ in X . Since
f is compact, we have that { f (un)}n�1 ⊆ X is relatively compact (see Definition
2.1.1(a)). So, by the Eberlein–Smulian theorem and by passing to a subsequence if
necessary, we may assume that

f (un) → y in X.

We have y ∈ f (�) and

un = f (un) + ϕ(un) → y + ξ in X as n → ∞. (3.21)

Since {un}n�1 ⊆ ∂� and the latter is closed, we have y + ξ ∈ ∂�. The continuity
of f implies

y = lim
n→∞ f (un) = f (y + ξ) (see (3.21))

⇒ ϕ(y + ξ) = ξ, hence ξ ∈ ϕ(∂�), a contradiction.

Now let ε ∈ (0, r). By virtue of Theorem 2.1.7, we can find a finite rank map
fε : � → X such that

|| f (x) − fε(x)|| < ε for all x ∈ �.

Let Xε = span { fε(�), ξ}, �ε = � ∩ Xε and ϕε(u) = u − fε(u) for all u ∈ �.
Then �ε ⊆ Xε is bounded, open and ∂Xε

�ε ⊆ ∂�. Evidently ϕε(�ε) ⊆ Xε and for
u ∈ ∂� we have
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||u − fε(u) − ξ|| � ||u − f (u) − ξ|| − || f (u) − fε(u)|| > r − ε > 0.

Therefore d(ϕε,�ε, ξ) is well-defined (if �ε = ∅, then d(ϕε,�ε, ξ) = 0).

Lemma 3.2.2 For ε ∈ (0, r), d(ϕε,�ε, ξ) is independent of ε.

Proof Let ε, δ ∈ (0, r). Let X̂ = span{Xε, Xδ} and set �̂ = � ∩ X̂ . Proposition
3.1.43 implies

d(ϕε,�ε, ξ) = d(ϕε, �̂, ξ) and d(ϕδ,�δ, ξ) = d(ϕδ, �̂, ξ). (3.22)

We consider the homotopy

h(t, u) = tϕε(u) + (1 − t)ϕδ(u) for all (t, u) ∈ [0, 1] × �̂.

We have

||h(t, u) − ϕ(u)|| � t ||ϕε(u) − ϕ(u)|| + (1 − t)||ϕδ(u) − ϕ(u)||
< tε + (1 − t)δ < r. (3.23)

So, for u ∈ ∂�̂ we have

||h(t, u) − ξ|| � ||ϕ(u) − ξ|| − ||h(t, u) − ϕ(u)|| > r − r = 0 (see (3.23)).

By the homotopy invariance property of Brouwer’s degree, we have

d(ϕε,�ε, ξ) = d(ϕδ,�δ, ξ). (3.24)

Then the result follows from (3.22) and (3.24). �

For any finite-dimensional subspace Y of X such that Xε ⊆ Y (0 < ε < r), we
let �Y = � ∩ Y and from Proposition 3.1.43, we have

d(ϕε,�Y , ξ) = d(ϕε,�, ξ).

So, we are led to the following definition.

Definition 3.2.3 Let� ⊆ X be boundedopen,ϕ = i − f with f : � → X compact
and ξ /∈ ϕ(∂�). Let f̂ : � → X be a finite rank map such that

|| f (u) − f̂ (u)|| < d(u,ϕ(∂�)) for all u ∈ �.

Choose Y a finite-dimensional subspace of X containing f̂ (�) and ξ. We set �Y =
� ∩ Y and then define the Leray–Schauder degree of (ϕ,�, ξ) to be
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dL S(ϕ,�, ξ) = d(ϕ̂,�Y , ξ),

where ϕ̂ = i − f̂ .

Remark 3.2.4 A careful reading of the above definition reveals that� ⊆ X need not
be bounded. It is enough to assume that for every finite-dimensional subspace Y of
X , � ∩ Y is bounded. Such sets are usually called “finitely bounded”.

Then the properties of the Leray–Schauder degree can be derived from the above
definition and the corresponding properties of the Brouwer degree.

In what follows, X is a Banach space, � ⊆ X is bounded open, ϕ = i − f with
i being the identity map on X and f : � → X is a compact map and ξ /∈ ϕ(∂�).

Proposition 3.2.5 (a) dL S(i,�, ξ) = 1 for all ξ ∈ �. (b) dL S(i,�, ξ) = 0 for all
ξ /∈ �.

Proof (a) Let fε(u) = 0 for all u ∈ �, Xε = span {ξ} and �ε = � ∩ Xε. Then
according to Definition 3.2.3, we have

dL S(i,�, ξ) = d(i,�ε, ξ). (3.25)

Since ξ ∈ �, we have ξ ∈ �ε and then Corollary 3.1.21 implies that

dL S(i,�ε, ξ) = 1

⇒ dL S(i,�, ξ) = 1 (see (3.25)).

(b) Similarly if ξ /∈ �, using Remark 3.1.20. �

Proposition 3.2.6 If dL S(ϕ,�, ξ) �= 0, then there exists a û ∈ � such thatϕ(û) = ξ.

Proof For every n > 1
d(ξ,ϕ(∂�))

> 0, we can find a finite rank map fn : � → X such
that

|| fn(x) − f (x)|| <
1

n
for all x ∈ �.

Let Xn = span {ϕn(�), ξ}. Then dim Xn < ∞ and �n = � ∩ Xn , and from Def-
inition 3.2.3 we have

0 �= dL S(ϕ,�, ξ) = d(i − fn,�n, ξ) for every n.

Theorem 3.1.25(a) implies that for every n we can find un ∈ �n such that

un − fn(un) = ξ. (3.26)

Since un ∈ � and f : � → X is compact, by passing to a subsequence if neces-
sary we may assume that f (un) → y in X as n → ∞. Then from (3.26), we have
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un = ξ + fn(un) → ξ + y in X as n → ∞
⇒ ϕ(un) → ϕ(ξ + y) = ξ (see (3.26)).

Since ξ /∈ ϕ(∂�), we have ξ + y ∈ �. So, the equation ϕ(u) = ξ, has a solution
û = ξ + y. �

To state the homotopy invariance property of the Leray–Schauder degree, we need
to introduce the family of admissible homotopies.

Definition 3.2.7 Let D ⊆ X and suppose that h : [0, 1] → K (D, X) = { family of
compact maps from D into X} (see Definition 2.1.1(a)). We say that h is a “homo-
topy of compact maps on D” if given ε > 0 and B ⊆ D bounded, we can find
δ = δ(ε, B) > 0 such that

||h(t)(u) − h(s)(u)|| < ε for all u ∈ B and all |t − s| < δ.

Proposition 3.2.8 If {h(t)}t∈[0,1] is a homotopy of compact maps on �, ϕt =
i − h(t) for all t ∈ [0, 1] and ξ /∈ ϕt (∂�) for all t ∈ [0, 1], then dL S(ϕt ,�, ξ) is
independent of t ∈ [0, 1].
Proof We claim that there exists an r > 0 such that

||ϕt(u) − ξ|| � r for all u ∈ ∂� and all t ∈ [0, 1]. (3.27)

Arguing by contradiction, suppose that (3.27) is not true. Then we can find
{un}n�1 ⊆ ∂� and {tn}n�1 ⊆ [0, 1] such that

||ϕtn (un) − ξ|| <
1

n
for all n � 1. (3.28)

Wemay assume that tn → t ∈ [0, 1]. Also, since h(t) ∈ K (�, X), wemay assume
that

h(t)(un) → y in X as n → ∞. (3.29)

From Definition 3.2.7, we have

||h(t)(un) − h(tn)(un)|| → 0 as n → ∞. (3.30)

Then

||h(tn)(un) − y|| � ||h(tn)(un) − h(t)(un)|| + ||h(t)(un) − y|| → 0

as n → ∞ (see (3.29) and (3.30))

⇒ htn (un) → y as n → ∞ (3.31)

⇒ un = ϕtn (un) − ξ + h(tn)(un) + ξ → y + ξ (see (3.28)).
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Since {un}n�1 ⊆ ∂�, we have that y + ξ ∈ ∂� and

ϕt (y + ξ) = y + ξ − lim
n→∞ h(tn)(un) = ξ (see (3.31))

⇒ ξ ∈ ϕt (∂�), a contradiction.

This proves (3.27).
On [0, 1] we introduce the relation

t ∼ s if and only if dL S(ϕt ,�, ξ) = dL S(ϕs,�, ξ).

Evidently, ∼ is an equivalence relation on [0, 1]. We show that the equivalence
classes are open sets in [0, 1]. To this end, let τ ∈ [0, 1] and ε ∈ (0, r

4 ) (see (3.27)).
We can find hε(τ ) ∈ K f (�, X) such that

||hε(τ )(u) − h(τ )(u)|| <
r

4
for all u ∈ �. (3.32)

We can find δ > 0 such that

|t − τ | < δ ⇒ ||h(t)(u) − h(τ )(u)|| <
r

4
for all u ∈ � (3.33)

(see Definition 3.2.7).

From (3.32) and (3.33) it follows that

||h(t)(u) − hε(τ )(u)|| <
r

2
for |t − τ | < δ, all u ∈ �

⇒ dL S(ϕt ,�, ξ) = d(i − hε(τ ),� ∩ V, ξ) = d(ϕτ ,�, ξ),

where V is a finite-dimensional subspace of X such that hε(τ )(�) ⊆ V (see Defini-
tion 3.2.3). Therefore t ∼ τ if |t − τ | < δ and so the equivalence classes are open
sets. This means that there is only one equivalence class, the whole interval [0, 1],
and so

dL S(ϕt ,�, ξ) is independent of t ∈ [0, 1].

The proof is now complete. �

Proposition 3.2.9 If ϕ = i − f, ψ = i − g with i the identity map on X and f, g ∈
K (�, X) such that

f |∂� = g|∂� and ξ /∈ ϕ(∂�),

then dL S(ϕ,�, ξ) = dL S(ψ,�, ξ).

Proof Let h(t, u) = (1 − t) f (u) + tg(u) for all (t, u) ∈ [0, 1] × �. Evidently,
{h(t, ·)}t∈[0,1] is a homotopy of compact maps on � and ξ /∈ (i − h(t, ·))(∂�) for all
t ∈ [0, 1]. So, Proposition 3.2.8 implies that
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dL S(ϕ,�, ξ) = dL S(ψ,�, ξ).

The proof is now complete. �

Proposition 3.2.10 If ϕ = i − f with i the identity map on X, f ∈ K (�, X), ξ /∈
ϕ(∂�) and η ∈ X, then dL S(ϕ,�, ξ) = dL S(ϕ − η,�, ξ − η).

Proof Note that ϕ − η = i − ( f + η) and f + η ∈ K (�, X). Let g ∈ K f (�, X)

such that if ψ = i − g then

dL S(ϕ,�, ξ) = d(ψ,� ∩ V, ξ), (3.34)

where V ⊆ X is a finite-dimensional linear subspace such that g(�) ⊆ V (see Def-
inition 3.2.3). Let g1 = g + η ∈ K f (�, X). Then

||g1(u) − ( f + η)(u)|| < r = d(ξ − η, (i − ( f + η))(∂�))

⇒ dL S(ϕ − η,�, ξ − η) = d(ψ − η,� ∩ V, ξ − η) = d(ψ,� ∩ V, ξ)

(see Proposition 3.1.12 )

= dL S(ϕ,�, ξ) (see (3.34)).

The proof is now complete. �

Proposition 3.2.11 If ϕ = i − f, ψ = i − g with i the identity map on X, f, g ∈
K (�, X), ξ /∈ ϕ(∂�), and ||ϕ(u) − ψ(u)|| < d(ξ,ϕ(∂�)) = r for all u ∈ �, then
ξ /∈ ψ(∂�) and dL S(ϕ,�, ξ) = dL S(ψ,�, ξ).

Proof Let h(t, u) = (1 − t) f (u) + tg(u) for all (t, u) ∈ [0, 1] × �. Evidently,
{h(t, ·)}t∈[0,1] is a homotopy of compact transformations (see Definition 3.2.7). Let
σt (u) = u − h(t, u) for all (t, u) ∈ [0, 1] × �. For every u ∈ ∂� we have

||ξ − σt (u)|| � ||ξ − ϕ(u)|| − t ||ϕ(u) − ψ(u)|| >

||ξ − ϕ(u)|| − tr � r − tr = (1 − t)r

⇒ ξ /∈ σt (∂�) for all t ∈ [0, 1]
⇒ dL S(ϕ,�, ξ) = dL S(ψ,�, ξ) (see Proposition 3.2.8).

The proof is now complete. �

Proposition 3.2.12 If ϕ = i − f with i the identity map on X and f ∈ K (�, X),
then dL S(ϕ,�, ·) is constant on every connected component of X\ϕ(∂�).

Proof Let UX be a connected component of X\ϕ(∂�) and consider the map γ :
u → ϕ(∂�). It suffices to show that γ is continuous on U .

Let ξ ∈ U and let r = d(ξ,ϕ(∂�) > 0). For η ∈ U , let ϕη : � → X be defined
by

ϕη(u) = ϕ(u) − (η − ξ) for all u ∈ �.
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Proposition 3.2.10 implies that

dL S(ϕ,�, η) = dL S(ϕ − (η − ξ),�, η − (η − ξ)) = d(ϕη,�, ξ). (3.35)

If ||ξ − η|| < r , then ||ϕ(u) − ϕη(u)|| < r . Hence Proposition 3.2.11 implies that

dL S(ϕη,�, ξ) = dL S(ϕ,�, ξ)

⇒ dL S(ϕ,�, η) = dL S(ϕ,�, ξ) (see (3.35)),

which completes the proof. �

Proposition 3.2.13 If �1,�2 ⊆ X are bounded, open, � ∩ �2 = ∅, ϕ = i − f
with i the identity map on X, f ∈ K (�1 ∪ �2, X) and ξ /∈ ϕ(∂�1 ∪ ∂�2), then
dL S(ϕ,�1 ∪ �2, ξ) = dL S(ϕ,�1, ξ) + dL S(ϕ,�2, ξ).

Proof Let g ∈ K f (�1 ∪ �2, X) such that

||g(u) − f (u)|| < d(ξ,ϕ(∂�1 ∪ ∂�2)) for all u ∈ �.

Then for ψ = i − g, we have

dL S(ϕ,�1 ∪ �2, ξ) = d(ψ, (�1 ∪ �2) ∩ V, ξ)

with V ⊆ X a finite-dimensional subspace of X such that g(�1 ∪ �2) ⊆ V (see
Definition 3.2.7). But from Theorem 3.1.25(b), we have

d(ψ, (�1 ∪ �2) ∩ V, ξ) = d(ψ,�1 ∩ V, ξ) + d(ψ,�2 ∩ V, ξ)

⇒ dL S(ϕ,�1 ∪ �, ξ) = dL S(ϕ,�1, ξ) + dL S(ϕ,�2, ξ).

The proof is now complete. �

In a similar fashion, we prove the excision property for the Leray–Schauder
degree.

Proposition 3.2.14 If C ⊆ X is compact, ϕ = i − f with i the identity map on X
and f ∈ K (�, X) and ξ /∈ ϕ(C), then dL S(ϕ,�, ξ) = dL S(ϕ,�\C, ξ).

So, we can state the following theorem summarizing the main properties of the
Leray–Schauder degree.

Theorem 3.2.15 If τL S = {(ϕ,�, ξ) : � ⊆ X bounded open, ϕ = i − f with i the
identity map on X and f ∈ K (�, X) and ξ /∈ ϕ(∂�)}, then there exists a map dL S :
τL S → Z, known as the Leray–Schauder degree, such that the following properties
hold:

(a) Normalization: dL S(i,�, ξ) = 1 provided ξ ∈ �.
(b) Domain Additivity: dL S(ϕ,�, ξ) = dL S(ϕ,�1, ξ) + dL S(ϕ,�2, ξ) with �1,�2

disjoint open subsets of � and ξ ∈ ϕ(�\(�1 ∪ �2)).
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(c) Homotopy Invariance: dL S(i − h(t, ·),�, ξ(t)) is independent of t ∈ [0, 1]when
{h(t, ·)}t∈[0,1] is a homotopy of compact maps, 0 /∈ (i − h(t, ·))(∂�), and ξ ∈
C([0, 1], X).

(d) Solution Property: dL S(ϕ,�, ξ) �= 0 implies ϕ−1(ξ) �= ∅.
(e) Continuity in (ϕ, ξ): d(ϕ,�, ξ) = d(ψ,�, ξ) for all ϕ = i − f,ψ = i − g with

i the identity map on X, f, g ∈ K (�, X) with

|| f (u) − g(u)|| < d(ξ,ϕ(∂�)) and ξ /∈ ψ(∂�);

also dL S(ϕ,�, ·) is constant in every connected component of X\ϕ(∂�).
(f) Dependence on Boundary Values: dL S(ϕ,�, ξ) = dL S(ψ,�, ξ) where ϕ,ψ ∈

τL S with ϕ = i − f , ψ = i − g and ϕ|∂� = ψ|∂�.
(g) Excision Property: dL S(ϕ,�, ξ) = dL S(ϕ,�1, ξ) for every open set �1 ⊆ �

such that ξ /∈ ϕ(�\�1).

Borsuk’s theorem (see Theorem 3.1.44) remains valid for the Leray–Schauder
degree.

Theorem 3.2.16 (Borsuk) If � ⊆ X is bounded, open, symmetric with 0 ∈ �, ϕ =
i − f with i the identity map on X, f ∈ K (�, X) and it is odd on ∂� and 0 /∈ ϕ(∂�)

then dL S(ϕ,�, 0) is odd.

Proof Evidently by considering the odd part of ϕ (see the beginning of the proof of

Theorem 3.1.44), we may assume that ϕ is odd on �. Then K = f (�) is symmetric
and compact. We can find a finite-dimensional subspace V of X and g ∈ C(K , V )

such that
||u − g(u)|| � r

2
for all u ∈ X with r = d(0,ϕ(∂�)).

Let g0(u) = 1
2 [g(u) − g(−u)] for all u ∈ K . Then

||u − g0(u)|| � r

2
for all u ∈ K .

If we set ϕ1 = i − g0 ◦ f , then ϕ1 is odd and

d(ϕ,�, 0) = d(ϕ1|�∩V ,� ∩ V, 0) �= 0 (see Proposition 3.1.43)

⇒ d(ϕ,�, 0) is odd.

The proof is now complete. �

Then, a straightforward modification of the proof of Theorem 3.1.48 leads to the
following infinite-dimensional version of the “invariance of domain theorem”.

Theorem 3.2.17 If � ⊆ X is open, f : � → X is compact and ϕ = i − f is locally
one-to-one, then i − f is open.
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Corollary 3.2.18 If � ⊆ X is bounded open, ϕ = i − f with i the identity map on
X and f ∈ K (�, X),ϕ is one-to-one and ξ ∈ ϕ(�), then dL S(ϕ,�, ξ) = ±1.

Now let us see some topological applications of the Leray–Schauder degree. In
Proposition 3.1.32 we saw that in a finite-dimensional space the boundary of the
unit ball is not a retract of the unit ball. We also mentioned (see Remark 3.1.33) that
in contrast in an infinite-dimensional Banach space X , ∂B1 = {x ∈ X : ||x || = 1}
is always a retract of B1 = {x ∈ X : ||x || < 1}. However, if we limit ourselves to
compact perturbations of the identity, this is no longer true.

Proposition 3.2.19 There is no ϕ ∈ C(B1, ∂B1) of the form ϕ = i − f with i the
identity map of X and f ∈ K (B1, X) such that ϕ|∂B1 = i |∂B1 .

Proof If such a ϕ exists, then d(ϕ, B1, 0) = 1 (see Theorem 3.2.15(a) and (f)). Then
by the solution property (see Theorem 3.2.15(d)), we can find û ∈ B1 such that
ϕ(û) = 0. But by hypothesis ϕ has values in ∂B1, a contradiction. �

Brouwer’s fixed point theorem (see Theorem 3.1.34 and Remark 3.1.35) has an
infinite-dimensional analogue, known as “Schauder’s fixed point theorem”.

Theorem 3.2.20 (Schauder) If X is Banach space, C ⊆ X is nonempty bounded,
closed, convex and f : C → C is compact, then there exists a û ∈ C such that f (û) =
û.

Proof Since C is bounded, we can find a large ρ > 0 such that C ⊆ Bρ = {u ∈
X : ||u|| < ρ}. By virtue of Proposition 2.1.10, we can find a compact extension
f̂ : Bρ → C ⊆ Bρ of f (that is, f̂ |C = f ). From Proposition 2.1.9, we know that Bρ

is a retract of X . Let r : X → Bρ be a corresponding retraction and define h(t, u) =
t f̂ (r(u)) for all (t, u) ∈ [0, 1] × X . Then {h(t, ·)}t∈[0,1] is a homotopy of compact
maps. We may assume that f̂ (u) �= u for all u ∈ ∂Bρ, or otherwise there is nothing
more to prove. It follows that h(t, u) �= u for all (t, u) ∈ [0, 1] × ∂Bρ. Then the
homotopy invariance property of theLeray–Schauder degree (seeTheorem3.2.15(c))
implies that d(i − f̂ , Bρ, 0) = 1 and so we can find û ∈ Bρ such that

û = f̂ (û) ∈ C.

The proof is now complete. �

Remark 3.2.21 A careful reading of the above proof reveals that the above fixed
point theorem remains valid if C is only homeomorphic to a bounded, closed and
convex subset of X . We can give a proof of the theorem which avoids the use of
degree theory and instead uses Theorem 2.1.7 (the approximation of f by finite
rank maps). So, for every n � 1, we can find a finite rank map fn : C → C such
that || fn(u) − f (u)|| < 1

n for all u ∈ C (see Theorem 2.1.7). By the Brouwer fixed
point theorem (see Theorem 3.1.34 and Remark 3.1.35), we can find un ∈ C such
that fn(un) = un . Due to compactness, we may assume that fn(un) → û in X . Then
|| fn(ûn) − f (un)|| = ||un − f (un)|| � 1

n for all n � 1 and so f (û) = û.
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The next result, known as the “Schaefer fixed point theorem” (or sometimes as
the Leray–Schauder alternative theorem), is useful in establishing the existence of
solutions for nonlinear boundary value problems. Roughly speaking, it says that a
priori estimates lead to the existence of solutions.

Proposition 3.2.22 If f : X → X is compact and

D f = {u ∈ X : there exists a t ∈ (0, 1) such that u = t f (u)},

then the following alternative holds:

(a) D f is unbounded
or

(b) f has a fixed point.

Proof If D f is bounded, then D f ⊆ Bρ for ρ > 0 large. Then t f |Br
: Br → X t ∈

(0, 1) is a compact map with no fixed points on ∂Bρ. The homotopy invariance
property of the Leray–Schauder degree (see Proposition 3.1.15(c)) implies

dL S(i − f, Bρ, 0) = 1.

So, f must have a fixed point (see Theorem 3.2.15(d)). �

We present two more fixed point results involving compact maps.

Proposition 3.2.23 If � ⊆ X is bounded, open convex, f : � → X is compact and

f (∂�) ⊆ �,

then f has a fixed point.

Proof If f has a fixed point on ∂�, then there is nothing to prove. So, we assume
that 0 /∈ (i − f )(∂�) with i being the identity map on X . Fix u0 ∈ � and let

h(t, u) = t f (u) + (1 − t)u0 for all (t, u) ∈ [0, 1] × �.

We claim that h(t, u) �= u for all t ∈ [0, 1] and all u ∈ ∂�. Indeed, if we can find
t ∈ [0, 1] and u ∈ ∂� such that h(t, u) = u, then

t f (u) = tu0 + (u − u0)

⇒ t �= 0, t �= 1.

Then we have

f (u) = u0 + 1

t
(u − u0) /∈ � since

1

t
> 1,



3.2 The Leray–Schauder Degree 199

a contradiction to the hypothesis that f (∂�) ⊆ �. Since {h(t, ·)}t∈[0,1] is a homotopy
of compact maps, from the homotopy invariance property of the Leray–Schauder
degree (see Proposition 3.1.15(c)), we have

dL S(i − f,�, 0) = dL S(i + u0,�, 0) = dL S(i,�, u0) = 1.

So, there exists a û ∈ � such that û = f (û). �

When X = H = a Hilbert space, we have the following variant of the above fixed
point theorem.

Proposition 3.2.24 If H is a Hilbert space, � ⊆ H is bounded open with 0 /∈ ∂�,
f : � → H is compact and ( f (u), u)H � ||u||2 for all u ∈ ∂� (by (·, ·)H we denote
the inner product of H), then f has a fixed point.

Proof Arguing by contradiction, suppose that f has no fixed point on �. Then

dL S(i − f,�, 0) = 0

with i being the identity map on H . Hence, we can find t0 ∈ (0, 1] and u0 ∈ ∂� such
that u0 = t0 f (u0). Then ||u0||2 = t0( f (u0), u0)H � t0||u0||2, a contradiction. �

Remark 3.2.25 The hypothesis in the above fixed point result implies that u and
u − f (u) make an acute angle. For this reason, the result is sometimes called the
“acute angle fixed point principle”.

Extending this result to Banach spaces, we have:

Proposition 3.2.26 If X is a Banach space, � ⊆ X is bounded open convex with
0 ∈ �, f : � → X is compact and

||u − f (u)||2 � || f (u)||2 − ||u||2 for all u ∈ ∂�, (3.36)

then f has a fixed point.

Proof Let h(t, u) = t f (u) for all t ∈ [0, 1] and all u ∈ �. Then {h(t, ·)}t∈[0,1] is a
homotopy of compact maps on �. Suppose that

h(t0, u0) = u0 for some t0 ∈ [0, 1] for some u0 ∈ ∂�.

Evidently, t0 �= 0 and so f (u0) = 1
t0

u0. Then

|| f (u0) − u0||2 = (1 − t0)
2|| f (u0)||2 = (1 − t0)2

t20
||u0||2, (3.37)

|| f (u0)
2|| − ||u0||2 = ||u0||2

(
1

t20
− 1

)
= ||u0||2 1 − t20

t20
. (3.38)
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Using (3.37) and (3.38) in (3.36), we obtain

||u0||2 (1 − t0)2

t20
� ||u0||2 1 − t20

t20
⇒ (1 − t0)

2 � 1 − t20
⇒ t0 � 1, hence t0 = 1.

Therefore f (u0) = u0 and so we have a fixed point.
If h(t, u) �= u for all t ∈ [0, 1], all u ∈ ∂�, then

dL S(i − f,�, 0) = dL S(i,�, 0) = 1

⇒ f has a fixed point.

The proof is now complete. �

Remark 3.2.27 Additional fixed point theorems of a topological nature will be
proved in Sect. 4.2.

Finally, we mention a result on the degree of gradient maps, due to Amann [14],
where the interested reader can find its proof.

So, suppose H is a Hilbert space, U ⊆ H an open set, ϕ ∈ C1(U,R) and ∇ϕ =
i − f with f : U → H a compact map.

Proposition 3.2.28 If, for some β ∈ R, the set V = ϕ−1(−∞,β) is bounded, V ⊆
U and there exist numbers α < β and r > 0 and a point u0 ∈ U such that

ϕ−1 (−∞, a] ⊆ Br (x0) ⊆ V

and ∇ϕ(u) �= 0 for all u ∈ ϕ−1[α,β], then dL S(∇ϕ, V, 0) = 1.

3.3 Degree for Multifunctions

In this section, we extend the Leray–Schauder degree to multifunctions which are
upper semicontinuous and compact and have nonempty, closed and convex values.

We will consider multifunctions of the form i − F with i being the identity map
on the ambient Banach space X and F being a multifunction which belongs to the
following family:

Definition 3.3.1 Let X be a Banach space, D ⊆ X and F : D → 2X\{∅} a mul-
tifunction. We say that F(·) is “compact” if it has values in Pfc(X) = {C ⊆ X :
nonempty, closed, convex }, it is usc and maps bounded sets to relatively compact
sets.
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From Theorem 2.5.19, we know that a usc multifunction with nonempty and
convex values admits an approximate continuous selection. Since this result will
lead to the extension of the Leray–Schauder degree to multifunctions, we recall it
here.

Proposition 3.3.2 If Z is a metric space, X is a Banach space and F : Z → 2X\{∅}
is a usc multifunction with nonempty and convex values, then given ε > 0, we can
find a continuous map fε : Z → X such that

fε(z) ∈ conv F(Z) for all z ∈ Z

and for every z ∈ Z, there exist (u, y) ∈ Gr F such that

dZ (z, u) < ε and || fε(z) − y|| < ε.

Then the degree of the multiplication u → u − F(u) will be defined in terms of
these approximations. The next proposition is the crucial step in this direction.

Proposition 3.3.3 If X is a Banach space, � ⊆ X is bounded open, F : � →
Pfc(X) is a compact multifunction and ξ /∈ (i − F)(∂�) with i the identity map
on X, then there exists an ε0 > 0 such that ξ /∈ (i − fε)(∂�) for all ε ∈ (0, ε0) with
fε being the approximate continuous selection of F produced in Proposition 3.3.2.

Proof We argue by contradiction. So, suppose that the proposition is not true. Then
we can find εn → 0+ and {un}n�1 ⊆ ∂� such that ξ = un − fεn (un) for all n � 1.
From Proposition 3.3.2 we know that there exist (vn, yn) ∈ Gr F , n � 1, such that

||un − vn|| < εn and || fεn (un) − yn|| < εn for all n � 1. (3.39)

Since F is compact (seeDefinition3.3.1), bypassing to a subsequence if necessary,
we may assume that yn → y in X . Then from (3.39) we have

fεn (un) → y and vn → ξ + y ∈ ∂� in X. (3.40)

Recall that (vn, yn) ∈ Gr F for all n � 1. Proposition 2.5.8 and (3.40) imply

(ξ + y, y) ∈ Gr F

⇒ y ∈ F(ξ + y), hence ξ ∈ (i − F)(∂�), a contradiction.

This proves the proposition. �

Evidently each fε is compact. So, using this proposition, we can extend the Leray–
Schauder degree to multifunctions.

Definition 3.3.4 Let X be a Banach space, � ⊆ X a bounded open set, and F :
� → Pfc(X) a compact multifunction such that ξ /∈ (i − F)(∂�)with i the identity
map on X . Then we define
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d̂L S(i − F,�, ξ) = lim
ε→0+

dL S(i − fε,�, ξ)

with fε the single-valued compact map on � defined as in Proposition 3.3.3.

Remark 3.3.5 First of all note that Proposition3.3.2 guarantees thatdL S(i − fε,�, ξ)
is well-defined for all ε ∈ (0, ε0). Next, we show that {dL S(i − fε,�, ξ)}ε∈(0,ε0) evi-
dently stabilizes. We consider the homotopy of compact maps

hε,δ(t, u) = (1 − t) fε(u) + t fδ(u) for all (t, u) ∈ [0, 1] × �.

We claim that there exists an ε1 ∈ (0, ε0] such that ξ /∈ (i − hε,δ(t, ·))(∂�) for all
t ∈ [0, 1] and all ε, δ ∈ (0, ε1). Indeed, if this is not true, then we can find {tn}n�1 ⊆
[0, 1], εn, δn → 0+ and {un}n�1 ⊆ ∂� such that

ξ = un − (1 − tn) fεn (un) − tn fεn (un) for all n � 1. (3.41)

The compactness of F(·) implies that conv F(�) is compact in X . Since
{ fεn (un)}n�1, { fδn (un)}n�1 ⊆ conv F(�) (see Proposition 3.3.2), by passing to a
suitable subsequence if necessary, we may assume that

tn → t ∈ [0, 1] and fεn (un) → y1, fδn (un) → y2 in X. (3.42)

So, from (3.41) and (3.42), it follows that

un → ξ + (1 − t)y1 + t y2 = û ∈ ∂�.

Note that y1, y2 ∈ û − F(û) ⊆ (i − F)(∂�) and so

ξ = (1 − t)(û − y1) + t (û − y2) ∈ (1 − t)(i − F)(û) + t (i − F)(û).

Since F has convex values, we infer that ξ ∈ (i − F)(∂�), a contradiction. So,
our initial claim is true and by virtue of the homotopy invariance property of the
Leray–Schauder degree, we have

dL S(i − fε,�, ξ) = dL S(i − fδ,�, ξ) for all ε, δ ∈ (0, ε1).

This argument also shows that Definition 3.3.4 is in fact independent of the par-
ticular choice of the approximate continuous selection fε.

Using this definition, we can transfer the main properties of the Leray–Schauder
degree to multifunctions. The proofs are straightforward and so they are omitted.

Theorem 3.3.6 If τ̂L S = {(i − F,�, ξ) : � ⊆ Xis bounded open,i is the identity
map onX, F : � → Pfεc

(X)is a compact multifunction and ξ /∈ (i − F)(∂�)
}
,

then there exists a map d̂L S : τ̂L S → Z such that



3.3 Degree for Multifunctions 203

(a) Normalization: d̂L S(i,�, ξ) = 1 provided ξ ∈ �.
(b) Domain Additivity: d̂L S(i − F,�, ξ) = d̂L S(i − F,�1, ξ) + d̂L S(i − F,�2, ξ)

with �1,�2 disjoint open subsets of � and ξ /∈ (i − F)(�\(�1 ∪ �2)).
(c) Homotopy Invariance: If h : [0, 1] × � → Pfc(X) is a compact multifunction

and ξ /∈ (i − h(t, ·))(∂�) for all t ∈ [0, 1], then d̂L S(i − h(t, ·),�, ξ) is inde-
pendent of t ∈ [0, 1].

(d) Solution Property: d̂L S(i − F,�, ξ) �= 0 implies that there exists a û ∈ � such
that ξ ∈ û − F(û).

(e) Dependence on Boundary Values: If (i − F,�, ξ), (i − G,�, ξ) ∈ τ̂L S and
F |∂� = G|∂�, then d̂L S(i − F,�, ξ) = d̂L S(i − G,�, ξ).

(f) Excision Property: d̂L S(i − F,�, ξ) = d̂L S(i − F,�1, ξ) for every open set
�1 ⊆ � such that ξ /∈ (i − F)(�\�1).

We also have Borsuk’s theorem.

Proposition 3.3.7 If � ⊆ X is bounded, open, symmetric with 0 ∈ �, F : � →
Pfc(X) is a compact multifunction such that F(−u) = −F(u) for all u ∈ ∂� and

0 /∈ (1 − F)(∂�),

then d̂L S(i − F,�, 0) is odd.

Finally, we also have the reduction property.

Proposition 3.3.8 If (i − F,�, ξ) ∈ τ̂L S and F(·) has values in a closed linear
subspace V of X, ξ ∈ V , then d̂L S(i − F,�, ξ) = d̂L S(i − F,� ∩ V, ξ).

3.4 Degree for (S)+-Maps

In this section, we present a topological degree for (S)+-maps (see Definition
2.10.11(a)). So, let X be a reflexive Banach space. By X∗ we denote its topological
dual and by 〈·, ·〉 the duality brackets for the pair (X∗, X). Let � ⊆ X be bounded
open and ϕ : � → X∗ be an (S)+-map. To simplify things, without any loss of gen-
erality, we will assume that the reference point ξ = 0. Otherwise, we can replace ϕ
by ϕ − ξ, which remains an (S)+-map.

First we fix our terminology.

Definition 3.4.1 Given a map ϕ : � → X∗, we say:

(a) ϕ is demicontinuous if whenever un → u in�, thenϕ(un)
w−→ ϕ(u) in X∗ (that

is, ϕ is sequentially continuous from X with the strong topology into X∗ with
the weak topology, denoted by X∗

w).

(b) ϕ is an (S)+-map if whenever {un, u}n�1 ⊆ �, un
w−→ u in X and

lim sup
n→∞

〈ϕ(un), un − u〉 � 0,
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then un → u in X (see also Definition 2.10.11(a)).
If {ϕt }t∈[0,1] is a family of maps from � into X∗, then

(c) {ϕt }t∈[0,1] is an (S)t+-family on � if whenever {tn}n�1 ⊆ [0, 1], {un}n�1 ⊆ �,

tn → t in [0, 1], un
w−→ u in X and lim sup

n→∞
〈
ϕtn (un), un − u

〉
� 0, then un → u

in X (see Definition 2.10.21).

In what follows, we denote by F the family of finite-dimensional subspaces of
X .

Proposition 3.4.2 If U ⊆ X is open, K ⊆ U is bounded closed and ϕt : U → X∗,
t ∈ [0, 1], is a family of maps such that

(i) {ϕt }t∈[0,1] is an (S)t+-family on K ;

(ii) tn → t̂ in [0, 1], {un}n�1 ⊆ U and un → u in X imply ϕtn (un)
w−→ ϕt̂ (u) in

X∗;
(iii) ϕt (u) �= 0 for all t ∈ [0, 1] and u ∈ K ,

then there exists an F0 ∈ F such that

Z(F0, F) = {(t, u) ∈ [0, 1] × (K ∩ F) : 〈ϕt (u), u〉 � 0, 〈ϕt (u), y〉 = 0

for all y ∈ F0} = ∅

for all F ∈ F with F0 ⊆ F.

Proof We argue indirectly. So, suppose that given any F0 ∈ F we can find F1 ∈ F ,
F1 ⊇ F0, such that Z(F0, F1) �= ∅. We set

�(F0) =
⋃

F0⊆F∈F
Z(F0, F). (3.43)

Evidently �(F0) �= ∅ for every F0 ∈ F .
We consider the family {�(F)

w : F ∈ F } (here �(F)
w
denotes the weak closure

of �(F)). Let {Fk}m
k=1 ⊆ F and let F̂ =

m∑
k=1

Fk ∈ F . Then

Z(Fk, F) ⊇ Z(F̂, F) for all k ∈ {1, . . . , m}, all F ∈ F , F̂ ⊆ F. (3.44)

From (3.43) and (3.44), we have

�(F̂) ⊆ �(Fk) for all k ∈ {1, . . . , m}
⇒ �(F̂) ⊆

m⋂
k=1

�(Fk) ⊆
m⋂

k=1

�(Fk)
w
and �(F̂) �= ∅.

So, the family {�(F)
w : F ∈ F } has the finite intersection property.
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Since K is bounded and X is reflexive, it follows that �(F)
w
is w-compact in

R × X , which is reflexive. Then the finite intersection property implies that

⋂
F∈F

�(F)
w �= ∅.

Let (t0, u0) ∈ ⋂
F∈F

�(F)
w
.

Claim 3. u0 ∈ K and ϕt0(u0) = 0.
Let x ∈ X and let Fx ∈ F such that u0, x ∈ Fx .We have (t0, u0) ∈ �(Fx)

w
. Since

�(Fx) ⊆ R × X is bounded, by virtue of Proposition 2.10.8, we can find a sequence
{(tn, un)}n�1 ⊆ �(Fx ) such that

tn → t0 in [0, 1] and un
w−→ u0 in X.

Recalling that Z(Fx , F) ⊆ Z(Fx , F̂) for all F̂ ∈ F , F ⊆ F̂ , we see that we can
find a sequence {Fn

x }n�1 ⊆ F , Fx ⊆ Fn
x , such that

(tn, un) ∈ Z(Fx , Fn
x ) for all n � 1.

We have

un ∈ K ∩ Fn
x and

〈
ϕtn (un), un

〉
� 0,

〈
ϕtn (un), y

〉 = 0 (3.45)

for all y ∈ Fx and all n � 1.

Recall that u0 ∈ Fx . Then from (3.45) we have

〈ϕt (un), un − u0〉 � 0 for all n � 1. (3.46)

Since by hypothesis {ϕt }t∈[0,1] is an (S)t+-family on K , from (3.46), we obtain
un → u0 in X (see Definition 3.4.1(c)). Hence u0 ∈ K (since K is closed). From
hypothesis (ii) we have ϕtn (un)

w−→ ϕt0(u0) in X . Then

0 = 〈ϕtn (un), y
〉→ 〈

ϕt0(u0), y
〉
as n → ∞ for all y ∈ Fx

⇒ 〈
ϕt0(u0), y

〉 = 0 for all y ∈ Fx , in particular for y = x .

Because x ∈ X is arbitrary, we conclude that ϕt0(u0) = 0. This proves the claim.
Since (t0, u0) ∈ [0, 1] × K , the claim contradicts hypothesis (iii). This proves the

proposition. �
Now let ϕ : U ⊆ X → X∗, F ∈ F and let {ek}m

k=1 be an ordered basis of F . We
consider the finite-dimensional map ϕF : U ∩ F → F defined by

ϕF (u) =
m∑

k=1

〈ϕ(u), ek〉 ek for all u ∈ U ∩ F. (3.47)
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Note that ϕF : F → F , while ϕ maps X into its dual X∗. So, we cannot say that
ϕF is a finite-dimensional approximation of ϕ.

If ϕ is demicontinuous (see Definition 3.4.1(a)), then ϕF is continuous and so we
can consider the Brouwer degree of ϕF at the origin with respect to the set U ∩ F ,
provided U ∩ F is bounded and ϕF (u) �= 0 for all u ∈ ∂FU , with ∂FU being the
boundary of U ∩ F in the relative topology of F . Note that ∂FU ⊆ ∂U ∩ F with
∂U being the boundary of U in X .

From Proposition 3.4.2 we infer at once the following result.

Corollary 3.4.3 If � ⊆ X is bounded open and ϕt : � → X∗, t ∈ [0, 1], is a family
of maps which satisfy hypotheses (i), (i i), (i i i) of Proposition 3.4.2 with K = ∂�,
then there exists an F0 ∈ F such that (ϕt )F �= 0 for all (t, u) ∈ [0, 1] × (∂� ∩ F)

for any F ∈ F with F0 ⊆ F.

This corollary together with the proposition that follows pave the way for the
introduction of a degree map for demicontinuous (S+)-maps.

Proposition 3.4.4 If � ⊆ X is bounded open, ϕ : � → X∗ is a demicontinuous,
(S+)-map, ϕ(u) �= 0 for all u ∈ ∂� and F0 ∈ F is as in Proposition 3.4.2, then
d(ϕF ,� ∩ F, 0) = d(ϕF0 ,� ∩ F0, 0) for all F ∈ F , F0 ⊆ F.

Proof Let {ek}m
k=1 be an ordered basis of F0 and let {ek}m

k=1 ∪ {vk}n
k=m+1 be a

basis of F ⊇ F0. Let u∗
k ∈ X x such that u∗

k |F0 = 0 and
〈
u∗

k , vi
〉 = δki for all i ∈

{m + 1, . . . , n}. On � ∩ F we consider the following continuous maps.

ϕF (u) =
m∑

k=1

〈ϕ(u), ek〉 ek +
n∑

k=m+1

〈ϕ(u), vk〉 vk,

ψF (u) =
m∑

k=1

〈ϕ(u), ek〉 ek +
n∑

k=m+1

〈
u∗

k , u
〉
vk .

Claim 4. d(ϕF ,� ∩ F, 0) = d(ψF ,� ∩ F, 0) = d(ϕF0 ,� ∩ F0, 0).
To show the first equivalent, we consider the homotopy

hF (t, u) = tϕF (u) + (1 − t)ψF (u) for all (t, u) ∈ [0, 1] × �.

We will show that

hF (t, u) �= 0 for all (t, u) ∈ [0, 1] × (∂U ∩ F). (3.48)

If (3.48) is not true, then we can find t0 ∈ [0, 1] and u0 ∈ ∂� ∩ F such that

〈ϕ(u0), ek〉 = 0 for all k ∈ {1, . . . , m} and t0 〈ϕ(u0), vk〉 + (1 − t0)
〈
u∗

k , u0
〉

(3.49)
for all k ∈ {m + 1, . . . , n}.

It follows that 〈ϕ(u0), y〉 = 0 for all y ∈ F0.
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Suppose t0 = 1. Then 〈ϕ(u0), y〉 = 0 for all y ∈ F . Since u0 ∈ ∂� ∩ F , this
contradicts Proposition 3.4.2 with K = ∂� ∩ F , because then ∅ �= Z(F, F) ⊆
Z(F0, F) = ∅.

Therefore t0 ∈ (0, 1]. Let

u0 =
m∑

k=1

ϑkek +
n∑

k=m+1

ηkvk .

Note that ηk = 〈u∗
k , u0
〉
for all k ∈ {m + 1, . . . , n}. We have

t0
1 − t0

〈ϕ(u0), u0〉 = t0
1 − t0

〈
ϕ(u0),

n∑
k=1

ϑkek +
n∑

k=m+1

ηkvk

〉

= t0
1 − t0

n∑
k=1

ϑk 〈ϕ(u0), ek〉 + t0
1 − t0

n∑
k=m+1

ηk 〈ϕ(u0), vk〉

= −
n∑

k=m+1

〈
ux

k , u0
〉2 � 0 (see (3.49))

⇒ 〈ϕ(u0), u0〉 � 0 and 〈ϕ(u0), y〉 = 0 for all y ∈ F0

⇒ Z(F0, F) �= ∅, which contradicts Proposition 3.4.2.

This proves (3.48) and then the homotopy invariance of the Brouwer degree
implies

d(ϕF ,� ∩ F, 0) = d(ψF ,� ∩ F, 0).

Next, let pF0 : F → F0 be the projection map. We have ϕF0 = pF0 ◦ ϕF and

ψF = iF + pF0 ◦ (ϕF − iF )

with iF being the identity map on F . Proposition 3.1.43 implies

d(ψF ,� ∩ F, 0) = d(ϕF0 ,� ∩ F0, 0).

This proves the claim and so the proposition, too. �

Remark 3.4.5 Note that it does not matter how we complete the basis of F0. More-
over, if X is separable and reflexive, then the degree does not change if we change
the basis on F0. This is a consequence of the uniqueness of the degree map for demi-
continuous (S)+-maps defined on a separable reflexive Banach space, established by
Brouwer [75] and Berkovitz and Mustonen [46]. In general, it makes sense to speak
about a degree map when the space F0 is fixed together with an ordered basis on it.
This then leads to the following definition.
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Definition 3.4.6 Let� ⊆ X be boundedopen,ϕ : � → X∗ a demicontinuous (S)+-
map, 0 /∈ ϕ(∂�), ϕF : � ∩ F → F with F ∈ F be defined by (3.47) and F0 ∈ F
be as in Corollary 3.4.3. Then we define

d(S)+(ϕ,�, 0) = d(ϕF ,� ∩ F, 0) for F0 ⊆ F.

Remark 3.4.7 If u∗ /∈ ϕ(∂�), then d(S)+(ϕ,�, u∗) = d(S)+(ϕ − u∗,�, 0) since
u → ϕ(u) − u∗ is still a demicontinuous (S)+-map in �. From the above construc-
tion of d(S)+ it is clear that it suffices to assume that ϕ : � → X∗ is (S)+ on ∂�.

Next, using Definition 3.4.6, we will establish some classical properties for the
degree map d(S)+ . We will start with the homotopy invariance property. To state this
property, we need to introduce the family of admissible homotopies.

Definition 3.4.8 Let � ⊆ X be bounded open and ht : � → X∗, t ∈ [0, 1], be a
one-parameter family of maps such that

(a) ht (u) �= 0 for all t ∈ [0, 1], all u ∈ ∂�;
(b) {ht }t∈[0,1] is an (S)t+-family (see Definition 3.4.1(c));

(c) tn → t0 and un → u0 in X imply htn (un)
w−→ ht0(u0) in X∗.

Then the family {ht }t∈[0,1] is an “admissible (S)+-homotopy”.

Proposition 3.4.9 If ϕ,ψ : � → X∗ are demicontinuous (S)+-maps, 0 /∈ ϕ(∂�),

ψ(∂�) and

ht (u) = tϕ(u) + (1 − t)ψ(u) for all (t, u) ∈ [0, 1] × �,

then h is an admissible (S)+-homotopy.

Proof Evidently, we only need to show property (b) in Definition 3.4.8.
So, let tn → t0 and {un, u0}n�1 ⊆ � with un

w−→ u0 which satisfy

lim sup
n→∞

〈
htn (un), un − u0

〉
� 0. (3.50)

From Proposition 2.10.13 we know that ϕ and ψ are pseudomonotone. So, from
the proof of Proposition 2.10.6 and (3.50), we have

lim sup
n→∞

〈ϕ(un), un − u0〉 � 0 or lim sup
n→∞

〈ψ(un), un − u0〉 � 0

⇒ un → u0 in → X (since both ϕ,ψ are (S)+ − maps)

⇒ {ht }t∈[0,1] is an (S)t
+-family.

Therefore h is an admissible (S)+-homotopy. �

Now we can formulate the homotopy invariance property for d(S)+ .
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Proposition 3.4.10 If ht : � → X∗, t ∈ [0, 1] is an admissible (S)+-homotopy and

0 /∈ ht (∂�) for all t ∈ [0, 1],

then d(S)+(ht ,�, 0) is independent of t ∈ [0, 1].
Proof By virtue of Proposition 3.4.2, we can find F0 ∈ F such that

0 /∈ (ϕt )F (∂� ∩ F) for all t ∈ [0, 1] and all F ∈ F with F0 ⊆ F.

Then the homotopy invariance property of Brouwer’s degree implies that

d((ht )F ,� ∩ F, 0) is independent of t ∈ [0, 1] for any F ∈ F with F0 ⊆ F.

Then according to Definition 3.4.8, we have

d(S)+(ht ,�, 0) is independent of t ∈ [0, 1].

The proof is now complete. �

Next, we establish the solution property of the degree.

Proposition 3.4.11 If ϕ : � → X∗ is a demicontinuous (S)+-map and ϕ(u) �= 0
for all u ∈ �, then d(S)+(ϕ,�, 0) = 0.

Proof FromProposition 3.4.2, we know that there is an F0 ∈ F such that d(ϕF ,� ∩
F, 0) is well-defined for all F ∈ F with F0 ⊆ F . ThenϕF (u) �= 0 for all u ∈ � ∩ F
and so d(ϕF ,� ∩ F, 0) = 0. Definition 3.4.8 implies that d(S)+(ϕ,�, 0) = 0, which
concludes the proof. �

Corollary 3.4.12 If ϕ : � → X∗ is a demicontinuous (S)+-map, 0 /∈ ϕ(∂�) and

d(S)+(ϕ,�, 0) �= 0,

then there exists a u0 ∈ � such that ϕ(u0) = 0.

We also have the domain additivity property.

Proposition 3.4.13 If ϕ : � → X∗ is a demicontinuous (S)+-map, �1,�2 ⊆ � are
nonempty disjoint open sets and ϕ(u) �= 0 for all �\(�1 ∪ �2), then

d(S)+(ϕ,�, 0) = d(S)+(ϕ,�1, 0) + d(S)+(ϕ,�2, 0).

Proof Note that �\(�1 ∪ �2) is bounded and closed. So, by Remark 3.2.4 we can
find F0 ∈ F such that

ϕF (u) �= 0 for all u ∈ (�\(�1 ∪ �2)) ∩ F



210 3 Degree Theories

whenever F ∈ F with F0 ⊆ F . Let �F
1 = �1 ∩ F , �F

2 = �2 ∩ F . We have

(�\(�1 ∪ �2)) ∩ F = � ∩ (�1 ∪ �2)
c ∩ F =

(� ∩ F) ∩ [(�1 ∪ �2)
c ∪ Fc] =

(� ∩ F) ∩ ((�1 ∪ �2) ∩ F)c =
(� ∩ F)\(�F

1 ∪ �F
2 ).

The sets �F
1 ,�F

2 are open and � ∩ F is relatively closed. So, the additivity prop-
erty of Brouwer’s degree implies

d(ϕF ,� ∩ F, 0) = d(ϕF ,�F
1 , 0) + d(ϕF ,�F

2 , 0)

⇒ d(S)+(ϕ,�, 0) = d(S)+(ϕ,�1, 0) + d(S)+(ϕ2,�2, 0) (see Definition 3.4.8).

The proof is now complete. �

The normalization property is satisfied by the duality map, which depends on the
geometry of the Banach space X and uses the properties established so far.

Proposition 3.4.14 If J is the duality map of X generated by a norm on X which
is locally uniformly convex and its dual norm is also locally uniformly convex (see
Theorem 2.7.36) and ξ ∈ J (�), then d(S)+(J,�, ξ).

Proof Recall that J : X → X∗ is a homeomorphism (Proposition 2.7.33) and of type
(S)+ (Proposition 2.10.14). So, it suffices to show that d(S)+(J,�, 0) = 1 if 0 ∈ �.

Since J is strictly monotone, and 〈J (u), u〉 = ||u||2 for all u ∈ X , any nontriv-
ial finite-dimensional subspace F0 ⊆ X satisfies Proposition 3.4.2. Let F ∈ F , let
{vk}n

k=1 be a basis of F and let JF be defined as in (3.47). We consider the homotopy

hF
t (u) = tiF (u) + (1 − t)JF (u) for all (t, u) ∈ [0, 1] × (� ∩ F)

with iF being the identity map on F . Suppose that we can find t ∈ [0, 1] and u ∈
∂� ∩ F such that 0 = hF

t (u). Then

0 = t
n∑

k=1

〈
v∗

k , u
〉
vk + (1 − t)

n∑
k=1

〈J (u), vk〉 vk (3.51)

with v∗
k ∈ X∗ such that

〈
v∗

k , vi
〉 = δki for all k, i ∈ {1, . . . , n} (recall that for every u ∈

X we have u =
n∑

k=1

〈
v∗

k , u
〉
vk). Since {vk}n

k=1 are linearly independent, from (3.51)

we infer that

t
〈
v∗

k , u
〉 = −(1 − t) 〈J (u), vk〉 for all k ∈ {1, . . . , n}.
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Therefore we have

0 � t
n∑

k=1

〈
v∗

k , u
〉2 = −(1 − t)

n∑
k=1

〈J (u), vk〉
〈
v∗

k , u
〉

= −(1 − t)

〈
J (u),

n∑
k=1

〈
v∗

k , u
〉
vk

〉

= −(1 − t) 〈J (u), u〉
= −(1 − t)||u||2 � 0,

hence u = 0 (recall that t ∈ (0, 1]), a contradiction since u ∈ ∂�.
So, we have

hF
t (u) �= 0 for all t ∈ [0, 1] and all u ∈ ∂� ∩ F.

The homotopy invariance property of Brouwer’s degree implies that

d(JF ,� ∩ F, 0) = d(iF ,� ∩ F, 0) = 1

⇒ d(S)+(J,�, 0) = 1 (see Definition 3.4.6).

The proof is now complete. �

The next theorem summarizes the situation for demicontinuous and (S)+ maps
from a reflexive Banach space X into its dual X∗.

Theorem 3.4.15 If τ(S)+ = {(ϕ,�, ξ) : � ⊆ X bounded open, ϕ : � → X∗ is
demicontinuous and (S)+ and ξ /∈ ϕ(∂�)}, then there exists a map d(S)+ : τ(S)+ → Z

such that

(a) Normalization: d(S)+(J,�, ξ) = 1 provided ξ ∈ J (�).
(b) Domain Additivity: d(S)+(J,�, ξ) = d(S)+(J,�1, ξ) + d(S)+(J,�2, ξ) with

�1,�2 ⊆ � disjoint open and ξ /∈ ϕ(�\(�1 ∪ �2)).

(c) Homotopy Invariance: d(S)+(ht ,�, ξ) is independent of t ∈ [0, 1] when
{ht }t∈[0,1] is an (S)+-homotopy (see Definition 3.4.8).

(d) Solution Property: d(S)+(ϕ,�, ξ) �= 0 implies ϕ−1(ξ) �= ∅.

Remark 3.4.16 Of course this degree map has other properties too, such as the
dependence on boundary values (that is, d(S)+(ϕ,�, ξ) = d(S)+(ψ,�, ξ) for every
ψ : � → X∗ demicontinuous and (S)+, provided ϕ|∂� = ψ|∂�) and the excision
property (that is, d(S)+(ϕ,�, ξ) = d(S)+(ϕ,�1, ξ) for every open set �1 ⊆ � such
that ξ /∈ ϕ(�\�1)).

As a direct consequence of Definition 3.4.6 and of Theorem 3.1.44 (Borsuk’s
Theorem), we have:

Proposition 3.4.17 If � ⊆ X is bounded, open, symmetric, 0 ∈ �, ϕ : � → X∗ is
demicontinuous, (S)+ and odd and ξ /∈ ϕ(∂�), then d(S)+(ϕ,�, ξ) is odd.
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Similarly, Definition 3.4.6 and Proposition 3.2.28 lead to the following result.

Proposition 3.4.18 If X is a reflexive Banach space, U ⊆ X is open, � : U → R

is Gateaux differentiable with ϕ = �′ : U → X∗ demicontinuous, (S)+ and there
exist α,β ∈ R, α < β and u0 ∈ U such that

(i) V = {� < β} is bounded and V ⊆ U;
(ii) if u ∈ {� � α}, then tu + (1 − t)u0 ∈ V for all t ∈ [0, 1];

(iii) ϕ(u) = �′(u) �= 0 for all u ∈ {α � � � β},
then d(S)+(ϕ, V, 0) = 1.

This result has some noteworthy consequences.

Proposition 3.4.19 If X is a Banach space, � : X → R is bounded, Gâteaux dif-
ferentiable such that ϕ = �′ : X → X∗ is demicontinuous, (S)+, �(x) → +∞ as
||x || → +∞ and there exists an r0 > 0 such that ϕ(x) �= 0 for all ||x || � r0, then
there exists an r1 � r0 such that d(S)+(ϕ, Br , 0) = 1 for all r � r1.

Proof Let α = sup[�(u) : u ∈ Br0 ] and r1 = sup[||u|| : u ∈ {� � α}]. Moreover,
given r � r1 let β > sup[�(u) : u ∈ Br ]. Then the result follows from Proposition
3.4.18 with u0 = 0 and from the excision property of d(S)+ (see Remark 3.4.16). �

Proposition 3.4.20 If X is a reflexive Banach space, U ⊆ X is open and convex,
� ∈ C1(U ) such that ϕ = �′ : U → X∗ is an (S)+-map, u0 is a local minimum of
ϕ and an isolated critical point of �, then d(S)+(ϕ, Br , 0) = 1 for some r > 0.

Proof We start by showing that � is sequentially weakly lower semicontinuous
on U . We argue indirectly. So, suppose that � is not sequentially weakly lower
semicontinuous. Then we can find {un, u}n�1 ⊆ U such that

un
w−→ u in X and lim inf

n→∞ �(un) < �(u). (3.52)

We can find a subsequence {unk }k�1 of {un}n�1 such that

lim
k→∞ �(unk ) = lim inf

k→+∞ �(un). (3.53)

The mean value theorem implies that we can find tnk ∈ (0, 1) such that

�(unk ) − �(u) = 〈ϕ(u + tnk (unk − u)), unk − u
〉
for all k � 1 (3.54)

⇒ lim sup
k→∞

[tnk (�(unk ) − �(u))]
= lim sup

k→+∞

〈
ϕ(u + tnk (unk − u))u + tnk (unk − u) − u

〉
. (3.55)

From (3.52) and (3.53), we infer that

lim sup
k→∞

[tnk (�(unk ) − �(u))] � 0. (3.56)
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We have u + tnk (unk − u)
w−→ u in X (see (3.52)). So, from (3.55), (3.56) and

since by hypothesis ϕ = �′ is an (S)+-map, we have

u + tnk (unk − u) → u in X

⇒ ϕ(u + tnk (unk − u)) → ϕ(u) = 0 in X∗ (recall � ∈ C1(U )). (3.57)

Therefore from (3.54) and (3.57) we have

�(unk ) − �(u) → 0, a contradiction to (3.52).

So, indeed � is sequentially weakly lower semicontinuous.
By hypothesis, u0 is a local minimizer of � and so an isolated critical point. So,

we can find r0 > 0 such that

�(u0) < �(u) and ϕ(u) = �′(u) �= 0 for all u ∈ Br0(u0)\{u0}. (3.58)

We show that for all r ∈ (0, r0), we have

�(u0) < inf{�(u) : u ∈ Br0(u0)\Br (u0)}. (3.59)

Again we proceed by contradiction. So, suppose that (3.59) is not true. Then we
can find r > 0 and {un}n�1 ⊆ Br0(u0)\Br (u0) such that

�(un) ↓ �(u0) as n → ∞. (3.60)

Since {un}n�1 is bounded in a reflexive Banach space, by passing to a suitable

subsequence if necessary, we may assume that un
w−→ u in X . The sequential weak

lower semicontinuity of � established in the beginning of the proof implies that

�(u) � lim inf
n→∞ �(un) = �(u0)

⇒ u = u0.

By the mean value theorem we have

�(un) − �

(
un + u0

2

)
=
〈
ϕ(tnun + (1 − tn)

un + u0

2
),

un − u0

2

〉

with tn ∈ (0, 1) for all n � 1.
Passing to the limit as n → ∞ and using (3.60) and that un

w−→ u0 in X , we have
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lim sup
n→∞

〈
ϕ(tnun + (1 − tn)

un + u0

2
),

un − u0

2

〉
� 0

⇒ lim sup
n→∞

〈
ϕ(tnun + (1 − tn)

un + u0

2
), tnun + (1 − tn)

un + u0

2
− u0

〉
=

lim sup
n→∞

[
1 + tn
2

〈
ϕ(tnun + (1 − tn)

un + u0

2
), un − u0

〉]
� 0. (3.61)

Since ϕ is an (S)+-map, from (3.61) we infer that

tnun + (1 − tn)
un + u0

2
→ u0 in X. (3.62)

But note that

||tnun + (1 − tn)
un + u0

2
− u0|| = (1 + tn)

∥∥∥∥un − u0

2

∥∥∥∥ � r

2
for all n � 1,

contradicting (3.62). Therefore (3.59) holds.
Let β = inf[�(u) : u ∈ Br0(u0)\Br0/2(u0)] − �(u0). From (3.59) we have β >

0. We set
V = {u ∈ Br0/2(u0) : �(u) − �(u0) < β}.

The set V is nonempty open. Fix r ∈ (0, r0
2 ) such that Br (u0) ⊆ V and choose

0 < α < inf{�(u) : u ∈ Br0(u0)\Br (u0)} − �(u0). We have

{u ∈ Br0 (u0)\Br (u0) : �(u) − �(u0) < α} ⊆ Br (u0) ⊆ Br (u0) ⊆ V ⊆ V ⊆ Br0 (u0).

We apply Proposition 3.4.18 with U = Br0(u0), � replaced by �|Br0 (u0) − �(u0)

and α,β ∈ R as above. Then

d(S)+(ϕ, V, 0) = 1.

By the excision property (see Remark 3.4.16), we obtain

d(S)+(ϕ, Br (u0), 0) = 1,

which concludes the proof. �

3.5 Degree for Maximal Monotone Perturbation of
(S)+-Maps

Let X be a reflexive Banach space and� ⊆ X a bounded open set. In this section, we
define a degree for maps ϕ + A, where ϕ : � → X∗ is bounded, demicontinuous,
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(S)+ and A : X → 2X∗
is maximal monotone. We will assume that X is equipped

with a norm which is locally uniformly convex together with its dual (see Theorem
2.7.36).

In Sect. 2.9, in the context of Hilbert spaceswe introduced an approximation of the
identity (the resolvent) and a single-valued approximation of a maximal monotone
map (the Yosida approximation). In Remark 2.9.12 we mentioned that analogous
notions can be defined in the more general framework of a Banach space and its
dual. However, the results are not as precise and strong as in the Hilbert space case.
Nevertheless they can be used to produce a degree for maps u → ϕ(u) + A(u) as
described above. For this reason,we have brief look at these notionswhen the ambient
space is a reflexive Banach space which need not be Hilbert.

Recall that our hypotheses on X and its dual X∗ imply that the duality map
J : X → X∗ is a homeomorphism and J−1 is the duality map of X∗ (identifying X
with X∗∗). We consider the following operator inclusion

0 ∈ Jλ(y − u) + λA(y). (3.63)

Theorem 2.8.5 implies that for every fixed u ∈ X and λ > 0, problem (3.63) has
a solution (uλ, u∗

λ) ∈ Gr A and this solution is unique due to the strict monotonicity
of J (recall that X and X∗ are both locally uniformly convex). We have

u∗
λ ∈ A(uλ) and λu∗

λ ∈ J (u − uλ)

⇒ u − uλ = J−1(λu∗
λ)

⇒ u = (A−1 + λJ−1)(u∗
λ)

⇒ u∗
λ = (A−1 + λJ−1)−1(u).

We make the following definition.

Definition 3.5.1 Let A : X → 2X∗
be amaximalmonotonemap.TheYosida approx-

imation of A is defined by

Aλ = (λJ−1 + A−1)−1 for every λ > 0

and the resolvent of A is defined by

J A
λ = I − λJ−1 Aλ for every λ > 0.

Remark 3.5.2 So, according to the previous discussion, for every u ∈ X and λ >

0, Aλ(u) is the unique solution of problem (3.63). It is easy to see that for every λ >

0, Aλ : X → X∗ is maximal monotone. If X = H is a Hilbert space and H = H∗
(pivot Hilbert space), then J = i=the identity map on H . So

Aλ = 1

λ
(I − J A

λ ) and J A
λ = (I + λA)−1 for all λ > 0 (3.64)
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and we recover Definition 2.9.1. For all u ∈ X , we have the splitting

u = J A
λ (u) + λJ−1(Aλ(u)).

Also we have Aλ(u) ∈ A(J A
λ (u)). Let (y, y∗) ∈ Gr A. Then from the monotonic-

ity of A, we have

〈
y∗, J A

λ (u) − y
〉

�
〈
Aλ(u), J A

λ (u) − y
〉

= − 1

λ

〈
J (J A

λ (u) − u), J A
λ (u) − y

〉
(see (3.63))

= − 1

λ

〈
J (J A

λ (u) − u), J A
λ (u) − y

〉

− 1

λ

〈
J (J A

λ (u) − u), u − y
〉

⇒ ||J A
λ (u) − u||2 � −λ

〈
y∗, J A

λ (u) − y
〉
−
〈
J (J A

λ (u) − u), u − y
〉
. (3.65)

Choosing y = u, we have

||J A
λ (u) − u|| � λ||y∗||∗ (3.66)

⇒ ||J A
λ (u)|| � λ||y∗||∗ + ||u|| for all u ∈ D(A).

Moreover, from (3.64) we also have

||Aλ(u)||∗ � ||y∗||∗ for all u ∈ D(A). (3.67)

Now, given a maximal monotone map A : X → 2X∗
, from Proposition 2.6.5 we

know that A has closed and convex values. Because X∗ is locally uniformly convex,
we can define the single-valuedmap u → A0(u) (also known as the “minimal section
of A”), by setting

||A0(u)||∗ = min
{ ||u∗||∗ : u∗ ∈ A(u)

}
.

Proposition 3.5.3 If A : X → X∗ is a maximal monotone map, then

(a) J A
λ (u) → u in X as λ → 0+ for all u ∈ conv D(A);

(b) Aλ(u) → A0(u) as λ → 0+ for all u ∈ D(A).

Proof (a) Let {λn}n�1 be a sequence such that λn → 0+. From (3.66) we see that
{J A

λn
(u) − u}n�1 ⊆ X is bounded, hence {J (J A

λn
(u) − u)}n�1 ⊆ X∗ is bounded. The

reflexivity of X∗ implies that by passing to a subsequence if necessary, we may
assume that J (J A

λn
(u) − u)

w−→ v∗ in X∗. From (3.65) we have

lim sup
n→∞

||J A
λn

(u) − u||2 �
〈
v∗, y − u

〉
for all y ∈ D(A).
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In fact, this holds for every y ∈ conv D(A). So, taking y = u, we have

J A
λn

(u) → u in X.

(b) From (3.67) we know that

||Aλ(u)||∗ � ||u∗||∗ for all u∗ ∈ A(u)

⇒ ||Aλ(u)||∗ � ||A0(u)||∗ for all λ > 0. (3.68)

The reflexivity of X∗ implies that for a sequence λn → 0+ we have

Aλn (u)
w−→ v∗ in X∗

⇒ ||v∗||∗ � ||A0(u)||∗ (see (3.68)). (3.69)

The monotonicity of A implies

0 �
〈
y∗ − Aλn (u), y − J A

λn
(u)
〉
for all (y, y∗) ∈ Gr A and all n � 1

(recall that Aλn (u) ∈ A(J A
λn

(u)), n � 1). Passing to the limit as n → ∞ and since
J A
λn

(u) → u in X (see part (a)), we obtain

0 �
〈
y∗ − v∗, y − u

〉
for all (y, y∗) ∈ Gr A.

The maximality of A implies that v∗ ∈ A(u) and so

||A0(u)||∗ � ||v∗||∗. (3.70)

From (3.69) and (3.70) and since v∗ ∈ A(u), we have v∗ = A0(u). Therefore

Aλn (u)
w−→ A0(u) in X∗ for all u ∈ D(A).

The proof is now complete. �
Proposition 3.5.4 If A : X → 2X∗

is maximal monotone, λ → λ0 > 0 and u ∈
D(A), then J A

λ (u) → J A
λ0

(u) and Aλ(u) → Aλ0(u).

Proof Note that

(||J A
λ (u) − u|| − ||J A

λ0
(u) − u||)2 � (3.71)

〈J (J A
λ (u) − u) − J (J A

λ0
(u) − u), J A

λ (u) − J A
λ0

(u)〉. (3.72)

Also using the equation

Aλ(u) = 1

λ
J (u − J A

λ (u)) and Aλ(u) ∈ A(J A
λ (u)) for all u ∈ X and all x ∈ X,
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we obtain

〈
J (J A

λ (u) − u) − J (J A
λ0

(u) − u), J A
λ (u) − J A

λ0
(u)
〉
�

λ − λ0

λ0

〈
J (J A

λ0
(u) − u), J A

λ (u) − J A
λ0

(u)
〉
. (3.73)

Combining (3.71) and (3.73), we see that

lim
λ→λ0

||J A
λ (u) − u|| = ||J A

λ0
(u) − u||.

It follows that

lim
λ→λ0

〈
J (J A

λ0
(u) − u), J A

λ (u) − u
〉 = ||J A

λ0
(u) − u||2.

Since X and X∗ are both locally uniformly convex, from the Kadec–Klee property
we infer that

lim
λ→λ0

Aλ(u) = Aλ0(u) in X∗ and lim
λ→λ0

J A
λ (u) = J A

λ0
(u) in X for all u ∈ X.

The proof is now complete. �

Let � ⊆ X be bounded open, ϕ : � → X∗ bounded, demicontinuous, (S)+ and
A : X → 2X∗

be maximal monotone. We will define a degree for the sum ϕ + A of
such maps.

Lemma 3.5.5 If (�,ϕ, A) are as above, � ∩ D(A) �= ∅ and 0 /∈ (ϕ + A)(∂� ∩
D(A)), then there exists a λ0 > 0 such that 0 /∈ (ϕ + Aλ)(∂�) for all λ ∈ (0,λ0).

Proof We argue by contradiction. So, suppose that the lemma is not true. Then we
can find λn → 0+ and un ∈ ∂� such that ϕ(un) + Aλn (un) = 0 for all n � 1. We
may assume that

un
w−→ u in X and ϕ(un)

w−→ u∗ in X∗. (3.74)

We have

〈
ϕ(un) + Aλn (un), un − u

〉 = 0 for all n � 1. (3.75)

From the monotonicity of Aλ (see Definition 3.5.1 and Remark 3.5.2), we have

〈
Aλn (un), un − u

〉
�
〈
Aλn (u), un − u

〉
for all n � 1

⇒ lim inf
n→∞

〈
Aλn (un), un − u

〉
� 0.

So, from (3.75) we have
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lim sup
n→∞

〈ϕ(un), un − u〉 � 0

⇒ un → u in X (since ϕ is an (S)+ − map) and so u ∈ ∂�. (3.76)

Also, from the monotonicity of A and since Aλn (un) ∈ A(J A
λn

(un)) for all n � 1,
we have

〈
y∗ − Aλn (un), y − J A

λn
(un)
〉
� 0 for all n � 1. (3.77)

Note that Aλn (un)
w−→ −u∗ on X∗ (see (3.74) and recall that by hypothesis

ϕ(un) = −Aλn (un) for all n � 1). Also

J A
λn

(un) = un − λn J−1(Aλn (un)).

Since {Aλn (un)}n�1 ⊆ X∗ is bounded, so is {J−1(Aλn (un))}n�1 ⊆ X . Hence

λn J−1(Aλn (un)) → 0 in X

⇒ J A
λn

(un) → u in X (see (3.76)).

Therefore, if in (3.77) we pass to the limit as n → ∞, then

〈
y∗ + u∗, y − u

〉
� 0 for all (y, y∗) ∈ Gr A

⇒ (u,−u∗) ∈ Gr A (since A is maximal monotone).

Hence u ∈ D(A) and so u ∈ ∂� ∩ D(A) (see (3.76)) and we have

0 ∈ ϕ(u) + A(u),

a contradiction. �

This lemma implies that

0 /∈ (ϕ + Aλ)(∂� ∩ D(A)) for all λ ∈ (0,λ0).

Also note that if un → u in X and

lim sup
n→∞

〈ϕ(un) + Aλ(un), un − u〉 � 0

⇒ lim sup
n→∞

〈ϕ(un) + Aλ(u), un − u〉 � 0 (due to the monotonicity of Aλ)

⇒ lim sup 〈ϕ(un), un − u〉 � 0

⇒ un → u in X (since ϕ is an (S)+-map)

⇒ u → (ϕ + Aλ)(u) is an (S)+-map which is demicontinuous.
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Therefored(S)+(ϕ + Aλ,�, 0) iswell-defined for allλ ∈ (0,λ0).Moreover, using
Proposition 3.5.4, we see that for λ1,λ2 ∈ (0,λ0)

{ht = ϕ + Atλ1+(1−t)λ2}t∈[0,1]

is an (S)+-homotopy (see Definition 3.4.8). So, Theorem 3.4.15(c) implies that
d(S)+(ϕ + Aλ,�, 0) is independent of λ ∈ (0,λ0). Hence the following definition
makes sense.

Definition 3.5.6 Let X be a reflexive Banach space such that both X and its dual X∗
are locally uniformly convex. Let � ⊆ X be bounded open, ϕ : � → X∗ a bounded
demicontinuous (S)+-map and A : X → 2X∗

a maximal monotone map such that
� ∩ D(A) �= ∅. Suppose that 0 /∈ (ϕ + A)(∂� ∩ D(A)). Then we define

dM(ϕ + A,�, 0) = lim
λ→0+

d(S)+(ϕ + Aλ,�, 0).

An immediate consequence of this definition and of the results in Sect. 3.4 is the
following proposition.

Proposition 3.5.7 If dM(ϕ + A,�, 0) is as in Definition 3.5.6, then

(a) dM(J,�, 0) = 1 provided 0 ∈ J (�).
(b) dM(ϕ + A,�, 0) = dM(ϕ + A,�1, 0) + dM(ϕ + A1,�2, 0)with�1,�2 ⊆ �

open disjoint and 0 /∈ (ϕ + A)(�\(�1 ∪ �2)).
(c) dM(ϕt + A,�, 0) is independent of t when {ϕt }t∈[0,1] is an (S)+-homotopy with

each ϕt bounded.
(d) dM(ϕ + A,�, 0) �= 0 implies that there exists a u ∈ � ∩ D(A) such that 0 ∈

(ϕ + A)(u).

Of course, the homotopies employed in part (c) of the above proposition are not
the most general ones. We can do better and consider homotopies which also involve
A.

Definition 3.5.8 Let {At }t∈[0,1] be a family of maximal monotone maps from X into
2X∗

. We say that {At }t∈[0,1] is a “pseudomonotone homotopy” of monotone maps if
it satisfies the following mutually equivalent conditions:

(a) If tn → t in [0, 1], un
w−→ u in X , u∗

n
w−→ u∗ in X∗, (un, u∗

n) ∈ Gr Atn for all
n � 1 and

lim sup
n→∞

〈
u∗

n, un
〉
�
〈
u∗, u

〉

then (u, u∗) ∈ Gr A and
〈
u∗

n, un
〉→ 〈u∗, u〉.

(b) For every λ > 0 (equivalently for some λ > 0), then the map (t, u) → J At
λ (u)

is continuous from [0, 1] × X into X (X is equipped with the strong topology).
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(c) For every λ > 0 (equivalently for some λ > 0) and every u ∈ X , the map t →
J At
λ (u) is continuous from [0, 1] into X (X is equippedwith the strong topology).

(d) If tn → t in [0, 1] and (u, u∗) ∈ Gr At , then there exist sequences {un}n�1 ⊆ X
and {u∗

n}n�1 ⊆ X∗ such that (un.u∗
n) ∈ Gr Atn for all n � 1, un → u in X, u∗

n →
u∗ in X∗.

Remark 3.5.9 In general affine homotopies need not be pseudomonotone homo-
topies. That is, if A1, A2 : X → 2X∗

are maximal monotone maps, then At =
t A1 + (1 − t)A2, t ∈ [0, 1], need not be a pseudomonotone homotopy. However,
if one of A1 or A2 is continuous, everywhere defined, then {At }t∈[0,1] is a pseu-
domonotone homotopy.

Theorem 3.5.10 If τM = {(ϕ + A,�, 0) : � ⊆ Xbounded, open,ϕ : � → X∗

bounded, demicontinuous, (S)+, A : X → 2X∗
maximal monotone such that � ∩

D(A) �= ∅ and ξ /∈ (ϕ + A)(∂� ∩ D(A))}, then there exists a map dM : τM → Z

such that

(a) Normalization: dM(J,�, 0) = 1 provided ξ ∈ J (�).
(b) Domain Additivity: dM (ϕ + A,�, ξ) = dM(ϕ + A,�1, ξ) + dM(ϕ + A,�2, ξ)

with �1,�2 ⊆ � disjoint open and ξ ∈ (ϕ + A)(�\(�1 ∪ �2)).
(c) Homotopy Invariance: dM(ϕt + At ,�, ξ) is independent of t ∈ [0, 1] when

{ϕt }t∈[0,1] is an (S)+-homotopy with each ϕt bounded, {At }t∈[0,1] is a pseu-
domonotone homotopy of maximal monotone maps and ξ /∈ (ϕt + At )(∂� ∩
D(At )) for all t ∈ [0, 1].

(d) Solution Property: dM(ϕ + A,�, 0) �= 0 implies that there exists a u ∈ � ∩
D(A) such that 0 ∈ ϕ(u) + A(u).

Remark 3.5.11 In the homotopy invariance property, we can replace ξ ∈ X∗ by a
continuous map ξ : [0, 1] → X∗ such that ξ(t) /∈ (ϕt + At )(∂� ∩ D(At )) for all
t ∈ [0, 1]. Of course, we can have additional properties such as the excision property
and the dependence on boundary value problems.

3.6 Degree for Subdifferential Operators

In this section we construct a degree for maps of the form ∂ϕ + F , where ∂ϕ is the
subdifferential of a lower semicontinuous convex function ϕ defined on a separable
Hilbert space H into R+ = [0,+∞) and F is a multifunction on H .

So, let H be a separable pivot Hilbert space (that is, H = H∗). For the subdiffer-
ential term ∂ϕ, we employ the following class of functions.

Definition 3.6.1 Let �c(H) denote the family of lower semicontinuous and convex
functions ϕ : H → R+ = [0,+∞] which satisfy the following conditions:

(a) ϕ(0) = 0.
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(b) For every η ∈ (0,+∞), the level set

{u ∈ H : ϕ(u) + ||u||2 � η}

is compact in H .

Remark 3.6.2 Condition (a) implies that 0 ∈ ∂ϕ(0). If for λ = 0, J ∂ϕ
λ = (I +

λ∂ϕ)−1 is the resolvent map and (∂ϕ)λ = ∂ϕλ = 1
λ
(I − J ∂ϕ

λ ) is the Yosida approx-

imation map (see Definition 2.9.1 and Proposition 2.9.13), then J ∂ϕ
λ (0) = 0 and

(∂ϕ)λ(0) = ∂ϕλ(0) = 0.Hence ||J ∂ϕ
λ (u)|| � ||u|| and ||∂ϕλ(u)|| � 1

λ
||u|| (seeCorol-

lary 2.9.3 and Theorem 2.9.11).

For the family �c(H) we will consider the following two homotopies.

Definition 3.6.3 (a) Let �h,1
c (H) be the family {ϕt }t∈[0,1] such that for each t ∈

[0, 1], ϕt : H → R+ = [0,+∞] is lower semicontinuous, convex, ϕt (0) = 0 for all
t ∈ [0, 1] and
(1) for every η ∈ (0,+∞), the set

⋃
t∈[0,1]

{u ∈ H : ϕt (u) + ||u||2 � η}

is relatively compact in H ;
(2) {∂ϕt }t∈[0,1] is a pseudomonotone homotopy of maximal monotone maps (see

Definition 3.5.8).

(b) Let �h,2
c (H) be the family {ϕt }t∈[0,1] such that for each t ∈ [0, 1], ϕt : H →

R+ = [0,+∞] is lower semicontinuous, convex, ϕt (0) = 0 for all t ∈ [0, 1] and
(1) the same as in (a);
(2) if tn → t in [0, 1] and un

w−→ u in H , then

ϕt (u) � lim inf
n→∞ ϕtn (un)

and for every sequence tn → t in [0, 1] and every y ∈ domϕt , there exists a
sequence {yn}n�1 ⊆ H such that

yn
w−→ y in H and ϕtn (yn) → ϕt (y).

Evidently the two homotopies differ in the second condition. The next proposition
explains how these two conditions are related.

Proposition 3.6.4 �h,2
c (H) ⊆ �h,1

c (H).

Proof Wewill check condition (a) inDefinition 3.5.8. So, let tn → t in [0, 1], un
w−→

u in X , u∗
n

w−→ u∗ in X∗, (un, u∗
n) ∈ Gr ∂ϕtn and
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lim sup
n→∞

(u∗
n, un)H � (u∗, u)H . (3.78)

Let y ∈ domϕt . Condition (2) of �h,2
c (H) implies that we can find {yn}n�1 ⊆ H

such that

yn
w−→ y in H and ϕtn (yn) → ϕt (y). (3.79)

By virtue of the common condition (1), we have that

yn → y in H. (3.80)

Since (un, u∗
n) ∈ Gr ∂ϕtn , we have

(u∗
n, yn − un)H � ϕtn (yn) − ϕtn (un) for all n � 1

⇒ lim sup
n→∞

(u∗
n, yn − un)H � ϕt (y) − ϕt (u)

(see (3.79) and Definition 3.6.3(b)(2))

⇒ (u∗, y − u)H � ϕt (y) − ϕt (u) (see (3.78) and (3.80)).

Since y ∈ domϕt is arbitrary, it follows that (u, u∗) ∈ Gr ∂ϕt . Choosing y = u
we have yn → u in H and

0 � (u∗, u)H − lim inf
n→∞ (u∗

n, un)H � (u∗, u)H − lim sup
n→∞

(u∗
n, un)H � 0(see (3.78))

⇒ (u∗
n, un)H → (u∗, u)H .

Therefore we have Definition 3.5.8(a) and so we obtain

�h,2
c (H) ⊆ �h,1

c (H),

which concludes the proof. �

Next we look at the multivalued perturbation F . We consider two classes of such
perturbations. In what follows,

S = {ϑ : R+ = [0,+∞) → R+ : ϑ is monotone increasing} .

Definition 3.6.5 Let � ⊆ H be bounded open and ϕ ∈ �c(H).

(a) We denote by M1(ϕ,�) the family of all multivalued maps F : H → 2H which
satisfy the following conditions:

(1) F(u) ∈ Pfc(H) for all u ∈ � ∩ D(∂ϕ);
(2) Gr F is sequentially closed in H × Hw;
(3) there exist c1 ∈ (0, 1), r ∈ (0, 2) and ϑ1 ∈ S such that
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||u∗||2 � c1||v∗||2 + ϑ1(||u||)(ϕ(u)r + 1)

for all u ∈ � ∩ D(∂ϕ), all v∗ ∈ ∂ϕ(u) and all u∗ ∈ F(u).

(b) We denote by M2(ϕ,�) the family of all multivalued map F : H → 2H which
satisfy the following conditions:

(1) the same as (a)(1);
(2) the same as (a)(2);
(3) there exist c2 ∈ (0, 1) and ϑ1,ϑ2 ∈ S such that

||u∗||2 � c2||v∗||2 + ϑ2(ϕ(u)) + ϑ3(||u||)

for all u ∈ � ∩ D(∂ϕ), all v∗ ∈ ∂ϕ(u) and all u∗ ∈ F(u);
(4) there exist c3 ∈ (0, 1) and ϑ4 ∈ S such that

−(u∗, u)H � c3ϕ(u) + ϑ4(||u||)

for all u ∈ � ∩ D(∂ϕ), v∗ ∈ ∂ϕ(u) and u∗ ∈ F(u).

For these two families of multivalued maps, we introduce two classes of homo-
topies which are similar to each other.

Definition 3.6.6 Let � ⊆ H be bounded open and {ϕt }t∈[0,1] ∈ �h,1
c (H) (resp,

{ϕt }t∈[0,1] ∈ �h,2
c (H)). By M1({ϕt },�) (resp. M2({ϕt },�)) we denote the collection

of all one-parameter families {Ft }t∈[0,1] of multivalued maps in M1(ϕt ,�) (resp. in
M2(ϕt ,�)) which satisfy

(1) tn → t in [0, 1], {un}n�1 ⊆ � ∩ D(∂ϕtn ), un → u in H , u∗
n ∈ Ftn (un) n � 1 and

u∗
n

w−→ u∗ in H , then u∗ ∈ Ft (u);
(2) condition (3) in Definition 3.6.5(a) (resp. conditions (3), (4) in Definition

3.6.5(b)) hold uniformly in t (that is, the constants c1, c2, c3, r > 0 and the
functions ϑ1,ϑ2,ϑ3,ϑ4 ∈ S can be chosen independent of t ∈ [0, 1]).

Before proceeding with the construction of the degree, let us produce sufficient
conditions for a one parameter family of functions {ϕt }t∈[0,1] to belong in �h,1

c (H)

or �h,2
c (H).

Proposition 3.6.7 If {ϕt }t∈[0,1] is a family of functions in �c(H) such that for every
η ∈ (0,+∞) the set ⋃

t∈[0,1]
{u ∈ H : ϕt (u) + ||u||2 � η}

is relatively compact in H, then the following conditions are equivalent:

(a) {ϕt }t∈[0,1] ∈ �h,1
c (H).

(b) If tn → t in [0, 1] and (u, v∗) ∈ Gr ∂ϕt , then we can find (un, v
∗
n) ∈ Gr ∂ϕtn for

all n � 1 such that un → u in H, v∗
n

w−→ v∗ in H.
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(c) If tn → t in [0, 1], (un, v
∗
n) ∈ Gr ∂ϕtn n � 1, un → u in H, v∗

n
w−→ v∗ in H,

then (u, v∗) ∈ Gr ∂ϕt .
(d) For every u ∈ H and every λ > 0 (equivalently for some λ > 0) the map t →

J ∂ϕt

λ (u) is continuous from [0, 1] into H.

Proof (a) ⇒ (b): See Definition 3.5.8(d) and use the hypothesis to conclude that if
v∗

n
w−→ v∗ in H , then v∗

n → v∗ in H .
(b) ⇒ (c): Let tn → t in [0, 1], (un, v

∗
n) ∈ Gr ∂ϕtn n � 1, un → u in H and

v∗
n

w−→ v∗ in H . Let (y, y∗) ∈ Gr ∂ϕt . Since (b) holds, we can find (ûn, v̂
∗
n) ∈

Gr ∂ϕtn , n � 1, such that ûn → y in H and v̂∗
n

w−→ y∗ in H . Since ∂ϕtn , n � 1,
is monotone, we have

0 � (v∗
n − v̂∗

n , un − ûn)H for all n � 1

⇒ 0 � (v∗ − y∗, u − y)H .

Since (y, y∗) ∈ Gr ∂ϕt is arbitrary, from the last inequality we infer that (u, v∗) ∈
Gr ∂ϕt .

(c) ⇒ (d) (for all λ > 0): Let λ > 0 and suppose that tn → t in [0, 1]. We set

zn = J
∂ϕtn
λ (u) and z∗

n = (∂ϕtn )λ(u) for all n � 1.

We know that (zn, z∗
n) ∈ Gr ∂ϕtn for all n � 1. Since ϕtn (0) = 0 and (0, 0) ∈

Gr ∂ϕtn n � 1, we have

ϕtn (zn) � (z∗
n, zn)H � 1

λ
||u||2

⇒ ϕtn (zn) + ||zn||2 � (
1

λ
+ 1)||u||2.

Then our hypothesis implies that {zn}n�1 ⊆ H is relatively compact. So, we can
find a subsequence {znk }k�1 of {zn}n�1 such that znk → z. Then

z∗
nk

= 1

λ
(u − znk ) → 1

λ
(u − z) = z∗ in H (see Definition 2.9.1).

From (c) it follows that (z, z∗) ∈ Gr ∂ϕt . Evidently

z = J ∂ϕt

λ (u) and z∗ = (∂ϕt )λ(u).

From Urysohn’s criterion for the convergence of a sequence, for the original
sequence we have

zn = J
∂ϕtn
λ (u) → z = J ∂ϕt

λ (u) in H

⇒ t → J ∂ϕt

λ (u) is continuous.
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(d) (for some λ > 0) ⇒ (a): See Definition 3.5.8. �

Proposition 3.6.8 If ϕ1,ϕ2 : H → R+ = [0,+∞] are lower semicontinuous, con-
vex functions such that ϕ1(0) = ϕ2(0) = 0, domϕ1 = domϕ2 and there exist func-
tions ϑ1,ϑ2 : (0, 1] → [0,+∞) such that lim

λ→0+
ϑi (λ) = 0 (i = 1, 2) and

ϕ1(J ∂ϕ2

λ (u)) � (1 + ϑ1(λ))ϕ1(u) + ϑ2(λ) for all u ∈ domϕ1, all λ > 0,

ϕ2(J ∂ϕ1

λ (u)) � (1 + ϑ2(λ))ϕ2(u) + ϑ2(λ) for all u ∈ domϕ2, all λ > 0,

then for ϕt = (1 − t)ϕ1 + tϕ2 t ∈ [0, 1], {∂ϕt }t∈[0,1] is a pseudomonotone homo-
topy.

Proof Evidently, if tn → t in [0, 1] and un
w−→ u in H , then

ϕt (u) � lim inf
n→∞ ϕtn (un).

Next, we will verify the second part of Definition 3.6.3(b) (2) and then invoking
Proposition 3.6.4, we will conclude the proof.

So, suppose tn → t in [0, 1] and let y ∈ domϕt . We may assume that tn ∈ (0, 1)
for all n � 1. Since the hypotheses of the proposition are symmetric with respect to
ϕ1,ϕ2 we may assume that t �= 1.

If t ∈ (0, 1), then domϕt = domϕ1 ∩ domϕ2 = domϕtn and so we can take
yn = y for all n � 1 (see Definition 3.6.3(b) (2)).

If t = 0 and y ∈ domϕ1, then let yn = J ∂ϕ2√
tn

(y) n � 1 and we have yn → y in H .
It remains to show that ϕtn (yn) → ϕt (y). We have

ϕ1(yn) � (1 + ϑ1(
√

tn))ϕ1(y) + ϑ2(
√

tn)

⇒ lim sup
n→∞

ϕ1(yn) � ϕ1(y)

⇒ ϕ1(yn) → ϕ1(y) (since ϕ1is lower semicontinuous). (3.81)

Since (J ∂ϕ2

λn
)(y), (∂ϕ2)λn (y) ∈ Gr ∂ϕ2 andϕ2(0) = 0, (0, 0) ∈ Gr ∂ϕ2, we have

tnϕ2(yn) � tn(∂ϕ2
λn

(y), J ∂ϕ2

λn
(y))H

� tn
2√
tn

||y||2 → 0 as n → ∞.

So, finally

ϕtn (yn) = (1 − tn)ϕ1(yn) + tnϕ2(yn) → ϕ1(y)

(see (3.81) and recall that tn → 0).

The proof is now complete. �
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As a direct consequence of this proposition, we have:

Corollary 3.6.9 If ϕ1,ϕ2 ∈ �c(H), domϕ1 = domϕ2 and there exists a c > 0 such
that ϕ1(J ∂ϕ2

λ (u)) � ϕ1(u) + cλ for all u ∈ domϕ1 and all λ > 0, then {ϕt = (1 −
t)ϕ1 + tϕ2}t∈[0,1] ∈ �h,2

c (H).

Remark 3.6.10 Wemention that the hypothesis in the above proposition is equivalent
to

−ĉ � ((∂ϕ1)λ(u), (∂ϕ2)μ(u))H for all u ∈ H and all λ,μ > 0

(see Otani [324]).We stress that this condition is symmetric inϕ1 andϕ2 and guaran-
tees the maximal monotonicity of (1 − t)∂ϕ1 + t∂ϕ2 and that ∂ϕ1 = (1 − t)∂ϕ1 +
t∂ϕ2 for all t ∈ [0, 1].

Now we can start with the construction of the degree for ∂ϕ + F . The idea is to
approximate ∂ϕ by its Yosida approximation and F by compact multifunctions.

Recall that H is separable. So, we can find an increasing sequence {Hn}n�1 of
finite-dimensional subspaces such that H = ⋃

n�1
Hn . By pn ∈ L (H, Hn) we denote

the orthogonal projection from H onto Hn .
Let {ϕt }t∈[0,1] ∈ �h,1

c (H) and {Ft }t∈[0,1] ∈ M1({ϕt },�). For k ∈ N, λ > 0 and
t ∈ [0, 1], we define

Fk,λ
t = pk ◦ Ft ◦ J ∂ϕt

λ . (3.82)

Proposition 3.6.11 If 0 < λ0 < λ1 and k ∈ N, then
{

J ∂ϕt

λ

}
t∈[0,1]

,
{

J ∂ϕt

λ

}
λ∈[λ0,λ1]

,{
Fk,λ

t

}
t∈[0,1]

,
{

Fk,λ
t

}
λ∈[λ0,λ1]

are all compact homotopies.

Proof Let un
w→ u in H , tn → t in [0, 1] and λn → λ > 0. Then as in the proof of

Proposition 3.6.7 (see (c) ⇒ (d)), we have

J
∂ϕtn
λn

(un) → J ∂ϕt

λ (u) in Hand (∂ϕtn )λn (un)
w→ (∂ϕt )λ(u) in H

⇒ (u, t,λ) → J ∂ϕt

λ (u) is compact

⇒ {J ∂ϕt

λ }t∈[0,1] and {J ∂ϕt

λ }λ∈[λ0,λ1] are compact homotopies.

Next we show the compactness of (u, t,λ) → Fk,λ
t (u).

So, let un
w→ u in H , tn → t in [0, 1], λn → λ > 0 and u∗

n ∈ �
k,λn
tn (un), n � 1.

We have u∗
n = pk(yn) with yn ∈ Ftn

(
J

∂ϕtn
λn

(un)
)
for all n � 1 (see (3.82)). From

Definition 3.6.6 and Definition 3.6.5(a)(3), we have
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||yn||2 � c1||(∂ϕtn )λn (un)||2 + ϑ1(||J ∂ϕtn
λn

(un)||)(ϕ(J
∂ϕtn
λn

(u))r + 1)

� c1

(
1

λn
||un||

)2

+ ϑ1(||un||)
[(

1

λn
||un||2

)r

+ 1

]

⇒ {yn}n�1 ⊆ H is bounded.

So, by passing to a suitable subsequence if necessary, wemay assume that yn
w→ y

in H . Then u∗
n = pk(yn) → pk(y) = u∗ in H (recall that Hk is finite-dimensional).

On the other hand, from the first part of the proof we know that

J
∂ϕtn
λn

(un) → J ∂ϕt

λ (u) in H.

FromDefinition 3.6.6 we have y ∈ Ft (J ∂ϕt

λ (u)), hence u∗ ∈ Fk,λ
t (u). This proves

the compactness of the homotopies

{Fk,λ
t }t∈[0,1] and {Fk,λ

t }λ∈[λ0,λ1] .

The proof is now complete. �

Remark 3.6.12 In fact the above proof established the compactness of the mapping
(u, t,λ) �→ Fλ

t (u) = Ft ◦ J ∂ϕt

λ (u).

The next proposition is the crucial step in the direction of introducing a degree
for maps of the form ∂ϕ + F .

Proposition 3.6.13 If {ϕt }t∈[0,1] ∈ �h,1
c (H), {Ft }t∈[0,1] ∈ M1({ϕt },�), ξ : [0, 1] →

H is continuous and ξ(t) /∈ (∂ϕt + Ft )(∂�) for all t ∈ [0, 1], then there exist λ0 > 0
and k0 ∈ N such that

λξ(t) /∈ (I − J ∂ϕt

λ + λ((1 − s)Fk,λ
t + s Fi,λ

t ))(∂�)

for all λ ∈ (0,λ0), all k, i � k0 and all s, t ∈ [0, 1]
Proof We argue by contradiction. So, suppose that the proposition is false.
This means that we can find λn → 0+, kn, in → +∞, sn, tn ∈ [0, 1], un ∈ ∂� and
yn, wn ∈ Ftn (J

∂ϕtn
λn

(un)) for all n � 1 such that

λnξ(tn) = un − J
∂ϕtn
λn

(un) + λn((1 − sn)pkn (yn) + sn pin (wn))

for all n � 1

⇒ ξ(tn) = v∗
n + (1 − sn)pkn (yn) + sn pin (wn) for all n � 1 (3.83)

with v∗
n = (∂ϕtn )λn (un), see Definition 2.9.1.

From (3.83) we have

||v∗
n ||2 = (v∗

n , ξ(tn))H − (1 − sn)(v
∗
n , pkn (yn))H − sn(v

∗
n , pin (wn))H .
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Using Young’s inequality, given ε > 0, we can find cε > 0 such that

||v∗
n ||2 � ε||v∗

n ||2 + c3 + 1

2
(1 − sn)||pkn (yn)||2 + 1

2
sn||pin (wn)||2 + 1

2
||v∗

n ||2.

Using Definition 3.6.5(a) (3), we have

(
1

2
− ε)||v∗

n || � c3 + 1

2
[c1||v∗

n ||2 + c4(ϕtn (J
∂ϕtn
λn

(un))
r + 1)]

for some c4 > 0. We choose ε > 0 such that 1
2 − ε > c1

2 . Then

||v∗
n || � c5(1 + ϕtn (J

∂ϕtn
λn

(un))
r ) for some c5 > 0 and all n � 1. (3.84)

It follows that for all n � 1 we have

ϕtn (J
∂ϕtn
λn

(un)) � (v∗
n , J

∂ϕtn
λn

(un))H

� c6||v∗
n || for some c6 > 0

� c7(1 + ϕtn (J
∂ϕtn
λn

(un))
r ) with c7 = c5c6 > 0. (3.85)

Since r > 2, from (3.85) we infer that
{
ϕtn

(
J

∂ϕtn
λn

(un)
)}

n�1
⊆ R+ is bounded.

Definition 3.6.3(a)(1) implies that {J
∂ϕtn
λn

(un)}n�1 ⊆ H is relatively compact and so
we may assume that

J
∂ϕtn
λn

(un) → u in H.

Then (3.84) implies that {v∗
n}n�1 ⊆ H is bounded. Also, {yn}n�1, {wn}n�1 ⊆ H

are both bounded (see Remark 3.6.12). Therefore, we may assume that

v∗
n

w→ v∗, yn
w→ y, wn

w→ w in H,

sn → s, tn → t in [0, 1].

Proposition 3.6.7(c) implies that (u, v∗) ∈ Gr ∂ϕt . Also, Definition 3.6.6 implies
that (1 − s)y + sw ∈ Ft (u). Since

||J ∂ϕtn
λn

(un) − un|| = λn||v∗
n || → 0

⇒ un → u in H and so u ∈ ∂�.

Passing to the limit as n → ∞ in (3.83), we obtain

ξ(t) = v∗ + (1 − s)y + sw

⇒ ξ(t) ∈ (∂ϕt + Ft )(∂�), a contradiction.
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The proof is now complete. �

Now, let ϕ ∈ �c(H) and F ∈ M1(ϕ,�). Assume that

ξ /∈ (∂ϕ + F)(∂�).

Applying Proposition 3.6.13 to ϕt = ϕ, Ft = F and ξ(t) = ξ for all t ∈ [0, 1],
we see that for λ > 0 small and for k ∈ N sufficiently big, we can define

dL S(I − J ∂ϕ
λ + λFk,λ,�,λξ) = dL S(λ(∂ϕλ + Fk,λ),�,λξ)

(see also Proposition 3.6.11) and in fact this degree stabilizes. So, we can make the
following definition.

Definition 3.6.14 With (ϕ, F,�, ξ) as above, we define

dS1(∂ϕ + F,�, ξ) = lim
λ→0+

k→+∞
dL S(I − J ∂ϕ

λ + λFk,λ,�,λξ).

This degree has the main properties.

Theorem 3.6.15 If H is a separable pivot Hilbert space and

τS1 = {(ϕ + F,�, ξ) : ϕ ∈ �c(H), F ∈ M1(ϕ,�), � ⊆ H

is bounded open and ξ /∈ (∂ϕ + F)(∂�)}

then there exists a map dS1 : τS1 → Z such that

(a) Normalization: dS1(∂ϕ,�, ξ) = 1 provided ξ /∈ ∂ϕ(�)\∂ϕ(∂�).
(b) Domain Additivity: dS1(∂ϕ + F,�, ξ) = dS1(∂ϕ + F,�1, ξ) + dS1(∂ϕ +

F,�2, ξ), with �1,�2 ⊆ � disjoint open and ξ /∈ (∂ϕ + F)(�\(�1 ∪ �2)).
(c) Homotopy Invariance: dS1(∂ϕt + Ft ,�, ξ(t)) is independent of t ∈ [0, 1], when

{ϕt }t∈[0,1] ∈ �h,1
c (H), {Ft }t∈[0,1] ∈ M1({ϕt },�) and ξ : [0, 1] → H is continu-

ous such that ξ(t) /∈ (∂ϕt + Ft )(∂�) for all t ∈ [0, 1].
(d) Solution Property: dS1(∂ϕ + F,�, ξ) �= 0 implies that there exists a u ∈ � such

that ξ ∈ ∂ϕ(u) + F(u).

Proof Properties (b), (c) and (d) follow from Definition 3.6.14, the corresponding
properties of the Leray–Schauder degree and from Proposition 3.6.13.

So, it remains to check the normalization property (a).
Let ϕ ∈ �c(H), � ⊆ H be bounded open and ξ ∈ ∂ϕ(�)\∂ϕ(∂�). We can find

u0 ∈ � such that ξ ∈ ∂ϕ(u0). Let uλ = u0 + λξ. Then (∂ϕ)λ(uλ) = ∂ϕλ(uλ) =
ξ. Fix λ > 0 small such that uλ ∈ �, λξ /∈ (I − J ∂ϕ

λ )(∂�) and dS1(∂ϕ,�, ξ) =
dL S(I − J ∂ϕ

λ ,�,λξ) (see Definition 3.6.14).
Choose r > 0 such that � ⊆ Br . We know that I − J ∂ϕ

λ = λ∂ϕλ and so I −
J ∂ϕ
λ is maximal monotone. Hence (I − J ∂ϕ

λ )−1 is maximal monotone too and from
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Proposition 2.6.5 it follows that (I − J ∂ϕ
λ )−1(λξ) is closed and convex. It follows

that
λξ /∈ (I − J ∂ϕ

λ )(Br\�)

and then the excision property of the Leray–Schauder degree implies that

dL S(I − J ∂ϕ
λ ,�,λξ) = dL S(I − J ∂ϕ

λ , Br ,λξ). (3.86)

We consider the homotopy ht (u) = u − t J ∂ϕ
λ (u) for all t ∈ [0, 1], all u ∈ H and

claim that

tλξ /∈ (I − t J ∂ϕ
λ )(∂Br ) for all t ∈ [0, 1]. (3.87)

Suppose that (3.87) is not true. Then we can find t ∈ [0, 1] and u ∈ ∂Br such that

tλξ = u − t J ∂ϕ
λ (u) = (1 − t)u + t∂ϕλ(u). (3.88)

If t = 1, then from the first equality in (3.88) we contradict the fact that

λξ /∈ (I − J ∂ϕ
λ )(Br\�).

So, t �= 1. On (3.88) we act with uλ − u and obtain

tλ(ξ − ∂ϕλ(u), uλ − u)H = (1 − t)(u, uλ − u)H . (3.89)

Recall that ξ = ∂ϕλ(uλ). So, the monotonicity of ∂ϕλ(·) implies

tλ(ξ − ∂ϕλ(u), uλ − u)H � 0. (3.90)

From (3.89) and (3.90), we have

(1 − t)(u, uλ − u)H � 0. (3.91)

On the other hand, since t < 1 and uλ ∈ Br , we have

(1 − t)(u, uλ − u) � (1 − t)(r ||uλ|| − r2) < 0 (recall that u ∈ ∂Br ). (3.92)

Comparing (3.91) and (3.92), we reach a contradiction. So, (3.87) holds and from
the homotopy invariance of the Leray–Schauder degree, we have

dL S(I − J ∂ϕ
λ , Br ,λξ) = 1

⇒ dL S(I − J ∂ϕ
λ ,�,λξ) = 1 (see (3.86))

⇒ dS(∂ϕ,�, ξ) = 1.
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The proof is now complete. �

Next, we consider the case where F ∈ M2(ϕ,�).
Let ϕ ∈ �c(H) and F ∈ M2(ϕ,�). Without loss of generality, we may assume

that the function ϑ2 ∈ S in Definition 3.6.5(b)(3) is C1 and ϑ2(0) = 0. For ε > 0, we
set

ϕε(u) = ϕ(u) + εϑ2(ϕ(u)). (3.93)

Proposition 3.6.16 If ϕε is defined by (3.93), then

(a) {ϕε}ε∈[ε0,ε1] ∈ �h,1
c (H) for 0 < ε0 < ε1;

(b) if {ϕt }t∈[0,1] ∈ �h,2
c (H) and ε > 0, then {(ϕt )ε}t∈[0,1] ∈ �h,1

c (H);
(c) ∂ϕε(·) = (1 + εϑ′

2(ϕ(·)))∂ϕ(·) for all ε > 0.

Proof (a) and (b) are straightforward consequences of Definition 3.6.3 and Proposi-
tion 3.6.4.

(c) From (3.93) we have

(1 + εϑ′
2(ϕ(·)))∂ϕ(·) ⊆ ∂ϕε(·).

So, in order to prove equality, we need to show that (1 + εϑ′
2(ϕ(·))) ∂ϕ(·) is

maximal monotone. To this end, let h ∈ H and consider the function

γh(λ) = εϑ′
2(ϕ(J1+λ(h))).

Suppose that λ0 is a fixed point of γh . Then for u0 = J ∂ϕ
1+λ0

(h) we have u0 + (1 +
εϑ′

2(ϕ(u0)))∂ϕ(u0) � h and this implies the maximality of (1 + εϑ′
2(ϕ(·))) ∂ϕ(·).

For 0 < μ < λ, we have

||Jλ(h) − Jμ(h)|| � (λ − μ)(ϕ(Jμ(h)) − ϕ(Jλ(h))),

|ϕ(Jμ(h)) − ϕ(Jλ(h))| � (||∂ϕλ(h)|| + ||∂ϕμ(h)||)||Jλ(h) − Jμ(h)|| .

From these inequalities it follows that λ → ϕ(J1+λ(h)) is continuous and mono-
tone decreasing onR+ = [0,+∞). Then so is γh (recall ϑ′

2 is monotone increasing).
Therefore, γh has a fixed point. �

From Proposition 3.6.16(c), we deduce the following result.

Corollary 3.6.17 If {ϕt }t∈[0,1] ∈ �h,2
c (H) and {Ft }t∈[0,1] ∈ M2({ϕt },�), then

(a) {Ft }t∈[0,1] ∈ M1({(ϕt )ε},�) for all ε > 0;
(b) for 0 > ε0 < ε1 and t ∈ [0, 1], set (Ft )ε = Ft for all ε ∈ [ε0, ε1], then

{(Ft)ε}ε∈[ε0,ε1] ∈ M1({(ϕt )ε}ε∈[ε0,ε1],�).
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The next result realizes the crucial step in the direction of defining the degree
when F ∈ M2(ϕ,�).

Proposition 3.6.18 If {ϕt }t∈[0,1] ∈ �h,2
c (H), {Ft }t∈[0,1] ∈ M2({ϕt },�), ξ : [0, 1] →

H is continuous and ξ(t) /∈ (∂ϕt + Ft )(∂�) for all t ∈ [0, 1], then there exists an
ε0 > 0 such that

ξ(t) /∈ (∂(ϕt )ε + Ft )(∂�) for all ε ∈ (0, ε0] and all t ∈ [0, 1].

Proof We argue by contradiction. So, suppose we can find

εn → 0, tn ∈ [0, 1], un ∈ ∂� ∩ D(∂ϕtn ), v∗
n ∈ ∂ϕtn (un), yn ∈ Ftn (un) such that

ξ(tn) = (1 + εnϑ
′
2(ϕtn (un)))un + yn for all n � 1. (3.94)

From Definition 3.6.5(b), (4), we have

ϕtn (un) � (ϕtn )εn (un)

� ((1 + εnϑ
′
2(ϕtn (un)))v

∗
n , un)H

= (ξ(tn) − yn, un)H

� c3ϕtn (un) + ĉ with c3 ∈ (0, 1), ĉ > 0

⇒ {ϕtn (un)}n�1 is bounded.

Then fromDefinition 3.6.3(b)(1),we infer that {un}n�1 ⊆ H is relatively compact.
So, we may assume that un → u in H , hence u ∈ ∂�. From Definition 3.6.5(b)(3)
we have

||v∗
n ||2 � ||ξ(tn) − yn||2

� (1 + β)||yn||2 + cβ

� (1 + β)c2||v∗
n ||2 + ĉ − cβ,

(3.93′)

where β > 0 and cβ > 0 is a constant depending only on β. Choosing β > 0 such
that (1 + β)c2 < 1 (recall c2 ∈ (0, 1)), from (3.93′) it follows that {v∗

n}n�1 ⊆ H is
bounded. By virtue of Definition 3.6.5(b)(3) it follows that {yn}n�1 ⊆ H is bounded.
So, we may assume that

v∗
n

w→ v∗ and yn
w→ y in H.

Proposition 3.6.7(iii) implies that (u, v∗) ∈ Gr ∂ϕt and Definition 3.6.6 implies
y ∈ Ft (u). Therefore

ξ(t) ∈ ∂ϕt (u) + Ft (u) with u ∈ ∂�,

a contradiction. �

This proposition suggests that for ϕ ∈ �c(H) and F ∈ M2(ϕ,�), we can define
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dS2(∂ϕ + F,�, ξ) = lim
ε→0+

dS1(∂ϕε + F,�, ξ), (3.95)

where the degree in the right-hand side is defined in the sense of Definition 3.6.14.
To do this, we need to show that this definition is independent of the choice of the
function ϑ2.

So, let ϑ2, ϑ̂2 be two convex C1-functions satisfying Definition 3.6.5(b)(3). We
set

ϕε(u) = ϕ(u) + εϑ2(u) and ϕ̂ε(u) = ϕ(u) + εϑ̂2(u).

We need to show that

dS2(∂ϕε + F,�, ξ) = dS2(∂ϕ̂ε + F,�, ξ) for all ε > 0 small.

Let ϕ̃t (u) = (1 − t)ϕε(u) + tϕ̂ε(u) for all t ∈ [0, 1]. Then we can easily check
that {ϕ̃t } ⊆ �h,2

c (H) ⊆ �h,1
c (H) (see Proposition 3.6.4). Since ϕ̃0 = ϕε, ϕ̃1 = ϕ̃ε,

we have

dS1(∂ϕε + F,�, ξ) = dS1(∂ϕ̂ε + F,�, ξ) (see Theorem 3.6.15(c))

⇒ dS2(∂ϕ + F,�, ξ) is independent of ϑ2.

So, we can make the following definition.

Definition 3.6.19 For ϕ ∈ �c(H), F ∈ M2(ϕ,�) and ξ /∈ (∂ϕ + F)(∂�), we set

dS2(∂ϕ + F,�, 0) = lim
ε→0+

dS1(∂ϕε + F,�, 0).

This degree exhibits all the main properties.

Proposition 3.6.20 If H is a separable pivot Hilbert space

τS2 = {(ϕ + F,�, ξ) : ϕ ∈ �c(H), F ∈ M2(ϕ,�), � ⊆ H

is bounded open and ξ /∈ (∂ϕ + F)(∂�) }

then there exists a map dS2 : τS2 → Z such that

(a) Normalization: dS2(∂ϕ,�, ξ) = 1 provided ξ ∈ ∂ϕ(�)\∂ϕ(∂�).
(b) Domain Additivity: dS2(∂ϕ + F,�, ξ) = dS2(∂ϕ + F,�1, ξ) + dS2(∂ϕ +

F,�2, ξ) with �1,�2 ⊆ � disjoint open and ξ /∈ (∂ϕ + F)(�\(�1 ∪ �2)).
(c) Homotopy Invariance: dS2(∂ϕt + Ft ,�, ξ(t)) is independent of t ∈ [0, 1] when

{ϕt }t∈[0,1] ∈ �h,2
c (H), {Ft }t∈[0,1] ∈ M2({ϕt },�) and ξ : [0, 1] → H is continu-

ous such that ξ(t) /∈ (∂ϕt + Ft )(∂�) for all t ∈ [0, 1].
(d) Solution Property: dS2(∂ϕ + F,�, ξ) �= 0 implies that there exists a u ∈ � such

that ξ ∈ ∂ϕ(u) + F(u).
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3.7 Some Generalizations

In this section we present some useful extensions of the degrees discussed so far.
In Sect. 3.2 we presented an infinite-dimensional extension of Brouwer’s degree

to maps of the of the form I − f with f compact. However, in many applications
f is not compact. So, it is natural to ask what kind of maps can replace compact
maps and still have an infinite-dimensional extension of Brouwer’s degree. We have
already seen that simple continuity of f does not lead to a degree (see Example
3.2.1). It turns out that we can have a degree theory when f is a set condensing map.
This brings on stage the notion of a measure of noncompactness.

Definition 3.7.1 Let X be a Banach space and B the family of bounded subsets of
X .

(a) The “Kuratowski measure of noncompactness” is the map α : B → R+ defined
by

α(B) = inf{d > 0 : B admits a finite cover by sets of diameter � d}.

(b) The “Hausdorff (or ball) measure of noncompactness” is the map β : B → R+
defined by

β(B) = inf{r > 0 : B admits a finite cover by balls of radius r}.

Remark 3.7.2 Note that in the definition of α(B), the covering sets may be taken

to be subsets of B since diam(Dk ∩ B) � diamDk and B =
n⋃

k=1
(Dk ∩ B). However,

in the definition of β(B) it is important to specify the set in which the centers of
the covering balls of B are located. If, for some reason, we want those centers to
belong in some particular E ⊇ B, then we should write βE (B) and evidently we
have β(B) � βE (B), with strict inequality possible.

The next result is a straightforward consequence of Definition 3.7.1.

Proposition 3.7.3 For every B ∈ B we have β(B) � α(B) � 2β(B).

OnB we can define a distance.

Definition 3.7.4 The Hausdorff distance between B, C ∈ B is defined by

h(B, C) = max{sup
b∈B

d(b, C), sup
c∈C

d(c, B)}.

Remark 3.7.5 If

Pbf (X) = {B ⊆ X : B is bounded and closed},

then (Pbf (X), h) is a metric space. This metric space is complete if and only if X is
complete (see, for example, Hu and Papageorgiou [217]).
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Proposition 3.7.6 If γ = α or β and B, C ∈ B, then

(a) γ(B) = 0 if and only if B ⊆ X is compact.
(b) γ(B) = γ(B).
(c) if B ⊆ C, then γ(B) � γ(C).
(d) γ(B ∪ C) � max{γ(B), γ(C)} and γ(B ∩ C) � min{γ(B), γ(C)}.
(e) γ is a seminorm, that is,

γ is positively homogeneous, namely γ(λA) = |λ|γ(A) for all λ ∈ R;
γ is subadditive, namely γ(B + C) � γ(B) + γ(C).

(f) |γ(B) − γ(C)| � 2h(B, C).
(g) γ(conv B) = γ(B).

Proof (a)–(e) are straightforward consequences of Definition 3.7.1.
We only need to prove (f) and (g).
(f) To fix things, we assume that γ = α (the proof is similar if γ = β). Given

ε > 0 we can find D1, . . . , Dn subsets of B such that

diam Dk � α(B) + ε for all k ∈ {1, . . . , n} and
n⋃

k=1

Dk = B.

Let ξ = h(B, C) + ε and Ck = {u ∈ C : there exists an x ∈ Dk, ||x − u|| � ξ}
for all k ∈ {1, . . . , n}. Since h(B, C) < ξ, we see that C =

n⋃
k=1

Ck . Also

diam Ck � 2ξ + diam Dk � 2h(B, C) + α(B) + 3ε

⇒ α(C) − α(B) � 2h(B, C) (letting ε ↓ 0).

Reversing the roles of B and C , we conclude that

|α(C) − α(B)| � 2h(B, C).

(g) Again we fix γ = α, the proof being similar if γ = β.
From (c) we know that α(B) � α(conv B). Given ε > 0, we can find D1, . . . , Dn

subsets of B such that diam Dk � α(B) + ε for all k ∈ {1, . . . , n}. We may assume
that each Dk is convex, since diam(conv Dk) = diam Dk . Let

� = {̂λ = (λk)
n
k=1 : λk � 0 for all k ∈ {1, . . . , n},

n∑
k=1

λk = 1}

and define

D(̂λ) =
n∑

k=1

λk Dλ for every λ̂ ∈ �.
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We have

α(D(̂λ)) � α(B) + ε for every λ̂ ∈ � (see (e)). (3.96)

We show that
⋃

λ̂∈�

D(̂λ) is convex. Let λ̂, η̂ ∈ � and

x =
n∑

k=1

λk xk, u =
n∑

k=1

ηkuk with xk, uk ∈ Dk for all k ∈ {1, . . . , n}.

Then for t ∈ [0, 1] we have

t x + (1 − t)u =
n∑

k=1

(tλk + (1 − t)ηk)

[
tλk

tλk + (1 − t)ηk
xk + (1 − t)ηk

tλk + (1 − t)ηk
uk

]

⇒
⋃
λ̂∈�

S(̂λ) is convex.

So, it follows that

conv B = conv (

n⋃
k=1

Dk) ⊆
⋃
λ̂∈�

D(̂λ). (3.97)

Evidently, the set � ⊆ R
n is compact. So, we can find {̂λk}m

k=1 ⊆ � such that

⋃
λ̂∈�

D(̂λ) ⊆
m⋃

k=1

D(̂λk) + εB1

⇒ conv B ⊆
m⋃

k=1

D(̂λk) + εB1 (see (3.96))

⇒ α(conv B) � α(B) + ε (see (3.95 and (d))).

Let ε ↓ 0 and conclude that α(conv B) = α(B). �

Proposition 3.7.7 If X is an infinite-dimensional Banach space, then α(B1) = 2
and β(B1) = 1 (recall that B1 = {x ∈ X : ||x || < 1}).
Proof Evidently, α(B1) � 2. Suppose α(B1) < 2. Then we can find D1, . . . , Dn

subsets of B1 such that diam Dk < 2 for all k ∈ {1, . . . , n} and B1 =
n⋃

k=1
Dk . Let Xn

be an n-dimensional subspace of X and set Bn
1 = B1 ∩ Xn, Dn

k = Dk ∩ Xn for all
k ∈ {1, . . . , n}. Then

diam Dn
k < 2 for all k ∈ {1, . . . , n} and Bn

1 =
n⋃

k=1

Dn
k ,
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which contradicts Proposition 3.1.15. Therefore α(B1) = 2.
Then from the above fact and Proposition 3.7.3, we conclude that β(B1) = 1. �

Definition 3.7.8 Let X be a Banach space, D ⊆ X , ϕ : D → X continuous and
γ = α or β.

(a) We say that ϕ is a γ-Lipschitz map if

γ(ϕ(B)) � kγ(B) for some k > 0 and all bounded B ⊆ D.

(b) We say that ϕ is a γ-contraction if ϕ is γ-Lipschitz with k ∈ (0, 1).
(c) We say that ϕ is a γ-condensing map if

γ(ϕ(B)) < γ(B) for all B ⊆ D bounded with γ(B) > 0.

Remark 3.7.9 If ϕ = A ∈ L (X, X), then ϕ is γ-Lipschitz with k = ||A||L . Also,
if ϕ : D ⊆ X → X is Lipschitz continuous with Lipschitz constant k > 0, then ϕ is
also γ-Lipschitzwith the same constant. Another importantmapwhich is γ-Lipschitz
is provided by the next proposition.

Proposition 3.7.10 If X is a Banach space, B1 = {x ∈ X : ||x || � 1} and r : X →
B1 is the radial retraction, that is, r(x) =

{
x if x ∈ B1
x

||x || if ||x || > 1 then r is γ-Lipschitz

with k = 1.

Proof Let B ∈ B. Then γ(r(B)) � γ(conv ({0} ∪ B)) = γ({0} ∪ B) = γ(B) (see
Proposition 3.7.6). �

Proposition 3.7.11 If X is an infinite-dimensional Banach space, ϑ : [0, 1] →
[0, 1] is a continuous and strictly decreasing function and ϕ : B1 → B1 is defined
by

ϕ(u) = ϑ(||u||)u for all u ∈ B1,

then ϕ is γ-condensing but not a γ-contraction.

Proof Let B ⊆ B1 with γ(B) > 0. Let r ∈ (0, γ(B)

2 ) and let

C1 = B ∩ Br and C2 = B\Br .

Then B = C1 ∪ C2 and so ϕ(B) = ϕ(C1) ∪ ϕ(C2). So, we have

γ(ϕ(B)) = γ(ϕ(C1) ∪ ϕ(C2)) � max[γ(ϕ(C1)), γ(ϕ(C2))]. (3.98)

Also, we have

γ(ϕ(C1)) � γ(conv ({0} ∪ C1)) = γ(C1) � diam C1 � 2r < γ(B) (3.99)
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and ϕ(C2) ⊆ conv ({0} ∪ ϑ(r)B). Hence

γ(ϕ(C2)) � γ(ϑ(r)B) < γ(B) (see Proposition 3.7.6(e)). (3.100)

From (3.98), (3.99) and (3.100), we conclude that ϕ is γ-condensing.
Note that ∂Bλϑ(λ) ⊆ ϕ(Bλ) for all λ ∈ [0, 1] and so

γ(ϕ(Bλ)) � γ(∂Bλϑ(λ)) = 2λϑ(λ) = ϑ(λ)α(Bλ)

(see Proposition 3.7.7).

Since ϑ(λ) → 1 as λ → 0+, we see that ϕ cannot be a γ-contraction. �

The next proposition is crucial in the definition of the degree which will extend
the Leray–Schauder degree.

Proposition 3.7.12 If X is a Banach space, � ⊆ X is bounded, ϕ : � → X is γ-
condensing, and F = {x ∈ � : ϕ(x) = x}, then there exists a compact, convex C
such that

(a) F ⊆ C;
(b) if x0 ∈ conv [C ∪ {ϕ(x0)}], then x0 ∈ C;
(c) C = convϕ(C ∩ �).

Proof Let

S = {K : F ⊆ K , closed convex, ϕ(� ∩ K ) ⊆ K and (b) holds for K }.

Note that convϕ(�) ∈ S . Hence S �= ∅. We set C = ⋂
k∈S

K . Evidently C sat-

isfies (a), (b), (c) and it is closed convex. It remains to show that it is compact.
Suppose that C is not compact. Then there exists a sequence C1 = {xn}n�1 ⊆ C

with no convergent subsequence. By (c) we have C = convϕ(� ∩ C). So, there is a
countable set E1 ⊆ � ∩ C such that C1 ⊆ convϕ(E1). Therefore, S1 = convϕ(� ∪
C1) is separable and so is � ∩ S1. It follows that we can find countable sets D1 ⊆ S1
and D∗

1 ⊆ � ∩ S1 such that D1 = S1, D
∗
1 = � ∩ S1. Let C2 = C1 ∪ E1 ∪ D1 ∪ D∗

1 .
Then

C1 ⊆ C2,

convϕ(� ∩ C1) ⊆ C2,

convϕ(� ∩ C1) ∩ � ⊆ � ∩ C2.

Using these relations and induction, we produce a sequence {Cn}n�1 of subsets
of C such that for all n � 1 we have
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Cn ⊆ Cn+1,

convϕ(� ∩ Cn) ⊆ Cn+1,

convϕ(� ∩ Cn) ∩ � ⊆ � ∩ Cn+1.

Set M = ⋃
n�1

Cn . Then

M ⊆ convϕ(� ∩ M)

⇒ γ(M) � γ(convϕ(� ∩ M)) < γ(� ∩ M),

a contradiction. This proves the compactness of C and completes the proof of the
proposition. �

Using this proposition, we can define a degree for γ-condensing maps.
The setting is the following. Let X be a Banach space and � ⊆ X bounded open.

We consider a γ-condensing map ϕ : � → X such that 0 /∈ (I − ϕ)(∂�). If 0 /∈
(I − ϕ)(�), then we set for the new degree map dC

dC(I − ϕ,�, 0) = 0.

Therefore, we need to consider the case 0 ∈ (I − ϕ)(�). In this case the set
F = {x ∈ � : ϕ(x) = x} is nonempty. Let C be the nonempty compact convex set
produced in Proposition 3.7.12. From part (c) of that proposition, we have ϕ : � ∩
C → C . By virtue of Dugundji’s extension theorem (see Proposition 2.1.9) C is a
retract of X . So, let r : X → C be a retraction. Then u → (ϕ ◦ r)(u) is a compact
map and r−1(�) is open. We have 0 /∈ (I − ϕ ◦ r)(∂(� ∩ r−1(�))). So, we can
define dL S(I − ϕ ◦ r,� ∩ r−1(�), 0). We set

dC(I − ϕ,�, 0) = dL S(I − ϕ ◦ r,� ∩ r−1(�), 0). (3.101)

Of course, in principle this definition depends on the choice of the retraction r
and on C from Proposition 3.7.11. We will show that this is not the case.

So, let r1, r2 : X → C be two retractions onto C . Let

ht (x) = tr1(x) + (1 − t)r2(x) for all (t, x) ∈ [0, 1] × X.

Clearly, for each t ∈ [0, 1], ht (·) is a retraction of X ontoC . Also, x = (ϕ ◦ ht )(x)

for all (t, x) ∈ [0, 1] × ∂(� ∩ r−
1 (�) ∩ r−

2 (�)). So, from the homotopy invariance
property, we have

dL S(I − ϕ ◦ r1,� ∩ r−1
1 (�) ∩ r−1

2 (�), 0) =
dL S(I − ϕ ◦ r2,� ∩ r−1

1 (�) ∩ r−1
2 (�), 0).

(3.102)
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We can easily check that

0 /∈ � ∩ r−1
1 (�)\(� ∩ r−1

1 (�) ∩ r−1
2 (�)) and 0 /∈ � ∩ r−1

2 (�)\(� ∩ r−1
1 (�) ∩ r−1

2 (�)).

Then the excision property of the Leray–Schauder degree implies that

dL S(I − ϕ ◦ r1, � ∩ r−1
1 (�), 0) = dL S(I − ϕ ◦ r1, � ∩ r−1

1 (�) ∩ r−1
2 (�), 0), (3.103)

dL S(I − ϕ ◦ r2, � ∩ r−1
2 (�), 0) = dL S(I − ϕ ◦ r2, � ∩ r−1

1 (�) ∩ r−1
2 (�), 0). (3.104)

From (3.102), (3.103) and (3.104), we infer that

dL S(I − ϕ ◦ r1,� ∩ r−1
1 (�), 0) = dL S(I − ϕ ◦ r2,� ∩ r−1

2 (�), 0).

Moreover, the excision property of the Leray–Schauder degree shows that dC(I −
ϕ,�, 0) in (3.101) is also independent of C as in Proposition 3.7.12.

Therefore the following definition makes sense.

Definition 3.7.13 Let X be a Banach space, � ⊆ X be bounded open and ϕ : � →
X be γ-condensing. Suppose that 0 /∈ (I − ϕ)(∂�) and let C ⊆ X be a compact
convex set as in Proposition 3.7.12 and r : X → C a retraction onto C . We define

dC(I − ϕ,�, 0) = dL S(I − ϕ ◦ r,� ∩ r−1(�), 0).

This new degree has the usual properties.

Theorem 3.7.14 If X is a Banach space and

τC = {(I − ϕ,�, 0) : � ⊆ X is bounded open, ϕ : � → X

is γ-condensing and 0 /∈ (I − ϕ)(∂�)} ,

then there exists a map dC : τC → Z such that

(a) Normalization: dC(I,�, 0) = 1 provided 0 ∈ �.
(b) Domain Additivity: dC(I − ϕ,�, 0) = dC(I − ϕ,�1, 0) + dC(I − ϕ,�2, 0)

with �1,�2 ⊆ � disjoint open and 0 /∈ (I − ϕ)(�\(�1 ∪ �2)).
(c) Homotopy Invariance: dC(I − ht ,�, 0) is independent of t ∈ [0, 1] when h :

[0, 1] × � → X is a γ-condensing map and ht (u) �= u for all (t, u) ∈ [0, 1] ×
∂�.

(d) Solution Property: dC(I − ϕ,�, 0) �= 0 implies that there exists a u ∈ � such
that ϕ(u) = u.

Proof Properties (a), (b) and (d) follow fromDefinition 3.7.13 and the corresponding
properties of the Leray–Schauder degree.

It remains to prove (c) (the homotopy invariance property). To this end let

C0 = conv h([0, 1] × �) and Cn = conv h([0, 1] × (� ∩ Cn+1)) for all n � 1.
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Then C = ⋂
n�1

Cn is nonempty, compact, convex (see Proposition 3.9.10) and

h : [0, 1] × C → C . Let r : X → C be a retraction. Then ht (r(x)) �= x for all x ∈
∂(� ∩ r−1(� ∩ C)). So the homotopy invariance property of the Leray–Schauder
degree implies that

dL S(I − ht ◦ r,� ∩ r−1(� ∩ C), 0)

is independent of t ∈ [0, 1]. Then (c) follows fromDefinition 3.7.13 and the excision
property of the Leray–Schauder degree. �

In the second part of this section, we exploit the Galerkin approximation method
to define a generalized degree theory for a large class of maps, called A-proper maps.

Definition 3.7.15 Let X be a Banach space. If there is a sequence {Xn}n�1 of finite-
dimensional subspaces of X and a sequence {Pn}n�1 of continuous, linear projections
from X onto Xn such that Pn(x) → x in X as n → ∞ for all x ∈ X , then we say
that X has a projection scheme {Pn, Xn}n�1.

Remark 3.7.16 Evidently X is separable, X = ⋃
n�1

Xn and sup
n�1

||Pn||L = c < +∞
(by the uniform boundedness principle).

Proposition 3.7.17 If X is a Banach space with a Schauder basis {en}n�1 and for
all n � 1

Xn = span {en}n
k=1 and Pn(x) =

n∑
k=1

λk(x)ek

where x = ∑
n�1

λn(x)en (see Definition 2.3.10), then {Pn, Xn}n�1 is a projection

scheme.

Remark 3.7.18 In the above case {Xn}n�1 is an increasing sequence of finite-
dimensional subspaces of X and Pn ◦ Pm = Pl with l = min{m, n}. If X is a sepa-
rable Hilbert space, then we can choose an orthonormal basis {en}n�1 and then Pn

are the orthogonal projections Pn(u) =
n∑

k=1
(ek, u)H ek which satisfy Pn = P∗

n and

||Pn||L = 1 for all n � 1.

Proposition 3.7.19 If X is a reflexive Banach space and {Pn, Xn}n�1 is a projection
scheme on X such that Pn ◦ Pm = Pl with l = min{m, n}, then {P∗

n , P∗
n (X∗)}n�1 is

a projection scheme on X∗.

Proof We have

〈
P∗

n P∗
n (u∗), u

〉 = 〈u∗, P2
n (u)
〉 = 〈P∗

n (u∗), u
〉
for all u ∈ X, u∗ ∈ X∗

⇒ P∗
n : X∗ → X∗

n = Pn(X∗) is a projection operator for every n � 1.
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From Theorem 2.11.5, we know that

dim X∗
n = dim (I − P∗

n ) = dim (I − Pn) = dimXn for all n � 1.

So, it remains to show that P∗
n (u∗) → u∗ in X∗ as n → ∞.

First note that X∗ = ⋃
n�1

X∗
n . Indeed, if this is not true we can find u ∈ X\{0}

such that u| ⋃
n�1

X∗
n
= 0. Then 〈u∗, Pn(u)〉 = 0 for all u∗ ∈ X∗ and all n � 1, hence

passing to the limit as n → ∞, we obtain 〈u∗, u〉 = 0 for all u∗ ∈ X∗ and so u = 0,
a contradiction. Note that for m � n, Pm ◦ Pn = Pn and so P∗

m ◦ P∗
n = P∗

n , which in
turn implies that {X∗

n}n�1 is an increasing sequence of subspaces, that is, X∗
n ⊆ X∗

n+1
for all n � 1. Given u∗ ∈ X∗ and ε > 0, we can find n0 � 1 and y∗ ∈ X∗

n0
such that

||u∗ − y∗||∗ < ε. Then

||P∗
n (u∗) − u∗||∗ � ||P∗

n (u∗ − y∗)||∗ + ||y∗ − u∗||∗ � ε(c + 1) for all n � n0

⇒ P∗
n (u∗) → u∗ in X∗ as n → ∞

⇒ {P∗
n , X∗

n = P∗
n (X)}n�1 is a projection scheme on X∗.

The proof is now complete. �

Definition 3.7.20 Let X, Y be Banach spaces with projection schemes

{Pn, Xn}n�1 and {Qn, Yn}n�1 respectively

and dim Xn = dim Yn . We say that � = {Pn, Xn; Qn, Yn} is an operator projection
scheme.

Proposition 3.7.21 If both Banach spaces X and Y have Schauder bases, then the
pair admits an operator projection scheme.

Remember that our goal is to use Galerkin approximations in order to develop
degree theoretic tools which will allow us to solve the operator equation ϕ(u) = y.
So, suppose � is an operator projection scheme. We are looking for appropriate
(“proper”) maps ϕ : D ⊆ X → Y for which the Galerkin method will work. So,
suppose that

Qn(ϕ(u)) = Qn y

has a solution un ∈ Dn = D ∩ Xn for all large n � 1 and {un}n�1 ⊆ X is bounded.
We have

Qn(ϕ(u)) = Qn y → y in Y.

So, we should require that {un}n�1 admits a subsequence converging to a solution
of ϕ(u) = y. This is the starting point of the so-called A-proper maps.

Definition 3.7.22 Let X, Y beBanach spaces and� = {Pn, Xn; Qn, Yn} an operator
projection scheme. Letϕ : D ⊆ X → Y . We say thatϕ is “A-proper” with respect to
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� if for anyboundedum ∈ Dm = D ∩ Xm ,m � 1, such that Qm(ϕ(um)) → y inY as
m → ∞, we can find a subsequence {umk }k�1 ⊆ {um}m�1 such that umk → u ∈ D
and ϕ(u) = y. By A�(D, Y ) we denote the family of all maps ϕ : D ⊆ X → Y
which are A-proper with respect to �. If X = Y , then we write A�(D).

Remark 3.7.23 The condition of A-properness is very weak since it does not require
solvability of the finite-dimensional approximation. Even if those finite-dimensional
equations are solvable and the solutions are uniformly bounded, then only a sub-
sequence converges to a solution of the original equation. So, the family of maps
introduced in Definition 3.7.22 is large enough to include the operators considered
earlier. On the other hand, understandably A-proper maps are not amenable to com-
putations.

Proposition 3.7.24 If X is a Banach space and {Pn, Xn} is a projection schema on
X such that sup

n�1
||Pn||L = c < ∞, D ⊆ X is closed and ϕ : D → X is β-Lipschitz

with constant k > 0, then λI − ϕ ∈ A�(D) for all λ > kc.

Proof It suffices to show that for every bounded set B ⊆ X we have

β(B) � β(
⋃
n�1

Pn(B)) = lim
m→∞ β(

⋃
n�m

Pn(B)) � β(B)c. (3.105)

Since B ⊆ ⋃
n�1

Pn(B), the first inequality in (3.105) is immediate. Note that

m⋃
n=1

Pn(B) is relatively compact, being bounded in the finite-dimensional subspace

Xm . Therefore
β(
⋃
n�1

Pn(B)) = lim
m→∞ β(

⋃
n�m

Pn(B))

(see Proposition 3.7.6). Next, suppose that B ⊆
m⋃

k=1
Br (xk). Then

Pn(B) ⊆
m⋃

k=1

Bcr+ε(xk) with ε = max
1�k�m

||Pn(xk) − xk ||

and so we conclude that

lim
m→∞ β(

⋃
n�m

Pn(B)) � β(B)c.

This proves (3.105) and also the proposition. �

Proposition 3.7.25 If X is a reflexive Banach space with a projection scheme
{Pn, Xn} such that Pn ◦ Pm = Pl with l = min{n, m}, � = {Pn, Xn; P∗

n , X∗
n} (an
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operator projection scheme by Proposition 3.7.21) and ϕ : X → X∗ is demicontin-
uous and strongly monotone in the sense that

〈ϕ(u) − ϕ(y), u − y〉 � ϑ(||u − y||)||u − y||

with ϑ : R+ → R+ a continuous function such that ϑ(0) = 0, ϑ(r) > 0 for all r > 0,
then ϕ ∈ A�(X, X∗).

Proof Let {um}m�1, um ∈ Xm for all m � 1, be a bounded sequence and assume that
P∗

m(ϕ(um)) → y∗ in X∗. Because of the reflexivity of X and by passing to a suitable

subsequence if necessary, we may assume that um
w→ u0 in X . We have

lim sup
m→∞

ϑ(||um − u0||)||um − Pm(u0)||
� lim sup

m→∞
〈
P∗

m(ϕ(um)) − P∗
m(ϕ(Pn(u0))), um − Pn(u0)

〉
= 〈y∗ − ϕ(Pn(u0)), u0 − Pn(u0)

〉→ 0 as n → ∞
⇒ um → u0 in X and ϕ(u0) = y∗.

The proof is now complete. �

Note that ±i ∈ A∏(X) (i being the identity map on X ). But 0 /∈ A∏(X) and so
A∏(X) is not a linear space. However, it is clear that if ϕ ∈ A∏(X) and λ �= 0, then
λϕ ∈ A∏(X). Also, we have

Proposition 3.7.26 If X, Y are Banach spaces, D ⊂ X,
∏ = {Pn, Xn; Qn, Yn} is

an operator projection scheme, ϕ ∈ A∏(D, Y ) and ψ : D → Y is compact, then
ϕ + ψ ∈ A∏(D, Y ).

Proof Let {un}n�1 ⊆ D be a bounded sequence and Qn((ϕ + ψ)(un)) → y in Y .
Then we can find a subsequence {um} of {un} such that ψ(um) → ŷ in Y . Then

||Qm(ψ(um)) − ŷ|| = ||Qm(ψ(um)) − Qm(ŷ)|| + ||Qm(ŷ) − ŷ|| → 0

⇒ Qm(ϕ(um)) → y − ŷ in Y.

Since ϕ is A-proper, we can find a subsequence {unk }k�1 of {un}n�1 such that
unk → in X . Then ϕ(u) = y − ŷ. Also, ψ(unk ) → ψ(u) = ŷ in Y . Therefore

(ϕ + ψ)(u) = y,

which completes the proof. �

Proposition 3.7.27 If X, Y are Banach spaces, D ⊆ X is closed and bounded,
∏ =

{Pn, Xn; Qn, Yn} is an operator projection scheme on (X, Y ) and ϕ ∈ A∏(D, Y ),
then ϕ is closed (that is, maps closed sets to closed sets) and proper (see Definition
2.2.1).
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Proof Let C ⊂ D be closed and assume that ϕ(un) → y in X with un ∈ C for all
n � 1. From Definition 3.7.15, we have Pm(un) → un in X as m → ∞ for all n � 1
and ϕ(Pm(un)) → ϕ(un) in X as m → ∞ for all n � 1. So, given n ∈ N, we can
find mn � n such that

||un − Pmn (un)|| � 1

n
and ||ϕ(un) − ϕ(Pmn (un))|| � 1

n
. (3.106)

Let vn = Pmn (un) for all n � 1. From (3.106) it follows that

||un − vn|| → 0 and ||ϕ(un) − ϕ(vn)|| → 0 as n → ∞. (3.107)

Therefore

||Qmn (ϕ(vn)) − y|| = ||Qmn (ϕ(vn)) − Qmn (ϕ(un))|| + ||Qmn (ϕ(un)) − Qmn (y)||
+||Qmn (y) − y|| → 0 as n → ∞ (see (3.107)).

Because ϕ is A-proper we can find a subsequence {vnk }k�1 of {vn}n�1 such that
vnk = Pmnk

(unk ) → u ∈ D in X and ϕ(u) = y. But then (3.107) implies that

unk → u in X and u ∈ C (since C is closed)

⇒ ϕ(u) = y ∈ ϕ(C) and so ϕ is closed.

Next, we show thatϕ is proper. So, let K ⊆ Y be compact and {un}n�1 ⊂ ϕ−1(K ).
Thenϕ(un) ∈ K for all n � 1 and sowemay assume thatϕ(un) → y ∈ K inY . Then
reasoning as in the first part of the proof, we can produce a subsequence {unk }k�1 of
{un}n�1 such that unk → u ∈ D in X and ϕ(u) = y. Therefore u ∈ ϕ−1(K ) and we
conclude that ϕ−1(K ) is compact, that is, ϕ is proper. �

Corollary 3.7.28 If X, Y are Banach spaces, D ⊆ X is closed and bounded,
∏ =

{Pn, Xn; Qn, Yn} is an operator projection scheme on (X, Y ), ϕ ∈ A∏(D, Y ), C ⊆
D is closed and ϕ(u) �= y for all u ∈ ∂C, then there exists a c > 0 such that ||ϕ(u) −
y|| � c for all u ∈ ∂C.

Proof From Proposition 3.7.27 we know thatϕ(∂C) ⊆ Y is closed. Suppose that the
result is not true. Then we can find {un}n�1 ⊆ ∂C such that ||ϕ(un) − y|| < 1

n . So,
ϕ(un) → y in Y hence y ∈ ∂�, which contradicts the hypothesis that y /∈ ϕ(∂C).
�

The next theorem is an important surjectivity result for A-proper maps and can be
viewed as the counterpart of Theorem 2.8.5 (see also Theorem 2.8.6) when maximal
monotonicity is replaced by A-properness.

Theorem 3.7.29 If X, Y are Banach spaces,
∏ = {Pn, Xn; Qn, Yn} is an operator

projection scheme on (X, Y ) and ϕ : X → Y is a continuous map such that

||(Qn ◦ ϕ)(u) − (Qn ◦ ϕ)(v)|| � ϑ(||u − v||) for all u, v ∈ X and all n � 1
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with ϑ : R+ → R+ a continuous function, ϑ(0) = 0, ϑ(r) > 0 for all r > 0 and
ϑ(r) → +∞ as r → +∞, then ϕ ∈ A∏(X, Y ) if and only if ϕ is surjective.

Proof ⇒: Evidently Qn ◦ ϕ is injective, continuous and ||(Qn ◦ ϕ)(u)|| → +∞ as
||u|| → ∞. From Theorem 3.1.48 it follows that (Qn ◦ ϕ)(Xn) is open in Xn . We
claim that (Qn ◦ ϕ)(Xn) is also closed in Xn . Indeed, if (Qn ◦ ϕ)(um) → y in Xn as
m → ∞, then from the coercivity of Qn ◦ ϕwe have that {um}m�1 ⊆ Xn is bounded.
So, we may assume that um → u in Xn and then (Qn ◦ ϕ)(u) = y. This proves that
(Qn ◦ ϕ)(Xn) is closed. The connectedness of Xn implies that (Qn ◦ ϕ)(Xn) = Xn

for all n � 1 (that is, Qn ◦ ϕ is surjective for every n � 1).
So, for every y ∈ Y , there exists a unique un ∈ Xn such that

(Qn ◦ ϕ)(un) = Qn(y) for all n � 1

⇒ (Qn ◦ ϕ)(un) → y in Y as n → ∞.

From the hypothesis on (Qn ◦ ϕ)(·), it follows that {un}n�1 ⊆ X is bounded.
Because ϕ is A-proper, we can find a subsequence {unk }k�1 of {un}n�1 such that

unk → u in X and ϕ(u) = y.

Evidently, u ∈ X is unique.
⇐: Let {un}n�1 ⊂ X be bounded and assume that (Qn ◦ ϕ)(un) → y in Y . Since

ϕ is surjective, there exists a u ∈ X such that ϕ(u) = y. Since Pn(u) → in X , we
have that (Qn ◦ ϕ)(Pn(un)) → ϕ(u) = y in Y . From our hypothesis on Qn ◦ ϕ, we
have

ϑ(||un − Pn(u)||) � ||(Qn ◦ ϕ)(un) − (Qn ◦ ϕ)(Pn(u))||
� ||(Qn ◦ ϕ)(un)

′ − y|| + ||(Qn ◦ ϕ)(Pn(u)) − Qn(y)||
+ ||Qn(y) − y|| → 0

⇒ ||un − Pn(u)|| → 0
⇒ un → u in X and so we conclude that ϕ ∈ A∏(X, Y ).

This completes the proof. �

Corollary 3.7.30 If X, Y are Banach spaces,
∏ = {Pn, Xn; Qn, Yn} is an operator

projection scheme and A ∈ L (X, Y ), then the following statements are equivalent

(a) A is injective and A-proper;
(b) A(X) = Y and ||(Qn ◦ A)(u)|| � c||u|| for some c > 0 and all n � 1.

Proof (a)⇒(b): Suppose that the equicoercivity of {Qn ◦ ϕ}n�1 is not true. Then we
can find {un}n�1 ⊆ ∂B X

1 = {u ∈ X : ||u|| = 1} such that ||A(un)|| < 1
n for all n � 1.

Since A is A-proper,we canfinda subsequence {unk }k�1 of {un}n�1 such thatunk → u
in X and A(u) = 0. The injectivity of A implies u = 0, a contradiction to the fact
that ||u|| = 1. This proves that there exists a c > 0 such that ||(Qn ◦ A)(u)|| � c||u||
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for all u ∈ X and all n � 1 (equicoercivity). Invoking Theorem 3.7.29, we conclude
that A is surjective

(b) ⇒ (a) : This follows from Theorem 3.7.29, with ϑ(r) = cr.

The proof is now complete. �

Proposition 3.7.31 If X is a reflexive Banach space with a projection scheme
{Pn, Xn}n�1, � ⊂ X is bounded open and ϕ : � → X∗ is a bounded, continuous,
(S)+-map, then ϕ ∈ A∏(�, X∗) with

∏ = {Pn, Xn; P∗
n , X∗

n}.
Proof Let un ∈ � ∩ Xn and suppose that (P∗

n ◦ ϕ)(un) → u∗ in X∗. Since � is

bounded we may assume that un
w→ u in X .

For fixed v ∈ X , we have

| 〈ϕ(un) − u∗, un − Pn(v)
〉 | = | 〈ϕ(un) − u∗, Pn(un) − Pn(v)

〉 |
= | 〈P∗

n (ϕ(un)) − P∗
n (u∗), un − v

〉 |
� ĉ||P∗

n (ϕ(un)) − P∗
n (u∗)||∗

with ĉ = sup
n�1

�||un|| + ||v||] .

Note that

〈ϕ(un), un − v〉 → 〈
u∗, u − v

〉
⇒ 〈ϕ(un), un − u〉 → 0 (choosing v = u)

⇒ un → u in X (since ϕ is an (S)+-map.

Then ϕ(un) → ϕ(u) in X∗ and so

||P∗
n (ϕ(un)) − ϕ(u)||∗ � ||P∗

n (ϕ(un)) − P∗
n (ϕ(u))||∗ + ||P∗

n (ϕ(u)) − ϕ(u)||∗
⇒ P∗

n (ϕ(un)) → ϕ(u) in X∗ and so ϕ(u) = u∗

⇒ ϕ ∈ A∏(�, X∗).

The proof is now complete. �

Corollary 3.7.32 If X is a reflexive Banach space with a projection scheme {Pn, Xn},
� ⊆ X is bounded open and ϕ : � → X∗ is bounded continuous and

〈ϕ(u) − ϕ(v), u − v〉 � ϑ(||u − v||) for all u, v ∈ � (3.108)

with ϑ : R+ → R+ continuous, ϑ(0) = 0, ϑ(r) > 0, for all r > 0 and ϑ(r) → +∞
as r → +∞, then ϕ ∈ A∏(�, X∗) where

∏ = {Pn, Xn; P∗
n , X∗

n}.
Proof Clearly (3.108) implies that ϕ is (S)+ and so we can apply
Proposition 3.7.31. �
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Proposition 3.7.33 If X is a reflexive Banach space normed in such a way that both
X and its dual X∗ are locally uniformly convex (see Theorem 2.7.36), {Pn, Xn} is
a projection scheme on X, and J : X → X∗ is the corresponding duality map, then
J ∈ A∏(X, X∗) with

∏ = {Pn, Xn; P∗
n , X∗

n}.
Proof Consider a bounded sequence {un}n�1 ⊆ X with un ∈ Xn for all n � 1 and
assume that

(P∗
n ◦ J )(un) → u∗ in X∗ as n → ∞. (3.109)

We may assume that un
w→ v in X as n → ∞. We have

〈J (y) − J (v), y − v〉 =(||y|| − ||v||)2 + (||J (y)||∗||v|| − 〈J (y), v〉)
+ (||J (v)||∗||y|| − 〈J (v), y〉)

�(||y|| − ||v||)2 for all y, v ∈ X

⇒ 〈J (un) − J (Pn(u)), un − Pn(u)〉 � (||un|| − ||Pn(u)||)2. (3.110)

Since J : Xn → X∗
n , we have P∗

n (J (un)) = J (un) for all n � 1, hence

J (un) → u∗ in X∗ as n → ∞ (see (3.109)). (3.111)

Also, from Proposition 2.7.33, we know that J is a homeomorphism. So,

J (Pn(u)) → J (u) in X∗ as n → ∞. (3.112)

If we return to (3.110), pass to the limit and use (3.111) and (3.112), we obtain

||un|| − ||Pn(u)|| → 0

⇒ ||un|| → ||u||. (3.113)

But X has the Kadec–Klee property (see Remark 2.7.30). So, from (3.113) and
since un

w→ u in X as n → ∞, we infer that un → u in X . Then J (un) → J (u) in
X∗ as n → ∞ (see Proposition 2.7.33). Hence

||P∗
n (J (un)) − J (u)||∗ � ||P∗

n (J (un)) − P∗
n (J (u))||∗ + ||P∗

n (J (u)) − J (u)||∗
⇒ P∗

n (J (un)) → J (u) in X∗ as n → ∞
⇒ J (u) = u∗ (see (3.109)).

Therefore J ∈ A∏(X, X∗). �
The next lemma is important for the definition of a degree for A-proper maps.

Lemma 3.7.34 If X, Y are Banach spaces,
∏ = {Pn, Xn; Qn, Yn} is an opera-

tor projection scheme on (X, Y ), � ⊆ X is bounded open, ϕ ∈ A∏(�, Y ) and
y /∈ ϕ(∂�), then there exist n0 ∈ N and c > 0 such that
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||ϕn(u) − y|| � c for all u ∈ ∂(� ∩ Xn) and all n � n0.

Proof We argue by contradiction. So, suppose that the lemma is not true. Then we
can find un ∈ ∂(� ∩ Xn) such that (Qn ◦ ϕ)(un) → y in Y . Since ϕ is A-proper, we
can find a subsequence {unk }k�1 of {un}n�1 such that unk → u ∈ � in X as k → ∞
and ϕ(u) = y. Evidently u ∈ ∂� and so y ∈ ϕ(∂�), a contradiction. �

Definition 3.7.35 Let X, Y beBanach spaces,
∏ = {Pn, Xn; Qn, Yn} be an operator

projection scheme with Xn, Yn oriented, � ⊆ X be bounded open, ϕ ∈ A∏(�, Y )

and ξ /∈ ϕ(∂�). We define a multivalued degree on the triple (ϕ,�, ξ) by setting

dA(ϕ,�, ξ) = {k ∈ Z ∪ {±∞} : d(Qn ◦ ϕ,� ∩ Xn, Qn(ξ)) → k as n → ∞}.

Remark 3.7.36 Lemma 3.7.34 guarantees that for large n � 1 we have Qn(ξ) /∈
(Qn ◦ ϕ)(∂(� ∩ Xn)) and so in the above definition the Brouwer degree d(Qn ◦
ϕ,� ∩ Xn, Qn(ξ))makes sense.Also, if k ∈ Z, thend(Qn ◦ ϕ,� ∩ Xn, Qn(ξ)) = k
for all large n � 1.

The new degree exhibits the usual properties. Only the domain additivity will hold
in special cases, since there is no reasonable addition on Z ∪ {±∞}.
Theorem 3.7.37 If X, Y are Banach spaces,

∏ = {Pn, Xm; Qn, Yn} is an operator
projection scheme on (X, Y ) with Xn, Yn oriented and

τA = {(ϕ,�, ξ) : � ⊆ Xis bounded,ϕ ∈ A∏(�, Y ), ξ /∈ ϕ(∂�)},

then there exists a map dA : τA → 2Z∪{±∞} such that

(a) Normalization: dA(ϕ,�, ξ) �= ∅.
(b) Homotopy Invariance: if h : [0, 1] × � → Y is such that h(·, x) is continuous on

[0, 1] uniformly with respect to u ∈ � and h(t, ·) ∈ A∏(�, Y ) for all t ∈ [0, 1]
then for ξ /∈ h([0, 1] × ∂�)

dA(h(t, ·),�, ξ)

is independent of t ∈ [0, 1].
(c) Solution Property: if dA(ϕ,�, ξ) �= {0}, then there exists a u ∈ � such that

ϕ(u) = ξ.
(d) Odd Maps: if � is symmetric with 0 ∈ �, ϕ is odd on � and 0 /∈ ϕ(∂�), then

for all m ∈ Z, 2m /∈ dA(ϕ,�, 0).

Proof (a) Let n0 � 1 be as postulated by Proposition 2.7.31. We consider the
sequence

{d(Qn ◦ ϕ,� ∩ Xn, Qn(ξ))}n�n0 .

If this sequence is bounded, then there exists a k ∈ Zwith k ∈ dA(ϕ,�, ξ). Otherwise
either +∞ or −∞ are in dA(ϕ,�, ξ).
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(b) It suffices to show that

Qn(ξ) /∈ (Qn ◦ h)([0, 1] × ∂(� ∩ Xn)) for all large n � 1, (3.114)

since in this case, by virtue of the homotopy invariance property of the Brouwer
degree, d((Qn ◦ h),� ∩ Xn, Qn(ξ)) is independent of t ∈ [0, 1]. So, suppose that
(3.114) is not true. Thenwe can find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ ∂(� ∩ Xn) such
that

tn → t and (Qn ◦ h)(tn, un) = Qn(ξ) for all n � 1. (3.115)

By hypothesis h(tn, ·) → h(t, ·) uniformly on �, and we have

h(tn, un) − h(t, un) → 0 in Y as n → ∞

⇒ ||(Qn ◦ h)(tn, un) − ξ|| → 0 as n → ∞ (see (3.115)).

Since h(t, ·) ∈ A∏(�, Y ), we can find a subsequence {unk }k�1 ⊆ {un}n�1 such that
unk → u ∈ ∂� in X as k → ∞ and h(t, u) = ξ, hence ξ ∈ h([0, 1] × ∂�), a con-
tradiction.

(c) If dA(ϕ,�, ξ) �= {0}, then d(Qn ◦ ϕ,� ∩ Xn, Qn(ξ)) �= 0 for some sequence.
From the solution property of the Brouwer degree, we can find un ∈ � ∩ Xn such
that

(Qn ◦ ϕ)(un) = Qn(ξ).

We have Qn(ξ) → ξ in Y as n → ∞. Since ϕ ∈ A∏(�, Y ), we can find a subse-
quence {unk }k�1 of {un}n�1 such that unk → u ∈ � and ϕ(u) = ξ. Evidently, u ∈ �.

(d) Note that Qn ◦ ϕ is odd. So, by Theorem 3.1.44 d(Qn ◦ ϕ,� ∩ Xn, 0) is odd
for all n � 1. �

Proposition 3.7.38 If X is a reflexive Banach space normed in such a way such
that both X and X∗ are locally uniformly convex (see Theorem 2.7.36), {Pn, Xn} is
a projection scheme on X and J : X → X∗ is the duality map, then for every r > 0
and u∗ ∈ X∗, we have

dA(J, Br , u∗) �= {0} if ||u∗||∗ < r and dA(J, Br , u∗) = {0} if ||u∗||∗ > r.

Proof First suppose that ||u∗||∗ < r . Let h(t, u) = J (u) − tu∗ for all (t, u) ∈
[0, 1] × Br . From Proposition 3.7.26 and 3.7.33, we have that h(t, ·) ∈ A∏(Br , X∗)
for all t ∈ [0, 1] with

∏ = {Pn, Xn; P∗
n , X∗

n}. Moreover, h(·, u) is continuous on
[0, 1] uniformly with respect to u ∈ Br . Also, we claim that h(t, u) �= 0 for all
(t, u) ∈ [0, 1] × ∂Br . Indeed, if (t0, u0) ∈ [0, 1] × ∂Br and h(t0, u0) = 0, then
J (u0) = t0u∗, hence ||J (u0)||∗ = ||u0|| = r = t0||u∗||∗ < r , a contradiction. There-
fore, we can apply Theorem 3.7.37(b) and have

dA(J, Br , 0) = dA(J − u∗, Br , 0) = dA(J, Br , u∗). (3.116)
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The duality map J is odd. So, Theorem 3.7.37(d) implies that

dA(J, Br , 0) �= {0}
⇒ dA(J, Br , u∗) �= {0} for all ||u∗||∗ < r.

Next, suppose that ||u∗||∗ > r . So, J (u) �= u∗ for all u ∈ ∂Br . If dA(J, Br , u∗) �=
{0}, then according to Theorem 3.7.37(c), we can find u ∈ Br such that J (u) = u∗,
hence r = ||J (u)||∗ = ||u∗||∗ > r , a contradiction. So, we conclude that

dA(J, Br , u∗) = {0} for all ||u∗||∗ > r.

The proof is now complete. �

Remark 3.7.39 Suppose that X is a Banach space and
∏ = {Pn, Xn} is a projection

scheme on X . Let � ⊆ X be bounded open and ϕ : � → X a compact map. From
Proposition 3.7.26 we have that I − ϕ ∈ A∏(�). We claim that

dA(I − ϕ,�, ξ) = dL S(I − ϕ,�, ξ).

Indeed, note that Pn(ϕ(u)) → ϕ(u) uniformly on �. Since ϕ(�) is compact,
given ε > 0, we can find {uk}m

k=1 ⊆ � such that

ϕ(�) ⊆
m⋃

k=1

Bε(ϕ(uk)).

Also, we can find n0 = n0(ε) � 1 such that

||Pn(ϕ(uk)) − ϕ(uk)|| � ε for all n � n0, all k ∈ {1, ..., m}.

Then

sup
u∈�

||Pn(ϕ(u)) − ϕ(u)||
� sup

u∈�

||Pn(ϕ(u)) − Pn(ϕ(uk0))|| + ||Pn(ϕ(uk0)) − ϕ(uk0)||
+||ϕ(uk0) − ϕ(u)|| � 3ε

with k0 ∈ {1, ..., m} such that ϕ(u) ∈ Bε(ϕ(uk0)). Then for large n � 1 we have
d(Pn ◦ I − Pn ◦ ϕ,� ∩ Xn, Pn(ξ)) = constant = dL S(I − ϕ,�, ξ) (see Proposi-
tion 3.1.43).

Therefore, we have seen that dA extends the Leray–Schauder degree.
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3.8 Index of a ξ-Point

In this section, we introduce the notion of the index of a ξ-point u0 ∈ �.
So, let � ⊆ R

N be bounded open, ϕ ∈ C(�,RN ) and let u0 be an isolated ξ-
point, namely ϕ(u0) = ξ ∈ R

N and there exists a neighborhood U of u0 such that
U ∩ ϕ−1(ξ) = {u0}. LetS = {U : U is a neighborhood of u0 such that U contains
no other ξ-point of ϕ}.

Definition 3.8.1 We define the index of ϕ with respect to the pair (u0, ξ) by

i(ϕ, u0, ξ) = d(ϕ, U, ξ) for all u ∈ S .

Remark 3.8.2 First note that ξ /∈ ϕ(∂�) and so d(ϕ, U, ξ) is well-defined. Also, if
U1, U2 ∈ S , then U = U1 ∪ U2 ∈ S (recall that U = U 1 ∪ U 2). Let K = U 1 ∩
U c

2 . Then K ⊆ U and so K is compact with ξ /∈ ϕ(K ). The excision property of the
Brouwer degree (see Theorem 3.1.25(g)) implies that

d(ϕ, U, ξ) = d(ϕ, U\K , ξ)

= d(ϕ, U ∩ (U
c
1 ∪ U2), ξ)

= d(ϕ, U2, ξ). (3.117)

By exchanging the roles of U1, U2 in the above argument, we also show

d(ϕ, U, ξ) = d(ϕ, U2, ξ)

⇒ d(ϕ, U1, ξ) = d(ϕ, U2, ξ) (see (3.117)).

Hence the definition of the index is independent of the choice of U ∈ S .

Proposition 3.8.3 If � ⊆ R
N is bounded open, ϕ ∈ C1(�,RN ), u0 ∈ �, ϕ(u0) = ξ

and ϕ′(u0) is invertible, then i(ϕ, u0, ξ) = i(ϕ′(u0) − ϕ′(u0)u0, u0, 0).

Proof Since ϕ′(u0) is invertible, we can find c > 0 such that

||ϕ′(u0)u|| � c||u|| for all u ∈ X. (3.118)

Let U be a neighborhood of u0 such that

||ϕ(u) − ξ − ϕ′(u0)(u − u0)|| � c

3
||u − u0|| for all u ∈ U. (3.119)

From (3.118) and (3.119) it is clear that u0 is an isolated ξ-point of ϕ. Let ht (u) =
(1 − t)ϕ(u) + tϕ′(u0)(u − u0) for all t ∈ [0, 1], all u ∈ U and ξ(t) = (1 − t)ξ for
all t ∈ [0, 1]. We have
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||ht(u) − ξ(t)|| � ||ϕ′(u0)(u − u0)|| − (1 − t)||ϕ(u) − ξ − ϕ′(u0)(u − u0)||
� 2c

3
||u − u0|| for all t ∈ [0, 1] (see (3.118), (3.119))

⇒ ξ(t) /∈ ht (∂�) for all t ∈ [0, 1].

The homotopy invariance property of the Brouwer degree implies

d(ϕ, U, ξ) = d(ψ, U, 0) where ψ(u) = ϕ′(u0)(u − u0)

⇒ i(ϕ, u0, ξ) = i(ϕ′(u0) − ϕ′(u0)u0, u0, 0).

The proof is now complete. �

Remark 3.8.4 The importance of the above result comes from the fact that it reduces
the calculation of the index of a map ϕ to that of the index of a linear map, which is
easier to compute.

Proposition 3.8.5 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), ξ /∈ ϕ(∂�) and

ϕ−1(ξ) is finite, then d(ϕ,�, ξ) = ∑
u∈ϕ−1(ξ)

i(ϕ, u, ξ).

Proof Since ϕ−1(ξ) is finite, then every u ∈ ϕ−1(ξ) is an isolated ξ-point of ϕ and
so i(ϕ, u, ξ) is well-defined (see Definition 3.8.1). Suppose that ϕ−1(ξ) = {uk}m

k=1.
Let {Uk}m

k=1 be mutually disjoint open subsets of � such that uk ∈ Uk for all k ∈
{1, ..., m}. Then according to Definition 3.8.1 we have

i(ϕ, uk, ξ) = d(ϕ, Uk, ξ) for all k ∈ {1, ..., m}.

Then from the domain additivity and excision properties, we have

∑
u∈ϕ−1(ξ)

i(ϕ, u, ξ) =
m∑

k=1

i(ϕ, uk, ξ)

=
m∑

k=1

d(ϕ, Uk, ξ)

= d(ϕ,

m⋃
k=1

Uk, ξ) (domain additivity)

= d(ϕ,�\K , ξ) where K = �\
m⋃

k=1

Uk (excision property)

= d(ϕ,�, ξ).

The proof is now complete. �

Proposition 3.8.6 If � ⊆ R
N is bounded open, ϕ ∈ C1(�,RN ), ξ /∈ ϕ(∂�), u0 ∈

ϕ−1(ξ) and ϕ′(u0) is invertible, then u0 is an isolated ξ-point of ϕ and
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i(ϕ, u0, ξ) = (−1)m,

where m is the number of negative eigenvalues of ϕ′(u0), counting multiplicities.

Proof The fact that u0 is an isolated ξ-point of ϕ was established in the proof of
Proposition 3.8.3 (see (3.118), (3.119)). From Proposition 3.8.3, we have

i(ϕ, u0, ξ) = sgn Jϕ(u0),

where Jϕ(u0) is the Jacobian of ϕ at u0 (that is, Jϕ(u0) = det ϕ′(u0)). Let λ1, ...,λN

be the eigenvalues of ϕ′(u0) (counting multiplicities). Then

Jϕ(u0) =
N∏

k=1

λk,

where the complex eigenvalues appear in conjugate pairs λ,λ and so λλ > 0. Hence

sgn Jϕ(u0) = (−1)m

with m being the number of negative eigenvalues of ϕ′(u0). �

An immediate consequence of this proposition is the following result (see also
Corollary 3.1.21).

Corollary 3.8.7 d(−i,�, 0) = (−1)N with i being the identity map on R
N .

Corollary 3.8.8 If A is an invertible N × N matrix (that is, A ∈ GL(RN )),

N = span {u ∈ R
N : (A − λI )k(u) = 0 for some k � 1,λ < 0}

and dim N = m, then d(A,�, 0) = (−1)m.

Remark 3.8.9 So, for every quadratic function ϕ(u) = 1
2 (A(u), u)RN for all u ∈ R

N

with A symmetric N × N matrix such that det A �= 0, we have ϕ′(u) = A(u) and so
i(ϕ, 0, 0) = sgn det A = (−1)m with m being the number of negative eigenvalues
of A, counting multiplicities.

Proposition 3.8.10 If f ∈ C1(RN ), f ′(u) �= 0 for all ||u|| � R and f (u) → +∞
as ||u|| → ∞, then i(ϕ = f ′(0), 0, 0) = 1.

Proof Without any loss of generality wemay assume that f ∈ C∞(RN ) by replacing
f with its mollification fε for ε > 0 small. We consider the Cauchy problem

y′(t) = −ϕ(y(t)), y(0) = x ∈ R
N . (3.120)
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We know that (3.120) admits a unique local flow y(t) = y(t; x). Let g(t) =
f (y(t)). Then

g′(t) = −||ϕ(u(t))||2 � 0

⇒ f (y(t)) � f (x) on the interval of existence of y(·).

The coercivity hypothesis on f (·) implies that y(·) remains bounded and so it is
a global flow (that is, it holds for all t � 0). Without any loss of generality we may
assume that f (x) � 0 (addition of a constant keeps ϕ = f ′ the same). Let

MR = max{ f (u) : ||u|| � R}.

Choose r > R large such that

ϕ(u) � MR + 1 for all ||u|| � r.

Set M̂ = max[ f (u) : ||u|| = r ]. We know that

f (y(t)) � f (x) −
∫ t

0
||ϕ(y(s))||2ds for all t � 0. (3.121)

So, the solutions starting at x ∈ ∂Br satisfy

f (y(t)) � f (x) � M̂ for all t � 0.

Let m̂ = min{||ϕ(u)|| : ||u|| � r, ϕ(u) � M̂}. Then from (3.121) we have

0 � ϕ(y(t)) � ϕ(x) − m̂2t � M̂ − m̂2t provided ||y(t)|| � r.

Therefore ||y(t0)|| � R for some t0 = t0(x) < ϑ = M̂
m̂2 , hence ϕ(y(t0)) � MR .

Let Pt (x) = y(t; x) be the Poincaré map. Then Pϑ(∂Br ) ⊆ Br since

f (Pϑ(x)) � MR � MR + 1 � f (x) for all x ∈ ∂Br .

Finally note that

i(ϕ, 0, 0) = d(ϕ, Br , 0) = d(i − Pϑ, Br , 0) (see Krasnoselskii [250])

⇒ i(ϕ, 0, 0) = 1

since d(i − Pϑ, Br , 0) = 1 via the homotopy invariance property, using the homo-
topy ht (u) = u − t Pϑ(u). �
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3.9 Remarks

3.1: The topological degree was introduced by Brouwer [74–76]. His approach as
well as that of Hopf [213–215] used methods and techniques from combinatorial and
algebraic topology. This approach can also be found in the books of Cronin [131],
Granas and Dugundji [197], and Hatcher [203]. An alternative approach based on
analysis was introduced by Nagumo [313]. This approach uses smooth approxima-
tions of the original vector field and the result of Sard [370] (see Proposition 3.1.17)
concerning the measure of the critical values of a differentiable map. This approach
can be found in the books of Istratescu [222], Krawcewicz and Wu [251] and Niren-
berg [319]. A third approach, also analytic in nature and closely related to the second
one, was proposed by Heinz [205]. This is the approach that we follow here. It is
based on the so-called Kronecker integral (see Definition 3.1.1) and again on Sard’s
theorem. It appears that this is themost popular way of introducing Brouwer’s degree
and can be found in the books of Cioranescu [125], Deimling [142], Denkowski et
al. [143], Lloyd [283], Rabinowitz [345], Schwartz [376] and Zeidler [426].

One natural question that arises about Brouwer’s degree concerns its uniqueness.
If we can establish uniqueness, then we know that it is useless to seek another similar
tool with the same properties. Also, if we have different expressions for the Brouwer
topological degree, then we can guarantee that they are all equivalent and we can
always use the one that ismore suitable for our needs. It turns out that the properties of
normalization, domain additivity and homotopy invariance, define Brouwer’s degree
uniquely.

Theorem 3.9.1 If τ = {(ϕ,�, ξ) : � ⊆ R
N bounded open, ϕ ∈ C(�,RN ), ξ /∈

ϕ(∂�)}, then there exists at most one function d : τ → Z satisfying the normaliza-
tion, domain additivity and homotopy invariance properties. Moreover, these prop-
erties imply that d(A,�, 0) = sgn det A for all A ∈ GL(RN ) and 0 ∈ �.

Remark 3.9.2 The solution property can be obtained as a consequence of the domain
additivity property.

The uniqueness of Brouwer’s degree was first proved independently by Führer
[176] and Amann and Weiss [15]. In fact, Amann and Weiss [15] established the
uniqueness of the Leray–Schauder degree and as a consequence obtained the unique-
ness of Brouwer’s degree in a normed space. For the uniqueness of the degree, see
also the books of Deimling [142, pp. 10–12] and Lloyd [283, pp. 86–88]. We should
also mention that Nagumo [313] asserted that the uniqueness of Brouwer’s degree
can be proved using simplicial approximations.

Another result that we should mention is the so-called product formula, which
relates the degree of the compositionψ ◦ ϕ to those ofψ andϕ separately. For a proof,
we refer to Deimling [142, p. 24] and Lloyd [283, p. 29]. The result is attributed to
Leray [263].

Proposition 3.9.3 If � ⊆ R
N is bounded open, ϕ ∈ C(�,RN ), ψ ∈ C(RN ,RN ),

{Ck}k�1 are the bounded connected components ofRN \ϕ(∂�)and ξ /∈ (ψ ◦ ϕ)(∂�),

then d(ψ ◦ ϕ,�, ξ) = ∑
k�1

d(ϕ,�, Ck)d(ψ, Ck, ξ).
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Remark 3.9.4 Recall that d(ϕ,�, ·) is constant on every connected component of
R

N \ϕ(∂�) (see Theorem 3.1.25(e)). So, for convenience we denote this common
value by d(ϕ,�, Ck).

Theorem 3.1.34 is the celebrated “Brouwer’s fixed point theorem” (see Brouwer
[75]) and has found many applications. We mention one such application, which is
the so-called Perron–Frobenius theorem (see Bellman [41]).

Theorem 3.9.5 If A = (ai j )
N
i, j=1 is an N × N-matrix such that ai j � 0 for all i, j ,

then A has a nonnegative eigenvector û = (uk)
N
k=1, uk � 0, corresponding to a non-

negative eigenvalue.

Remark 3.9.6 This result has an infinite-dimensional counterpart known as the
Krein–Rutman theorem. It is useful in the spectral theory of differential operators
(see Volume 2).Matrices like those in the above theorem are usually called stochastic
matrices.

Theorem 3.9.7 (Krein–Rutman) If X is an ordered Banach space with a solid order
cone K (that is, int K �= ∅) which is total (that is, X = K − K ), λ ∈ Lc(X), A is
positive (that is, A(K ) ⊆ K ) and the spectral radius r(A) = limn→∞ ‖An‖1/n

L > 0,
then r(A) > 0 is an eigenvalue of A with positive eigenvector.

Theorem 3.1.37 is due to Hartman and Stampacchia [202] (see also Kinderlehrer
andStampacchia [234]). Proposition 3.1.43 is a key tool in the definition of theLeray–
Schauder degree and is also known as the Leray–Schauder Lemma (see Leray and
Schauder [266]). Theorem 3.1.44 is due to Borsuk [58], while Theorem 3.1.45 was
conjectured by Ulam and proved by Borsuk [58]. Further discussion of Borsuk’s
theorem and its equivalent formulations can be found in Granas and Dugundji [197]
(Sect. I.5).

3.2: Since the finite-dimensional topological degree of Brouwer turned out to
be a very valuable tool and many problems of interest are infinite-dimensional in
nature, soon mathematicians started looking for infinite-dimensional extensions of
Brouwer’s theory. This was achieved by Leray and Schauder [266], who considered
compact perturbations of the identity. The two key tools in their constructions were
Theorem 2.1.7, due to Schauder [374], which permits the approximation of compact
maps by finite rank maps, and Proposition 3.1.43 (the Leray–Schauder lemma),
which allows one to shift between finite-dimensional spaces without changing the
value of the degreemap. The question ofwhether theBrouwer degree can be extended
in infinite dimensions to all continuous functions was answered in the negative by
Leray [265], who produced an example on the space C[0, 1] (see also Cronin [131]
and Fonseca and Gangbo [172]). The counterexample presented in Example 3.2.1
is due to Kakutani [226]. As we already mentioned the uniqueness of the Leray–
Schauder degree was proved by Amann and Weiss [15]. In this respect, we should
also mention the earlier work of O’Neil [323], who proved that the fixed point index
is uniquely determined by certain basic properties (axioms). His approach was based
on algebraic topology (cohomology theory). An alternative method of proving the
uniqueness of the fixed point index can be found in Brown [95].
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From Definition 3.2.3 it is clear that � ⊆ X need not be bounded. It is enough
to assume that � intersects every finite-dimensional subspace of X in a bounded
subset. Such sets are called “finitely bounded”. So, the whole theory remains valid
if throughout, we replace “bounded” by “finitely bounded”. The whole theory can
also be extended to locally convex spaces (see Leray [265]).

Theorem 3.2.20 is due to Schauder [374] and is the first infinite-dimensional
generalization of the Brouwer fixed point theorem (see Theorem 3.1.34). Proposition
3.2.22 is due to Schaefer [371]. An alternative formulation of Theorem 3.2.16 is the
following:

Theorem 3.9.8 If X is a Banach space, � ⊆ X is bounded open symmetric with
0 ∈ �, ϕ ∈ K (�, X) and

ϕ(u)

||ϕ(u)|| �= ϕ(−u)

||ϕ(−u)|| for all u ∈ ∂�,

then dL S(ϕ,�, 0) is odd.

Another result from the Leray–Schauder degree theory worth mentioning is the
so-called “mod p-theorem” which is useful in asymptotic fixed point theory. The
result is due to Steinlein [391].

Theorem 3.9.9 If X is a Banach space, ϕ : �0 ⊆ X → X, n = pm with p a prime
number and m ∈ Z, there is a bounded open � ⊆ X such that � is contained in the
domain of ϕn, ϕ|�,ϕn|� are compact maps and ϕ({u ∈ � : ϕn(u) = u}) ⊆ �, then
dL S(i − ϕn,�, 0) = dL S(i − ϕ,�, 0) (mod p).

3.3: Proposition 3.3.2 is due toCellina [111] and it was used to prove amultivalued
version of theKakutani fixed point theorem. This propositionwas used byCellina and
Lasota [114] to provide an analytic approach to the definition of the Leray–Schauder
degree for multifunctions. Earlier definitions were provided by Granas [195] (based
on tools from algebraic topology) and byHukuhara [220] (an analytic approach based
on the approximation of F by Hausdorff continuous multifunctions). Extensions to
locally convex spaces can be found in the work of Ma [285]. We should also mention
the work of Lasry and Robert [259], who defined in a finite-dimensional context a
degree for multifunctions F(·) with unbounded values. Their work was extended
to multifunctions with values in a uniformly convex Banach space by De Blasi and
Myjak [139].

3.4: The degree for (S)+-maps is useful because it can be used in the definition of
the degree for other operators of monotone type. The first degree for (S)+-operators
was produced by Skrypnik [382] (see also Skrypnik [386]). Browder [88] (see also
[87, 89, 90]) produced a degree theory for (S)+-maps. Both definitions were based
on Brouwer’s degree, but their constructions differ. In particular, Skrypnik [386]
considers a separable reflexive Banach space X and {ek}k�1 a fundamental set (that
is, if x∗ ∈ X∗ and 〈x∗, ek〉 = 0, then x∗ = 0, see Lindenstrauss and Tzafriri [272,
p. 43]) with linear independent elements. Let
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Xn = span {ek}n
k=1

and let� ⊆ X be bounded open and ϕ : � → X∗ a bounded, demicontinuous (S)+-
map. Let ϕn : � ∩ Xn → Xn be the finite-dimensional approximation of ϕ defined
by

ϕn(u) =
m∑

k=1

〈ϕ(u), ek〉 ek for all u ∈ � ∩ Xn.

Skrypnik [382] establishes that if 0 /∈ ϕ(∂�), then d(ϕn,�,∩Xn, 0) stabilizes for
large n � 1 and so it can be used to define a degree for the triple (ϕ,�, 0) depending
on the fundamental set {ek}k�1. In fact, exploiting the uniqueness of the degree for
(S)+-maps due to Browder [87] and Berkovits and Mustonen [47], we can show that
the definition of Skrypnik is in fact independent of the choice of the fundamental set
{ek}k�1. The earlier justification provided by Skrypnik in this direction appears to
have a gap.

Browder [88] uses different approximations ofϕ. His approximations are the usual
Galerkin approximations of ϕ. So, let F ∈ F and let j : F → X be the injection
map and j∗ : X∗ → F∗ its adjoint. We define

ϕF (u) = j∗(ϕ(u)) for all u ∈ � ∩ F.

So, ϕF : � ∩ F → F∗, that is, the approximations of the Browder map F into its
dual F∗, and for this reason the Leray–Schauder lemma is not available. The whole
construction then depends on the existence and uniqueness of a degree (satisfying the
usual properties andwith the dualitymap being the normalizingmap) for theGalerkin
approximations of bounded demicontinuous (S)+-maps from a finite-dimensional
Banach space to its dual.

Still a third distinct construction was provided by Berkovits and Mustonen [46,
47] and it is based on the Leray–Schauder degree and the Browder–Ton embedding
theorem. This embedding theorem established by Browder and Ton [94] (see also
Berkovits [45]) says that for every separable reflexiveBanach space X , there is a sepa-
rable Hilbert space H and a compact injective linear map ϑ : H → X such that ϑ(H)

is dense in X . Identifying H with its dual, we can consider the adjoint ϑ∗ : X∗ → H
of ϑ. Then Berkovits and Mustonen [47] consider the following approximation of ϕ

ϕε = i + 1

ε
(ϑ ◦ ϑ∗ ◦ ϕ).

The mapϕε : � ⊆ X → X has the form of a compact perturbation of the identity.
So, we use the Leray–Schauder degree. It can be proved that if 0 /∈ ϕ(∂�), then
dL S(ϕε,�, 0) stabilizes for ε > 0 small and so it can be used to define a degree for
the triple (ϕ,�, 0). This degree is unique.

Here the construction of the degree that we present is due to Oinas [322]. Note
that this construction does not require boundedness of ϕ and the separability of X
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provided we fix a basis on F0. If X is also separable, then the degree is independent
of the basis we fix on F0. Propositions 3.4.18, 3.4.19 and 3.4.20 are due to Motreanu
et al. [309] and extend earlier finite-dimensional results of Amann [14].

3.5: The resolvent andYosida approximation for a generalmaximalmonotonemap
A : X → 2X∗

(see Definition 2.5.1) were introduced by Brezis et al. [67]. The degree
dM on triples (ϕ + A,�, 0), withϕ : � → X∗ an (S)+-map and A : X → 2X∗

max-
imal monotone (see Definition 3.5.6), was defined by Browder [87]. Extensions to
maps of the form ϕ + A + G with G multivalued can be found in Hu and Papageor-
giou [217, 218]. We mention also the work of Kobayashi and Otani [243] involving
subdifferential operators. Some other works in this direction are those by Aizicovici
et al. [5, 6], Kien et al. [232], Kobayashi and Otani [244], andWang and Huang [412,
413].

3.6: This section is based on the work of Kobayashi and Otani [243]. The degree
defined here is useful in the study of problems with unilateral constraints (see also
Kobayashi and Otani [241, 242, 244]).

3.7: The Kuratowski measure of noncompactness α(·) (see Definition 3.7.1(a))
was introduced by Kuratowski [253] for topological purposes. More precisely, he
established the following generalization of Cantor’s intersection theorem (see, for
example Denkowski et al. [143, p. 46]). Note that the notion of measure of noncom-
pactness α(·) makes perfect sense in a metric space.

Proposition 3.9.10 A metric space X is complete if and only if for every decreasing
sequence {Cn}n�1 of closed sets with α(Cn) → 0 as n → ∞, we have

⋂
n�1

Cn is

nonempty and compact.

The Hausdorff or ball measure of noncompactness was in fact introduced by
Goldenstein et al. [192].

For α(·) the properties in Proposition 3.7.6 were proved by Darbo [136]. Maps
which are γ-contractions were first considered by Darbo [136] and Goldenstein et
al. [192], while γ-condensing maps were first considered by Furi and Vignoli [177],
Nussbaum [320, 321] and Sadovskii [367, 368]. For the corresponding notions for
multifunctions we refer to Kamenskii et al. [227]. The degree dC in Definition 3.7.13
is due toNussbaum [320].Anice application of this degree is the following invariance
of domain result.

Proposition 3.9.11 If X is a Banach space, � ⊆ X is open, ϕ : � → X is locally
γ-condensing and i − ϕ is locally one-to-one, then i − ϕ is open.

The A-proper maps (see Definition 3.7.22) were introduced by Browder and Pet-
ryshyn [92]. These operators and the theory built on them require projection schemes.
However, most separable Banach spaces that arise in applications exhibit such pro-
jection schemes (see Proposition 3.7.17). More about projection schemes can be
found in Browder [85, 86] and Petryshyn [337, 340]. Theorem 3.7.29 is taken from
Petryshyn [337]. In general most of the properties of A-proper maps can be found in
theworks of Petryshyn [337–340]. Definition 3.7.35 is due to Browder and Petryshyn
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[92, 93]. The degree theory of A-proper maps is also discussed in the books of Cio-
ranescu [125], Deimling [142] and Lloyd [283].

3.8: The index at an isolated ξ-point is as old as the degree theory and it is
discussed in the books of Deimling [142], Lloyd [283], Rothe [364] and Zeidler
[426]. In Chap.4, we will discuss an infinite-dimensional analog based on the Leray–
Schauder degree, the fixed point index.



Chapter 4
Partial Order, Fixed Point Theory,
Variational Principles

To know that you do not know is the best.
To pretend to know when you do not know is a disease.

Lao Tzu

Many problems arising in applications impose nonnegativity requirements on the
solutions that we obtain. What we understand by nonnegativity can be described
using the concept of a cone. A cone is a special closed and convex subset of the
underlying Banach space (the state space). Using the cone we can define a relation
“�” on the space which allows the comparison of different elements, which is more
precise than the crude estimates produced using the norm. The ordering � induced
by the cone leads to an extension of the fundamental concept of monotonicity of a
map (increasing or decreasing map). So, studying nonlinear problems in terms of
partial orders induced by means of order cones is an important part of nonlinear
analysis and leads to important results. In the first section of this chapter, we deal
with cones and the partial order they induce on the space. We investigate how this
order structure interacts with the metric, topological and linear structure of the space.
One part of Nonlinear Analysis where the order structure leads to remarkable results
is fixed point theory. Fixed point theorems are one of the basic mathematical tools
used in showing the existence of solution concepts in various problems from partial
differential equations all the way to mathematical economics and game theory. There
is a rough classification of fixed point theorems into three basic classes:

(a) Metric fixed point theorems.
(b) Topological fixed point theorems.
(c) Order fixed point theorems.

In this first class, we include all those results in which geometric conditions on the
underlying spaces and/or the maps, making use of metric structures, are involved.
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In the second class belong all those results that depend in a more fundamental way
on the topological structure of the space. The prototype results are the Brouwer and
Schauder fixed point theorems, which we encountered in Chap. 3 as by-products of
degree theory. Finally, in the third class belong all those fixed point results which
exploit the order structure induced by a cone. Of course this classification is not
strict and there are no clear boundaries separating the three classes. From fixed point
theory, we pass to the study of the minimization method. We pay attention to the
existence of minimizers and not their regularity, which will be discussed later in the
framework of nonlinear boundary value problems (see Volume 2). So, we formu-
late variational principles, starting with the well-known Lax–Milgram theorem, a
basic tool in the study of semilinear boundary value problems. In parallel we also
discuss Galerkin approximations, which we already used in degree theory. Then we
formulate the Ekeland variational principle and examine some of its many applica-
tions. The Ekeland variational principle turned out to be equivalent to some other
important results of nonlinear analysis, which we discuss in this chapter (Caristi’s
fixed point theorem, the Takahashi variational principle, the drop theorem and the
Brezis–Browder order principle). Finally we discuss Young measures, which are a
basic tool in the relaxation of minimization problems.

4.1 Cones and Partial Order

Westartwith a definition that extends to generalBanach spaces the notionof a positive
cone in R

N , that is, of R
N+ = {û = (uk)

N
k=1 ∈ R

N : uk � 0 for all k ∈ {1, · · · , N }}.
Definition 4.1.1 Let X be a Banach space. A nonempty, closed and convex set
K ⊆ X is said to be a cone if it satisfies the following conditions:

(a) If u ∈ K and λ � 0, then λu ∈ K (that is, λK ⊆ K for all λ � 0).
(b) If u,−u ∈ K , then u = 0 (that is, K ∩ (−K ) = {0}).

A cone induces a partial order � on X as follows:

“u � v if and only if v − u ∈ K ” (so the elements of K are called positive).

For concepts related to this partial order, we use the usual terminology. So, a
sequence {un}n�1 ⊆ X is said to be monotonic if

un � un+1 (increasing) or un � un+1 (decreasing) for all n � 1.

Also, a set C ⊆ X is said to be bounded above (or below) with respect to the
partial order � if there exists a y ∈ X such that

u � y for all u ∈ C (or y � u for all u ∈ C).
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By supC (resp. inf C) we denote the least upper bound of C (resp. the greatest
lower bound of C), if it exists.

There are many geometric and topological properties of cones which in finite-
dimensional spaces are evident, but need not hold in infinite-dimensional spaces.
This leads to the following concepts:

Definition 4.1.2 Let X be a Banach space, K ⊆ X a cone and denote by � the
partial order on X induced by the cone K .

(a) We say that K is solid if int K �= ∅.
(b) We say that K is generating (or reproducing) if X = K − K and total if X =

K − K .

(c) We say that K is normal if there exists a δ > 0 such that

u, y ∈ K , ||u|| = ||y|| = 1 =⇒ ||u + y|| � δ.

(d) We say that the norm on X is monotonic if 0 � u � y implies ||u|| � ||y|| and
semimonotonic if 0 � u � y implies ||u|| � ξ||y|| for some ξ > 0.

(e) We say that K is regular if every increasing and bounded above sequence con-
verges (that is, if {un}n�1 ⊆ X and u1 � u2 � · · · � un � · · · � y for all n � 1,
then un → u in X ).

(f) We say that K is fully regular if every increasing and norm bounded sequence
converges (that is, if {un}n�1 ⊆ X and u1 � u2 � · · · � un � · · · and
sup
n�1

||un|| < ∞, then un → u in X ).

(g) We say that K is minihedral if for any u, y ∈ X , sup{u, y} exists (recall that by
supC we denote the least upper bound of C ⊆ X ).

(h) We say that K is strongly minihedral if supC exists for any set C ⊆ X which is
bounded from above.

Remark 4.1.3 Geometrically, the notion of normality means that the angle between
two positive unit vectors has to be bounded away from π. So, a normal cone cannot
be too large. The cone K is regular if and only if every decreasing and bounded
from below sequence converges in X . Similarly, the cone K is fully regular if and
only if every decreasing and norm bounded sequence converges in X . Finally, K is
minihedral (resp. strongly minihedral) if and only if inf{u, y} exists for any u, y ∈ X
(resp. inf C exists for any C ⊆ X bounded from below).

Proposition 4.1.4 If X is a Banach space and K ⊆ X is a solid cone, then K is
generating.

Proof Let e ∈ int K and δ > 0 such that Bδ(e) ⊆ K . For u ∈ X\{0}, we have e +
δ u

||u|| ∈ K and

u = ||u||1
δ

(
e + δ

u

||u||
)

− ||u||
δ

e ∈ K − K .

The proof is now complete. �
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Remark 4.1.5 The converse in not true in general. Consider L p[0, 1] (1 � p < ∞)

and let K = {u ∈ L p[0, 1] : u(t) � 0 a.e. on [0, 1]}. Evidently, K is generating since
u = u+ − u− (with u+ = max{u, 0} and u− = max{−u, 0}), but int K = ∅.
Proposition 4.1.6 If X is a Banach space and K ⊆ X is a cone, then K is normal
if and only if || · || is semimonotonic.

Proof ⇒: Suppose that || · || is not semimonotonic. Then we can find {un, yn}n�1 ⊆
X such that

0 � un � yn and 0 < n||yn|| < ||un|| for all n � 1.

Let vn = un
||un || , wn = yn

||yn || and zn = (
1
n wn − vn

)
/|| 1n wn − vn||. Then vn, zn ∈

K ∩ ∂B1 and ||vn + zn|| → 0 as n → ∞, which means that K is not normal.
⇐: Let u, y ∈ K ∩ ∂B1, then 1 = ||u|| � ξ||u + y|| (by virtue of the semimono-

tonicity of || · ||) and so K is normal (see Definition 4.1.2(c)). �

Proposition 4.1.7 If X is a Banach space and K ⊆ X is a cone, then K is normal
if and only if (B1 + K ) ∩ (B1 − K ) is bounded (B1 = {x ∈ X : ||x || � 1}).
Proof ⇒: Let u ∈ (B1 + K ) ∩ (B1 − K ). Then v � u � w with v,w ∈ B1. We
have

0 � u − v � w − v

⇒ ||u − v|| � ξ||w − v|| for some ξ > 0 (see Proposition 4.1.6)

⇒ ||u|| � ξ||w|| + 2||v|| = ξ + 2

⇒ (B1 + K ) ∩ (B1 − K ) is bounded.

⇐: We can find r > 0 such that (B1 + K ) ∩ (B1 − K ) ⊆ r B1. So, 0 � u � y
implies

y − u

||y|| ∈ (B1 − K ) ∩ K

⇒ ||u|| � (r + 1)||y||
⇒ || · || is semimonotonic with ξ = r + 1

(see Proposition 4.1.6). The proof is now complete. �

Proposition 4.1.8 If X is a Banach space and K ⊆ X is a cone, then K is normal
if and only if every order interval [u, y] = {v ∈ X : u � v � y} is bounded.

Proof ⇒: From Proposition 4.1.7 we know that there exists an r > 0 such that
(B1 + K ) ∩ (B1 − K ) ⊆ r B1. Let ρ = max{||u||, ||y||} and v ∈ [u, y]. Then v

ρ
∈

(B1 + K ) ∩ (B1 − K ) and so ||v|| � rρ.
⇐: Arguing by contradiction, suppose that K is not normal. Then we can find

{un}n�1 {yn}n�1 ⊆ K such that ||un|| = ||yn|| = 1 and ||un + yn|| < 1
4n for all n �

1. Let
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vn = un

||un + yn||1/2 and zn = un + yn

||un + yn||1/2 for all n � 1.

Wehave 0 � vn � zn and
∑
n�1

||zn|| <
∑
n�1

1
2n < ∞. So, z = ∑

n�1
zn ∈ X , 0 � vn �

zn � z and

||vn|| = 1

||un + yn||1/2 > 2n for all n � 1

⇒ [0, z] is unbounded, a contradiction.

The proof is now complete. �

Proposition 4.1.9 If X is a Banach space and K ⊆ X is a cone, then K is normal if
and only if un � vn � yn for all n � 1 and ||un − x ||, ||yn − x || → 0 imply ||vn −
x || → 0.

Proof ⇒: We have

0 � vn − un � yn − un for all n � 1

⇒ ||vn − un|| � ξ||yn − un|| for all n � 1 and some ξ > 0 (4.1)

(see Proposition 4.1.6).

Then

||vn − x || � ||vn − un|| + ||un − x || � ξ||yn − un|| + ||un − x || (see (4.1))

� ξ||yn − x || + (ξ + 1)||un − x ||
for all n � 1

⇒ ||vn − x || → 0 as n → ∞.

⇐: According to Proposition 4.1.7 it suffices to show that (B1 + K ) ∩ (B1 − K )

is bounded. Proceeding indirectly, suppose that the set is unbounded. So, we can find
{vn}n�1 ⊆ (B1 + K ) ∩ (B1 − K ) such that ||vn|| → ∞. We have

un � vn � yn for all n � 1 with un, yn ∈ B1, n � 1.

We set
xn = un

||vn|| , en = vn

||vn|| , wn = yn

||vn|| for all n � 1.

Then xn � en � wn for all n � 1 and ||xn||, ||wn|| → 0. On the other hand,
||en|| = 1 for all n � 1, contradicting our hypothesis. �

Proposition 4.1.10 If X is a Banach space and K ⊆ X is a cone, then we have the
following implications
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K is fully regular ⇒ K is regular ⇒ K is normal.

Proof Regular ⇒ Normal.
Arguing by contradiction, suppose that K is not normal. Then by virtue of Propo-

sition 4.1.6, we can find {un}n�1, {yn}n�1 ⊆ K such that

0 � un � yn and 2n||yn|| < ||un|| for all n � 1. (4.2)

Let vn = un
||un || and zn = yn

2n ||yn || for all n � 1. Then from (4.2) we have

0 � vn � zn for all n � 1 and
∑
n�1

||zn|| =
∑
n�1

1

2n
= 1. (4.3)

Therefore z = ∑
n�1

zn ∈ X . We set

wn =

⎧⎪⎪⎨
⎪⎪⎩

2m∑
k=1

zk if n = 2m, m � 1

2m∑
k=1

zk + v2m+1 if n = 2m + 1, m � 1.

From (4.3) we have {wn}n�1 ⊆ K is increasing and wn � z for all n � 1. There-
fore by regularity wn → w in X . On the other hand

||w2m+1 − w2m || = ||v2m+1|| = 1 for all m � 1,

a contradiction. This proves that K is normal.
Fully Regular ⇒ Regular.
We show that K is normal. Indeed, if K is not normal, then we can find

{un}n�1, {yn}n�1 ⊆ K such that

||un|| = ||yn|| = 1 and ||un + yn|| � 1

2n
for all n � 1. (4.4)

As before, let

z2m =
2m∑
k=1

(uk + yk) and z2m+1 = z2m + u2m+1.

Evidently, {zn}n�1 ⊆ K is increasing andbounded, hence convergent.On the other
hand, we have ||z2m+1 − z2m || = 1 for all m � 1, a contradiction. So, K is normal.
Hence, if {un}n�1 ⊆ K is increasing and order bounded from above by y ∈ K , then
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0 � y − un � y − u1 for all n � 1

⇒ ||y − un|| � ξ||y − u1|| for all n � 1 (since K is normal, see Corollary 1.4.6)

⇒ {un}n�1 is norm bounded, thus convergent (by the full regularity of K ).

This proves that K is regular. The proof is now complete. �
Example 4.1.11 None of the reverse implications are true in general.

(a) Normal � Regular: Let X = C[0, 1] and let

K = {u ∈ C[0, 1] : u(t) � 0 for all t ∈ [0, 1]}.

Since || · ||C[0,1] ismonotonic, K is normal. However, K is not regular. To see this
let {un(t) = 1 − tn : t ∈ [0, 1]}n�1 ⊆ K . Then {un}n�1 is increasing and order
bounded from above by 1, but it does not converge in X .

(b) Regular � Fully Regular: Let X = c0 = {û = (un)n�1 : un → 0} furnished
with the norm ||û|| = sup

n�1
|un|. Let K = {û = (un)n�1 : un � 0 for all n � 1}.

It is easy to see that K is regular, since increasing and bounded from above
sequences in R converge. On the other hand, if ûn = (un,k)k�1 is defined by

un,k =
{
1 if k � n
0 if k > n

then {ûn}n�1 is increasing and norm bounded (since ||ûn|| = 1 for all n � 1).
But {ûn}n�1 does not converge and so K is not fully regular.
However, with additional structure on X , we can have the reverse implications.

Proposition 4.1.12 If X is a reflexive Banach space and K ⊆ X is a cone, then K
is normal ⇔ K is regular ⇔ K is fully regular.

Proof By virtue of Proposition 4.1.10, it suffices to prove that normality of K implies
full regularity of K .

So, suppose that {un}n�1 ⊆ X is an increasing and bounded sequence. The reflex-
ivity of X implies that we can find a subsequence {unk }k�1 of {un}n�1 such that

unk

w−→ u in X. (4.5)

We must have unk � u for all k � 1. Otherwise, there exists a k0 � 1 such that
u − unk0

/∈ K . So, by the strong separation theorem, we can find u∗ ∈ X∗\{0} such
that

〈
u∗, u − unk0

〉
< η <

〈
u∗, v

〉
for all v ∈ K and some η ∈ R (4.6)

⇒ 〈
u∗, u

〉
<
〈
u∗, unk0

〉+ η

⇒ 〈
u∗, unk

〉
<
〈
u∗, unk0

〉+ η for k > k0 large

⇒ η <
〈
u∗, unk − unk0

〉
< η (see (4.6)), a contradiction.
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Therefore we have

unk � u for all k � 1. (4.7)

Next we show that {unk }k�1 ⊆ X contains a subsequence which converges
strongly to u. Again we argue by contradiction. So, if no such strongly convergent
subsequence can be found, then there exist ε > 0 and m � 1 such that

||unk − u|| � ε for all k � m. (4.8)

Let Ck = {v ∈ X : v � unk }, k � 1. Each Ck is convex and since {unk }k�1 is
increasing, we have Ck ⊆ Ck+1. We set C = ⋃

k�1
Ck . Clearly C is convex. Let v ∈ C .

Then v ∈ Ck for some k � 1. From (4.7) we have

0 � u − unk � u − v

⇒ ε � ||unk − u|| � ξ||u − v|| for k � m (see Proposition 4.1.6 and (4.8))

⇒ ε

ξ
� ||u − v|| for every v ∈ C

⇒ u /∈ C .

Again the strong separation theorem implies that we can find v∗ ∈ X∗\{0} such
that

〈
v∗, u

〉
< η̂ <

〈
v∗, v

〉
for all v ∈ C

⇒ 〈
v∗, u

〉
< η̂ <

〈
v∗, unk

〉
for all k � m

which contradicts (4.5). Therefore we have proved that {unk }k�1 ⊆ X contains a
strongly convergent subsequence. For notational economy, we still denote it by
{unk }k�1. Then for any m � 1, we have

um � unk for k � 1 large

⇒ un � u for all n � 1

⇒ 0 � u − un � u − unk for all n � nk

⇒ ||u − un|| � ξ||u − unk || (due to the normality of K , see Proposition 4.1.6)

⇒ un → u in X

⇒ K is fully regular (see Definition 4.1.2(f)).

The proof is now complete. �

From Definitions 4.1.2(g) and (h), a strongly minihedral cone is minihedral. The
converse is not in general true.
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Example 4.1.13 Let X = C[0, 1] and K = {u ∈ X : u(t) � 0 for all t ∈ [0, 1]}.
Evidently, K isminihedral since foru, v ∈ K , sup{u, v} = y (y(t) = max{u(t), v(t)}
for all t ∈ [0, 1]) is still in C[0, 1]. On the other hand K is not strongly minihedral.
Indeed, let C = {

u ∈ C[0, 1] : u(t) < 1
2 for t ∈ [0, 1

2 ] and u(t) < 1 for t ∈ [ 12 , 1]
}
.

Clearly supC does not exist in X .
With more structure on X and K , we can have the equivalence of minihedral and

strongly minihedral.

Proposition 4.1.14 If X is a separable Banach space and K ⊆ X is a regular mini-
hedral cone, then K is strongly minihedral.

Proof LetC ⊆ X and suppose that there exists a v ∈ X such that u � v for all u ∈ C .
The separability of X implies the separability of C . So, we can find {un}n�1 ⊆
C which is dense in C . Let yn = sup{uk}n

k=1 (it exists since by hypothesis K is
minihedral). We have

{yn}n�1 is increasing and order bounded from above by v. (4.9)

Since K is regular, (4.9) implies that yn → y in X . We claim y = supC . Indeed,
first note that

un � y for all n � 1. (4.10)

For any z ∈ C , we can find a subsequence of {un}n�1 which converges to z in X .
Because of (4.10), we see that

z � y, that is, y is an upper bound of C.

Let w ∈ X be any upper bound of C . We have

yn � w for all n � 1

⇒ y � w, hence y = supC.

The proof is now complete. �

From Propositions 4.1.12 and 4.1.14, we obtain:

Corollary 4.1.15 If X is a separable reflexive Banach space and K ⊆ X is a normal,
minihedral cone, then K is strongly minihedral.

Using a cone K ⊆ X , we can define positive elements for the dual space X∗.

Definition 4.1.16 Let X be a Banach space and K ⊆ X a cone. The “dual cone” of
K is the set

K ∗ = {u∗ ∈ X∗ : 〈u∗, u
〉
� 0 for all u ∈ K }.
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The elements of K ∗ are called “positive linear functionals” (or simply “positive”).

Remark 4.1.17 It is easy to see that K ∗ satisfies all the requirements of a cone (see
Definition 4.1.1), except that K ∗ ∩ (−K ∗) = {0}. Still we call K ∗ the dual cone.
However, if K is generating (see Definition 4.1.2(b)), then K ∗ ∩ (−K ∗) = {0}.
Proposition 4.1.18 If X is a Banach space, K ⊆ X is a cone and K ∗ ⊆ X∗ the dual
cone, then

(a) u ∈ K if and only if 〈u∗, u〉 � 0 for all u∗ ∈ K ;
(b) for any u ∈ K\{0}, there exists a u∗ ∈ K ∗ such that 〈u∗, u〉 > 0;
(c) for any v /∈ K , there exists a u∗ ∈ K ∗ such that 〈u∗, v〉 < 0;
(d) if K is solid, then u ∈ int K if and only if 〈u∗, u〉 > 0 for all u∗ ∈ K ∗\{0};
(e) if X is separable, then there exists a u∗ ∈ K ∗ such that 〈u∗, u〉 > 0 for all u ∈

K\{0}.
Proof (a) Suppose that v /∈ K . By the strong separation theorem, we can find u∗ ∈
X∗\{0} and ε > 0 such that

〈
u∗, v

〉+ ε �
〈
u∗, u

〉
for all u ∈ K .

Since K is a cone, 〈u∗, u〉 � 0 for all u ∈ K and so u∗ ∈ K ∗. This proves that

K = {u ∈ X : 〈u∗, u
〉
� 0 for all u∗ ∈ K ∗}.

(b) We have −u /∈ K . By the strong separation theorem there exists a u∗ ∈ X∗
and ε > 0 such that

〈
u∗,−u

〉+ ε �
〈
u∗, y

〉
for all y ∈ K

⇒ u∗ ∈ K ∗ and
ε

2
�
〈
u∗, u

〉
.

(c) See the proof of part (a).
(d) Let e ∈ int K . Then we can find δ > 0 such that Bδ(e) ⊆ K . This means that

e ± δh � 0 for all h ∈ X, ||h|| � 1

⇒ 〈
u∗, e ± δh

〉
� 0 for all u∗ ∈ K ∗

⇒ 〈
u∗, e

〉
� δ||u∗|| > 0.

Next, suppose that v /∈ int K and let K1 = {v̂ = λv : λ � 0}. Evidently, K1 is a
cone and K1 ∩ int K = ∅. So, by the weak separation theorem, we can find u∗ ∈
X∗\{0} such that

〈
u∗, v̂

〉
�
〈
u∗, u

〉
for all v̂ ∈ K1 and all u ∈ K

⇒ 〈
u∗, v

〉
� 0.
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(e) The separability of X implies that B
∗
1 = {u∗ ∈ X∗ : ||u∗||∗ � 1} furnished

with the w∗-topology is compact, metrizable, hence separable too. Let {u∗
n}n�1 be

w∗-dense in K ∗ ∩ B
∗
1 and let û∗ = ∑

n�1

1
n2 u∗

n . Then û∗ ∈ K ∗ and
〈
û∗, u

〉 = 0 for some

u ∈ K implies 〈u∗, u〉 = 0 for all u∗ ∈ K ∗, hence u = 0 (see (b)). �

The next result presents a duality in the properties of K and K ∗ and is known in the
literature as “Krein’s theorem”.

Theorem 4.1.19 If X is a Banach space, K ⊆ X is a cone and K ∗ is its dual cone,
then

(a) K is generating if and only if K ∗ is normal;
(b) K is normal if and only if K ∗ is generating.

Proof (a) K generating ⇒ K ∗ normal
Recall that K ∗ is a cone (see Remark 4.1.17). By hypothesis, X = K − K . So, if

C = K ∩ B1 (B1 = {u ∈ X : ||u|| � 1}), then

X =
⋃
n�1

n(C − C)

⇒ int(C − C) �= ∅ (by Baire’s theorem).

The set C − C is closed, convex and symmetric. So, we can find ε > 0 such that

εB1 ⊆ C − C

⇒ ε

2
B1 ⊆ C − C. (4.11)

Let u∗, y∗ ∈ X∗ with 0 � u∗ � y∗. For any x ∈ X , we have x = u − y withu, y ∈
K and ||u|| � 2

ε
||x ||, ||y|| � 2

ε
||x || (see (4.11)). Then

〈
u∗, x

〉 = 〈
u∗, u − y

〉
�
〈
u∗, u

〉
�
〈
y∗, u

〉
� ||y∗||∗||u|| � 2

ε
||y∗||∗||x || (4.12)

and − 〈
u∗, x

〉
�
〈
u∗, y − x

〉
�
〈
u∗, v

〉
�
〈
y∗, v

〉
� ||y∗||∗||v|| � 2

ε
||y∗||∗||x ||.

(4.13)

From (4.12) and (4.13) it follows that

| 〈u∗, x
〉 | � 2

ε
||y∗||∗||x ||

⇒ ||u∗||∗ � 2

ε
||y∗||∗

⇒ K ∗is normal (see Proposition 4.1.6).
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K ∗ normal ⇒ K generating

Arguing by contradiction, suppose that K is not generating. Then E = C − C is
not a neighborhood of the origin (see the proof of the first part). So, for every n � 1,
we can find u /∈ E with ||u|| � 1

n and there exists a u∗ ∈ X∗ satisfying 〈u∗, u〉 > 1,
〈u∗, y〉 < 1 for all y ∈ C − C (by the strong separation theorem). It follows that
||u∗||∗ > n. On the other hand we have u∗ ∈ (B

∗
1 + K ∗) ∩ (B

∗
1 − K ∗)(B

∗
1 = {v∗ ∈

X∗ : ||v∗||∗ � 1}). Proposition 4.1.7 implies that K ∗ is not normal, a contradiction.
(b) K normal ⇒ K ∗ generating
Proceeding indirectly, suppose that K ∗ is not generating. Let C∗ = K ∗ ∩ B

∗
1. As

in the proof of part (a), we have that C∗ − C∗ is not a neighborhood of the origin. We
can find u ∈ X of arbitrarily large norm such that 〈y∗, u〉 < 1 for all y∗ ∈ C∗ − C∗.
Moreover, as in the proof of the second implication in part (a), we can show that
u ∈ (B1 + K ) ∩ (B1 − K ), contradicting the normality of K (see Proposition 4.1.7).

K ∗ is generating ⇒ K normal
From (a) we know that K ∗∗ is normal. Since K ⊆ K ∗∗, we conclude that K must

be normal, too. The proof is now complete. �

Combining Proposition 4.1.4 and Theorem 4.1.19, we have the following result.

Corollary 4.1.20 If X is a Banach space and K ⊆ X is a solid cone, then K ∗ is
normal.

Also, a by-product of the proof of Theorem 4.1.19 worth mentioning is the fol-
lowing result.

Corollary 4.1.21 If X is a Banach space and K ⊆ X is a generating cone, then
there exists a δ > 0 such that

δB1 ⊆ C − C

where B1 = {u ∈ X : ||u|| � 1} and C = K ∩ B1.

We conclude with a simple observation concerning solid cones which is useful in
the study of positive solutions for boundary value problems.

Proposition 4.1.22 If X is a Banach space, K ⊆ X is a solid cone and e ∈ int K ,
then for every u ∈ X we can find tu > 0 such that tue − u ∈ K .

Proof Let r > 0 be such that Br (e) ⊆ K and let tu >
||u||

r . Then

e − 1

tu
u ∈ Br (e) ⊆ K

⇒ tue − u ∈ K (since K is a cone).

The proof is now complete. �
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4.2 Metric Fixed Points

As we already mentioned in the introduction of this chapter metric fixed point the-
ory, refers to those fixed point results which depend on the metric structure of the
underlying space and/or the corresponding metric properties of the maps involved.

The starting point of metric fixed point theory is the well-known “Banach con-
traction principle”, one of the most versatile elementary results of fixed point theory.

Definition 4.2.1 Let (X, d) be a metric space and ϕ : X → X .

(a) We say that ϕ is Lipschitz if there exists a k � 0 such that

d(ϕ(u),ϕ(v)) � kd(u, v) for all u, v ∈ X.

The smallest k � 0 forwhich the above inequality holds is said to be theLipschitz
constant of ϕ and is denoted by l(ϕ).

(b) We say that ϕ is a contraction if it is Lipschitz with Lipschitz constant l(ϕ) < 1.
(c) We say thatϕ is nonexpansive if it is Lipschitz with Lipschitz constant l(ϕ) = 1,

that is,
d(ϕ(u),ϕ(v)) � d(u, v) for all u, v ∈ X, u �= v.

Remark 4.2.2 In the sequel we will use compositions of ϕ with itself. So, for every
u ∈ X we define ϕ(n)(u) inductively by ϕ(0)(u) = u and ϕ(n+1)(u) = ϕ(ϕ(n)(u)) for
all n � 0. If ϕ,ψ : X → X are two Lipschitz functions, we have

l(ϕ ◦ ψ) � l(ϕ)l(ψ) and l(ϕ(n)) � l(ϕ)n for all n � 1.

Moreover, if X is a normed space, then l(ϕ + ψ) � l(ϕ) + l(ψ) and for every
λ � 0, l(λϕ) = λl(ϕ). Finally, for every u ∈ X , the set of iterates {ϕ(n)(u)}n�0 is
called the orbit of u under ϕ and it is denoted by orb(u).

The next theorem is the celebrated “Banach contraction principle”.

Theorem 4.2.3 (Banach): If (X, d) is a complete metric space and ϕ : X → X is
a contraction, then ϕ has a unique fixed point û ∈ X and for every u ∈ X

ϕ(n)(u) → û in X.

Proof First we show that there is at most one fixed point. So, suppose û, û0 are
distinct fixed points of ϕ. Then we have

d(û, û0) = d(ϕ(û),ϕ(û0)) � l(ϕ)d(û, û0) < d(û, û0),

a contradiction. So, we have at most one fixed point.
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Next we establish the existence of a fixed point. Let v ∈ X and consider the orbit
of v under ϕ, that is, the sequence {un = ϕ(n)(v)}n�0 ⊆ X . For every n, k ∈ N, we
have

d(un, un+k) = d(ϕ(u)(v),ϕ(n+k)(v))

= d(ϕ(n)(v),ϕ(n) ◦ ϕ(k)(v))

� l(ϕ(n))d(v,ϕ(k)(v))

� l(ϕ)n
[
d(v,ϕ(v)) + d(ϕ(v),ϕ(2)(v)) + · · ·

+d(ϕ(k−1)(v),ϕ(k)(v))
]

� l(ϕ)n
[
1 + l(ϕ) + · · · + l(ϕ)k−1

]
d(v,ϕ(v))

= l(ϕ)n

(
1 − l(ϕ)k

1 − l(ϕ)

)
d(v,ϕ(v)),

⇒ {un}n�1 ⊆ X is Cauchy.

The completeness of X implies that there exists a û ∈ X such that un → û in X .
We have

û = lim
n→∞ un = lim

n→∞ un+1 = lim
n→∞ ϕ(un) = ϕ(û).

The proof is now complete. �

Remark 4.2.4 A careful reading of the above proof reveals that we do not need to
assume that ϕ is a contraction. It suffices to assume that l(ϕ(n)) < 1 for at least one
fixed n ∈ N. Also, from the above proof, we have

d(ϕ(n)(v), u) = lim
k→∞ d(ϕ(n)(v),ϕ(n+k)(v)) � l(ϕ)n

1 − l(ϕ)
d(v,ϕ(v)),

which implies that the error at the n
th=-iteration is completely determined by the

contraction constant l(ϕ) and the initial displacement d(v,ϕ(v)). Moreover, the rate
of convergence is determined by

d(ϕ(n+1)(v), u) � l(ϕ)d(ϕ(n)(v), u) for all n � 0.

The Banach fixed point theorem has a local version.

Proposition 4.2.5 If (X, d) is a complete metric space, x0 ∈ X, r > 0, Br (x0) =
{u ∈ X : d(u, x0) < r} and ϕ : Br (x0) → X is a contraction such that

d(ϕ(x0), x0) < (1 − l(ϕ))r,

then ϕ admits a fixed point.

Proof Let ρ ∈ (0, r) such that d(ϕ(x0), x0) � (1 − l(ϕ))ρ < (1 − l(ϕ))r and let
Bρ(x0) = {u ∈ X : d(u, x0) � ρ}. For u ∈ Bρ(x0), we have



4.2 Metric Fixed Points 277

d(ϕ(u), x0) � d(ϕ(u),ϕ(x0)) + d(ϕ(x0), x0)

� l(ϕ)d(u, x0) + (1 − l(ϕ))ρ � ρ.

So, ϕ : Bρ(x0) → Bρ(x0) and by Theorem 4.2.3 it admits a fixed point. �

In many applications the contractive map ϕ also depends on an additional param-
eter λ. So, the fixed point equation is now the following:

uλ = ϕλ(uλ) for all λ ∈ P (P is the parameter space). (4.14)

Proposition 4.2.6 If (X, d) is a complete metric space, P (the parameter space)
is a metric space, for every λ ∈ P, ϕλ : X → X is a contraction with contraction
constant l(ϕλ) = l0 independent of λ ∈ P and if λ → λ0 in P, then

ϕλ(u) → ϕλ0(u) for all u ∈ X,

then problem (4.14) has exactly one solution uλ ∈ X and λ → uλ is continuous from
P into X.

Proof Let uλ be the unique fixed point of ϕλ (see Theorem 4.2.3) and suppose
λ → λ0 ∈ P . Then

d(uλ, uλ0) = d(ϕλ(uλ),ϕλ0(uλ0))

� d(ϕλ(uλ),ϕλ(uλ0)) + d(ϕλ(uλ0),ϕλ0(uλ0))

� l0d(uλ, uλ0) + d(ϕλ(uλ0),ϕλ0(uλ0))

⇒ d(uλ, uλ0) � 1

1 − l0
d(ϕλ(uλ0),ϕλ0(uλ0)) → 0 as λ → λ0.

The proof is now complete. �

Remark 4.2.7 This proposition establishes the stability of the approximationmethod
introduced by the proof of the Banach principle.

An interesting descendant of the Banach fixed point theorem is the following
result.

Theorem 4.2.8 If (X, d) is a compact metric space and ϕ : X → X satisfies

d(ϕ(u),ϕ(v)) < d(u, v) for all u, v ∈ X, u �= v,

then ϕ has a unique fixed point û ∈ X and for any v ∈ X the sequence of iterates
{ϕ(n)(v)}n�0 converges to û.

Proof Let τ : X → R+ bedefinedby τ (u) = d(u,ϕ(u)). This function is continuous
and so we can find û ∈ X such that

τ (û) = inf{τ (u) : u ∈ X}.



278 4 Partial Order, Fixed Point Theory, Variational Principles

We claim that û = ϕ(û). If this is not true, then

τ (ϕ(û)) = d(ϕ(û),ϕ(ϕ(û))) < d(û,ϕ(û)) = τ (û),

which contradicts the fact that û ∈ X is a global minimizer of τ . Therefore û ∈ X is
a fixed point of ϕ and clearly it is unique.

Next let v ∈ X and let ξn = d(ϕ(n)(v), û) n � 0. Then

ξn+1 = d(ϕ(n+1)(v), û) = d(ϕ(n+1)(v),ϕ(û)) � d(ϕ(n)(v), û) = ξn

⇒ {ξn}n�0 ⊆ R+ is decreasing.

Hence ξn → ξ � 0. The compactness of X implies that {ϕ(n)(v)}n�0 admits a
convergent subsequence {ϕ(nk )(v)}k�1. Assume that ϕ(nk )(v) → y in X . Then

d(y, û) = ξ. (4.15)

If ξ > 0, then

ξ = lim
k→∞ d(ϕ(nk+1)(v), û) = d(ϕ(y), û) = d(ϕ(y),ϕ(û)) < d(y, û) = ξ

(see (4.15) and recall ξ > 0),

a contradiction. So y = û and then by the compactness of X and theUrysohn criterion
of the convergence of sequences for the original sequence, we have

ϕ(n)(v) → û in X.

The proof is now complete. �

Example 4.2.9 The above theorem fails if we drop the compactness requirement on
X . Let

X = {u ∈ C[0, 1] : 0 = u(0) � u(t) � u(1) = 1 for all t ∈ [0, 1]}.

This set is bounded, closed and convex. Then (X, || · ||∞) is a complete metric
space but not compact. Let ϕ : X → X be defined by

ϕ(u)(t) = tu(t) for all t ∈ [0, 1].

Evidently, ||ϕ(u) − ϕ(v)||∞ < ||u − v||∞ but it does not have a fixed point.

We present some more extensions of Theorem 4.2.3.

Proposition 4.2.10 If (X, d) is a complete metric space and ϕ : X → X satisfies

(i) d(ϕ(n)(u),ϕ(n)(v)) � ξd(u, v) for all u, v ∈ X, all n � 1 and some ξ > 0;
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(ii) there exists an x0 ∈ X such that orb (x0) = {ϕ(n)(x0)}n�0 is bounded and con-
tains a convergent subsequence;

(iii) if 0 < diam (orb (u)) < ∞, then diam (orb (ϕ(n)(u))) < diam (orb (u)) for
some n = n(u) � 1,

then ϕ admits a fixed point.

Proof Without any loss of generality, we may assume that ξ � 1 (otherwise we fall
within the realm of Theorem 4.2.3). Let τ (u) = diam (orb (u)). By hypothesis (ii)
τ (x0) < ∞. Then for all u ∈ X , we have

τ (u) � τ (x0) + 2ξd(u, x0) < ∞. (4.16)

From (4.16) it follows that

|τ (u) − τ (v)| � 2ξd(u, v) for all u, v ∈ X. (4.17)

By hypothesis (ii) for some subsequence {ϕ(nk )(x0)}k�1 of {ϕ(n)(x0)}n�0, we have
ϕ(nk )(x0) → û ∈ X . From the continuity of ϕ and τ and since {τ (ϕ(n)(x0))}n�0 is
decreasing, we have

τ (û) = lim
k→∞ τ (ϕ(nk )(x0)) = lim

k→∞ τ (ϕ(nk+m)(x0)) = τ (ϕ(m)(û)) for all m � 1

⇒ τ (û) = 0 (see hypothesis (iii))

⇒ û = ϕ(û).

The proof is now complete. �

Corollary 4.2.11 If (X, d) is a complete metric space and ϕ : X → X satisfies

d(ϕ(n)(u),ϕ(n)(v)) � knd(u, v)

for all u, v ∈ X with
∑
n�1

kn < ∞, then ϕ admits a unique fixed point.

When the complete metric space X is a Banach space, the richer structure leads
to the following result, which is useful in applications.

Proposition 4.2.12 If X is a Banach space, U ⊆ X is an open set and ϕ : U → X
is a contraction then (i − ϕ)(U ) = V ⊆ X is open and i − ϕ : U → V is a home-
omorphism (here i : X → X is the identity operator).

Proof Let g = i − ϕ, u ∈ U and r > 0 such that Br (u) ⊆ U . Choose y ∈ X such
that ||g(u) − y|| < (1 − l(ϕ))r . If we can show that y ∈ g(Br (u)), then g = i − ϕ is
open. Consider the map e(v) = v − (g(v) − y), v ∈ Br (u). Then for all v ∈ Br (u),
we have
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||e(v) − u|| = ||ϕ(v) + y − u||
� ||ϕ(v) − ϕ(u)|| + ||ϕ(u) + y − u||
� l(ϕ)||v − u|| + ||y − g(u)||
� l(ϕ)r + (1 − l(ϕ))r = r.

Therefore e : Br (u) → Br (u) and it is a contraction with constant l(e) = l(ϕ) <

1. So, Theorem 4.2.3 implies that there exists a unique û ∈ Br (u) such that e(û) = û.
Hence g(û) = y, which establishes the openness of g = i − ϕ.

If u, y ∈ U , then

||g(u) − g(y)|| � ||u − y|| − ||ϕ(u) − ϕ(y)|| � (1 − l(ϕ))||u − y||
⇒ g is i − 1

⇒ g : u → g(u) = (i − ϕ)(u) is a continuous

open bijection, hence a homeomorphism.

The proof is now complete. �

Corollary 4.2.13 If X is a Banach space and ϕ : X → X is a contraction, then
g = i − ϕ : X → X is a homeomorphism.

Proof We claim that g is surjective. Let u0 ∈ X and consider the map h : X → X
defined by h(u) = u0 + ϕ(u). Evidently, h is a contraction. So, by Theorem 4.2.3
we can find û ∈ X such that û = h(û) = u0 + ϕ(û), hence g(û) = u0. Since u0 ∈ X
is arbitrary, we conclude that g(·) is surjective. Then Proposition 4.2.12 implies that
g is a homeomorphism. �

We have already seen a parametric version of the Banach fixed point theorem (see
Proposition 4.2.6). Nextwewill examine this issue further and develop a continuation
method for contractions. So, we will approach the fixed point problem u = ϕ(u) by
embedding the contraction ϕ in a parametric family {hλ}λ∈P (P being the parameter
metric space) which connects ϕ with a simpler function ψ and reduces the original
fixed point problem to the simpler one u = ψ(u).

So, let (X, d) be a complete metric space and let (P, ρ) be the parameter metric
space. Also, let C ⊆ X be a closed subset with nonempty interior U = int C and let
A = ∂C =the boundary of C . By Con (C, X) we denote the set of all contractions
from C into X . By ConA(C, X) we denote the subset of Con (C, X) consisting of

all maps ϕ ∈ Con (C, X) such that ϕ
∣∣∣

A
: A → X is fixed point free. The parametric

families {hλ}λ∈P we will consider will consist of functions in Con (C, X). More
precisely, they will have the following properties:

Definition 4.2.14 A parametric family {hλ}λ∈P ⊆ Con (C, X) is said to be l0-
contractive with l0 ∈ [0, 1) if we can find M > 0 and ϑ ∈ (0, 1] such that

(a) d(hλ(u), hλ(y)) � l0d(u, y) for all λ ∈ P and all u, y ∈ C ;
(b) d(hλ(u), hμ(u)) � Mρ(λ,μ)ϑ for all u ∈ C and all λ,μ ∈ P .
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Remark 4.2.15 Evidently, the map (λ, u) → Hλ(u) is continuous from P × C into
X . Also, for every λ ∈ P , the fixed point set of hλ is either empty or a singleton.
Moreover, if uλ = hλ(uλ) and uμ = hμ(uμ), then

d(uλ, uμ) � d(hλ(uλ), hμ(uλ)) + d(hμ(uλ), hμ(uμ))

� Mρ(λ,μ)ϑ + l0d(uλ, uμ)

⇒ d(uλ, uμ) � M

1 − l0
ρ(λ,μ)ϑ. (4.18)

Proposition 4.2.16 If P is connected and {hλ}λ∈P is an l0-contractive family in
ConA(C, X) then

(a) if for some λ ∈ P the fixed point problem hλ(u) = u has a solution, then for
every λ ∈ P the fixed point problem has a unique solution uλ ∈ C;

(b) if uλ = hλ(uλ) for all λ ∈ P, then λ → uλ from P into U = int C is Hölder
continuous.

Proof (a)Let P0 = {λ ∈ P : uλ = hλ(uλ) for someuλ ∈ U }. Byhypothesis P0 �= ∅.
Claim 1. P0 ⊆ P is closed.
Let {λn}n�1 ⊆ P0 and assume that λn → λ. Then we can find uλn ∈ U such that

uλn = hλn (uλn ) for all n � 1. From (4.18) we have

d(uλn , uλm ) � M

1 − l0
ρ(λn,λm)ϑ for all n, m ∈ N

⇒ {uλn }n�1 ⊆ C is Cauchy

⇒ uλn → u ∈ C (recall that C is complete being closed in X).

Definition 4.2.14 (b) implies

hλn (uλn ) → hλ(u)

⇒ u = hλ(u) and u ∈ U (since hλ ∈ ConA(C, X))

⇒ λ ∈ P0 and so we have proved that P0 ⊆ P is closed.

Claim 2. P0 ⊆ P is open.
Let λ ∈ P0 with uλ = hλ(uλ), uλ ∈ U . We can find r > 0 such that

Br (uλ) = {u ∈ C : d(u, uλ) < r} ⊆ U.

Also, let ε > 0 such that εϑ � (1−l0)r
M . If μ ∈ Bε(λ) = {s ∈ P : ρ(s,λ) < ε}, then

d(hμ(uλ), uλ) = d(hμ(uλ), hλ(uλ)) � Mρ(μ,λ)ϑ < Mεϑ � (1 − l0)r.

Proposition 4.2.5 implies that hμ(·) has a fixed point uμ ∈ U and so
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Bε(λ) ⊆ P0

⇒ P0 ⊆ P is open.

Claims 1, 2, and the connectedness of P imply that P0 = P .
(b) This part is an immediate consequence of (a) and (4.18). The proof is now

complete. �

This proposition leads to the following alternative result for contractions. So,
assume that X is a Banach space and C ⊆ X is a closed convex set. Also P = [0, 1].

Proposition 4.2.17 If V is a relatively open subset of C with 0 ∈ V , then any
bounded contraction ϕ : V → C has at least one of the following two properties:

(a) ϕ has a unique fixed point;
(b) there exist u0 ∈ ∂V and λ ∈ (0, 1) such that u0 = λϕ(u0).

(Here, bounded ϕ means that ϕ(V ) ⊂ X is bounded.)

Proof For (λ, u) ∈ [0, 1] × V , let hλ(u) = λϕ(u). Evidently, {hλ}λ∈[0,1] ⊆
Con (V , C) is an l0 = l(ϕ)-contractive family.

First suppose that hλ ∈ Con∂V (V , C) for all λ ∈ [0, 1]. Since h0(0) = 0 from
Proposition 4.2.16 we have that h1(·) = ϕ(·) admits a fixed point in V . If hλ /∈
Con∂V (V , C) for some λ ∈ [0, 1], hλ must have a fixed point on ∂V and since
0 ∈ V , we infer that λ �= 0. Therefore either ϕ has a fixed point on ∂U or statement
(b) holds. The proof is now complete. �

This alternative result leads to fixed point theorems by imposing conditions on ϕ
which prevent the second alternative from occurring (see also Sect. 3.2).

Corollary 4.2.18 If V is a relatively open subset of C with 0 ∈ V and ϕ : V → C is
a bounded contraction which for all u ∈ ∂V satisfies one of the following conditions:

(i) ||ϕ(u)|| � ||u||;
(ii) ||ϕ(u)|| � ||u − ϕ(u)||;

(iii) ||ϕ(u)||2 � ||u||2 + ||u − ϕ(u)||2;
(iv) X = H = a Hilbert space with inner product (·, ·)H and

(ϕ(u), u)H � ||u||2,

then ϕ has a unique fixed point.

Also, we can have a “contractive” version of Borsuk’s antipodal theorem.

Corollary 4.2.19 If X is a Banach space, V ⊆ X is open, symmetric and 0 ∈ V and
ϕ : V → X is a bounded contraction such that ϕ(u) = −ϕ(−u) for all u ∈ ∂V , then
ϕ has a unique fixed point.
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Proof Sinceϕ
∣∣∣
∂V

is odd and V is symmetric, we have ||ϕ(u)|| � ||u|| for all u ∈ ∂V .

So, we can apply Corollary 4.2.18(i) and conclude thatϕ admits a unique fixed point.
The proof is now complete. �

Now we turn our attention to nonexpansive maps (see Definition 4.2.1(c)). Such
maps may be fixed point free.

Example 4.2.20 X = c0 = {û = (un)n�1 : un → 0} with the norm ||û||∞ =
sup
n�1

|un|. Let ϕ : X → X be defined by

(ϕ(û))1 = 1

2
(1 + ||û||) and (ϕ(û))n+1 = un for all n � 1.

Evidently,ϕ is continuous and in fact ||ϕ(û) − ϕ(v̂)|| = ||û − v̂|| for all û, v̂ ∈ X .
It maps B1 into itself. But ϕ has no fixed point, since û = ϕ(û) implies

un = 1

2
[1 + ||û||] for all n � 1

⇒ û = (un)n�1 /∈ c0.

So,wewant to find outwhat additional assumptionsmust be added on the structure
of X and/or of the nonexpansive map ϕ in order to guarantee the existence of at least
one fixed point.

We start with the following simple observation.

Lemma 4.2.21 If X is a Banach space, C ⊆ X is nonempty, closed, convex and
bounded and ϕ : C → C is nonexpansive, then inf{||u − ϕ(u)|| : u ∈ C} = 0.

Proof We fix u0 ∈ C and t ∈ (0, 1) and consider the map ϕt : C → C defined by

ϕt (u) = tu0 + (1 − t)ϕ(u).

For all u, v ∈ C , we have

||ϕt (u) − ϕt (v)|| � (1 − t)||ϕ(u) − ϕ(v)|| � (1 − t)||u − v||
⇒ ϕt is a contraction.

Theorem 4.2.3 implies that there exists a ut ∈ C such that ut = ϕt (ut ). Then

||ut − ϕ(ut )|| = ||tu0 + (1 − t)ϕ(ut ) − ϕ(ut )||
� t ||u0 − ϕ(ut )||
� t diam C (recall that C is bounded).

Letting t → 0+, we conclude that inf{||u − ϕ(u)|| : u ∈ C} = 0. �
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Using this lemma, we can state the first elementary fixed point theorem for nonex-
pansivemaps, which is a special case of Schauder’s fixed point theorem (see Theorem
3.2.20).

Theorem 4.2.22 If X is a Banach space, C ⊆ X is nonempty compact convex and
ϕ : C → C is nonexpansive, then ϕ has a fixed point.

Proof Let {un}n�1 ⊆ C such that ||un − ϕ(un)|| ↓ 0 (see Lemma 4.2.21). The com-
pactness of C implies that we may assume that un → u ∈ C . Then

||u − ϕ(u)|| = 0 ⇒ u = ϕ(u).

The proof is now complete. �

Another straightforward situation is also a consequence of Lemma 4.2.21.

Proposition 4.2.23 If X is a Banach space, C ⊆ X is nonempty, closed, convex and
bounded, ϕ : C → C is nonexpansive and (i − ϕ)(C) is closed, then ϕ has a fixed
point.

Proof From Lemma 4.2.21, we have 0 ∈ (i − ϕ)(C) = (i − ϕ)(C). So, there exists
a û ∈ C such that û = ϕ(û). The proof is now complete. �

To produce fixed points in a more general setting, we need some new ideas. So,
let

F = {D ⊆ C : D is nonempty, closed, convex and ϕ(D) ⊆ D (i.e., ϕ-invariant)}.

We partially order F by setting

D1 � D2 if and only if D2 ⊆ D1.

Let D̂ = ⋂
D∈F

D. Then D̂ is closed, convex and ϕ-invariant, but it may be empty.

However, ifC is weakly compact (or even stronger compact), then D̂ �= ∅ (recall that
closed convex sets areweakly closed). Then D̂ is an upper bound for every chain inF
and so by Zorn’s lemma there is a maximal element D0 ofF (so D0 is a nonempty,
closed, convex, ϕ-invariant set which is minimal with respect to inclusion). Then
convϕ(D0) = D0 and so if D0 is a singleton, we have a fixed point for ϕ. However,
in general if C is weakly compact and convex, the set D0 need not be a singleton
(see Alspach [10]). So, we introduce the following notions:

Definition 4.2.24 Let X be a Banach space and C ⊆ X nonempty.

(a) A point u ∈ C is a diametral point of C if

sup{||y − u|| : y ∈ C} = diam C.
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(b) A convex set C ⊆ X is said to have normal structure if each bounded convex
subset K of C with diam K > 0 contains a nondiametral point.

(c) We set

ry(C) = sup{||y − u|| : u ∈ C},
r(C) = inf{ru(C) : u ∈ X},

C0 = {u ∈ X : ru(C) = r(C)}.

Remark 4.2.25 r(C) is called the Chebyshev radius of C and C0 is the Chebyshev
center of C .

Proposition 4.2.26 If X is a Banach space and C ⊆ X is compact convex, then C
has normal structure.

Proof Without any loss of generality we assume that diam C > 0. Suppose that C
does not have normal structure. Then given u1 ∈ C we can find u2 ∈ C such that
diam C = ||u1 − u2||. The convexity ofC implies that 1

2 [u1 + u2] ∈ C . Then we can
find u3 ∈ C such that

diam C =
∥∥∥∥u3 − 1

2
[u1 + u2]

∥∥∥∥ .

Continuing in this way, inductively we can generate a sequence {un}n�1 ⊆ C such
that

diam C =
∥∥∥∥∥un+1 − 1

n

n∑
k=1

uk

∥∥∥∥∥ for all n � 2

⇒ diam C � 1

n

n∑
k=1

||un+1 − uk || � diam C

⇒ diam C = ||un+1 − uk || for all k ∈ {1, · · · , n}.

This means that {un}n�1 ⊆ C has no convergent subsequence, contradicting the
compactness of C . The proof is now complete. �

Lemma 4.2.27 If X is a reflexive Banach space and C ⊆ X is nonempty, closed,
convex and bounded, then C0 is nonempty and convex.

Proof Let u ∈ C and let Cn(u) = {v ∈ C : ||v − u|| � r(C) + 1
n }. We set Ĉn =⋂

u∈C
Cn(u). Then each Ĉn is nonempty, closed, convex and {Ĉn}n�1 is decreasing.

Therefore by virtue of the reflexivity of X we have

C0 =
⋂
n�1

Ĉn is nonempty, closed and convex.

The proof is now complete. �
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Lemma 4.2.28 If X is a Banach space and C ⊆ X is nonempty, closed, convex and
bounded, and has normal structure, then diam C0 < diam C.

Proof Since C has normal structure, we can find u ∈ C such that ru(C) < diam C
(see Definition 4.2.24). If v, y ∈ C0, then

||y − v|| � rv(C) = r(C) � ru(C) < diam C

⇒ diam C0 < diam C.

The proof is now complete. �

Now we can state the main fixed point theorem for nonexpansive maps.

Theorem 4.2.29 If X is a reflexive Banach space, C ⊆ X is nonempty, closed, con-
vex, bounded and has normal structure and ϕ : C → C is nonexpansive, then ϕ has
a fixed point.

Proof Let S = {D ⊆ C : nonempty, closed, convex and ϕ(D) ⊆ D}. The reflex-
ivity of X and Zorn’s lemma imply thatS has a minimal element C∗. Suppose that
diam C∗ > 0 and let u ∈ C∗

0 . Then

||ϕ(u) − ϕ(v)|| � ||u − v|| � r(C∗) for all v ∈ C∗

⇒ ϕ(C∗) ⊆ Br(C∗)(ϕ(u)) = B
∗
.

Then ϕ(C∗ ∩ B
∗
) ⊆ C∗ ∩ B

∗
and so the minimality of C∗ implies C∗ ⊆ B

∗
.

Therefore ϕ(u) ∈ C∗
0 and so ϕ(C∗

0 ) ⊆ C∗
0 . From Lemma 4.2.27 we have that C∗

0 ∈
S . Since diam C∗ > 0, from Lemma 4.2.28 it follows that C∗

0 is a proper subset of
C∗, which contradicts the minimality of C∗. Therefore C∗ is a singleton and it is a
fixed point of ϕ. The proof is now complete. �

A careful reading of the proofs of Lemma 4.2.27 and Theorem 4.2.29 reveals that
we can drop the reflexivity requirement of X and instead assume that C ⊆ X is
nonempty convex and weakly compact. Recall that in a reflexive Banach space a
closed, convex and bounded set is weakly compact.

Theorem 4.2.30 If X is a Banach space, C ⊆ X is nonempty, weakly compact,
convex and has normal structure and ϕ : C → C is nonexpansive, then ϕ has a fixed
point.

The normal structure hypothesis on the set C is satisfied in the following case.

Proposition 4.2.31 If X is a uniformly convex Banach space and C ⊆ X is nonempty,
closed, convex and bounded, then C has normal structure.

Proof Since X is uniformly convex (see Definition 2.7.29), given ε ∈ (0, 2], we can
find δ(ε) > 0 such that
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||u||, ||v|| � 1 and ||u − v|| � ε ⇒
∥∥∥∥12 [u + v]

∥∥∥∥ � 1 − δ(ε).

Because C is bounded, without any loss of generality, we may assume that

C ⊆ B1 = {u ∈ X : ||u|| � 1}.

Let D ⊆ C be nonempty, closed, convex, u1 ∈ D and ε = 1
2 . Choose u2 ∈ D such

that

||u2 − u1|| � 1

2
diam D.

Then for any u ∈ D we have

∥∥∥∥u − 1

2
[u1 + u2]

∥∥∥∥ =
∥∥∥∥12 [u − u1] + 1

2
[u − u2]

∥∥∥∥
� diam D

[
1 − δ

(
1

2

)]
.

Since u ∈ D is arbitrary and δ
(
1
2

)
> 0, we conclude that D has normal structure.

The proof is now complete. �

Remark 4.2.32 Recall that a uniformly convex Banach space is reflexive (Milman–
Pettis theorem). If X is uniformly convex, then in Theorem 4.2.29 the hypothesis
that C has normal structure is redundant.

In the case of Hilbert spaces, we can say more. More precisely, let H be a Hilbert
space and Bρ = {u ∈ H : ||u|| � ρ}. We consider nonexpansive maps ϕ : Bρ → H .
In our search for fixed points ofϕ, wewill use the radial retractionmap, r : H → Bρ,
defined by

r(u) =
{

u if ||u|| � ρ

ρ
u

||u|| if ||u|| > ρ.
(4.19)

Evidently, r(u) = projBρ
(u) (=the metric projection onto Bρ).

Proposition 4.2.33 The radial retraction r : H → Bρ defined by (4.19) is nonex-
pansive.

Proof For all u, v ∈ H , we have

(u − r(u), r(v) − r(u))H � 0 (4.20)

(by (·, ·)H we denote the inner product of H ). We write

u − v = r(u) − r(v) + u − r(u) + r(v) − v = r(u) − r(v) + h
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with h = u − r(u) + r(v) − v. Then

||u − v||2 = ||r(u) − r(v)||2 + ||h||2 + 2(h, r(u) − r(v))H . (4.21)

We have

(h, r(u) − r(v))H = −(u − r(u), r(v) − r(u))H − (v − r(v), r(u) − r(v))H � 0

(see (4.7))

⇒ ||r(u) − r(v)||2 � ||u − v||2 (see (4.20))
⇒ r is nonexpansive.

The proof is now complete. �

This observation leads to an alternative theorem for nonexpansive maps in a
Hilbert space.

Theorem 4.2.34 If H is a Hilbert space, Bρ = {u ∈ H : ||u|| � ρ} and
ϕ : Bρ → H is nonexpansive, then ϕ satisfies at least one of the following state-
ments:

(a) ϕ has a fixed point;
(b) there exist u ∈ ∂Bρ and λ ∈ (0, 1) such that u = λϕ(u).

Proof We consider themap r ◦ ϕ : Bρ → Bρ, where r is the radial retraction defined
by (4.19). Proposition 4.2.33 implies that r ◦ ϕ is nonexpansive. Recalling that a
Hilbert space is uniformly convex, from Proposition 4.2.31 we infer that Br has
normal structure. So, we can apply Theorem 4.2.29 and find û ∈ Bρ such that û =
r ◦ ϕ(û). If ϕ(û) ∈ Bρ, then û = r(ϕ(û)) = ϕ(û) (see (4.19)) and so ϕ has a fixed
point. If ϕ(û) ∈ H\Bρ, then û = ρ ϕ(û)

||ϕ(û)|| (see (4.19)) and so û ∈ ∂Bρ. Thus taking
λ = ρ

||ϕ(û)|| < 1, we see that statement (b) holds. �

As before (see Corollary 4.2.18), by imposing conditions on ϕ which prohibit the
occurrence of the second possibility, we obtain several fixed point results.

Corollary 4.2.35 If H is a Hilbert space, Bρ = {u ∈ H : ||u|| � ρ},
ϕ : Bρ → H is nonexpansive and for all u ∈ ∂Bρ one of the following conditions
holds

(i) ||ϕ(u)|| � ||u||;
(ii) ||ϕ(u)|| � ||u − ϕ(u)||;

(iii) ||ϕ(u)||2 � ||u||2 + ||u − ϕ(u)||2;
(iv) (ϕ(u), u)H � ||u||2;
(v) ϕ

∣∣∣
∂�

is odd;

then ϕ has a fixed point.

Asan application of thesefixedpoint theorems,weprove the following surjectivity
result.
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Corollary 4.2.36 If H is a Hilbert space, ϕ : H → H is nonexpansive and

(u, u − ϕ(u))H � ϑ(||u||)||u|| for all u ∈ H

with ϑ(t) → ∞ as t → ∞, then u → g(u) = u − ϕ(u) is surjective on H.

Proof Let u0 ∈ H and consider the map h(u) = g(u) − u0 for all u ∈ H . We have

(u, h(u))H

||u|| = (u, g(u))H

||u|| − (u, u0)H

||u|| � ϑ(||u||) − ||u0||.

So, for large ρ > 0 we have

(u, h(u))H � 0 for all ||u|| = ρ.

Invoking Corollary 4.2.35(d), we know that we can find a û ∈ H such that

û = ϕ(û) + u0

⇒ u0 = û − ϕ(û) = g(û).

Since u0 ∈ H is arbitrary, we conclude that g is surjective. The proof is now
complete. �

4.3 Topological Fixed Points

Topological fixed point theorems use more fundamental results from topology in
order to establish the existence of fixed points and so go outside the framework of
metric spaces.We have already seen two prototype such results in Chap.3 in conjunc-
tion with the study of degree theories. The first was Brouwer’s fixed point theorem
(finite-dimensional case, see Theorem 3.1.34) and the second was Schauder’s fixed
point theorem (infinite-dimensional case, see Theorem 3.2.20). In this section, we
continue in this direction and, using mainly topological tools, we prove some new
fixed point theorems, which are of interest in applications.

We start by extending the Brouwer fixed point theorem (see Theorem 3.1.34).

Proposition 4.3.1 If C ⊆ R
N is a compact set homeomorphic to the closed unit ball

of R
N and ϕ : C → C is continuous, then ϕ has a fixed point.

Proof Let h : C → B1 be the homeomorphism between C and the unit ball B1 =
{u ∈ R

N : ||u|| � 1}. Then ψ = h ◦ ϕ ◦ h−1 : B1 → B1 is a continuous map and
so we can apply Theorem 3.1.34 and find ŷ ∈ B1 such that ψ(ŷ) = ŷ. Then û =
h−1(ŷ) ∈ C is a fixed point of ϕ. �
Proposition 4.3.2 If C ⊆ R

N is compact and convex, then C is homeomorphic to
the closed unit ball of R

m for some m � N.
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Proof First assume that int C �= ∅. Translating things if necessary (recall that the
translation is a homeomorphism), we may assume that 0 ∈ int C . So, we can find
r > 0 such that Br ⊆ C . We introduce the Minkowski functional corresponding to
C , defined by

jC(u) = inf

{
λ > 0 : 1

λ
u ∈ C

}
.

Then jC(u) � 1
r ||u|| for all u ∈ R

N and so jC : R
N → R+. Since C is compact,

we can find R > 0 such that C ⊆ B R and so ||u||
R � jC(u). Also we have

· u ∈ C ⇒ jC(u) � 1. (4.22)

· jC(tu) = t jC(u) for all t � 0, all u ∈ R
N . (4.23)

· jC(u + v) � jC(u) + jC(v) for all u, v ∈ R
N . (4.24)

Properties (4.22) and (4.23) are evident from the definition of the Minkowski
functional jC . We prove (4.24). Let λ1 > 0 and λ2 > 0 be such that u

λ1
, v

λ2
∈ C .

Then

u + v

λ1 + λ2
= λ1

λ1 + λ2

u

λ1
+ λ2

λ1 + λ2

v

λ2
∈ C (due to the convexity of C)

⇒ jC(u + v) � λ1 + λ2

⇒ jC(u + v) � jC(u) + jC(v).

Moreover, the converse of (4.22) holds, namely “ jC(u) � 1 ⇒ u ∈ C”. To see
this let λn → jC(y) and yn ∈ C such that u = λn yn + (1 − λn)0. If λn ∈ [0, 1] for
all n � n0, then u ∈ C , being the convex combination of elements in C . If λn > 1
for all n � 1, then λn → jC(u) = 1 and so yn → u. Since C is closed, we conclude
that u ∈ C .

For all u, v ∈ R
N we have

− jC(−v) � jC(u + v) − jC(u) � jC(v) (see (4.24))

and max{| jC(−v)|, | jC(v)|} � ||v||
r . Therefore jC is continuous.

We introduce the following two functions, f, g : R
N → R

N :

f (u) =
{ jC (u)

||u|| u if u �= 0
0 if u = 0

and g(y) =
{ ||y||

jC (y)
y if y �= 0

0 if y = 0.
(4.25)

It is easy to see that f ◦ g = g ◦ f = iRN . Moreover, from the continuity of jC(·)
we see that both are continuous on R

N \{0}. In addition, we have



4.3 Topological Fixed Points 291

|| f (u)|| � jC(u) � ||u||
r

⇒ f is continuous at u = 0, hence so is g

⇒ f, g are homeomorphisms of R
N .

Finally, we show that f (C) = B1 = {u ∈ R
N : ||u|| � 1}. If u ∈ C , then jC(u) �

1 (see (4.22)) and so || f (u)|| � 1 (see (4.25)), hence f (C) ⊆ B1. On the other hand,
if y ∈ B1, then

jC(g(u)) = ||y||
jC(y)

jC(y) � 1 (see (4.23), (4.25))

⇒ g(B1) ⊆ C

⇒ B1 ⊆ f (C) (recall f = g−1)

⇒ f (C) = B1.

If int C = ∅, then due to the convexity of C we know that its relative interior
is nonempty (recall that rint C is the interior of C in the affine hull of C , which is
R

m for some m < N ). So, we repeat the above argument in R
m . The proof is now

complete. �

Combining Propositions 4.3.1 and 4.3.2, we obtain.

Corollary 4.3.3 If C ⊆ R
N is compact convex and ϕ : C → C is continuous, then

ϕ has a fixed point.

Remark 4.3.4 In general, in contrast to the Banach fixed point theorem (see Theorem
4.2.3), the fixed point obtained in the above corollary need not be unique.

Proposition 4.3.5 If ϕ : R
N → R

N is continuous and there exists an r > 0 such
that

(ϕ(u), u)RN � 0 for all u ∈ Br ,

then there exists a û ∈ Br such that ϕ(û) = 0.

Proof Arguing by contradiction suppose that ||ϕ(u)|| > 0 for all ||u|| � r . Then we
can define the map ψ : Br → ∂Br by setting

ψ(u) = −r
ϕ(u)

||ϕ(u)|| .

Evidently, ψ is continuous. So, Corollary 4.3.3 implies that there exists a u0 ∈ Br

such that

ψ(u0) = u0 = −r
ϕ(u0)

||ϕ(u0)||
⇒ ||u0|| = r.
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Then

r2 = ||u0||2 = (ψ(u0), u0)RN = − r

||ϕ(u0)|| (ϕ(u0), u0)RN � 0,

a contradiction. So, there exists a û ∈ Br such that ϕ(û) = 0. �

Remark 4.3.6 The hypothesis (ϕ(u), u)RN � 0 for u ∈ ∂Br means that the map ϕ
points to the exterior of Br on ∂Br . Evidently, Proposition 4.3.5 implies the lack of
retraction of Br onto ∂Br (see Proposition 3.1.32). Indeed, if a retraction existed, then
wecoulduse it asϕ in the aboveproposition and reach a contradiction. So, Proposition
4.3.5 is in fact equivalent to Brouwer’s fixed point theorem. Next we present some
more interesting topological results which are equivalent to the Brouwer fixed point
theorem. First a definition.

Definition 4.3.7 Let X, Y be Hausdorff topological spaces.

(a) Two continuous maps ϕ,ψ : X → Y are said to be homotopic if there exists a
continuous map h : [0, 1] × X → Y such that

h(0, ·) = ϕ(·) and h(1, ·) = ψ(·).

Themap h is called a homotopy (or deformation) ofϕ toψ. Ifϕ,ψ are homotopic
we write ϕ � ψ.

(b) A map ϕ : X → Y homotopic to a constant map is said to be nullhomotopic and
we write ϕ � 0.

(c) A space X is said to be contractible if the identity map iX : X → X is nullho-
motopic.

Theorem 4.3.8 The following statements are equivalent:

(a) ∂B1 = {u ∈ R
N : ||u|| = 1} is not contractible in itself.

(b) Every continuous map ϕ : B1 = {u ∈ R
N : ||u|| � 1} → R

N has at least one of
the following properties:

(b1) ϕ has a fixed point;
(b2) there exists û ∈ ∂B1 and λ ∈ (0, 1) such that û = λϕ(û).

(c) Every continuous map ϕ : B1 → B1 has a fixed point.
(d) ∂B1 is not a retract of B1.

Proof (a) ⇒ (b)

Arguing by contradiction, suppose that

ϕ(u) �= u for all u ∈ B1 and y �= λϕ(y) for all λ ∈ (0, 1) and all y ∈ ∂B1.

In fact, y �= λϕ(y) also for λ = 0 and for λ = 1. Let r : R
N \{0} → ∂B1 be the

map defined by r(u) = u
||u|| . We consider the homotopy h : [0, 1] × ∂B1 → ∂B1

defined by
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h(λ, y) =
{

r(y − 2λϕ(u)) if λ ∈ [0, 1
2

]
r((2 − 2λ)y − ϕ((2 − 2λ)y)) if λ ∈ [ 12 , 1] .

This shows that ∂B1 is contractible in itself, a contradiction.
(b) ⇒ (c)

Property (b2) cannot occur since ϕ(∂B1) ⊆ B1. So, ϕ has a fixed point.
(c) ⇒ (d)

See Proposition 3.1.36.
(d) ⇒ (a)

Arguing by contradiction, suppose that iRN � 0. Let h be a homotopy such that
h(0, ∂B1) = u0 ∈ ∂B1. We introduce the map r : B1 → ∂B1 defined by

r(u) =
{

u0 if ||u|| � 1
2

h
(
2||u|| − 1, u

||u||
)
if 1

2 � ||u|| � 1.

Then r is a retraction of B1 onto ∂B1, a contradiction. The proof is now
complete. �

A purely topological version of this theorem has the following form:

Theorem 4.3.9 The following statements are equivalent.

(a) The Ljusternik–Schnirelmann–Borsuk theorem holds (see Proposition 3.1.51).
(b) There is no continuous odd mapϕ : ∂B N+1

1 = {u ∈ R
N+1 : ||u|| = 1} →∂B N

1 =
{u ∈ R

N : ||u|| = 1}.
(c) A continuous odd map ϕ : ∂B N

1 → ∂B N
1 is not nullhomotopic.

(d) For every continuous map ϕ : ∂B N
1 → R

N−1 we can find û ∈ ∂B N
1 such that

ϕ(û) = ϕ(−û).

Proof (a) ⇒ (b)

Arguing by contradiction, suppose that there exists a continuous odd map ϕ :
∂B N+1

1 → ∂B N
1 . Consider the N -simplex centered at the origin. Its boundary is

homeomorphic to ∂B N
1 . Let {Ck}N+1

k=1 be the images of the (N − 1)-faces. So, eachCk

is a closed set and contains no antipodal points. Let Dk = ϕ−1(Ck), k = 1, . . . , N +
1. These are closed sets and cover ∂B N+1

1 . So, by the Ljusternik–Schnirelmann–
Borsuk theorem, there exists a u ∈ Dk ∩ (−Dk) for some k = 1, . . . , N + 1. Since
ϕ is odd, we have ϕ(−u),−ϕ(u) ∈ Ck , a contradiction.

(b) ⇒ (c)
Again we proceed indirectly. So, suppose that there exists a continuous odd map

ϕ : ∂B N
1 → ∂B N

1 which is nullhomotopic. This means that there exists a homotopy
h deforming ϕ to a constant map. Let

ϕ̂(u) =
{

h(0, ∂B N
1 ) if 0 � ||u|| � 1

2

h
(
2||u|| − 1, u

||u||
)
if 1

2 � ||u|| � 1.
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Then ϕ̂ : B
N
1 → ∂B N

1 is continuous and ϕ̂
∣∣∣
∂B N

1

= ϕ. Let

∂B N+1
1,+ = {u ∈ ∂B N+1

1 : uN+1 � 0} and
∂B N+1

1,− = {u ∈ ∂B N+1
1 : uN+1 � 0} (u = (uk)

N+1
k=1 ∈ ∂B N+1

1 ).

We know that B
N
is homeomorphic to each of the above hemispheres. So, the

following map is well-defined

g(u) =
{

ϕ̂(u) if u ∈ ∂B N+1
1,+

−ϕ̂(u) if u ∈ ∂B N+1
1,− .

Then g : ∂B N+1
1 → ∂B N

1 is continuous and odd, a contradiction.
(c) ⇒ (d)

Proceeding by contradiction, suppose that we can find a continuous map ϕ :
∂B N

1 → R
N+1 such that ϕ(u) �= ϕ(−u) for all u ∈ ∂B N

1 . Let ψ : ∂B N
1 → ∂B N−1

1
be defined by

ψ(u) = ϕ(u) − ϕ(−u)

||ϕ(u) − ϕ(−u)|| .

Then ψ
∣∣∣
∂B N−1

1

: ∂B N−1
1 → ∂B N−1

1 is odd and since ψ
∣∣∣
∂B N+1

1,+
is an extension over

B
N
1 , ψ

∣∣∣
∂B N−1

1

is nullhomotopic (just take the deformation h(t, u) = ψ
∣∣∣
∂B N+1

1,+
(tu)), a

contradiction.
(d) ⇒ (a)

Suppose that {Ck}N+1
k=1 is a closed cover of ∂B N+1

1 and no Ck contains a pair
of antipodal points, that is, Ck ∩ (−Ck) = ∅ for every k = 1, · · · , N + 1. Using
Urysohn’s theorem for each k = 1, · · · , N , we can find fk : ∂B N+1

1 → [0, 1] such
that

fk |Ck
= 0 and fk |−Ck

= 1.

Let f̂ : ∂B N+1
1 → R

N be defined by

f̂ (u) = ( fk(u))N
k=1.

By virtue of (d), there exists a û ∈ ∂B N+1
1 such that f̂ (û) = f̂ (−û). Hence

fk(û) = fk(−û) for all k = 1, · · · , N and so û ∈ ∂B N+1
1 \

(
N⋃

k=1
Ck ∪

N⋃
k=1

(−Ck)

)
.

The families {Ck}N+1
k=1 and {−Ck}N+1

k=1 cover ∂B N+1
1 , so we must have û ∈ CN+1 ∩

(−CN+1), a contradiction. �

We present two interesting consequences of this theorem.
The first relaxes the oddness hypothesis in part (c) of the theorem.
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Proposition 4.3.10 If ϕ : ∂B N
1 → ∂B N

1 is continuous and ϕ(u) �= ϕ(−u) for all
u ∈ ∂B N

1 , then ϕ is not nullhomotopic.

Proof Let ψ : ∂B N
1 → ∂B N

1 be defined by

ψ(u) = ϕ(u) − ϕ(−u)

||ϕ(u) − ϕ(−u)|| for all u ∈ ∂B N
1 .

Then ψ is continuous and odd. Suppose that for some y ∈ ∂B N
1 , we have ψ(y) =

−ϕ(y). Then

[1 + ||ϕ(y) − ϕ(−y)||]ϕ(y) = ϕ(−y)

⇒ 1 + ||ϕ(y) − ϕ(−y)|| = 1 (recall that ||ϕ(y)|| = ||ϕ(−y)|| = 1)

⇒ ϕ(y) = ϕ(−y), a contradiction to our hypothesis.

So, the maps ϕ and ψ are never antipodal. We consider the homotopy

ht (u) = (1 − t)ϕ(u) + tψ(u)

||(1 − t)ϕ(u) + tψ(u)|| for all (t, u) ∈ [0, 1] × ∂B N
1

⇒ ϕ � ψ.

But from Theorem 4.3.9(c) we know that ψ is not nullhomotopic. Since � is an
equivalence relation, we conclude that ϕ is not nullhomotopic too. �

The second consequence of Theorem 4.3.9 is the so-called “Borsuk Fixed Point
Theorem” (see also Theorem 3.1.45, the Borsuk–Ulam theorem).

Proposition 4.3.11 If U is a bounded, open, convex and symmetric neighborhood

of the origin, ϕ : U → R
N is continuous and ϕ

∣∣∣
∂U

is odd, then ϕ has a fixed point.

Proof Let jU : R
N → R+ be the Minkowski functional for the set U (see the proof

of Proposition 4.3.2). Let E N be the space R
N furnished with the norm | · | = jU (·).

Then the identity map h : R
N → E N is a homeomorphism which maps U onto

B
|·|
1 = {u ∈ E N : |u| � 1}. Let ψ = h ◦ ϕ ◦ h−1 : B

|·|
1 → R

N . Then ψ is continuous

and odd on ∂B |·|
1 . Suppose that ψ(u) �= u for all u ∈ B

|·|
1 . We introduce the map

τ : B
|·|
1 → ∂B |·|

1 defined by

τ (u) = ψ(u) − u

|ψ(u) − u| for all u ∈ B
|·|
1 .

Then τ is continuous and τ
∣∣∣
∂B |·|

1

is nullhomotopic (since E N is finite-dimensional).

But note that τ
∣∣∣
∂B |·|

1

is odd. This then contradicts Theorem 4.3.9(c). So, we can find

û ∈ B
|·|
1 such that
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ψ(û) = û

⇒ (h ◦ ϕ ◦ h−1)(û) = û

⇒ ϕ(h−1(û)) = h−1(û).

The proof is now complete. �

Nowwe turn our attention to infinite-dimensional Banach spaces (generalizations
of the Schauder fixed point theorem, see Theorem 3.2.20).

In the next result, the set D need not be convex and it is only the image of the
boundary ∂D under the map ϕ that matters.

Theorem 4.3.12 If X is a Banach space, D ⊆ X is bounded and closed with int D �=
∅, ϕ ∈ K (D, X) and there exists a u0 ∈ int D such that

ϕ(u) − u0 �= λ(u − u0) for all u ∈ ∂D and all λ > 1, (4.26)

then ϕ has a fixed point.

Proof Consider the homotopy {ht }t∈[0,1] of compact maps defined by

ht (u) = t (ϕ(u) − u0) − u0 for all (t, u) ∈ [0, 1] × (int D).

We may always assume that 0 /∈ (i − ϕ)(∂D) (or otherwise we already have a
fixed point for ϕ). Suppose that

u − ht (u) = 0 for some t ∈ (0, 1) and some u ∈ ∂(int D).

Then hypothesis (4.26) is violated for λ = 1
t > 1. Therefore

0 /∈ (i − ht )(∂(int D)) for all t ∈ [0, 1].

Hence the homotopy invariance property of the Leray–Schauder degree (see The-
orem 3.2.15 (c)) implies

dL S(i − ϕ, int D, 0) = dL S(i − u0, int D, 0). (4.27)

Since u0 ∈ int D, we have dL S(i − u0, int D, 0) = dL S(i, int D, u0) = 1 (normal-
ization property, see Theorem 3.2.15 (a)). Therefore

dL S(i − ϕ, int D, 0) = 1 see (4.27).

So, by the solution property (see Theorem 3.2.15 (d)), we can find û ∈ int D such
that

û = ϕ(û).

This completes the proof. �
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Remark 4.3.13 Condition (4.26) relates to ∂(int D) and we know that ∂(int D) ⊆
∂D. It is satisfied if D is convex and ϕ(∂D) ⊆ D.

Theorem 4.3.12 can be extended to γ-condensing maps using this time the degree
map dC established in Definition 3.7.13. So, we have the following property.

Theorem 4.3.14 If X is a Banach space, � ⊆ X is bounded open, ϕ : � → X is
γ-condensing, 0 /∈ (i − ϕ)(∂�) and there exists a u0 ∈ � such that

ϕ(u) − u0 �= λ(u − u0) for all u ∈ ∂� and all λ > 1, (4.28)

then ϕ has a fixed point.

Condition (4.28) is quite general and incorporates as special cases several concrete
conditions existing in the literature of fixed point theory.

Corollary 4.3.15 If X is a Banach space, � ⊆ X is bounded open with 0 ∈ �, then
any of the following conditions implies the existence of a fixed point for ϕ:

(a) � is convex and ϕ(∂�) ⊆ � (Rothe–Potter).
(b) ||ϕ(u) − u||2 + ||u||2 � ||ϕ(u)||2 for all u ∈ ∂� (Altman).
(c) If X = H is a Hilbert space with inner product (·, ·)H and (ϕ(u), u)H � ||u||2

for all u ∈ ∂� (Browder).

Remark 4.3.16 All the above conditions are special cases of (4.28) with u0 = 0.

Next wewill present another generalization of the Schauder fixed point theorem in
which the setC need not be convex (see Theorem3.2.20) and int C may be empty (see
Theorem 4.3.12). First we introduce the following fundamental topological notion.

Definition 4.3.17 A set X is an absolute retract (AR for short), if

(a) X is metrizable;
(b) for every metrizable space Y and A ⊆ Y closed, for every continuous ϕ : A →

X , we can find a continuous extension on all Y (that is, there exists a continuous

map ϕ̂ : Y → X such that ϕ̂
∣∣∣

A
= ϕ).

Remark 4.3.18 So, an AR is that metrizable space which can replace [0, 1] in the
classical Tietze extension theorem. By virtue of Proposition 2.1.9, every convex set
in a normed space is an AR. Moreover, it is clear that if X is an AR, then every space
homeomorphic to X is also an AR.

Proposition 4.3.19 If X is an AR and D is a retract of X (see Definition 3.1.30),
then D is an AR too.

Proof Let Y be a metrizable space, A ⊆ Y a closed set and ϕ : A → D a continuous
map. Let r : X → D be a retraction for D. Since X is an AR, we can find a continuous
extension ϕ̂ : Y → X of ϕ. Then r ◦ ϕ̂ : Y → D is a continuous extension into D
and this proves that D is an AR. �
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Proposition 4.3.20 If X is an AR, then X is contractible (see Definition 4.3.7(c)).

Proof Fix u0 ∈ X and let h : {0, 1} × X → X be the continuous map defined by

h(t, u) =
{

u if t = 0
u0 if t = 1.

Since X is an AR, there exists a continuous extension ĥ : [0, 1] × X → X of h.
So

ĥ(0, u) = u and ĥ(1, u) = u0

⇒ X is contractible.

The proof is now complete. �

Now we can prove the generalized version of the Schauder fixed point theorem.

Theorem 4.3.21 If X is an AR and ϕ : X → X is a continuous map such that ϕ(X)

is relatively compact, then ϕ has a fixed point.

Proof The set K = ϕ(X) is compact, metric and so it is homeomorphic to a closed
subset K̂ of the Hilbert cube I ∞ = [0, 1]N. Let h : K → K̂ be the homeomorphism.
We consider the maps

X
ϕ−→ K

h−→ K̂
h−1−→ K

i−→ X (i = the identity (inclusion) map).

The set K̂ ⊆ I ∞ is closed and I ∞ is metrizable. Since X is an AR, the map
i ◦ h−1 : K̂ → X admits a continuous extension ψ : I ∞ → X . Let τ = î ◦ h ◦ ϕ,
where î : K̂ → I ∞ is the identity (inclusion) map. Then τ : X → I ∞ is continuous.
The map τ ◦ ψ : I ∞ → I ∞ is continuous. The Hilbert cube I ∞ is a fixed point space
(that is, every continuousmap f : I ∞ → I ∞ admits a fixed point). This follows from
the fact that an infinite product of nonempty fixed point spaces is also a fixed point
space, if every finite product of those spaces is a fixed point space (see Dyer [152]).
So, using Corollary 4.3.3, we infer that I ∞ is a fixed point space. Hence we can find
ŷ ∈ I ∞ such that (τ ◦ ψ)(ŷ) = ŷ. Then for û = ψ(ŷ), we have

ϕ(û) = (ψ ◦ τ )(û) = ψ(τ (ψ(ŷ))) = ψ(ŷ) = û

⇒ ϕ has a fixed point.

The proof is now complete. �

Remark 4.3.22 As we already mentioned every convex set of a normed space is an
AR (see Proposition 2.1.9). So Theorem 4.3.21 is a generalization of the Schauder
fixed point theorem. The product of two fixed point spaces need not be a fixed point
space (even if they are compact, see Bredon [61]). If X is an infinite-dimensional
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Banach space, then we know that ∂B1 = {u ∈ X : ||u|| = 1} is a retract of B1 =
{u ∈ X : ||u|| � 1}. So, we can apply Proposition 4.3.19 to conclude that ∂B1 is an
AR.

Now we present a generalization of Theorem 4.3.14 for maps satisfying con-
dition (4.28) (sometimes known in the literature as the Leray–Schauder boundary
condition).

Theorem 4.3.23 If X is a Banach space, � ⊆ X is open, ϕ : � → X is continuous
and

(i) for some u0 ∈ � we have

ϕ(u) − u0 �= λ(u − u0) for all u ∈ ∂�, all λ > 1

(the Leray–Schauder boundary condition);
(ii) if C ⊆ � is countable and C ⊆ conv [{u0} ∩ ϕ(C)], then C is compact,

then ϕ has a fixed point in �.

Proof By translating things if necessary, without any loss of generality, we may
assume that u0 = 0 ∈ � (indeed, if this is not the case, we replace � by � − u0 and
ϕ(·) by ϕ(· + u0) − u0 defined on � − u0).

Let �0 = {0} and inductively define �n+1 = conv[{0} ∪ ϕ(�n ∩ �)] for all
n � 0. Evidently, �n ⊆ �n+1 and �n is compact for every n � 0. So, we can find a
countable set Cn such that Cn = �n ∩ �. Let V = ⋃

n�0
�n . Since {�n}n�0 is increas-

ing, we have

V = conv [{0} ∪ ϕ(V ∩ �)]. (4.29)

For C = ⋃
n�0

Cn , we obtain

C ⊆
⋃
n�0

Cn =
⋃
n�0

(�n ∩ �) ⊆ V = conv [{0} ∪ ϕ(V ∩ �)] (see (4.29))

= conv

⎡
⎣{0} ∪ ϕ

⎛
⎝⋃

n�0

(�n ∩ �)

⎞
⎠
⎤
⎦

= conv [{0} ∪ ϕ(C)] (4.30)

⇒ C is compact see hypothesis (ii))

⇒ D = V is compact too (see (4.30)).

If ϕ
∣∣∣
∂�

has a fixed point, then we are done. Otherwise, λϕ(u) �= u for all (λ, u) ∈
[0, 1] × ∂� and so F = ⋃

˘∈[0,1]
Fix(λϕ) is compact and satisfies F ∩ ∂� = ∅ (here
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Fix(λϕ) = {u ∈ � : λϕ(u) = u}). The sets F ∩ D and ∂D(� ∩ D) (=the boundary
of� ∩ D in D) are closed in D and disjoint since D ⊆ � and∂D(� ∩ D) ⊆ ∂� ∩ D.
So, by Urysohn’s theorem we can find a continuous function ϑ : D → [0, 1] such
that

ϑ
∣∣∣
∂D(�∩D)

= 0 and ϑ
∣∣∣

F∩D
= 1. (4.31)

Let ψ : D → X be the map defined by

ψ(u) =
{

ϑ(u)ϕ(u) if u ∈ � ∩ D
0 otherwise.

(4.32)

Since ∂D(� ∩ D) = ∂D(� ∩ D) and ϑ
∣∣∣
∂D(�∩D)

= 0 (see (4.31)), from (4.32) we

infer that ψ is continuous. In addition we have

ψ(D) ⊆ conv [{0} ∪ ϕ(� ∩ V )] ⊆ conv [{0} ∪ ϕ(� ∩ V )] = V = D (see (4.29)).

Invoking the Schauder fixed point theorem (see Theorem 3.2.20), we can find
û ∈ D such that ψ(û) = û. Hence û ∈ � ∩ D and ϑ(û)ϕ(û) = û (see (4.32)). So,
û ∈ Fix (ϑ(û)ϕ) ⊆ F and soϑ(û) = 1 (see (4.31)). Thereforefinallywehaveϕ(û) =
û. The proof is now complete. �

For self-maps, Theorem 4.3.23 takes the following form.

Theorem 4.3.24 If X is a Banach space, C ⊆ X is closed and convex, ϕ : C → C
is continuous and for some u0 ∈ C the following condition holds

“if E ⊆ C is countable and E = conv [{u0} ∪ ϕ(E)],
then E is compact”,

then ϕ has a fixed point.

Proof As in the proof of Theorem 4.3.23, we obtain V = conv[{u0} ∪ ϕ(V )] ⊆ C
and D = V is compact. Thenϕ : D → D and soby theSchauderfixedpoint theorem,
we have a fixed point. �

Wewill conclude this sectionwith onemore fixed point theorem for nonself-maps.
It concerns the so-called weakly inward maps. So, first we introduce this class of
maps.

Definition 4.3.25 (a) X is a Banach space, C ⊆ X is nonempty and {un}n�1 a
bounded sequence in X . The asymptotic center of {un}n�1 relative to C is defined by

A(C, {un}) =
{

y ∈ C : lim sup
n→∞

||y − un|| = inf
v∈C

[
lim sup

n→∞
||v − un||

]}
;



4.3 Topological Fixed Points 301

(b) X is a Banach space, C ⊆ X is nonempty, closed, convex and for u ∈ C we
define

IC(u) = {(1 − λ)u + λy : λ � 0, y ∈ C},

the inward set of u ∈ C with respect to C . A map ϕ : C → X is said to be weakly
inward if ϕ(u) ∈ IC(u) for all u ∈ C .

Remark 4.3.26 If we set r(y) = lim sup
n→∞

||y − un||, then r(·) is convex and nonex-

pansive. Also, if the space X is uniformly convex and C ⊆ X is nonempty, bounded,
closed and convex, then the set A(C, {un}) is a singleton. Finally, it is easy to check
that ϕ : C → X is weakly inward if and only if lim

λ→0+
1
λ

d(u + λ(ϕ(u) − u), C) = 0

for all u ∈ C . This condition is closely connected with the existence of solutions of
initial-value problems on closed convex sets. So, consider the initial value problem
u′(t) = ϕ(u(t)) − u(t), t ∈ T and u(0) = u0 ∈ C . If u(·) is a local solution of this
problem, then

u0 + λ(ϕ(u0) − u0) + o(δ) = u(t) ∈ C as t → 0+

⇒ d(u0 + λ(ϕ(u0) − u0), C) = d(u(t) + o(t), C) = o(t) as t → 0+,

which is the inwardness condition for u0. In fact this boundary condition is also
sufficient if, for example, ϕ is Lipschitz (see Lakshmikantham and Leela [257]
and Martin [291]). Weak inwardness can also be characterized in terms of linear
functionals. Namely, ϕ : C → X is weakly inward if and only if

“u ∈ ∂C, u∗ ∈ X∗ and 〈u∗, u〉 = σC(u∗) = sup{〈u∗, v〉 : v ∈ C}
imply

〈u∗,ϕ(u) − u〉 � 0”.

Proposition 4.3.27 If X is a uniformly convex Banach space, C ⊆ X is nonempty,
closed and convex, {un}n�1 ⊆ C is bounded and u is its asymptotic center with
respect to C (see Definition 4.3.25 and Remark 4.3.26), then u is also its asymptotic
center with respect to IC(u).

Proof Let v be the asymptotic center of {un}n�1 with respect to IC(u). Assume
that v �= u. Since C ⊆ IC(u), we have v ∈ IC(u) − C and r(v) < r(u). Since r(·) is
continuous, we can find z ∈ IC(u) − C such that r(z) < r(u). Therefore z = (1 −
λ)u + λx for some x ∈ C and λ > 1. The convexity of r(·) implies

r(x) = r

[
1

λ
z +

(
1 − 1

λ

)
u

]
� 1

λ
r(z) +

(
1 − 1

λ

)
r(u)

� 1

λ
r(u) +

(
1 − 1

λ

)
r(u) = r(u),

contradicting Definition 4.3.25(a). This proves that v = u. The proof is now com-
plete. �
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We will need the following fixed point theorem of Caristi [101].

Proposition 4.3.28 If X is a Banach space, C ⊆ X is nonempty, closed and convex
and ϕ : C → X is a contraction and weakly inward, then ϕ has a unique fixed point.

Using this proposition, we can prove the following fixed point theorem for weakly
inward maps.

Theorem 4.3.29 If X is a uniformly convex Banach space, C ⊆ X is nonempty,
bounded closed and convex and ϕ : C → X is nonexpansive and weakly inward,
then ϕ has a fixed point.

Proof Let u0 ∈ C and for every n � 1 let

ϕn(u) = (1 − λn)u0 + λnϕ(u) for all u ∈ C with λn ∈ (0, 1).

Assume that λn → 1−. Evidently,ϕn is a contraction with constant l(ϕn) = λn <

1. By Theorem 4.2.3, ϕn has a unique fixed point un ∈ C . We have

||un − ϕ(un)|| =
∥∥∥∥un − 1

λn
un −

(
1

λn
− 1

)
u0

∥∥∥∥
=
(

1

λn
− 1

)
||un − u0|| → 0 as n → ∞,

since C is bounded and λn → 1−. Let u be the asymptotic center of {un}n�1 with
respect to C . Then

r(ϕ(u)) = lim sup
n→∞

||un − ϕ(u)||
� lim sup

n→∞
||ϕ(un) − ϕ(u)||

� lim sup
n→∞

||un − u|| (since ϕ is nonexpansive)

= r(u). (4.33)

Since ϕ is weakly inward, ϕ(u) ∈ IC(u). Also from Proposition 4.3.27 we know
that u is also the asymptotic center of {un}n�1 with respect to IC(u). So, from (4.33),
we conclude that ϕ(u) = u. �

In fact, a similar result, due to Deimling [142, p. 211], is also true for γ-condensing
maps.

Theorem 4.3.30 If X is a Banach space, C ⊆ X is nonempty, bounded, closed and
convex and ϕ : C → X is γ-condensing and weakly inward, then ϕ has a fixed point.
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4.4 Order Fixed Points and the Fixed Point Index

In this section we discuss fixed point theorems resulting from the order structure of
the ambient Banach space.

So, let X be an ordered Banach space (O BS for short), that is, a Banach space
together with a cone K inducing a partial order on X (by setting u � v if and only
if v − u ∈ K , see Definition 4.1.1). We call K the order cone of X .

Definition 4.4.1 Let X be an O BS with order cone K .

(a) For every u, v ∈ X , the set

[u, v] = {y ∈ X : u � y � v}

is the order interval determined by u, v and it is nonempty if and only if u � v

(that is, v − u ∈ K ). A set C ⊆ X is said to be order bounded if it is contained
in some order interval. Also, we say that C is order convex if u, v ∈ C imply
[u, v] ⊆ C . By [C] we denote the order convex hull of C , which is the smallest
order convex subset of X which contains C , that is, [C] = ⋃{[u, v] : u, v ∈ C}.

(b) A map ϕ : X → X is said to be

– increasing if u � v ⇒ ϕ(u) � ϕ(v);
– strictly increasing if v − u ∈ K\{0} ⇒ ϕ(v) − ϕ(u) ∈ K\{0};
– strongly increasing (provided int K �= ∅) ifv − u ∈ K\{0} ⇒ ϕ(v) − ϕ(u) ∈
int K .

Also, we say that ϕ : X → X is decreasing (resp. strictly, strongly) decreasing
if −ϕ is increasing (resp. strictly, strongly) increasing.

(c) A linear operator A : X → X is said to be

– positive if A(K ) ⊆ K ;
– strictly positive if A(K\{0}) ⊆ K\{0};
– strongly positive (provided int K �= ∅) if ϕ(K\{0}) ⊆ int K .

Remark 4.4.2 Evidently, a positive linear operator A : X → X is increasing.

Proposition 4.4.3 If X is an O BS with order cone K , u0, v0 ∈ K with v0 − u0 ∈
K\{0}, ϕ : [u0, v0] → X is an increasing operator such that

u0 � ϕ(u0) and ϕ(v0) � v0 (4.34)

and one of the following conditions holds:

(i) ϕ is γ-condensing and K is normal; or
(ii) ϕ is demicontinuous (that is, un → u in X ⇒ ϕ(un)

w→ ϕ(u) in X) and K is
regular,

then ϕ has a maximal fixed point v̂ and a minimal fixed point û in [u0, v0].
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Proof Let un = ϕ(un−1) and vn = ϕ(vn−1) for all n � 1. Since ϕ is increasing and
(4.34) holds, we have

u0 � u1 � · · · � un � · · · � vn � · · · � v1 � v0. (4.35)

First assume that hypothesis (i) is in effect. LetC = {un}n�0. The setC is bounded
and C = ϕ(C) ∪ {u0}. So, γ(C) = γ(ϕ(C)). But according to hypothesis (i) ϕ is γ-
condensing. It follows that γ(C) = 0 and so C is compact in X . Hence there exists
a subsequence {unk }k�1 of {un}n�1 such that unk → û in X . We have

un � û � vn for all n � 1

⇒ 0 � û − um � û − unk for all m � nk

⇒ ||û − um || � ξ||û − unk || for all m � nk

(due to the normality of K , see Proposition 4.1.6)

⇒ um → û in X. (4.36)

Since un = ϕ(un−1) for all n � 1, passing to the limit as n → ∞ and using (4.36)
and the continuity of ϕ, we obtain

û = ϕ(û).

Reasoning in a similar fashion, we show that

vn → v̂ in X

⇒ v̂ = ϕ(v̂).

Next, assume that hypothesis (ii) holds. The regularity of K and (4.35) imply

un → û in X (see Definition 4.1.2 (e)). (4.37)

The demicontinuity of ϕ implies

ϕ(un)
w→ ϕ(û) in X. (4.38)

Since un = ϕ(un−1) for all n � 1, from (4.37) and (4.38) we obtain

û = ϕ(û).

Similarly we obtain un → v̂ in X and û = ϕ(v̂).
Finally we show that û, v̂ ∈ [u0, v0] are the extremal fixed points of ϕ in the order

interval [u0, v0]. To this end, let ũ ∈ [u0, v0] and assume that ũ = ϕ(ũ). Since ϕ is
increasing, we have
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ϕ(u0) � ϕ(ũ) � ϕ(v0)

⇒ u1 � ϕ(ũ) = ũ � v1.

In this fashion we obtain inductively

un � ũ � vn for all n � 1

⇒ û � ũ � v̂.

The proof is now complete. �

Remark 4.4.4 If ϕ has only one fixed point in [u0, v0], then starting from any y0 ∈
[u0, v0] the sequence of successive iterates un = ϕ(un−1) for all n � 1 converges to
this unique fixed point û ∈ [u0, v0].

In the next three theorems, we do not require ϕ to be continuous.

Theorem 4.4.5 If X is an O BS, u0, v0 ∈ X with v0 − u0 ∈ K\{0},
ϕ : [u0, v0] → X is an increasing map which satisfies (4.34) and the setϕ([u0, v0]) ⊆
X is relatively compact, then ϕ has a fixed point.

Proof Let E = {u ∈ ϕ([u0, v0]) : u � ϕ(u)}. Note that E �= ∅ since ϕ(u0) ∈ E
(recall that ϕ is increasing). Suppose that M ⊆ E is a totally ordered subset. We
have

M ⊆ E ⊆ ϕ([u0, v0])
⇒ M is relatively compact in X.

So, we can find {un}n�1 ⊆ M dense in M . Let yn = sup{uk}n
k=1 ∈ M (recall that

M is totally ordered and so yn equals one of the u′
ks, k ∈ {1, · · · , n}). So, we can

find a subsequence {ynk }k�1 of {yn}n�1 such that

ynk → ŷ in X.

Evidently, {yn}n�1 is increasing and so

un � yn � ŷ for all n � 1. (4.39)

We have

ŷ ∈ M ⊆ E ⊆ ϕ([u0, v0]) ⊆ [u0, v0] (see (4.34))

⇒ u � ŷ for all u ∈ M

⇒ u � ϕ(u) � ϕ(ŷ) for all u ∈ M.

Hence ϕ(û) is an upper bound of M and yn � ϕ(ŷ) for all n � 1. So, ŷ � ϕ(ŷ),
thereforeϕ(ŷ) � ϕ(ϕ(ŷ)) and this implies thatϕ(ŷ) ∈ E .We have proved that every
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totally ordered subset of E has an upper bound in E . Applying Zorn’s lemma, we
infer that E has a maximal element v̂ (for the partial order on E induced by (X, K )).
From the definition of E we have v̂ � ϕ(v̂) and so the maximality of v̂ implies
v̂ = ϕ(v̂). �

We can produce extremal fixed points provided we strengthen the condition on
the order cone K .

Theorem 4.4.6 If X is an O BS with a minihedral order cone K ⊆ X, u0, v0 ∈ X
such that v0 − u0 ∈ K\{0}, ϕ : [u0, v0] → X is an increasing map which satisfies
(4.34) and ϕ([u0, v0]) ⊆ X is relatively compact, then ϕ has a maximal fixed point
v̂ ∈ [u0, v0] and a minimal fixed point û ∈ [u0, v0].
Proof As in the proof of Proposition 4.2.5,we set E = {u ∈ ϕ([u0, v0]) : u � ϕ(u)}.
In that proof, using Zorn’s lemma, we obtained a maximal element v̂ ∈ E such that
ϕ(v̂) = v̂. We show that this is the maximal fixed point of ϕ in [u0, v0]. To this end,
let ũ ∈ [u0, v0] be a fixed point of ϕ. Since K is minihedral, y = sup{ũ, ṽ} ∈ X . We
have

ũ � y and v̂ � y

⇒ ϕ(ũ) = ũ � ϕ(y) and ϕ(v̂) = v̂ � ϕ(y) (since ϕ is increasing)

⇒ y � ϕ(y) and so ϕ(y) � ϕ(ϕ(y)).

This means that ϕ(y) ∈ E and then the maximality of v̂ implies that v̂ = ϕ(y).
Hence ũ � v̂.

Similarly, considering the set G = {u ∈ ϕ([u0, v0]) : ϕ(u) � u} and reasoning
as in the proof of Theorem 4.4.5, via Zorn’s lemma, we produce a minimal element
û ∈ G which, as above, we show is the minimal fixed point of ϕ on [u0, v0]. �

We can drop the topological condition on ϕ([u0, v0]) at the expense of strength-
ening the hypothesis on the order cone K .

Theorem 4.4.7 If X is an O BS with a strongly minihedral order cone K ⊆
X, u0, v0 ∈ X such that v0 − u0 ∈ K\{0} and ϕ : [u0, v0] → X is an increasing
map which satisfies (4.34), then ϕ has a maximal fixed point v̂ ∈ [u0, v0] and a
minimal fixed point û ∈ [u0, v0].
Proof As before, let E = {u ∈ [u0, v0] : u � ϕ(u)}. Since by hypothesis K is
strongly minihedral, sup E = v̂ ∈ [u0, v0] exists (see Definition 4.1.2(h)). We claim
that v̂ is the maximal fixed point of ϕ in [u0, v0]. Since ϕ is increasing, we have

u � ϕ(û) for all u ∈ E

⇒ v̂ � ϕ(û)

⇒ ϕ(v̂) � ϕ(ϕ(v̂)), hence ϕ(v̂) ∈ E

⇒ ϕ(v̂) � v̂ = sup E, hence ϕ(v̂) = v̂.
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If ũ ∈ [u0, v0] is a fixed point of ϕ, then ũ ∈ E and so ũ � v̂.
Similarly, if we set G = {u ∈ [u0, v0] : ϕ(u) � u}, then as above via Zorn’s

lemma we show that G has a minimal element û ∈ G and ϕ(û) = û. Moreover,
for every fixed point ũ ∈ [u0, v0] of ϕ, we have û � ũ. �

So far we have imposed a monotonicity condition (with respect to K ) on ϕ. Next
we will drop the monotonicity hypothesis and instead we are going to use degree
theory in order to prove fixed point results. To do this we will introduce the notion
of a fixed point index for the map.

Let X be an O BS with order cone K . Recall that C ⊆ X is a retract of K if there
exists a continuous map r : X → C such that r

∣∣∣
C

= i
∣∣∣
C
(see Definition 3.1.30). We

know that every closed and convex set in X is a retract (this is a consequence of
Proposition 2.1.9). A retract is always closed and if ∂B1 = {u ∈ X : ||u|| = 1}, then
we know that it is a retract of X provided X is infinite-dimensional (see Remark
3.1.33). This is no longer true if X is finite-dimensional (see Proposition 3.1.32).

Suppose thatC is a retract of X and� ⊆ C a bounded relatively open set. Assume
thatϕ : � → C is compact and 0 /∈ (i − ϕ)(∂�). Let r : X → C be a retraction and
let R > 0 be such that � ⊆ BR = {u ∈ X : ||u|| < R}. Note that BR ∩ r−1(�) is a
bounded open set in X . For the triple (ϕ,�, C)we canmake the following definition.

Definition 4.4.8 iF (ϕ,�, C) = dL S(i − ϕ ◦ r, BR ∩ r−1(�), 0). This quantity is
called the fixed point index of ϕ on � with respect to C .

Remark 4.4.9 Note that

BR ∩ r−1(�) ⊆ r−1(�) ⊆ r−1(�)

and u ∈ r−1(�), ϕ(r(u)) = u imply u ∈ � and ϕ(u) = u. In order for Definition
4.4.8 to be meaningful, we need to show that it is independent of the choice of R and
r . So, let R1 > R. Then

� ⊆ BR ∩ r−1(�) ⊆ BR1 ∩ r−1(�).

From the initial observations, we know that ϕ ◦ r has no fixed points in the
set BR1 ∩ r−1(�)\(BR ∩ r−1(�)). So, the excision property of the Leray–Schauder
degree (see Theorem 3.2.15 (g)), we have

dL S(i − ϕ ◦ r, BR1 ∩ r−1(�), 0) = dL S(i − ϕ ◦ r, BR ∩ r−1(�), 0)

⇒ i(ϕ,�, C) is independent of R > 0 (see Definition4.4.8).

Next, let r1 : X → C be another retraction of X onto C . Let

�̂ = BR ∩ r−1(�) ∩ r−1
1 (�).
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Then �̂ ⊆ X is bounded open and � ⊆ �̂. As above, we see that ϕ ◦ r has no
fixed points on BR ∩ r−1(�)\�̂ and ϕ ◦ r1 has no fixed points on BR ∩ r−

1 (�)\�̂.
So, invoking the excision property of the Leray–Schauder degree, we have

dL S(i − ϕ ◦ r, BR ∩ r−1(�), 0) = dL S(i − ϕ ◦ r, �̂, 0), (4.40)

dL S(i − ϕ ◦ r1, BR ∩ r−1
1 (�), 0) = dL S(i − ϕ ◦ r1, �̂, 0). (4.41)

We consider the homotopy h(t, u) defined by

h(t, u) = t (ϕ ◦ r)(u) + (1 − t)(ϕ ◦ r1)(u) for all (t, u) ∈ [0, 1] × �̂.

This is a compact homotopy. We claim that

u − h(t, u) �= 0 for all t ∈ [0, 1], all u ∈ ∂�̂. (4.42)

Arguing by contradiction, suppose that we can find (t0, u0) ∈ [0, 1] × ∂�̂ such
that

u0 − h(t0, u0) = 0

⇒ u0 = t0ϕ(r(u0)) + (1 − t)ϕ(r1(u0))

⇒ u0 ∈ C and so r(u0) = u0, r1(u0) = u0, u0 = ϕ(u0)

⇒ u0 ∈ � ⊆ �̂, a contradiction since u0 ∈ ∂�̂.

Therefore (4.42) holds. Then by the homotopy invariance of the Leray–Schauder
degree (see Theorem 3.2.15 (c)), we have

dL S(i − ϕ ◦ r, �̂, 0) = dL S(i − ϕ ◦ r1, �̂, 0)

⇒ dL S(i − ϕ ◦ r, BR ∩ r−1(�), 0) = dL S(i − ϕ ◦ r1, BR ∩ r−1
1 (�), 0)

(see (4.40), (4.41))

⇒ iF (ϕ,�, C) is independent of the retraction r (see Definition 4.4.8).

So, Definition 4.4.8 makes perfect sense.
Using Theorem 3.2.15 (the main properties of the Leray–Schauder degree), we

can state the following theorem summarizing the main properties of the fixed point
index.

Theorem 4.4.10 If F = {(ϕ,�, C) : C ⊆ X is a retract,� ⊆ Xis bounded,
and relatively open,ϕ : � → Cis compact and 0 /∈ (i − ϕ)(∂�)}, then there exists
a map iF : F → Z, known as the fixed point index such that

(a) Normalization: iF (ϕ,�, C) = 1 if ϕ(u) = u0 ∈ � for all u ∈ �.
(b) Domain Additivity: iF (ϕ,�, C) = iF (ϕ,�1, C) + iF (ϕ,�2, C) with �1,�2

disjoint open subsets of � such that ϕ has no fixed points on �\(�1 ∪ �2).
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(c) Homotopy Invariance: iF (ht ,�, C) is independent of t ∈ [0, 1], when {ht }t∈[0,1]
is a homotopy of compact maps and

u �= ht (u) for all t ∈ [0, 1] and all u ∈ ∂�.

(d) Solution Property: iF (ϕ,�, C) �= 0 implies that ϕ has at least one fixed point
in �.

(e) Excision Property: iF (ϕ,�, C) = iF (ϕ,�1, C) for every open set �1 ⊆ � such
that ϕ has no fixed points in �\�1.

(f) Stability with respect to C: iF (ϕ,�, C) = iF (ϕ,�, C1) if C1 is a retract of C
and ϕ(�) ⊆ C1.

Remark 4.4.11 In fact the homotopy invariance property has the following more
general formulation:

“Let X be a Banach space,C ⊆ X a nonempty retract,� ⊆ [0, 1] × C
a relatively open set, and h : � → C a compact map such that

h(t, u) �= u for all (t, u) ∈ ∂�,

then iF (h(t, ·),�t , C) is independent of t ∈ [0, 1] ( here we set
�t = {u ∈ C : (t, u) ∈ �} ) .”

Next we do some computations of fixed point indices which we will use later to
prove the existence of fixed points.

So, let X be an O BS with order cone K ⊆ X and� ⊆ X a bounded open set. Then
� ∩ K is bounded and relatively open in K (which is a retract, being a closed and
convex subset of the Banach space X ) and ∂(� ∩ K ) = ∂� ∩ K , � ∩ K = � ∩ K .

Proposition 4.4.12 If 0 ∈ �, ϕ : � ∩ K → K is compact and ϕ(u) �= λu for all
u ∈ ∂� ∩ K and λ � 1, then iF (ϕ,� ∩ K , K ) = 1.

Proof We consider the compact homotopy ht (u) = tϕ(u). Then ht (u) �= u for all
(t, u) ∈ [0, 1] × (∂� ∩ K ). We have

iF (ϕ,� ∩ K , K ) = iF (i,� ∩ K , K ) (by the homotopy invariance property)

⇒ iF (ϕ,� ∩ K , K ) = 1 (by the normalization property).

The proof is now complete. �

Proposition 4.4.13 If ϕ : � ∩ K → K and g : ∂� ∩ K → K are both compact
maps and

(i) inf{||g(u)|| : u ∈ ∂� ∩ K } > 0;
(ii) u − ϕ(u) �= λg(u) for all u ∈ ∂� ∩ K and all λ � 0,

then iF (ϕ,� ∩ K , K ) = 0.
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Proof By virtue of Proposition 2.1.9 (Dugundji’s extension theorem), there exists a

compact map ĝ : � ∩ K → K such that ĝ
∣∣∣
∂�∩K

= g and ĝ(� ∩ K ) ⊆ conv g(∂� ∩
K ). Let D = g(∂� ∩ k). We claim that

inf{||v|| : v ∈ conv D} = ϑ > 0. (4.43)

Let Y = span D. Since g is compact, the set D ⊆ X is relatively compact and so
Y is a separable Banach subspace of X . Let K̂ = K ∩ Y . Then K̂ is a cone in Y
and conv D ⊆ K̂ . According to Proposition 4.1.18(e) we can find ŷ∗ ∈ K̂ ∗ such that〈
ŷ∗, y

〉
> 0 for all y ∈ K̂\{0}. We claim that

inf
{〈

ŷ∗, u
〉 : u ∈ D

} = m̂ > 0. (4.44)

Suppose that m̂ = 0, then we can find {vn}n�1 ⊆ D such that
〈
ŷ∗, vn

〉 → 0. Recall
that D is relatively compact. So, by passing to a suitable subsequence if necessary,
we may assume that vn → v̂ in X , v̂ ∈ K̂ . Then

〈
ŷ∗, vn

〉 → 〈
ŷ∗, v̂

〉 = 0 and so v̂ = 0
(see Proposition 4.1.18(e)). Hence vn → 0 in X , which contradicts hypothesis (i).

This proves that (4.44) holds. Let y ∈ conv D. Then y =
n∑

k=1
λkvk, vk ∈ D,λk �

0,
n∑

k=1
λk = 1, n � 1. We have

〈
ŷ∗, y

〉 =
n∑

k=1

λk
〈
ŷ∗, vk

〉
�

n∑
k=1

λkm̂ = m̂ (see (4.44))

⇒ 〈
ŷ∗, v

〉
� m̂ for all v ∈ conv D. (4.45)

The set conv D is compact, since D is. So, we can find v̂ ∈ conv D such that

inf{||u|| : v ∈ conv D} = ||v̂||. (4.46)

From (4.45) we see that v̂ �= 0 and so from (4.46) we see that (4.43) holds.
Suppose that iF (ϕ,� ∩ K , K ) �= 0. By virtue of hypothesis (ii) and the homotopy

invariance property of the fixed point index, we have

iF (ϕ + t ĝ,� ∩ K , K ) = iF (ϕ,� ∩ K , K ) �= 0 for all t > 0. (4.47)

Let η1 = sup{||u|| : u ∈ � ∩ K } and η2 = sup{||ϕ(u)|| : u ∈ � ∩ K } and choose
t̂ > 1

ϑ
[η1 + η2]. From (4.47) we have

iF (ϕ + t̂ ĝ,� ∩ K , K ) �= 0.

By the solution property of the fixed point index (see Theorem 4.4.10(d)), we
have that there exists a û ∈ � ∩ K such that
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ϕ(û) + t̂ ĝ(û) = û

⇒ t̂ = ||û − ϕ(û)||
||ĝ(û)|| � 1

ϑ
[η1, η2], a contradiction.

The proof is now complete. �
If g : ∂� ∩ K → K is the constant map g(u) = u0 ∈ K\{0}, then from the pre-

vious proposition, we deduce the following corollary.

Corollary 4.4.14 If ϕ : � ∩ K → K is a compact map, u0 ∈ K\{0} and

u − ϕ(u) �= λu0 for all u ∈ ∂� ∩ K and all λ � 0,

then iF (ϕ,� ∩ K , K ) = 0.

Nextwepresent somefixedpoint theorems in conical shells, that is, sets of the form
(�2\�1) ∩ K where �1,�2 are two bounded open sets and �1 ⊆ �2. Of special
interest is the case where �1 = Bρ = {u ∈ X : ||u|| < ρ} and �2 = BR = {u ∈ X :
||u|| � R} with ρ < R. Such results are also known as fixed point theorems of cone
expansion and compression.

Theorem 4.4.15 If �1,�2 ⊆ X are bounded open sets with 0 ∈ �1,�1 ⊆ �2, ϕ :
�2 ∩ K → K is a compact map and the following conditions hold

(i) ϕ(u) �= λu for all u ∈ ∂�2, all λ > 1;
(ii) there exists a u0 ∈ K\{0} such that

u − ϕ(u) �= λu0 for all u ∈ ∂� and all λ > 0,

then ϕ has a fixed point in (�2\�1) ∩ K .

Proof From Proposition 4.4.12, we have

iF (ϕ,�2 ∩ K , K ) = 1. (4.48)

Moreover, from Corollary 4.4.14, we have

iF (ϕ,�1 ∩ K , K ) = 0. (4.49)

If there are no fixed points on ∂�2 ∩ K or on ∂�1 ∩ K (otherwise we are done)
then from the domain additivity property of the fixed point index (see Theorem
4.4.10(b)) we have

iF (ϕ, (�2\�1) ∩ K , K ) = iF (ϕ,�2 ∩ K , K ) − iF (ϕ,�1 ∩ K , K )

= 1 − 0 = 1 (see (4.48) and (4.49)).

Then the solution property of thefixedpoint index (seeTheorem4.4.10(d)) implies
that there exists a û ∈ (�1\�2) ∩ K such that ϕ(û) = û. �
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Corollary 4.4.16 If �1,�2 ⊆ X are bounded open sets with 0 ∈ �1,�1 ⊆ �2, ϕ :
�2 ∩ K → K is compact and the following conditions hold

(i) ϕ(u) − u /∈ K for all u ∈ ∂�2;
(ii) u − ϕ(u) /∈ K for all u ∈ ∂�1,

then ϕ has a fixed point in (�2\�1) ∩ K .

Remark 4.4.17 In fact the above fixed point theorem remains valid if we reverse both
conditions in (i) and (ii), namely if we assume that u − ϕ(u) /∈ K for all u ∈ ∂�2

and ϕ(u) − u /∈ K for all u ∈ ∂�1. In this case, we have iF (ϕ,�1 ∩ K , K ) = 0 and
iF (ϕ,�2 ∩ K , K ) = 1.

Theorem 4.4.18 If �1,�2 ⊆ X are bounded open sets with 0 ∈ �1,�1 ⊆ �2, ϕ :
�2 ∩ K → K is compact and one of the following conditions holds

(i) ||ϕ(u)|| � ||u|| for all u ∈ ∂�2 ∩ K and ||ϕ(u)|| � ||u|| for all u ∈ ∂�1 ∩ K ;
or

(ii) ||ϕ(u)|| � ||u|| for all u ∈ ∂�2 ∩ K and ||ϕ(u)|| � ||u|| for all u ∈ ∂�1 ∩ K ,

then ϕ has at fixed point in (�2\�1) ∩ K .

Proof We focus on the case when (i) holds, the proof is similar if (ii) holds.
If condition (i) is in effect, then we have

ϕ(u) �= λu for all u ∈ ∂�2 ∩ K and all λ ∈ (0, 1] . (4.50)

Indeed, if (4.50) is not true, then there exist u0 ∈ ∂�1 ∩ K and λ0 ∈ (0, 1) such
that ϕ(u0) = λ0u0, hence ||ϕ(u0)|| = λ0||u0|| and so ||ϕ(u0)|| < ||u0||, a contradic-
tion to our hypothesis.

In a similar fashion we show that

ϕ(u) �= ϑu for all u ∈ ∂�1 ∩ K and all ϑ > 1. (4.51)

Finally, note that

inf{ϕ(u) : u ∈ ∂�2 ∩ K } � inf{||u|| : u ∈ ∂�2 ∩ K } > 0. (4.52)

From (4.50) and (4.52), we see that we can use Proposition 4.4.13 and have

iF (ϕ,�2 ∩ K , K ) = 0. (4.53)

Assume that ϕ(u) �= u for ∂�1 (or otherwise we already have the desired fixed
point), from (4.51) and Proposition 4.4.12, we have

iF (ϕ,�1 ∩ K , K ) = 1. (4.54)
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From(4.53), (4.54) and the domain additivity of thefixedpoint index (seeTheorem
4.4.10(b)), we obtain

iF (ϕ, (�2\�1) ∩ K , K ) = 1

⇒ ϕ has a fixed point in (�2\�1) ∩ K (by the solution property).

The proof is now complete. �

The next lemma is a straightforward consequence of the definitions.

Lemma 4.4.19 If X is an O BS with order cone K , C ⊆ K is compact and 0 /∈ C,
then 0 /∈ convC.

Using this lemma, we can prove the following fixed point theorem.

Theorem 4.4.20 If �1,�2 ⊆ X are bounded open sets with 0 ∈ �1,�1 ⊆ �2 and
ϕ : �2 ∩ K → K is a compact map which satisfies the following conditions:

(i) ϕ(u) �= λu for all u ∈ ∂�2 ∩ K and all λ > 1;
(ii) ϕ(u) �= ϑu for all u ∈ ∂�1 ∩ K and all ϑ ∈ (0, 1);

(iii) inf{||ϕ(u)|| : u ∈ ∂�1 ∩ K } > 0,

then ϕ has a fixed point in (�2\�1) ∩ K .

Proof Wemay assume that the mapϕ has no fixed points on ∂�2 ∩ K and ∂�1 ∩ K .
Using the domain additivity property (seeTheorem4.4.10(b)) andProposition 4.4.12,
we have

iF (ϕ,�2 ∩ K\�1 ∩ K , K ) = 1 − iF (ϕ,�1 ∩ K , K ). (4.55)

Using Proposition 2.1.9 (Dugundji’s extension theorem) and Lemma 4.4.19, we

can find a compact map ϕ̂ : X → conv{ϕ(u) : u ∈ ∂�1 ∩ K } such that ϕ̂
∣∣∣
∂�1∩K

=
ϕ
∣∣∣
∂�1∩K

and inf{||ϕ̂(u)|| : u ∈ X} = ξ > 0. We consider the homotopy

ht (u) = (1 − t)ϕ(u) + tkϕ̂(u) for all (t, u) ∈ [0, 1] × �2, with k > 1.

Since k > 1, we see that ht (u) �= 0 for all (t, u) ∈ [0, 1] × (∂�1 ∩ K ). Hence
from the homotopy invariance property (see Theorem 4.4.10(c)), we have

iF (ϕ,�1 ∩ K , K ) = iF (kϕ̂,�1 ∩ K , K ). (4.56)

Note that u = kϕ̂(u) implies that k � ξ0 for some ξ0 > 0 large enough. Therefore
for k > max{1, ξ0} large we have

iF (kϕ̂,�1 ∩ K , K ) = 0. (4.57)
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Then from (4.55), (4.56), (4.57) and the solution property (seeTheorem4.4.10(d)),
we conclude that ϕ has a fixed point in (�2\�1) ∩ K . �

The following multiple fixed point theorems are direct consequences of Corollary
4.4.16 and Theorem 4.4.18 respectively.

Theorem 4.4.21 If �1,�2,�3 are bounded open sets with 0 ∈ �1 ⊆ �1 ⊆ �2 ⊆
�2 ⊆ �3 and ϕ : (�3\�1) ∩ K → K is a compact map which satisfies the following
conditions:

(i) u − ϕ(u) /∈ K for all u ∈ ∂�1 ∩ K ;
(ii) ϕ(u) − u /∈ K for all u ∈ ∂�2 ∩ K ;

(iii) u − ϕ(u) /∈ K for all u ∈ ∂�3 ∩ K ,

then ϕ has at least two fixed points u∗
1, u∗

2 ∈ (�3\�1) ∩ K such that

u∗
1 ∈ (�3\�2) ∩ K and u∗

2 ∈ (�2\�1) ∩ K .

Theorem 4.4.22 If �1,�2,�3 are bounded open sets such that 0 ∈ �1 ⊆ �1 ⊆
�2 ⊆ �2 ⊆ �3 and ϕ : (�3\�1) ∩ K → K is a compact map which satisfies the
following conditions:

(i) ||ϕ(u)|| � ||u|| for all u ∈ ∂�1 ∩ K ;
(ii) ||ϕ(u)|| � ||u|| and ϕ(u) �= u for all u ∈ ∂�2 ∩ K ;

(iii) ||ϕ(u)|| � ||u|| for all u ∈ ∂�3 ∩ K ,

then ϕ has at least two fixed points u∗
1, u∗

2 ∈ (�3\�1) ∩ K such that

u∗
1 ∈ (�2\�1) ∩ K and u∗

2 ∈ (�3\�2) ∩ K .

4.5 Fixed Points for Multifunctions

In this section we extend some of the fixed point theorems from the previous sections
to multifunctions.We start with the Banach fixed point theorem (see Theorem 4.2.3).
To formulate its multivalued counterpart, we use the Hausdorff metric defined on the
hyperspace Pbf (X) = {B ⊆ X : nonempty, bounded and closed }, with (X, d) being
a metric space (see Definition 3.7.4). Recall that (Pbf (X), h) is a complete metric
space if and only if (X, d) is a complete metric space.

Theorem 4.5.1 If (X, d) is a complete metric space and F : X → Pbf (X) is a
multifunction which satisfies

h(F(u), F(y)) � kd(u, y) for all u, y ∈ X with k ∈ [0, 1) , (4.58)

then F has a fixed point, that is, there exists a û ∈ X such that û ∈ F(û).
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Proof Let k̂ ∈ (k, 1) and u0 ∈ X . We choose u1 ∈ F(u0) such that d(u1, u0) > 0. If
no such point exists then u0 is the desired fixed point of F . We have

d(u1, F(u1)) � h(F(u0), F(u1)) < k̂d(u0, u1) (see Definition 3.7.4).

So, we can find u2 ∈ F(u1) such that d(u1, u2) < k̂d(u0, u1). Inductively, we
generate a sequence {un}n�1 ⊆ X such that

un+1 ∈ F(un) and d(un, un+1) < k̂nd(u0, u1) for all n � 1. (4.59)

From (4.46) and the completeness of (X, d), we have that un → û in (X, d). Also,
we have

d(un+1, F(û)) � h(F(un), F(û)) � kd(un, û) → 0

⇒ û ∈ F(û) (since F has a closed values).

The proof is now complete. �

Remark 4.5.2 In contrast to the single-valued case (see Theorem 4.2.3), the fixed
point û ∈ X obtained in the above theorem need not be unique. To see this let X =
[0, 1] with the usual metric and consider the function ϑ : X → X defined by

ϑ(u) =
{ 1

2 (u + 1) if u ∈ [0, 1
2 ]− 1

2 (u − 2) if u ∈ [ 12 , 1].

Evidently, this is a continuous function. Let F : [0, 1] → Pf ([0, 1]) be defined
by

F(u) = {0} ∪ {ϑ(u)}.

Then F(·) satisfies (4.58) and u = 0, u = 1
2 are both fixed points of F(·).

Next we present multivalued counterparts of the Schauder fixed point theorem
(see Theorem 3.2.20). We start with the easy case of a lower semicontinuous (lsc)
multifunction (see Definition 2.5.2 (b)).

Theorem 4.5.3 If X is a Banach space, C ⊆ X is nonempty bounded closed convex
and F : C → Pfc(C) is an lsc multifunction with F(C) ⊆ X relatively compact,
then F(·) has a fixed point.

Proof Invoking Theorem 2.5.14 (the Michael selection theorem), we can find a con-
tinuous map f : C → C such that f (u) ∈ F(u) for all u ∈ C . Applying Schauder’s
fixed point theorem (see Theorem 3.2.20), we can find û ∈ C such that û = f (û) ∈
F(û). �

The continuous selection approach can also be used for upper semicontinuous
(usc) multifunctions (see Definition 2.5.2 (a)), but not directly since, as we already
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saw in Example 2.5.13, usc multifunctions need not have a continuous selection. To
overcome this difficulty, we need the following lemma.

Lemma 4.5.4 If (M, d) is a metric space, X is a Banach space, F : M → 2X\{∅}
and for every s ∈ M and r > 0, we define

F̂r (s) = F(Br (s)) =
⋃

t∈Br(s)

F(t) (Br (s) = {t ∈ M : d(t, s) < r}),

then the multifunction s → F̂r (s) from M into 2X\{∅} is lsc.

Proof Let {sα}α∈J be a net in M such that d(sα, s) → 0 and let u ∈ F̂r (s). From
the definition of F̂r (·), we know that there exists a t ∈ Br (s) such that u ∈ F(t).
Since sα → s in (M, d) for all α ∈ J with α � α∗, we have sα ∈ Br (s). Hence
u ∈ ⋃

t∈Br(sα)

F(t) = F̂r (sα). So, forα � α∗ we takeuα = u and by virtue of Proposition

2.5.4 we conclude that F̂r (·) is lsc. �

With this lemma, we have the usc multivalued counterpart of the Schauder fixed
point theorem.

Theorem 4.5.5 If X is a Banach space, C ⊆ X is nonempty, bounded, closed and
convex and F : C → Pfc(C) is compact (see Definition 3.3.1), then F has a fixed
point.

Proof For every n � 1, let

F̃n(u) = conv F̂n(u) = conv F(B 1
n
(u)).

FromLemma 4.5.4 we have that F̃n(·) is lsc and sowe can apply Proposition 3.5.3
and find a ûn ∈ C such that ûn ∈ F̃n(ûn). Since F is compact and C is bounded, by
passing to a subsequence if necessary, we may assume that ûn → û in X .

For every u∗ ∈ X∗ we have

〈
u∗, ûn

〉
� σ(u∗, F̃n(ûn)) = sup

{〈
u∗, u

〉 : u ∈ F̃n(ûn)
}

(the support function of the set F̃n(un))

= sup(u∗, F(B 1
n
(ûn))) � sup

{
σ(u∗, F(u)) : u ∈ B 1

n
(ûn)

}
.

So, for every n � 1, we can find un ∈ B 1
n
(ûn) such that

〈
u∗, un

〉− 1

n
� σ(u∗, F(un)).

Note that un → û0 in X and so
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〈
u∗,σu

〉
� lim sup

n→∞
σ(u∗, F(un)) � τ (u∗, F(û)) (4.60)

(see F(·) is usc).

Since u∗ ∈ X∗ is arbitrary and F(û) is closed convex, from (4.60) it follows that

û ∈ F(û).

The proof is now complete. �

Remark 4.5.6 A careful reading of the above proof reveals that the result remains
true for any locally convex topological vector space and in particular for a Banach
space endowed with its weak topology. Moreover, we need not assume that F is
a self-map, that is, that maps C into itself. To do this, we introduce the following
notion.

Definition 4.5.7 Let X be a locally convex vector space,C ⊆ X a nonempty convex
set and u ∈ C . The tangent cone TC(u) to the convex set C at u is the closed cone
spanned by C − u, that is,

TC(u) =
⋃
λ>0

1

λ
(C − u).

Remark 4.5.8 It is easy to see that TC(u) is convex. If X is a Banach space, then

TC(u) = {h ∈ X : lim inf
λ→0+

1

λ
d(u + λh, C) = 0}.

Wewill need the following result, known in the literature as the Ky Fan inequality.
For its proof, we refer to Aubin and Ekeland [21, p. 327].

Theorem 4.5.9 If X is a locally convex space, C ⊆ X is nonempty, compact and
convex and ξ : C × C → R is a function satisfying

(i) for every y ∈ C, u → ξ(u, y) is lower semicontinuous;
(ii) for every u ∈ C, y → ξ(u, y) is concave,

then there exists a u ∈ C such that

sup{ξ(u, y) : y ∈ C} � sup{ξ(u, y) : y ∈ C}.

Using this theorem, we can establish the existence of equilibrium points for usc
multifunctions.

Proposition 4.5.10 If X is a locally convex space, F : X → Pfc(X) is usc, C ⊆ X
is nonempty, compact and convex and

F(u) ∩ TC(u) �= ∅ for all u ∈ C, (4.61)
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then there exists a û ∈ C such that 0 ∈ F(û).

Proof We argue indirectly. So, suppose that the result of the proposition is not true.
Then for every u ∈ C , we have 0 /∈ F(u). Then by the strong separation theorem,
we can find u∗

u ∈ X∗ such that σ(u∗
u, F(u)) = sup

{〈
u∗

u, y
〉 : y ∈ F(u)

}
. We set

U (u∗) = {u ∈ C : σ(u∗, F(u)) < 0}.

Since F(·) is usc, the mapping u → σ(u∗, F(u)) is an upper semicontinuousR =
R ∪ {+∞}-valued function and so U (u∗) is relatively open. The sets {U (u∗)}u∗∈X∗

form an open cover of C and so by compactness, we can find {u∗
k}m

k=1 ⊆ X∗ such that
{U (u∗

k)}m
k=1 still covers C . The compactness of C implies that it is a paracompact

space. So, we can find a continuous partition of unity {ϑk}m
k=1 corresponding to the

finite open cover {U (u∗
k)}m

k=1. Let ξ : C × C → R be the function defined by

ξ(u, y) =
m∑

k=1

ϑk(u)
〈
u∗

k , u − y
〉
.

Evidently, the mapping u �→ ξ(u, y) is continuous, while y �→ ξ(u, y) is affine.

Hence we can apply Theorem 4.5.9 and find u ∈ C such that for u∗ =
m∑

k=1
ϑk(u)u∗

k ,

we have

ξ(u, y) = 〈
u∗, u − y

〉
� 0 for all y ∈ C

⇒ u∗ ∈ TC(u)∗ (see Definition 4.1.16).

Condition (4.61) implies that there exists a v ∈ F(u) ∩ TC(u) such that

0 �
〈
u∗, v

〉
� σ(u∗, F(u)). (4.62)

Let I (u) = {k ∈ {1, . . . , m} : ϑk(u) > 0} �= ∅. We have

σ(u∗, F(u)) �
∑
k∈I(u)

ϑk(u)σ(u∗
k , F(u)) < 0

⇒ σ(u∗
k , F(u)) < 0 for all k ∈ I (u)

⇒ σ(u∗, F(u)) < 0, which contradicts (4.62).

The proof is now complete. �

This leads to an alternative proof of the multivalued Schauder fixed point theorem
(usc case), known as the Kakutani–Ky Fan fixed point theorem (see Theorem 4.5.5).

Theorem 4.5.11 If X is a locally convex space, C ⊆ X is nonempty, compact and
convex and G : X → Pfc(K ) is usc, then G(·) has a fixed point u ∈ K .



4.5 Fixed Points for Multifunctions 319

Proof Let F(u) = G(u) − u for all u ∈ X . Evidently, F(·) is still usc with values
in Pfc(X). Note that C − u ⊆ TC(u) (see Definition 4.5.7) and since G(C) ⊆ C , we
have

F(u) = G(u) − u ⊆ C − u ⊆ TC(u).

So, we can apply Proposition 4.5.10 and find u ∈ C such that 0 ∈ F(u) = G(u) −
u. Hence û ∈ G(û), û ∈ C . �

As we already mentioned earlier, G(·) need not map C to itself. It suffices for a
condition of the nature of (4.60) to hold.We formalize this in the following definition.

Definition 4.5.12 Let X be locally convex space,C ⊆ X be nonempty andG : C →
2X\{∅} be a multifunction. We say that

(a) G(·) is inward if and only if G(u) ∩ (u + TC(u)) �= ∅ for all u ∈ C ;
(b) G(·) is outward if and only if G(u) ∩ (u − TC(u)) �= ∅ for all u ∈ C .

Remark 4.5.13 If G(·) is inward, then F = G − id satisfies condition (4.61). Simi-
larly, if G(·) is outward, then F = id − G satisfies condition (4.61). These observa-
tions, combined with Proposition 4.5.10, lead to the following fixed point theorem.

Theorem 4.5.14 If X is a locally convex space, C ⊆ X is nonempty, compact and
convex and G : C → Pfc(X) is a usc multifunction which is inward or outward, then
G(·) has a fixed point u ∈ C.

4.6 Abstract Variational Principles

In this section we present some basic abstract variational principles of nonlinear
analysis and investigate their connections.

We start with the Lax–Milgram theorem, which is an important tool in the study
of linear boundary value problems, and revisit the Galerkin approximation method
(see also Sect. 3.7).

Theorem 4.6.1 If H is a Hilbert space with inner product (·, ·)H and
a : H × H → R is a bilinear form such that

(i) a is continuous, that is, there exists an M > 0 such that

|a(u, y)| � M ||u|| ||y|| for all u, y ∈ H ;

(ii) a is coercive, that is, there exists a c > 0 such that

a(u, u) � c||u||2 for all u ∈ H,
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then for any h∗ ∈ H∗, there exists a unique u0 ∈ H such that

a(u0, y) = 〈
h∗, y

〉
for all y ∈ H

(〈·, ·〉 being the duality brackets for the pair (H∗, H)).
Moreover, if a(·, ·) is symmetric, that is, a(u, y) = a(y, u) for all u, y ∈ H, then

u0 ∈ H is the unique minimizer of the functional

ϕ(u) = 1

2
a(y, y) − 〈

h∗, y
〉

for all y ∈ H.

Proof We are going to present two proofs. The first is based on the Banach fixed
point theorem (see Theorem 4.2.3) and so it has the advantage of being a constructive
proof, while the second is based on the surjectivity properties of continuous linear
operators.

First proof: By virtue of the Riesz representation theorem for Hilbert spaces we
can find h ∈ H such that 〈h∗, y〉 = (h, y)H for all y ∈ H . By hypothesis (i), for every
fixed u ∈ H , y → a(u, y) is continuous and linear on H . So, a new application of the
Riesz representation theorem implies that there exists a unique element A(u) ∈ H
such that

a(u, y) = (A(u), y)H for all y ∈ H. (4.63)

For any u1, u2, y ∈ H , we have

(A(u1 + u2), y)H = a(u1 + u2, y) = a(u1, y) + a(u2, y) =
〈A(u1), y〉 + 〈A(u2), y〉

⇒ A(u1 + u2) = A(u1) + A(u2). (4.64)

Also, for every λ ∈ R and u, y ∈ H , we have

(A(λu), y)H = a(λu, y) = λa(u, y) = λ(A(u), y)H

⇒ A(λu) = λA(u). (4.65)

From (4.63), (4.64), (4.65) and hypothesis (i) we conclude that A ∈ L (H).
Our problem takes the following form:

“Find u0 ∈ H such that (A(u0), y)H = (h, y)H for all y ∈ H”.

This of course means that we must look for u0 ∈ H such that

A(u0) = h. (4.66)

We know that A ∈ L (H). Moreover, using hypothesis (ii), we have



4.6 Abstract Variational Principles 321

(A(u), u)H � c||u||2 for all u ∈ H. (4.67)

Let λ > 0. To solve (4.66) is equivalent to finding u0 ∈ H such that

u0 − λ(A(u0) − h) = u0. (4.68)

Problem (4.68) is a fixed point problem for the map ψλ : H → H defined by

ψλ(u) = u − λ(A(u) − h).

We examine this map. So, let u1, u2 ∈ H . Then

ψλ(u1) − ψλ(u2) = u1 − u2 − λA(u1 − u2)

⇒ ||ψλ(u1) − ψλ(u2)|| = ||u − λA(u)||2 with u = u1 − u2

= ||u||2 − 2λ(A(u), u)H + λ2||A(u)||2
⇒ ||ψλ(u1) − ψλ(u2)||2 � (1 − 2λc + λ2M2)||u||2 (see (4.67) and hypothesis (i)).

To be able to apply the Banach fixed point theorem (see Theorem 4.2.3), we
have to find λ > 0 such that 1 − 2λc + λ2M2 < 1. Let λ̂ be the minimizer of 1 −
2λc + λ2M2, that is, λ̂ = C

M2 . Then 1 − 2λ̂c + λ̂2M2 = 1 − C2

M2 < 1. Hence ψλ̂ is
a contradiction and so by Theorem 4.2.3 it has a unique fixed point u0 ∈ H . This is
the solution of our problem.

Now suppose that a(·, ·) is symmetric. For all y ∈ H we have

ϕ(y) = ϕ(u0 + y − u0) = 1

2
a(u0 + y − u0, u0 + y − u0) − (h, u0 + y − u0)H

= 1

2
a(u0, u0) − (h, u0)H + a(u0, y − u0) − (h, y − u0)H

+1

2
a(y − u0, y − u0) (since a(·, ·) is symmetric)

� ϕ(u0) + c

2
||y − u0||2

⇒ u0 ∈ H is the unique minimizer of ϕ.

Second proof: Again we reduce the problem to equation (4.66). We are going to
show that R(A) = H . First we show that R(A) is closed. Recall that

||A(u)|| ||u|| � (A(u), u)H � c||u||2 for all u ∈ H

⇒ ||A(u)|| � c||u|| for all u ∈ H. (4.69)

Suppose that A(un) → v in H . Then for all n, m � 1 we have
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c||un − um || � ||A(un − um)|| (see (4.69))

� ||A(un) − A(um)||
⇒ {un}n�1 ⊆ H is Cauchy

⇒ un → u in H

⇒ A(un) → A(u) = v (since A ∈ L (H)).

This proves the closedness of R(A).
Next, we show that R(A) is dense. So, let v ∈ R(A)⊥. Then

(A(u), v)H = 0 for all u ∈ H

⇒ c||v||2 � (A(v), v)H = 0, hence v = 0

⇒ R(A) is dense in H.

We conclude that R(A) = H and so (4.66) has a solution u0, which is clearly
unique.When a(·, ·) is symmetric, as before we show that u0 is the unique minimizer
of the functional ϕ. �

The result can be extended to variational inequalities.

Theorem 4.6.2 If H is a Hilbert space with inner product (·, ·)H , a : H × H → R

is a bilinear form which is continuous and coercive, C ⊆ H is nonempty, closed and
convex and h ∈ H, then there exists a unique u0 ∈ C such that

a(u0, y − u0) � (h, y − u0)H for all y ∈ C. (4.70)

Moreover, if a(·, ·) is symmetric, then u0 ∈ H is the unique minimizer of the
functional

ϕ(y) = 1

2
a(y, y) − (h, y)H for all y ∈ H.

Proof As before (see the proof of Theorem 4.6.1), we can find A ∈ L (H) such that

‖A(u)‖ � c‖u‖ for all u ∈ H (4.71)

and (A(u), y)H = a(u, y) for all u, y ∈ H. (4.72)

Let iC be the indicator function of the set C , that is

iC(y) =
{
0 if y ∈ C
+∞ if y /∈ C.

Since C is nonempty, closed and convex, iC is a lower semicontinuous, convex
function which is not identically+∞. Identifying H∗ with H , for all u ∈ C , we have
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∂iC(u) = NC(u) = {v ∈ H : (v, y − u)H � 0 for all y ∈ C} = − TC(u)∗

(the normal cone of C at u).

Wesee thatu0 ∈ C solves (4.70) if and only if 0 ∈ A(u0) + ∂iC(u0) − h. Theorem
2.8.5 guarantees the existence of such a solution of (4.70) (see (4.72)). Also, by virtue
of (4.71) this solution is unique.

Finally, when a(·, ·) is symmetric, as in the proof of Theorem 4.6.1 we show that
u0 ∈ H is the unique minimizer of the functional ϕ. �

Remark 4.6.3 If C = H , then (4.70) becomes a(u, y) � (h, y)H for all y ∈ H ,
hence a(u, y) = (h, y)H and we recover the Lax–Milgram theorem (see Theorem
4.6.1).

Suppose that H is a separableHilbert space. FromProposition 3.7.17weknow that
H admits a projection scheme (Galerkin scheme) {Pn, Hn}n�1. Let a : H × H → R

be a continuous and coercive bilinear form and h∗ ∈ H∗. We consider the following
problems:

“Find u ∈ H such that a(u, y) = 〈h∗, y〉 for all y ∈ H”. (4.73)

“Find un ∈ Hn such that a(un, y) = 〈h∗, y〉 for all y ∈ Hn”. (4.74)

From Theorem 4.6.1 we know that both problems have unique solutions u ∈ H
and un ∈ Hn , n � 1, respectively.

Proposition 4.6.4 In the above setting, ‖un − u‖ � M
c d(u, Hn) for all n � 1.

Proof From (4.73) and (4.74) we have

a(u − un, y) = 0 for all y ∈ Hn and n � 1 (4.75)

⇒ a(u − un, un) = 0 for all n � 1. (4.76)

Then for every y ∈ Hn we have

a(u − un, u − un) = a(u − un, u − y) + a(u − un, y − un)

= a(u − un, u − y) (see (4.75), (4.76))

⇒ c‖u − un‖2 � M‖u − un‖‖u − y‖
⇒ c‖u − un‖ � M‖u − y‖ for all y ∈ Hn

⇒ ‖u − un‖ � M

c
d(y, Hn) for all n � 1.

The proof is now complete. �
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Remark 4.6.5 The above proposition not only tells us that un → u in H , but also
provides an explicit bound for ‖u − un‖.

The Galerkin method also works for variational inequalities. In fact, we will be
more general. So, let X be a separable, reflexive Banach space and X∗ its topological
dual. By 〈·, ·〉 we denote the duality brackets for the pair (X∗, X). Let A : X →
X∗ be a bounded, hemicontinuous (see Definition 2.6.10), monotone map, C ⊆ X
a nonempty, closed, convex set and h∗ ∈ X∗. We study the following variational
inequality problem:

“Find u ∈ C such that

〈A(u) − h∗, y − u〉 � 0 for all y ∈ C ”. (4.77)

We will use the Galerkin method to deal with this problem. First we produce
finite-dimensional convex sets approximating the constraint set C .

Lemma 4.6.6 There exists an increasing sequence {Cn}n�1 of finite-dimensional
convex sets such that

⋃
n�1

Cn = C.

Proof Let {uk}k�1 ⊆ C be dense in C . We set

Cn = conv{uk}n
k=1.

Then Cn is closed, convex and dim Cn � n. Moreover, Cn ⊆ Cn+1 ⊆ C for all
n � 1. Since {un}n�1 ⊆ ⋃

n�1
Cn , it follows that

⋃
n�1

Cn = C . �

Then we consider the following finite-dimensional approximation of problem
(4.77).

“Find un ∈ C such that

〈A(un) − h∗, y − un〉 � 0 for all y ∈ Cn ”. (4.78)

Lemma 4.6.7 For every n � 1, problem (4.78) has at least one solution un ∈ Cn.

Proof Let Xn = spanCn , n � 1. Evidently, Xn is finite-dimensional. We endow Xn

with a Euclidean structure and denote the corresponding inner product by (·, ·)n .
Then we can find a continuous linear map Ln : X∗

w → Xn such that

〈u∗, y〉 = (Ln(u
∗), y)n for all n � 1, all u∗ ∈ X∗ and all y ∈ Xn. (4.79)

Let ξn : Xn → Cn , n � 1, be the metric projection map. We know that

(y − ξn(y), ξn(y) − v)n � 0 for all v ∈ Cn. (4.80)
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We introduce the map ϑn : Cn → Cn defined by

ϑn(v) = ξn(v − Ln(A(v)) + Ln(h
∗)), n � 1. (4.81)

Evidently, ϑn is continuous and so we can apply Corollary 4.3.3 and find un ∈ Cn

such that ϑn(un) = un for all n � 1. From (4.80) and (4.81) it follows that

(un − Ln(A(un)) + Ln(h
∗) − ϑn(un),ϑn(un) − v)n � 0 for all v ∈ Cn

⇒ (Ln(h
∗) − Ln(A(un)), un − v)n � 0 for all v ∈ Cn

⇒ 〈h∗ − A(un), un − v〉 � 0 for all v ∈ Cn (see (4.79)).

The proof is now complete. �

Remark 4.6.8 Note that so far the only place where we have used the monotonicity
of A is to deduce that A is demicontinuous and so infer the continuity of ϑn . Hence if
from the beginningwe assume the demicontinuity of A andwe drop themonotonicity,
the result of Lemma 4.6.7 remains true.

Lemma 4.6.9 By passing to a subsequence if necessary, we may assume that

un
w→ u in X and A(un)

w→ u∗ in X∗.

Proof We have un ∈ Cn ⊆ C for all n � 1 and so {un}n�1 ⊆ X is bounded. Since
A is bounded, {A(un)}n�1 ⊆ X∗ is bounded too. Then the reflexivity of X (hence
of X∗ too) implies that by passing to a suitable subsequence if necessary, we may
assume that

un
w→ u in X and A(un)

w→ u∗ in X∗.

The proof is now complete. �

Lemma 4.6.10 We have 〈A(un), un〉 → 〈u∗, u〉 and u∗ = A(u).

Proof For every n � k, we have Ck ⊆ Cn and

〈A(un) − h∗, v − un〉 � 0 for all v ∈ Ck

⇒ lim sup
n→∞

〈A(un), un〉 � 〈h∗, u − v〉 + 〈u∗, v〉
⇒ lim sup

n→∞
〈A(un), un − u〉 � 〈h∗ − u∗, u − v〉 for all v ∈ Ck, k � 1. (4.82)

Since
⋃
k�1

Ck is dense in C , we can find vk ∈ Ck such that vk → u. So, from (4.82)

it follows that

lim sup
n→∞

〈A(un), un − u〉 � 0. (4.83)
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From Proposition 2.6.12 we know that A is maximal monotone. Then Proposition
2.10.4 implies that A is generalized pseudomonotone. Hence by virtue of (4.83) we
have

〈A(un), un〉 → 〈u∗, u〉 and u∗ = A(u) (see Definition 2.10.1 (b)).

The proof is now complete. �

This last lemma leads to the following existence theorem for problem (4.77).

Theorem 4.6.11 If X is a separable reflexive Banach space, A : X → X∗ is
bounded, hemicontinuous and monotone, C ⊆ X is nonempty, bounded, closed and
convex and h∗ ∈ X∗, then problem (4.77) admits at least one solution u0 ∈ C, that
is

〈A(u0) − h∗, y − u0〉 � 0 for all y ∈ C.

Remark 4.6.12 It is easy to see that this solution is unique if A is strictly monotone.

If C is unbounded, then we can still produce a solution provided we introduce an
additional hypothesis on A(·).
Theorem 4.6.13 If X is a separable reflexive Banach space, A : X → X∗ is
bounded, hemicontinuous and monotone, C ⊆ X is nonempty, closed and convex,
h∗ ∈ X∗, and there exists a v0 ∈ C such that

lim‖v‖→∞
〈A(v), v − v0〉

‖v‖ = +∞, (4.84)

then problem (4.77) admits at least one solution u0 ∈ C, that is,

〈A(u0) − h∗, y − u0〉 � 0 for all y ∈ C.

Proof For every r > 0, we set Cr = {v ∈ C : ‖v‖ � r}. For r > 0 big enough (say,
r � r∗) we will have that Cr is nonempty, bounded, closed and convex and v0 ∈ Cr

(see (4.84)). So, we can apply Theorem 4.6.11 and find ur ∈ Cr such that

〈A(ur ) − h∗, y − ur 〉 � 0 for all y ∈ Cr .

Let y = v0. Then we have

〈A(ur ), ur − v0〉 � ‖h∗‖∗(‖v0‖ + ‖ur‖).

We will show that the family {ur }r�r∗ ⊆ X is bounded. We may assume that all
ur �= 0, r � r∗. We have
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〈A(ur ), ur − v0〉
‖ur‖ � ‖h∗‖∗

(‖v0‖
‖ur‖ + 1

)
. (4.85)

Suppose we can find rn → +∞ such that ‖urn ‖ → +∞. Then using (4.84), from
(4.85) we have a contradiction. Therefore we can find M > 0 such that

‖ur‖ � M for all r � r∗.

Let r = M + 1. For every y ∈ C and t ∈ [0, 1], t y + (1 − t)ur ∈ C . Moreover,

‖t y + (1 − t)ur‖ � t‖y‖ + (1 − t)‖ur‖ � t‖y‖ + M.

Let t ∈
(
0, 1

‖y‖
]
. Then t y + (1 − t)ur ∈ Cr (recall r = M + 1). Hence we have

〈A(ur ) − h∗, t y + (1 − t)ur − ur 〉 � 0

⇒ t〈A(ur ) − h∗, y − ur 〉 � 0

⇒ 〈A(ur ) − h∗, y − ur 〉 � 0 for all y ∈ C.

The proof is now complete. �

The direct method of the calculus of variations is based on the so-called
Weierstrass–Tonelli theorem, which asserts that a lower semicontinuous functional
on a compact space attains its infimum. In infinite-dimensional spaces, it is more
difficult to satisfy the compactness and lower semicontinuity conditions of the the-
orem and so the existence of a minimizer may fail. We can find only approximate
minimizers. Nevertheless, some interesting things can be said even in this case. More
precisely, if ϕ(u0) is an approximate minimum value of the lower semicontinuous
functional ϕ, then a small Lipschitz perturbation of ϕ attains a strict minimum at
a point û relatively close to u0 (that is, there is a Lipschitz function ψ with small
Lipschitz constant such that ϕ + ψ has a strict minimum at û). This is the essence of
the so-called “Ekeland variational principle” which since its appearance (see Eke-
land [157]) has found numerous applications. Also, it turns out that it is equivalent
to some other interesting results of Nonlinear Analysis.

Theorem 4.6.14 (Ekeland): If (X, d) is a complete metric space, ϕ : X → R =
R ∪ {+∞} is a lower semicontinuous function which is bounded below, ε > 0 and
u0 ∈ X satisfies

ϕ(u0) � inf
X

ϕ + ε,

then given λ > 0, we can find uλ ∈ X such that

(a) ϕ(uλ) � ϕ(u0) and d(uλ, u0) � λ;
(b) ϕ(uλ) < ϕ(u) + ε

λ
d(uλ, u) for all u �= uλ.



328 4 Partial Order, Fixed Point Theory, Variational Principles

Proof By replacingϕwith 1
ε
ϕ and themetric d by 1

λ
d, without any loss of generality,

we may assume that ε = λ = 1.
We introduce the following relation on X :

“v � u if and only if ϕ(v) � ϕ(u) − d(v, u).” (4.86)

Evidently, � is reflexive (that is, u � u). Also, if v � u and u � y, we have

ϕ(v) � ϕ(u) − d(v, u) and ϕ(u) � ϕ(y) − d(u, y) (see (4.86)). (4.87)

Then

ϕ(v) � ϕ(y) − (d(v, u) + d(u, y)) (see (4.87))

� ϕ(y) − d(v, y) (by the triangle inequality)

⇒ v � y (see (4.86)).

This proves that the relation� is transitive. Finally suppose that v � u and u � v.
Then

ϕ(v) � ϕ(u) − d(v, u) and ϕ(u) � ϕ(v) − d(u, v) (see (4.86))

⇒ d(v, u) = 0 and so v = u.

Therefore� is antisymmetric. Hence we have established that� is a partial order
(that is, it is reflexive, transitive and antisymmetric).

Now let u1 = u0 and define

S1 = {u ∈ X : u � u1}
and u2 ∈ S1 such that ϕ(u2) � inf

S1
ϕ + 1

22
.

Then inductively we define

Sn = {u ∈ X : u � un}
and un+1 ∈ Sn such that ϕ(un+1) � inf

Sn

ϕ + 1

2n+1
. (4.88)

Since un+1 � un , we see that Sn+1 ⊆ Sn for all n � 1. Also, the lower semicon-
tinuity of ϕ and (4.86) imply that for each n � 1, Sn is closed. Let u ∈ Sn+1. Then
u � un+1 � un and so
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d(u, un) � ϕ(un+1) − ϕ(u) (see (4.86))

� inf
Sn

ϕ + 1

2n+1
− ϕ(u)

� ϕ(u) + 1

2n+1
− ϕ(u) = 1

2n+1

⇒ diam Sn+1 � 1

2n+1
for all n � 0

⇒ diam Sn → 0 as n → ∞.

Since (X, d) is complete, by Cantor’s theorem, we have that

⋂
n�1

Sn = {uλ}. (4.89)

Then uλ ∈ S1 and so uλ � u1 = u0. Hence

ϕ(uλ) � ϕ(u0) − d(uλ, u0) � ϕ(u0).

Also, we have

d(uλ, u0) � ϕ(u0) − ϕ(uλ)

� inf
X

ϕ + 1 − ϕ(uλ) (recall ε = 1)

� 1 = λ.

Therefore, we have proved statement (a).
To prove statement (b), we need to show that v � uλ implies v = uλ. Indeed, in

this case we have v � un for all n � 1. It follows that v ∈ ⋂
n�1

Sn and so v = uλ (see

(4.89)). �

Remark 4.6.15 The conclusions d(uλ, u0) � λ and ϕ(uλ) < ϕ(u) + ε
λ

d(u, uλ) for
u �= uλ are complementary and the value of λ > 0 determines which one contains
substantial information. Indeed, if λ > 0 is small, then the condition d(uλ, u0) � λ
contains important information since it tells us that uλ is close to u0, while the other
condition provides little information since the perturbation of ϕ is big. On the other
hand, if λ > 0 is big, then the conclusion ϕ(uλ) < ϕ(u) + ε

λ
d(u, uλ) for all u �= uλ

says that uλ is close to being a globalminimizer ofϕ (the perturbation term ε
λ

d(u, uλ)

is small), while the conclusion d(uλ, u0) � λ provides little information about the
whereabouts of uλ. Often we try to strike a balance between the two conclusions by
taking λ = √

ε, ε > 0. Another interesting case is when λ = 1 and ε > 0. This case
implies that we are not interested in how uλ is located with respect to u0 and we want
only to have uλ very close to being a global minimizer of ϕ. We present both cases
as corollaries of Theorem 4.6.14.
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Corollary 4.6.16 If (X, d) is a complete metric space andϕ : X → R = R ∪ {+∞}
is a lower semicontinuous function which is bounded below, ε > 0 and u0 ∈ X sat-
isfies

ϕ(u0) � inf
X

ϕ + ε,

then we can find u ∈ X such that

(a) ϕ(u) � ϕ(u0) and d(u, u0) � √
ε;

(b) ϕ(u) < ϕ(u) + √
εd(u, u) for all u �= u.

Corollary 4.6.17 If (X, d) is a complete metric space, ϕ : X → R = R ∪ {+∞} is
a lower semicontinuous function which is bounded below, then for every ε > 0 we
can find uε ∈ X such that

(a) ϕ(uε) � inf
X

ϕ + ε;

(b) ϕ(uε) < ϕ(u) + εd(u, uε) for all u �= uε.

By introducing more structure on X and ϕ, we obtain improved versions of The-
orem 4.6.14.

Theorem 4.6.18 If X is a Banach space and ϕ : X → R is a lower semicontinuous
function which is bounded below and Gâteaux differentiable, then for every ε > 0
we can find uε ∈ X such that

(a) ϕ(uε) � inf
X

ϕ + ε;

(b) ‖ϕ′(uε)‖∗ � ε.

Proof From Corollary 4.6.17, we know that there exists a uε ∈ X such that ϕ(uε) �
inf

X
ϕ + ε and

ϕ(uε) − ϕ(u) � ε‖u − uε‖ for all u ∈ X

⇒ 1

λ
[ϕ(uε) − ϕ(uε + λh)] � ε‖h‖ for all λ > 0 and all h ∈ X

⇒ −〈ϕ′(uε), h〉 � ε‖h‖ for all h ∈ X

⇒ |〈ϕ′(uε), h〉| � ε‖h‖ for all h ∈ X

⇒ ‖ϕ′(uε)‖∗ � ε.

The proof is now complete. �

Remark 4.6.19 In general, the Gâteaux differentiability of ϕ is not enough to con-
clude that it is lower semicontinuous.

Next, we present some interesting applications of the Ekeland variational princi-
ple. We start with the Caristi fixed point theorem.



4.6 Abstract Variational Principles 331

Theorem 4.6.20 If (X, d) is a complete metric space, ϕ : X → R = R ∪ {+∞} is
a lower semicontinuous function which is bounded below and F : X → 2X \ {∅} is
a multifunction such that

ϕ(y) � ϕ(u) − d(u, y) for all u ∈ X and some y ∈ F(u), (4.90)

then F(·) has a fixed point û ∈ X.

Proof Corollary 4.6.17 with ε = 1 implies that there exists a û ∈ X such that

ϕ(û) < ϕ(u) + d(u, û) for all u �= û. (4.91)

Suppose that û /∈ F(û). Then for all y ∈ F(û) we have that y �= û. Let y ∈ F(û)

be as postulated by hypothesis (4.90). We have

ϕ(y) � ϕ(û) − d(û, y) and ϕ(û) < ϕ(y) + d(y, û) (see (4.91))

⇒ d(û, y) < d(û, y), a contradiction.

So, F(·) has a fixed point û ∈ X (that is, û ∈ F(û)). �

Remark 4.6.21 We stress that in the above theorem, we did not assume anything
about the multifunction F(·). If F : X → X is a single-valued contraction (see Def-
inition 4.2.1(b)) with contraction constant k ∈ (0, 1) and ϕ(u) = 1

1−k d(u, F(u)) for
all u ∈ X , then for all u ∈ X we have

ϕ(u) − ϕ(F(u)) = 1

1 − k
[d(u, F(u)) − d(F(u), F(F(u)))]

� 1

1 − k
[d(u, F(u)) − kd(u, F(u))]

= d(u, F(u)).

So, we have satisfied condition (4.90) and we can apply Theorem 4.6.20 to con-
clude that there exists a û ∈ X such that û = F(û). Hencewehave derived theBanach
fixed point theorem (see Theorem 4.2.3). Nevertheless, the fixed point principle of
Banach contains much more information (see Sect. 4.2).

In the proof of Theorem 4.6.20 (Caristi’s fixed point theorem), we have used the
Ekeland variational principle (in particular, Corollary 4.6.17). Conversely we can
show that Caristi’s fixed point theorem implies conclusion (b) of Corollary 4.6.17
(that is, the existence of a strict minimizer for a small perturbation of ϕ).

Proposition 4.6.22 Conclusion (b) of Corollary 4.6.17 can be derived from Theorem
4.6.20.

Proof Let d1 = εd. This is an equivalent metric on X . Arguing by contradiction,
suppose that there is no uε ∈ X satisfying conclusion (b) of Corollary 4.6.17. For
each u ∈ X , the set F(u) = {y ∈ X : ϕ(u) � ϕ(y) + d1(u, y), y �= u} is nonempty
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and condition (4.90) is satisfied. Invoking Theorem 4.6.20, we find û ∈ X such that
û ∈ F(û), a contradiction to the definition of F(·). �

Another geometrical result of nonlinear analysis, which is closely related to the
Ekeland variational principle, is the so-called “Drop theorem”. First a definition.

Definition 4.6.23 Let X be a normed space, C ⊆ X a nonempty convex set and
u ∈ X . The “drop” associated to the pair (C, u), denoted by D(C, u), is the convex
hull of C ∪ {u}, that is,

D(C, u) = {u + λ(y − u) : y ∈ C and λ ∈ [0, 1]}.

Remark 4.6.24 The set D(C, u) is called a “drop”, in view of its evocative geometry.

Theorem 4.6.25 If X is a normed space, A ⊆ X is a complete subset, y ∈ X \ A,
R = d(y, A) and 0 < r < R < ρ, then there exists a u0 ∈ A such that

u0 ∈ Bρ(y) = {v ∈ X : ‖v − y‖ � ρ},
D(Br (y), u0) ∩ A = {u0}.

Proof By translating things if necessary, we may assume without any loss of gener-
ality that y = 0. Let S = Bρ(0) ∩ A. This is a closed subset of A, hence a complete
metric space with the metric induced by the norm of X . Let ϕ : S → R+ be the
continuous function defined by

ϕ(u) = ρ + r

R − r
‖u‖.

We apply Corollary 4.6.17 with ε = 1 and obtain u0 ∈ S such that

ϕ(u0) < ϕ(u) + ‖u − u0‖ for all u ∈ S, u �= u0. (4.92)

We will show that D(Br (0), u0) ∩ A = {u0} and this will finish the proof.
Arguing by contradiction, suppose that v ∈ D(Br (0), u0) ∩ A, v �= u0. Then

v ∈ A and v = (1 − λ)u0 + λw with w ∈ Br (0), λ ∈ [0, 1].

Since v �= u0 and r < R, we see that λ ∈ (0, 1). We have

‖v‖ � (1 − λ)‖u0‖ + λ‖w‖. (4.93)

Because u0 ∈ A, we have ‖u0‖ � R and so it follows that

λ(R − r) � λ (‖u0‖ − ‖w‖) � ‖u0‖ − ‖v‖ (see (4.93)). (4.94)

In (4.92) we choose u = v and have
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ρ + r

R − r
‖u0‖ <

ρ + r

R − r
‖v‖ + ‖v − u0‖

= ρ + r

R − r
‖v‖ + λ‖u0 − w‖

⇒ ρ + r

R − r
(‖u0‖ − ‖v‖) < λ‖u0 − w‖

⇒ ρ + r < ‖u0 − w‖ (see (4.94)). (4.95)

But we know that ‖u0‖ � ρ (recall u0 ∈ S) and w ∈ Br (0). Therefore

‖u0 − w‖ � ρ + r. (4.96)

Comparing (4.95) and (4.96) we reach a contradiction. �

Remark 4.6.26 In fact it can be shown that Theorem 4.6.25 (the drop theorem) is
equivalent to the Ekeland variational principle in the form of Corollary 4.6.17. For
the details, we refer to Penot [333].

Continuing with the applications of the Ekeland variational principle, we have the
following result for lower semicontinuous, Gâteaux differentiable functionals.

Proposition 4.6.27 If X is a Banach space, ϕ : X → R is a lower semicontinuous
and Gâteaux differentiable functional and there exist a, c > 0 such that

ϕ(u) � a‖u‖ − c for all u ∈ X, (4.97)

then ϕ′(X) is dense in aB
∗
1, where B

∗
1 = {u∗ ∈ X∗ : ‖u∗‖∗ � 1}.

Proof Let u∗ ∈ aB
∗
1 and consider the functional ψ : X → R defined by

ψ(u) = ϕ(u) − 〈u∗, u〉.

As always by 〈·, ·〉 we denote the duality brackets for the pair (X∗, X). Evidently,
ψ is lower semicontinuous and Gâteaux differentiable. Also using (4.97) we have

ψ(u) � a‖u‖ − c − ‖u∗‖∗‖u‖ � −c.

So, ψ is bounded below and we can apply Theorem 4.6.18 and find uε ∈ X such
that

‖ψ′(uε)‖∗ � ε

⇒ ‖ϕ′(uε) − u∗‖∗ � ε

⇒ ϕ′(X) is dense in aB
∗
1.

The proof is now complete. �
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Corollary 4.6.28 If X is a Banach space, ϕ : X → R is a lower semicontinuous and
Gâteaux differentiable functional and there exists a continuous function ϑ : R+ =
[0,∞) → R such that ϑ(t)

t → +∞ as t → +∞ and

ϕ(u) � ϑ(‖u‖) for all u ∈ X,

then ϕ′(X) is dense in X∗.

Proof From the superlinearity of ϑ, we see that given a > 0, we can find t0 > 0 such
that ϑ(t) � at for all t � t0, hence ϕ(u) � a‖u‖ for all ‖u‖ � t0. Also let

m = inf{ϑ(t) : t ∈ [0, t0]} � 0.

Then ϕ(u) � m for all ‖u‖ � t0. So, if c > m, we have

ϕ(u) � a‖u‖ − c for all u ∈ X

and applying Proposition 4.6.27 we infer that ϕ′(X) is dense in aB
∗
1. Since a > 0 is

arbitrary, we conclude that ϕ′(X) is dense in X∗. �

Anticipating a notion that plays a central role in Chap.5, we introduce the follow-
ing definition.

Definition 4.6.29 Let X be a Banach space and ϕ ∈ C1(X). We say that ϕ satisfies
the Palais–Smale condition (PS-condition for short) if the following holds: “every
sequence {un}n�1 ⊆ X such that

{ϕ(un)}n�1 ⊆ R is bounded and ϕ′(un) → 0 in X∗ as n → ∞

admits a strongly convergent subsequence.”

Proposition 4.6.30 If X is a Banach space and ϕ ∈ C1(X) satisfies the PS-condition
and it is bounded below, then there exists a u0 ∈ X such that ϕ(u0) = inf

X
ϕ.

Proof By virtue of Theorem 4.6.18 we can find {un}n�1 ⊆ X such that

ϕ(un) � inf
X

ϕ + 1

n
and ‖ϕ′(un)‖∗ � 1

n
.

Since ϕ satisfies the PS-condition, by passing to a suitable subsequence if neces-
sary, we may assume that un → u0 in X . Then ϕ(u0) = inf

X
ϕ. �

Remark 4.6.31 In fact we do not need the full strength of the hypothesisϕ ∈ C1(X).
It is enough to assume that ϕ is Fréchet differentiable. Note that the PS-condition
still makes sense. In this case, we apply Corollary 4.6.17 and obtain {un}n�1 ⊆ X
such that
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ϕ(un) � inf
X

ϕ + 1

n
and ϕ(un) � ϕ(u) + 1

n
‖u − un‖ for all u ∈ X.

Let u = un + λh with λ > 0, h ∈ X . Then

1

λ
[ϕ(un) − ϕ(un + λh)] � 1

n
‖h‖

⇒ −〈ϕ′(un), h〉 � 1

n
‖h‖

⇒ ‖ϕ′(un)‖∗ � 1

n
(since h ∈ X is arbitrary).

Again we apply the PS-condition to reach the desired conclusion.

Using the Ekeland variational principle, we can also show that for a lower semi-
continuous, convex functional ϕ : X → R = R ∪ {+∞} (as always not identically
+∞), the domain of the subdifferential∂ϕ, dom∂ϕ = {u ∈ X : ∂ϕ(u) �= ∅} is dense
in the effective domain of ϕ, domϕ = {u ∈ X : ϕ(u) < +∞} (see also Corollary
2.7.12). More precisely we have:

Proposition 4.6.32 If X is a Banach space and ϕ : X → R = R ∪ {+∞} is a lower
semicontinuous convex functional not identically +∞, then for any û ∈ domϕ, we
can find a sequence {un}n�1 ⊆ X such that

‖un − û‖ � 1

n
, ϕ(un) → ϕ(û) and ∂ϕ(un) �= ∅ for all n � 1.

Proof From Proposition 2.7.5, we know that ϕ admits a continuous affine minorant,
that is, there exist u∗ ∈ X∗ and c ∈ R such that ϕ(u) � 〈u∗, u〉 − c for all u ∈ X .
We introduce the function ψ : X → R = R ∪ {+∞} defined by

ψ(u) = ϕ(u) − 〈u∗, u〉 + c � 0 for all u ∈ X.

Evidently,ψ is lower semicontinuous, boundedbelowandof course not identically
+∞. We apply Theorem 4.6.14 with ε = ψ(û) − inf

X
ψ and λ = 1

n , n ∈ N. We obtain

a sequence {un}n�1 ⊆ X such that

ψ(un) � ψ(û) and ‖un − û‖ � 1

n
for all n � 1, (4.98)

ψ(un) < ψ(u) + εn‖u − un‖ for all u �= un and all n � 1. (4.99)

Consider the functionals ξn : X → R = R ∪ {+∞} defined by

ξn(u) = ψ(u) + εn‖u − un‖, n � 1.
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From (4.99) we see that un is the unique global minimizer of ξn . Hence

0 ∈ ∂ξn(un)

⇒ 0 = v∗
n + εny∗

n where v∗
n ∈ ∂ψn(un), y∗

n ∈ ∂μn(un),

where μn(u) = εn‖u − un‖, n � 1 (see Proposition 2.7.20). Also, from the defini-
tion of ψ and Proposition 2.7.20, we have

v∗
n = u∗

n − u∗ with u∗
n ∈ ∂ϕ(un), n � 1.

Hence ∂ϕ(un) �= 0 for all n � 1. From (4.98) we have

ϕ(un) � ϕ(û) + 〈u∗, un − û〉 for all n � 1. (4.100)

Since un → û in X (see (4.98)), passing to the limit as n → ∞ in (4.100), we
obtain

lim sup
n→∞

ϕ(un) � ϕ(û). (4.101)

But ϕ is lower semicontinuous and un → û. Hence

ϕ(û) � lim inf
n→∞ ϕ(un). (4.102)

From (4.101) and (4.102) we conclude that ϕ(un) → ϕ(û). �

From linear operator theory, we recall the following basic result.

Proposition 4.6.33 If X, Y are Banach spaces and L ∈ L (X, Y ), then the following
statements are equivalent:

(a) L is surjective;
(b) there exists a c > 0 such that ‖y∗‖Y ∗ � c‖L∗(y∗)‖X∗ for all y∗ ∈ Y ∗;
(c) N (L∗) = ker L∗ = {0} and R(L∗) is closed.

Remark 4.6.34 So according to this theorem, for L ∈ L (X, Y ) we have

L is surjective ⇒ L∗ is injective.

If one of the spaces X or Y is finite-dimensional, then the converse is also true.
Also, note that a corresponding result is also true with the roles of L and L∗ inter-
changed.

Next we will prove a nonlinear analog of Proposition 4.6.33.

Proposition 4.6.35 If X, Y are Banach spaces, ϕ : X → Y is Gâteaux differentiable
map, ϕ(X) is closed in Y , y ∈ Y and there exist ρ0 > 0 and k ∈ [0, 1) such that
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ϕ−1(Bρ0(y)) �= ∅, (4.103)

inf
{
‖y − ϕ(u) − v‖Y : v ∈ R(ϕ′(u))

}
� k‖y − ϕ(u)‖Y , (4.104)

for all u ∈ ϕ−1(Bρ0(y)) (see (4.103)), then y ∈ ϕ(X).

Proof Let S = ϕ(X). By hypothesis S is closed. Arguing by contradiction, suppose
that y /∈ ϕ(X) = S and let R = dY (y, S). We choose ρ, r > 0 such that

r < R < ρ and kρ < r.

Note that (4.103), (4.104) still hold for any ρ ∈ (R, ρ0]. Let C = Br (y). Then
invoking Theorem 4.6.25 (the Drop theorem), we can find y0 ∈ Br (y) such that

D(C, y0) ∩ S = {y0}. (4.105)

Let u0 ∈ X such that ϕ(u0) = y0. From (4.104) and since kρ < r , we have

inf
[
‖y − ϕ(u0) − v‖Y : v ∈ R(ϕ′(u0))

]
� k‖y − ϕ(u0)‖Y < r.

So, we can find h ∈ X such that

‖y − ϕ(u0) − ϕ′(u0)h‖Y < r. (4.106)

Then for small λ > 0 we have

‖y − ϕ(u0) − ϕ(u0 + λh) − ϕ(u0)

λ
‖Y < r.

Let zλ = y − ϕ(u0) − ϕ(u0+λh)−ϕ(u0)

λ
∈ Y . Then

y − zλ ∈ D(C, y0) (see Definition 4.6.23)

⇒ (1 − λ)y0 + λ(y − zλ) ∈ D(C, u0) for λ > 0 small

⇒ ϕ(u0 + λh) ∈ D(C, y0) for λ > 0 small

⇒ ϕ(u0 + λh) = y0 for λ > 0 small (see (4.105))

⇒ ϕ′(u0) = 0.

Then from (4.106), we have

‖y − ϕ(u0)‖Y < r < R,

a contradiction. �
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Remark 4.6.36 If conditions (4.103), (4.104) hold for all y ∈ Y , we can conclude
that ϕ is surjective. As in the case of the Ekeland variational principle (see Remark
4.6.15), conditions (4.103), (4.104) are complementary. That is, the larger ρ > 0, the
more difficult it is to verify (4.104).

Corollary 4.6.37 If X, Y are Banach spaces, ϕ : X → Y is Gâteaux differentiable,
ϕ(X) is closed in Y and N (ϕ′

G(u)∗) = {0} for all u ∈ X, then ϕ is surjective.

Proof From linear operator theory (see, for example,Denkowski,Migorski andPapa-
georgiou [143, p. 320]), we know that

R(ϕ′(u)) = N (ϕ′(u)∗)⊥

(recall that if V ∗ ⊆ Y ∗ is a subspace, (V ∗)⊥ = {y ∈ Y : 〈v∗, y〉Y ∗,Y = 0 for all
v∗ ∈ V ∗}). So, R(ϕ′(u)) = Y and (4.104) holds for k = 0. Then for given y ∈ Y ,
let ρ > 0 be such that d(y,ϕ(X)) < ρ. Applying Remark 4.6.36 with this ρ > 0
and with k = 0, we obtain y ∈ ϕ(X), hence ϕ is surjective. The proof is now
complete. �

Remark 4.6.38 The above proof suggests that the condition N (ϕ′
G(u)∗) = {0} for

all u ∈ X can be replaced by the hypothesis that R(ϕ′(u)) is dense in Y for all u ∈ X .

We will conclude this section with a result which is motivated by the proof of the
Ekeland variational principle (see the proof ofTheorem4.6.14). So,wewill formulate
a variational principle for partially ordered spaces, from which we can deduce the
Ekeland variational principle. Recall that a set X is partially ordered if there is a
relation � which is reflexive (that is, u � u for all u ∈ X ), antisymmetric (that is,
u � v and v � u imply u = v) and transitive (that is, u � v and v � w imply u � w).
A partially ordered set is denoted by (X,�). A sequence {un}n�1 in (X,�) is said to
be increasing if un � un+1 for all n � 1 and bounded above if there exists a û ∈ X
such that un � û for all n � 1. A function ϕ : (X,�) → R is increasing if u � v

implies ϕ(u) � ϕ(v).

Theorem 4.6.39 If (X,�) is a partially ordered set in which every increasing
sequence is bounded above and ϕ : (X,�) → R is an increasing function which
is bounded above, then there exists a û ∈ X such that û � u implies ϕ(û) = ϕ(u).

Proof Let u1 ∈ X . Using induction we will generate an increasing sequence
{un}n�1 ⊆ X . Suppose we have produced un ∈ X . We set

Cn = {u ∈ X : un � u} and Mn = sup
Cn

ϕ.

If for un , we have that un � u impliesϕ(un) = ϕ(u), then we are done. Otherwise
ϕ(un) < Mn and so we can find un+1 ∈ Cn such that

Mn � ϕ(un) + 1

2
[Mn − ϕ(un)] . (4.107)
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Then by induction we have an increasing sequence {un}n�1 ⊆ X and it satisfies
(4.107). By hypothesis we can find û ∈ X such that un � û for all n � 1. We claim
that û ∈ X is the desired solution. If this is not true, then we can find u ∈ X with
û � u and ϕ(û) < ϕ(u). The sequence {ϕ(un)}n�1 ⊆ R is increasing and bounded
by ϕ(u). So, it converges and we have

lim
n→∞ ϕ(un) � ϕ(û). (4.108)

Since un � û and û � y, by transitivity we have un � y for all n � 1 and so
y ∈ Cn for all n � 1. Then from (4.107) it follows that

ϕ(y) � Mn � 2ϕ(un+1) − ϕ(un) for all n � 1

⇒ ϕ(y) � ϕ(û), a contradiction.

So, indeed û ∈ X is the desired solution. The proof is now complete. �

Remark 4.6.40 We can give Theorem 4.6.39 a physical interpretation. Think of ϕ as
measuring the entropy of a system. Then the theorem guarantees the existence of a
state of maximal entropy. To these states correspond stable equilibria of the system.

Corollary 4.6.41 If X is a Hausdorff topological space equipped with a partial
order � and ψ : X → R is a function which is bounded below and

(i) for every u ∈ X, the set {v ∈ X : u � v} is closed;
(ii) u � v, u �= v imply ψ(v) < ψ(u) (ψ is strictly decreasing);

(iii) any increasing sequence in (X,�) is relatively compact,

then for each u ∈ X we can find û ∈ X such that u � û and û is maximal.

Proof Let {un}n�1 ⊆ (X,�) be an increasing sequence. By virtue of hypothesis
(i i i), {un}n�1 ⊆ X is compact and so we can find a subsequence {unk }k�1 of {un}n�1

such that unk → v in X . We claim that un � v for all n � 1. Indeed, given n � 1
we have n � nk for all k � kn . So, un � unk for all k � kn . Invoking hypothesis (i)
we have un � v for all n � 1. Taking ϕ = −ψ, we see that because of hypothesis
(i i) we can apply Theorem 4.6.39 starting from u1 = u and obtain û ∈ X such that
u � û and û is maximal. �

Finally, we show that conclusion (b) in Corollary 4.6.17 can be derived from
Theorem 4.6.39.

Proposition 4.6.42 Theorem 4.6.39 implies conclusion (b) of Corollary 4.6.17.

Proof Without any loss of generality, we may take ε = 1. Consider the following
partial order � on the complete metric space (X, d)

u � v if and only if ϕ(v) − ϕ(u) � −d(v, u). (4.109)
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For any increasing sequence {un}n�1 ⊆ (X,�), {ϕ(un)}n�1 ⊆ R is decreas-
ing and bounded below. So, it converges. Also, again from (4.109), we infer
that {un}n�1 ⊆ X is Cauchy. The completeness of X implies that un → u in
(X, d). Therefore, we can apply Corollary 4.6.41 to obtain conclusion (b) of Corol-
lary 4.6.17. �

4.7 Young Measures

From the theory of L p-spaces, we know that if (�,�,μ) is a finite measure space
and {un}n�1 ⊆ L1(�), then the following is true:

“un
w→ u in L1(�) and u(z) � lim inf

n→∞ un(z) μ-a.e. in � ⇒ un → u in L1(�).”

This result illustrates the difference between weak and strong convergence in
L1(�). A sequence {un}n�1 ⊆ L1(�)which convergesweakly but not strongly oscil-
lates rapidly around its weak limit. However, in the limit all this information about
the oscillation is lost and only amean value is recorded. This is not helpful, because if
we consider a Nemitsky (superposition) operator N f (that is, if N f (y)(·) = f (y(·))),
we cannot say that N f (un)

w→ N f (u) in L1(�), unless f is an affine function. To
recover this lost information, we embed the sequence {un}n�1 into a larger space
and consider the limit there. This larger space is that of parametrized measures
(probability-valued functions). These are the Young measures. This idea is present
in many applications (such as stochastic analysis, optimal control, game theory, etc.)
and for this reason Young measures appear in the literature under different names,
such as Markov kernels, relaxed controls, mixed strategies, etc.

Our setting is the following: (�,�,μ) is a complete finite measure space with
� countably generated and (X, d) is a locally compact, σ-compact complete metric
space (for example, think of R

N ). Let us remark that much of what is done in this
section extends without any difficulty to a σ-finite measure space. In what follows by
B(X)wedenote theBorelσ-field of X and by� × B(X) the productσ-field of� and
B(X). By Mb wewill denote the vector space of real boundedmeasures on some space
(for example, Mb(� × X) is the space of bounded real measures on� × X ). Also by
M+

1 we denote the probability measures on a space and by SM+
1 the subprobability

measures on a space (for example, SM1+(X) = {μ ∈ Mb(X) : μ � 0,μ(X) � 1}).
Recall that a Radon measure on X is a Borel measure μ (that is, a measure defined on
B(X)) such that for every A ∈ B(X) and ε > 0, there exists a compact set Kε ⊆ X
such that |μ|(A \ Kε) < ε. Here by |μ| we denote the total variation of μ. From
topological measure theory, we know that every Radon measure on B(X) is regular,
that for every A ∈ B(X) and every ε > 0, we can find U ⊆ X open and C ⊆ X
closed such that C ⊆ A ⊆ U and |μ|(U \ C) < ε. We denote the space of Radon
measures on X by Mr (X) and we have Mr (X) = Mb(X). By Cc(X) we denote the
space of continuous functions on X with compact support, by C0(X) the space of
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continuous functions on X which vanish at infinity, that is, ϕ ∈ C0(X), if for every
ε > 0, there exists a compact Kε ⊆ X such that |ϕ(u)| � ε for all u ∈ X \ Kε and
finally by Cb(X) we denote the space of bounded continuous functions on X . We
have the following inclusions

Cc(X) ⊆ C0(X) ⊆ Cb(X).

If X is compact, then the three spaces coincide. If X is not compact, then each of
the above inclusions is strict. We endow Cb(X) with the supremum norm

‖ϕ‖∞ = sup [|ϕ(u)| : u ∈ X ] for all ϕ ∈ Cb(X).

This norm is inherited by the subspaces C0(X) and Cc(X). We have

• (Cb(X), ‖ · ‖∞) is a Banach space;
• C0(X) is a ‖ · ‖∞- closed subspace of Cb(X) and so (C0(X), ‖ · ‖∞) is a Banach
space too;

• Cc(X) is ‖ · ‖∞- dense in C0(X).

From the Riesz representation theorem we have that

C0(X)∗ = Mr (X). (4.110)

We consider the linear functionals lϕ : Mr (X) → R defined by

lϕ(μ) =
∫

X
ϕ(u)μ(du) for all μ ∈ Mr (X),

with ϕ ∈ C0(X) or ϕ ∈ Cb(X). Then

• w(Mr (X), C0(X)) is the usual w∗-topology on the Banach space Mr (X);
• w(Mr (X), Cb(X)) is the so-called narrow topology on the Banach space Mr (X).

Remark 4.7.1 Probabilists prefer to call convergence in the w∗-topology
w(Mr (X), C0(X)) weak convergence and not w∗-convergence.

Definition 4.7.2 A transition probability (resp. transition subprobability) on � is a
map λ : � → M+

1 (X) (resp. λ : � → SM+
1 (X)) which is measurable in the follow-

ing sense: for every A ∈ B(X), z → λ(z)(A) from � into R is �-measurable. By
R(�, X) (resp. S R(�, X)) we denote the space of all transition probabilities (resp.
transition subprobabilities) on �.

In the sequel we will restrict ourselves to transition probabilities, although the
results are also valid for transition subprobabilities.

Proposition 4.7.3 λ ∈ R(�, X) if and only if λ : � → M+
1 (X)w∗ is

(�, B(M+
1 (X)w∗))-measurable where M+

1 (X)w∗ denotes the space M+
1 (X) fur-

nished with the weak∗ topology.
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Proof ⇒: Evidently, z �→ ∫
X ϕ(u)λ(z)(du) is measurable for every characteristic

function ϕ of an element in B(X). Hence it is also measurable for every simple
functionϕ. Then by density it is true for every boundedBorel functionϕ, in particular
for every ϕ ∈ C0(X).

⇐: Let X̂ be the Alexandroff one point compactification of X . Since X is separa-
ble (being σ-compact), X̂ is metrizable. Let d̂ be a compatible metric. Let C ⊆ X be

compact and setϕn(u) =
(
1 − nd̂(u, C)

)+
. Thenϕn ∈ C(X̂) andϕn(∞) = 0 for all

n � n0. Hence ϕn

∣∣∣
X

∈ C0(X). Moreover, ϕn ↓ χC and so by the monotone conver-

gence theorem
∫

X ϕn(u)λ(z)(du) ↓ λ(z)(C). By hypothesis z → ∫
X ϕn(u)λ(z)(du)

is �-measurable for all n � n0, hence z → λ(z)(C) is �-measurable. Let

D = {A ∈ B(X) : z → λ(z)(A) is �-measurable}.

Clearly,D is a Dynkin class and it contains all compact sets in X . So, by the Dynkin
class theorem (see, for example, Denkowski et al. [143, p. 220]),D = B(X). There-
fore λ ∈ R(�, X). �

To introduce Young measures we will need the notion of the image of a measure.

Definition 4.7.4 Let (�k, �k), k = 1, 2, be two measurable spaces, ξ : �1 → �2 a
measurable map and λ a measure on (�1, �1), then the image of λ by ξ is defined
by

λ̂ = λ ◦ ξ−1,

that is, for all A ∈ �2, λ̂(A) = λ(ξ−1(A)).

Remark 4.7.5 If ϕ : �2 → R is λ̂-integrable, then

∫
�2

ϕdλ̂ =
∫

�1

(ϕ ◦ ξ)dλ1.

Also, if (�3, �3) is a third measurable space and ϑ : �2 → �3 is measurable,
then the image of λ by ϑ ◦ ξ equals the image of λ̂ by ϑ.

Now we can define Young measures. By �� : � × X → � we denote the pro-
jection ��(z, u) = z and by �X : � × X → X the projection �X (z, u) = u.

Definition 4.7.6 (a) The space of Young measures with respect to μ, denoted by
Y (�,μ; X) is the set of all positive measures λ on � × X such that μ = λ ◦ �−1

�

(that is, μ is the image of λ under the projection map �� and so for every A ∈ �,
λ(A × X) = μ(A)). The space of sub-Young measures with respect to μ, denoted
by SY (�,μ; X), is the set of all positive measures (including the zero measure),
whose projection (marginal) on� is� μ (that is, λ ◦ �−1

� � μ and so for all A ∈ �,
λ(A × X) � μ(A)).

(b) Let u : � → X be a �-measurable map. The Young measure associated to u
is the image λ of μ under the map z → (z, u(z)).
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Remark 4.7.7 If ϕ : � × R → R = R ∪ {+∞} is either positive or λ-integrable,
then ∫

�×X
ϕ(z, u)λ(dz, du) =

∫
�

ϕ(z, u(z))dμ.

Moreover, λ is the unique measure on � × X supported by graph u and such that
for all A ∈ �, λ(A × X) = μ(A). If u1, u2 : � → X are both �-measurable maps,
then

λ1 = λ2 if and only if u1(z) = u2(z) μ-a.e. in �.

The link connecting transition subprobabilities and Young submeasures is the
disintegration theorem (see Valadier [408]).

Theorem 4.7.8 If λ is a positive measure on � × X such that λ ◦ �−1
� � μ, then

there exists a unique (up to equality μ-a.e.) transition subprobability λ̂ ∈ S R(�, X)

such that

λ(A) =
∫

�

[∫
X

χA(z, u)λ̂(z)(du)

]
μ(dz) for all A ∈ � × B(X).

Remark 4.7.9 In general we do not distinguish between λ ∈ SY (�,μ; X) and its
disintegration λ̂ ∈ S R(�, X). Also, if u : � → X is �-measurable, the disinte-
gration of the Young measure associated to u (see Definition 4.7.6) is given by
λ̂(z) = δu(z).

This identification of sub-Young measures with transition subprobabilities via
the disintegration theorem leads to the identification of SY (�,μ; X) with a sub-
set of L∞(�, Mr (X)w∗). Recall that the Dinculeanu and Foias theorem (see, for
example, Gasinski and Papageorgiou [182, p. 131]) says that L∞(�, Mr (X)w∗) =
L1(�, C0(X))∗. Moreover, since � is countably generated and C0(X) is a separable
Banach space, then the Lebesgue–Bochner space L1(�, C0(X)) is separable too.

To get the desired identification, we will need the following abstract result about
multifunctions.

Proposition 4.7.10 If Y is a separable Banach space and F : � → 2Y ∗ \ {∅} is
a multifunction with w∗-closed and convex values in the unit ball of Y ∗ and for
every y ∈ Y , ω → σ(y, F(ω)) = sup {〈y∗, y〉 : y ∈ F(ω)} is �-measurable, then
S∞

F = { f ∈ L∞(�, Y ∗
w∗) = L1(�, Y )∗ : f (ω) ∈ F(ω) μ-a.e. in �} is convex and

w∗-compact.

Proof Evidently, S∞
F is relatively w∗-compact. Since L1(�, X) (the predual) is sep-

arable, the w∗-topology on bounded sets of the dual L∞(�, X∗
w∗) is metrizable. So,

we can work with sequences. Let { fn}n�1 ⊆ S∞
F and assume that fn

w∗→ f . Arguing
by contradiction, suppose f /∈ S∞

F . We consider the set

C = {z ∈ � : f (z) /∈ F(z)} ∈ �.
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Due to the separability of Y , we can find {yn}n�1 ⊆ Y such that

C =
⋃
n�1

{z ∈ � : 〈 f (z), yn〉Y > σ(yn, F(z)) = sup
{〈y∗, yn〉Y : y∗ ∈ F(z)

}}.

For some k ∈ N, forCk = {z ∈ � : 〈 f (z), yk〉Y > σ(yk, F(z))},wehaveμ(Ck) >

0. Since fn
w∗→ f , we have

∫
Ck

〈 f (z), yk〉Y dμ = lim
n→∞

∫
Ck

〈 fn(z), yk〉Y dμ �
∫

Ck

σ(yk, F(z))dμ. (4.111)

On the other hand, from the definition of Ck we have

∫
Ck

σ(yk, F(z))dμ <

∫
Ck

〈 f (z), yk〉Y dz. (4.112)

Comparing (4.111) and (4.112), we reach a contradiction. So, f ∈ S∞
F and we

conclude that S∞
F is w∗-compact. �

Using this proposition and the identification of subYoungmeasureswith transition
subprobabilities, we obtain the following very useful identification.

Proposition 4.7.11 The set SY (�,μ; X) is homeomorphic to a closed subset of the
unit ball of L∞(�, Mr (X)w∗) = L1(�, C0(X))∗ furnished with the w∗-topology.

This leads to the introduction of the following topology on SY (�,μ; X).

Definition 4.7.12 The relative w(L∞(�, Mr (X)w∗), L1(�, C0(X)))-topology on
SY (�,μ; X) is called the w∗-topology (or the w(SY (�,μ; X), L1(�, C0(X)))-
topology).

Corollary 4.7.13 Every sequence {λn}n�1 ⊆ SY (�,μ; X)admits aw∗-convergent
subsequence.

Proposition 4.7.14 If X is compact, then Y (�,μ; X) is w∗-compact.

Proof The result follows from Proposition 4.7.10 by considering the multifunction
F(z) = M+

1 (X) for all z ∈ �. Recall that since X is compact, then M+
1 (X) furnished

with the weak∗ topology (that is, the w(Mr (X), C(X))-topology) is compact (see,
for example, Denkowski et al. [143, p. 198]). �

Proposition 4.7.15 If � is also a locally compact, σ-compact metric space then the
w∗-topology on SY (�,μ; X) (see Definition 4.7.12) coincides with the w(Mr (� ×
X), C0(� × X))-topology.
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Proof Note that the w(Mr (� × X), C0(� × X))-topology is a Hausdorff topology
which is weaker that the w∗-topology on SY (�,μ; X), which is compact. So, the
two topologies must coincide (see, for example, Denkowski et al. [143, p. 31]). �

Definition 4.7.16 (a) A C0-Carathéodory integrand is a function ϕ : � × X → R

such that

(i) for all x ∈ X , z → ϕ(z, x) is �-measurable;
(ii) for all z ∈ �, ϕ(z, ·) ∈ C0(X);
(iii) z → ‖ϕ(z, ·)‖∞ is μ-integrable.

We denote the vector space of C0-Carathéodory integrands by VC0(�,μ; X).
(b) A normal integrand is a function ϕ : � × X → R = R ∪ {+∞} such that

(i) (z, x) → ϕ(z, x) is � × B(X)-measurable;
(ii) for all z ∈ �, x → ϕ(z, x) is lower semicontinuous.

We denote the cone of normal integrands by V (�,�; X) and by V+(�,�; X)

the subset of normal integrands with values in R+ = [0,∞).

Remark 4.7.17 Recall that a Carathéodory integrand is � × B(X)-measurable.
Also, a � × B(X)-measurable function ϕ : � × X → R = R ∪ {+∞} is superpo-
sitionally measurable, that is, if u : � → X is �-measurable, then so is the function
z → ϕ(z, u(z)). Inwhat followswe consider the equivalence classes ofVC0 (�,μ; X)

for the relation

ϕ1 ∼ ϕ2 if and only if μ{z ∈ � : ϕ1(z, ·) �= ϕ2(z, ·)} = 0.

Proposition 4.7.18 The map VC0(�,μ; X) � ϕ −→ (z → ϕ(z, ·)) ∈ L1

(� , C0(X) ) (see Definition 4.7.16(a)(iii)) is a bijection.

Proof Let ϕ ∈ VC0(�,μ; X) and set ξ(z) = ϕ(z, ·). We have

• ξ(z) ∈ C0(X) for all z ∈ � (see Definition 4.7.16(a)(i));
• ξ is measurable; indeed if ν ∈ Mr (X) = C0(X)∗ (see (4.110)), then

z →
∫

X
ϕ(z, u)ν(du) is �-measurable.

So, ξ(·) is weakly measurable and since C0(X) is a separable Banach space it is
also �-measurable.

• z → ‖ξ(z)‖∞ is μ-integrable (see Definition 4.7.16(a)(iii)).

Thus we have a one-to-one map from VC0(�,μ; X) into L1(�, C0(X)). In fact
we claim that this map is onto. To see this, let ϑ ∈ L1(�, C0(X)). We set ϕ(z, x) =
ϑ(z)(x). Clearly ϕ ∈ VC0(�,μ; X) (recall that the map η → η(u) is continuous on
C0(X), thus measurable). �
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Proposition 4.7.19 If ϕ ∈ V+(�,�; X), then there exists an increasing sequence
{ϕn}n�1 ⊆ VC0(�,μ; X) such that

ϕn ↑ ϕ (that is, ϕ = sup
n�1

ϕn).

Proof Let ϕ̂n(z, u) = inf {ϕ(z, y) + nd(y, u) : y ∈ X}. Clearly, {ϕ̂n}n�1 is increas-
ing.

First we show that for all u ∈ X , z → ϕn(z, u) is �-measurable. To this end, for
any u ∈ X and η ∈ R we have

{z ∈ � : ϕ̂n(z, u) < η} = ��{(z, y) ∈ � × X : ϕ(z, y) + nd(y, u) < η}.

The measurability of ϕ and the continuity of the distance function imply that

D = {(z, y) ∈ � × X : ϕ(z, y) + nd(y, u) < η} ∈ � × B(X).

Since � is complete, from the Yankov–von Neumann–Aumann projection theo-
rem we have ��(D) ∈ � and so we conclude that z → ϕ̂n(z, u) is �-measurable.

Next, we show that u → ϕ̂n(z, u) is Lipschitz continuous. For v ∈ X , we have

ϕ̂n(z, u) � ϕ(z, y) + nd(y, u)

� ϕ(z, y) + nd(y, v) + nd(v, u) (by the triangle inequality).

Since y ∈ X is arbitrary, we obtain

ϕ̂n(z, u) � ϕ̂n(z, v) + nd(v, u). (4.113)

Reversing the roles of u, v ∈ X in the above argument, we also have

ϕ̂n(z, v) � ϕ̂n(z, u) + nd(v, u)

⇒ |ϕ̂n(z, u) − ϕ̂n(z, v)| � nd(v, u) (see (4.113)).

Note that ϕn(z, u) � ϕ(z, u) for all (z, u) ∈ � × X and all n � 1. Hence

lim
n→∞ ϕn(z, u) � ϕ(z, u) (recall {ϕn}n�1 is increasing). (4.114)

On the other hand, for fixed z ∈ � and for every n, k ∈ N, we can find yk ∈ X
such that

ϕ(z, yk) + nd(yk, u) − 1

k
� ϕn(z, u). (4.115)
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Clearly, d(yk, u) → 0 as n → ∞. So, if in (4.115) we pass to the limit as k → ∞
and use the lower semicontinuity of ϕ(z, ·), we obtain

ϕ(z, u) � ϕn(z, u) for all n � 1

⇒ ϕ(z, u) � lim
n→∞ ϕn(z, u)

⇒ ϕn ↑ ϕ (see (113)).

Finally, let {βn}n�1 ⊆ C0(X) be an increasing sequence such that βn → 1. If we
set

ϕn(z, u) = inf{ϕ̂n(z, u); nβn(u)},

then ϕn ∈ VC0(�,μ; X), ϕn � 0 for all n � 1 and ϕn ↑ ϕ. �
Using the last two propositions, we can prove the following theorem for Young

measures.

Theorem 4.7.20 If ϕ ∈ V+(�,�; X), then

SY (�,μ; X) � λ →
∫

�×X
ϕ(z, u)λ(dz, du)

is lower semicontinuous.

Proof Byvirtue of Proposition 4.7.19,we can find an increasing sequence {ϕn}n�1 ⊆
VC0(�,μ; X) such that ϕn ↑ ϕ. Then by the monotone convergence theorem, we
have ∫

�×X
ϕndλ ↑

∫
�×X

ϕdλ.

UsingProposition4.7.18,we see that for eachn � 1 themappingλ �→ ∫
�×X ϕndλ

is continuous. Therefore, λ �→ ∫
�×X ϕdλ, being the supremum of continuous func-

tions, is itself lower semicontinuous. The proof is now complete. �

Example 4.7.21 The result fails if ϕ is not positive (or more generally bounded
below). To see this let X = R, ϕ(z, u) = ϕ(u) = −1 and un = n. Then

δun → λ = 0 in SY (�,μ; R).

But
∫

�×X
ϕdλ =

∫
X

ϕdλ = 0 while lim inf
n→∞

∫
�×X

ϕdδun = lim inf
n→∞

∫
X

ϕdδun =
−1.

Now we introduce a second topology on Y (�,μ; X). To do this, we need to expand
the notion of a Carathéodory integrand.
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Definition 4.7.22 (a) A Cb-Carathéodory integrand is a function ϕ : � × X → R

such that

(i) for all u ∈ X , z → ϕ(z, u) is �-measurable;
(ii) for all z ∈ �, ϕ(z, ·) ∈ Cb(X);
(iii) z → ‖ϕ(z, ·)‖∞ is μ-integrable.

We denote the vector space of Cb-Carathéodory integrands by VCb(�,μ; X).
(b) The narrow topology on Y (�,μ; X) is the weakest topology which makes

the maps λ →
∫

�×X
ϕdλ continuous, where ϕ varies over VCb(�,μ; X).

Remark 4.7.23 This topology is Hausdorff and it coincides with the w∗-topology
(see Definition 4.7.12) on narrow relatively compact sets.

Proposition 4.7.24 If un, u : � → X, n � 1, are �-measurable functions and
{λn,λ}n�1 are the corresponding Young measures (see Definition 4.7.6(b)) then

un
μ→ u if and only if λn → λ narrowly.

Proof ⇒: For every ϕ ∈ VCb(�,μ; X) we have

∫
�×X

ϕdλn =
∫

�

ϕ(z, un(z))dμ for all n � 1 and (4.116)
∫

�×X
ϕdλ =

∫
�

ϕ(z, u(z))dμ.

By passing to a suitable subsequence, we may assume that

un(z) → u(z) μ-a.e. in �

⇒ ϕ(z, un(z)) → ϕ(z, u(z)) a.e. in �.

So, by the Lebesgue dominated convergence theorem we have

∫
�

ϕ(z, un(z))dμ →
∫

�

ϕ(z, u(z))dμ.

Hence by (4.116) and the Urysohn criterion, for the original sequence we have

∫
�

ϕdλn →
∫

�

ϕdλ.

⇐: Let
ϕ(z, v) = min{1, ‖v − u(z)‖}.

Evidently,ϕ ∈ VCb(�,μ; X). By the Chebyshev inequality and (4.116), for every
ε > 0 and n � 1 we have
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μ{z ∈ � : d(un(z), u(z)) � ε} � 1

ε

∫
�×X

ϕdλn for all n � 1

⇒ un
μ→ u as n → ∞.

The proof is now complete. �

Theorem 4.7.25 If ϕ ∈ V+(�,�; X), then Y (�,μ; X) � λ →
∫

�×X
ϕdλ is nar-

rowly lower semicontinuous.

Proof As in the proof of Proposition 4.7.19 we define

ϕ̂n(z, u) = inf {ϕ(z, y) + nd(y, u) : y ∈ X} .

From the proof, we know that ϕ̂n(z, u) is measurable in z ∈ � and Lipschitz contin-
uous in u ∈ X . Setting ϕn(z, u) = min{n, ϕ̂n(z, u)} we see that ϕn ∈ VCb(�,μ; X)

and ϕn ↑ ϕ. By the monotone convergence theorem we have

∫
�×X

ϕdλ = sup
n�1

∫
�×X

ϕndλ

⇒ λ →
∫

�×X
ϕdλ is narrowly lower semicontinuous.

The proof is now complete. �

Let X̂ denote the Alexandroff one point compactification of X (recall that X is
locally compact).

Proposition 4.7.26 The narrow topology on Y (�,μ; X) can also be defined as

the weakest topology which makes the maps Y (�,μ; X) � λ →
∫

�×X
ϕ̂
∣∣∣
�×X

dλ

continuous, where ϕ̂ varies over VCb(�,μ; X̂).

Proof Let τ̂ denote the weak topology defined on Y (�,μ; X) by the statement of
the proposition and let τ denote the narrow topology. Evidently, τ̂ ⊆ τ . Let ϕ ∈
VCb(�,μ; X) and let β(z) = ‖ϕ(z, ·)‖∞. Then we have

∫
�×X

ϕdλ =
∫

�×X
(ϕ + β)dλ −

∫
�

βdμ.

By virtue of Theorem 4.7.25, we infer that λ →
∫

�×X
ϕdλ is τ̂ -lower semicon-

tinuous. But VCb(�,μ; X) is a vector space. So, λ →
∫

�×X
ϕdλ is τ̂ -continuous,

hence τ ⊆ τ̂ and we conclude that τ = τ̂ . �



350 4 Partial Order, Fixed Point Theory, Variational Principles

Remark 4.7.27 In fact the narrow topology is the weakest topology on

Y (�,μ; X) which makes the maps Y (�,μ; X) � λ →
∫

�×X
ϕdλ continuous as

ϕ varies over the vector space of integrands of the form

ϕ(z, u) =
n∑

k=1

χAk (z)ϑ̂k

∣∣∣
X
(u),

where {Ak}n
k=1 is a �-partition of � and ϑ̂k ∈ C(X̂).

Definition 4.7.28 A subset C of Y (�,μ; X) is said to be uniformly tight if given
ε > 0 we can find Kε ⊆ X compact such that

sup
λ∈C

λ(� × (X \ Kε)) < ε.

Remark 4.7.29 Note that using the disintegration of λ, we have

λ(� × (X \ Kε)) =
∫

�

λ(z)(X \ Kε)dμ.

Also, the uniform tightness is equivalent to saying that

D = {λ ◦ (�X )−1 : λ ∈ C} ⊆ M+
r (X)

is uniformly tight in the sense of Prokhorov. So, we have the following property.

Proposition 4.7.30 If C ⊆ Y (�,μ; X), then C is uniformly tight if and only if there
exists an inf-compact function ξ : X → R+ = [0,∞) (that is, for every η � 0, the
level set {u ∈ X : ξ(u) � η} is compact) such that

sup
λ∈C

∫
�

[∫
X

ξ(u)λ(z)(du)

]
dμ < ∞.

Remark 4.7.31 If C ⊆ Y (�,μ; X) is uniformly tight, then so is its narrow closure.

As in the case with the classical Prokhorov theorem (see, for example, Denkowski
et al. [143, p. 201]), uniform tightness in the sense of Definition 4.7.28 is in fact
equivalent to relative narrow compactness.

Theorem 4.7.32 C ⊆ Y (�,μ; X) is uniformly tight if and only if it is relatively
narrow compact.

Proof ⇒: Let X̂ be the Alexandroff one point compactification of X . Then
VCb(�,μ; X̂) can be identified with L1(�, C(X̂)) andY (�,μ; X̂) can be identified
with a w∗-closed bounded subset of L∞(�, Mr (X̂)w∗) = L1(�, C(X̂))∗. Therefore
the narrow topology on C is metrizable and we can work with sequences. Using the
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Alaoglu theorem and Proposition 4.7.26, we conclude that C is relatively narrow
compact.

⇐: Consider the map λ → ν = λ ◦ (�X )−1 from Y (�,μ; X) into Mr (X). We
claim that this map is narrow continuous. To see this, note that for all ϕ ∈ Cb(X),
we have ∫

X
ϕ(u)dν =

∫
�×X

ϕ(u)dλ

and the latter integral is continuous in λ. So, the image Ĉ of C is relatively compact
in Mr (X) furnished with the standard narrow topology. By the classical Prokhorov
theorem (see, for example, Denkowski et al. [143, p. 201]), this implies that Ĉ is
uniformly tight in the sense of Prokhorov. Hence C is uniformly tight (see Remark
4.7.29). �

Uniform tightness links w∗-compactness and narrow compactness.

Proposition 4.7.33 If C ⊆ Y (�,μ; X) is uniformly tight, then thew∗-topology (see
Definition 4.7.12) and the narrow topology (see Definition 4.7.22(b)) on C coincide.

Proof Evidently, the w∗-topology is weaker than the narrow one (recall C0(X) ⊆
Cb(X)) and both are Hausdorff. So, they coincide on compact sets, in particular then
on C by virtue of Theorem 4.7.32. The proof is now complete. �

In the next result, X = R
N .

Proposition 4.7.34 If {un}n�1 ⊆ L1(�, R
N ) is norm bounded and {λn}n�1 ⊆ Y

(�,μ; R
N ) is the corresponding sequence of Young measures (see Definition 4.7.6(b)),

then we can find a subsequence {λnk }k�1 of {λn}n�1 and λ ∈ Y (�,μ; R
N ) such that

λnk → λ narrowly.

Proof By virtue of Proposition 4.7.30 with h(u) = ‖u‖ for all u ∈ R
N , we see that

{λn}n�1 is uniformly tight. So, we can apply Theorem 4.7.32 to reach the desired
conclusion. �

In the beginning of this section, we mentioned the difference between strongly
and weakly convergent sequences in L1. Now we will see what Young measures
bring to the more complete understanding of this difference.

We start with a lower semicontinuity result, which can be viewed as a further
elaboration of Theorem 4.7.25. In this result X = R

N .

Theorem 4.7.35 If un : � → R
N , n � 1, is a sequence of �-measurable functions,

{λn}n�1 is the corresponding sequence of Young measures, λn → ϑ narrowly with
ϑ a Young measure, ϕ : � × R

N → R is a measurable function such that ϕ(z, ·) is
lower semicontinuous for all z ∈ � and {ϕ(·, un(·))−}n�1 is uniformly integrable,

then
∫

�×RN

ϕdϑ � lim inf
n→∞

∫
�

ϕ(z, un(z))dμ. Moreover
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lim inf
n→∞

∫
�

ϕ(z, un(z))dμ < +∞ ⇒
∫

�×RN

ϕ+dϑ < +∞.

Proof Let r � 0 and set ϕr = max{−r,ϕ} + r . Then ϕr � 0 and we can apply
Theorem 4.7.25 and have

∫
�×RN

ϕr dϑ � lim inf
n→∞

∫
�

ϕr (z, un(z))dμ.

Subtracting
∫

�×RN

rdϑ =
∫

�

rdμ, we obtain

∫
�×RN

ϕ̂r dϑ � lim inf
n→∞

∫
�

ϕ̂r (z, un(z))dμ, where ϕ̂r = max{−r,ϕ}. (4.117)

Let Anr = {z ∈ � : ϕ(z, un(z)) < −r}. Then
∫

Anr

ϕ(z, un(z))dz � 0

and by virtue of our hypothesis on the uniform integrability of the negative parts for
r > 0 large enough is greater than or equal to −ε. Then

∫
�

ϕ(z, un(z))dμ =
∫

Anr

ϕ(z, un(z))dμ +
∫

�

ϕ̂r (z, un(z))dμ −
∫

Anr

ϕ̂(z, un(z))dμ

�
∫

�

ϕ̂r (z, un(z))dμ − ε. (4.118)

If r = 0, then ϕ̂r = ϕ+ and so

∫
�

ϕ(z, un(z))dμ �
∫

�

ϕ+(z, un(z))dμ − M

⇒
∫

�×RN

ϕ+dϑ � lim inf
n→∞

∫
�

ϕ+(z, un(z))dμ (see Theorem 4.7.25)

� lim inf
n→∞

∫
�

ϕ(z, un(z))dμ + M.

This proves the last conclusion of the theorem.
We return to (4.118) to complete the proof. We have

lim inf
n→∞

∫
�

ϕ(z, un(z))dμ � lim inf
n→∞

∫
�

ϕ̂(z, un(z))dμ − ε

�
∫

�×RN

ϕ̂r dϑ − ε (see (4.117)). (4.119)
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Note that ϕ � ϕ̂r . So, from (4.119) we have

lim inf
n→∞

∫
�

ϕ(z, un(z))dμ �
∫

�×RN

ϕdϑ − ε.

Since ε > 0 was arbitrary we let ε ↓ 0 to finish the proof. �

Remark 4.7.36 In applications, usually {un}n�1 ⊆ L1(�, R
N ) and it is weakly con-

vergent. The uniform integrability requirement on {ϕ(·, un(·))−}n�1 is satisfied if for
example

ϕ(z, v) � a(z) − c‖v‖ for μ-a.a. z ∈ �, all v ∈ R
N , with a ∈ L1(�), c > 0.

We will use this theorem to better understand the difference between strong and
weak convergence in L1(�, R

N ). First a definition.

Definition 4.7.37 Wesay that a�-measurable function u : � → X is the barycenter
of a transition probability λ ∈ R(�, X) (u = bar(λ)) if

u(z) =
∫

�

vλ(z)(dv) for all z ∈ �.

In the next result, X = R
N .

Theorem 4.7.38 If un
w→ u in L1(�, R

N ) and {λn,λ}n�1 are the Young measures
corresponding to the functions {un, u}n�1, then

(a) there exists a subsequence {λnk }k�1 of {λn}n�1 and a Young measure ϑ such that

λnk → ϑ narrowly, u = bar(λ)

and ‖unk − u‖1 →
∫

�×RN

‖v − u(z)‖dϑ;

moreover, if for μ-a.a. z ∈ �, ϑ(z) is a Dirac measure, then ϑ = λ and un → u
strongly in L1(�, R

N );
(b) if {un}n�1 does not converge strongly, then ϑ (as in part (a)) is not associated to

a function;
(c) un → u strongly in L1(�, R

N ) if and only if λn → λ narrowly.

Proof (a) Since {un}n�1 ⊆ L1(�, R
N ) is weakly convergent, it is norm bounded and

so invoking Proposition 4.7.34, we can find a subsequence {λnk }k�1 of {λn}n�1 and
a Young measure ϑ such that

λn → ϑ narrowly.

Using Theorem 4.7.25, we have
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∫
�

[∫
RN

‖v‖ϑ(z)(dv)

]
dμ =

∫
�×RN

‖v‖dϑ

� lim inf
k→∞

∫
�×RN

‖v‖dλnk

= lim inf
k→∞ ‖unk ‖1 � M < ∞.

So, forμ-a.a. z ∈ �bar(ϑ) exists. Leth ∈ L∞(�, R
N ) and setψ(z, v) = (v, h(z))RN .

Evidently, ψ is a Carathéodory function (that is, measurable in z ∈ �, continuous in
v ∈ R

N ). Moreover, we have

ψ(z, un(z))
− = (un(z), h(z))−

RN � ‖h‖∞‖un(z)‖ for μ-a.e. in �.

But by theDunford–Pettis theorem {un}n�1 ⊆ L1(�, R
N ) is uniformly integrable.

So, {ψ(·, un(·))−}n�1 ⊆ L1(�) is uniformly integrable. Therefore, we can apply
Theorem 4.7.35 and obtain

∫
�×RN

(v, h(z))RN dϑ � lim inf
n→∞

∫
�×RN

(unk (z), h(z))RN dμ.

Replacing h with −h in the above argument, we conclude that

∫
�×RN

(v, h(z))RN dϑ = lim
n→∞

∫
�×RN

(unk (z), h(z))RN dμ. (4.120)

We know that
∫

�×RN

(v, h(z))RN dϑ =
∫

�

(∫
RN

vϑ(z)(dv), h(z)

)
RN

dμ (4.121)

=
∫

�

(bar(ϑ), h(z))RN dμ.

Since un → u in L1(�, R
N ), we have

∫
�

(un(z), h(z))RN dμ →
∫

�

(u(z), h(z))dμ. (4.122)

From (4.120), (4.121) and (4.122), it follows that

∫
�

(u(z), h(z))RN dμ =
∫

�

(bar(ϑ), h(z))RN dμ.

Since this is true for all h ∈ L∞(�, R
N ), we conclude that u = bar(ϑ).

Let ϕ(z, v) = ‖v − u(z)‖. This is a Carathéodory function and ϕ(·, un(·))− =
0 for all n � 1. Also, if we consider −ϕ, then (−ϕ(·, un(·)))− = ‖un(·) − u(·)‖
for all n � 1 and by the Dunford–Pettis theorem {(−ϕ(·, un(·)))−}n�1 is uniformly
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integrable. So, in both cases we can apply Theorem 4.7.35, to obtain

‖unk − u‖1 →
∫

�×RN

‖v − u(z)‖dϑ. (4.123)

Finally if for μ-a.a. z ∈ �, ϑ(z) is a Dirac measure, then since u = bar(ϑ), we
have ϑ(z) = δu(z) for μ-a.e. z ∈ � and so ϑ = λ. Hence from (4.123) it follows that

un → u strongly in L1(�, R
N ).

(b) Arguing by contradiction suppose that ϑ is associated with a �-measurable
function. Since un does not converge strongly, we can find ε > 0 and a subsequence
of {un}n�1 (still denoted by index n) such that

‖un − u‖1 � ε for all n � 1.

From part (a) we know that there exists a subsequence {λnk }n�1 of {λn}n�1 such
that λnk → ϑ narrowly. Then from (a) we have unk → u in L1(�, R

N ), a contradic-
tion.

(c) This follows from Proposition 4.7.24 and part (a). �

Definition 4.7.39 Let (�k, �k,μk), k = 1, 2, be twocompletefinitemeasure spaces,
Xk , k = 1, 2, two locally compact, σ-compact, complete metric spaces and λk ∈
Y (�k,μk; Xk), k = 1, 2, two Young measures. We define λ1 ⊗ λ2 ∈ Y (�1 ×
�2,μ1 ⊗ μ2; X1 × X2) by setting

(λ1 ⊗ λ2)(z) = λ1(z) ⊗ λ2(z) for all z = (z1, z2) ∈ �1 × �2.

For such “product” Young measures, we have the following continuity result. For its
proof, we refer to Balder [28].

Lemma 4.7.40 If λn
1 → λ1 and λn

2 → λ2 narrowly, then λn
1 ⊗ λn

2 → λ1 ⊗ λ2 nar-
rowly.

Using this lemma, we can prove the following strong-weak lower semicontinuity
result for integral functionals, which is important in the calculus of variations.

Theorem 4.7.41 If ϕ : � × R
N × R

m → R = R ∪ {+∞} is a measurable func-
tion which is lower semicontinuous in (u, v) ∈ R

N × R
m, un : � → R

N n � 1 is
a sequence of �-measurable functions such that un

μ→ u, {vn}n�1 ⊆ L1(�, R
m)

such that vn
w→ v in L1(�, R

m), for all z ∈ �, ϕ(z, u(z), ·) is convex and

{ϕ(·, un(·), vn(·))−}n�1 ⊆ L1(�) is uniformly integrable,

then
∫

�

ϕ(z, u(z), v(z))dμ � lim inf
n→∞

∫
�

ϕ(z, un(z), vn(z))dz.
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Proof Let {λn}n�1 and {βn}n�1 be the Young measures associated to the functions
{un}n�1 and {vn}n�1 respectively. Using Proposition 4.7.24, Theorem 4.7.38 and by
passing to a suitable subsequence if necessary, we can find

λn → λ and βn → β narrowly, with u = bar(β). (4.124)

Then by virtue of Lemma 4.7.40, we have

ηn = λn ⊗ βn → η = λ ⊗ β narrowly.

So, we have

∫
�×RN ×Rm

ϕdη =
∫

�

[∫
RN ×Rm

ϕ(z, u, v)η(z)(d(u, v))

]
dμ

=
∫

�

[∫
Rm

ϕ(z, u(z), v)β(z)(dv)

]
dμ

�
∫

�

ϕ(z, u(z), v(z))dμ (by Jensen’s inequality and (4.124)).

The proof is now complete. �

4.8 Remarks

4.1: Most of the results on the different types of cones are due to Krasnoselskii [250].
Various parts of this material can also be found in the books of Deimling [142], Guo
and Lakshmikantham [199], Papageorgiou and Kyritsi [329] and Peressini [334].
Theorem 4.1.19 is due to Krein [252]. Proposition 4.1.22 can be found in Filippakis
et al. [170].

4.2: Theorem 4.2.3 is due to Banach [30]. It is a versatile abstraction of the
idea of successive approximations first used in the context of differential equations
by Cauchy [110] and Picard [342]. Sometimes, in order to be able to apply the
Banach fixed point theorem, we need to equivalently renorm the ambient Banach
space. This renorming idea was first used by Bielecki [51] (see also Denkowski
et al. [143, p. 217] and Goebel and Kirk [190, p. 17]). Theorem 4.2.8 is due to
Edelstein [153]. The first fixed point theorem for nonexpansive maps was proved
independently by Browder [83] and Göhde [191] and concerns such maps defined
on a uniformly convex space. The more general version presented in Theorem 4.2.29
is due to Kirk [235], who realized that using the notion of normal structure (see
Definition 4.2.24(b)), he could extend the Browder–Göhde fixed point result. The
notion of normal structure was introduced by Brodskii and Milman [70], who used
it to study fixed points of isometries. Concerning nonexpansive maps, we also have
the following useful result due to Browder [83].
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Theorem 4.8.1 If X is a uniformly convex Banach space, C ⊆ X is closed, convex
and bounded, ϕ : C → X is nonexpansive and h(u) = u − ϕ(u) for all u ∈ C, then
h is demiclosed on C, that is, if un

w→ u in C and h(un) → y in X, then we have
h(u) = y.

A very detailed presentation of the metric fixed point theory can be found in the
book of Goebel and Kirk [190]. Several aspects of the theory can also be found in
the books of Deimling [142], Granas and Dugundji [197], Papageorgiou and Kyritsi
[329], and Zeidler [426].

4.3: Corollary 4.3.3 is one of the oldest and best known results of topology. It was
proved by Brouwer [65] for N = 3. The proof for arbitrary N � 1 was provided by
Hadamard [200]. We should mention that even before the above mentioned works,
Bohl [53] had an equivalent result for differentiable maps. A combinatorial proof of
Brouwer’s fixed point theorem was given by Knaster et al. [240] who also noted that

the condition ϕ(∂B N
1 ) ⊆ B

N
1 suffices for a fixed point. Another proof was given by

Milnor [299]. Theorems 4.3.8 and 4.3.9 are essentially due to Borsuk [56, 57], who
also proved the following:

Proposition 4.8.2 If K ⊆ R
N is compact and has nonempty interior, then ∂K is not

a retract of K .

The fixed point theorem in Proposition 4.3.11 is also due to Borsuk [57]. In Theo-
rem 4.3.12, condition (3.26) is known as the Leray–Schauder boundary condition and
guarantees that dL S(i − ϕ,�, 0) �= 0. The theorem goes back to the seminal work of
Leray and Schauder [266]. For the special cases mentioned in Corollary 4.3.15, we
refer to Rothe [362] and Altman [11]. Theorems 4.3.23 and 4.3.24 are due to Mönch
[302]. The notion of asymptotic center (see Definition 4.3.25(a)) was introduced by
Edelstein [153], while the notion of the inward set of u ∈ C with respect to C and
of weakly inward maps (see Definition 4.3.25(b)) is due to Halpern and Bergman
[201]. The alternative definition of weak inwardness given in Remark 4.3.26 is due
to Caristi [101]. Theorem 4.3.29 is also due to Caristi [101].

Finally, we should mention the Tychonoff fixed point theorem (see Tychonoff
[407]), which is the extension of the Schauder fixed point theorem to locally convex
spaces.

Theorem 4.8.3 If X is a locally convex space, C ⊆ X is closed and convex, ϕ :
C → C is continuous and ϕ(C) is compact, then ϕ has a fixed point.

4.4: Fixed point theorems based on the order structure of the underlying spaces
can be found in Amann [12, 13], Carl and Heikkila [102], Deimling [142], Granas
and Dugundji [197], Guo and Lakshmikantham [199] and Papageorgiou and Kyritsi
[329]. The fixed point index was studied in detail by Amann [14] who used it to solve
various semilinear elliptic boundary value problems. Finally, we want to mention the
classical Knaster–Tarski fixed point theorem (see Knaster [239] and Tarski [402]).

Theorem 4.8.4 If (X,�) is a partially ordered space, ϕ : X → X is increasing
(that is, y � u ⇒ ϕ(y) � ϕ(u)) and there exists a u0 ∈ X such that
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(i) u0 � ϕ(u0);
(ii) every chain in {v ∈ X : u0 � v} has a supremum,

then the set of fixed points of ϕ is nonempty and it admits a maximal element (that
is, there exists a û ∈ X such that ϕ(û) = û and there is no fixed point v ∈ X with
u0 � v).

4.5: The multivalued extension of Banach’s fixed point theorem presented in
Theorem 4.5.1 was announced by Markin [289] and proved in a more general form
(with F(·) having values in Pf (X)) by Nadler [312]. A continuation of that result is
the following stability result due to Lim [271]. An earlier such result was proved by
Markin [289], who assumed that X is a subset of a Hilbert space. In what follows,
given a multifunction F : X → 2X \ {∅} by Fix(F) we denote the set of fixed points
of F , that is, Fix(F) = {u ∈ X : u ∈ F(u)}.
Proposition 4.8.5 If (X, d) is a complete metric space and Fn, F : X → Pf (X),
n � 1, are all multivalued contractions with the same contraction constant (that is,
they all satisfy (4.58) with the same k ∈ [0, 1)) and supu∈X h(Fn(u), F(u)) → 0 as
n → ∞, then h(Fix(Fn),Fix(F)) → 0 as n → ∞.

Theorem 4.5.5 (the usc multivalued version of the Schauder fixed point theorem)
was first proved for X = R

N by Kakutani [226]. It was extended to Banach spaces
by Bohenblust and Karlin [52] (see Theorem 4.5.5). Extensions to locally convex
spaces were obtained by Fan [166] and Glicksberg [189]. More general fixed point
theorems for inward and outward multifunctions (see Theorem 4.5.14), can be found
in Deimling [142, Sect. 2.4.7].

In multivalued fixed point theory, an essential condition is the convexity of the
values of F(·). By using tools from algebraic topology, we can replace the convexity
hypothesis on the values of F(·) by the more general acyclicity condition. For results
in this direction, we refer to Eilenberg andMontgomery [155] and Gorniewicz [194].
Another substitute for convexity is the notion of decomposability (see Definition
2.11.8). In this direction we have the following result of Cellina et al. [113].

Theorem 4.8.6 If � is a compact Hausdorff topological space, μ is a finite
nonatomic Borel measure, X is a separable Banach space, D ⊆ L1(�, X) is closed
and F : D → Pf (D) is a usc multifunction with decomposable values and F(D) is
compact, then F has a fixed point.

The books of Aubin and Frankowska [22], Border [54], Deimling [142], Hu and
Papageorgiou [218, 219] and Klein and Thompson [238] contain results from the
fixed point theory for multifunctions.

4.6: Theorem 4.6.1 was proved by Lax and Milgram [261]. Theorem 4.6.2 con-
cerning variational inequalities is due to Stampacchia [385]. Theorem 4.6.13 is a
classical existence result for nonlinear variational inequalities and can be found, for
example, in Showalter [381, p. 84]. Theorem 4.6.14 was proved by Ekeland [157].
In Ekeland [158, 159] the reader can find comprehensive surveys of the many appli-
cations that this theorem has. Theorem 4.6.20 is due to Caristi [101], while Theorem
4.6.25 is due to Danes [135], who had a different proof, based on some results of
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Krasnoselskii and Zabreiko. Proposition 4.6.32 is due to Brondsted and Rockafellar
[72]. Theorem 4.6.39 was obtained by Brezis and Browder [66] and provides a very
general variational principle from which all the other nonlinear results mentioned
above can be derived.

The following generalization of Theorem 4.6.1 will be useful in critical point
theory in conjunction with the Cerami compactness condition (the C-condition for
short, see Sect. 5.1). The result is due to Zhang [428].

Proposition 4.8.7 If h : R+ → R+ is a continuous nondecreasing function such

that
∫ ∞

0

dr

1 + h(r)
= +∞, (X, d) is a complete metric space, u0 ∈ X is fixed, ϕ :

X → R = R ∪ {+∞} is a proper lower semicontinuous, bounded below function,
ε > 0, ϕ(y) � inf X ϕ + ε and λ > 0, then there exists a uλ ∈ X such that

ϕ(uλ) � ϕ(y), d(uλ, u0) � r0 + r ,

ϕ(uλ) � ϕ(u) + ε

λ

1

1 + h(d(u0, uλ))
d(u, uλ) for all u ∈ X,

where r0 = d(u0, y) and r > 0 such that
∫ r0+r

0

dr

1 + h(r)
� λ.

Remark 4.8.8 If h = 0 and u0 = y, then Proposition 4.8.7 reduces to Theorem 4.6.1.

4.7: The theory of Young measures has its roots in the so-called “generalized
curves” introduced by Young [420, 422, 423], in order to have a precise description
of the limits ofminimizing sequences in the calculus of variations andoptimal control.
Since then there has been an extensive development of the original ideas of Young,
in order to meet the needs of the calculus of variations, optimal control, game theory,
mathematical economics andmore recently theoreticalmechanics. This development
can be traced in the books of Buttazzo [97], Castaing et al. [107], Gamkrelidze [179],
Gasinski and Papageorgiou [182], Roubicek [365] and in the papers of Balder [27,
28], Ball and Zhang [29], Berliocchi and Lasry [48], DiPerna [145], DiPerna and
Majda [146], Kinderlehrer and Pedregal [233], Sychev [395] and Valadier [409].
Theorem 4.7.41 can be extended to Banach spaces. More precisely, we have the
following result due to Balder [28].

Proposition 4.8.9 If (�,�,μ) is a finite measure space, X, Y are separable Banach
spaces with Y also reflexive and ϕ : � × X × Y → R = R ∪ {+∞} is a measurable
function such that

(i) for μ-a.a. z ∈ �, (u, y) → ϕ(z, u, y) is lower semicontinuous;
(ii) for μ-a.a. z ∈ � and all u ∈ X, ϕ(z, u, ·) is convex;

(iii) for μ-a.a. z ∈ � and all (u, y) ∈ X × Y we have

a(z) − c(‖u‖X + ‖y‖Y ) � ϕ(z, u, y)

with a ∈ L1(�), c > 0,
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then (u, y) → Iϕ(u, y) =
∫

�

ϕ(z, u(z), y(z))dz is sequentially weakly lower semi-

continuous from L1(�, X) × L1(�, Y )w into R = R ∪ {+∞}.
Recall that, if {un}n�1 ⊆ L1(�), un

w→ u in L1(�) and un(z) � lim inf
n→∞ u(z) μ-

a.e. in �, then un → u. In the next theorem, we see how this results translates to
vector-valued functions. The result is due to Visintin [411].

Theorem 4.8.10 If {un}n�1 ⊆ L1(�, R
N ), un

w→ u in L1(�, R
N ) and u(z) ∈

ext

[
conv lim sup

n→∞
{un(z)}

]
for μ-a.a. z ∈ �, then un → u in L1(�, R

N ).



Chapter 5
Critical Point Theory

The study of mathematics, like the Nile, begins in minuteness but
ends in magnificence

Charles Caleb Colton (1780–1832)

Critical point theory deals with variational problems and so it can be argued that it
is as old as calculus. Nevertheless, in its modern form, critical point theory has its
roots in the so-called “Dirichlet principle”. The name was coined by Riemann in
his thesis (1851) and the principle postulates that given a bounded open set � ⊆ R

2

and a continuous function g : ∂� → R (∂� being the boundary of �), the boundary
value problem (Dirichlet problem) −�u(z) = 0 in �, u|∂� = g, admits a smooth
solution u which minimizes the energy functional

ϕ(u) =
∫

�

[(
∂u

∂z1

)2

+
(

∂u

∂z2

)2
]
dz.

This principle was criticized byWeierstrass (1870) who produced an example show-
ing that the existence of a minimum is not guaranteed even if the functional which
is to be minimized is bounded below. In this example, Weierstrass considered the
functional

ϕ(u) =
∫ 1

−1
(tu′(t)2)dt

to be minimized over the set

D = {u ∈ C1[−1, 1] : u(−1) = 0, u(1) = 1}.
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Then

un(t) = 1

2
+ 1

2

tan−1
(
t
n

)
tan−1

(
1
n

) (n � 1)

is aminimizing sequence in D, that is, {un}n�1 ⊆ D andϕ(un) ↓ 0.However, there is
no minimizer in D, since if u ∈ D and ϕ(u) = 0, then tu′(t) = 0 for all t ∈ [−1, 1],
hence u ≡ constant, which contradicts the boundary conditions. Subsequently, ana-
lysts tried to correctly formulate the Dirichlet principle. This culminated in the so-
called directmethods of the calculus of variations based on the concept of lower semi-
continuity of variational integrals, introduced by Tonelli [404]. Until the early 20th
century, mathematicians were looking for absolute minima of functionals bounded
below. Birkhoff (1917) was the first to characterize critical points by a minimax prin-
ciple. This was done more systematically in the 1930s by Ljusternik–Schnirelmann
and Morse on finite-dimensional spaces. In the 1960s this theory was extended to
infinite-dimensional spaces by Palais and Smale who, in order to compensate for the
lack of local compactness of the ambient space, introduced a compactness condi-
tion on the functional. Their work opened the way for modern critical point theory
and led to the mountain pass theorem of Ambrosetti and Rabinowitz [17] and the
all encompassing linking principle of Benci and Rabinowitz [43]. In this chapter,
we present some of the main aspects of modern critical point theory. In Sect. 5.1,
we discuss compactness-type conditions on the functional (the Palais–Smale and
Cerami conditions) and also establish the existence of a pseudogradient vector field,
which is the main tool in obtaining deformation theorems for functionals defined on
Banach spaces. In Sect. 5.2, we present some basic results from the direct method on
the calculus of variations. In Sect. 5.3, we prove some deformation theorems. Such
results are an effective tool in locating critical points of aC1-functional. These results
describe the deformations of the sublevel sets of the functional near a critical point
where topologically interesting thingsmay occur. In Sect. 5.4,we use the deformation
theorems to prove a general linking principle and from it derive some well-known
results of modern critical point theory, such as the mountain pass theorem and the
saddle point theorem. Section5.5 deals with critical points under constraints. So, we
discuss the method of Lagrange multipliers, manifolds of codimension one and the
so-called natural constraints. In Sect. 5.6, we investigate the effects of symmetries
on the existence of critical points. So, there exists a group G acting in a continuous
way on the space X and a functional ϕ that is invariant under this action. Under these
conditions, it usually happens that the functional has many critical points. To study
them we introduce the notions of Ljusternik–Schnirelmann category and of Kras-
noselskii genus and we derive the Ljusternik–Schnirelmann multiplicity theorems.
We also prove the so-called symmetric criticality principle due to Palais. In Sect. 5.7
we study the structure of the critical set of ϕ. Finally, in Sect. 5.8, we examine vari-
ational problems which exhibit a lack of some desirable compactness properties. In
general, there are two ways to have such a lack of compactness. One is due to the
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action of a group which leaves the functional ϕ invariant (for example if we are in
R

N and the functional is invariant under the group of translations u(·) → u(· + z0)
for some z0 ∈ R

N ). The other occurs if the nonlinearity in the functional ϕ exhibits
critical growth and so the compactness of the embedding in the Sobolev theorem
fails. This leads us to the concentration-compactness theorem of P.-L. Lions.

5.1 Pseudogradients and Compactness Conditions

The deformation approach in modern critical point theory is based on deformation
arguments along the gradient flow or of a suitable substitute of it when, due to the
geometry of the space or to the lack of regularity of the functional, it is impossible
to use the gradient flow. So, let ϕ ∈ C1(X) and consider the steepest descent flow

u̇(t) = −∇ϕ(u(t)). (5.1)

In many cases this differential system or just its trajectory are not defined, either
due to the nature of X or due to the regularity ofϕ. For example, if X is aBanach space
which is not a Hilbert space, then ∇ϕ(u) ∈ X∗ for all u ∈ X and so the differential
system (5.1) cannot be defined. For this reason, we replace the gradient vector field
by the so-called pseudogradient vector field with values in X . Then we study the
deformation flow generated. To determine the basic properties of this flow, we need
a compactness-type condition on the functional ϕ.

First let us introduce a substitute of the gradient vector field that will make a
differential system like (5.1) valid under all circumstances.

Definition 5.1.1 Let X be a Banach space, X∗ be its topological dual and denote by
〈·, ·〉 the duality brackets for the pair (X, X∗). Let ϕ ∈ C1(X). A vector v ∈ X is a
“pseudogradient vector” of ϕ at u if

||v|| � 2||ϕ′(u)||∗ and ||ϕ′(u)||∗ �
〈
ϕ′(u), v

〉
.

We say that V : {u ∈ X : ϕ′(u) �= 0} → X is a “pseudogradient vector field” for
ϕ if V is locally Lipschitz and for every u ∈ {u ∈ X : ϕ′(u) �= 0} (this is the set of
regular points of ϕ) V (u) is a pseudogradient vector of ϕ at u.

Remark 5.1.2 Any convex combination of pseudogradient vectors (resp. of pseudo-
gradient vector fields) is again a pseudogradient vector (resp. a pseudogradient vector
field). So the pseudogradient vector field may exist, but is certainly not unique. If
X = H =Hilbert space, then ∇ϕ need not be a pseudogradient vector field due to
the local Lipschitzness requirement. However, if ϕ ∈ C1(H) and has a locally Lips-
chitz derivative (for example, ϕ ∈ C2(H)) ϕ′ : H → H∗, then the gradient of ϕ is a
pseudogradient vector field. Recall that the gradient ∇ϕ : H → H is defined using
the Riesz–Fréchet representation theorem by ∇ϕ(u) ∈ H being the unique element
such that
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〈
ϕ′(u), h

〉 = (∇ϕ(u), h)H for all h ∈ H,

with (·, ·)H denoting the inner product of H .

Lemma 5.1.3 Assume that Y is a metric space, V is a normed space, for every
y ∈ Y , F(y) is a nonempty, convex subset of V and for every y ∈ Y we can find a
neighborhood U of y such that

⋂
y′∈U

F(y′) �= ∅. Then there exists a locally Lipschitz

map h : Y → V such that h(y) ∈ F(y) for all y ∈ Y .

Proof Let y ∈ Y . By hypothesis we can find U (y), a neighborhood of y, such that

⋂
y′∈U(y)

F(y′) �= ∅.

The family {U (y)}y∈Y is an open cover of Y . Note that Y , being a metric space,
is paracompact. So, there is a locally finite refinement {Vi }i∈I of {U (y)}y∈Y .

Suppose that Vi �= Y for all i ∈ I . We define

σi (y) = dY (y,Y\Vi ) and η(y) =
∑
i∈I

σi (y) for all y ∈ Y.

Evidently, σi is Lipschitz continuous and since the cover {Vi }i∈I is locally finite,
it follows that η is locally Lipschitz and η(y) �= 0 for all y ∈ Y . We set

ϑi (y) = σi (y)

η(y)
for all i ∈ I.

Then {ϑi }i∈I is a locally Lipschitz partition of unity subordinate to the cover
{Vi }i∈I .

Now we assume that Vi0 = Y for some i0 ∈ I . We set ϑi0 ≡ 1 and ϑi ≡ 0 for
i �= t0. Again we have that {ϑi }i∈I is a locally Lipschitz partition of unity subordinate
to {Vi }i∈I .

Because the cover {Vi }i∈I refines the cover {U (y)}y∈Y , we have that
⋂
y′∈Vi

F(y′) �= ∅ for all i ∈ I.

Let ui ∈ ⋂
y′∈Vi

F(y′) for all i ∈ I and introduce the function h : Y → V defined by

h(y) =
∑
i∈I

ϑi (y)ui .

The function h is locally Lipschitz. Moreover, for every y ∈ Y , we can find a
finite number of sets Vi1 , · · · , Vim of the cover {Vi }i∈I such that y ∈ Vik for all k ∈
{1, · · · ,m}. We have
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h(y) =
m∑

k=1

ϑik (y)uik and
m∑

k=1

ϑik (y) = 1.

Since uik ∈ F(y) for all k ∈ {1, · · · ,m} and the latter is convex, it follows that
h(y) ∈ F(y) for all y ∈ Y . �

This lemma leads to the existence of a pseudogradient vector field.

Theorem 5.1.4 Assume thatϕ ∈ C1(X). Then there is a pseudogradient vector field
for ϕ.

Proof Let N = {u ∈ X : ϕ′(u) �= 0}. For every u ∈ N , let F(u) be the set of all
pseudogradient vectors of ϕ at u (see Definition 5.1.1). From Remark 5.1.2, we
know that F(u) is a convex subset of X .

Given u ∈ N , we can find v ∈ X such that

||v|| � 1 and
4

5
||ϕ′(u)||∗ �

〈
ϕ′(u), v

〉
.

We set y = 5
3 ||ϕ′(u)||∗v. Then

||y|| � 5

3
||ϕ′(u)||∗ and

〈
ϕ′(u), y

〉
� 4

3
||ϕ′(u)||∗ .

Since ϕ ∈ C1(X), we can find U , a neighborhood of u, such that

||y|| < 2||ϕ′(z)||∗ and
〈
ϕ′(z), y

〉
> ||ϕ′(z)||∗ for all z ∈ U

⇒ y ∈
⋂
z∈U

F(z).

Applying Lemma 5.1.3, we obtain a locally Lipschitz map V : N → X such that

V (u) ∈ F(u) for all u ∈ N

⇒ V is the desired pseudogradient vector field for ϕ.

The proof is now complete. �

Remark 5.1.5 Ifϕ is even, then it admits an odd pseudogradient vector field. Indeed,
let V be any pseudogradient vector field and set

V0(u) = 1

2
[V (u) − V (−u)] for all u ∈ N .

Also, note that given positive constants 0 < α < β, we can find a locally Lipschitz
map V : N → X such that
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α �
〈
ϕ′(u), V (u)

〉
� ||ϕ′(u)||∗||V (u)|| � β for all u ∈ N .

Moreover, if X = H is a Hilbert space and ϕ ∈ C2(H), then we can take

V (u) = α + β

2

∇ϕ(u)

||∇ϕ(u)||2 ,

with ∇ϕ being the gradient of ϕ (see Remark 5.1.2).

As we already mentioned in the Introduction, the deformation approach to the
minimax theory of critical values of a C1-functional ϕ is based on the deformation
flow generated by the pseudogradient vector field. The topological properties of the
sublevel sets ϕλ = {u ∈ X : ϕ(u) � λ} change only when λ crosses a critical value.
To be able to deform these sublevel sets ofϕ, we need a compactness-type condition,
which compensates for the fact that the ambient space need not be locally compact
(being infinite-dimensional).

Definition 5.1.6 Let X be a Banach space and X∗ be its topological dual. Suppose
that ϕ ∈ C1(X).

(a) We say that ϕ satisfies the Palais–Smale condition at the level c ∈ R (the PSc-
condition) if the following is true:

“every sequence {un}n�1 ⊆ X such that ϕ(un) → c and

ϕ′(un) → 0 in X∗ as n → ∞

admits a strongly convergent subsequence”.

If this condition holds at every level c ∈ R, then we say that ϕ satisfies the
Palais–Smale condition (the PS-condition for short).

(b) We say that ϕ satisfies the Cerami condition at the level c ∈ R (the Cc-condition
for short) if the following is true:

“every sequence {un}n�1 ⊆ X such that ϕ(un) → c and

(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞

admits a strongly convergent subsequence”.

If this condition holds at every level c ∈ R, thenwe say thatϕ satisfies theCerami
condition (the C-condition for short).

Remark 5.1.7 Evidently, the C-condition is weaker than the PS-condition. Both
conditions PSc and Cc imply that the set Kc

ϕ = {u ∈ X : ϕ′(u) = 0, ϕ(u) = c} is
compact. However, neither the PS nor the C condition has any influence on the size
of the critical set Kϕ = {u ∈ X : ϕ′(u) = 0}. These compactness-type conditions are
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quite restrictive. For example, the constant functions and the trigonometric functions
cos u and sin u do not satisfy them. Nevertheless in many applications, under suitable
conditions on the data, the PS or C conditions are satisfied. In what follows, we
examine these conditions in more detail and we see how they are related to the
asymptotic behavior of the functional ϕ.

Proposition 5.1.8 Let X beaBanach space,ϕ ∈ C1(X)bebounded frombelow, c =
inf
X

ϕ and ϕ satisfy the Cc-condition. Then there exists a u0 ∈ X such that ϕ(u0) =
inf
X

ϕ = c.

Proof By virtue of Proposition 4.8.7 (with h(r) = r ), we can produce a sequence
{un}n�1 ⊆ X such that

ϕ(un) → c and (1 + ||un||)ϕ′(un) → 0 in X∗.

Sinceϕ satisfies theCc-condition (seeDefinition 5.1.6(b)), by passing to a suitable
subsequence if necessary, we may assume that un → u0 in X as n → ∞. Then

ϕ(un) → ϕ(u0) = c.

The proof is now complete. �

An analogous result is also valid in the case of the PSc-condition. More precisely,
we have the following proposition.

Proposition 5.1.9 Let X be a Banach space, ϕ ∈ C1(X) be bounded from below,
c = inf

X
ϕ and assume that ϕ satisfies the PSc-condition. Then every minimizing

sequence {un}n�1 of ϕ admits a strongly convergent subsequence which converges
to u0 ∈ X, a global minimizer of ϕ.

Proof Bypassing to a subsequence if necessary, wemay assume thatϕ(un) � c + 1
n2

for all n � 1. Invoking Corollary 4.6.16, we can find a sequence {vn}n�1 ⊆ X such
that

ϕ(vn) ↓ c, ϕ′(vn) → 0 in X∗ and ||vn − un|| � 1

n
for all n � 1. (5.2)

Since ϕ satisfies the PSc-condition, we may assume that

vn → u0 in X

⇒ ϕ(vn) → ϕ(u0) = c = inf
X

ϕ.

The proof is now complete. �

Definition 5.1.10 Let X be a Banach space. We say that the functional ϕ : X → R

is coercive if ϕ(u) → +∞ as ||u|| → ∞.
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Remark 5.1.11 Coercivity is equivalent to saying that for every λ ∈ R, the sublevel
set ϕλ = {u ∈ X : ϕ(u) � λ} is bounded.

The next proposition relates the C-condition to the notion of coercivity.

Proposition 5.1.12 Let X be a Banach space and ϕ ∈ C1(X) be a functional which
is bounded from below and satisfies the C-condition. Then ϕ is coercive.

Proof We argue by contradiction. So, suppose that ϕ is not coercive. Then we can
find c ∈ R and a sequence {un}n�1 ⊆ X such that

ϕ(un) � c + 1

n
and ||un|| � 2(en − 1) for all n � 1. (5.3)

We apply Proposition 4.8.7 with h(r) = r , ε = c + 1
n − inf

X
ϕ, λ = n and r̄ =

en − 1 and we produce a sequence {yn}n�1 ⊆ X such that

ϕ(yn) � ϕ(un), ||yn − un|| � en − 1 and ||ϕ′(yn)||∗ �
c + 1

n − inf
X

ϕ

n(1 + ||yn||) for alln � 1.

(5.4)
From (5.3) and (5.4) it follows that

||yn|| � en − 1 for all n � 1

⇒ ||yn|| → +∞ as n → ∞. (5.5)

On the other hand, again from (5.3) and (5.4), we have

lim sup
n→∞

ϕ(yn) � c and (1 + ||yn||)||ϕ′(yn)||∗ → 0 as n → ∞. (5.6)

Since ϕ satisfies the C-condition and comparing (5.5) and (5.6) we reach a con-
tradiction. �

Remark 5.1.13 If ϕ ∈ C1(RN ) is bounded from below and coercive, then the PS-
condition holds. Indeed, sinceϕ is coercive andϕ(un) → c, it follows that {un}n�1 ⊆
R is bounded and so it admits a convergent subsequence. On the other hand, if X is
an infinite-dimensional Banach space, then it can happen thatϕ ∈ C1(X) is bounded
below and coercive without satisfying the PS-condition. To see this, let ξ : R+ → R

be a smooth function such that ξ(s) = 0 for all s ∈ [0, 2] and ξ(s) = s for all s � 3.
We set ϕ(u) = ξ(||u||) for all u ∈ X . Then ϕ ∈ C1(X) and it is bounded below and
coercive. However the PS0-condition does not hold. Indeed, let {un}n�1 ⊆ X such
that ||un|| = 1 for all n � 1. Then ϕ(un) = 0 and ϕ′(un) = 0 for all n � 1. But
{un}n�1 has no strongly convergent subsequence.

Using Proposition 5.1.12, we can compare the two compactness-type conditions
for ϕ introduced in Definition 5.1.6.
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Proposition 5.1.14 Let X be a Banach space and ϕ ∈ C1(X) be a functional which
is bounded from below. Then the PS-condition and the C-condition are equivalent.

Proof Evidently, we only need to show that the C-condition implies the PS-
condition. To this end, let {un}n�1 ⊆ X be a sequence such that

{ϕ(un)}n�1 ⊆ R is bounded and ϕ′(un) → 0 in X∗ as n → ∞.

Since ϕ satisfies the C-condition, we can use Proposition 5.1.12 and infer
that {un}n�1 ⊆ X is bounded. Hence (1 + ||un||)ϕ′(un) → 0 in X∗ and so the
C-condition implies that {un}n�1 ⊆ X admits a strongly convergent subsequence.
Therefore ϕ satisfies the PS-condition. �

However, there is a situation where coercivity of the functional implies the PS-
condition. This setting is encountered in the study of boundary value problems.

Proposition 5.1.15 Let X be a reflexive Banach space and assume that ϕ ∈ C1(X)

is coercive and
ϕ′ = A + K ,

with A : X → X∗ of type (S)+ and K : X → X∗ completely continuous. Then ϕ
satisfies the PS-condition.

Proof Consider a sequence {un}n�1 ⊆ X such that

{ϕ(un)}n�1 ⊆ R is bounded and ϕ′(un) → 0 in X∗ as n → ∞. (5.7)

Since ϕ is coercive, relation (5.7) implies that {un}n�1 ⊆ X is bounded. By virtue

of the reflexivity of X , we may assume that un
w→ u in X as n → ∞. The complete

continuity of K implies that K (un) → K (u) in X∗ as n → ∞. Then

lim
n∞ 〈A(un), un − u〉 = lim

n→∞
[〈
ϕ′(un), un − u

〉 − 〈K (un), un − u〉] = 0

⇒ un → u in X as n → ∞ (since A is of type (S)+)

⇒ ϕ satisfies the PS-condition.

The proof is now complete. �

Next, we derive some properties of the sublevel sets ϕλ = {u ∈ X : ϕ(u) � λ}
and see how they are related to the PS-condition.

Proposition 5.1.16 Let X be a Banach space, ϕ ∈ C1(X), c ∈ R and assume that
ϕλ is bounded for allλ < c and unbounded for allλ > c. Thenwe can find a sequence
{un}n�1 ⊆ X such that

ϕ(un) → c, ||un|| → ∞ and ϕ′(un) → 0 in X∗ as n → ∞ .

In particular, the PSc-condition fails.
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Proof By hypothesis, for every n � 1 we can find rn � n such that

ϕc− 1
n ⊆ Brn (0) = {u ∈ X : ||u|| < rn}, n � 1. (5.8)

Let Dn = X\Brn (0). Then from (5.8) we have

c − 1

n
� inf

Dn

ϕ = cn. (5.9)

By hypothesis, the set ϕc+ 1
n is unbounded. So, we can find vn ∈ X such that

vn ∈ ϕc+ 1
n and ||vn|| � rn + 1 + 1√

n
for all n � 1. (5.10)

Evidently, vn ∈ Dn and so from (5.9) and (5.10) we have

cn � ϕ(vn) � c + 1

n
� cn + 2

n
for all n � 1. (5.11)

Applying Theorem 4.6.14 (the Ekeland variational principle) with ε = 2
n and

λ = 1√
n
, we produce un ∈ Dn such that

• c − 1

n
� cn � ϕ(un) � ϕ(vn) � c + 1

n
� cn + 2

n
(see (5.1)); (5.12)

• ϕ(un) � ϕ(u) + 2√
2
||u − un|| for all u ∈ Dn; (5.13)

• ||un − vn|| � 1√
n

. (5.14)

From (5.10) and (5.13) we have

||un|| � rn + 1 for all n � 1. (5.15)

This implies that un ∈ int Dn and so from (5.13) we have

||ϕ′(un)||∗ � 2√
n

for all n � 1. (5.16)

From (5.12), (5.15) and (5.16) we obtain

ϕ(un) → c, ||un|| → ∞ and ϕ′(un) → 0 in X∗ as n → ∞, respectively.

The proof is now complete. �

An immediate consequence of the proposition is the following result.
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Corollary 5.1.17 Let X be a Banach space and assume that ϕ ∈ C1(X) satisfies
the PSc-condition and ϕλ is bounded for all λ < c. Then there exists an η > 0 such
that ϕλ+η is bounded.

Remark 5.1.18 According to Proposition 5.1.16, in the above corollary we may
replace the hypothesis that ϕ satisfies the PSc-condition by the following weaker
condition:

“Every sequence {un}n�1 ⊆ X such that

ϕ(un) → c and ϕ′(un) → 0 in X∗ as n → ∞

admits a bounded subsequence”

.

Proposition 5.1.19 Let X beaBanach spaceandassume thatϕ ∈ C1(X) is bounded
from below and is not coercive. Define λ0 = sup

[
λ ∈ R : ϕλ is bounded

]
. Then ϕ

does not satisfy the PSλ0 -condition.

Proof Let L = {λ ∈ R : ϕλ is bounded}. Let m = inf
X

ϕ > −∞ (since by hypoth-

esis ϕ is bounded below). HenceL ⊇ (−∞,m] (recall that by definition the empty
set is bounded) and so L �= ∅. Let λ0 = supL . Since ϕ is not coercive, we have
λ0 < ∞. Then ϕμ is unbounded for all μ > λ0. Invoking Proposition 5.1.16, we
conclude that ϕ does not satisfy the PSλ0 -condition. �

Remark 5.1.20 Note that λ0 = supL = inf {μ ∈ R : ϕμ is unbounded}.
Next, we consider functionals h : X → R = R ∪ {+∞} of the form

h = ϕ + ψ (5.17)

with ϕ ∈ C1(X) and ψ : X → R = R ∪ {+∞} a convex and lower semicontinuous
(as always, not identically +∞). Such functionals are important in the study of
problems with unilateral constraints (variational inequalities).

Definition 5.1.21 Let X be a Banach space and h : X → R = R ∪ {+∞} be a func-
tional of the form (5.17)withϕ ∈ C1(X) andψ : X → R = R ∪ {+∞} a convex and
lower semicontinuous functional. We say that u ∈ domψ = {v ∈ X : ψ(v) < ∞} is
a critical point of h, if

0 ∈ ϕ′(u) + ∂ψ(u).

Remark 5.1.22 So, according to this definition u ∈ domψ is a critical point of h if

−ϕ′(u) ∈ ∂ψ(u),

which is equivalent to saying that

0 �
〈
ϕ′(u), y − u

〉 + ψ(y) − ψ(u) for all y ∈ X.
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If ψ ≡ 0, then we recover the classical definition of a critical point for ϕ, namely
that ϕ′(u) = 0.

Definition 5.1.23 Let h = ϕ + ψ as above. We say that h satisfies the generalized
Palais–Smale condition (GPS-condition for short) if the following is true:

“Every sequence {un}n�1 ⊆ X such that h(un) → c ∈ R and

−εn||y − un|| �
〈
ϕ′(un), y − un

〉 + ψ(y) − ψ(un) for all y ∈ X,

with εn → 0+, admits a strongly convergent subsequence.”

The next geometric lemma will help us to rephrase the above property in a form
which is more convenient in applications.

Lemma 5.1.24 Let X be a Banach space and assume that g : X → R = R ∪ {+∞}
is convex, lower semicontinuous, g(0) = 0 and −||u|| � g(u) for all u ∈ X. Then
there exists a v̂∗ ∈ X∗ with ||v̂∗||∗ � 1 such that

〈
v̂∗, u

〉
� g(u) for all u ∈ X.

Proof Let ĝ(u) = g(u) + ||u|| for all u ∈ X . Then ĝ : X → R = R ∪ {+∞} is con-
vex, lower semicontinuous and ĝ(0) = 0. By hypothesis, u = 0 is a global minimizer
of g. Therefore

0 ∈ ∂g(0) = ∂g(0) + ∂|| · ||(0) (see Proposition 2.7.20)

= ∂g(0) + B̄∗
1 with B̄∗

1 = {u∗ ∈ X∗ : ||u∗||∗ � 1}.

So, we can find v∗ ∈ ∂g(0) with ||v∗||∗ � 1. Since g(0) = 0, we have

〈
v∗, u

〉
� g(u) for all u ∈ X.

The proof is now complete. �

Using this lemma, we deduce at once the following result.

Proposition 5.1.25 If h = ϕ + ψ is as above, then h satisfies the GPS-condition if
and only if every sequence {un}n�1 ⊆ X such that h(un) → c ∈ R and

〈
u∗
n, y − un

〉
�
〈
ϕ′(un), y − un

〉 + ψ(y) − ψ(un) for all y ∈ X

with u∗
n → 0 in X∗ as n → ∞ admits a strongly convergent subsequence.

Remark 5.1.26 Using this proposition, we can see easily that if ψ ≡ 0, then the
GPS-condition reduces to the usual PS-condition (see Definition 5.1.6(a)).
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Proposition 5.1.27 If h = ϕ + ψ is as above, it satisfies theGPS-condition, {un}n�1

is a GPS-sequence such that h(un) → c ∈ R and u is an accumulation point for the
sequence {un}n�1, then u ∈ Kc

ϕ and so in particular K c
ϕ ⊆ X is compact.

Proof Bypassing to a suitable subsequence if necessary,wemay assume thatun → u
in X as n → ∞. We have

− εn||y − un|| �
〈
ϕ′(un), y − un

〉 + ψ(y) − ψ(un) for all y ∈ X, all n � 1.
(5.18)

Since ψ(u) � lim inf
n→∞ ψ(un), passing to the limit as n → ∞ in (5.18), we obtain

0 �
〈
ϕ′(u), y − u

〉 + ψ(y) − ψ(u) for all y ∈ X

⇒ u is a critical point of h (see Definition 5.1.21).

Therefore, we can conclude that Kc
ϕ is compact. �

5.2 Critical Points via Minimization—The Direct Method

We start with some results that do not involve any differential structure but which
are basic in the direct method of the calculus of variations. We recall the following
definition.

Definition 5.2.1 Let (V, τ ) be a Hausdorff topological space and ϕ : V → R =
R ∪ {+∞}.
(a) We say that ϕ is τ -lower semicontinuous (τ -lsc for short) if for every λ ∈ R, the

sublevel set ϕλ = {v ∈ V : ϕ(v) � λ} is τ -closed.
(b) We say that ϕ is sequentially τ -lower semicontinuous (seq τ -lsc for short) if for

every sequence {vn}n�1 ⊆ V such that vn
τ→ v in V ,

ϕ(v) � lim inf
n→∞ ϕ(vn).

An easy consequence of Definition 5.2.1(a) is the following result.

Proposition 5.2.2 If (V, τ ) is a Hausdorff topological space, then

(a) ϕ : V → R = R ∪ {+∞} is τ -lsc if and only if epi ϕ = {(v,λ) ∈ V × R :
ϕ(V ) � λ} is closed in V × R;

(b) ϕ : V → R = R ∪ {+∞} is τ -lsc if and only if for every net {vα}α∈J such that
vα

τ→ v in V , we have
ϕ(v) � lim inf

α∈J
ϕ(vα);

(c) given any family {ϕi }i∈I of τ -lsc functions, we have

ϕ = sup
i∈I

ϕi is τ -lsc too;
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(d) if {ϕk}Nk=1 are τ -lsc functions, then ϕ =
N∑

k=1
ϕk is τ -lsc too.

Remark 5.2.3 In fact, the notion of sequential τ -lower semicontinuity is topological.
More precisely, let τseq be the topology on V whose closed sets are the sequentially
τ -closed sets. Then we have

(a) τseq is the strongest topology on V for which the converging sequences are the
τ -converging sequences.

(b) ϕ is seq τ -lsc if and only if ϕ is τseq -lsc.
(c) if (V, τ ) is first countable, then τseq = τ .

Evidently, τ ⊆ τseq .

Proposition 5.2.4 Let (V, τ ) be a compact topological space and assume that ϕ :
V → R = R ∪ {+∞} is τ -lsc. Then there exists a v0 ∈ V such that ϕ(v0) = inf

V
ϕ.

Proof Let {vn}n�1 ⊆ V be a minimizing sequence forϕ (that is,ϕ(vn) ↓ inf
V

ϕ). The

compactness of V implies that we can find a subnet {vα}α∈J of {vn}n�1 such that

vα
τ→ v0 ∈ V in V . The τ -lower semicontinuity of ϕ implies that

ϕ(v0) � lim inf
α∈J

ϕ(vα) = inf
V

ϕ (see Proposition 5.2.2(b))

⇒ ϕ(v0) = inf
V

ϕ.

The proof is now complete. �

If on the space and the function we also introduce a linear structure, then we can
say more.

Proposition 5.2.5 If X is a Banach space andϕ : X → R = R ∪ {+∞} is a convex
function, then

(a) ϕ is strongly-lsc if and only if it is weakly-lsc.
(b) If X∗ is separable, then ϕ is weakly-lsc if and only if it is seq weakly lsc.
(c) If X = Y ∗ with Y being a separable Banach space, then ϕ is weakly∗-lsc if and

only if it is seq weakly∗-lsc.

Proof (a) For every λ ∈ R, the sublevel set ϕλ = {u ∈ X : ϕ(u) � λ} is convex. By
the Mazur theorem, a convex set is closed if and only if it is weakly lower. Then
according to Definition 5.2.1(a), ϕ is strongly-lsc if and only if it is weakly-lsc.

(b)Since X∗ is separable, every bounded set in X equippedwith theweak topology
ismetrizable (see, for example,Dunford and Schwartz [151, p. 426]).Moreover, from
the Krein–Smulian theorem (see, for example, Megginson [295, p. 243]), for every
λ ∈ R the setϕλ isweakly closed if and only ifϕλ ∩ t B̄1 isweakly closed for all t > 0
(here B̄1 = {u ∈ X : ||u|| � 1}). The latter is metrizable. Therefore, ϕ is weakly-lsc
if and only if it is sequentially weakly lsc.
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(c) Since Y is separable, every bounded set in Y ∗ equipped with the weak∗-
topology is metrizable (see, for example, Dunford and Schwartz [151, p. 426]). Then
the result follows as above, using this time the Krein–Smulian theorem for convex
sets in X∗ (see, for example, Megginson [295, p. 242]). �

Theorem 5.2.6 Let X be a reflexive Banach space, C ⊆ X be nonempty, closed
convex and assume that ϕ : C → R = R ∪ {+∞} is convex, lsc and coercive (see
Definition 5.1.10). Then there exists a u0 ∈ C such that ϕ(u0) = inf

C
ϕ.

Proof The coercivity of ϕ implies that we can find R > 0 such that ϕ(0) � ϕ(u) for
all u ∈ C with ||u|| > R. The closed ball B̄R = {u ∈ X : ||u|| � R} is w-compact
(since X is reflexive). Hence so is C ∩ B̄R . Also, ϕ : C ∩ B̄R is convex, lsc, hence it
is also weakly lsc. Thus by the Weierstrass theorem, we can find u0 ∈ C ∩ B̄R such
that

ϕ(u0) = inf
{
ϕ(u) : u ∈ C ∩ B̄R

} = inf
C

ϕ.

The proof is now complete. �

Proposition 5.2.7 If the hypotheses of Theorem 5.2.6 hold and in addition ϕ is
strictly convex, then the minimizer u0 ∈ C is unique.

Proof Let u0, û0 ∈ C be two minimizers of ϕ. If u0 �= û0, then due to the strict
convexity of ϕ, we have

ϕ

(
u0 + û0

2

)
<

1

2
ϕ(u0) + 1

2
ϕ(û0) = inf

C
ϕ.

But this is a contradiction, since (u0 + û0)/2 ∈ C (since C is convex). �

The next proposition provides useful characterizations of the minimizer u0 ∈ C .

Proposition 5.2.8 If X is a Banach space, C ⊆ X is nonempty, convex andϕ : C →
R is convex andGâteaux differentiable, then the following statements are equivalent:

(a) u0 ∈ C and for all y ∈ C we have ϕ(u0) � ϕ(y);
(b) u0 ∈ C and for all y ∈ C we have

〈
ϕ′(u0), y − u0

〉
� 0.

Moreover, if for all y, h ∈ C the mapping λ �→ ϕ′(y + λ(h − y)) is continuous
on [0, 1], then the above statements (a) and (b) are equivalent to

(c) u0 ∈ C and for all y ∈ C,
〈
ϕ′(y), y − u0

〉
� 0.

Proof (a) =⇒ (b) : Since u0 ∈ C is a minimizer of ϕ on C , we have

0 � ϕ(u0 + λ(y − u0)) − ϕ(u0) for all y ∈ C and all λ ∈ (0, 1] (5.19)

(by virtue of the convexity ofC , u0 + λ(y − u0) ∈ C for all y ∈ C and allλ ∈ (0, 1]).
Dividing (5.19) by λ > 0 and passing to the limit as λ → 0+, we obtain
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0 �
〈
ϕ′(u0), y − u0

〉
for all y ∈ C.

(b) =⇒ (a) : Since ϕ is convex, we have

〈
ϕ′(u0), y − u0

〉
� ϕ(y) − ϕ(u0) for all y ∈ C

(see Definition 2.7.1 and Proposition 2.7.18)

⇒ ϕ(u0) � ϕ(y) for all y ∈ C.

Now assume that for all y, h ∈ C , the mapping λ �−→ ϕ′(y + λ(h − y)) is con-
tinuous.

(b) =⇒ (c) : Exploiting the monotonicity of ϕ′ (see Example 2.6.4(c)), we have

〈
ϕ′(u0), y − u0

〉
�
〈
ϕ′(y), y − u0

〉
for all y ∈ C

⇒ 0 �
〈
ϕ′(y), y − u0

〉
for all y ∈ C.

(c) =⇒ (b) : For every λ ∈ (0, 1] and every y ∈ C , we have

〈
ϕ′(u0 + λ(y − u0)), u0 + λ(y − u0) − u0

〉
� 0.

Dividing by λ ∈ (0, 1], letting λ → 0+ and using the hypothesis that λ �−→
ϕ′(u0 + λ(y − u0)) is continuous, we obtain

〈
ϕ′(u0), y − u0

〉
� 0 for all y ∈ C.

The proof is now complete. �

Remark 5.2.9 Suppose that C ⊆ X is a vector subspace and in statement (b) let
y = u0 + λh with λ ∈ R and h ∈ C . Then

〈
ϕ′(u0), h

〉 = 0 for all h ∈ C . Hence
ϕ′(u0) ∈ C⊥ ⊆ X∗. In particular, if C = X , then we recover the classical Fermat
rule, namely that ϕ′(u0) = 0.

As an illustration of these abstract results, we consider a calculus of variations
problem. So, let� ⊆ R

N be a bounded open set and G : RN → R a convex function
such that

|G(y)| � c1(1 + ||y||p) for all y ∈ R
N , with c1 > 0, 1 < p < ∞ (5.20)

G(y) � c2||y||p − c3 for all y ∈ R
N , with c2 > 0, c3 > 0. (5.21)

Let h ∈ L p′
(�)

(
1
p + 1

p′ = 1
)
and consider the functional ϕ : W 1,p(�) → R

defined by

ϕ(u) =
∫

�

G(Du(z))dz −
∫

�

h(z)u(z)dz for all u ∈ W 1,p
0 (�).
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Proposition 5.2.10 If G : RN → R is as above, then there exists a u0 ∈ W 1,p
0 (�)

such that ϕ(u0) = inf
{
ϕ(u) : u ∈ W 1,p

0 (�)
}
.

Proof Evidently, ϕ is convex. Also, we claim that ϕ is continuous on W 1,p
0 (�). To

see this, let un → u in W 1,p
0 (�). By passing to a subsequence if necessary, we may

assume that

Dun(z) → Du(z) a.e. in � and ||Dun(z)|| � γ(z) for a.a. z ∈ � and all n � 1
(5.22)

with γ ∈ L p(�). The continuity ofG(·) and (5.20) imply thatG is continuous, hence
G(Dun(z)) → G(Du(z)) for almost every in �. Then thanks to (5.20) and (5.22)
we can apply the Lebesgue dominated convergence theorem and have that

∫
�

G(Dun)dz →
∫

�

G(Du)dz

⇒ ϕ(un) → ϕ(u), that is, ϕ is continuous.

Also, using (5.21), we have

ϕ(u) � c2||Du||pp − c3|�|N for all u ∈ W 1,p
0 (�), (5.23)

where | · |N denotes the Lebesgue measure on R
N . From (5.23) and Poincaré’s

inequality (see Theorem 1.8.1), we infer that ϕ is also coercive. So, we can apply
Theorem 5.2.6 and obtain u0 ∈ W 1,p

0 (�) such that

ϕ(u0) = inf
{
ϕ(u) : u ∈ W 1,p

0 (�)
}

.

The proof is now complete. �

Corollary 5.2.11 If G : RN → R is in addition strictly convex, then there exists a

unique u0 ∈ W 1,p
0 (�) such that ϕ(u0) = inf

{
ϕ(u) : u ∈ W 1,p

0 (�)
}
.

Proof The existence of u0 follows from Proposition 5.2.10. Note that ϕ is strictly
convex. So, according to Proposition 5.2.7, the minimizer u0 is unique. �

By imposing differentiability conditions on G(·), we can show that every mini-
mizer u0 is the weak solution of a related boundary value problem.

So, the new hypothesis on G(·) is the following:
H : G ∈ C1(RN ,R), satisfies growth conditions (5.20), (5.21) and

||∇G(y)|| � c4(1 + ||y||p−1) for some c4 > 0, all y ∈ R
N . (5.24)
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Proposition 5.2.12 If hypotheses H hold and u0 ∈ W 1,p
0 (�) is a minimizer of ϕ,

then
∫
�

(∇G(Du0), Dy)RN dz = ∫
�
hydz for all y ∈ W 1,p

0 (�).

Proof We have ϕ′(u0) = 0, hence

〈
ϕ′(u0), y

〉 = 0 for all y ∈ W 1,p
0 (�).

Let ξ1 : W 1,p
0 (�) → L p(�,RN ) and ξ2 : L p(�,RN ) → R be defined by

ξ1(u) = Du for all u ∈ W 1,p
0 (�) and ξ2(v) =

∫
�

G(v(z)dz) for all v ∈ L p(�,RN ).

Also let Lh : L p(�) → R be defined by Lh(u) = ∫
�
hudz for all u ∈ W 1,p

0 (�).
Then

ϕ = ξ2 ◦ ξ1 − Lh .

So, by the chain rule, we have

〈
ϕ′(u0), y

〉 =
∫

�

(∇G(Du0), Dy)RN −
∫

�

hydz = 0 for all y ∈ W 1,p
0 (�)

⇒
∫

�

(∇G(Du0), Dy)RN dz =
∫

�

hydz for all y ∈ W 1,p
0 (�).

The proof is now complete. �

Corollary 5.2.13 If hypotheses H hold and u0 ∈ W 1,p
0 (�) is a minimizer of ϕ, then

− div∇G(Du0(z)) = h(z) a.e. in �, u0|∂� = 0. (5.25)

Proof From (5.24) and the representation theorem for

W−1,p′
(�) = W 1,p

0 (�)∗
(

1
p + 1

p′ = 1
)
, see Theorem 1.3.9, we have that

div (∇G(Du0)) ∈ W−1,p′
(�). Also by integration by parts we have

∫
�

(∇G(Du0), Dy)RN dz = 〈−div (∇G(Du0)), y〉 for all y ∈ W 1,p
0 (�)

⇒
∫

�

hydz = 〈h, y〉 = 〈−div (∇G(Du0)), y〉 for all y ∈ W 1,p
0 (�)

(see Proposition 5.2.12)

⇒ −div (∇G(Du0(z))) = h(z) almost every z in �, u0|∂� = 0.

The proof is now complete. �

IfG(·) is also convex, then theminimizers ofϕ are all the solutions of the boundary
value problem (5.25).
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Proposition 5.2.14 If hypotheses H hold and G is in addition convex, then every
weak solution of (5.25) is a minimizer of ϕ.

Proof Let u ∈ W 1,p
0 (�) be a weak solution of (5.25).

From the convexity of G(·), we have

G(w) − G(y) � (∇G(y), w − y)RN for all w, y ∈ R
N . (5.26)

Let v ∈ W 1,p
0 (�). Then from (5.26) we have

∫
�

(G(Dv) − G(Du))dz �
∫

�

(∇G(Du), Dv − Du)RN dz =
∫

�

h(v − u)dz (see Proposition 5.2.12)

⇒ ϕ(u) � ϕ(v) for all v ∈ W 1,p
0 (�) (that is, u is a minimizer of ϕ).

The proof is now complete. �

Remark 5.2.15 If G(y) = 1
p ||y||p for all y ∈ R

N , with 1 < p < ∞, then ∇G(y) =
||y||p−2y for all y ∈ R

N and the differential operator in (5.25) is the p-Laplacian. If
p = 2, we have the standard Laplace differential operator.

5.3 Deformation Theorems

In the previous section, we produced critical points of ϕ ∈ C1(X) which are mini-
mizers of ϕ (local or global). This was done using the direct method, which requires
two types of properties for the functional ϕ. One is quantitative and requires that
the sublevel sets {x ∈ X : ϕ(x) � λ} are compact for some natural topology on X
(coercivity property). The other one is qualitative and asks that ϕ(·) is lower semi-
continuous for the same topology on X .We note that a coercive functional is bounded
below. However, in many cases the functional ϕ need not be bounded below. So, we
need to identify different kinds of critical points.

Definition 5.3.1 Let X be a Banach space and ϕ ∈ C1(X). We say that u ∈ X is a
“critical point of ϕ” if ϕ′(u) = 0. Then ϕ(u) = c ∈ R is a “critical value of ϕ”. If
c ∈ R is not a critical value of ϕ, then we say that it is a “regular value”.

Given ϕ ∈ C1(X) and D ⊆ R, we introduce the following sets:

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

K D
ϕ = {u ∈ Kϕ : ϕ(u) ∈ D}.
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If D = {c}, then K D
ϕ = Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical points of ϕ at the
level c ∈ R). The aim of this section is to generate information about the set Kϕ.
This will done using the so-called “deformation method”.

Definition 5.3.2 A “deformation” is a continuous map h : [0, 1] × X → X such
that

h(0, u) = u for all u ∈ X.

Let D ⊆ 2X . We say that D is “deformation invariant” if for every A ∈ D and
every deformation h(·, ·), h(1, A) ∈ D .

To produce information about Kϕ we shall use deformations of the sublevel sets
ϕλ = {u ∈ X : ϕ(u) � λ} and try to spot critical values by consideration of minimax
expressions of the form

c = inf
A∈D

sup
u∈A

ϕ(u)

for various deformation invariant families D ⊆ 2X . The construction of suitable
deformations is the most technical part of this method. Basically, we look for defor-
mations h(t, x) which exhibit the following properties:

(D1) For all a, b ∈ R, a < b with ϕ−1([a, b]) ∩ Kϕ = ∅, there exists a t0 > 0 such
that

h(t,ϕb) ⊆ ϕa for all t � t0.

(D2) If c ∈ R and U is a neighborhood of Kc
ϕ, then there exist t0 > 0 and a, b ∈ R

with c ∈ (a, b) such that h(t0,ϕb) ⊆ ϕa ∪U .

Remark 5.3.3 Roughly speaking requirement (D1) says that effectively the defor-
mation h decreases the values of ϕ on X\Kϕ. So, nothing topologically interesting
can happen between the levels a, b ∈ R if the interval [a, b] does not contain any
critical values of ϕ. Condition (D2) says that if we start a little above a critical level
c ∈ R, then we will either bypass the “critical” neighborhood U and end up at a
“harmless” level a ∈ R or we will land on U where topologically interesting things
can happen.

The deformation method constructs deformations which satisfy (D1) and (D2).
These deformations are produced using a kind of steepest descent method based on
the pseudogradient vector field (see Definition 5.1.1), which we know always exists
if ϕ ∈ C1(X) (see Theorem 5.1.4).

So, let us start by recalling the basic existence and uniqueness results for the
Cauchy problem in Banach spaces. First we state a local existence result (see Cartan
[104, p. 122]).

Proposition 5.3.4 If X is a Banach space, U ⊆ X is a nonempty open set and
V : U → X is a locally Lipschitz vector field, then the Cauchy problem

u′(t) = V (u(t)), u(0) = x, (5.27)
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has a unique C1-local solution u(x)(·) = u(x, ·) defined on a maximal interval
(η−(x), η+(x)) containing 0. The set

W = {(x, t) : x ∈ U, t ∈ (η−(x), η+(x))}

is open and the map (x, t) �→ u(x, t) is locally Lipschitz from W into X. Moreover,
if for some x ∈ U, u(x, (η−(x), η+(x))) lies in a complete subset of U, then

η+(x) < ∞ ⇒
∫ η+(x)

0
||V (u(t))||dt = +∞. (5.28)

If we impose a sublinear growth condition on V (·), then we have a global solution
for the Cauchy problem (5.27).

Proposition 5.3.5 If X is a Banach space, U ⊆ X is a nonempty open set, V : U →
X is a locally Lipschitz vector field satisfying

||V (u)|| � a + c||u|| for all u ∈ X and some a, c > 0,

then the solution is global, that is,

η−(x) = −∞ and η+(x) = +∞ for all x ∈ U ;

moreover, for every t ∈ R the mapping x → u(x, t) is a homeomorphism, while
(x, t) �→ u(x, t) is locally Lipschitz and maps bounded sets to bounded sets.

Proof Arguing by contradiction, suppose that we can find x ∈ U such that η+(x) <

∞. Then we have

||u(x, t)|| � ||x || +
∫ t

0
|| f (u(x, s))||ds �

||x || + aη+(x) + c
∫ t

0
||u(x, s)||ds for all t ∈ [

0, η+(x))

⇒ ||u(x, t)|| � c2 for some c1 = c1(x) > 0, all t ∈ [
0, η+(x))

(by Gronwall’s inequality)

⇒ || f (u(t, x))|| � c2 for some c2 = c2(x) > 0, all t ∈ [
0, η+(x))

⇒
∫ η+(x)

0
|| f (u(t, s))||ds � c2η+(x) < ∞,

which contradicts (5.28). This proves that η+(x) = +∞.
Reversing the time, in a similar fashion we show that η−(x) = −∞.
Because of the uniqueness of the solution, we have
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u−1(x, t) = u(x,−t) for all t � 0 and all x ∈ U

⇒ u(·, t) is a homeomorphism for every t ∈ R.

Finally, Proposition 5.3.4 and the Gronwall inequality imply that (x, t) �→ u(x, t)
is locally Lipschitz and bounded. �

Remark 5.3.6 The above result implies that for every closed C ⊆ U and for every
compact T ⊆ R we have u(C, T ) ⊆ U is closed. Indeed, let {(xn, tn)}n�1 ⊆ C × T
and assume that

u(xn, tn) → h ∈ U.

Since T is compact, we may assume that tn → t . From Proposition 5.3.5 we have

xn = u−1(u(xn, tn), tn) → u−1(h, t) ∈ C (since C is closed)

⇒ h = u(u(h,−t), t) ∈ u(C × T ).

Now we can state and prove the “First Deformation Theorem” (or simply the
“Deformation Theorem”), which as we will see in the next section, will lead to the
minimax characterization of the critical values of ϕ.

Theorem 5.3.7 Let X be a Banach space and assume that ϕ ∈ C1(X) satisfies the
Cc-condition for some c ∈ R. Then for every ε0 > 0, every neighborhood U of K c

ϕ

(if K c
ϕ = ∅, then U = ∅) and every η > 0, we find ε ∈ (0, ε0) and a deformation

h : [0, 1] × X → X such that for all (t, u) ∈ [0, 1] × X we have

(a) ||h(t, u) − u|| � η(1 + ||u||)t;
(b) ϕ(h(t, u)) � ϕ(u);
(c) h(t, u) �= u ⇒ ϕ(h(t, u)) < ϕ(u);
(d) |ϕ(u) − c| � ε0 ⇒ h(t, u) = u;
(e) h(1,ϕc+ε) ⊆ ϕc−ε ∪U and h(1,ϕc+ε\U ) ⊆ ϕc−ε.

Proof Since ϕ satisfies the Cc-condition, we know that Kc
ϕ is compact, possibly

empty (see Remark 5.1.7). So, we can find r > 0 such that (Kc
ϕ)3r = {u ∈ X :

d(u, Kc
ϕ) < 3r} ⊆ U .

Claim 1. There exist ε1 ∈ (
0, ε0

2

)
and ξ > 0 such that

c − 2ε1 � ϕ(u) � c + 2ε1 and u /∈ (Kc
ϕ)r ⇒ (1 + ||u||)||ϕ′(u)||∗ � ξ.

Suppose that Claim 1 is not true. Then we can find {un}n�1 ⊆ X such that

ϕ(un) → 0, un /∈ (Kc
ϕ)r , for all n � 1 and (1 + ||un||)ϕ′(un) → 0 in X∗. (5.29)

Since ϕ satisfies the Cc-condition, from (5.29) it follows that we may assume
un → u in X . Thenϕ(u) = c, ϕ′(u) = 0 and u /∈ (Kc

ϕ)r , a contradiction. This proves
Claim 1.
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Let A = {u ∈ X : |ϕ(u) − c| � 2ε1} ∩ (Kc
ϕ)

r
and B = {u ∈ X : |ϕ(u) −

c| � ε1} ∩ (X\(Kc
ϕ)2r ). These sets are closed and A ∩ B = ∅. So, we can find

a locally Lipschitz function ϑ : X → [0, 1] such that ϑ|A = 0 and ϑ|B = 1 (for
example, we may take ϑ(u) = d(u,A)

d(u,A)+d(u,B)
). Also we choose μ ∈ (0, 1) such that

eμ � η + 1. Let V : X\Kϕ → X be the pseudogradient vector field produced in
Theorem 5.1.4. Let

γ(u) =
⎧⎨
⎩

−ξμϑ(u)
V (u)

||V (u)||2 if |ϕ(u) − c| � 2ε1 and u /∈ (Kc
ϕ)r

0 otherwise.

Clearly, γ : X → X is a locally Lipschitz vector field and it satisfies

||γ(u)|| � μ(1 + ||u||), (5.30)
〈
ϕ′(u), γ(u)

〉
� −1

4
ξμϑ(u) (see Definition 5.1.1). (5.31)

We consider the following abstract Cauchy problem

v′(t) = γ(v(t)) for all t ∈ [0, 1], v(0) = u ∈ X. (5.32)

Proposition 5.3.5 implies that problem (5.32) admits a unique global C1-solution
(see (3.30)) v(u) : [0, 1] → X . We set

h(t, u) = v(u)(t) for all (t, u) ∈ [0, 1] × X.

Then (t, u) �→ h(t, u) is continuous and from the definition of γ(·) we see that,
if |ϕ(u) − c| � 2ε0, then h(t, u) = u and so we have proved statement (d) of the
theorem.

For every (t, u) ∈ [0, 1] × X , we have

∂

∂t
ϕ(h(t, u)) =

〈
ϕ′(h(t, u)),

∂

∂t
h(t, u)

〉
(by the chain rule)

= 〈
ϕ′(h(t, u)), γ(h(t, u))

〉
� 0 (see (5.31), (5.32))

⇒ ϕ(h(t, u)) � ϕ(u) for all t ∈ [0, 1] (5.33)

and so we have proved statement (b) of the theorem.
Moreover, we see that

∂

∂t
ϕ(h(t, u)) = 〈

ϕ′(h(t, u)), γ(h(t, u))
〉
� −1

4
ξμϑ(h(t, u)) (see (5.31)). (5.34)

Claim 2. If h(t, u) �= u, then ϑ(h(t, u)) > 0.
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Suppose that û = h(t, u) �= u, but ϑ(û) = 0. Then γ(û) = 0 and v1(t) = û for
all s ∈ [0, 1] and v2(s) = h(s, u) for all s ∈ [0, 1] are both solutions of the Cauchy
problem

v′(s) = γ(v(s)) for all s ∈ [0, 1], v(t) = û.

The uniqueness of the solution of this Cauchy problem (see Proposition 5.3.5)
implies that v1 = v2 and so h(s, u) = û for all s ∈ [0, 1]. In particular, u = h(0, u) =
û, a contradiction. This proves Claim 2.

From (5.34), (5.33) and Claim 2, we deduce that

h(t, u) �= u ⇒ ϕ(h(t, u)) < ϕ(u).

This proves statement (c) of the theorem.
Integrating the Cauchy problem (5.32), we obtain

||h(t, u) − u|| �
∫ t

0
||γ(h(s, u))||ds

� μ

∫ t

0
(1 + ||h(s, u)||)ds (see (5.30))

� μ

∫ t

0
||h(s, u) − u||ds + μ(1 + ||u||)t

⇒ ||h(t, u) − u|| � (1 + ||u||)(eμt − 1) (by Gronwall’s inequality)

� η(1 + ||u||)t (since eμt − 1 � ηt for t ∈ [0, 1]).

This proves statement (a) of the theorem.
Next let ε ∈ (0, ε1) and ρ > 0 be such that

(Kc
ϕ)

2r
⊆ Bρ, 8ε � ξμ and 8η(1 + ρ)ε � ξμρ. (5.35)

To prove statement (e) of the theorem, we argue indirectly. So, suppose we can
find u ∈ ϕc+ε such that ϕ(h(1, u)) > c − ε and h(1, u) /∈ U . Since h(t, u) is ϕ-
decreasing (see (5.34)), we have

c − ε < ϕ(h(1, u)) � ϕ(h(t, u)) � ϕ(u) � c + ε for all t ∈ [0, 1]. (5.36)

Also, we have
h([0, 1], u) ∩ (Kc

ϕ)2r �= ∅. (5.37)

Indeed, if (5.37) is not true, then from (5.34) we have

1

4
ξη � ϕ(u) − ϕ(h(1, u)) < 2ε,

which contradicts (5.35). Therefore (5.37) holds.
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In view of relation (5.37), h(1, u) /∈ U and (Kc
ϕ)3r ⊆ U . So, we can find t1, t2 ∈

[0, 1], t1 �= t2 (and without any loss of generality we assume t1 < t2), such that

d(h(t1, u), Kc
ϕ) = 2r, d(h(t2, u), Kc

ϕ) = 3r and 2r < d(h(t, u), Kc
ϕ) < 3r

for all t ∈ (t1, t2)

⇒ 1

4
ξμ(t2 − t1) � ϕ(h(t1, u)) − ϕ(h(t2, u)) < 2ε (see 5.36)

⇒ r � ||h(t2, u) − h(t1, u)|| � η(1 + ||h(t1, u)||)(t2 − t1) (see part (a))

< η(1 + ρ)
8ε

ξμ
� r (see (5.35)),

a contradiction. So, statement (e) of the theorem is proved. �

Another related deformation result is the following one. Its proof is along the lines
of Theorem 5.3.7 and can be found in Gasinski and Papageorgiou [182, p. 627].

Theorem 5.3.8 Let X be a Banach space, ϕ̂ ∈ C1(X), ĉ ∈ R, ϕ̂ satisfies the Cĉ-
condition, A,C ⊆ X are two disjoint closed sets, A ∩ K ĉ

ϕ̂ = ∅ and

sup
A

ϕ̂ � ĉ � inf
C

ϕ̂.

Then there exist ε > 0 and a ϕ̂-decreasing, locally Lipschitz, parametric family
{h(t, ·)}t∈[0,1] of homeomorphisms such that

h(1, A) ⊆ ϕ̂ĉ−ε

and h(t, u) = u for all (t, u) ∈ [0, 1] × (
C ∪ (

X\ϕ̂−1([ĉ − 2ε, ĉ + 2ε]))).
Remark 5.3.9 If ϕ is even, then for all t ∈ [0, 1], h(t, ·) is an odd homeomorphism.

We introduce the following topological concepts, which are also important in
Morse theory (see Chap. 6).

Definition 5.3.10 Let Y be a Hausdorff topological space and A ⊆ Y nonempty.

(a) We say that h : [0, 1] × Y → Y is a “deformation of Y into A” if h is a defor-
mation and h(1,Y ) ⊆ A. We say that Y is deformable into A.

(b) We say that A is a “deformation (resp. strong deformation) retract of Y ” if there
exists a deformation h : [0, 1] × Y → Y into A such that

h(1, ·)|A = id|A (resp. h(t, ·)|A = id|A for all t ∈ [0, 1]).

Remark 5.3.11 Intuitively, A is a deformation retract of Y if Y can be continuously
deformed into A in such a way that points in A end up where they started. Also, A is
a strong deformation retract if the elements of A remain fixed during the deformation
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process. Consider SN = ∂BN+1
1 = {u ∈ R

N+1 : |u| = 1}. It is well-known that SN is
a retract of RN+1\{0}. In fact, it is a strong deformation retract. To see this, consider
the deformation h : [0, 1] × (RN+1\{0}) → R

N+1\{0} defined by

h(t, u) = (1 − t)u + t
u

|u| for all (t, u) ∈ [0, 1] × (RN+1\{0}).

It is easy to see that A ⊆ Y is a deformation retract if and only if A is a retract of
Y and Y is deformable into A.

The next result is known in the literature as the “Second Deformation Theorem”.
Note that in the statement of the theorem we allow b = +∞, in which case we have
ϕb\Kb

ϕ = X .

Theorem 5.3.12 Let X beaBanach spaceand suppose thatϕ ∈ C1(X), a ∈ R, b ∈
(a,+∞], ϕ satisfies the Cc-condition for every c ∈ [a, b), ϕ has no critical values
in (a, b), and ϕ−1(a) contains at most a finite number of critical points of ϕ. Then
there exists a deformation h : [0, 1] × (ϕb\Kb

ϕ) → ϕb\Kb
ϕ of ϕb\Kb

ϕ into ϕa such
that

(a) if u ∈ ϕa, then h(t, u) = u for all t ∈ [0, 1] (that is, ϕa is strong deformation
retract of ϕb\Kb

ϕ);
(b) the deformation is ϕ-decreasing ( that is, if s, t ∈ [0, 1] with s � t , then

ϕ(h(t, u)) � ϕ(h(s, u)) for all u ∈ ϕb\Kb
ϕ

)
.

Proof According to Theorem 5.1.4, there exists a pseudogradient vector field
V : X\Kϕ → X (see Definition 5.1.1). For x ∈ ϕ−1([0, b])\Kb

ϕ we consider the
following abstract Cauchy problem

u′(t) = − V (u(t))

(1 + ||u(t)||)||V (u(t))||2 for t � 0, u(0) = x . (5.38)

In (5.38) the vector field is locally Lipschitz and so by Proposition 5.3.4 problem
(5.38) admits a unique solution ux (·) defined on a maximal interval

[
0, η+(x)).

Moreover, from the properties of the pseudogradient vector field, we have

d

dt
ϕ(ux (t)) = 〈

ϕ′(ux (t)), u
′
x (t)

〉
� − 1

4(1 + ||ux(t)||) for all t ∈ [
0, η+(x)) .

(5.39)
The construction of the desired deformation h(t, x) will be based on a series of

claims.

Claim 1. If ϕ(ux (t (x))) = a for some t (x) < η+(x), then t (x) is unique and
x �→ t (x) is continuous.

The uniqueness of t (x) is a direct consequence of (5.39). The time instant t (x) is
characterized by
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ϕ(ux (t)) < a < ϕ(ux (s)) for all s < t (x) < t < η+(x). (5.40)

We consider xn → x in X . Then for ε > 0 small, we have

ϕ(uxn (t (xn) + ε)) < a < ϕ(uxn (t (xn) − ε)) for all n � 1 (see (5.40)).

Since x �→ ux (t) is continuous (see Proposition 5.3.4, continuous dependence on
the initial condition), we can find n0 = n0(ε) � 1 such that

ϕ(ux (t (xn) + ε)) < a < ϕ(ux (t (xn) − ε)) for all n � n0.

From Bolzano’s theorem and the uniqueness of t (x), it follows that

|t (xn) − t (x)| � ε for all n � n0
⇒ t (xn) → t (x),

which shows the continuity of the map x �→ t (x). This proves Claim 1.
For x ∈ ϕ−1([a, b])\Kb

ϕ, we set t (x) = η+(x) if ϕ(ux (t)) > a for all t < η+(x).

Claim 2. If {xn}n�1 ⊆ ϕ−1([a, b])\Kb
ϕ, v ∈ ϕ−1(a) and v = lim

n→∞ usn (xn) for

0 � sn < t (xn), then for every {tn}n�1 such that sn � tn < t (xn) we have

v = lim
n→∞ uxn (tn).

Recalling that ϕ−1(a) contains at most a finite number of critical points of ϕ, we
can find ε > 0 such that

K ∩ B̄ε(v) ∩ ϕ−1([a, b]) ⊆ {v}

with B̄ε(v) = {v′ ∈ X : ||v′ − v|| � ε} and b1 = supϕ(B̄ε(v)) < b. We show that
we can find n0 ∈ N such that

uxn (tn) ∈ B̄ε(v) for all n � n0. (5.41)

Suppose that (5.41) does not hold. Then we can find a subsequence {(xnk , tnk )}k�1

of {(xn, tn)}n�1 such that

||uxnk
(tnk ) − v|| > ε for all k � 1.

By hypothesis we have

||uxnk
(snk ) − v|| <

ε

2
for all k � k0.
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Exploiting the continuity of uxnk
(·), we can find τnk ,ϑnk ∈ [snk , tnk ]with τnk < ϑnk

such that

||uxnk (τnk ) − v|| = ε

2
, ||uxnk (ϑnk ) − v|| = ε and

uxnk (t) ∈ R =
{
h ∈ X : ε

2
� ||h − v|| � ε

}
for all t ∈ [τnk , ϑnk ], all k � k0. (5.42)

By hypothesis ϕ satisfies the Cc-condition for all c ∈ [a, b). So, we have

(1 + ||x ||)||ϕ′(x)||∗ � δ > 0 for all x ∈ R ∩ ϕ−1([a, b]). (5.43)

Therefore

ε

2
||uxnk

(ϑnk ) − uxnk
(τnk )|| �

∫ ϑnk

τnk

||u′
xnk

(r)||dr

� 2
∫ ϑnk

τnk

dr

(1 + ||xnk ||)||ϕ′(uxnk
(r))||∗

(see (5.38) and Definition 5.1.1)

� 2
ϑnk − τnk

δ
for k � k0 (see (5.42), (5.43)). (5.44)

Note that

ϕ(uxnk
(ϑnk )) − ϕ(uxnk

(τnk )) =
∫ ϑnk

τnk

d

dt
ϕ(uxnk

(t))dt

=
∫ ϑnk

τnk

〈
ϕ′(uxnk

(t)), u′
xnk

(t)
〉
dt

(be the chain rule)

� −1

4
(ϑnk − τnk ) for all k � 1 (see (5.39))

⇒ a � ϕ(uxnk
(ϑnk )) � ϕ(uxnk

(τnk )) − 1

4
(ϑnk − τnk )

� ϕ(uxnk
(snk )) − ε

δ
(see (5.44) and recall that snk � τnk ).

Passing to the limit as k → ∞ and using our hypothesis, we obtain

a � a − ε

δ
,

a contradiction. This proves Claim 2.
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Claim 3. If x ∈ ϕ−1([a, b])\Kb
ϕ is such that t (x) = η+(x), then there exists

v = lim
t→η+(x)

ux (t) and v ∈ Ka
ϕ.

We argue indirectly. So, suppose that the Claim is not true. Recall that Ka
ϕ is

compact (see Remark 5.1.7). So, from Claim 2 (with xn = x for all n � 1), we see
that we cannot find a sequence {sn}n�1 ⊆ [

0, η+(x)) such that d(usn (x), K
a
ϕ) → 0

as n → ∞. Therefore, we can find ε > 0 and δ ∈ (0, η+(x)) such that

d(ux (t), K
a
ϕ) > ε for all t ∈ [

δ, η+(x)) . (5.45)

The set uX ([0, δ]) is compact in X and ux ([0, δ]) ∩ Ka
ϕ = ∅.

Choosing ε > 0 even smaller if necessary (see (5.45)), we have

ux (t) ∈ ϕ−1([a,ϕ(x)]) ∩ {h ∈ X : d(h, Ka
ϕ) � ε} for all t ∈ [

0, η+(x)) .

This set is complete and

a < ϕ(ux (t)) � ϕ(x) − t for all t ∈ [
0, η+(x))

⇒ η+(x) � ϕ(x) − a < +∞
⇒ +∞ =

∫ η+(x)

0
2

dt

(1 + ||ux(t)||)||ϕ′(ux (t))||∗
(see (5.38) and Definition 5.1.1).

This implies that we can find a sequence tn → η+(x)− such that

(1 + ||ux(tn)||)ϕ′(ux (tn)) → 0 in X∗ as n → ∞ . (5.46)

Recall that
ϕ(ux (tn)) � b̂ for all n � 1 and some b̂ < b. (5.47)

By hypothesis, ϕ satisfies the Cc-condition for all c ∈ [a, b). Therefore, from
(5.46), (5.47) and by passing to a subsequence if necessary, we may assume that

ux (tn) → v in X

and v ∈ ϕ−1([a, b̂]) ∩ Kϕ. Also, we have ϕ(v) = a, a contradiction. This proves
Claim 3.

Claim 4. If {xn}n�1 ⊆ ϕ−1((a, b])\Kb
ϕ, x ∈ ϕ−1(a) and xn → x , then x =

lim
n→∞ uxn (sn) for every sequence {sn}n�1 such that 0 � sn � η+(x).

From Claim 2, we see that we can assume that sn = η+(xn) for all n � 1. Then
we can find tn < η+(xn) such that

||ux0(tn) − uxn (η+(xn))|| � 1

n
for all n � 1. (5.48)
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Since xn → x , from Claim 2 we have uxn (tn) → x and so

uxn (η+(xn)) → x in X (see (5.48)).

This proves Claim 4.

Claim 5. If {xn}n�1 ⊆ ϕ−1((a, b])\Kb
ϕ, xn → x ∈ ϕ−1((a, b])\Kb

ϕ and t (x) =
η+(x), then for every sequence {tn}n�1 with 0 < tn < t (xn) and η+(x) � lim inf

n→∞ tn
we have ux (t (x)) = lim

n→∞ uxn (t (xn)) = lim
n→∞ uxn (tn).

We set v = ux (t (x)). Let s1 ∈ (0, η+(x)) be such that

ux (s1) ∈ B̄1/2(v)

⇒ uxn (s1) ∈ B̄1(v) for all n � n0.

Because η+(x) � lim inf
n→∞ tn , inductively we can produce a sequence {sk}k�1 such

that
uxnk

(sk) ∈ B̄1/k(v) and sk < tnk for all k � 1.

Claim 2 implies that

uxnk
(sk) → v

⇒ uxnk
(tk) → v.

Next, let tn < t (xn) be such that

||uxn (tn) − uxn (t (xn))|| → 0 and ϕ(uxn (tn)) → a.

We cannot have lim inf
n→∞ tn < η+(x), because in that case we will have tnk → τ <

η+(x) and so ϕ(ux (τ )) = a, which contradicts the hypothesis that t (x) = η+(x).
Hence we have η+(x) � lim inf

n→∞ tn and this combined with the first part of the proof

of the Claim implies

uxn (tn) → v

⇒ uxn (t (xn)) → v.

So, we have proved Claim 5.
Now, for each x ∈ ϕa , we set t (x)=0 and introduce the map γ : R+ × (ϕb\

Kb
ϕ) → ϕb defined by

γ(t, x) =
⎧⎨
⎩
x if t (x) = 0
ux (t) if 0 � t < t (x)
ux (t (x)) if 0 < t (x) � t.

(5.49)
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Claim 6. γ(·, ·) is continuous.
Let (tn, xn) → (t, x) in R+ × X and assume that a � ϕ(x).
First suppose that t (x) = 0 (that is, ϕ(x) = a). We have

γ(tn, xn) = uxn (sn) with sn � t (xn).

From Claim 4, we have

γ(tn, xn) → x = γ(t, x) (see (5.49)).

Next, suppose that t (x) > 0. If t < t (x), we have

ϕ(ux (t)) > a (see (5.40))

⇒ ϕ(uxn (tn)) > a for all n � n0 (see Proposition 5.3.4)

⇒ tn < t (xn) for all n � n0
⇒ γ(tn, xn) = uxn (tn) for all n � n0
⇒ γ(tn, xn) → ux (t) = γ(t, x) (see (5.49)).

Finally, suppose that 0 < t (x) � t . If t (x) < η+(x), then from Claim 1 we have

t (xn) → t (x)

⇒ γ(tn, xn) = uxn (t (xn)) → ux (t (x)) = γ(t, x) (see (5.49)).

If t (x) = η+(x), then we use Claim 5. So, we have proved Claim 6.

From Claim 3, for every x ∈ ϕb\Kb
ϕ, the limit lim

t→+∞ γ(t, x) = γ̂(x) exists. We

introduce h : [0, 1] × (ϕb\Kb
ϕ) → ϕb defined by

h(t, x) =
{

γ
(

t
1−t , x

)
if t ∈ [0, 1)

γ̂(x) if t = 1.
(5.50)

Clearly, h is ϕ-decreasing and we have

h(0, ·) = idX , h(t, ·)|ϕa = id|ϕa (see (5.49) and (5.50)),

h(1,ϕb\Kb
ϕ) ⊆ ϕa .

So, it remains to show that h(·, ·) is continuous.
Claim 7. If xn → x and tn → +∞, then γ(tn, xn) → γ̂(x).
If t (x) = 0, then we reason as in the corresponding part of the proof of Claim 6.
If 0 < t (x) < η+(x), then

0 < t (xn) < 2t (x) < +∞ for all n � n0
⇒ γ(tn, xn) = uxn (tn) → ux (t) = γ̂(x) (see (5.49)).
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If t (x) = η+(x), then from Claim 5, we have

γ(tn, xn) → ux (t (x)) = γ̂(x).

This proves Claim 7.

From Claims 6 and 7 it follows that h(·, ·) is continuous, hence it is the desired
deformation. �
Corollary 5.3.13 If X is a Banach space, a ∈ R, a < b � +∞, ϕ ∈ C1(X), ϕ
satisfies the Cc-condition for every c ∈ [a, b) and it has no critical values in [a, b],
then ϕa is a strong deformation retract of ϕb.

Now we turn our attention to functions of the form

j = ϕ + ψ

with ϕ ∈ C1(X) and ψ : X → R = R ∪ {+∞} convex, lower semicontinuous and
not identically +∞. The cone of such functions ψ is denoted by �0(X). For such
functionals we introduced critical points and a compactness condition (see Definition
5.1.23 and Proposition 5.1.25).

In this section, we will prove a deformation theorem for such functionals which,
in the next section, will lead to minimax theorems for the critical values of the
functionals. The presence of the term ψ in the definition of j makes such functionals
suitable for the use of variational methods in problems with unilateral constraints.

Our setting is the following: X is a Banach space,ϕ ∈ C1(X) andψ ∈ �0(X) (that
is, ψ : X → R = R ∪ {+∞} is convex, lower semicontinuous and not identically
+∞). We consider the functional j = ϕ + ψ. Let K j be the set of critical points of
j , that is,

K j = {u ∈ X : 0 ∈ ϕ′(u) + ∂ψ(u)},

where ∂ψ(u) is the convex subdifferential of ψ (see Definition 2.7.1).
First we prove two auxiliary propositions.

Proposition 5.3.14 If j = ϕ + ψ as above satisfies the GPS (see Definition 5.1.23)
and U is a neighborhood of K c

j = {u ∈ K j : j (u) = c}, then for every ε0 > 0 there
exist ε ∈ (0, ε0) and some v0 ∈ X such that

u0 ∈ (X\U ) ∩ j−1([c − ε, c + ε])
⇓〈

ϕ′(u0), v0 − u0
〉 + ψ(v0) − ψ(u0) < −3ε||v0 − u0||.

Proof Arguing by contradiction, suppose we could find {un}n�1 ⊆ X\U such that

j (un) → c and
〈
ϕ′(un), v − un

〉 + ψ(v) − ψ(un) � −1

n
||v − un|| for all v ∈ X.

(5.51)
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Since by hypothesis j satisfies the GPS (see Definition 5.1.23), from (5.51) and
Proposition 5.1.27, we can find u ∈ Kc

j and a subsequence {unk }k�1 of {un}n�1 such
that

unk → u ∈ Kc
j in X.

But {unk }k�1 ⊆ X\U , hence u ∈ X\U , a contradiction. �

Proposition 5.3.15 If j = ϕ + ψ is as above, it satisfies the GPS, U is a neighbor-
hood of K c

j and ε > 0 is as in Proposition 5.3.14, then for every u0 ∈ j c+ε\U there
exist v0 ∈ X and an open neighborhood V0 of u0 such that

〈
ϕ′(u), v0 − u

〉 + ψ(v0) − ψ(u) � ||v0 − u|| for all u ∈ V0, (5.52)〈
ϕ′(u), v0 − u

〉 + ψ(v0) − ψ(u) � −3ε||v0 − u|| (5.53)

for all u ∈ V0 with h(u) � c − ε.

Moreover, if u0 ∈ K j , then v0 = u0. Otherwise, v0, V0 and δ0 > 0 can be chosen
so that v0 /∈ V 0 and

〈
ϕ′(u), v0 − u

〉 + ψ(v0) − ψ(u) � −δ0||v0 − u|| for all u ∈ V0. (5.54)

Proof We first deal with the case u0 ∈ K j . Then according to Remark 5.1.22, we
have

0 �
〈
ϕ′(u0), v − u0

〉 + ψ(v) − ψ(u0) for all v ∈ X
⇒ ψ(u0) − ψ(v) � − 〈

ϕ′(u0), u0 − v
〉
for all v ∈ X

⇒ 〈
ϕ′(v), u0 − v

〉 + ψ(u0) − ψ(v) �
〈
ϕ′(v) − ϕ′(u0), u0 − v

〉
� ||ϕ′(v) − ϕ′(u0)||∗||u0 − v|| .

(5.55)

Since ϕ ∈ C1(X), choosing a suitably small neighborhood V0 of u0 we obtain

||ϕ′(v) − ϕ′(u0)||∗ � 1 for all v ∈ V0

⇒ 〈
ϕ′(v), u0 − v

〉 + ψ(u0) − ψ(v) � ||u0 − v|| for all v ∈ V0 (see (5.55)).

So inequality (5.52) is satisfied with v0 = u0. Since u0 ∈ K j ∩ ( j c+ε\U ), from
Corollary 5.3.13 we have

j (u0) < c − ε.

If j (u) < c − ε for all u in a neighborhood of u0, then we can choose V0 inside
this neighborhood and then (5.53) is empty. So, suppose that every neighborhood of
u0 has a point v such that j (v) � c − ε. We have

ψ(v) − ψ(u0) > ϕ(u0) − ϕ(v).
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Then the continuity of ϕ implies that we can find m > 0 and V0 a small neigh-
borhood of u0 such that

ψ(v) − ψ(u0) � m > 0 for all v ∈ V0 with h(v) � c − ε. (5.56)

Then we have

〈
ϕ′(v), u0 − v

〉 + ψ(u0) − ψ(v) � ||ϕ′(v)||∗||u0 − v|| − m (see (5.56))

� −3ε||u0 − v||

for all v ∈ V0 = small neighborhood of u0 and h(v) � c − ε.
This proves (5.53) for the case when u0 ∈ K j .
Now suppose that u0 /∈ K j . We first assume that j (u0) < c − ε. Since u0 is not a

critical point of j , we can find v0 ∈ X such that

〈
ϕ′(u0), v0 − u0

〉 + ψ(v0) − ψ(u0) < 0 (see Remark 5.1.22). (5.57)

Let y0 = tv0 + (1 − t)u0 with t ∈ (0, 1). Exploiting the convexity of ψ, we have

〈
ϕ′(u0), y0 − u0

〉 + ψ(y0) − ψ(u0)

� t
[〈
ϕ′(u0), v0 − u0

〉 + ψ(v0) − ψ(u0)
]

< 0.

So, by letting t → 0+, we see that we can have v0 arbitrarily close to u0. As in
the first part of the proof we have

ψ(v) − ψ(u0) � m > 0 for all v close to u0 and j (v) � c − ε.

Then using (5.57) and V0, and choosing small ||v0 − u0||,

ψ(v0) − ψ(v) � −m

2
for all v ∈ V0 and j (v) � c − ε

⇒ 〈
ϕ′(v), v0 − v

〉 + ψ(v0) − ψ(v) � −3ε||v0 − v||
for all v ∈ V and j (v) � c − ε.

So, (5.53) is satisfied. Since v0 �= u0, we may assume that v0 /∈ V 0. Since the
right-hand side in (5.57) is negative, we can find a small δ0 > 0 such that

〈
ϕ′(u0), v0 − u0

〉 + ψ(v0) − ψ(u0) < −δ0||v0 − u0|| .

The continuity of ϕ′ and the lower semicontinuity of ψ imply that by shrinking
V0 further if necessary, we can have

〈
ϕ′(u), v0 − v

〉 + ψ(v0) − ψ(v) < −δ0||v0 − v|| for all v ∈ V0.
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Finally, we treat the case u0 /∈ K j and c − ε � j (u0). Let v0 ∈ X be as in Propo-
sition 5.3.14. Then as before, the continuity ofϕ′ and the lower semicontinuity imply
that we can find a small neighborhood V0 of u0 such that v0 /∈ U 0 such that

〈
ϕ′(u), v0 − v

〉 + ψ(v0) − ψ(v) < −3ε||v0 − v|| for all v ∈ V0.

So, (5.53) holds and from this follows (5.54). �
Now we are ready for the deformation theorem.

Theorem 5.3.16 Let j = ϕ + ψ beasaboveand satisfy theGPS-condition.Assume
that U ⊆ X is an open neighborhood of K c

j and ε0 is a positive number. Then there
exists an ε ∈ (0, ε0) such that for every compact K ⊆ X\U with

c � sup
u∈K

j (u) � c + ε

we can find C ⊆ X closed with K ⊆ intC and a deformation h : [0, t0] × C → X
such that

(a) ||u − h(t, u)|| � t for all u ∈ C;
(b) j (h(t, u)) − j (u) � 2t for all u ∈ C;
(c) j (h(t, u)) − j (u) � −2εt for all u ∈ C with j (u) � c − ε and

sup
u∈K

j (h(t, u)) − sup
u∈K

j (u) � −2εt.

Moreover, if C0 ⊆ X is a closed set and C0 ∩ K j = ∅, we can construct C and
the deformation h(t, u) so that

j (h(t, u)) − j (u) � 0 for all u ∈ C ∩ C0.

Proof Let ε > 0 be as postulated by Proposition 5.3.14. For every u0 ∈ K , let V0

be the open neighborhood of u0 produced in Proposition 5.3.15. By shrinking V0

further if necessary, we may assume that V0 ∩ C0 = ∅. Since u0 ∈ K is arbitrary, the
collection {V0}u0∈K forms an open cover of K . The compactness of K implies that
there is a finite subcovering {Vi }i∈F . Let ui ∈ Vi and vi ∈ X be the points postulated
by Proposition 5.3.15 (in that proposition, they are denoted by u0 and v0). We may
assume that if i0 ∈ F and ui0 ∈ K , then d(ui0 , Vi ) > 0 for all i ∈ F\{i0} (if this is
not the case for the finite subcovering {Vi }i∈F , and for some ui0 ∈ K , we choose a
closed neighborhood A of ui0 such that A ⊆ Vi and ui /∈ A for all i ∈ F\{i0} and
produce a new finite subcovering by deleting A from Vi , i �= i0, so we have produced
a refinement of {Vi }i∈F ).

We consider a partition of unity {ϑi }i∈F subordinate to the covering {Vi }i∈F .
Let h : R+ × X → X be defined by

h(t, u) = u + t
∑
i∈F

ϑi (u)
vi − u

||vi − u|| . (5.58)
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This is a continuous map for all small t � 0 (t ∈ [0, t0]). We have

||u − h(t, u)|| � t for all u ∈ X.

So, statement (a) of the theorem holds. We write

h(t, u) = u + tw with ||w|| � 1.

From the mean value theorem we have

ϕ(u + tw) − ϕ(u) = 〈
ϕ′(u + τw), tw

〉
with 0 < τ < t

= t

〈
ϕ′(z),

∑
i∈F

ϑi (u)
vi − u

||vi − u||

〉
with z = u + τw (see (5.58))

= t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), vi − u

〉

= t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), vi − z

〉 + t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), z − u

〉

� t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), vi − z

〉 + t
∑
i∈F

ϑi (u)

||vi − u|| k ||z − u||

for some k > 0

� t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), vi − z

〉 + t2
∑
i∈F

ϑi (u)

||vi − u|| k

� t
∑
i∈F

ϑi (u)

||vi − u||
〈
ϕ′(z), vi − z

〉 + kt2 for t ∈ [0, t0] small. (5.59)

Note that

h(t, u) =
(
1 − t

∑
i∈F

ϑi (u)

||vi − u||

)
u + t

∑
i∈F

ϑi (u)

||vi − u||vi (see (5.58)).

For small t (t ∈ [0, t0]), the coefficient of u is sublinear. Then by the convexity
of ψ, we have

ψ(h(t, u)) �
(
1 − t

∑
i∈F

ϑi (u)

||vi − u||

)
ψ(u) + t

∑
i∈F

ϑi (u)

||vi − u||ψ(vi ). (5.60)

From (5.59) and (5.60), we obtain
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j (h(t, u)) � j (u) + t
∑
i∈F

ϑi (u)

||vi − u||
[〈
ϕ′(z), vi − z

〉+ ψ(vi ) − ψ(u)
] + kt2

� j (u) + t + kt2 (see Proposition 5.3.15)

� j (u) + 2t for t � 0 small and all u ∈ C.

This proves statement (b) of the theorem.
Similarly, if u ∈ C with j (u) � c − ε, then using Proposition 5.3.15, we have

j (h(t, u)) � j (u) − 2εt
∑
i∈F

ϑi (u) = j (u) − 2εt.

From this it follows that

sup
u∈K

j (h(t, u)) − sup
u∈K

j (u) �

sup
u∈K

[ j (h(t, u)) − j (u)] � −2εt

and this completes the proof of the theorem. �

Remark 5.3.17 If both ϕ and φ are even and K is symmetric, then h(t, ·) can be
chosen to be odd.

5.4 Minimax Theorems

In this section, we use the deformation theorems of the previous section to produce
minimax characterizations of the critical values of ϕ ∈ C1(X).

We start by introducing a notion which is central in this theory.

Definition 5.4.1 LetY be aHausdorff topological space, E0 ⊆ E andD benonempty
subsets of Y and γ∗ ∈ C(E0,Y ). We say that the pair {E0, E} is “linking with D in
Y via γ∗” if the following conditions are satisfied:

(a) E0 ∩ D = ∅;
(b) For any γ ∈ C(E,Y ) with γ|E0 = γ∗, we have γ(E) ∩ D �= ∅.
Remark 5.4.2 We say that {E0, E, D} are linking sets in Y via γ∗. If γ∗ = idE0

(which is usually the case), we simply say that the sets {E0, E, D} are linking sets.

Next we present some illustrative examples of linking sets, which we encounter
often in applications.

Example 5.4.3 (a) Let X be a Banach space and u0, u1 ∈ X with u0 �= u1. We
introduce the following sets.



398 5 Critical Point Theory

E0 = {u0, u1}, E = {(1 − t)u0 + tu1 : t ∈ [0, 1]} and
D = ∂U with U an open neighborhood of u0 such that u1 /∈ U .

For example, we can take D = ∂Bρ(u0) = {u ∈ X : ||u − u0|| = ρ} with 0 <

ρ < ||u1 − u0||. Then the sets {E0, E, D} are linking sets. Indeed, let γ ∈ C(E, X)

such that γ(u0) = u0 and γ(u1) = u1. The set γ(E) ⊆ X is connected. If γ(E) ∩
D = ∅, then γ(E) = U1 ∪U2 with

U1 = γ(C) ∩U and U2 = γ(C) ∩ (X\U ).

This contradicts the connectedness of γ(C). Therefore γ(E) ∩ D �= ∅ and so
{E0, E, D} are linking sets.

(b) Let X be a Banach space and assume that X = Y ⊕ V with dim Y < +∞.
We introduce the following sets

E0 = ∂Bρ(0) ∩ Y, E = Bρ(0) and D = V .

Here Bρ(0) = {u ∈ X : ||u|| � ρ} and ∂Bρ(0) = {u ∈ X : ||u|| = ρ}. We claim
that {E0, E, D} are linking sets. To this end, note that since Y is finite-dimensional
there exists a projection operator PY ∈ L (X) onto Y . Let γ ∈ C(E, X) such that
γ|E0 = id|E0 .We need to show that γ(E) ∩ D �= ∅. To achieve this it suffices to show
that 0 ∈ PY (γ(E)). So, we introduce the homotopy h : [0, 1] × Y → Y defined by

h(t, y) = t PY (γ(y)) + (1 − t)y for all (t, y) ∈ [0, 1] × Y.

Note that h(1, ·) = PY ◦ γ and for all t ∈ [0, 1] h(t, ·)|E0 = id|E0 . Then the homo-
topy invariance and normalization properties of the Brouwer degree (see Theorem
3.1.25) imply that

d(PY ◦ γ, Bρ(0) ∩ Y, 0) = d(idY , Bρ(0) ∩ Y, 0) = 1

⇒ 0 ∈ PY (γ(E)) (by the solution property of Brouwer’s degree,

see Theorem 3.1.25) .

This proves that the sets {E0, E, D} are linking sets.
(c) Let X be a Banach space and assume that X = Y ⊕ V with dim Y < ∞.

Let v0 ∈ V with ||v0|| = 1 and 0 < ρ < r1 and 0 < r2 be given. We introduce the
following sets

E0 = {y + λv0 : y ∈ Y, (0 < λ < r1, ||y|| = r2) or (λ ∈ {0, r1}), ||y|| � r2},
E = {y + λv0 : y ∈ Y, 0 � λ � r1, ||y|| � r2},
D = ∂Bρ(0) ∩ V .
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Note that E is a cylinder with bottom basis ∂Br2(0) ∩ Y and height r1 and E0 is
the boundary of this cylinder (the lateral surface and the bottom and top bases). We
claim that {E0, E, D} are linking sets.

So, let γ ∈ C(E, X) such that γ|E0 = id|E0 . We need to show that γ(E) ∩ D �= ∅.
For this it suffices to show that there exists a u ∈ E such that

||γ(u)|| = ρ and PY (γ(u)) = 0.

We consider the homotopy h : [0, 1] × R × Y → R × Y defined by

h(t, (λ, y)) = (t ||γ(u) − PY (γ(u))|| + (1 − t)λ − ρ, t PY (γ(u)) + (1 − t)y)

for all t ∈ [0, 1], allλ ∈ R and allu = y + λv0 with y ∈ Y . Evidently, h is continuous
and we have

h(0, (λ, y)) = (λ − ρ, y). (5.61)

If u = y + λv0 ∈ E0, then for all t ∈ [0, 1] we have

h(t, (λ, y)) = (t ||u − y|| + (1 − t)λ − ρ, y) = (λ − ρ, y) �= 0.

Identifying E with a subset ofR × Y bymeans of the decomposition u = y + λv0
and exploiting the homotopy invariance of the Brouwer degree (see Theorem 3.1.25),
we have

d(h(1, ·), int E, 0) = d(h(0, ·), int E, 0) = 1 (see (5.61)).

So, we can find u ∈ E such that

h(1, u) = 0

⇒ ||γ(u)|| = ρ and PY (γ(u)) = 0.

Using the notion of linking sets, we can prove a general minimax principle.

Theorem 5.4.4 If X is a Banach space, {E0, E, D} are closed linking sets via
γ∗, γ∗(E0) ⊆ X is closed, � = {γ ∈ C(E, X) : γ|E0 = γ∗}, ϕ ∈ C1(X)

a = sup
γ∗(E0)

ϕ � inf
D

ϕ = b, (5.62)

c = inf
γ∈�

sup
u∈E

ϕ(γ(u)) (5.63)

and ϕ satisfies the Cc-condition, then c � b and c is a critical value of ϕ. Moreover,
if c = b, then D ∩ Kc

ϕ �= ∅.
Proof From Definition 5.4.1 we know that for every γ ∈ �, γ(E) ∩ D. Therefore
c � d (see (5.62) and (5.63)).
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First suppose that c > b and let ε0 = c − b > 0. Arguing by contradiction, sup-
pose that Kc

ϕ = ∅. According to Theorem 5.3.7 with ε0 = c − b > 0 and U = ∅,
we can find a deformation h : [0, 1] × X → X satisfying the conditions of Theorem
5.3.7. The choice of ε0 > 0 implies that

h(t, ·)|E0 = id|E0 for all t ∈ [0, 1] (see Theorem 5.3.7(d)).

From (5.63) we see that we can find γ ∈ � such that

ϕ(γ(u)) � c + ε for all u ∈ E .

We define ξ = h(1, ·) ◦ γ ∈ C(E, X). If u ∈ E0, then ξ(u) = h(1, γ(u)) =
h(1, γ∗(u)) = γ∗(u) and so ξ ∈ �. Moreover, from Theorem 5.3.7(e), with ε ∈
(0, ε0) we have

ϕ(ξ(u)) � c − ε (recall that U = ∅),

which contradicts the definition of c. So, Kc
ϕ �= ∅ and c is a critical value of ϕ.

Next, we assume that c = b � a. Wewill show that D ∩ Kc
ϕ �= ∅. Again we argue

indirectly. So, suppose that D ∩ Kc
ϕ = ∅. We apply Theorem 5.3.8 with

ϕ̂ = −ϕ, ĉ = −c, A = D and C = γ∗(E0).

Thenwecanfind ε > 0 and aparametric family {h(t, ·)}t∈[0,1] of homeomorphisms
of X into itself, satisfying the conditions of Theorem 5.3.8. As before, using (5.63)
we can find γ ∈ � such that

ϕ(γ(u)) < c + ε for all u ∈ E . (5.64)

Let ξ1 = h(1, ·)−1 ◦ γ ∈ C(E, X). For every u ∈ E0, we have

ξ1(u) = h(1, ·)−1(γ(u)) = h(1, ·)−1(γ∗(u)) = γ∗(u)

(see Theorem 5.3.8),

⇒ ξ1 ∈ �.

Since by hypothesis {E0, E, D} are linking sets, we have

ξ1(E) ∩ D �= ∅ (see Definition 5.4.1).

Therefore we can find u0 ∈ C such that ξ1(u0) ∈ D. Then we have

ϕ(γ(u0)) = ϕ(h(1, ξ1(u0))) � c + ε (see Theorem 5.3.8),
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which contradicts the choice of γ (see (5.64)). Therefore we obtain

D ∩ Kc
ϕ �= ∅ ,

which concludes the proof. �

Remark 5.4.5 We stress that in (5.62), equality is permitted. This is the so-called
“limiting case” of the minimax principle.

Now, with suitable choices in the linking sets, we obtain some well-known min-
imax theorems of critical point theory. We start with the so-called “mountain pass
theorem”.

Theorem 5.4.6 Let X be a Banach space and supposeϕ ∈ C1(X), u0, u1 ∈ X with
||u1 − u0|| > ρ > 0

max{ϕ(u0),ϕ(u1)} � inf{ϕ(u) : ||u − u0|| = ρ} = mρ,

c = inf
γ∈�

max
0�t�1

ϕ(γ(t)) with � = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}

andϕ satisfies theCc-condition. Then c � mρ and c is a critical value ofϕ.Moreover,
if c = mρ, then

∂Bρ(u0) ∩ Kc
ϕ �= ∅.

Proof Apply Theorem 5.4.4 to the linking sets

E0 = {u0, u1}, E1 = {(1 − t)u0 + tu1 : t ∈ [0, 1]} and D = ∂Bρ(u0)

(see Example 5.4.3(a)). �

The next minimax theorem is known as the “saddle point theorem”.

Theorem 5.4.7 Let X be a Banach space, X = Y ⊕ V with dim Y < +∞ and ϕ ∈
C1(X). Assume that there exists a ρ > 0 such that

sup
∂Bρ(0)∩Y

ϕ � inf
V

ϕ,

c = inf
γ∈�

max
u∈Bρ(0)∩Y

ϕ(γ(u)),

where � =
{
γ ∈ C(Bρ(0) ∩ Y, X) : γ|∂Bρ(0)∩Y = id|∂Bρ(0)∩Y

}
and ϕ satisfies the

Cc-condition. Then c � inf
V

ϕ and c is a critical value of ϕ. Moreover, if c = inf
V

ϕ,

then
V ∩ Kc

ϕ �= ∅ .
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Proof Apply Theorem 5.4.4 to the linking sets

E0 = ∂Bρ(0) ∩ Y, E = Bρ(0) ∩ Y and D = V

(see Example 5.4.3(b)). �

The thirdminimax theorem that we present is known as the “generalizedmountain
pass theorem”.

Theorem 5.4.8 Let X be a Banach space and suppose X = Y ⊕ V with dim Y <

∞, ϕ ∈ C1(X), v0 ∈ V with ||v0|| = 1, 0 < ρ < r1, 0 < r2,

E0 = {y + λv0 : y ∈ Y, (0 < λ < r1, ||y|| = r2) or (λ ∈ {0, r1}, ||y|| � r2)} ,

E = {y + λv0 : y ∈ Y, 0 � λ � r1, ||y|| � r2},
D = ∂Bρ(0) ∩ V,

sup
E0

ϕ � inf
D

ϕ,

c = inf
γ∈�

max
u∈E ϕ(γ(u)),

where � = {
γ ∈ C(E, X) : γ|E0 = id|E0

}
and ϕ satisfies the Cc-condition. Then

c � inf
D

ϕ and c is a critical value of ϕ. Moreover, if c = inf
D

ϕ, then

D ∩ Kc
ϕ �= ∅.

Proof Apply Proposition 3.5.4 to the linking sets {E0, E, D} (see Example 5.4.3
(c)). �

Next, we present a general principle that includes as a special case the mountain
pass theorem (see Theorem 5.4.6). We start with a definition.

Definition 5.4.9 Let X be a Banach space.

(a) For a curve γ ∈ C([0, 1], X), its “geodesic length” l(γ) is defined by

l(γ) =
∫ 1

0

||γ′(t)||
1 + ||γ(t)||dt.

Then given two points u0, u2 ⊆ X , their “geodesic distance” δ(u0, u1) is defined
by

δ(u1, u2) = inf
{
l(γ) : γ ∈ C1([0, 1], X) : γ(0) = u0, γ(1) = u1

}
.

(b) A closed set C ⊆ X separates two distinct points u0, u1 ∈ X if the two points
belong to disjoint connected components of X\C .
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Remark 5.4.10 If we consider γ0(t) = (1 − t)u0 + tu1, with t ∈ [0, 1] (the linear
path connecting u0 and u1), then we see that

δ(u0, u1) � l(γ0) � ||u1 − u0|| .

On the other hand, given any bounded set C ⊆ X , there is a constant ηC > 0
such that δ(u1, u0) � ηC ||u1 − u0|| for all u0, u1 ∈ C . So, on bounded sets the norm
metric and the geodesic metric are equivalent. If u0 = 0, then the infimum in the
definition of the geodesic metric is achieved on the line segment connecting u0 = 0
and u1. Therefore we have

δ(0, u1) =
∫ 1

0

||u1||
1 + t ||u1||dt = ln(1 + ||u1||).

It follows that normbounded and δ-bounded sets of X coincide. Consequently, any
δ-Cauchy sequence is norm Cauchy and hence it converges in both the norm and the
δ-metric. Therefore (X, δ) is a completemetric space. InDefinition 5.4.9(b), note that
the set X\C is open and locally connected. Therefore the connected components of
X\C are open sets. Being connected components of a Hausdorff topological spaces,
they are also closed sets (a closed partition of X\C). So, they are closed subsets of
X\C.

Theorem 5.4.11 Let X be a Banach space, ϕ : X → R a continuous Gâteaux dif-
ferentiable functional,ϕ′

G : X → X∗ continuous from X with the norm topology into
X∗ with the w∗-topology, u0, u1 ∈ X,

� = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
c = inf

γ∈�
max
t∈[0,1] ϕ(γ(t))

and suppose there exists a closed set C ⊆ X such that C ∩ ϕc separates u0, u1 (see
Definition 5.4.9(b)) where ϕc = {u ∈ X : ϕ(u) � c}. Then there exists a sequence
{un}n�1 ⊆ X such that

δ(un, c) → 0, ϕ(un) → c and (1 + ||un||)ϕ′
G(un) → 0 in X∗.

Proof Let Cc = C ∩ ϕc ⊆ X . By hypothesis this is a closed set separating u0 and
u1. Then from Remark 5.4.10, we can find open sets U0,U1 partitioning X\Cc such
that u0 ∈ U0 and u1 ∈ U1.

Let 0 < ε < 1
2 min{0, δ(u0,Cc), δ(u1,Cc)} and choose γ ∈ � such that

max
0�t�1

ϕ(γ(t)) < c + ε3

4
. (5.65)

We introduce the following two nonnegative numbers
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t0 = sup{t ∈ [0, 1] : γ(t) ∈ U0, δ(γ(t),Cc) � ε},
t1 = inf{t ∈ [t0, 1] : γ(t) ∈ U1, δ(γ(t),Cc) � ε}.

We have 0 � t0 < t1 < 1 and δ(γ(t),Cc) � ε for all t ∈ [t0, t1].
We introduce the following set of paths

�t0t1 = {ϑ ∈ C([t0, t1], X) : ϑ(t0) = γ(t0), ϑ(t1) = γ(t1)}.

We equip �t0t1 with the metric

d(ϑ1,ϑ2) = max
t0�t�t1

δ(ϑ1(t),ϑ2(t)).

Evidently, (�t0t1 , d) is a complete metric space. Letψ : X → R and ξ : �t0t1 → R

be defined by

ψ(u) = max{0, ε2 − εδ(u,Cc)} (5.66)

and ξ(ϑ) = max
t0�t�t1

{ϕ(ϑ(t)) + ψ(ϑ(t))}. (5.67)

We have ϑ(t0) = γ(t0) = u0 ∈ U0, ϑ(t1) = γ(t1) = u1 ∈ U1 and U0,U1 are the
connected components of X\Cc. So, there exists a t̂ ∈ (t0, t1) such thatϑ(t̂) ∈ ∂U0 ⊆
Cc. It follows that

ξ(ϑ) � ϕ(ϑ(t̂)) + ψ(ϑ(t̂)) � c + ε2 for all ϑ ∈ �t0t1 (see (5.65), (5.67)). (5.68)

Let γ̂ = γ|[t0,t1]. Then γ̂ ∈ �t0t1 and we have

ξ(γ̂) � max
0�t�1

[ϕ(γ(t)) + ψ(γ(t))] �
(
c + ε2

4

)
+ ε2 (see (5.65), (5.67)). (5.69)

Invoking Corollary 4.6.16, we can find ϑ̂ ∈ �t0t1 such that

ξ(ϑ̂) � ξ(γ̂), d(ϑ̂, γ̂) � ε/2, (5.70)

ξ(ϑ) � ξ(ϑ̂) − ε

2
d(ϑ, ϑ̂). (5.71)

Let M ⊆ [t0, t1] be the set defined by

M = {t ∈ [t0, t1] : ϕ(ϑ̂(t)) + ψ(ϑ̂(t)) = ξ(ϑ̂)} (5.72)

(that is, M is the set of points in [t0, t1] where the maximum in (5.67) with ϑ = ϑ̂ is
realized). Evidently, M �= ∅ and is closed (hence compact). We show that t0, t1 /∈ M .
To see this, note that δ(γ(t0),Cc) = δ(γ(t1),Cc) = ε and so ψ(γ(t0)) = ψ(γ(t1)) =
0. Hence
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ϕ(ϑ̂(tk)) + ψ(ϑ̂(tk)) � ϕ(γ(tk)) + ψ(γ(tk))

< c + ε2

4
for k = 0, 1 (see (5.65) and (5.69))

� ξ(ϑ̂) (see (5.68)).

So, indeed we have t0, t1 /∈ M .
We claim that M (see (5.71)) contains a point t ∈ [t0, t1] such that

(1 + ||ϑ̂(t)||)||ϕ′
G(ϑ̂(t))||∗ � 3ε

2
. (5.73)

Arguing by contradiction, suppose that there is no t ∈ M for which (5.73) holds.
Then we have

(1 + ||ϑ̂(t)||)||ϕ′
G(ϑ̂(t))||∗ >

3ε

2
for all t ∈ M. (5.74)

So, for every t ∈ M , we can find h(t) ∈ X such that

||h(t)|| = (1 + ||ϑ̂(t)||)−1, (5.75)〈
ϕ′
G(ϑ̂(t)), h(t)

〉
< −3ε

2
. (5.76)

Recall that ϕ′
G : X → X∗ is by hypothesis norm to w∗-continuous. So, we can

find a neighborhood V (t) of t in [t0, t1] such that

〈
ϕ′
G(ϑ̂(s)), h(t)

〉
< −3ε

2
for all s ∈ V (t) (see (5.76)). (5.77)

The family {V (t)}t∈M is an open cover ofM andM is compact. So, there is a finite
subcover {V (tk)}mk=1. Let {βk}mk=1 be a corresponding partition of unity and define

ĥ(t) =
m∑

k=1

βk(t)h(tk).

Then ĥ : M → X is a continuous map such that

〈
ϕ′
G(ϑ̂(t)), ĥ(t)

〉
< −3ε

2
for all t ∈ M (see (5.77)), (5.78)

||ĥ(t)|| � (1 + ||ϑ̂(t)||)−1 for all t ∈ M (see (5.75)). (5.79)

Since t0, t1 /∈ M ⊆ [t0, t1], we extend ĥ to a continuous map on [t0, t1] (for nota-
tional simplicity we continue to denote this extension by ĥ) such that
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ĥ(t0) = ĥ(t1) = 0, (5.80)

||ĥ(t)|| � (1 + ||ϑ̂(t)||)−1 for all t ∈ [t0, t1] (see (5.79)). (5.81)

Because of (5.80), we see that ϑ̂ + λĥ ∈ �t0t1 for all λ > 0. So, returning to (5.71)
we have

ξ(ϑ̂ + λĥ) � ξ(ϑ̂) − ε

2
d(ϑ̂ + λĥ, ϑ̂) for all λ > 0. (5.82)

Let tλ ∈ [t0, t1] such that

ξ(ϑ̂ + λĥ) = (ϕ + ψ)(ϑ̂(tλ) + λĥ(tλ)). (5.83)

On the other hand from (5.67) we have

ξ(ϑ̂) � (ϕ + ψ)(ϑ̂(tλ)). (5.84)

Returning to (5.82) and using (5.83) and (5.84), we obtain

(ϕ + ψ)(ϑ̂(tλ) + λĥ(tλ)) � (ϕ + ψ)(ϑ̂(tλ)) − ε

2
d(ϑ̂ + λĥ, ϑ̂) for all λ > 0

⇒ ϕ(ϑ̂(tλ) + λĥ(tλ)) − ϕ(ϑ̂(tλ)) � −ψ(ϑ̂(tλ) + λĥ(tλ))

+ψ(ϑ̂(tλ)) − ε

2
d(ϑ̂ + λh, ϑ̂). (5.85)

From (5.66) it is clear that

|ψ(u) − ψ(v)| � ε||u − v|| for all u, v ∈ X. (5.86)

Using (5.86) in (5.85) and recalling Remark 5.4.10, we obtain

ϕ(ϑ̂(tλ) + λĥ(tλ)) − ϕ(ϑ̂(tλ)) � −3ε

2
d(ϑ̂ + λĥ, ĥ) for all λ > 0,

⇒ 〈ϕ′
G(ϑ̂(tλ) + τλλĥ(tλ)), ĥ(tλ)〉 � −3ε

2

1

λ
d(ϑ̂ + λĥ, ĥ) for some τλ ∈ (0, 1) (5.87)

(use the mean value theorem).

We may assume tλ → t∗ ∈ M as λ → 0+. So, if in (5.87) we pass to the limit as
λ → 0+, then

〈
ϕ′
G(ϑ̂(t∗)), ĥ(t∗)

〉
> −3ε

2
max
t∈[t0,t1]

||ĥ(t)||
1 + ||ĥ(t)|| = −3ε

2
(see (5.80)).

But this contradicts (5.78). So, we conclude that (5.73) holds for some t ∈ M .
From (5.70) we have d(ϑ̂, γ̂) � ε

2 . Hence for t ∈ (t0, t1) ∩ M as in (5.73), we
have
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δ(ϑ̂(t),Cc) � ε

2
+ δ(γ(t),Cc) � 3ε

2
.

Recall that ξ(ϑ̂) � ξ(γ̂) (see (5.70)) and so

c + ε2 � ϕ(ϑ̂(t)) + ψ(ϑ̂(t)) � c + 5

4
ε2 (see (5.68), (5.69)). (5.88)

If we set u = ϑ̂(t), then

(1 + ||u||)||ϕ′
G(u)||∗ � 3ε

2
(see (5.72)),

δ(u,Cc) � 3ε

2
(since t ∈ (t0, t1)),

c � ϕ(u) � c + 5

4
ε2 (see (5.88)).

Let ε = 1
n and let un = ϑ̂(tn) as above for all n � 1. Then this is the desired

sequence in X . �

As a corollary of this theorem, we obtain the following extension of the mountain
pass theorem (see Theorem 5.4.6), if we exclude the limit case (see Remark 5.4.5).

Corollary 5.4.12 If X is a Banach space, ϕ : X → R is continuous, Gâteaux dif-
ferentiable,ϕ′

G : X → X∗ is continuous from X with the norm topology into X∗ with
the w∗-topology, u0, u1 ∈ X, u0 �= u1

c = inf
γ∈�

max
0�t�1

ϕ(γ(t))

with � = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
c > max{ϕ(u0),ϕ(u1)} (5.89)

and ϕ satisfies the Cc-condition, then c is a critical value of ϕ.

Proof Let C = X and note that (5.89) implies that ϕc separates u0, u1. So, we can
apply Theorem 5.4.11 and produce a Cc-sequence {un}n�1 ⊆ X . Since ϕ satisfies
the Cc-condition we may assume that un → u in X . Then

ϕ(u) = c and ϕ′(u) = 0.

The proof is now complete. �

The next corollary deals with the limiting case.

Corollary 5.4.13 If X is a Banach space, ϕ : X → R is continuous, Gâteaux dif-
ferentiable,ϕ′

G : X → X∗ is continuous from X with the norm topology into X∗ with
the w∗-topology, u0, u1 ∈ X, u0 �= u1
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c = inf
γ∈�

max
0�t�1

ϕ(γ(t))

with � = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
c = max{ϕ(u0),ϕ(u1)},

ϕ satisfies the Cc-condition and there exists a nonempty closed C ⊆ X separating
u0, u1 and ϕ(u) � c for all u ∈ C, then c is a critical value of ϕ.

Next we will prove a result producing multiple nontrivial critical points without
imposing symmetry conditions on the functional ϕ. The most powerful and general
results concerning multiple critical points can be obtained for functionals which are
invariant under a group of symmetries. This case will be examined in Sect. 5.6.

For the next multiplicity theorem, we employ a splitting condition near the origin,
known as “local linking at 0”.

Definition 5.4.14 Let X be a Banach space such that X = Y ⊕ V . We say that
ϕ ∈ C1(X) has a “local linking at 0” if there exists a ρ > 0 such that

ϕ(y) � 0 if y ∈ Y, ||y|| � ρ,

ϕ(v) � 0 if v ∈ V, ||v|| � ρ.

Remark 5.4.15 Note that the local linking condition implies that

〈
ϕ′(0), h

〉 = 0 for all h ∈ Y and
〈
ϕ′(0), h

〉 = 0 for all h ∈ V .

It follows that
〈
ϕ′(0), h

〉 = 0 for all h ∈ X and so ϕ′(0) = 0, that is, u = 0 is a
critical point of the functional ϕ. If X = H is a Hilbert space and ϕ ∈ C2(H) with
ϕ(0) = 0 and ϕ′′(0) ∈ L (H) is an isomorphism, then ϕ has a local linking at 0
(consider the positive negative spectrum of ϕ′′(0)).

We start with an auxiliary result which we will need in the sequel. In what follows
V : N → X (N = {u ∈ X : ϕ′(u) �= 0}) denotes the locally Lipschitz pseudogradi-
ent vector field produced for ϕ ∈ C1(X) in Theorem 5.1.4.

Lemma 5.4.16 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the PS-condition,
u0 ∈ X is a unique global minimizer of ϕ (that is, ϕ(u0) < ϕ(u) for all u �= u0),
v �= u0 is such that ϕ′(v) �= 0 and ϕ has no critical values in (ϕ(u0),ϕ(v)], then the
negative pseudogradient flow defined by

u′(t) = − V (u(t))

||V (u(t))||2 , v(0) = v, (5.90)

is defined on a maximal finite interval
[
0, η+(v)), t �→ ϕ(u(t)) is decreasing on this

interval and lim
t→η+(v)−

u(t) = u0.

Proof By replacing ϕ with ϕ1(u) = ϕ(u + u0) − ϕ(u0) for all u ∈ X , without any
loss of generality we may assume that u0 = 0 and ϕ(u0) = 0.
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From Proposition 5.3.4 we know that problem (5.90) has a unique C1-flow u(·)
existing on a maximal interval

[
0, η+(v)). We have

d

dt
ϕ(u(t)) = 〈

ϕ′(u(t)), u′(t)
〉

(by the chain rule)

=
〈
ϕ′(u(t)),− V (u(t))

||V (u(t))||2
〉

(see (5.90))

� −||ϕ′(u(t))||2∗
||V (u(t))||2 < −1

4
(see Definition 5.1.1). (5.91)

Sinceϕ(u0) = 0 and u0 is a global minimizer ofϕwe have η+(v) � 4ϕ(v). Also,
from (5.91) we see that

0 < ϕ(u(t)) < ϕ(v) for all t ∈ (0, η+(v)).

We will show that u(t) → 0 = u0 as t → η+(v)−.
First suppose that ϕ′(·) is bounded away from zero along the flow u(·). So, we

can find ξ0 > 0 such that

||ϕ′(u(t))||∗ � ξ0 for all t ∈ (0, η+(v))

⇒ ξ0 � ||V (u(t))|| for all t ∈ (0, η+(v)) (see Definition 5.1.1)

⇒
∫ η+(v)

0
||u′(t)||dt � 1

ξ0
η+(v) � 4ϕ(v)

ξ0
< +∞,

which contradicts Proposition 5.3.4.
Therefore the map u �→ ϕ′(u) is not bounded away from zero and so we can find

tn → η+(v)− such that

ϕ′(u(tn)) → 0 in X∗ as n → ∞.

Since {ϕ(u(tn))}n�1 ⊆ [0,ϕ(v)] and ϕ satisfies the PS-condition, by passing to
a suitable subsequence if necessary, we may assume that

u(tn) → û in X with ϕ′(û) = 0.

But by hypothesisϕ has no critical values in (0,ϕ(v)] (recall u0 = 0,ϕ(u0) = 0).
Hence û = 0. Therefore we conclude that

ϕ(u(t)) → ϕ(0) = 0 as t → η+(v)−.

Invoking Proposition 5.1.9, we have

u(t) → u0 = 0 as t → η+(v)−. �
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Nowwe are ready for themultiplicity result known as the “local linking theorem”.

Theorem 5.4.17 Let X be a Banach space such that X = Y ⊕ V with dim Y < ∞,
ϕ ∈ C1(X), ϕ(0) = 0, ϕ is bounded below, satisfies the PS-condition, inf

X
ϕ < 0

and has local linking at 0 (see Definition 5.4.14). Then ϕ has at least two nontrivial
critical points.

Proof FromProposition 5.1.8 (see also Proposition 5.1.14), we know that there exists
a u0 ∈ X such that

ϕ(u0) = inf
X

ϕ < 0 = ϕ(0). (5.92)

Hence u0 �= 0 and it is a critical point of ϕ. From the local linking hypothesis we
have that u = 0 is another critical point of ϕ. So, we already have two critical points
u0 and 0 and we are looking for a third.

Case 1. 0 < dim Y, 0 < dim V .
Without any loss of generality, we may assume that ρ = 1 < ||u0||. So, if y ∈ Y

with ||y|| = 1, we have ϕ′(y) �= 0. Invoking Lemma 5.4.16, we know that the flow
u(·) of the Cauchy problem (5.90) exists for a maximal interval

[
0, η+(y)) and

η+(y) � −4ϕ(u0).
For every λ ∈ R, let

◦
ϕ

λ= {u ∈ X : ϕ(u) < λ}.

We claim that we may assume that there exists a δ > 0 such that

◦
ϕ

ϕ(u0)+δ⊆ B ||u0 ||
2

(u0) =
{
u ∈ X : ||u − u0|| <

||u0||
2

}
. (5.93)

If no such δ > 0 exists, then from (5.92) we see that we can find a minimizing
sequence {un}n�1 ⊆ X for ϕ such that

||un − u0|| � ||u0||
2

for all n � 1.

From Corollary 4.6.16, we know that we can find another minimizing sequence
{vn}n�1 ⊆ X for ϕ such that

ϕ′(vn) → 0 in X∗ and ||vn − u0|| � ||u0||
4

for all n � 1. (5.94)

Since by hypothesis ϕ satisfies the PS-condition, we may assume that

vn → û in X.
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Then ϕ′(û) = 0 and ϕ(û) = inf
X

ϕ < 0 = ϕ(0). Hence û �= 0 and from (5.94) we

see that û �= u0. This is a second nontrivial critical point of ϕ and so we are done.
Therefore, we may assume that we can find δ > 0 such that (5.93) holds.

In (5.93) we choose δ > 0 small such that we can find a unique t (y) ∈ (0, η+(y))
for which we have

ϕ(u(t (y))) = ϕ(u0) + δ � 0. (5.95)

The uniqueness is a consequence of (5.91).
Let v0 ∈ V with ||v0|| = 1. We introduce the set

E = {u = y + λv0 : y ∈ Y,λ � 0, ||u|| � 1} (a half ball).

Then ∂E is a hemisphere with a basis at the equator. We consider γ0 ∈ C(∂E, X)

defined as follows

γ0(y) = y for all y ∈ Y with ||y|| � 1

(value of γ0 at the equator),

γ0(v0) = u0.

If u ∈ ∂E with u �= v0, then ||u|| = 1 and it can be uniquely written as

u = μy + λv0

with λ ∈ [0, 1], y ∈ Y, ||y|| = 1, μ ∈ (0, 1] (μ,λ and y are unique). Then we set

γ0(μy + λv0) = u(2λt (y)) for all λ ∈
[
0,

1

2

]
.

So, we have

γ0

(
μy + 1

2
v0

)
= u(t (y)).

From (5.93) and (5.95) it follows that

∥∥∥∥μy + 1

2
v0 − u0

∥∥∥∥ � ||u0||
2

.

Finally we set

γ0(μy + λv0) = (2λ − 1)u0 + (2 − 2λ)u(t (y)) for all λ ∈
[
1

2
, 1

]
.

As λ moves from 1
2 to 1, γ0 spans the line segment from u(t (y)) to u0 and so we

have
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||γ0(μy + λv0) − u0|| � ||u0||
2

for all λ ∈
[
1

2
, 1

]
.

Clearly γ0 is continuous and

ϕ|γ0(∂E) � 0 (see (5.95)).

Moreover, for some r � 1, we have

||γ0(u)|| � r > 0 for all ||u|| = 1.

We fix ϑ ∈ (0, r). As in Example 5.4.3(c), using a degree theoretic argument, we
can see that {E0 = ∂E, E, D = V ∩ ∂Bϑ(0)} are linking sets via γ0.

Let � = {γ ∈ C(E, X) : γ|∂E = γ0} and set

c = inf
γ∈�

max
u∈E ϕ(γ(u)) � 0 (see Theorem 5.4.4).

Invoking Theorem 5.4.4 we have that c is a critical value of ϕ. If c > 0, then
it corresponds to a critical point of ϕ, distinct from u0 and 0. If c = 0, then from
Theorem 5.4.4 we know that

Kc
ϕ ∩ D �= ∅

and so again we produce a second nontrivial critical point for the functional ϕ.
Therefore, in Case 1, it follows that there is a second nontrivial critical point of ϕ.

Case 2. dim Y = 0.
From the beginning of the proofwe already have a globalminimizer u0 ∈ X, u0 �=

0, of ϕ. By hypothesis, u = 0 is a local minimizer of ϕ and we may assume that it is
a strict local minimizer or otherwise we have a whole sequence of distinct nontrivial
critical points of ϕ. So, we can find ρ0 ∈ (0, ||u0||) such that

ϕ(u) � m0 > 0 for all ||u|| = ρ0. (5.96)

Also, we have
ϕ(u0) < 0 = ϕ(0). (5.97)

Since ϕ satisfies the PS-condition, relations (5.96) and (5.97) permit the use of
the mountain pass theorem (see Theorem 5.4.6) and so we have a second nontrivial
critical point for ϕ and we are done. This takes care of Case 2.

Case 3. dim V = 0 (in this case we may allow dim Y = +∞).
Again due to the local linking hypothesis, we may assume that u = 0 is a strict

local minimizer of ϕ. So, we can find ρ0 > 0 such that

ϕ(u) � −m0 < 0 for all ||u|| = ρ0.



5.4 Minimax Theorems 413

As before (see Case 2), applying the mountain pass theorem (see Theorem 5.4.6)
to the functional −ϕ, we produce a second nontrivial critical point for ϕ. �

Wehave a useful particular case of this theorem in the setting of Hilbert spaces and
C2-functionals. We start with a definition and a result, which is our first encounter
with Morse theory, which will be the topic of investigation in Chap.6.

Definition 5.4.18 Let H be a Hilbert space, ϕ ∈ C2(H) and u a critical point of ϕ

(a) We say that u is “nondegenerate” if ϕ′′(u) ∈ L (H) is invertible.
(b) The “Morse index” of u is defined to be the supremum of the dimensions of all

the vector subspaces of H on which ϕ′′(u) is negative definite.

The next result is known as the “Morse Lemma”.

Proposition 5.4.19 If H is a Hilbert space, ϕ ∈ C2(H) and u = 0 is a nondegen-
erate critical point of ϕ, then there exists a Lipschitz continuous homeomorphism h
of a neighborhood W of 0 onto a neighborhood U of 0 such that

h(0) = 0 and ϕ(h(u)) = ϕ(0) + 1

2
(ϕ′′(0)u, u)H for all u ∈ W.

Proof We consider the function

G(t, u) = (1 − t)

[
ϕ(0) + 1

2
(ϕ′′(0)u, u)H

]
+ tϕ(u) for all (t, u) ∈ [0, 1] × H.

Using G, we introduce the vector field g(t, u) defined by

g(t, u) =
{

−G ′
t (t, u)

G ′
u(t,u)

||G ′
u(t,u)||2 if u �= 0

0 if u = 0.
(5.98)

We claim that for a suitable neighborhood Br of the origin g(t, ·)|Br is Lipschitz.
To this end let

ψ(u) = ϕ(u) − ϕ(0) − 1

2
(ϕ′′(0)u, u)H .

We see that ψ(0) = 0,ψ′(0) = 0 and ψ′′(0) = 0. Therefore

ψ(u) =
∫ 1

0
(1 − t)(ϕ′′(tu)u, u)Hdt and ψ′(u) =

∫ 1

0
ψ′′(tu)u dt.

So, for every ε > 0, there exists a δ(ε) > 0 such that

||u|| � δ(ε) ⇒ |ψ(u)| � ε||u||2 and||ψ′(u)|| � ε||u|| . (5.99)

Since u = 0 is a nondegenerate critical point of ϕ, there is a c � 1 such that
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||u||
c

� ||ϕ′′(0)(u)|| � c||u|| for all u ∈ H. (5.100)

Note that for u �= 0, we have

g(t, u) = −ψ(u)
ϕ′′(0)u + tψ′(u)

||ϕ′′(0)u + tψ′(u)||2 .

Let ε = 1
2c and use (5.99) and (5.100) to infer that

||u|| � δ(ε) ⇒ |g(t, u)| � 2c(c + ε)ε||u||. (5.101)

Clearly g(t, 0) = 0. So, from (5.101) we infer that g(t, ·) is continuous at u = 0
and then from (5.98) it follows that g is continuous. Let r ∈ (0, δ(ε)) be such that

||u|| � r ⇒ ||ψ′(u)|| � 1. (5.102)

From (5.99), (5.100) and (5.102), we see that we can find ĉ > 0 such that

||g′
u(t, u)|| � ĉ for all u �= 0, ||u|| � r.

Then the mean value theorem implies

||g(t, u) − g(t, u′)|| � c0||u − u′|| for all u, u′ ∈ Br for some c0 > 0.

We consider the following abstract Cauchy problem

ξ′(t) = g(t, ξ(t)), ξ(0) = v. (5.103)

Proposition 5.3.4 implies that problem (5.103) admits a unique solution ξ(t) =
ξ(v)(t) for all v ∈ W = neighborhood of the origin. We have

d

dt
G(t, ξ(t)) = G ′

t (t, ξ(t)) + (G ′
u(t, ξ(t)), ξ

′(t))H = 0 (see (5.88) and (5.103))

⇒ G(0, v) = G(1, ξ(1))

⇒ ϕ(0) + 1

2
(ϕ′′(0)v, v)H = ϕ(ξ(v)(1)).

Setting h(v) = ξ(v)(1) we have the desired homeomorphism. �

Let H+ be the subspace of H such that ϕ′′(0)|H+ > 0 and H− be the subspace of
H such that ϕ′′(0)|H− < 0. Recalling that u = 0 is a nondegenerate critical point of
ϕ, we have

H = H− ⊕ H+ .



5.4 Minimax Theorems 415

Let P+ be the orthogonal projection onto H+. If on H we use the equivalent norm
| · | defined by

|u| = |(ϕ′′(0)u, u)H | for all u ∈ H (see (5.100)),

then we see that we can equivalently rewrite the conclusion of the Proposition 3.4.19
as

ϕ(h(u)) = ϕ(0) + 1

2
|P+(u)|2 + 1

2
|(I − P+)u|2.

Then it is clear that the splitting of local linking (see Definition 5.4.14) holds and
so using Theorem 5.4.17, we have the following multiplicity result.

Theorem 5.4.20 If H is aHilbert space,ϕ ∈ C2(H) is bounded frombelow, satisfies
the PS-condition, u = 0 is a nondegenerate critical point ofϕwith finiteMorse index
and inf ϕ < 0 = ϕ(0), then ϕ has at least two nontrivial critical points.

We have two generalizations of Theorem 5.4.17. In the first we drop the require-
ment that dim Y < ∞. In the second, we see what happens ifϕ is not bounded below.
To achieve these generalizations, we need some preparation.

So, let X be a Banach space and assume that

X = Y ⊕ V .

Let {Yn}n�1 and {Vn}n�1 be increasing sequences of subspaces of Y and V respec-
tively such that

Y =
⋃
n�1

Yn and V =
⋃
n�1

Vn .

Given a multi-index α = (α1,α2) ∈ N
2, and ϕ ∈ C1(X), we set

Xα = Yα1 ⊕ Vα2 and ϕα = ϕ|Xα
.

On N
2 we consider the coordinate ordering, that is,

α � α′ if and only if α1 � α′
1 and α2 � α′

2.

Let αn = (in, jn), n � 1, be a sequence of multi-indices. If in → ∞, jn → ∞,
we say that the sequence is “admissible”.

The next definition generalizes the PS-condition.

Definition 5.4.21 Let ϕ ∈ C1(X) and c ∈ R. We say that ϕ satisfies the PS∗
c -

condition if every sequence {uαn }n�1 ⊆ X with {αn}n�1 ⊆ N
2 admissible such that

uαn ∈ Xαn , ϕ(uαn ) → c and ϕ′
αn

(un) → 0 in X∗
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admits a strongly convergent subsequence. If ϕ satisfies the PS∗
c -condition for every

c ∈ R, then we say that ϕ satisfies the PS∗-condition.

Remark 5.4.22 If Yn = X and Vn = {0} for all n � 1, then Definition 5.4.21 reduces
to the usual PS-condition (local and global, see Definition 5.1.6(a)).

Using this notation, we obtain the two generalizations of Theorem 5.4.17 method
earlier. The results are due to Li and Willem [269], where the interested reader can
find their proofs.

Theorem 5.4.23 Let ϕ ∈ C1(X) be a functional that satisfies the following condi-
tions:

(i) ϕ has a local linking at 0;
(ii) ϕ satisfies the PS∗-condition;
(iii) ϕ is bounded (that is, maps bounded sets to bounded sets);
(iv) ϕ is bounded below and c = inf

X
ϕ < 0.

Then ϕ has at least two nontrivial critical points.

Theorem 5.4.24 Let ϕ ∈ C1(X) be a functional that satisfies the following condi-
tions:

(i) ϕ has a local linking at 0 and Y �= {0};
(ii) ϕ satisfies the PS∗-condition;
(iii) ϕ is bounded (that is, maps bounded sets to bounded sets);
(iv) for every m � 1, if u ∈ Ym ⊕ V and ||u|| → ∞, then ϕ(u) → −∞.

Then ϕ has at least one nontrivial critical point.

Now we turn our attention to functionals of the form

j = ϕ + ψ,

where ϕ ∈ C1(X) and ψ : X → R = R ∪ {+∞} is convex, lower semicontinuous
and not identically +∞ (that is, ψ ∈ �0(X)).

We start with a general minimax principle.

Theorem 5.4.25 Let j = ϕ + ψ be as above and assume that j satisfies the GPS-
condition (see Definition 5.1.23). Suppose that {E0 = ∂E, E, D} are linking sets via
γ∗ ∈ C(∂E, X), with C compact and that the following conditions are fulfilled:

sup
E0

j < inf
D

j,

+∞ > c = inf
γ∈�

max
u∈C j (γ(u)), where � = {γ ∈ C(E, X) : γ|E0=∂E = γ∗} .

Then c � inf
D

j and c is a critical value of j (see Definition 5.1.21).
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Proof From Definition 5.4.1 and the minimax expression for c, we have

c � inf
D

j.

On � we consider the supremum metric d∞ defined by

d∞(γ, ξ) = max
u∈E ||γ(u) − ξ(u)|| for all γ, ξ ∈ �.

Then (�, d∞) is a completemetric space. Let η : � → R = R ∪ {+∞} be defined
by

η(γ) = sup
u∈E

j (γ(u)).

Claim 1. η is lower semicontinuous.
We need to show that for every μ ∈ R, the set

ημ = {γ ∈ � : η(γ) � μ}

is d∞-closed. So, let {γn}n�1 ⊆ ημ and assume that γn
d∞→ γ. Then for all v ∈ C we

have
j (γn(v)) � η(γn) � μ for all n � 1.

Note that γn(v) → γ(v) and j is lower semicontinuous. So,

j (γ(v)) � lim inf
n→∞ j (γn(v)) � μ for all v ∈ C

⇒ η(γ) � μ, hence γ ∈ ημ.

This proves Claim 1.

Let dom η = {γ ∈ � : η(γ) < +∞} (the effective domain of η).

Claim 2. For every γ ∈ dom η, j ◦ γ is continuous on E .
Note that ψ is bounded on γ(E). Since ψ is convex and lower semicontinuous, it

follows that it is bounded and lower semicontinuous on conv γ(E). It suffices to show
thatψ|conv γ(E) is continuous. Let u0 ∈ conv γ(E) and letU be an open neighborhood
of u0 such that

ψ(u) � μ < ∞ for all u ∈ U ∩ conv γ(C). (5.104)

Without any loss of generality, we may assume that

u0 = 0 and ψ(u0) = 0. (5.105)

If t ∈ (0, 1] and u ∈ tU ∩ conv γ(E), then
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ψ(u) � (1 − t)ψ(0) + tψ
(u
t

)
= tψ

(u
t

)
� tμ (see (5.104), (5.105))

⇒ lim sup
u→0

u∈conv γ(E)

ψ(u) � 0. (5.106)

On the other hand, from the lower semicontinuity of ψ, we have

0 � lim inf
u→0

u∈convγ(E)

ψ(u). (5.107)

From (5.106) and (5.107) we conclude the continuity of ψ|conv γ(E). Therefore
ψ ◦ γ|E is continuous and this proves Claim 2.

Arguing by contradiction, suppose c is not a critical value of j and let

ε0 = inf
D

j − max
E

j > 0.

Let ε ∈ (0, ε0) be as in Theorem 5.3.16 and choose ε′ ∈ (0, ε) such that

max
u∈E0

j (u) < c − ε′.

Using the Ekeland variational principle (see Theorem 4.6.14 and recall that by
Claim 1, ϑ(·) is lower semicontinuous), we can find γ ∈ � such that

ϑ(γ) � c + ε′ and − εd∞(γ, ξ) � ϑ(ξ) − ϑ(γ) for all ξ ∈ �. (5.108)

Let K = γ(E) and K0 = {γ(u) : u ∈ E, j (γ(u)) ∈ [c − ε′, c + ε′]}.
The continuity of j ◦ γ on E (see Claim 2) implies that K0 is compact and the

choice of ε′ > 0 implies that
E0 ∩ K0 = ∅.

Note that K0 ⊆ j c+ε\ j c−ε. Let {ht (·) = h(t, ·)}t∈[0,1] be the deformation postu-
lated by Theorem 5.3.16 and let ξ = ht ◦ γ. Then ξ ∈ � and d∞(γ, ξ) � t . Note
that

ϑ(ξ) = max
u∈E j (ξ(u)) > c − ε′.

Therefore

ϑ(ξ) = max
u∈E j (ξ(u)) = max

u∈E j ((ht ◦ γ)(u)) = max
v∈K0

j (ht (v)).

Theorem 5.3.16(c) implies that

ϑ(ξ) − ϑ(γ) = max
v∈K0

j (ht(v)) − max
u∈E0

j (u) � −2εt. (5.109)
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Then (5.108) and (5.109) lead to a contradiction (recall d∞(γ, ξ) � t). Therefore
c is a critical value of ϕ. �

As before, with suitable choices of the linking sets {E0, E, D}, we have the clas-
sical minimax theorems for functionals of the form

j = ϕ + ψ with ϕ ∈ C1(X),ψ ∈ �0(X). (5.110)

Theorem 5.4.26 (Extended Mountain Pass Theorem) Let j = ϕ + ψ be as in
(5.110). Assume that j satisfies the GPS-condition and there exist u1 ∈ X and
ρ ∈ (0, ||u1||) such that

max{ j (u1), j (0)} < inf{ j (u) : ||u|| = ρ} = mρ

and c = inf
γ∈�

max
t∈[0,1] j (γ(t)) with � = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u1}.

Then c � mρ and c is a critical value of j .

Corollary 5.4.27 If j = ϕ + ψ is as in (5.110), ϕ satisfies the GPS-condition, 0
is a local minimizer of j (·) and there exists a u �= 0 such that j (u) � j (0), then
j (·) has a critical point distinct from u and 0. In particular, if j (·) has two local
minimizers, then j (·) has at least three distinct critical points.
Theorem 5.4.28 (Extended Saddle Point Theorem) Let j = ϕ + ψ be as in (5.110).
Assume that j satisfies the GPS-condition, X = Y ⊕ V with dim Y < ∞ and there
exists a ρ > 0 such that

max
∂Br (0)∩Y

j < inf
V

j

and c = inf
γ∈�

max
u∈E j (γ(u)) with E = B̄r (0) ∩ Y and

� = {
γ ∈ C([0, 1], X) : γ|∂Br (0)∩Y = id|∂Br (0)∩Y

}
.

Then c � inf
V

j and c is a critical value of j .

Theorem 5.4.29 (Extended Generalized Mountain Pass Theorem) Let j = ϕ + ψ
be as in (5.110). Assume that j satisfies the GPS-condition and X = Y ⊕ V with
dim Y < +∞. For 0 < ρ < r1, 0 < r2 and v0 ∈ V with ||v0|| = 1, we define

E0 = {y + λv0 : y ∈ Y and λ ∈ {0, r1} or ||y|| = r2},
E = {y + λv0 : y ∈ Y,λ ∈ [0, r1], ||y|| � r2},
D = ∂Bρ(0) ∩ V .
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Assume that
max
E0

j < inf
D

j

and set c = inf
γ∈�

max
u∈E j (γ(u)) with � = {γ ∈ C(E, X) : γ|E0 = id|E0}. Then c �

inf
D

j and c is a critical value of j (·).

5.5 Critical Points Under Constraints

In many situations, we have to find critical points of ϕ ∈ C1(X) in the presence
of constraints, that is, critical points of ϕ|M where M ⊆ X is a set of constraints.
Typically M is a smooth manifold of X (= Banach space) of the form

M = {u ∈ X : gk(u) = 0, k = 1, . . . ,m} with gk ∈ C1(X).

Definition 5.5.1 Let X be a Banach space and M ⊆ X . We say that M is a Cn-
manifold of codimension m (n,m ∈ N) if for every u0 ∈ M we can find an open
neighborhood U of u0 and a function g ∈ Cn(U,Rm) such that

(a) g′(u) is surjective for every u ∈ U ;
(b) M ∩U = {u ∈ U : g(u) = 0}.
Remark 5.5.2 Of special interest are manifolds modeled on a subspace of X of
codimension1. In this caseM = g−1(0)with g ∈ C1(X) and g′(u) �= 0 for allu ∈ M .
For example, if X is a reflexive Banach space with locally uniformly convex dual (in
particular, a Hilbert space), then the norm || · || is Fréchet differentiable on X\{0}
and if g(u) = ||u||2 − r2, then g ∈ C1(X) and

M = g−1(0) = ∂Bρ(0) = {u ∈ X : ||u|| = ρ}

is a C1-manifold of codimension 1. This situation arises in eigenvalue problems.
We need to explain what “critical point of ϕ|M” means. To this end, we recall the

following basic notion from Differential Geometry.

Definition 5.5.3 Let X be a Banach space, M ⊆ X aCn-manifold and u0 ∈ M . The
“tangent space to M at u0”, denoted by Tu0M , is defined to be the set of all tangent
vectors γ′(0) to M at u0, where γ : (−ε, ε) → M is a C1-path such that γ(0) = u0
and γ′(t) �= 0 for all t ∈ (−ε, ε).

Remark 5.5.4 In fact there are other equivalent ways to define the tangent space (the
coordinate approach, the derivation approach and the ideal approach). The above
definition permits us to think of the tangent vector as the velocity of a curve in the
surface passing through the given point.
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Now we can define what we mean by a critical point of ϕ|M .
Definition 5.5.5 Let X be a Banach space, M ⊆ X a C1-manifold and ϕ ∈ C1(X).
We say that u0 ∈ M is a “critical point of ϕ|M” if and only if

〈
ϕ′(u0), h

〉 = 0 for all h ∈ Tu0M.

Remark 5.5.6 So, according to this definition, u0 ∈ M is a critical ofϕ|M if and only
if

d

dt
ϕ(γ(t))|t=0 = 0

for every C1-curve γ : (−ε, ε) → X passing through u0 (see Definition 5.5.3).

One of the main results concerning critical points of constrained functionals is
the so-called “Lagrange multiplier theorem”, which says that the critical points of a
constrained functional are critical points of a related unconstrained functional.

To prove the Lagrange multiplier rule, we will need the following simple result
from linear functional analysis.

Lemma 5.5.7 If X,Y are Banach spaces, A ∈ L (X,Y ) is surjective, ker A =
N (A) is complemented in X and u∗ ∈ X∗, then the following statements are equiv-
alent:

(a) ker A ⊆ ker u∗.
(b) There exists a y∗ ∈ Y ∗ such that u∗ = y∗ ◦ A.

Proof (a) =⇒ (b) : Let y ∈ Y . Then the surjectivity of A implies that A−1(y) �= ∅
and it is closed. Moreover, if u1, u2 ∈ A−1(y), then u1 − u2 ∈ ker A ⊆ ker u∗ and
so 〈u∗, u1〉X = 〈u∗, u2〉X . Let y∗(y) be the common value of u∗ on the closed set
A−1(y). Note that u∗ = y∗ ◦ A. So, it remains to show that y∗ is linear and continuous
(that is, y∗ ∈ Y ∗).

First we check linearity. If y = A(u), then y∗(y) = 〈u∗, u〉X and so for λ ∈ R,
we have

λy = λA(y) = A(λy)

⇒ y∗(λy) = 〈
u∗,λu

〉
X = λ

〈
u∗, u

〉
X = λy∗(y).

Also, if y1 = A(u1), y2 = A(u2), then

y1 + y2 = A(u1) + A(u2) = A(u1 + u2)

⇒ y∗(y1 + y2) = 〈
u∗, u1 + u2

〉
X = 〈

u∗, u1
〉
X + 〈

u∗, u2
〉
X = y∗(y1) + y∗(y2).

Therefore we conclude that y → y∗(y) is linear.
Let V be a topological complement of ker A, that is,

V is a closed subspace of X and X = ker A ⊕ V .
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Note that by the Banach theorem, A|V is an isomorphism. Also, we have

y∗(y) = 0 if and only if y = A(u) with u ∈ ker u∗

⇒ ker y∗ = A(ker u∗). (5.111)

Clearly we have
A|V (V ∩ ker u∗) ⊆ A(ker u∗). (5.112)

Let y ∈ A(ker u∗). We can find u ∈ ker u∗ such that y = A(u). Let u = u1 + u2
with u1 ∈ ker A and u2 ∈ V . Since by hypothesis ker A ⊆ ker u∗, we have 〈u∗, u〉 =
〈u∗, u2〉 and so

u2 ∈ V ∩ ker u∗ and y = A(u) = A(u2)

⇒ A(ker u∗) ⊆ A|V (V ∩ ker u∗). (5.113)

From (5.112) and (5.113) we have

A(ker u∗) = A|V (V ∩ ker u∗)
⇒ ker y∗ = A|V (V ∩ ker u∗) (see (5.111))

⇒ ker y∗ is closed (since A|V is an isomorphism and V ∩ ker u∗ is closed)
⇒ y∗ ∈ Y ∗.

(b) =⇒ (a) : Obvious. �

Remark 5.5.8 The functional y∗ ∈ Y ∗ is unique. Indeed, suppose there is a z∗ �= Y ∗,
z∗ �= y∗, such that u∗ = y∗ ◦ A = z∗ ◦ A. Let y ∈ Y such that 〈y∗, y〉Y �= 〈z∗, y〉Y .
If y = A(u) with u ∈ X , then

〈
u∗, u

〉
X

= 〈
y∗, A(u)

〉
Y

�= 〈
z∗, A(u)

〉
Y

= 〈
u∗, u

〉
X

a contradiction. This result is an infinite-dimensional generalization of a result from
linear algebra, which says that if h, u1, · · · , un are linear functionals on a vector

space X such that
n⋂

k=1
ker uk ⊆ ker h, then h is a linear combination of the u′

ks. This

result is a useful tool in the study of the weak topology on a Banach space.

Now we can state the “Lagrange Multipliers Theorem”.

Theorem 5.5.9 Let X,Y be Banach spaces, U ⊆ X be a nonempty open set, ϕ ∈
C1(U ), g ∈ C1(U,Y ). M = g−1(0), u0 ∈ M is a critical point of ϕ|M , g′(u0) ∈
L (X,Y ) is surjective and ker g′(u0) is complemented in X. Then there exists a
unique y∗ ∈ Y ∗ such that

(ϕ − y∗ ◦ g)′(u0) = 0.
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Proof If ker g′(u0) ⊆ ker ϕ′(0), then from Lemma 5.5.7 (see also Remark 5.5.8), we
know that there exists a unique y∗ ∈ Y ∗ such that

ϕ′(u0) = y∗ ◦ g′(u0) = (y∗ ◦ g)′(u0).

So, we see that in order to prove the theorem, it suffices to show that

ker g′(u0) ⊆ ker ϕ′(u0). (5.114)

We know that ker g′(u0) ⊆ X is a closed subspace and so a Banach space too. By
hypothesis ker g′(u0) admits a complementary space V . This too is a Banach space.
Let ξ : ker g′(u0) × V → X be defined by

ξ(z, v) = z + v for all z ∈ ker ϕ′(u0) and all v ∈ V .

This map is a linear, continuous bijection, hence by the Banach theorem it is an
isomorphism. Let Û = ξ−1(U ) ⊆ ker g′(u0) × V be open and ĝ = g ◦ ξ : Û → Y .
We have

ĝ′(z, v)(h, w) = g′(ξ(z, v)) ◦ ξ′(z, v)(h, w)

= g′(z + v)(h + w). (5.115)

Also, we know that

ĝ′(z, v)(h, w) = ĝ′
1(z, v)h + ĝ′

2(z, v)w (5.116)

with ĝ′
k(z, v), k = 1, 2, being the partial derivatives with respect to the two variables.

From (5.115) and (5.116), we have

ĝ1(z, v) = g′(z + v)|ker g′(u0) and ĝ′
2(z, v) = g′(z + v)|V .

So, if u0 = ū0 + û0 with ū0 ∈ ker g′(u0) and û0 ∈ V , we have

ĝ′
1(ū0, û0) = g′(u0)|ker g′(u0) and ĝ′

2(ū0, û0) = g′(u0)|V
⇒ ĝ′

1(ū0, û0) = 0 and ĝ′
2(ū0, û0) ∈ L (V,Y ) is an isomorphism.

So, we can apply the Implicit Function Theorem. According to this theorem, there
exist an open set Û ′ ⊆ Û such that (ū0, û0) ∈ Û ′, an open neighborhood V of u0
and a C1-map s : V → V such that the following properties are equivalent:

•(z, v) ∈ Û ′ and ĝ(z, v) = 0

•z ∈ V and v = s(z).

We consider the map η : V → R defined by
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η(z) = (ϕ ◦ ξ)(z, h(z)).

Evidently, η has a local minimizer at ū0. Hence

η′(ū0) = 0. (5.117)

Let w ∈ ker g′(u0). Then
〈
η′(ū0), w

〉 = ϕ′ (ξ(ū0, s(ū0)) ◦ ξ′(ū0, s(ū0))
) ◦ (id|ker g′(u0), s

′(ū0)
)
w

= 〈
ϕ′(u0), ξ(w, s ′(ū0)w)

〉
= ϕ′(u0)(w + s ′(ū0)w). (5.118)

But for z ∈ V , we have ĝ(z, h(z)) = 0 and so

ĝ′
1(ū0, û0)h + ĝ2(ū0, û0) ◦ s ′(ū0)w = 0.

Because ĝ′
1(ū0, û0) = 0 and ĝ′

2(ū0, û0) ∈ L (V,Y ) is invertible, we have

s ′(ū0) = 0

⇒ 〈
η′(ū0), w

〉 = 〈
ϕ′(u0), w

〉
for all w ∈ ker g′(u0) (see (5.118))

⇒ 〈
ϕ′(u0), w

〉 = 0 for all w ∈ ker g′(u0) (see (5.117))

⇒ inclusion (5.114) holds and this proves the theorem.

The proof is now complete. �

Remark 5.5.10 In aHilbert space setting, ker g′(u0) is always complemented. If Y =
R, then the surjectivity condition on g′(u0) is equivalent to the nondegeneracy con-
dition g′(u0) �= 0. If Y = R

m , then M = {u ∈ X : gk(u) = 0 for all k = 1, · · · ,m}
(with gk ∈ C1(X)) is a C1-manifold of codimensionm. According to Theorem 5.5.9
we can find {λk}mk=1 ⊆ R such that

ϕ′(u0) =
m∑

k=1

λkg
′
k(u0).

If in addition X = R
l with l ∈ N, then

∇ϕ(u0) =
m∑

k=1

λk∇gk(u0),

that is, ∇ϕ(u0) is a linear combination of the ∇gk(u0)k = 1, · · · ,m. The constants
λ1, · · · ,λm are called “Lagrangemultipliers”. The surjectivity of g′(u0) is equivalent
to the linear independence of the gradients {∇gk(u0)}mk=1.
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Now letM ⊆ X be aC1-manifold,ϕ ∈ C1(X) and u0 ∈ M be a critical point ofϕ.
Then u0 is also a critical point ofϕ|M (seeDefinition 5.5.5). Indeed, if γ : [0, 1] → X
is a C1-path passing from u0, then from the chain rule we have

d

dt
ϕ(γ(t))|t=0 = 〈

ϕ′(γ(t)), γ′(t)
〉 |t=0 = 〈

ϕ′(u0), γ′(0)
〉 = 0

(see Remark 5.5.6). The converse is not in general true. That is, a critical point of
ϕ|M need not be a critical point of the unconstrained functional. This leads to the
following definition.

Definition 5.5.11 Let X be a Banach space,ϕ ∈ C1(X) and M ⊆ X aC1-manifold.
If a given critical point u0 ofϕ|M is also a critical point of the unconstrained functional
ϕ, then we say that M is a “natural constraint for the critical point u0 ∈ M”. If M is a
natural constraint for every critical point u0 of ϕ|M , then we say that M is a “natural
constraint for ϕ”.

Remark 5.5.12 So, M is a natural constraint for ϕ if the “Lagrange multiplier” y∗ ∈
Y ∗ in Theorem 5.5.9 is zero. If Kψ denotes the set of critical points of a functional ψ,
then M is a natural constraint for ψ if and only if Kψ|M = Kψ ∩ M . A special case
of interest is when ϕ is indefinite (that is, inf

X
ϕ = −∞ and sup

X
ϕ = +∞). In that

case, it may be a good idea to look for critical points of ϕ on a natural constraint M ,
because it can happen that ϕ|M is bounded. Then we can try to find critical points of
ϕ as extrema (minima or maxima) of ϕ|M .
Definition 5.5.13 Let X be a Banach space and ϕ ∈ C1(X). The “Nehari manifold”
of ϕ is the set Nϕ = {u ∈ X : 〈ϕ′(u), u

〉 = 0, u �= 0}.
Proposition 5.5.14 Let X be a Banach space, ϕ ∈ C2(X) and Nϕ is the Nehari
manifold ofϕwhich is assumed to be nonempty and satisfies the following conditions:

(i) there exists a ρ > 0 such that Nϕ ∩ Bρ = ∅ (Bρ(0) = {u ∈ X : ||u|| < ρ});
(ii)

〈
ϕ′′(u)u, u

〉 �= 0 for all u ∈ Nϕ.

Then M is a natural constraint for ϕ.

Proof Let ψ(u) = 〈
ϕ′(u), u

〉
for all u ∈ X . Then ψ ∈ C1(X) and Nϕ = ψ−1(0)\{0}.

For every u ∈ Nϕ we have

〈
ψ′(u), u

〉 = 〈
ϕ′′(u)u, u

〉 + 〈
ϕ′(u), u

〉 = 〈
ϕ′′(u)u, u

〉 �= 0 (5.119)

(see Definition 5.5.13 and hypothesis(i i))

⇒ ψ′(u) �= 0 for all u ∈ Nϕ.

This fact and hypothesis (i) imply that Nϕ is a C1-manifold of codimension 1
(see Definition 5.5.1 and Remark 5.5.2). If u0 is a critical point of ϕ|M , then from
Theorem 5.5.9 we can find λ ∈ R such that
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ϕ′(u0) = λψ′(u0)
⇒ 〈

ϕ′(u0), u0
〉 = λ

〈
ψ′(u0), u0

〉
⇒ 0 = ψ(u0) = λ

〈
ψ′(u0), u0

〉
and

〈
ψ′(u0), u0

〉 �= 0 (see (5.119))

⇒ λ = 0

⇒ ϕ′(u0) = 0 and so u0 is a critical point of the unconstrained functional ϕ.

This proves that Nϕ is a natural constraint for ϕ. �

Related to the problem of finding critical points under constraints is the so-called
“fibering method”. This method is based on the representation of a solution u of an
equation in a Banach space X , in the form

u = tv (5.120)

with t a parameter, t �= 0 and t ∈ I ⊆ R an open set and v ∈ X\{0} satisfying

ξ(t, v) = c �= 0 (5.121)

with ξ being a function satisfying a sufficiently general condition. One important
special fibering function is ξ(t, v) = ||v||, and then c = 1, that is, the constraint set
is ∂B1(0) = {v ∈ X : ||v|| = 1}. Then we look for a solution of our problem in the
form (5.120) with t ∈ R and v ∈ ∂B1(0). So, in the fibering method, we embed the
space X of the original problem into the larger space R × X and investigate the new
problem of solvability of the equation under the constraint (5.121).

So, let X be a Banach space and ϕ ∈ C1(X\{0}). Let

ϕ̂(t, v) = ϕ(tv) for all t ∈ R, v ∈ X. (5.122)

We consider ϕ̂ restricted on I × ∂B1(0) with I ⊆ R open.

Proposition 5.5.15 If X has a Fréchet differentiable norm on X\{0} and (t, v) ∈
(I\{0}) × ∂B1(0) is a critical point of ϕ̂|I×∂B1(0) then u = tv is a critical point of ϕ.

Proof From the Lagrange multiplier rule (see Theorem 5.5.9), we can find λ,μ ∈ R

with (λ,μ) �= (0, 0) such that

ϕ̂′
t (t, v) = 0 and λϕ̂′

v(t, v) = μ
J (v)

||v|| (5.123)

with J : X → X∗ being the duality map (see Proposition 2.7.32). From (5.123) we
have

λ
〈
ϕ̂′

v(t, v), v
〉 = λt

〈
ϕ′(tv), v

〉 = λtϕ̂′
t (t, v) = μ = 0

(recall that 〈J (v), v〉 = ||v||2 and see (5.123)).
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Hence λ �= 0 and from (5.123) we have

0 = ϕ̂′
v(t, v) = tϕ′(tv)

⇒ ϕ′(u) = 0 with u = tv (since t �= 0).

The proof is now complete. �

Remark 5.5.16 We can go beyond the norm fibering functional and consider differ-
entiable functions ξ(t, v) such that

〈
ξ′
v(t, v), v

〉 �= tξt (t, v) for all (t, v) ∈ (I\{0}) ×
(X\{0}) such that ξ(t, v) = c �= 0.

5.6 Critical Points Under Symmetries

In this section we look for multiple critical points of a functionalϕ. Suchmultiplicity
results can be obtained ifϕ exhibits symmetries, that is, if there is a topological group
acting continuously on X and the functional ϕ is invariant under this group action.

Definition 5.6.1 Let X be a Banach space and G a topological group. A “represen-
tation” of G over X is a family {S(g)}g∈G ⊆ L (X) such that

(a) S(e) = id (here e denotes the identity element of G);
(b) S(g1g2) = S(g1)S(g2) for all g1, g2 ∈ G;
(c) the map (g, u) �→ S(g)u is continuous from G × X into X .

We say that the representation is “isometric” if for each g ∈ G, S(g) is an isometry,
that is, ||S(g)u|| = ||u|| for all g ∈ G and all u ∈ X.

A set C ⊆ X is said to be “invariant” (or “G-invariant”) if

S(g)C ⊆ C for all g ∈ G.

A functional ϕ : X → R is said to be “invariant” (or “G-invariant”) if

ϕ ◦ S(g) = ϕ for all g ∈ G.

A map h : X → X is said to be “equivariant” (or “G-equivariant”) if

S(g) ◦ h = h ◦ S(g) for all g ∈ G.

The set of invariant (or fixed) points of X is the set

� = XG = {u ∈ X : S(g)u = u for all g ∈ G}.
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Remark 5.6.2 Often we identify S(g) with g, write gu instead of S(g)u and speak
of the “(linear) action” of G on X . For notational simplicity, we follow this practice
here.

First we establish some useful consequences of the action of G on X , on the
derivative of ϕ and on the corresponding pseudogradient vector field.

In what follows, X is a Banach space and G is a topological group acting on X .
Additional hypotheses will be introduced as needed.

Proposition 5.6.3 If ϕ ∈ C1(X) is invariant, then

(a)
〈
ϕ′(gu), h

〉 = 〈
ϕ′(u), g−1h

〉
for all g ∈ G and all u, h ∈ X;

(b) if the action of G is isometric, then ||ϕ′(gu)||∗ = ||ϕ′(u)||∗ for all g ∈ G and all
u ∈ X.

Proof (a) From Definition 5.5.1 we see that

S(g)−1 = S(g−1) for all g ∈ G.

We have

〈
ϕ′(gu), h

〉 = lim
t→0

1

t
[ϕ(g(u) + th) − ϕ(g(u))]

= lim
t→0

1

t

[
ϕ(g(u + tg−1h)) − ϕ(g(u))

]

= lim
t→0

1

t

[
ϕ(u + tg−1h) − ϕ(u)

]
(since ϕ is invariant)

= 〈
ϕ′(u), g−1h

〉
for all g ∈ G, all u, h ∈ X.

(b) Just take the supremum over h ∈ B̄1(0) = {v ∈ X : ||v|| � 1} of both sides
in (a) and recall that ||h|| = ||g−1h|| since the action of G on X is isometric. �

Proposition 5.6.4 If ϕ ∈ C1(X) is invariant, the topological group G is compact
and the linear action of G on X is isometric, then we can find an equivariant pseu-
dogradient vector field V : X\Kϕ → X (recall that Kϕ = {u ∈ X : ϕ′(u) = 0}, the
critical set of ϕ).

Proof Recall that a compact topological group admits a unique (up to scalar multi-
plication)G-invariant, finite regular Borel measure μ, known as the “Haar measure”.
For simplicity we assume that μ(G) = 1 (see, for example, Dunford and Schwartz
[151, p. 460]). FromTheorem5.1.4we know that there exists a pseudogradient vector
field V : X\Kϕ → X . Let

V̂ (u) =
∫
G

gV (g−1u)dμ for all u ∈ X\Kϕ.

From Proposition 5.6.3 we see that X\Kϕ is invariant and so V̂ is well-defined.
Also, for every fixed g′ ∈ G, we have
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V̂ (g′u) =
∫
G

g V (g−1g′u)dμ

=
∫
G

g′(g′)−1g V (((g′)−1g)−1u)dμ

= g′
∫
G
(g′)−1g V (((g′)−1g)−1u)dμ

= g′ V̂ (u)

⇒ V̂ is equivariant (see Definition 5.6.1).

Next, we check that V̂ is a pseudogradient vector field forϕ (see Definition 5.1.1).
We have

||V̂ (u)|| �
∫
G

||V (g−1u)||dμ (recall that the linear action of G is isometric)

� 2
∫
G

||ϕ′(g−1u)||∗dμ (see Definition 5.1.1)

= 2
∫
G

||ϕ′(u)||∗dμ (see Proposition 5.6.3(b))

= 2||ϕ′(u)||∗ .

In addition, we have

〈
ϕ′(u), V̂ (u)

〉
=
∫
G

〈
ϕ′(u), gV (g−1u)

〉
dμ

=
∫
G

〈
ϕ′(g−1u), V (g−1u)

〉
dμ (see Proposition 5.6.3(a))

�
∫
G

||ϕ′(g−1(u))||2∗dμ (see Definition 5.1.1)

=
∫
G

||ϕ′(u)||2∗dμ (see Proposition 5.6.3(b))

= ||ϕ′(u)||2∗.

Finally, we show that V̂ (·) is locally Lipschitz. For u ∈ X\Kϕ let O(u) = {gu :
g ∈ G} (the orbit of u). The compactness of G and the continuity of the map g �→
gu (see Definition 5.6.1) imply that O(u) ⊆ X is compact. Therefore we can find
δ > 0 such that V |O(u)δ is Lipschitz continuous with Lipschitz constant k > 0 (here
O(u)δ = {v ∈ X\Kϕ : d(v, O(u)) � δ}). Evidently, the set O(u)δ is invariant. So,
for all v, h ∈ B̄δ(u) ∩ (X\Kϕ) we have
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||V̂ (v) − V̂ (h)|| �
∫
G

||g(V (g−1v) − V (g−1h))||dμ

=
∫
G

||V (g−1v) − V (g−1h)||dμ (the action is isometric)

� k||g−1v − g−1h|| (since V |Bδ(u)∩(X\Kϕ) is k-Lipschitz)

= k||v − h|| (again the isometry of the action).

So, V̂ (·) is locally Lipschitz and we conclude that V̂ (·) is a pseudogradient vector
field for ϕ. �

This proposition leads to an equivalent version of Theorem 5.3.7 (theDeformation
Theorem).

Theorem 5.6.5 If G is a compact topological group with an isometric linear action
on a Banach space X, ϕ ∈ C1(X) and ϕ satisfies the Cc-condition for some c ∈ R,
then for every ε0 > 0, every open invariant neighborhood U of K c

ϕ (if K c
ϕ = ∅,

then U = ∅) and every η > 0, we can find a deformation h : [0, 1] × X → X which
satisfies properties (a)–(e) in Theorem 5.3.7 and in addition ( f ) h(t, ·) is equivariant
for every t ∈ [0, 1].

Now let C be the family of all closed and invariant subsets of X , that is,

C = {C ⊆ X : C is closed and gC = C for all g ∈ G}. (5.124)

Definition 5.6.6 An index (or G-index) on X is a map i : C → N ∪ {0,∞} which
satisfies the following properties:

(a) i(A) = 0 if and only if A = ∅;
(b) if C1,C2 ∈ C and h : C1 → C2 is continuous and equivariant, then i(C1) �

i(C2) (monotonicity property);
(c) if C1,C2 ∈ C , then i(C1 ∪ C2) � i(C1) + i(C2) (subadditivity property);
(d) if C ∈ C is compact, then there exists a closed neighborhood D of C such that

D ∈ C and i(D) = i(C) (continuity property).

Now, we consider the Banach space X together with a topological group G which
acts on X isometrically and an index i : C → N ∪ {+∞}. We can classify the com-
pact, invariant sets of X as follows:

Ck = {C ∈ C is compact and i(A) � k} for all k ∈ N.

Given ϕ ∈ C1(X), we define

ck = inf
C∈C k

max
u∈C ϕ(u). (5.125)



5.6 Critical Points Under Symmetries 431

Since the family {Ck}k�1 is decreasing, we have

−∞ � c1 � c2 � · · ·

We have the following basic multiplicity result, known also as the “Ljusternik–
Schnirelmann Multiplicity Theorem”.

Theorem 5.6.7 If G is a compact topological group with a linear isometric action
on a Banach space X, i is an index on X, ϕ ∈ C1(X) is invariant, satisfies the C-
condition and ck > −∞ (see (5.125)) for some k ∈ N, then ck is a critical value of
ϕ; more precisely, if cm = ck = c > −∞ for some m � k, then i(Kc

ϕ) � m − k + 1.

Proof Note that since ϕ is invariant, Kc
ϕ is an invariant set (see Proposition 5.6.3),

and since ϕ satisfies the C-condition, Kc
ϕ is also compact. Therefore Kc

ϕ ∈ C (see
(5.124)).

We show that if cm = ck = c > −∞ for some m � k, then i(Kc
ϕ) � m − k + 1.

From Definition 5.6.6(d), we can find a closed, invariant neighborhood D of
Kc

ϕ such that i(D) = i(C) (continuity property of the index). Let U = int D. Then
U is an open invariant neighborhood of Kc

ϕ and so we can apply Theorem 5.6.5
and produce ε > 0 and a deformation h : [0, 1] × X → X which satisfies properties
(a) → ( f ) (see also Theorem 5.3.7).

From (5.125) we see that we can find c ∈ Cm such that

sup
C

ϕ � cm + ε (recall c = cm = ck).

Let E = C\U ⊆ X . This is a compact set. Using Definition 5.6.6, we have

m � i(C)

� i(E) + i(D) (since C ⊆ E ∪ D)

= i(E) + i(Kc
ϕ) (recall the choice of D). (5.126)

Note that E ⊆ ϕc+ε\U . So, by Theorem 5.6.5 we have that A = h(1, E) ⊆ ϕc−ε.
Since h(1, ·) is equivariant (see Theorem 5.6.5(f)) and E is compact and invariant,
we infer that A is compact invariant too and we have max

A
ϕ � c − ε. From (5.125)

it follows that
i(A) � k − 1. (5.127)

From the monotonicity property of the index (see Definition 5.6.6(b)), we have

i(E) � i(A) � k − 1 (see (5.127)). (5.128)

Using (5.128) in (5.126), we obtain
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m � k − 1 + i(Kc
ϕ)

⇒ m − k + 1 � i(Kc
ϕ).

So, i(Kc
ϕ) �= 0 and the Definition 5.6.6(a) implies Kc

ϕ �= ∅. �

There are two particular indices which are useful in applications. These are the
“Krasnoselskii genus” and the “Ljusternik–Schnirelmann category”.

We start by recalling the following fundamental topological notion.

Definition 5.6.8 Let Y be a Hausdorff topological space and C ⊆ Y . We say that
C is “contractible in Y ” if the inclusion map i : C → Y is homotopic to a constant
y0 ∈ Y , that is, there exists a continuous map h : [0, 1] × C → Y such that

h(0, ·) = id|C and h(1, y) = y0 for all y ∈ C.

Remark 5.6.9 Clearly Y is contractible if and only if some point y0 ∈ Y is a defor-
mation retract (see Definition 5.3.10). Every convex subset or more generally every
star-shaped set of a topological vector space is contractible (recall that a subset C
of a topological vector space is star-shaped if there exists a y0 ∈ C such that for all
y ∈ C the “interval” [y0, y] = {(1 − t)y0 + t y : t ∈ [0, 1]} is in C). Contractibility
is preserved by homeomorphisms and every contractible space is simply connected
(that is, it is path connected and the fundamental group is trivial). The unit sphere of a
Euclidean space Sm−1 = {y ∈ R

m : |y| = 1} is not contractible in itself. In contrast,
the unit sphere of an infinite-dimensional Banach space is contractible in itself.

Now we are ready to introduce the Krasnoselskii genus and the Ljusternik–
Schnirelmann category.

Definition 5.6.10 (a) Let X be a Banach space and let

S = {C ⊆ X\{0} : C is closed and symmetric} .

The “Krasnoselskii genus” γ : S → N ∪ {0,∞} is defined by

γ(∅) = 0,

γ(D) = inf
{
k ∈ N : there exists an odd ϕ ∈ C(D,Rk\{0})} ,

γ(D) = +∞ if no such map ϕ can be found.

(b) Let X be a Hausdorff topological space. The “Ljusternik–Schnirelmann cat-
egory” catX : 2X → N ∪ {0,∞} is defined by

catX (∅) = 0,

catX (D) = min

{
k ∈ N : D ⊆

k⋃
i=1

Di , Di is closed, contractible for i = 1, · · · ,m

}
,

catX (D) = +∞ if no such finite cover can be found.
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Remark 5.6.11 In the definition of the Krasnoselskii genus, we can always assume
that ϕ ∈ C(X,Rk). Indeed by Proposition 2.1.9 (the Dugundji extension theorem),
givenϕ ∈ C(D,Rl\{0})we can always find ϕ̂∗ ∈ C(X,Rk\{0}) such that ϕ̂∗|D = ϕ.
If ϕ̂ is the odd part of ϕ̂∗, that is, ϕ̂(u) = 1

2 [ϕ̂∗(u) − ϕ̂∗(−u)], then ϕ̂ : X → R
k is an

oddmap such that 0 /∈ ϕ(D). Evidently, catX (D) = catX (D̄). Also, since closedness
and contractibility are preserved by homeomorphisms, we get the same values for
homeomorphic X or homeomorphic closed D. However, the space X in catX is
essential, since if X ⊆ X1, sets may be contractible in X1 but not in X (that is, if X
is embedded continuously in X1, then catX1(D) � catX (D) for any D ⊆ X ).

Next we verify that theKrasnoselskii genus γ(·) and the Ljusternik–Schnirelmann
category catX are both G-indices for suitable choices of the group G.

First we deal with the Krasnoselskii genus. In this case the group is

G = Z2 = {id,−id}.

Ourfirst observation shows that theKrasnoselskii genus generalizes the dimension
of the linear space.

Proposition 5.6.12 If U ⊆ R
N is a bounded, symmetric neighborhood of the origin,

then γ(∂U ) = N.

Proof If in Definition 5.6.10(a) we chooseϕ = id, we see that γ(∂U ) � N . Arguing
by contradiction, suppose that γ(∂U ) = m < N . Then we can find an odd map ϕ ∈
C(RN ,Rm) such that 0 /∈ ϕ(∂U ). But this contradicts the Borsuk–Ulam Theorem
(see Theorem 3.1.45). So, γ(∂U ) = N . �

Corollary 5.6.13 If SN−1 = {u ∈ R
N : |u| = 1}, then γ(SN−1) = N.

Moreover, if X is an infinite-dimensional separable Banach space, then γ(∂B1) =
+∞, where ∂B1 = {u ∈ X : ||u|| = 1}.

The next proposition shows that the Krasnoselskii genus is indeed an index (for
G = Z2 = {id,−id}).
Proposition 5.6.14 If X is a Banach space and S = {C ⊆ X : C is closed
and symmetric }, then
(a) C1,C2 ∈ S ,C1 ⊆ C2 ⇒ γ(C1) � γ(C2);
(b) for C1,C2 ∈ S , we have γ(C1 ∪ C2) � γ(C1) + γ(C2);
(c) for C ∈ S and odd h ∈ C(C, X) we have

γ(C) � γ(h(C));

(d) forC ∈ S compactwith 0 /∈ C,we have γ(C) < ∞ and there exists a symmetric
neighborhood U of C such that γ(Ū ) = γ(C).
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Proof (a) This follows immediately from Definition 5.6.10(a).
(b) Let γ(C1) = m and γ(C2) = n. Then we can find ϕ1 ∈ C(X,Rm) and ϕ2 ∈

C(X,Rn) such that 0 /∈ ϕ1(C1) and 0 /∈ ϕ2(C2) (see Remark 5.6.11). Let ψ : X →
R

m × R
n be defined by

ψ(u) = (ϕ1(u),ϕ2(u)) for all u ∈ X.

Evidently, ψ is continuous, odd and ψ(u) �= 0 for all u ∈ C1 ∪ C2. Therefore

γ(C1 ∪ C2) � m + n = γ(C1) + γ(C2).

(c) Suppose γ(h(C)) = m. Then we can find an odd ϕ ∈ C(X,Rm) such that 0 /∈
ϕ(h(C)). Let ψ = ϕ ◦ h. Then ψ ∈ C(C,Rm\{0}) and it is odd. Therefore γ(C) �
m = γ(h(C)).

(d) Let u ∈ C and let ε > 0 be such that Bε(u) ∩ Bε(−u) = ∅ (recall u �= 0). Let
Cu = Bε(u) ∪ Bε(−u). We claim that γ(Cu) = 1. Indeed, since Bε(u) ∩ Bε(−u) =
∅, we can find an odd function ϕ ∈ C(X,R) such that ϕ(u) = λ �= 0 for all u ∈
Bε(u), hence ϕ|Bε(u)∪Bε(−u) �= 0 and so from Remark 5.6.11 we infer that γ(Cu) = 1.
Note that {Cu}u∈C is an open cover of C . The compactness of C implies that we can

find a finite set {uk}mk=1 such that C ⊆
m⋃

k=1
Cuk . From parts (a) and (b), we have

γ(C) �
m∑

k=1

γ(Cuk ) = m.

Suppose that γ(C) = m. Then we find odd ϕ ∈ C(X,Rm) such that 0 /∈ ϕ(C).
Exploiting the continuity ofϕ, we can find ε > 0 such thatϕ(u) �= 0 for all u ∈ Ūε =
{u ∈ X : d(u,C) � ε}. Then γ(Ūε) � m. But C ⊆ Ūε and so from part (a) we have
m = γ(C) � γ(Uε). We conclude that γ(Ūε) = m. �

Now we turn our attention to the Ljusternik–Schnirelmann category. The next
proposition shows that catX is an index forG = {id} andC = {C ⊆ X : C is closed}.

Proposition 5.6.15 If X is a Banach space and C = {C ⊆ X : C is closed}, then
(a) C1,C2 ∈ C , C1 ⊆ C2 ⇒ catX (C1) � catX (C2);
(b) for C1,C2 ∈ C , we have catX (C1 ∪ C2) � catX (C1) + catX (C2);
(c) for C ∈ C and h ∈ C(C, X) homotopic to the identity, we have

catX (C) � catX (h(C));

(d) for C ∈ C compact, we have catX (C) < ∞ and there is a neighborhood V of
C such that catX (V̄ ) = catX (C).
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Proof (a) If C1 ⊆ C2, then any cover of C2 is automatically a cover of C1 and so
directly from Definition 5.6.10(b), we have catX (C1) � catX (C2).

(b) If C1 ⊆
m⋃

k=1
C1
k and C2 ⊆

n⋃
j=1

C2
j with C1

k ,C
2
j (k = 1, . . . ,m, j = 1, . . . , n)

closed and contractible. Then

C1 ∪ C2 ⊆
(

m⋃
k=1

C1
k

)
∪
⎛
⎝ n⋃

j=1

C2
j

⎞
⎠

⇒ catX (C1 ∪ C2) � m + n

⇒ catX (C1 ∪ C2) � catX (C1) + catX (C2).

(c) Let m = catX (h(C)). Then η(C) ⊆
m⋃

k=1
Dk with each Dk closed and con-

tractible in X and let Ck = h−1(Dk), k = 1, . . . ,m. Each Ck is closed in C and
because C is closed in X , Ck is also closed in X . Moreover, since h is homotopic to
the identity and Dk is contractible, we have that Ck is contractible. We have

C ⊆
m⋃

k=1

Ck

⇒ catX (C) � m = catX (h(C)).

(d) Every u ∈ C has a convex (hence contractible, see Remark 5.6.9) open neigh-
borhood Vu . Then catX (V̄u) = 1. The family {Vu}u∈C is an open cover of C . The
compactness of C implies that we can find a finite subcover {Vuk }nk=1, uk ∈ C for all
k = 1, . . . , n. Then

C ⊆
n⋃

k=1

Vuk

⇒ catX (C) �
n∑

k=1

catX (V̄uk ) = n (see parts (a), (b)).

So, we have proved that catX (C) is finite. To prove the second part of (d), suppose

catX (C) = m. Then C ⊆
m⋃

k=1
Ck with each Ck being closed and contractible. We can

always assume that each Ck is in fact compact (just consider C ∩ Ck if necessary).
Then we can find a neighborhood Vk of Ck such that each V̄k is contractible. Let

V =
m⋃

k=1
Vk . Then V̄ ⊆

m⋃
k=1

V̄k and so catX (V̄ ) � m = catX (C). But from part (a) we

have catX (C) � catX (V ). Therefore we conclude that catX (V̄ ) = catX (C). �

Remark 5.6.16 In fact, to be more in line with Definition 5.6.10, where X is a
Hausdorff topological space (no linear structure is assumed, since after all catX (C) is
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a purely topological notion), we can have properties (a)–(d) of the above proposition
for all elements in 2X , provided we assume that X is path connected and has the
neighborhood extension property (for short, X is an NES), if for any normal space
Y , a closed set B ⊆ Y and any ψ ∈ C(B, X), there exist a neighborhood V of B and
a map ψ̂ ∈ C(V, X) such that ψ̂|B = ψ. These properties have as a consequence that
any point u ∈ X has a neighborhood which is contractible in X . A careful reading of
part (d) of the above proposition reveals that this property was crucial in the proof.

Finally, we mention a result of Rabinowitz [345, Theorem 3.7] relating the Kras-
noselskii genus and the Ljusternik–Schnirelmann category.

Proposition 5.6.17 IfC ⊆ R
N\{0} is compact symmetric and C̃ = C/Z2 (the antipo-

dal points are identified), then γ(A) = catRN \{0}/Z2 (C̃).

Now we consider some consequences of the abstract multiplicity result Theorem
5.6.7.

Proposition 5.6.18 If X is a Banach space, ϕ ∈ C1(X) is even and bounded below,
it satisfies the C-condition and there exists a compact symmetric set C such that
γ(C) = m and sup

C
ϕ < ϕ(0), thenϕ has at leastm-distinct pairs {±uk}mk=1 of critical

points with
ϕ(−uk) = ϕ(uk) < ϕ(0).

Proof Let {ck}k�1 be as in (5.125). Since ϕ is bounded below, γ(C) = m and using
(5.125), we have

−∞ < inf
X

ϕ � c1 � c2 � . . . � cm � max
C

ϕ < ϕ(0).

From Theorem 5.6.7, we have that for each k ∈ {1, . . . ,m}, Kck
ϕ �= ∅, it is sym-

metric (recall thatϕ is even) and 0 /∈ Kck
ϕ . If the values ck are distinct, then the sets Kck

ϕ

(k ∈ {1, . . . ,m}) are pairwise disjoint andwe have the desired conclusion. If for some
k ∈ {2, . . . ,m} we have ck−1 = ck , then Theorem 5.6.7 implies that γ(Kck

ϕ ) � 2 and
so Kck

ϕ is infinite (otherwise we must have γ(Kck
ϕ ) = 1, see the proof of Proposition

5.6.14(d)). So, again we have reached the desired conclusion. �

An analogous result is also true for functionals of the form

j = ϕ + ψ with ϕ ∈ C1(X) and ψ ∈ �0(X).

Theorem 5.6.19 If X is a Banach space, j = ϕ + ψ is as above with ϕ,ψ even,
j (0) = 0, j satisfies the GPS-condition and

−∞ < ck < 0 for all k ∈ {1, . . . ,m} (ck as in (5.125)),

then j (·) has at least m-distinct pairs {±uk} of nontrivial critical points.
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We can also have aZ2-version (symmetric version) of the mountain pass theorem.
We present the result for the more general setting of functionals j = ϕ + ψ with
ϕ ∈ C1(X), ψ ∈ �0(X). Ifψ ≡ 0, thenwe recover the standard symmetricmountain
pass theorem.

Theorem 5.6.20 If X is a Banach space, j = ϕ + ψ with ϕ ∈ C1(X), ψ ∈ �0(X),
j (0) = 0, ϕ and ψ are even, j satisfies the GPS-condition and

(i) there exists a subspace V of X of finite codimension and β, ρ > 0 such that
j |∂Bρ(0)∩V � β;

(ii) there exists a finite-dimensional subspace Y of X with dim Y > codim V such
that j |Y is anticoercive (that is, j (u) → −∞ as ||u|| → ∞, u ∈ Y ),

then j has at least dim Y − codim V distinct pairs of nontrivial critical points.

Proof Letϑ > 0 be such that j−ϑ = {u ∈ X : j (u) � −ϑ} contains no critical points
of j (·) (if no suchϑ > 0 exists, thenwe already have an infinite sequence of antipodal
pairs of critical points of j and so we are done). From hypothesis (i i) we can find
ρ0 > ρ such that

j |∂Bρ0 (0)∩Y � −ϑ.

Let m = codim V, k = dim Y and B = B̄ρ0(0) ∩ Y = {u ∈ Y : ||u|| � ρ0}.
For i ∈ {1, . . . ,m} we introduce the following items

D = {
h ∈ C(B, X) : h is odd, h|∂B is homotopic to id|∂B in j−ϑ

by an odd homotopy },
�i = {h(B\U ) : h ∈ D, U is open in B and symmetric, U ∩ ∂B = ∅ and for
each C ⊆ X, 0 /∈ C , closed symmetric γ(C) � k − i },
�i = {C ⊆ X : 0 /∈ C, C is closed, symmetric (that is, C ∈ S , see Definition
5.6.10)

and for each open set W with C ⊆ W , there exists a D0 ∈ �i with D0 ⊆
W }.
Note that B ∈ �i with D0 = B, U = ∅ and h = id|B .
We introduce the following minimax values

Ci = inf
C∈�i

sup
u∈C

ϕ(u) for all i ∈ {1, . . . ,m}.

With standard topological arguments (see Szulkin [397], Lemmas 4.5 and 4.6)
we can show the following simple facts.

(a) β � ci for all i ∈ {m + 1, . . . , k};
(b) �i+1 ⊆ �i for all i ∈ {1, . . . , k − 1};
(c) ifC ∈ �i , D is a closed and symmetric set such that C ⊆ int D and ψ : D → X

an odd map such that ψ|D∩ j−ϑ is homotopic to id|D∩ j−ϑ by an odd homotopy,
then ψ(C) ∈ �i ;
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(d) if D ∈ S (see Definition 5.6.10), γ(D) � l and j |D > −ϑ, then there exists a
number δ > 0 such that for every C ∈ �i , we have

C\int (D̄)δ ∈ �i .

From properties (a) and (b) above, we have

β � cm+1 � . . . � ck .

Suppose that

ci+1 = . . . = ci+1+l = c for some l ∈ {0, . . . , k − m + 1}.

Note that c � β > 0 and so 0 /∈ Kc
j . Also, since j is even, we see that KC

j is
symmetric and also compact (see Proposition 5.1.27). It follows that Kc

j ∈ S (see
Definition 5.6.10).

We show that l + 1 � γ(Kc
j ). Arguing by contradiction, suppose that γ(Kc

j ) � l.
From Proposition 5.6.14 (d), we know that there exists a δ > 0 such that

γ(Kc
j ) = γ((Kc

j )δ).

Let ε0 > 0 and U = int((Kc
j )δ). Then according to Theorem 5.3.16 (see also

Remark 5.3.17), we can find ε ∈ (0, ε0) and a deformation h : [0, 1] × X → X sat-
isfying the properties of that theorem. So, we have

h(s, ·) ◦ h(t, ·) = h(t + s, ·) for all t, s ∈ [0, 1], t + s � 1 (semigroup property);
h(t, ·) is an odd homeomorphism for all t ∈ [0, 1].

Theorem 5.3.16 implies that

h(1, u) = u for all u ∈ j c+ε0\ j c−ε0 ,

h(1, j c+ε\U ) ⊆ j c−ε.

We can find C ∈ �i+1 such that

sup
C

j � c + ε.

Since Kc
j is compact, γ(Kc

j ) � l and j |Kc
j
> −ϑ, from (d) above, we have that

by choosing δ > 0 small, we can say that

C\U ∈ �i (recall the definition of U ).
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In addition we have

C\U ⊆ j c+ε\U
⇒ h(1,C\U ) ⊆ j c−ε.

So, if ε0 > 0 is sufficiently small, then

h(1, u) = u for all u ∈ j−ϑ

⇒ h(1,C\U ) ∈ �i (see (c) above).

Then we have
sup

h(1,C\U )

j � c − ε,

which contradicts the fact that sup
h(1,C\U )

j � c. This proves that

γ(Kc
j ) � l + 1

⇒ γ(Kc
j ) � 1

⇒ Kc
j has at least an antipodal pair {±ui }.

This produces the claimed number of critical point pairs if the c′
i s are distinct. If

they are not, then l > 0 for some i and so γ(Kci
j ) > 1 and so j has an infinity of

critical antipodal pairs. �

Corollary 5.6.21 Let X be a Banach space and suppose j = ϕ + ψ with ϕ ∈
C1(X), ψ ∈ �0(X), j (0) = 0, ϕ and ψ are even, j satisfies the GPS-condition
and

(i) there exists a subspace V of X of finite codimension and β, ρ > 0 such that
j |∂Bρ(0)∩V � β;

(ii) for any k ∈ N, there is a k-dimensional subspace Y of X such that j |Y is anti-
coercive.

Then j has infinitely many distinct antipodal critical pairs with an unbounded
sequence of corresponding critical values.

When a variational problem exhibits symmetry which is expressed as invariance
under the action of a group G, then it is natural and important to look for critical
points which are invariant under the action of G.

Our setting is the following. Let X be a Banach space and G be a topological
group acting on X (that is, G admits a representation on X , see Definition 5.6.1).
The action of G on X naturally leads to an action of G on X∗, by setting

〈
gu∗, u

〉 = 〈
u∗, g−1u

〉
for all g ∈ G, all u ∈ X, and all u∗ ∈ X∗.



440 5 Critical Point Theory

We consider the linear subspaces of G-invariant (fixed) points of X and X∗:

� = XG = {u ∈ X : gu = u for all g ∈ G},
�∗ = (X∗)G = {u∗ ∈ X∗ : gu∗ = u∗ for all g ∈ G}.

Also, let C1
G(X) be the subset of all G-invariant elements of C1(X). We con-

sider the following principle, known in the literature as the “principle of symmetric
criticality”.

(PSC) : For all ϕ ∈ G1
G(X), we have “ (ϕ|�)′ (u) = 0 ⇒ ϕ′(u) = 0”. (5.129)

Remark 5.6.22 Using the language of Sect. 5.5, this principle says that for every
G-invariant C1-functional ϕ, � is a natural constraint for ϕ (see Definition 5.5.11).

Theorem 5.6.23 The (PSC) is valid if and only if �∗ ∩ �⊥ = {0}, where �⊥ =
{u∗ ∈ X∗ : 〈u∗, u〉 = 0 for all u ∈ �}.
Proof ⇒ : Suppose that the (PSC) holds and arguing by contradiction suppose
that �∗ ∩ �⊥ �= {0}. Let u∗ ∈ �∗ ∩ �⊥, u∗ �= 0. Let ϕ∗(u) = 〈u∗, u〉 for all u ∈ X .
Then ϕ∗ ∈ C1(X) and

ϕ∗(gu) = 〈u∗, gu〉 = 〈
g−1u∗, u

〉 = 〈u∗, u〉 (since u∗ ∈ �∗)
= ϕ∗(u) for all g ∈ G

⇒ ϕ∗ ∈ C1(X).

We have ϕ′∗(·) = u∗(·) �= 0. Hence Kϕ∗ = ∅. But u∗ ∈ �⊥, so
〈
ϕ′∗(u), u

〉 =
〈u∗, u〉 = 0 for all u ∈ �, hence (ϕ∗|�)′ (u) = 0 for all u ∈ �, which contradicts
the (PSC) (see (5.129)).

⇐ : We assume that �∗ ∩ �⊥ = {0}.
Let u0 ∈ Kϕ|� . Since � is a linear subspace of X , we have

ϕ|�(u0 + h) = ϕ(u0 + h) for all h ∈ �

⇒ 〈
(ϕ|�)′ (u0), h

〉
�

= 〈
ϕ′(u0), h

〉
for all h ∈ �. (5.130)

Here by 〈·, ·〉� we denote the duality brackets for the pair (�∗, �) and by 〈·, ·〉
the duality brackets for the pair (X∗, X). From (5.130) and since u0 ∈ Kϕ|� we have

〈
ϕ′(u0), h

〉 = 0 for all h ∈ �

⇒ ϕ′(u0) ∈ �⊥. (5.131)

From Proposition 5.6.3, we have
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〈
ϕ′(gu), h

〉 = 〈
ϕ′(u), g−1h

〉 = 〈
gϕ′(u), h

〉
for all g ∈ G, all u, h ∈ X

⇒ ϕ′ is G-equivariant (see Definition 5.6.1)

⇒ gϕ′(u0) = ϕ′(u0) for all g ∈ G (since u0 ∈ �)

⇒ ϕ′(u0) ∈ �∗
⇒ ϕ′(u0) ∈ �∗ ∩ �⊥ (see (5.131), hence ϕ′(u0) = 0, that is u0 ∈ Kϕ).

The proof is now complete. �

Next, we want to produce conditions which guarantee that �∗ ∩ �⊥ = {0}. We
consider two distinct cases. In the first, we assume that the action of G on X is
isometric. In the second, we assume that the group G is compact.

First we deal with the case of isometric action.

Proposition 5.6.24 If the action of G on X is isometric, then the induced action of
G on X∗ is isometric too.

Proof For every g ∈ G and every u∗ ∈ X∗, we have

||gu∗||∗ = sup
||h||�1

| 〈gu∗, h
〉 | = sup

||h||�1
| 〈u∗, g−1h

〉 |
� sup

||h||�1
||u∗||∗||g−1h||

= sup
||h||�1

||u∗||∗||h|| (since the action on X is isometric)

= ||u∗||∗. (5.132)

Similarly, we show that

||u∗||∗ = ||g−1(gu∗)||∗ � ||gu∗||∗ for every g ∈ G and every u∗ ∈ X∗. (5.133)

From (5.132) and (5.133), we have

||u∗||∗ = ||gu∗||∗ for every g ∈ G and every u∗ ∈ X∗

⇒ the induced action of G on X∗ is isometric.

The proof is now complete. �

Proposition 5.6.25 If X is a reflexive and strictly convex Banach space, the action
of G on X is isometric and J : X → X∗ is the duality map for X, then J−1(�∗) ⊆ �.

Proof From Definition 2.7.21 and Theorem 2.8.10, we know that J (·) is maximal
monotone.Moreover, since ||J (u)||∗ = ||u|| for all u ∈ X , we have that J is coercive.
So, Corollary 2.8.7 implies that J is surjective. Since X is strictly convex, the map
J−1 : X∗ → X is single-valued and is the dualitymap of X∗ (see Proposition 2.7.27).
Let u∗ ∈ �∗. For all g ∈ G, we have
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||gJ−1(u∗)|| = ||J−1(u∗)|| since the action of G on X is isometric)

= ||u∗||∗ (since J−1 is the duality of X∗) (5.134)

and
〈
u∗, gJ−1(u∗)

〉 = 〈
g−1u∗, J−1(u∗)

〉 = 〈
u∗, J−1(u∗)

〉
(since u∗ ∈ �)

= ||u∗||2∗

⇒ gJ−1(u∗) = J−1(u∗) for all g ∈ G (see (5.134))

⇒ J−1(u∗) ∈ � for all u∗ ∈ �∗.

The proof is now complete. �

Theorem 5.6.26 If X is a reflexive Banach space with strictly convex dual and the
action of G on X is isometric, then the (PSC)-holds.

Proof According to Theorem 5.6.23, we need to show that �∗ ∩ �⊥ = {0}. Let
u∗ ∈ �∗ ∩ �⊥. Then by Proposition 5.6.25 we have J−1(u∗) ∈ �. Hence

||u∗||2∗ = 〈
u∗, J−1(u∗)

〉 = 0 (since u∗ ∈ �⊥)

⇒ �∗ ∩ �⊥ = {0} and so the (PSC) holds.

The proof is now complete. �

Now we consider the case where the group G is compact. To this end, let μ be
the Haar probability measure on G. For each u ∈ X , there exists a unique A(u) ∈ X
such that 〈

u∗, A(u)
〉 =

∫
G

〈
u∗, gu

〉
dμ for all u∗ ∈ X∗.

The map A is a continuous linear projection of X onto � and if C ⊆ X is closed,
convex and G-invariant, then A(C) ⊆ C . Note that A(u) is the barycenter of μ (see
Rudin [366]).

Theorem 5.6.27 If X is a Banach space and G is a compact topological group
acting on X, then the (PSC) holds.

Proof Again Theorem 5.6.23 says that it suffices to show that �∗ ∩ �⊥ = {0}. So,
let u∗ ∈ �∗ ∩ �⊥ and suppose that u∗ �= 0. We consider the hyperplane

H = {u ∈ X : 〈u∗, u
〉 = 1}. (5.135)

This is a nonempty, closed, convex and G-invariant subset of X . So, for all u ∈ H
we have A(u) ∈ H ∩ �. Then 〈u∗, A(u)〉 = 0 for all u ∈ H (since u∗ ∈ �⊥). But
this contradicts the fact that A(u) ∈ H (see (5.135)). �
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We can extend this principle to functionals of the form

j = ϕ + ψ with ϕ ∈ C1(X),ψ ∈ �0(X).

The “nonsmooth principle of symmetric criticality” has the following form:
(N PSC) : If j = ϕ + ψ with ϕ ∈ C1(X), ψ ∈ �0(X) is G-invariant and 0 ∈

(ϕ|�)′ (u) + ∂ (ψ|�) (u), then 0 ∈ ϕ′(u) + ∂ψ(u) (that is, u ∈ K j ).
The following theorem is due to Kobayashi and Otani [241].

Theorem 5.6.28 Assume that X is a Banach space, G is a topological group acting
on X and one of the following conditions holds:

(i) X is reflexive, both X and X∗ are strictly convex and the action of G on X is
isometric; or

(ii) G is a compact topological group.

Then the (NPSC) holds.

We conclude our discussion of critical point theory under a linear group action,
by stating the so-called “Fountain Theorem”. The result uses the following notion.

Definition 5.6.29 Let Y be a finite-dimensional Banach space and G a compact
topological group acting on G. For every k ∈ N, k � 2, let Y k = Y × · · · × Y (k
times) and suppose that G acts on Y k diagonally, that is,

g(y1, . . . , yk) = (gy1, . . . , gyk).

We say that this action is “admissible” if for all k ∈ N, k � 2, and eachU an open,
bounded, invariant neighborhood of the origin in Y k , we have that every continuous,
equivariant map h : ∂U → Y k−1 has a zero.

Remark 5.6.30 From the Borsuk–Ulam theorem (see Theorem 3.1.45), we know
that the action of G = Z2 = {id,−id} on Y = R is admissible.

The setting for the “fountain theorem” is the following. Let X be a Banach space
and G a compact topological group acting on X . We assume that the action of G on
X is isometric. Assume that

X = ⊕
k�1

Xk

where each space Xk is invariant and there exists a finite-dimensional space Y such
thatG acts onY and the action is admissible, and for each k ∈ N there is an equivariant
isomorphism ik : Y → Xk .

We set
Zm = m⊕

k=1
Xk and Vm = ⊕

k�m
Xk .

Using Theorem 5.6.5 we can have the following multiplicity theorem due to
Bartsch [35] (see also Willem [415, p. 58]). The result is known as the “fountain
theorem”.
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Theorem 5.6.31 If the above setting holds, ϕ ∈ C1(X) is invariant and satisfies the
(PS)c-condition for every c > 0 and for every m ∈ N, we can find ρm, rm > 0 such
that

(i) max [ϕ(u) : u ∈ Zm, ||u|| � ρm] � 0;
(ii) inf {ϕ(u) : u ∈ Vm, ||u|| = rm} → +∞ as m → ∞,

then ϕ has an unbounded sequence of critical values.

5.7 The Structure of the Critical Set

In this section we investigate the fine structure of the functional near a critical point.
Different types of critical points can be distinguished by the topological structure of
their neighborhoods in the sublevel sets.

Let X be a Banach space,ϕ ∈ C1(X) and c ∈ R. We recall the following notation,
which will be used extensively in the sequel:

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),
Kc

ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical points of ϕ at the level c ∈ R),
ϕc = {u ∈ X : ϕ(u) � c} (the sublevel set at c),
ϕc = {u ∈ X : ϕ(u) � c} (the superlevel set at c),
◦

ϕc= {u ∈ X : ϕ(u) < c} (the strict sublevel set at c).
Remark 5.7.1 Note that ϕc and ϕc are (possibly empty) closed subsets of X , while
◦

ϕc is a (possibly empty) open set in X . We have

◦
ϕc ⊆

◦
ϕc ∪ϕ−1(c) and ∂

◦
ϕc⊆ ϕ−1(c)

and the inclusions can be strict. Indeed, let ϕ(u) = u(1 − u)2 for all u ∈ R. Then

ϕ0 = (−∞, 0] ,
◦

ϕ0 = (−∞, 0] , ∂
◦

ϕ0= {0},
ϕ−1(0) = {0, 1},

◦
ϕ0 ∪ϕ−1(0) = (−∞, 0] ∪ {1}.

However, if c is not a critical value of ϕ (that is, c is a regular value of ϕ), then
by the inverse function theorem, we have

∂
◦

ϕc= ϕ−1(c) and
◦

ϕc =
◦

ϕc ∪ϕ−1(c).

We introduce the following two distinct kinds of critical points of ϕ.

Definition 5.7.2 Let u0 ∈ Kc
ϕ (not necessarily isolated in Kϕ).
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(a) We say that u0 is a “local minimizer of ϕ” if there exists an open neighborhood
of u0 such that ϕ(u0) � ϕ(u) for all u ∈ U .

(b) We say that u0 is of “mountain pass type” if for any open neighborhood U of
u0, we have

U∩
◦

ϕc �= ∅ and U∩
◦

ϕc is not path connected

where c = ϕ(u0).

We will need the following topological lemma.

Lemma 5.7.3 If (E, d) is a metric space and K , V ⊆ E are nonempty sets with K
compact, V open, K ⊆ V̄ , {U (u)}u∈K is an open cover of K with u ∈ U (u) and
U (u) ∩ V is path connected for every u ∈ K, then there exists a finite, disjoint open
cover {Ui }mi=1 of K such that for each i ∈ {1, . . . ,m} the set Ui ∩ V is contained in

a path-component of

(⋃
u∈K

U (u)

)
∩ V .

Proof The compactness of K implies that we can find a finite subcover {U (ui )}Ni=1
of the open cover {U (u)}u∈K (ui ∈ K for all i ∈ {1, . . . , N }). We set

δ = min
u∈K max

i∈{1,...,N } d(u, E\U (ui )).

We claim that δ > 0. If δ = 0, then for every k ∈ N, we can find uk ∈ K

d(uk, E\U (ui )) � 1

k
for all i ∈ {1, . . . , N }. (5.136)

The compactness of K implies that by passing to a suitable subsequence if nec-
essary we may assume that

uk → u in E, u ∈ K . (5.137)

Then from (5.136) we have

d(u, E\U (ui )) = 0 for all i ∈ {1, . . . , N }
⇒ u ∈ E\U (ui ) for all i ∈ {1, . . . , N }
⇒ u ∈ E\K , a contradiction (see (5.137)).

So, we have δ > 0. We have

Bδ(u) ⊆ U (ū) for all u ∈ K , some ū ∈ K (5.138)

(so δ > 0 is a kind of Lebesgue number for the cover {U (u)}u∈K ).
We define the following equivalence relation on K
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u ∼ u′

if and only if

there are finitely many points {ui }k+1
i=0 ⊆ K such that u0 = u, uk+1 = u′.

The compactness of K implies that we have a finite number of equivalence classes
for N . Let us denote them by K1, . . . , KM . We define

Wi = {u ∈ E : d(u, Ki ) <
δ

4
} for all i ∈ {1, . . . , M}. (5.139)

We have

Wi ∩ Wj = ∅ for i �= j and K ⊆
M⋃
i=1

Wi .

It remains to show that each set Wi ∩ V is contained in a path component of(⋃
u∈C

U (u)

)
∩ V = D.

To this end, we introduce a second equivalence relation
∗∼, this time on D. So, we

define

u ∼ u′
if and only if

u and u′ belong to the same path-component of D.

Fix i ∈ {1, . . . , M} and letu, u′ ∈ Wi ∩ V .Weneed to showu
∗∼ u′. From(5.139),

we see that we can find a finite chain ui ∈ Ki , i = 0, . . . ,m + 1, such that

d(u, u0) <
δ

4
, d(u′, um+1) <

δ

4
and d(ui , ui+1) < δ for all i = 0, . . . ,m + 1.

(5.140)
Let ε = δ − max

0�i�m+1
d(ui , ui+1) > 0 (see (5.140)). Since K ⊆ Ū , for every i ∈

{0, . . . ,m + 1}, we can find a vi ∈ V such that

d(vi , ui ) <
ε

2
< δ (5.141)

⇒ d(vi , vi+1) < δ for all i ∈ {0, . . . ,m}
⇒ u, v0 ∈ Bδ(u0) ∩ V ⊆ U (ū0) ∩ V (see (5.138)) for some ū0 ∈ K

⇒ u
∗∼ v0.

Similarly we show that u′ ∗∼ vm+1. Finally, for i ∈ {0, . . . ,m} we have

d(ui , vi+1) � d(ui , ui+1) + d(ui+1, vi+1) < δ − ε + ε

2
< δ (see (5.141))

⇒ vi , vi+1 ∈ Bδ(ui ) ∩ V ⊆ U (ūi ) ∩ V for some ūi ∈ K (see (5.138))

⇒ vi
∗∼ vi+1 for all i = 0, . . . ,m.
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Therefore
u

∗∼ v0
∗∼ v1

∗∼ . . .
∗∼ vm+1

∗∼ u′.

The proof is now complete. �

We also have the following straightforward variant of the Deformation Theorem
(see Theorem 5.3.7).

Proposition 5.7.4 If ϕ ∈ C1(X) satisfies the C-condition, ε0 > 0, c ∈ R, and U
and V are open neighborhoods of K c

ϕ such that

Ū ⊆ V and d(∂V,U ) > 0,

then there exist ε ∈ (0, ε0] and a ϕ-decreasing locally Lipschitz homotopy of home-
omorphisms h : [0, 1] × X → X such that

(a) h(1,ϕc+ε\U ) ⊆ ϕc−ε;
(b) h([0, 1] × Ū ) ⊆ V ;
(c) h(t, u) = u for all t ∈ [0, 1] and all u ∈ ϕc−ε0 ∪ ϕc+ε0 .

Now we have the first structural result for the critical set Kc
ϕ.

Theorem 5.7.5 If ϕ ∈ C1(X), satisfies the C-condition, u0, u1 ∈ X, u0 �= u1,

� = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
c = inf

γ∈�
max
t∈[0,1] ϕ(γ(t)), and

c > max{ϕ(u0),ϕ(u1)} = ξ

then K c
ϕ �= ∅ and one of the following holds:

(a) K c
ϕ contains a local minimizer of ϕ; or

(b) K c
ϕ contains a critical point of mountain pass type.

Proof Theorem 5.4.6 (themountain pass theorem) guarantees that Kc
ϕ �= ∅. To prove

the theorem,we argue by contradiction. So, suppose Kc
ϕ contains no local minimizers

nor critical points of mountain pass type. Hence for any u ∈ Kc
ϕ we can find an open

neighborhood U (u) of u such that U (u)∩ ◦
ϕc is path connected. Note that Kc

ϕ is
compact and since it does not have local minimizers, we have

Kc
ϕ = ◦

ϕc.

The family {U (u)}u∈Kc
ϕ
is an open cover of the compact set Kc

ϕ. So, we can find

a finite subcover {Uk}mk=1 of pairwise disjoint sets such that Uk∩
◦

ϕc is contained in
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a path-component of

( ⋃
u∈Kc

’

U (u)

)
∩ ◦

ϕc (see Lemma 5.7.3). Let V =
m⋃

k=1
Uk . Then

d(∂V, Kc
ϕ) > 0. Also, let Û = ⋃

u∈Kc
’

U (u) and let

ε0 = 1

2
(c − ξ), δ = 1

8
min{d(∂Û ∪ {u0, u1}, Kc

ϕ), d(∂V, Kc
ϕ)} and

U = {u ∈ X : d(u, Kc
ϕ) < δ}.

Using these items, we apply Proposition 5.7.4 and obtain ε ∈ (0, ε0] and a ϕ-
decreasing, locally Lipschitz homotopy of homeomorphisms {ht(·) = h(t, ·)}t∈[0,1]
satisfying the properties of that proposition. From the definition of c, we can find
γ ∈ � such that

ϕ(γ(t)) � c + ε for all t ∈ [0, 1].

We define

� = {t ∈ [0, 1] : γ(t) /∈ U }, (5.142)

D = (Û ∩ Kc
ϕ) ∪ h(1, γ(�)).

Evidently, u0, u1 ∈ D and let D0 be the path component of D containing u0.
We will show that u1 ∈ D0. If � = [0, 1], then this is clearly true. So, suppose
� �= [0, 1]. The set � is closed. We define

t∗ = sup{t ∈ � : h(1, γ(t)) ∈ D0)}.

Suppose t∗ < 1. Then 0 belongs to the relative interior of � in [0, 1]. So t∗ ∈
(0, 1). Let [t∗1 , t∗2 ] be the component of � containing t∗.

If t∗1 < t∗, then t∗ = t∗2 . So, let t∗ = t∗1 . Then γ(t∗1 ) ∈ ∂U and so h(1, γ(t∗1 )) ∈
int D. So, we can find ε̂ > 0 such that

Bε̂(h(1, γ(t∗1 ))) ⊆ D

⇒ Bε(h, (1, γ(t∗1 ))) ∩ D0 �= ∅
⇒ h(1, γ(t∗1 )) = h(1, γ(t∗)) ∈ D0

⇒ h(1, γ(t∗2 )) ∈ D0 and so t∗ � t∗2 > t∗1 , a contradiction.

Therefore t∗ = t∗2 and we have

h(1, γ(t∗)) ∈ D0

⇒ γ(t∗) ∈ ∂U.

Let k0 ∈ {1, . . . ,m} such that
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d(γ(t∗),Uk0 ∩ Kc
ϕ) = δ.

Let t̂ = sup{t ∈ [0, 1] : γ(t) ∈ U ∩Uk0}. Since t∗ = t∗2 ,we have t̂ ∈ (t∗, 1). Also,
we have γ(t̂) ∈ ∂(U ∪Uk0) and so γ(t̂) ∈ � (see (5.142)). Then

z = h(1, γ(t̂)) ∈ Uk0∩
◦

ϕc,

w = h(1, γ(t∗)) ∈ Uk0∩
◦

ϕc .

Recall that Uk0∩
◦

ϕc is contained in a path-component of

( ⋃
u∈Kc

’

U (u)

)
∩ ◦

ϕc and

we have z
∗∼ w (see the proof of Lemma 5.7.3). Also, w ∈ D0. Hence

u0
∗∼ w

∗∼ z

⇒ t∗ � t̂ > t∗, a contradiction.

This proves that t∗ = t and so u1 ∈ D0. But this contradicts the definition of c

since D0 ⊆ D ⊆ ◦
ϕc. This proves the theorem. �

The next result concerns the nature of local minimizers of ϕ.

Theorem 5.7.6 Ifϕ ∈ C1(X), it satisfies theC-condition and u0 is a localminimizer
of ϕ, then one of the following two statements holds:

(a) There exists a small ρ > 0 such that

inf{ϕ(u) : ||u − u0|| = ρ} > ϕ(u0).

(b) For every small ρ > 0, ϕ has a local minimizer uρ such that

||uρ − u0|| = ρ, ϕ(uρ) = ϕ(u0).

Proof Suppose that (a) does not hold. So, given any small ρ > 0, we have

inf{ϕ(u) : ||u − u0|| = ρ} = ϕ(u0). (5.143)

Since u0 is a local minimizer of ϕ, we can find an open neighborhood U of u0
such that ϕ(u0) � ϕ(u) for all u ∈ U (see Definition 5.7.2). So, by taking ρ > 0
even smaller if necessary, we can find δ ∈ (0, ρ) such that

R = {u ∈ X : ρ − δ � ||u − u0|| � ρ + δ} ⊆ U.

Consider ϕ restricted to R and let un ∈ R such that
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||un − u0|| = ρ and ϕ(un) � ϕ(u0) + 1

n
, n � 1 (since (5.143)).

Using the generalized Ekeland variational principle (see Proposition 4.8.7) we
can find {vn}n�1 ⊆ R such that

ϕ(vn) � ϕ(un), ||vn − un|| � 1

n
and ϕ(vn) � ϕ(u) + 1

n

||u − vn||
1 + ||vn|| for all u ∈ R.

So, un ∈ int R for large n � 1, hence (1 + ||vn||)||ϕ′(vn)||∗ � 1
n for large n � 1

(just take u = vn + th with h ∈ X, ||h|| = 1 and t > 0 small). Since ϕ satisfies the
C-condition, we may assume that

vn → vρ in X.

Then ||vρ − u0|| = ρ, ϕ(vρ) = ϕ(u0), ϕ′(vρ) = 0, which is statement (b). �

Combining Theorems 5.7.5 and 5.7.6, we obtain the following property.

Theorem 5.7.7 If ϕ ∈ C1(X), it satisfies the C-condition, u0, u1 ∈ X, u0 �= u1,

� = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},
c = inf

γ∈�
max
0�t1

ϕ(γ(t)),

c > max{ϕ(u0),ϕ(u1)} = ξ,

and K c
ϕ is discrete,

then K c
ϕ contains a critical point of mountain pass type.

Another consequence of Theorem 5.7.6 is the following result.

Theorem 5.7.8 If ϕ ∈ C1(X), it satisfies the C-condition and it has two distinct
local minimizers u0 and u1, then ϕ has at least one more critical point distinct from
u0, u1.

In fact, we can elaborate this last result further.

Theorem 5.7.9 If ϕ ∈ C1(X), it satisfies the C-condition and it has two distinct
local minimizers u0 and u1, then one of the following two statements holds:

(a) ϕ has a critical point u which is a saddle point (that is, there exists an open
neighborhood U of u such that contains point y, u ∈ U such that

ϕ(y) < ϕ(u) < ϕ(v)).

(b) u0 and u1 can be path-connected in any neighborhood of the set of local mini-
mizers u of ϕ with ϕ(u) = ϕ(v0) (hence ϕ(u1) = ϕ(u0)).
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Proof Without any loss of generality, we may assume that u0 = 0 and ϕ(u0) =
ϕ(0) = 0.

Let � = {γ + C([0, 1], X) : γ(0) = 0, γ(1) = u1} and define

c = inf
γ∈�

max
0�t�1

ϕ(γ(t)).

Suppose Kc
ϕ contains only local minimizers of ϕ. So, given any u ∈ Kc

ϕ, we can
find an open neighborhood U (u) of u such that

ϕ(u) = c � ϕ(v) for all v ∈ U (u). (5.144)

Let Û = ⋃
u∈Kc

’

U (u). For any neighborhood Ũ of Kc
ϕ, let ε > 0 and {ht (·) =

h(t, ·)}t∈[0,1] be as postulated by the Deformation Theorem (see Theorem 5.3.7)
with ε0 = 1, U = Û ∩ Ũ . Choose γ ∈ � such that

ϕ(γ(t)) � c + ε for all t ∈ [0, 1]. (5.145)

Set γ0 = h1 ◦ γ. Then γ0 ∈ � and we have

γ0([0, 1]) ⊆ h(1,ϕc+ε) ⊆ ϕc−ε ∪U ⊆ ϕc−ε ∪ Û

(see (5.145) and Theorem 5.3.7).

But the sets ϕc−ε and Û are disjoint (see (5.144)). So, we must have

γ0([0, 1]) ⊆ ϕc−ε or γ0([0, 1]) ⊆ U. (5.146)

The first inclusion in (5.146) contradicts the definition of c. So, we must have

γ0([0, 1]) ⊆ U ⊆ Ũ

⇒ u0 = 0 and u1 can be path connected in Ũ .

The proof is now complete. �

5.8 Remarks

5.1: The deformation approach described in Sect. 5.1 is based on the study of the
asymptotic properties of the gradient flow associated to a C2 or more generally to
a C2−0 functional ϕ. So, we need to find conditions on ϕ which guarantee that
a sequence of “almost critical points” of ϕ leads to a critical point. Similarly if
instead of the deformation approach, we employ one based on the Ekeland variational
principle (see Theorem 4.6.14). Such a condition is, by its nature, a compactness-type
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condition. This leads us to the “Palais–Smale condition” (see Definition 5.1.6(a)).
The original definition of Palais and Smale [328] (see also Palais [325] and Smale
[383]), was not that one. In Palais and Smale [328] the authors consider functionals
ϕ ∈ C2(H,R)with H a separableHilbert space (ormore generally aC2-Riemannian
manifoldM without boundarymodeled on a separableHilbert space H )which satisfy
the following condition:

Definition 5.8.1 Let H be a separable Hilbert space andϕ ∈ C2(H,R). We say that
ϕ satisfies “condition (C)” if the closure of any nonempty set D ⊆ H such that ϕ|D
is bounded, but ∇ϕ|D is not bounded away from zero, contains a critical point of ϕ.

Palais and Smale [328] have the following result which justifies condition (C).

Proposition 5.8.2 If H is a separable Hilbert space, ϕ ∈ C2(H,R) and it is
bounded below and satisfies condition (C), then for any x ∈ H, the gradient flow
exists for all t � 0 and has a critical point as limit point when t → +∞.

How is “condition (C)” related to the “PS-condition” as formulated in Defini-
tion 5.1.6(a)? The PS-condition is stronger than condition (C). Indeed, the zero
functional satisfies condition (C) but not the PS-condition. We mention that in the
books of Berger [44] and Chow and Hale [123], the PS-condition is called condition
(C), while in Schwartz [376] condition (C) is called the “PS-condition”. Of course
the PS-condition makes sense in the more general context of Banach spaces and
for functionals which are only C1. The difficulty with this generalization is when
we implement the deformation approach. Since ϕ′(x) ∈ X∗, we need to replace the
derivative of ϕ at X with a vector field with values in X , in order to have a flow in X .
This leads to the notion of a pseudogradient vector field (see Definition 5.1.1). This
fruitful concept was introduced by Palais [325], who also proved Theorem 5.1.4.
This theorem shows that the deformation approach works in Banach spaces for func-
tionals which are only C1. No further regularity on the functional is necessary. The
“Cerami condition” (“C-condition” for short, see Definition 5.1.6(b)) was introduced
by Cerami [115] as a more convenient compactness condition for functionals which
are defined on an unbounded Riemannian manifold modeled on a separable Hilbert
space. Aubin and Ekeland [21] (see Proposition 3, p. 270) proved the following
result:

Proposition 5.8.3 If X is a reflexive Banach space and ϕ : X → R is a Gâteaux
differentiable, convex, lower semicontinuous and coercive functional, thenϕ satisfies
condition (C).

Propositions 5.1.8 and 5.8.3 suggest that there is a link between the property of
coercivity of ϕ and the PS-condition. This issue was investigated by Čaklović, Li
and Willem [98] and Costa and Silva [130]. The extension of the PS-condition to
functionals ϕ + ψ with ϕ ∈ C1(X,R) and ψ convex and lower semicontinuous (see
Definition 5.1.21 and 5.1.23) is due to Szulkin [397, 398].

Struwe [392] motivated by applications to the Plateau problem, developed a criti-
cal point theory forC1-functionals ϕ restricted to a closed, convex set D of a Banach
space X . In doing this, Struwe [392] extended the notion of a PS-condition. So,



5.8 Remarks 453

let X be a Banach space, D ⊆ X a nonempty closed, convex set and ϕ : D → R a
functional which admits a C1-extension on all of X . We set

σ(u) = sup{〈u − y,ϕ′(u)
〉 : y ∈ D, ||y − u|| < 1}, u ∈ D, (5.147)

and say that u ∈ D is a critical point of ϕ on D, if σ(u) = 0. Then the corresponding
PS-condition on closed convex sets has the following form:

Definition 5.8.4 Every sequence {un}n�1 ⊆ D such that {ϕ(un)}n�1 is bounded and

σ(un) → 0 as n → ∞

admits a strongly convergent subsequence.

Remark 5.8.5 Id D = X , then σ(u) = ||ϕ′(u)||∗ for all u ∈ X and so the above
definition coincides with Definition 5.1.6(a).

The notions of this section and many of the results can be extended to nonsmooth
functionals ϕ which are locally Lipschitz (using the Clarke subdifferential) and to
nonsmooth functionals of the form ϕ + ψ with ϕ locally Lipschitz and ψ convex,
lower semicontinuous. For details we refer to Gasinski and Papageorgiou [180–
182], Kourogenis and Papageorgiou [247, 248], Kyritsi and Papageorgiou [256],
Papageorgiou and Kyritsi [329], and Rădulescu [348, 350].

5.2: The notion of lower semicontinuity (see Definition 5.2.1) was introduced
by Borel [55], but a systematic use of it in the study of variational problems was
made by Tonelli [404], who developed the so-called “Direct Method of the Calculus
of Variations” (see Theorem 5.2.6). Lower semicontinuity is studied in the books
of Attouch et al. [20], Butazzo [97], Cesari [116], Dal Maso [134], Denkowski et
al. [143], Ekeland and Temam [161], Ioffe and Tichomirov [221]. Moreover, more
results on the minimization of the integral functionals and detailed expositions of
the theory of the Calculus of Variations can be found in the books of Buttazzo [97],
Dacorogna [133], Ekeland and Temam [161], Giaquinta [186] and Morrey [306].

5.3: In the literature we find two approaches to critical point theory. The first is
based on the deformation properties of the negative gradient or pseudogradient flow.
In this volume we follow this approach. The second approach is based on the Eke-
land variational principle and can be found in the works of Cuesta [132], Ekeland
[158, 159] and de Figueiredo [168]. Earlier forms of the deformation theorem (see
Theorem 5.3.7) were obtained by Browder [85], Palais [325, 326], and Schwartz
[375, 376]. However, the deformation result close in form to Theorem 5.3.7 was
proved by Clark [126], who developed a Ljusternik–Schnirelmann theory for even
functions defined on aBanach space based on theKrasnoselskii genus (seeDefinition
5.6.10(a)). Clark’s theory was well adapted to the study of the existence and mul-
tiplicity of semilinear elliptic boundary value problems. The “second deformation
theorem” (see Theorem 5.3.12) is due to Rothe [361], Marino and Prodi [288] and
Chang [117, 118]. Usually the deformation theorems are formulated in terms of the
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PS-condition. The first to employ the C-condition were Bartolo et al. [34]. The defor-
mation theorem for Szulkin functionals of the form ϕ + ψ with ϕ a C1-functional
and ψ a convex and lower semicontinuous functional (see Theorem 5.3.16) was
proved by Szulkin [397]. Also, Szulkin [398] used the Ekeland variational princi-
ple to extend the Palais version of the infinite-dimensional Ljusternik–Schnirelmann
theory to C1-functionals bounded from below and defined on a C1-Finsler manifold.

The deformation approach to critical point theory can be found in the books
of Ambrosetti and Malchiodi [16], Chang [118], Costa [129], Gasinski and Papa-
georgiou [181, 182], Ghoussoub [184], Jabri [223], Kavian [230], Motreanu et al.
[310], and Willem [415]. In Willem [415] we can find the following quantitative
deformation theorem (no compactness condition is used).

Theorem 5.8.6 If X is a Banach space,ϕ ∈ C1(X,R), D ⊆ X, c ∈ R and ε, δ > 0
are such that for all u ∈ ϕ−1([c − 2ε, c + 2ε]) ∩ D2δ we have ||ϕ′(u)||∗ � 8ε

δ
where

D2δ = {v ∈ X : d(v, D) � 2δ}, then there exists an h ∈ C([0, 1] × X, X) such that

(a) h(t, u) = u if t = 0 or if u /∈ ϕ−1([c − 2ε, c + 2ε]) ∩ D2δ;
(b) h(1,ϕc+ε ∩ D) ⊆ ϕc−ε;
(c) for every t ∈ [0, 1], h(t, ·) is a homeomorphism on X;
(d) ||h(t, u) − u|| � δ for all (t, u) ∈ [0, 1] × X;
(e) t → ϕ(h(t, u)) is nonincreasing for all u ∈ X;
(f) ϕ(h(t, u)) < c for all t ∈ [0, 1] and all u ∈ ϕc ∩ Dδ .

5.4: As is evident from the results of this section, the notion of linking sets (see
Definition 5.4.1) is very important in critical point theory. It was introduced by Benci
andRabinowitz [43]. Extensions of this notion can be found in the books of Schechter
[379], Zou and Schechter [431] and in the paper of Schechter [378]. Slightly more
restrictive versions of Theorem 5.4.4 can be found in Ekeland [159], Mawhin and
Willem [293] and Struwe [393]. The mountain pass theorem (see Theorem 5.4.6) is
due to Ambrosetti and Rabinowitz [17] and marks the first major breakthrough in the
minimax approach to critical point theory. The mountain pass theorem was the first
result to give a simple (minimax) procedure to find a critical point which is not a local
minimum. After the mountain pass theorem followed the saddle point theorem (see
Theorem5.4.7) and the generalizedmountain pass theorem (seeTheorem5.4.8), both
due to Rabinowitz [346]. The lecture notes of Rabinowitz [347] give a nice overview
of some basic aspects of critical point theory with applications to semilinear elliptic
equations. Theorem 5.4.11 is due to Ghoussoub and Preiss [185], who in their work
were able to localize the results of the Ekeland variational principle (see Theorem
4.6.14). The notion of local linking (see Definition 5.4.14) was first used by Liu and
Li [279] under the stronger conditions that

dim Y < +∞ and ϕ(v) � r > 0 for all v ∈ V with ||v|| = r.

Theorem 5.4.17 is due to Brezis and Nirenberg [69], who were also the first to
consider the more general notion of local linking in Definition 5.4.14. The Morse
lemma (see Proposition 5.4.19) was first proved byMorse [307] for functions defined
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onRN . LaterMorse [308] extended his theory to compact, smooth, finite-dimensional
manifolds. The theory ofMorsewas extended toHilbert spaces by Rothe [363] and to
infinite-dimensional manifolds modeled over Hilbert spaces by Palais [325], Palais
and Smale [328] and Smale [383]. To deal with the fact that the underlying ambient
space is no longer locally compact, a compactness-type condition was introduced
on the functional ϕ itself (the PS-condition, see Definition 5.1.6). The minimax
results for functionals of the form j = ψ + ϕ with ϕ ∈ C1(X) and ψ ∈ �0(X) (see
Theorems 5.4.25, 5.4.26, 5.4.28 and 5.4.29) are essentially due to Szulkin [397].

5.5: The method of Lagrange multipliers in constrained optimization is discussed
in the books of Alexeev et al. [8], Gasinski and Papageorgiou [182], Papageorgiou
and Kyritsi [329], Tichomirov [403] and Zeidler [425, 427]. In Theorem 5.5.9 the
assumption that R(g′(u0)) = Y (surjectivity of g′(u0)) is crucial. A helpful result
in this direction is the following proposition, which can be found in Yosida [418],
p. 208.

Proposition 5.8.7 If X,Y are Banach spaces and A : D(A) ⊆ X → Y is a closed
and densely defined linear operator, then A is surjective (that is, R(A) = Y ) if and
only if A∗ has a continuous inverse (that is, there exists a c > 0 such that

||A∗y∗||X∗ � c||y∗||Y ∗ for all y∗ ∈ D(A∗)).

Remark 5.8.8 If X = H is a Hilbert space and A : D(A) ⊆ H → H is a closed,
densely defined linear operator such that there exists a c > 0 for which we have

c||u||2 � (A(u), u)H for all u ∈ D(A)

(so, A is strongly monotone), then R(A) = H (that is, A is surjective).

Natural constraints are discussed in the book of Ambrosetti and Malchiodi [16].
The Nehari manifold (see Definition 5.5.13) was first introduced by Nehari [316].
The fibering method is used in the book of Kuzin and Pohozaev [255].

5.6: Symmetry plays an important role in proving theorems which produce mul-
tiple critical points for a C1-functional. The best known examples are when the
acting group is G = Z2 or G = S1. In the first case, we have the Krasnoselskii genus
(see Krasnoselskii [250] and Coffman [127]), while in the second case we have the
cohomological index due to Fadell and Rabinowitz [165]. The definition of genus
given in Definition 5.6.10(a) is due to Coffman [127]. The study of critical points
of not necessarily quadratic functionals started with Ljusternik [280], who consid-
ered C2-functionals defined on a finite-dimensional manifold and for that purpose
introduced the notion of what we call here Ljusternik–Schnirelmann category (see
Definition 5.6.10(b)). Soon thereafter his ideas were pursued further by Ljusternik
and Schnirelmann [281, 282]. They exploited the fact that a compact set has a neigh-
borhood of the same category, in order to compute categories bymeans of elementary
concepts of combinatorial topology. A notion closely related to the Krasnoselskii
genus was introduced by Yang [416] under the name B-index. Let i(·) denote the
B-index. We have
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i(C) � γ(C) and i(Sn) = n (Sn = ∂B1(0) ⊆ Rn+1).

The Ljusternik–Schnirelmann theory is discussed in the books of Ambrosetti and
Malchiodi [16], Deimling [142], Gasinski and Papageorgiou [181],
Struwe [393], and Zeidler [425]. Extensions to Banach manifolds with Finsler struc-
ture can be found in Ghoussoub [184], Palais [326], and Szulkin [398]. Theorem
5.6.20 with ψ ≡ 0 is due to Rabinowitz [347] and for ψ ∈ �0(X) is due to Szulkin
[398]. The principle of symmetric criticality (see Theorem 5.6.23) is due to Palais
[327]. This principle is not valid in general, as shown by counter-examples produced
by Palais [327] (see also Kobayashi and Otani [241]). Extensions to nonsmooth func-
tionals were proved by Kobayashi and Otani [241]. Theorem 5.6.31 (the “fountain
theorem”) is due to Bartsch [35]. An extension of this result can be found in Zou
[430]. A more detailed discussion of the issue of symmetry versus multiplicity of
critical points can be found in the book of Bartsch [36].

5.7: Theorem 5.7.6 can be found in de Figueiredo and Solimini [169]. For an
alternative proof we infer to Aizicovici et al. [5] (proof of Proposition 29). Theorems
5.7.7 and 5.7.9 are essentially due to Hofer [210] (see also Hofer [211]). Additional
related results can be found in Chang [117, 118], Hofer [212] and Pucci and Serrin
[343, 344].



Chapter 6
Morse Theory and Critical Groups

To think freely is great, but to think rightly is greater.
Thomas Thorild, engraved in golden letters at the entrance to the
Grand Auditorium, Uppsala University

Let H be a Hilbert space with inner product (·, ·)H and let ϕ ∈ C2(H). By ϕ′(·) we
denote the Fréchet derivative of ϕ and by ∇ϕ(·) its gradient, that is, ∇ϕ(u) ∈ H for
every u ∈ H and

(∇ϕ(u), h)H = 〈ϕ′(u), h
〉
for all h ∈ H, (6.1)

where by 〈·, ·〉 we denote the duality brackets for the pair (H∗, H). Recall that u0

is a critical point of ϕ if ϕ′(u0) = 0, which by (6.1) is equivalent to saying that
∇ϕ(u0) = 0. We say that c ∈ R is a critical level if ϕ−1(c) contains critical points.
Otherwise c ∈ R is said to be a regular level.

Let a < b be two regular values and let M = ϕ−1([a, b]). The object of Morse
theory is the relation between the local topological structure of the level sets of ϕ|M

near a critical point and the topological structure of the manifold M . More precisely,
suppose that u0 ∈ H is an isolated critical point of ϕ. Then the local behavior of
ϕ near u0 and the topological type of u0 are described by a sequence of abelian
groups {Ck(ϕ, u0)}k∈N0 , known as the “critical groups” of ϕ at u0 and defined using
homology theory. If the critical pointu0 is nondegenerate (that is,ϕ′′(u0) ∈ L (H, H)

is invertible), then the critical groups can be computed by linearization using the
Morse lemma (see Proposition 5.4.19). In fact, if u0 is nondegenerate, then

rank Ck(ϕ, u0) = δk,m for all k ∈ N0,

with m being the Morse index of u0 (see Definition 5.4.18(b)). In the degenerate
case, no such simple relation exists. Nevertheless, we can still have some results in
the degenerate case provided ϕ′′(u) is a Fredholm operator. The critical groups are
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invariant under small perturbations of the function ϕ. The global aspect of Morse
theory is expressed by the so-called “Morse inequalities”, which relate the critical
groups of ϕ|M to the homology groups Hk(ϕ

b,ϕa), k ∈ N0, which are isomorphic to
the homology groups Hk(M,ϕ−1(a)), k ∈ N0, by the excision property of homology
theory.

Since Morse theory and critical groups use homology theory, in Sect. 6.1 we con-
duct a quick review of those tools from “Algebraic Topology” which we will use in
the sequel. We present all the relevant notions and derive some fundamental conse-
quences of these definitions. Special attention is given to singular homology theory,
because this is the homology theory which we will use to define the critical group-
s, which are defined in Sect. 6.2, and the case of nondegenerate and of degenerate
critical points are examined. We also derive the Morse relations which express the
global aspects of Morse theory. In Sect. 6.3, we establish the invariance properties of
critical groups. So, we show their C1-invariance and their homotopical invariance.
As in degree theory, these properties are very prolific tools in the computation of
critical groups of a given functional. In Sects. 6.4 and 6.5, we consider the case of
minimizers, maximizers and of saddle points (critical points of mountain pass type).
In Sect. 6.6, we introduce homological counterparts of the notions of linking sets (see
Definition 5.4.1) and of local linking (see Definition 5.4.14) and compute the critical
groups for these more general settings. In Sects. 6.7 and 6.8 we use critical groups
to prove the existence of multiple critical points. After all, the importance of critical
groups lies in the fact that they provide very efficient tools to generate additional
critical points and also to distinguish between critical points.

6.1 Elements of Algebraic Topology

In this sectionwe review some basic definitions and facts of algebraic topologywhich
will be used in the sequel.

Definition 6.1.1 (a) A “pair of spaces” (X, A) is a Hausdorff topological space X
together with a subspace A ⊆ X . We write (X, A) ⊆ (Y, B) if X ⊆ Y and A ⊆ B.

(b) A “map of pairs” (X, A), (Y, B) is a continuous map ϕ : X → Y such that
ϕ(A) ⊆ B. We denote the collection of all such maps by

C((X, A), (Y, B)).

Also, by id(X,A) : (X, A) → (X, A), we denote the identity map seen as a map of
pairs.

(c) A map ϕ is a “homeomorphism of pairs” (X, A), (Y, B), if ϕ : X → Y is a
homeomorphism and ϕ−1 is a map of pairs (Y, B), (X, A) (that is, ϕ|A : A → B is
a homeomorphism and ϕ(A) = B).

Remark 6.1.2 A space X can be regarded as the pair of spaces (X,∅). If A is a
singleton (that is, A = {u0}), then the pair (X, A) = (X, {u0}) is denoted by (X, u0)
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and it is usually called a “pointed space”. The composition of two maps of pairs is
still a map of pairs.

In Definition 3.1.13 we introduced the notion of homotopy between two contin-
uous maps, which played a central role in degree theory. Sometimes it is necessary
to consider homotopies between maps of pairs. Then Definition 3.1.13 is extended
easily to the following one:

Definition 6.1.3 Given pairs (X, A) and (Y, B), twomaps of pairsϕ,ψ : (X, A) →
(Y, B) are said to be “homotopic” if there exists a map of pairs

h : ([0, 1] × X, [0, 1] × A) → (Y, B)

such that
h(0, u) = ϕ(u) and h(1, u) = ψ(u) for all u ∈ X.

We write ϕ � ψ to indicate that ϕ,ψ are homotopic in the above sense. If ϕ,ψ :
(X, A) → (Y, B) are maps of pairs and ϕ|A = ψ|A, we say that ϕ and ψ are “homo-
topic relative to A” if there exists a homotopy

h : ([0, 1] × X, [0, 1] × A) → (Y, B)

such that
h(t, ·)|A = ϕ|A = ψ|A for all t ∈ [0, 1]

(that is, the homotopy h is fixed on A). In this case we write

ϕ �A ψ.

Remark 6.1.4 In the above definition it is said that in continuously deforming ϕ to
ψ, it is required that at each time instant t ∈ [0, 1], the set A is mapped into B.

Using Definitions 3.1.13 and 6.1.3 we are led to the fundamental notion of “ho-
motopy equivalence” of topological spaces.

Definition 6.1.5 (a) Two Hausdorff topological spaces X, Y are said to be “homo-
topy equivalent” (or of the “same homotopy type”) if there exist maps ϕ : X → Y
and ψ : Y → X such that ψ ◦ ϕ is homotopic to idX and ϕ ◦ ψ is homotopic to idY .
In this case the map ϕ is a “homotopy equivalence” and ψ is the “homotopy inverse”
of ϕ. If X, Y are homotopy equivalent, then we write

X ∼ Y.

(b) Two pairs of spaces (X, A) and (Y, B) are “homotopy equivalent” if there exist
maps of pairs ϕ : (X, A) → (Y, B) and ψ : (Y, B) → (X, A) such that ψ ◦ ϕ � idX

and ϕ ◦ ψ � idY (see Definition 6.1.3; so the homotopies are homotopies of pairs).
If the pairs (X, A), (Y, B) are homotopy equivalent, then we write
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(X, A) ∼ (Y, B).

Remark 6.1.6 As the names suggest, both notions are equivalence relations. In gener-
al homotopy equivalence of X, Y (respectively of (X, A), (Y, B)), roughly speaking,
means that X (respectively (X, A)) can be deformed continuously to Y (respectively
(Y, B)). It is easy to see that two homeomorphic spaces are homotopy equivalent
but the converse is not true in general. So, the classification of Hausdorff topological
spaces up to homeomorphism is more refined than the classification up to homotopy
equivalence. Deformation retracts and strong deformation retracts (see Definition
5.3.10(b)) are homotopy equivalences which are easy to visualize. Indeed, if A ⊆ X
is a retract of X , r : X → A is a retraction map (that is, r(·) is continuous and
r |A = id|A), and i : A → X is the inclusion map, then r ◦ i = idA and i ◦ r � idX

(for deformation retracts) and i ◦ r �A idX (for strong deformation retracts). So, if
A is a deformation retract or strong deformation retract of X , then A ∼ X .

Using homotopieswe can introduce the following fundamental topological notion.

Definition 6.1.7 A Hausdorff topological space X is said to be “contractible” if the
identity map idX : X → X is homotopic to a constant map ϕ : X → ∗ (that is, there
exists continuous map h : [0, 1] × X → X such that h(0, u) = u for all u ∈ X and
h(1, u) = ∗ for all u ∈ X ).

Remark 6.1.8 Clearly, X is contractible if and only if it is homotopy equivalent to
a singleton if and only if every point of X is a deformation retract. A contractible
space is simply connected and any twomaps into a contractible space are homotopic.
Evidently, every convex set of a Banach space or more generally any star-shaped set
is contractible (recall that a subset X of a Banach space is star-shaped if there exists
a u0 ∈ X such that for all u ∈ X , [u0, u] = (1 − t)u0 + tu, t ∈ [0, 1], lies in X ).

Example 6.1.9 (a) Let X = S1 = {u ∈ R
2 : |u| = 1} (the unit sphere in R

2) and
Y = S1 ∪ [(1, 0), (2, 0)] (recall [(1, 0), (2, 0)] = (1 − t)(1, 0) + t (2, 0) for all t ∈
[0, 1]), that is, [(1, 0), (2, 0)] is a closed line segment on the horizontal axis, joining
the points (1, 0) and (2, 0). We claim that X and Y are not homeomorphic. Indeed, if
from X we remove any point, the remaining set is still connected. On the other hand,
if from Y we remove the point (1, 0), the remaining set is disconnected. However, the
sets X and Y are homotopy equivalent. To see this, let ϕ : X → Y and ψ : Y → X
be the following maps

ϕ(u) = u for all u ∈ X and ψ(v) =
{

v if v ∈ S1

(1, 0) if v ∈ [(1, 0), (2, 0)] for all v ∈ Y.

We have ψ ◦ ϕ = idX and ϕ ◦ ψ � idY since ϕ ◦ ψ = ψ.
(b) Any convex set in a Euclidean space is homotopy equivalent to a point (just

recall that a convex set is contractible, see Remark 6.1.8).
(c) SN−1 = {u ∈ R

N : |u| = 1} (N � 2) is homotopy equivalent to RN \{0} (just
recall that SN−1 is a strong deformation retract of RN \{0}).
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(d) Let B2 = {u ∈ R
2 : |u| < 1} and consider the solid torus S1 × B2. This space

is homotopy equivalent to S1. More generally, if V is a vector bundle over a topolog-
ical space X , the zero section is a strong deformation retract of V , hence homotopy
equivalent to it.

Since for our purposes the role of algebraic topology is auxiliary, to avoid a
lengthy presentation, we will follow the axiomatic approach of homology theory
(naive homology theory).

Definition 6.1.10 Let {Gk}k∈I be a family of abelian groups and { jk}k∈I a corre-
sponding family of homomorphisms

. . . → Gk+1
jk+1−→ Gk

jk−→ Gk−1 → . . . (6.2)

We say that the sequence (chain) (6.2) is exact if and only if

im jk+1 = ker jk for all k ∈ I.

Remark 6.1.11 If G1, G2 are two abelian groups and we consider the chain

0 → G1
j→ G2 → 0, (6.3)

then (6.3) is exact if and only if j is an isomorphism.

More generally, suppose that G1, G2, G3 are three abelian groups and consider
the following exact chain

0 → G1
j1→ G2

j2→ G3 → 0. (6.4)

From the exactness of (6.4), we see that j1 is injective and j1(G1) is isomorphic
to G1 and equal to ker j2. Moreover, j2 is surjective and we have that ker j2 ⊕ im j2
is isomorphic to G1 ⊕ G3.

Next, we introduce a “homology theory” by listing a number of axioms which
must hold. They are usually called the “Eilenberg–Steenrod axioms”.

Definition 6.1.12 A “homology theory” on a family of pairs of spaces (X, A) con-
sists of:

(a) A sequence {Hk(X, A)}k∈N0 of abelian groups known as “homology groups” for
the pair (X, A) (note that for the pair (X,∅), we write Hk(X), k ∈ N0).
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(b) To every map of pairs ϕ : (X, A) → (Y, B) is associated a homomorphism

ϕ∗ : Hk(X, A) → Hk(Y, B) for all k ∈ N0.

(c) To every k ∈ N0 and every pair (X, A) is associated a homomorphism

∂ : Hk(X, A) → Hk−1(A) for all k ∈ N.

These items satisfy the following axioms:

Axiom 1: If ϕ = idX , then ϕ∗ = id|Hk (X,A).
Axiom 2: If ϕ : (X, A) → (Y, B) and ψ : (Y, B) → (Z , C) are maps of pairs, then

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
Axiom 3: If ϕ : (X, A) → (Y, B) is a map of pairs, then ∂ ◦ ϕ∗ = (ϕ|A)∗ ◦ ∂.
Axiom 4: If i : A → X and j : (X,∅) → (X, A) are inclusion maps, then the fol-

lowing sequence is exact

. . .
∂→ Hk(A)

i∗→ Hk(X)
j∗→ Hk(X, A)

∂→ Hk−1(A) → . . .

Axiom 5: If ϕ,ψ : (X, A) → (Y, B) are homotopic maps of pairs, then ϕ∗ = ψ∗.
Axiom 6 (Excision): If U ⊆ X is an open set with Ū ⊆ int A and i : (X\U, A\U )

→ (X, A) is the inclusion map, then i∗ : Hk(X\U, A\U ) → Hk(X, A)

is an isomorphism.
Axiom 7: If X = {∗}, then Hk({∗}) = 0 for all k ∈ N.

Remark 6.1.13 If an abelian group G is isomorphic to H0(X) for every singleton
X , then we say that G is the group of coefficients of the homology theory. Note that
Hk(X, A) = 0 for all k ∈ −N. The excision axiom (see Axiom 6) can be equivalently
reformulated as follows:

Axiom 6’: If A, B ⊆ X and X = int A ∪ int B, then the inclusion map i : (A, A ∩
B) → (X, A) induces an isomorphism i∗ : Hk(A, A ∩ B) → Hk(X, A).

Next we derive some useful consequences of the above axioms.

Proposition 6.1.14 If the pairs (X, A) and (Y, B) are homotopy equivalent, then
Hk(X, A) = Hk(Y, B) for all k ∈ N0 (hereafter, the symbol = denotes that the groups
are isomorphic).

Proof Let ϕ : (X, A) → (Y, B) be a homotopy equivalence and ψ its homotopy
inverse. According to Definition 6.1.5(b) we have ψ ◦ ϕ � idX . Then Axioms 1
and 2 imply that ψ∗ ◦ ϕ∗ = idHk (X,A). Similarly we show that ϕ∗ ◦ ψ∗ = idHk (Y,B). It
follows that ϕ∗ : Hk(X, A) → Hk(Y, B) is an isomorphism and ϕ−1∗ = ψ∗. �

Proposition 6.1.15 If A ⊆ X is a deformation retract of X, then Hk(X, A) = 0 for
all k ∈ N0.
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Proof From Remark 6.1.6 we know that X and A are homotopy equivalent. Hence
Hk(X) = Hk(A) for all k ∈ N0. Using Axiom 4 we have the exact chain

. . . → Hk(A)
i∗→ Hk(X)

j∗→ Hk(X, A)
∂→ Hk−1(A)

i∗→ Hk−1(X) → . . . (6.5)

The exactness of (6.5) and the equality Hk(A) = Hk(X) for all k ∈ N0 (that is, i∗
is an isomorphism) imply that Hk(X, A) = 0 for all k ∈ N0. �

Corollary 6.1.16 Hk(X, X) = 0 for all k ∈ N0.

Proposition 6.1.17 If A is a retract of X, then Hk(X) = Hk(X, A) ⊕ Hk(A) for all
k ∈ N0.

Proof Let r : X → A be the retraction and i : A → X the inclusion map. From
Definition 3.1.30 we know that r ◦ i = idA. Then from Axioms 1 and 2, we have

r∗ ◦ i∗ = idHk (A) for all k ∈ N0,

and i∗ is an injection onto a direct summand of Hk(X). The other summand is the
kernel of r∗. Let j : (X,∅) → (X, A) be the inclusionmap and consider the sequence

. . . → Hk+1(X, A)
∂→ Hk(A)

i∗→ Hk(X)
j∗→ Hk(X, A)

∂→ . . . (6.6)

This is an exact sequence (see Axiom 4) and since i∗ is injective, we have ker i∗ =
0. So, from (6.6) it follows that ∂ is the trivial map. From the exactness of (6.6) it
follows that j∗ is surjective. Since ker j∗ = im i∗ [see (6.6], j∗ is an isomorphism of
ker r∗ onto H(X, A), Therefore we conclude that Hk(X) = Hk(X, A) ⊕ Hk(A) for
all k ∈ N0. �

A map of pairs ϕ : (X, A) → (Y, B) defines the maps

ϕ1 : X → Y and ϕ2 : A → B.

Evidently, ϕ2 = ϕ|A (see Definition 6.1.1(b)).
We introduce the homomorphisms ϕ∗, (ϕ1)∗ and (ϕ2)∗ induced by these maps

and consider the following diagram:

. . . → Hk+1(X, A)
∂→ Hk(A)

i∗→ Hk(X)
j∗→ Hk(X, A) → . . .

↓ ϕ∗ ↓ (ϕ1)∗ ↓ (ϕ2)∗ ↓ ϕ∗ (6.7)

. . . → Hk+1(Y, B)
∂→ Hk(B)

i ′∗→ Hk(Y )
j ′∗→ Hk(Y, B) → . . .

where i, j, i ′, j ′ are the appropriate inclusions.

Proposition 6.1.18 Diagram (6.7) is commutative.
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Proof We must verify the equalities

ϕ∗ ◦ j∗ = j ′
∗ ◦ (ϕ1)∗, (ϕ1)∗ ◦ i∗ = i ′

∗ ◦ (ϕ2)∗, (ϕ2)∗ ◦ ∂ = ∂ ◦ ϕ∗.

The first two equalities follows from Axiom 2 since

ϕ ◦ j = j ′ ◦ ϕ1 and ϕ1 ◦ i = i ′ ◦ ϕ2.

The third equality is actually Axiom 3. �

To continue we will need an auxiliary result known as the “five lemma”.

Lemma 6.1.19 If we have a commutative diagram of abelian groups and homomor-
phisms

G1
h1−→ G2

h2−→ G3
h3−→ G4

h4−→ G5

↓ α ↓ β ↓ γ ↓ δ ↓ e (6.8)

Ĝ1
ĥ1−→ Ĝ2

ĥ2−→ Ĝ3
ĥ3−→ Ĝ4

ĥ4−→ Ĝ5

in which each row is exact and α,β, δ, e are isomorphisms, then γ is an isomorphism.

Proof First we show that γ is injective. So, suppose that γ(u3) = 0 with u3 ∈ G3.
Then from the commutativity of (6.8), we have

(δ ◦ h3)(u3) = (ĥ3 ◦ γ)(u3) = 0

⇒ h3(u3) = 0 (since by hypothesis δ is an isomorphism). (6.9)

The exactness of the top row in (6.8) and (6.9) imply that we can find u2 ∈ G2

such that h2(u2) = u3. Then exploiting once again the commutativity of (6.8), we
have

(ĥ2 ◦ β)(u2) = 0

and there exists a û1 ∈ Ĥ1 such that

ĥ1(û1) = β(u2).

Let u1 ∈ G1 such that α(u1) = û1. We have

(β ◦ h1)(u1) = β(u2)

⇒ h1(u1) = u2 (since by hypothesis β(·) is an isomorphism)

⇒ (h2 ◦ h1)(u1) = u3.

But (h2 ◦ h1)(u1) = 0 [by the exactness of the row in (6.8)]. Therefore
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u3 = 0

⇒ γ is injective.

Next we show that γ is surjective. So, let û3 ∈ Ĝ3. Then there is a u4 ∈ G4 such
that δ(u4) = ĥ3(û3). From the commutativity of (6.8) we have

(e ◦ h4)(u4) = (ĥ4 ◦ δ)(u4) = (ĥ4 ◦ ĥ3)(û3) (6.10)

and the exactness of the lower row in (6.8) implies that

(ĥ4 ◦ ĥ3)(û3) = 0

⇒ h4(u4) = 0 (see (6.9) and recall that e is an isomorphism).

The exactness of the top row in (6.8) implies that there exists a u3 ∈ G3 such that

h3(u3) = u4

⇒ ĥ3(û3 − γ(u3)) = 0.

So, there exists a û2 ∈ Ĝ2 such that

ĥ2(û2) = û3 − γ(u3).

Let u2 ∈ G2 be such that β(u2) = û2. Then

u3 + h2(u2) ∈ G3 and γ(u3 + h2(u2)) = γ(u3) + ĥ2(û2) = û3

⇒ γ is surjective, hence an isomorphism.

The proof is now complete. �
Using this lemma, we can prove the following result.

Proposition 6.1.20 If (X, A) =
n⋃

i=1
(Xi , Ai ) with {Xi }n

i=1 nonempty, closed and pair-

wise disjoint subsets of X, then Hk(X, A) = n⊕
i=1

Hk(Xi , Ai ) for all k ∈ N0.

Proof We do the proof for n = 2, the general case following by induction.
Consider the inclusion maps i1 : X1 → X and i2 : X2 → X . We show that

these maps yield an isomorphism (i1)∗ ⊕ (i2)∗ : Hk(X1) ⊕ Hk(X2) → Hk(X) for
all k ∈ N0. To this end it suffices to show that (i1)∗, (i2)∗ are injective and im (i1)∗ ⊕
im i2)∗ = Hk(X). Let j1 : (X,∅) → (X, X1) be the inclusion map. Then using Ax-
ioms 2 and 6, we have that ( j1 ◦ i2)∗ = ( j1)∗ ◦ (i2)∗ is an isomorphism. Hence (i2)∗
is injective and

Hk(X) = ker ( j1)∗ ⊕ im (i2)∗ . (6.11)

Similarly we prove that (i1)∗ is injective. Moreover, from Axiom 4 we have



466 6 Morse Theory and Critical Groups

ker ( j1)∗ = im (i1)∗
⇒ Hk(X) = im (i1)∗ ⊕ im (i2)∗ as claimed (see (6.11)).

In a similar fashion, we show that the inclusionmaps i A
1 : A1 → A and i A

2 : A2 →
A produce an isomorphism i A

1 ⊕ i A
2 : Hk(A1) ⊕ Hk(A2) → Hk(A) for all k ∈ N0.

Then for every k ∈ N0, Axiom 4 gives us a commutative diagram

2⊕
i=1

Hk(Ai ) −→ 2⊕
i=1

Hk(Xi ) −→ 2⊕
i=1

Hk(Xi , Ai ) −→ 2⊕
i=1

Hk−1(Ai ) −→ 2⊕
i=1

Hk−1(Xi )

⏐⏐�α
⏐⏐�β

⏐⏐�γ
⏐⏐�δ

⏐⏐�e

Hk(A) −−−−−−−→ Hk(X) −−−−−−→ Hk(X, A) −−−−−−→ Hk−1(A) −−−−−→ Hk−1(X)

with the rows being exact and from the previous considerations, we have that
α,β, δ, e are all isomorphisms. Invoking Lemma 6.1.19, we infer that γ is an i-
somorphism too and so we conclude that

Hk(X, A) = 2⊕
i=1

Hk(Xi , Ai ) for all k ∈ N0.

The proof is now complete. �

Corollary 6.1.21 If X =⋃
i∈I

Xi is the decomposition of the space into its path com-

ponents Xi , then Hk(X) = ⊕
i∈I

Hk(Xi ) for all k ∈ N0.

Remark 6.1.22 For anyHausdorff topological space X, H0(X) is a free abelian group
with a basis consisting of an arbitrary point in each path component. Hence H0(X)

is a direct sum of G ′s, one for each path component of X . If X is path-connected,
then H0(X) = G.

The next proposition generalizes the long exact sequence in Axiom 4.

Proposition 6.1.23 If C ⊆ A ⊆ X and i : (A, C) → (X, C), j : (X, C) → (X, A),
ĵ : (A,∅) → (A, C) are the inclusion maps, then the sequence

. . .
ĵ∗◦∂−−→ Hk(A, C)

i∗−→ Hk(X, C)
j∗−→ Hk(X, A)

ĵ∗◦∂−−→ Hk−1(A, C) −→ . . . , k ∈ N0

is exact.

Proof We first show that

im ( ĵ∗ ◦ ∂) ⊆ ker i∗, im i∗ ⊆ ker j∗, im j∗ ⊆ ker ( ĵ∗ ◦ ∂). (6.12)

From Axiom 2 it follows that the next diagram is commutative
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Hk+1(X, A)
∂−→ Hk(A)

ĵ∗−→ Hk(X, A)
⏐⏐�(i1)∗

⏐⏐�i∗

Hk(X)
j̃∗−→ Hk(X, C)

with i1 : A → X and j̃ : (X,∅) → (X, C) being the inclusion maps. From Axiom 4
we have that (i1)∗ ◦ ∂ = 0. Hence i∗ ◦ ( ĵ∗ ◦ ∂) = 0 and this proves the first inclusion
in (6.12). The other two inclusions in (6.12) are verified in a similar way.

Next we show the opposite inclusions from those in (6.12), namely we show that

ker i∗ ⊆ im ĵ∗ ◦ ∂), ker j∗ ⊆ im i∗, ker ( ĵ ◦ ∂) ⊆ im j∗. (6.13)

Let u ∈ ker j∗. Using Axioms 2 and 3, we introduce the following commutative
diagram of homology groups and homomorphisms

Hk(A)
(i1)∗

ĵ∗

Hk(X)

j̃∗
( j1)∗

Hk(A, C)

∂̂

i∗
Hk(X, C)

∂̃

j∗
Hk(X, A)

∂̂

Hk−1(C)
(i2)∗

Hk−1(A)

(6.14)

where j1 : (X,∅) → (X, A), i2 : C → A are the inclusion maps and ∂̂, ∂̃ are the
boundary maps guaranteed by Definition 6.1.12. The argument is simple and follows
the diagram (6.14). It involves four steps:

Step 1:We have j∗(u) = 0, hence (i2)∗ ◦ ∂̃(u) = ∂̂ ◦ j∗(u) = 0 [see (6.14)]. From
the exactness of (6.14), we have ker (i2)∗ = im ∂̂ and so we can find y ∈ Hk(A, C)

such that ∂̂(y) = ∂̃(u).
Step 2: We have ∂̃(i∗(y) − u) = 0 (see (6.14) and Step 1). We know that ker ∂̃ =

im j̃∗. So, we can find x ∈ Hk(X) such that j̃∗(x) = i∗(y) − u.
Step 3: Since j∗ ◦ i∗ = 0 (see the second inclusion in (6.12)) and j∗(u) = 0 (recall

that u ∈ ker j∗), we have

( j1)∗(x) = j∗(i∗(y) − u) (see (14) and Step 2).

But from the exactness of (6.14), we have ker ( j1)∗ = im (i1)∗. So, we can find
v ∈ Hk(A) such that x = (i1)∗(v).

Step 4: From the previous three steps we have

i∗(y) − u = j̃∗((i1)∗(v)) = i∗( ĵ∗(v))

⇒ u ∈ im i∗.
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This proves the second inclusion in (6.13). The other two inclusions in (6.13) are
proved similarly.

From (6.12) and (6.13), we conclude that the sequence of the proposition is
exact. �

Corollary 6.1.24 Suppose that C ⊆ A ⊆ X.

(a) If C is a deformation retract of A, then Hk(X, A) = Hk(X, C) for all k ∈ N0.
(b) If A is a deformation retract of X, then Hk(X, C) = Hk(A, C) for all k ∈ N0.

Next, we focus on homology groups of the form

Hk(X, ∗) with ∗ ∈ X, k ∈ N0.

We start by establishing the precise relation between the homology groups Hk(X)

and Hk(X, ∗).

Proposition 6.1.25 Hk(X, ∗) = ker r∗ where r : X → {∗} is the map r(u) = ∗ for
all u ∈ X and we have Hk(X) = Hk(X, ∗) ⊕ Hk(∗) for all k ∈ N0.

Proof We know that {∗} ⊆ X is a retract of X . So, from Proposition 6.1.17 we have

Hk(X) = Hk(X, ∗) ⊕ Hk(∗) for all k ∈ N0.

The proof is now complete. �

Remark 6.1.26 From Axiom 7 and Proposition 6.1.25, we see that

H0(X) = H0(X, ∗) ⊕ G and Hk(X) = Hk(X, ∗) for all k ∈ N.

It is often convenient to have a slightly modified version of homology, for which
a point has trivial homology groups in all dimensions, including zero. This is done
in the next definition.

Definition 6.1.27 The “reduced homology groups” of X are defined by

H̃k(X) = Hk(X, ∗) for all k ∈ N0, with ∗ ∈ X.

Remark 6.1.28 Evidently, H0(X) = H̃0(X) ⊕ G and Hk(X) = H̃k(X) for all k ∈ N.

The next result, known as the “reduced exact homology sequence”, is a particular
case of Proposition 6.1.23.

Proposition 6.1.29 If (X, A) is a pair of space and ∗ ∈ A, then the long sequence
of homology groups

. . . → Hk(A, ∗) → Hk(X, ∗) → Hk(X, A) → Hk−1(A, ∗) → . . .

is exact.
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Reduced homology groups are simple when the space is contractible (see Defini-
tion 6.1.7).

Proposition 6.1.30 If X is a contractible Hausdorff topological space, then
Hk(X, ∗) = 0 for all k ∈ N0 and all ∗ ∈ X.

Proof From Remark 6.1.8 we know that since X is contractible, every singleton {∗}
with ∗ ∈ X is a deformation retract of X . Invoking Proposition 6.1.15, we have.

Hk(X, ∗) = 0 for all k ∈ N0.

The proof is now complete. �

Proposition 6.1.31 If A ⊆ X is a subspace which is contractible in itself, then
Hk(X, A) = Hk(X, ∗) for all ∗ ∈ A and all k ∈ N0.

Proof By Propositions 6.1.29 and 6.1.30, we have the following exact chain

0 = Hk(A, ∗) → Hk(X, ∗) → Hk(X, A) → Hk−1(A, ∗) = 0.

The exactness of this chain implies that

Hk(X, ∗) = Hk(X, A) for all k ∈ N0.

The proof is now complete. �

The next theorem is a basic tool for computing homology groups. It gives a recipe
for computing the homology groups of a space which is the union of two open sets
in terms of the homology groups of the two open sets and those of their intersection.
This global result is known as the “Mayer–Vietoris theorem”.

We will need the following general result about exact sequences, known in the
literature as the “Whitehead–Barratt Lemma”.

Lemma 6.1.32 If the commutative diagram of abelian groups and homomorphisms

. . . → Ak
ϕk−→ Bk

ψk−→ Ck
wk−→ Ak−1

ϕk−1−−→ . . .
⏐⏐�αk

⏐⏐�βk

⏐⏐�γk

⏐⏐�αk−1

. . . → Âk
ϕ̂k−→ B̂k

ψ̂k−→ Ĉk
ŵk−→ Âk−1

ϕ̂k−1−−→ . . .

has exact rows and γk is an isomorphism for all k ∈ N0, then the sequence

. . . → Ak
(αk1−ϕk )−−−−−→ Âk ⊕ Bk

ϕ̂k+βk−−−→ B̂k
wk◦γ−1

k ◦ψ̂k−−−−−−→ Ak−1 → . . .

is exact.
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The “Mayer–Vietoris theorem” reads as follows.

Theorem 6.1.33 If X is a Hausdorff topological space, A, B ⊆ X are two nonempty
sets whose interiors cover X and ∗ ∈ A ∩ B, then there is an exact sequence

. . . → Hk(A ∩ B, ∗) → Hk(A, ∗) ⊕ Hk(B, ∗) → Hk(A ∪ B, ∗) → Hk(A ∩ B, ∗) → . . .

Proof From Proposition 6.1.23 we have the following commutative diagram

. . . → Hk(A ∩ B, ∗)
(i1)∗−−→ Hk(A, ∗)

( j1)∗−−→ Hk(A, A ∩ B)
∂−→ Hk−1(A ∩ B, ∗) → . . .

⏐⏐�αk

⏐⏐�βk

⏐⏐�γk

⏐⏐�αk−1

. . . → Hk(B, ∗)
(i2)∗−−→ Hk(A ∪ B, ∗)

( j2)∗−−−→ Hk(A ∪ B, B)
∂̂−→ Hk−1(B, ∗) → . . . .

Here i1, j1, j2,αk,βk, γk,αk−1 are the suitable inclusion maps. From Axiom 6’
(see Remark 6.1.13) we know that γk is an isomorphism. Then the theorem is a
consequence of Lemma 6.1.32. �

We will use the previous results to compute the homology groups of the ball B̄n

and of the sphere Sn in any homology theory.
So, let

B̄n = {u ∈ R
n : |u| � 1}, Bn = {u ∈ R

N : |u| < 1} and
Sn = {u ∈ R

n+1 : |u| = 1}.

Example 6.1.34 (a) Since B̄n is contractible, from Proposition 6.1.30 we have

Hk(B̄n, ∗) = 0 for all k ∈ N0 and all ∗ ∈ B̄n.

(b) In contrast Sn is not contractible. To see this we argue by contradiction. So,
suppose that Sn is contractible. According to Definition 6.1.7 we can find a function
h ∈ C([0, 1] × Sn, Sn) such that

h(0, u) = u for all u ∈ Sn and h(1, u) = u0 with u0 ∈ Sn.

Using the Tietze extension theorem,we can find ĥ ∈ C([0, 1] × B̄n+1,Rn+1) such
that ĥ|[0,1]×Sn = h. We set

ϕ̂(·) = ĥ(0, ·) and ψ̂(·) = ĥ(1, ·).

From the homotopy invariance of the Brouwer degree (see Proposition 3.1.14),
we have

d(ϕ̂, Bn+1, 0) = d(ψ̂, Bn+1, 0)

⇒ d(idRn+1, Bn+1, 0) = d(u0, Bn+1, 0). (6.15)
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Here by u0 we mean the constant function ψ(u) = u0 for all u ∈ Sn . But from
Theorem 3.1.25(a), we have

d(idRn+1, Bn+1, 0) �= 0

⇒ d(u0, Bn+1, 0) �= 0 (see (6.15)).

On the other hand since u0 ∈ Sn , we have d(u0, Bn+1, 0) = 0, a contradiction.
This proves that Sn is not contractible (see also Proposition 3.1.32).

So, to compute the reduced homology groups of Sn , we proceed as follows.
First note that the homology groups Hk(Sn, ∗) depend only on the homotopy type

of Sn (see Proposition 6.1.14). So, without any loss of generality we can take the
Euclidian norm on R

n+1.
If n = 0, then from Corollary 6.1.16 and Proposition 6.1.17, we have

Hk(S0, ∗) = Hk(∗) ⊕ Hk(∗, ∗) = Hk(∗) for all k ∈ N0.

Now let n � 1 and let uN ∈ Sn and uS ∈ Sn be the north and south poles respec-
tively. Set

Sn
1 = Sn\{uN } and Sn

2 = Sn\{uS}.

Then Sn = Sn
1 ∪ Sn

2 and so by Theorem 6.1.33, we have the exact sequence

2⊕
i=1

Hk(Sn
i , ∗) → Hk(Sn, ∗) → Hk−1(Sn

1 ∩ Sn
2 , ∗) → 2⊕

i=1
Hk−1(Sn

i , ∗). (6.16)

Note that the spaces Sn
1 , Sn

2 are contractible. Therefore

Hk(Sn
1 , ∗) = Hk(Sn

2 , ∗) = 0 for all k ∈ N0. (6.17)

Also, the pair (Sn
1 ∩ Sn

2 , ∗) is clearly homotopically equivalent to (Sn−1, ∗) and
so, by Proposition 6.1.14

Hk(Sn
1 ∩ Sn

2 , ∗) = Hk(Sn−1, ∗) for all k ∈ N0 . (6.18)

From (6.16), (6.17), (6.18) we obtain

Hk(Sn, ∗) = Hk−1(Sn−1, ∗) for all k ∈ N0.

Then by induction we have

Hk(Sn, ∗) =
{

H0(∗) if k = n
0 if k �= n.
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So, in any homology theory, Hn(Sn, ∗) is the only reduced homology group of
Sn which is nontrivial and it coincides with H0(∗) (the group of coefficients of the
homology theory).

(c) From the previous two examples and the reduced exact homology sequence
(see Proposition 6.1.29), we have

Hk(B̄n, Sn−1) = Hk−1(Sn−1, ∗) =
{

H0(∗) if k = n
0 if k �= 0.

Remark 6.1.35 If X is an infinite-dimensional Banach space and ∂B1 = {u ∈ X :
||u|| = 1}, then ∂B1 is contractible (compare with Example 6.1.34(b)).

Proposition 6.1.36 If X1 ⊆ · · · ⊆ Xk+1 are Hausdorff topological spaces, then

rank Hn(Xk+1, X1) �
k∑

i=1
rank Hn(Xi+1, Xi ) for all n ∈ N0.

Proof Consider the triple (Xk+1, Xk, X1) and the long exact sequence corresponding
to it according to Proposition 6.1.23. We have

. . . → Hn(Xk, X1)
i∗−→ Hn(Xk+1, X1)

j∗−→ Hn(Xk+1, Xk) → . . . (6.19)

Then from the rank theorem we have

rank Hn(Xk+1, X1) � rank ker j∗ + rank im j∗
= rank im i∗ + rank im j∗ (by the exactness of (6.19))

� rank Hn(Xk, X1) + rank Hn(Xk+1, Xk). (6.20)

Since for k = 1, the inequality claimed by the proposition is in fact an equality
the result follows from (6.20) and induction on k ∈ N. �

Proposition 6.1.37 If X1 ⊆ X2 ⊆ X3 ⊆ X4 are Hausdorff topological spaces then
for all n ∈ N,

rank Hn(X3, X2) − rank Hn(X4, X1) � rank Hn−1(X2, X1) + rank Hn+1(X4, X3).

Proof We consider the triple (X3, X2, X1) and the long exact sequence correspond-
ing to it according to Proposition 6.1.23. We have

. . . → Hn(X3, X1)
i∗−→ Hn(X3, X2)

∂−→ Hn−1(X2, X1) → . . . (6.21)

From the rank theorem we have
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rank Hn(X3, X2) = rank ker ∂ + rank im ∂ =
rank im i∗ + rank im ∂ (from the exactness of (6.21))

⇒ rank Hn(X3, X2) − rank im i∗ � rank Hn−1(X2, X1)

⇒ rank Hn(X3, X2) − rank Hn(X3, X1) � rank Hn−1(X2, X1). (6.22)

Similarly, if we consider the triple (X4, X3, X1), then from Proposition 6.1.23 we
have the long exact sequence

. . . → Hn+1(X4, X3)
∂−→ Hn(X3, X1)

i∗−→ Hn(X4, X1) → . . . . (6.23)

As above, via the rank theorem and the exactness of (6.23), we obtain

rank Hn(X3, X1) = rank ker i∗ + rank im i∗
= rank im ∂ + rank im i∗
� rank Hn+1(X4, X3) + rank Hn(X4, X1). (6.24)

Using (6.22) in (6.24), we obtain

rank Hn(X3, X2) − rank Hn−1(X2, X1) �
rank Hn+1(X4, X3) + rank Hn(X4, X1)

⇒rank Hn(X3, X2) − rank Hn(X4, X1) �
rank Hn−1(X2, X1) + rank Hn+1(X4, X3).

The proof is now complete. �
Next we introduce a concrete homology theory which we will use in the sequel

and which is known as “singular homology theory”.
Singular homology theory extended simplicial homology theory to general topo-

logical spaces. Simplicial homology theory is defined for a special kind of spaces,
namely compact polyhedra and the complexes resulting from them.

Let �n be the standard n-simplex defined by

�n = {(λn)
n
k=0 ∈ R

n+1 :
n∑

k=0

λk = 1,λk � 0}.

For k ∈ {0, . . . , n}we set ek = (0, . . . , 0, 1, 0, . . . , 0) (with 1 located at the k + 1-
entry).

Definition 6.1.38 Let X be a Hausdorff topological space.

(a) A “singular n-simplex” is a continuous map σ : �n → X .
(b) The free abelian group with the singular n-simplexes as generators and coeffi-

cients in Z is called the “n
th= singular chain group” and is denoted by Cn(X).

For n < 0, Cn(X) = 0 and if c ∈ Cn(X), then c is called a “singular n-chain”.
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Remark 6.1.39 The world “singular” is used here to reflect the fact that the map σ(·)
need not be a homeomorphism and can have “singularities”. Moreover, its image
σ(�n) in general does not look at all like a simplex. A singular 0-simplex is a map
from the singleton�0 into X . Hence it can be identified with a point of X . A singular
1-simplex is a continuous map σ : �1 � [0, 1] → X , hence it is a path in X .

Definition 6.1.40 (a) Let X, Y be Hausdorff topological space and ϕ : X → Y a
continuous map. If σ : �n → X is a singular n-simplex in X , then the composition
ϕ ◦ σ : �n → Y is a singular n-simplex in Y , denoted by ϕσ. Suppose that c =

n∑

k=1
akσk , where ak ∈ Z is an n-chain X (that is, c ∈ Cn(X)). Then

ϕ∗(c) =
n∑

k=1

akϕσk ∈ Cn(Y )

and the homomorphism ϕ∗ : Cn(X) → Cn(Y ) is the “homomorphism induced by
ϕ”.

(b) For each k ∈ {0, . . . , n}, let dk : �n−1 → �n be the affine function defined by

dk(x0, . . . , xn−1) = (x0, . . . , xk−1, 0, xk+1, . . . , xn−1)

is called the “k-face function in dimension n”. For every singular n-simplex σ :
�n → X , the “boundary of σ” is defined to be the singular (n − 1)-chain ∂σ defined
by

∂σ =
n∑

k=0

(−1)kσ ◦ dk .

This extends uniquely to a homomorphism ∂ : Sn(X) → Sn−1(X) known as the
“boundary operator”.

Remark 6.1.41 Sometimes we write ∂n instead of ∂ in order to indicate the chain
group on which the boundary operator is acting.

The next proposition gives the most important feature of the boundary operator.
Its proof is straightforward but it involves a tedious calculation and so it is omitted.

Proposition 6.1.42 ∂n ◦ ∂n+1 = 0 for all n ∈ N0.

Definition 6.1.43 (a) A singular n-chain c is said to be an “n-cycle” if ∂c = 0.
(b) A singular n-chain c is said to be an “n-boundary” if there is an (n + 1)-chain

b such that ∂b = c.
(c) By Zn(X) we denote the set of all n-cycles and by Bn(X) the set of all n-

boundaries. Both are abelian subgroups of Cn(X).

Example 6.1.44 (a) Recall that a singular 1-simplex is a path σ : [0, 1] → X and
∂σ corresponds to the formal difference σ(1) − σ(0). Hence a 1-cycle is a formal
Z-linear combination of paths with the property that the set of initial points counted
with multiplicities is the same as the set of terminal points with multiplicities.
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(b) In the case of a singular 2-simplex σ : �2 → X , the boundary is the sum of
three paths with signs. Consider σ : i�2 : �2 → R

3 the inclusion map. Then

∂i�2 = a(e1, e2) − a(e0, e2) + a(e0, e1).

So, ∂i�2 is the sum of the singular 1-simplexes in the boundary of �2 with
appropriate signs.

Now we can define the singular homology groups.

Definition 6.1.45 Let X be a Hausdorff topological space. The collection
{Cn(X), ∂n}n�0 is called a “singular chain complex for X”. We set

Zn(X) = ker ∂n for all n ∈ N, Z0(X) = C0(X),

Bn(X) = im ∂n+1 for all n ∈ N0 (see Definition 6.1.43).

Both are abelian subgroups of Cn(X) and by Proposition 6.1.42 we have

Bn(X) ⊆ Zn(X) for all n ∈ N0.

So, we can define the quotient groups

Hn(X) = Zn(X)/Bn(X) =
{
ker ∂n/im ∂n+1 if n ∈ N

C0(X)/im ∂1 if n = 0.

This is the “n-th singular homology group of X”. The singular homology of X is
the collection

H∗(X) = {Hn(X)}n∈N0 .

Remark 6.1.46 The elements of Hn(X) are called singular homology classes, the
coset u + Bn(X) being the class for the singular n-cycle u. Two n-cycles u and u′
are said to be homologous if they belong to the same singular homology class. Clearly,
u and u′ are homologous if and only if u − u′ = ∂n+1c for some singular (n + 1)-
chain c. If Hn(X) is finitely generated, then rank Hn(X)=the n-th Betti number of
X . Since Zn(X), Bn(X) are subgroups of the abelian group Sn(X), they are normal
subgroups.

We can also define relative singular homology groups.

Definition 6.1.47 Let (X, A) be a pair of spaces. We set

Cn(X, A) = Cn(X)/Cn(A) for all n ∈ N0.
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This is the “relative n-singular chain group of X mod A”, which is a free abelian
group with generators those singular n-simplexes σ : �n → X whose images are not
completely contained in A. The elements of Cn(X, A) are called “relative singular
n-chains of X modA”. Because ∂n : Cn(X) → Cn−1(X)(n ∈ N) is a homomorphism
and ∂n(Cn(A)) ⊆ Cn−1(A), there exists a unique homomorphism

∂n : Cn(X, A) → Cn−1(X, A)

(for notational economy we use the same symbol). This is the “boundary operator”
for the relative singular homology groups. As before (see Proposition 6.1.42), we
have

∂n−1 ◦ ∂n = 0 for all n ∈ N.

We set
Zn(X, A) = ker ∂n for all n ∈ N0

(the subgroup of relative singular n-cycles of X mod A),

Bn(X, A) = im ∂n+1 for all n ∈ N0

(the subgroup of relative singular n-boundaries of X mod A).

We have Bn(X, A) ⊆ Zn(X, A) and so we can define

Hn(X, A) = Zn(X, A)/Bn(X, A) for all n ∈ N0.

This is the “n-th relative singular homology group of X mod A”. This is a free
abelian group and if it is finitely generated, then rank Hn(X, A) is the “n-th Betti
number” of the pair (X, A).

Remark 6.1.48 We have

Zn(X, A) =
{ {c ∈ Cn(X) : ∂nc ∈ Cn−1(A)} if n ∈ N

C0(X) if n = 0

and Bn(X, A) = Bn(X) + Cn(A) (that is, the subgroup generated by Bn(X) and
Cn(A)). If A = ∅, then Hn(X,∅) = Hn(X).

Proposition 6.1.49 The relative singular homology introduces a homology theory
in the sense of Definition 6.1.12 on the collection of all pairs of spaces.

Remark 6.1.50 We have defined singular homology theory using Z as the group
of coefficients, because this is the most standard singular homology. However, in
some cases, in order to avoid torsion phenomena, we replace Z by a field F. In this
case Hn(X, A), n ∈ N0, is a vector space. Recall that in the presence of torsion,
we may have rank Hn(X, A) = 0 although Hn(X, A) �= 0. Finally, we mention that
rank H0(X) coincides with the number of path components of X . More generally, if
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A ⊆ X , then rank H0(X, A) coincides with the number of path components C ⊆ X
which do not intersect A. So, if each u ∈ X can be connected to an element of A by
a path in X , then H0(X, A) = 0.

6.2 Critical Groups, Morse Relations

In Morse theory the local behavior of a smooth function ϕ near an isolated critical
point is described by a sequence of abelian groups, known as “critical groups”.

So, let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. From Sects. 5.2 and 5.3 we
recall the following notation:

ϕc = {u ∈ X : ϕ(u) � c} (the sublevel set of ϕ at c ∈ R),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

K c
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c ∈ R).

Definition 6.2.1 Suppose that u ∈ Kϕ is isolated. The “critical groups” of ϕ at u
are defined by

Ck(ϕ, u) = Hk(ϕ
c ∩ U,ϕc ∩ U\{u}) for all k ∈ N0,

where H∗ denotes the relative singular homology group with Z being the group of
coefficients and U is a neighborhood of u such that Kϕ ∩ U = {u}.
Remark 6.2.2 The excision property (see Definition 6.1.12, Axiom 6) implies that
the above definition is independent of the choice of the neighborhood U for which
we have Kϕ ∩ U = {u} (recall u is isolated). If we choose the elements of a field F

as coefficients for the homology groups, then the critical groups are F-vector spaces.
From the above definition it is clear that the critical groups depend only on the
behavior of ϕ near u. Evidently, they can be defined, even if ϕ is defined only in a
neighborhood of u. This will become even more evident in the next section. Finally,
recall that Ck(ϕ, u) = 0 for all k ∈ −N.

Proposition 6.2.3 If u ∈ X is a local minimizer of ϕ ∈ C1(X) which is an isolated

critical point, then Ck(ϕ, u) = δk,0Z (recall δk,m =
{
1 if k = m
0 if k �= m

for all k, m ∈ N0,

the “Kronecker symbol”).

Proof Since u is a local minimizer and an isolated critical point of ϕ, we can find a
neighborhood U of u such that

Kϕ ∩ U = {u} and c = ϕ(u) < ϕ(v) for all v ∈ U\{u}. (6.25)

Therefore according to Definition 6.2.1, we have
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Ck(ϕ, u) = Hk({u},∅) for all k ∈ N0 (see (6.25))

⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0

(see Definition 6.1.12, Axiom 7 and Remark 6.1.13).

The proof is now complete. �
The situation is more involved with local maximizers.

Proposition 6.2.4 If u ∈ X is a local maximizer of ϕ ∈ C1(X) which is an isolated
critical point, then when dim X = m < ∞, we have Ck(ϕ, u) = δk,mZ for all k ∈ N0,
when dim X = ∞, we have Ck(ϕ, u) = 0 for all k ∈ N0.

Proof Since u is a local maximizer and an isolated critical point of ϕ, we can find
r > 0 such that

Kϕ ∩ B̄r (u) = {u} and ϕ(v) < ϕ(u) = c for all v ∈ B̄r (u)\{u}. (6.26)

Here B̄r (u) = {y ∈ X : ||y − u|| � r}.
First assume that dim X = m < ∞. Consider the deformation

h(t, y) = u + (1 − t)(y − u) + tr
y − u

||y − u|| for all (t, u) ∈ [0, 1] × B̄r (u)\{u}.

Evidently, we have

h(0, y) = y for all y ∈ B̄r (u)\{u} and h(1, ·)|∂Br (u) = id|∂Br (u)

with ∂Br (u) = {y ∈ X : ||y − u|| = r}. Therefore ∂Br (u) is a deformation retract of
B̄r (u)\{u} (see Definition 5.3.10(b)). Then Definition 6.2.1 and Corollary 6.1.24(a),
together with (6.26), imply that

Ck(ϕ, u) = Hk(B̄r (u), B̄r (u)\{u}) = Hk(B̄r (u), ∂Br (u)) for all k ∈ N0. (6.27)

But from Example 6.1.34(c) we know that

Hk(B̄r (u), ∂Br (u)) = δk,mZ for all k ∈ N0

⇒ Ck(ϕ, u) = δk,mZ for all k ∈ N0.

Next, assume that dim X = ∞. In this case we know that both B̄r (u) and
B̄r (u)\{u} are contractible (see Remark 6.1.35) and so from Proposition 6.1.30 and
6.1.31, we conclude that

Hk(B̄r (u), B̄r (u)\{u}) = 0 for all k ∈ N0

⇒ Ck(ϕ, u) = 0 for all k ∈ N0 (see (6.27)).

The proof is now complete. �
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When X = R, the critical groups at any isolated critical point can be completely
described.

Proposition 6.2.5 If X = R, ϕ ∈ C1(R) and u ∈ Kϕ is isolated, then one of the
following three situations can occur:

(a) if u is a local minimizer of ϕ, then Ck(ϕ, u) = δk,0Z for all k ∈ N0;
(b) if u is a local maximizer of ϕ, then Ck(ϕ, u) = δk,1Z for all k ∈ N0;
(c) for all other cases Ck(ϕ, u) = 0 for all k ∈ N0.

Proof Evidently, (a) and (b) follow from Propositions 6.2.3 and 6.2.4, respectively.
Since u is isolated, we can find ε > 0 such that

Kϕ ∩ [u − ε, u + ε] = {u}.

By hypothesis u is not a local extremum of ϕ. So, ϕ is either increasing or
decreasing on [u − ε, u + ε]. To fix things, we assume that ϕ is increasing (the
reasoning in the same if ϕ is decreasing). Then

ϕϕ(u) ∩ [u − δ, u + δ] = [u − δ, u]
⇒ Ck(ϕ, u) = Hk([u − δ, u], [u − δ, u)) for all k ∈ N0 (see Definition 6.2.1)

⇒ Ck(ϕ, u) = 0 for all k ∈ N0 (see Propositions 6.1.30 and 6.1.31).

The proof is now complete. �

Nowwe pass to a Hilbert space setting, where Morse theory is more effective. So,
let X = H = aHilbert space andϕ ∈ C2(H). Recall that u ∈ Kϕ is “nondegenerate”
if the self-adjoint operator ϕ′′(u) ∈ L (H, H) is invertible. The dimension of the
negative space of ϕ′′(u) is called the “Morse index of u” and is denoted by m =
m(u) ∈ Z ∪ {+∞} (see Definition 5.4.18). Using the Morse lemma (see Proposition
5.4.19), we can compute the critical groups ofϕ ∈ C2(H) at an isolated critical point
u which is nondegenerate.

Proposition 6.2.6 If H is a Hilbert space, ϕ ∈ C2(H) and u ∈ Kϕ is isolated and
nondegenerate, with Morse index m, then Ck(ϕ, u) = δk,mZ for all k ∈ N0.

Proof By replacing ϕ with ψ(u) = ϕ(u + y) − ϕ(u) for all y ∈ H if necessary, we
see that without any loss of generality we may assume that

u = 0 and c = ϕ(u) = 0.

Invoking Proposition 5.4.19 (the Morse lemma), we can find a Lipschitz contin-
uous homeomorphism of a neighborhood W of 0 onto a neighborhood U of 0 such
that

h(0) = 0 and ϕ(h(u)) = 1

2
(ϕ′′(0)u, u)H for all u ∈ W (6.28)
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(here, by (·, ·)H we denote the inner product of H ). If ψ(u) = ϕ(h(u)) and B ⊆ W
is a closed ball centered at 0, we have

Ck(ϕ, 0) = Hk(ϕ
◦ ∩ h(B),ϕ◦ ∩ h(B)\{0} = Hk(ψ

◦ ∩ B,ψ◦ ∩ B\{0})) (6.29)
for all k ∈ N0.

Since u is nondegenerate, ϕ′′(0) is invertible and so we have

H = H− ⊕ H+

withψ′′(0) positive (respectively negative) definite on H+ (respectively H−). So, any
v ∈ U can be decomposed in a unique way as v = v− + v+ with v− ∈ H−, v+ ∈ H+.
We consider the deformation ξ : [0, 1] × B → B defined by

ξ(t, v) = v− + (1 − t)v+ for all (t, v) ∈ [0, 1] × B.

Then from (6.28) and exploiting the orthogonality of the component spaces, we
have

ψ(ξ(t, v)) = ψ(v−) + (1 − t)2ψ(v+).

This shows that V− ∩ B\{0} is a deformation retract of ψ◦ ∩ B\{0} and V− ∩ B
is a deformation retract of ψ◦ ∩ B. Then we have

Hk(ψ
◦ ∩ B,ψ◦ ∩ B\{0}) = Hk(V− ∩ B, V− ∩ B\{0}) (see Corollary 6.1.24)

= Hk(B̄m, Sm−1)

= δk,mZ for all k ∈ N0 (see Example 6.1.34(c))

⇒ Ck(ϕ, 0) = δk,mZ for all k ∈ N0.

The proof is now complete. �

What about degenerate critical points? For this case we have the so-called “Shift-
ing Theorem”, which says that for a degenerate critical point, the critical groups
depend on the Morse index and on the “degenerate part” of the functional. Thus the
computation of the critical groups is reduced to a finite-dimensional problem. The
Shifting Theorem will be proved with the help of an extension of the Morse lemma
(see Proposition 5.4.19), which we prove first.

We start with a definition.

Definition 6.2.7 Let X and Y be two Banach spaces and let L ∈ L (X, Y ). We say
that L is a “Fredholm operator” if ker L is finite-dimensional and R(L) = L(X) is
finite codimensional (that is, dim (Y/ker L) < ∞). The number

i(L) = dim ker L − dim (Y/ker L)
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is called the “index” of L . The set of all Fredholm operators L : X → Y is denoted
by Fred (X, Y ).

Remark 6.2.8 If L ∈ Fred (X, Y ), then R(L) ⊆ Y is closed. Moreover, we have

X = ker L ⊕ V

and L|V is an isomorphism of V onto L(X). The set Fred (X, Y ) is open inL (X, Y )

and the map L → i(L) is continuous (hence, it is constant on each connected com-
ponent of Fred (X, Y )). Every L ∈ Fred (X, Y ) is invertible modulo finite rank op-
erators, that is, there exists an S ∈ L (Y, X) such that both

L ◦ S − idY and S ◦ L − idX

are finite rank operators. Finally, if K ∈ Lc(X, X), then λidX − K is a Fredholm
operator for every λ �= 0.

Next we state and prove an extension of the Morse lemma which we will need in
the proof of the shifting theorem.

Proposition 6.2.9 If H is a Hilbert space, U is an open neighborhood of the origin
ϕ ∈ C2(U ), 0 ∈ Kϕ with dimker ϕ′′(0) > 0, L = ϕ′′(0) is a Fredholm operator
hence

H = ker L ⊕ R(L)

and so every u ∈ H admits a unique decomposition

u = w + v with w ∈ ker L , v ∈ R(L),

then there exists an open neighborhood V of the origin, an open neighborhood W of
the origin in ker L, a homeomorphism h from V into U and a function ϕ̂ ∈ C2(W )

such that
h(0) = 0, ϕ̂′(0) = 0, ϕ̂′′(0) = 0

and ϕ(h(u)) = 1
2 (Lv, v)H + ϕ̂(w) for all u ∈ V .

Proof Let P ∈ L (H, H) be the orthogonal projection onto R(L). The implicit func-
tion theorem implies that we can find ρ1 > 0 and a C1-function

σ : Bρ1 ∩ ker L → R(L) (Bρ1 = {u ∈ H : ||u|| < ρ1})

such that σ(0) = 0,σ′(0) = 0 and

P(∇ϕ(w + σ(w))) = 0. (6.30)

We let W = Bρ1 ∩ ker L (an open neighborhood of the origin in ker L) and con-
sider ϕ̂ : W → R defined by
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ϕ̂(w) = ϕ(w + σ(w)) for all w ∈ W.

Evidently, ϕ̂ ∈ C1(W ) and using (6.30) we have

∇ϕ̂(w) = (idH − P)∇ϕ(w + σ(w))

and ϕ′′(w) = (idH − P)ϕ′′(w + σ(w))(w + σ′(w)).

So, we have

∇ϕ̂(0) = (idH − P)∇ϕ(0) = 0,

ϕ′′(0) = (idH − P)ϕ′′(0) = 0.

On [0, 1] × U , we define the function

ξ(t, v, w) = (1 − t)[ϕ̂(w) + 1

2
(Lv, v)H ] + tϕ(v + w + σ(w))

and the vector field

g(t, v, w) =
{
0 if v = 0
−ξ′

t (t, v, w)||ξ′
v(t, v, w)||−2ξv(t, v, w) if v �= 0.

We consider the following abstract Cauchy problem

γ′(t) = g(t, γ(t), w), t ∈ [0, 1], γ(0) = v. (6.31)

We will establish the existence of a local flow for (6.31). To this end let

ψ(v,w) = ϕ(v + w + σ(w)) − ϕ̂(w) − 1

2
(Lv, v)H .

Then using (6.30) we see that

ψ(0, w) = 0, ψ′
v(0, w) = 0, ψ′′

v (0, 0) = 0.

It follows that

ψ(v,w) =
∫ 1

0
(1 − s)(ψ′′

v (sv,w)v, v)H ds, (6.32)

ψv(v,w) =
∫ 1

0
ψ′′

v (sv,w)vds. (6.33)

From (6.32) and (6.33) we infer that for every ε > 0, there exists a δ(ε) ∈ (0, ρ1)
such that
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|ψ(v,w)| � ε||v||2 and ||ψ′
v(v,w)|| � ε||v|| when ||v + w|| � δ(ε). (6.34)

Recall that L|R(L) is invertible. So, we can find c > 0 such that

1

c
||v|| � ||L(v)|| � c||v|| for all v ∈ R(L). (6.35)

For v �= 0, we have

g(t, v, w) = −ψ(v,w)||L(v) + tψ′
v(v,w)||−2(L(v) + tψ′

v(v,w)).

Let ε = 1
2c . Using (6.34) and (6.35), we see that

|g(t, v, w)| � 2c(c + ε)ε||v|| for ||v + w|| � δ(ε). (6.36)

By definition g(t, 0, w) = 0 and so we see that g is continuous. Let ρ ∈ (0, δ(ε))
be such that

||ψ′′
v (v,w)||L � 1 for ||v + w|| � ρ with v �= 0. (6.37)

Using (6.34), (6.35) and (6.37), we see that we can find c1 > 0 such that

||g′
v(t, v, w)|| � c1 for all ||v + w|| � ρ with v �= 0.

Now from (6.36) and the mean value theorem, we see that we can find c2 > 0
such that

|g(t, v1, w) − g(t, v2, w)| � c2||v1 − v2|| for ||vi + w|| � ρ, i = 1, 2.

So, the flow γ(·) of (6.31) exists locally. Since γ(t, 0, w) = 0, the flow γ is well-
defined on [0, 1] × V with V a neighborhood of the origin in H . We set

h(u) = h(v,w) = w + σ(w) + γ(1, v, w) for all u ∈ V .

The invertibility of h follows from the invertibility of the flow γ(1, ·, w). Then h
is the desired local homeomorphism. �

To prove the shifting theorem, we will need one more auxiliary result. First a
definition.

Definition 6.2.10 For a Hausdorff topological space X , the quotient space

�X = [−1, 1] × X/{−1}×X,{1}×X

is called the “suspension of X” or “double cone over X”.
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Remark 6.2.11 So, the suspension �X of X is obtained from [−1, 1] × X by iden-
tifying each of the subsets {−1} × X and {+1} × X with two different points. The
following figure explains this notion and justifies its name

Proposition 6.2.12 If A ⊆ R
n, 0 ∈ A and Bm is the m-ball, then

Hk(Bm × A, (Bm × A)\{0}) = Hn−m(A, A\{0}).
Proof Let m � 2 and recall that Bm is homeomorphic to [−1, 1]m . Then we have

(Bm × A, (Bm × A)\{0}) = (Bm−1 × [−1, 1] × A, (Bm−1 × [−1, 1] × A)\{0}).

Then the result follows by induction from the case m = 1.
From the excision property, we have

Hk([−1, 1] × A, ([−1, 1] × A)\{0}) = Hk(� A, � A\{0}) for all k ∈ N0. (6.38)

We introduce the sets

Â+ = � A\{u−} and Â− = � A\{u+},

where u+ and u− are the two points which are identified with {1} × A and {−1} × A
respectively. Also, set

V+ = Â+\({0} × [−1, 0]) and V− = Â−\({0} × [0, 1]).

We have

Â+ ∪ Â− = � A, Â+ ∩ Â− = [−1, 1] × A, (6.39)

V+ ∪ V− = � A\{0}, V+ ∩ V− = [−1, 1] × (A\{0}). (6.40)
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Evidently,

Â+ and V+ are contractible to u+,

Â− and V− are contractible to u−.

So, we have

Hk( Â±, V±) = Hk(u±, u±) = 0 for all k ∈ N.

Using Theorem 6.1.33 (the Mayer–Vietoris theorem), we obtain

Hk( Â+ ∪ Â−, V+ ∪ V−) = Hk−1( Â+ ∩ Â−, V+ ∩ V−) for all k ∈ N

⇒ Hk(� A, � A\{0}) = Hk−1([−1, 1] × A, [−1, 1] × (A\{0})) (see (6.39), (6.40))
⇒ Hk([−1, 1] × A, ([−1, 1] × A)\{0}) = Hk−1(A, A\{0}) for all k ∈ N (see (6.38)).

This proves the proposition for m = 1 and then by induction for every m ∈ N. �

Now we are ready to state and prove the shifting theorem, which takes care of the
degenerate case.

Theorem 6.2.13 If H is a Hilbert space, U ⊆ H is open, ϕ ∈ C2(U ) and u ∈ Kϕ

is isolated with finite Morse index m and dimker ϕ′′(u) is finite too, then Ck(ϕ, u) =
Ck−m(ϕ̂, 0) for all k ∈ N0, with ϕ̂ as in Proposition 6.2.9.

Proof Without any loss of generality, we may assume that u = 0. Let C ⊆ U be a
closed neighborhood of the origin. Using Proposition 6.2.9, we set

c = ϕ(0) = ϕ̂(0) and ψ(u) = ϕ(v + w) = 1

2
(Lv, v)H + ϕ̂(w) for all u ∈ V

(we have kept the notation introduced in Proposition 6.2.9). We have

Ck(ϕ, 0) = Hk(ϕ
c ∩ h(C),ϕc ∩ h(C)\{0})

= Hk(ψ
c ∩ C,ψc ∩ C\{0}) = Ck(ψ, 0) for all k ∈ N0.

By hypothesis, 0 ∈ ker L is the only critical point of ϕ̂ ∈ C2(W ). Since dimker L
is finite, the Palais–Smale condition is satisfied over any closed ball Br ⊆ W . From
the deformation theorem (see Theorem 5.3.7), we can find ε > 0 and E ⊆ W closed
positively invariant for the negative gradient flow such that ϕ̂c ∩ E is a strong de-
formation retract of ϕ̂c+ε ∩ E and ϕ̂ is nondecreasing along this deformation h. We
set

ĥ(t, v, w) = v− + (1 − t)v+ + h(t, w) for t ∈ [0, 1], u ∈ C = R(L) × (ϕ̂c+ε ∩ E)

(see the proof of Proposition 6.2.6).We can easily check that H− ∩ ϕ̂c ∩ E is a strong
deformation retract of ψc ∩ C and (H− × (ϕ̂c ∩ E))\{0} is a strong deformation
retract of (ψc ∩ C)\{0}. Therefore we have
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Ck(ψ, 0) = Hk(ψc ∩ C, (ψc ∩ C)\{0})
= Hk(H− × (ϕ̂c ∩ E), (H− × (ϕ̂c ∩ E))\{0}) for all k ∈ N0. (6.41)

If m = dim H− = 0, then

Ck(ψ, 0) = Hk(ϕ̂
c ∩ E, (ϕ̂c ∩ E)\{0}) = Ck(ϕ̂, 0) for all k ∈ N0

which is the result of the theorem.
If m = dim H− � 1, then using Proposition 6.2.12 we have

Ck(ψ, 0) = Hk(R
m × (ϕ̂c ∩ E), (Rm × (ϕ̂c ∩ E))\{0})

= Hk(Bm × (ϕ̂c ∩ E), (Bm × (ϕ̂c ∩ E))\{0})
= Hk−m(ϕ̂c ∩ E, (ϕ̂c ∩ E)\{0}) = Ck−m(ϕ̂, 0).

The proof is now complete. �

Let m∗(u) = m(u) + dim ker L (the extendedMorse index of u). Then from The-
orem 6.2.13 we infer the following result.

Corollary 6.2.14 If everything is as in Theorem 6.2.13 and Ck(ϕ, u) �= 0, then
m(u) � k � m∗(u).

We return to themore general setting of aBanach space X .We show that nontrivial
singular homology groups imply the presence of a critical level between two levels
a < b. More precisely, we have the following property.

Proposition 6.2.15 If X is a Banach space, ϕ ∈ C1(X) satisfies the C-condition
and there exist k0 ∈ N0 and levels a, b ∈ R such that a < b and

Hk0(ϕ
b,ϕa) �= 0,

then Kϕ ∩ ϕ−1([a, b]) �= ∅.

Proof We argue indirectly. So, suppose that Kϕ ∩ ϕ−1([a, b]) = ∅. Then Corollary
5.3.13 implies thatϕa is a strong deformation retract ofϕb. Proposition 6.1.15 implies
that

Hk(ϕ
b,ϕa) = 0 for all k ∈ N0,

a contradiction to our hypothesis that Hk0(ϕ
b,ϕa) �= 0. �

We can be more precise and relate the change in the topology of sublevel sets
across a critical level to the critical groups of the critical points for that level.

Proposition 6.2.16 If X is a Banach space, ϕ ∈ C1(X), a, b ∈ Rwith a < b,ϕ sat-
isfies the Cc′-condition at every level c′ ∈ [a, b) , Kϕ ∩ [a, b] = {c} with c /∈ {a, b}
and K c

ϕ = {ui }n
i=1 is finite, then Hk(ϕ

b,ϕa) = n⊕
i=1

Ck(ϕ, ui ) for all k ∈ N0; in par-

ticular
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rank Hk(ϕ
b,ϕa) =

n∑

i=1

rank Ck(ϕ, ui ) for all k ∈ N0.

Proof Using Corollary 5.3.13 and Corollary 6.1.24, we see that

Hk(ϕ
b,ϕa) = Hk(ϕ

c,ϕc\K c
ϕ) for all k ∈ N0. (6.42)

Let {Ui }n
i=1 be pairwise disjoint open neighborhoods of the critical points {ui }n

i=1
such that

V =
n⋃

i=1

Ui ⊆ ϕ−1([a, b]).

We have that Ui ∩ Kϕ = {ui } and so from Definition 6.2.1 it follows that

Hk(ϕ
c ∩ Ui ,ϕ

c ∩ Ui\{0}) = Ck(ϕ, ui ) for all k ∈ N0 and all i ∈ {1, . . . , n}.

From the excisionproperty of singular homology (seeDefinition 6.1.12 andPropo-
sition 6.1.49) and using Proposition 6.1.20, we obtain

Hk(ϕ
c,ϕc\K c

ϕ) = Hk(ϕ
c ∩ V, (ϕc\K c

ϕ) ∩ V ) = n⊕
i=1

Ck(ϕ, ui ) for all k ∈ N0.

(6.43)
From (6.42) and (6.43) we conclude that

Hk(ϕ
b,ϕa) = n⊕

i=1
Ck(ϕ, ui ) for all k ∈ N0.

In particular, from the above isomorphism, we infer that

rank Hk(ϕ
b,ϕa) =

n∑

i=1

rank Ck(ϕ, ui ) for all k ∈ N0.

The proof is now complete. �

What can be said about the change in the topology when we cross multiple critical
levels? In this direction, we have the following result.

Proposition 6.2.17 If X is a Banach space, ϕ ∈ C1(X), −∞ < a < b < ∞ are
regular values of ϕ, ϕ−1([a, b]) ∩ Kϕ is finite and ϕ satisfies the Cc-condition
for every c ∈ [a, b], then rank Hk(ϕ

b,ϕa) �
∑

u∈K[a,b]
’

rank Ck(ϕ, u) where K [a,b]
ϕ =

ϕ−1([a, b]) ∩ Kϕ.

Proof Let {ci }n
i=1 be the critical values of ϕ in (a, b) in increasing order (that is,

c1 < . . . < cn). Let {ai }n+1
i=1 ⊆ [a, b] be such that
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a = a1 < c1 < a2 < c2 < . . . < cn−1 < an < cn < an+1 = b.

Using Proposition 6.1.36 with Xi = ϕai we have

rank Hk(ϕ
b,ϕa) �

n∑

i=1

rank Hk(ϕ
ai+1 ,ϕai )

=
n∑

i=1

∑

u∈Kci
’

Ck(ϕ, u) (see Proposition 6.2.16)

=
∑

u∈K[a,b]
’

Ck(ϕ, u) for all k ∈ N0.

The proof is now complete. �

We can make the above result more precise, with the so-called “Morse relation”.
The next definition introduces some algebraic quantities which are important in this
direction.

Definition 6.2.18 Let X be a Banach space, ϕ ∈ C1(X), a, b ∈ R\ϕ(Kϕ), a < b,
and suppose that ϕ−1((a, b)) contains a finite number of critical points {ui }n

i=1.

(a) The “Morse-type numbers” of ϕ for (a, b) are defined by

Mk(a, b) =
n∑

i=1

rank Ck(ϕ, ui ) for all k ∈ N0.

Suppose that Mk(a, b) is finite for every k ∈ N0 and vanishes for all large k ∈ N0.
We define

M(a, b)(t) =
∑

k�0

Mk(a, b)t k for all t ∈ R.

Then M(a, b)(·) is called the “Morse polynomial” of ϕ for (a, b).
(b) The “Betti-type numbers” of ϕ for (a, b) are defined by

βk(a, b) = rank Hk(ϕ
b,ϕa) for all k ∈ N0.

Suppose that βk(a, b) is finite for all k ∈ N0 and vanishes for all large k ∈ N0.

We define
P(a, b)(t) =

∑

k�0

βk(a, b)t k for all t ∈ R.

Then P(a, b)(·) is called the “Poincaré polynomial” of ϕ for (a, b).

To prove the “Morse relation”, we will need the following simple lemma.
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Lemma 6.2.19 If D0 ⊆ D1 ⊆ . . . ⊆ Dn(n � 2) are Hausdorff topological spaces
and rank Hk(Di , Di−1) is finite for all k ∈ N0 and all i ∈ {1, . . . , n}, and vanishes
for all large k ∈ N0, then

∑

k�0

(

n∑

i=1

rank Hk(Di , Di−1))t
k =

∑

k�0

rank Hk(Dn, D0)t
k + (1 + t)Q(t),

where Q(t) is a polynomial with nonnegative integer coefficients.

Proof We prove the statement for n = 2, the general case following by induction.
For the triple (A2, A1, A0) we consider the corresponding long exact sequence. We
have

. . . → Hk+1(A2, A1)
∂k−→ Hk(A1, A0)

i∗−→ Hk(A2, A0)
j∗−→

Hk(A2, A1)
∂k−1−−→ Hk−1(A1, A0) → . . . . (6.44)

From Proposition 6.1.36 we have

rank Hk(A2, A0) � rank Hk(A1, A0) + rank Hk(A2, A1). (6.45)

Let rk = rank im ∂k . From (6.45) and the exactness of (6.44), we have

rank Hk(A2, A0) + rk + rk−1

= (rk + rank im i∗) + (tk−1 + rank im j∗)
= (rank ker i∗ + rank im i∗) + (rk−1 + rank ker ∂k−1)

= rank Hk(A1, A0) + rank Hk(A2, A1) (by the rank theorem).

Evidently, Q(t) = ∑

k�0
rktk, t ∈ R, is the desired polynomial. �

The next theorem establishes the so-called “Morse relation”.

Theorem 6.2.20 If X is a Banach space, ϕ ∈ C1(X), a, b ∈ R\ϕ({Kϕ), a < b,
ϕ−1((a, b)) contains a finite number of critical points {ui }n

i=1 and ϕ satisfies the
Cc-condition for every c ∈ [a, b), then

(a) for all k ∈ N0, we have Mk(a, b) � βk(a, b);
(b) if the Morse-type numbers Mk(a, b) are finite for all k ∈ N0 and vanish for all

large k ∈ N0, then so do the Betti numbers βk(a, b) and we have

∑

k�0

Mk(a, b)t k =
∑

k�0

βk(a, b)t k + (1 + t)Q(t) for all t ∈ R,

where Q(t) is a polynomial in t ∈ R with nonnegative integer coefficients.
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Proof (a) Let ck = ϕ(uk) for all k ∈ {1, . . . , n} and pick {ϑk}n
k=0 ⊆ [a, b]\ϕ(Kϕ)

such that

a = ϑ0 < c1 < ϑ1 < · · · < ϑi−1 < ci < ϑi < · · · < cn < ϑn = b.

Then from Definition 6.2.18 and Propositions 6.2.16 and 6.2.17, we have

βk(a, b) �
n∑

i=1

βk(ϑi−1,ϑi ) =
n∑

i=1

Mk(ϑi−1,ϑi ) = Mk(a, b) for all k ∈ N0. (6.46)

(b) If Mk(a, b) is finite for all k ∈ N0 and vanishes for large k ∈ N0, then from
(6.46) it is clear that so do the Betti numbers βk(a, b),βk(ϑi−1,ϑi ). Then using
Lemma 6.2.19 we have

∑

k�0

(
n∑

i=1

βk(ϑi−1,ϑi )

)

t k =
∑

k�0

βk(a, b)t k + (1 + t)Q(t), (6.47)

where Q(t) is a polynomial in t ∈ R with nonnegative integer coefficients. From
(6.46) and (6.47) we conclude that

∑

k�0

Mk(a, b)t k =
∑

k�0

βk(a, b)t k + (1 + t)Q(t) for all t ∈ R. (6.48)

The proof is now complete. �

Remark 6.2.21 If in (6.48) we choose t = −1, then

∑

k�0

(−1)k Mk(a, b) =
∑

k�0

(−1)kβk(a, b)

and this equality is known as the “Poincaré–Hopf formula”.

When the functionalϕ ∈ C1(X) has critical valueswhich are bounded frombelow
and satisfy the C-condition, then the global behavior of ϕ can be described by the
critical groups of ϕ at infinity.

Definition 6.2.22 Let ϕ ∈ C1(X) and assume that ϕ satisfies the C-condition and
inf ϕ(Kϕ) > −∞. The “critical groups of ϕ at infinity” are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ∈ N0,

with c < inf ϕ(Kϕ).

Remark 6.2.23 Corollary 5.3.13 reveals that the above definition is independent
of the choice of the level c < inf ϕ(Kϕ). Indeed, if d < c < inf ϕ(Kϕ), then from
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Corollary 5.3.13 we know thatϕd is a strong deformation retract ofϕc. So, Corollary
6.1.24 (a) implies that Hk(X,ϕc) = Hk(X,ϕd) for all k ∈ N0.

Proposition 6.2.24 If X is a Banach space, ϕ ∈ C1(X) and ϕ satisfies the C-
condition then

(a) for ϕ(·) bounded from below, we have

Ck(ϕ,∞) = δk,0Z for all k ∈ N0;

(b) for ϕ(·) unbounded from below and inf ϕ(Kϕ) > −∞, we have Ck(ϕ,∞) =
H̃k−1(ϕ

c) for all k ∈ N0 and all c < inf ϕ(Kϕ).

Proof (a) Let c < inf ϕ(X). Then ϕc = ∅ and so by Definition 6.2.22 we have

Ck(ϕ,∞) = Hk(X,ϕc) = Hk(X) = δk,0Z for all k ∈ N0

(see Definition 6.1.12, Axiom 7 and Remark 6.1.13).
(b) From Definition 6.2.22 and since X is contractible, we see that the reduced

homology groups of X are trivial for all k ∈ N0. We consider the following long
exact sequence

. . . → H̃k(X) → Hk(X,ϕc) → H̃k−1(ϕ
c) → H̃k−1(X) → . . . (6.49)

From the exactness of (6.49) and since H̃k(X) = H̃k−1(X) for all k ∈ N0, we infer
that

Hk(X,ϕc) = H̃k−1(ϕ
c)

⇒ Ck(ϕ,∞) = H̃k−1(ϕ
c) for all k ∈ N0.

The proof is now complete. �

Remark 6.2.25 In particular, in the setting of part (b), we have C0(ϕ,∞) = 0.

Proposition 6.2.26 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition
and Kϕ is finite, then rank Ck(ϕ,∞) �

∑

u∈K’

rank Ck(ϕ, u) for all k ∈ N0.

Proof This proposition is an immediate consequence of Proposition 6.2.17 with
b > supϕ(Kϕ) and a < inf ϕ(Kϕ). �

Corollary 6.2.27 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite and Ck0(ϕ,∞) �= 0 for some k0 ∈ N0, then there exists a u ∈ Kϕ such
that Ck0(ϕ, u) �= 0.

Proposition 6.2.28 If X is a Banach space,ϕ ∈ C1(X)and satisfies the C-condition,
inf ϕ(Kϕ) > −∞, then
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(a) for −∞ < a < inf ϕ(Kϕ) � supϕ(Kϕ) < b, we have

Ck(ϕ,∞) = Hk(ϕ
b,ϕa) for all k ∈ N0;

(b) Ck(ϕ,∞) = 0 for all k ∈ N0 when Kϕ = ∅;
(c) Ck(ϕ,∞) = Ck(ϕ, u) for all k ∈ N0 when Kϕ = {u}.
Proof (a) This is a consequence of Proposition 6.2.16.
(b) Follows from part (a) with a = b (see Corollary 6.1.16).
(c) Follows from part (a) and Proposition 6.2.16.

�

Also, fromTheorem 6.2.20(b) and Proposition 6.2.28(a), we infer a global version
of the Morse relation.

Theorem 6.2.29 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite, Ck(ϕ, u) has a finite rank for all k ∈ N0 and all u ∈ Kϕ, and vanishes
for large k ∈ N0, then

∑

u∈K’

⎛

⎝
∑

k�0

rank Ck(ϕ, u)t k

⎞

⎠ =
∑

k�0

Ck(ϕ,∞) + (1 + t)Q(t) f or all t ∈ R

with Q(t) a polynomial with nonnegative integer coefficients.

Next, we discuss the critical groups at infinity in more detail. First we consider
functionals which exhibit some kind of local linking at infinity.

Proposition 6.2.30 If X is a Banach space with X = Y ⊕ V with dim Y < ∞, ϕ ∈
C1(X), ϕ satisfies the C-condition, inf ϕ(Kϕ) > −∞, ϕ|V is bounded from below
and ϕ|Y is anticoercive (that is, if y ∈ Y, ||y|| → ∞, then ϕ(y) → −∞), then
Cd(ϕ,∞) �= 0 with d = dim Y .

Proof Let c < min{inf ϕ|V , inf ϕ(Kϕ)}. Since by hypothesisϕ|Y is anticoercive, we
can find large r > 0 such that

∂BY
r = {y ∈ Y : ||y|| = r} ⊆ ϕc.

So, we have
∂BY

r ⊆ ϕc ⊆ X \ V ⊆ X.

Consider the deformation h : [0, 1] × (X \ V ) → X \ V defined by

h(t, u − v) = (1 − t)(u − v) + tρ
u − v

||u − v|| for all t ∈ [0, 1], all u ∈ X, v ∈ V .

It follows that ∂BY
ρ is a strong deformation retract of X \ V . Hence
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Hk(X \ V, ∂BY
ρ ) = 0 for all k ∈ N0 (6.50)

(see Proposition 6.1.15). We consider the following commutative diagram

Hk(ϕ
c, ∂BY

ρ )
i∗

ϑ∗

Hk(X, ∂BY
ρ )

j∗
Hk(X,ϕc) = Ck(ϕ,∞)

Hk(X \ V, ∂BY
ρ )

η∗

(6.51)
with i∗, j∗,ϑ∗, η∗ being the group homomorphisms induced by the corresponding
inclusion maps. In (6.51) the top row is exact (see Proposition 6.1.23). We have
i∗ = η∗ ◦ ϑ∗ and from (6.50) we see that i∗ = 0. The exactness of the top row implies
that j∗ is injective for all k ∈ N0. From the reduced exact homology sequence (see
Proposition 6.1.29) we have

Hd(X, ∂BY
ρ ) = Hd−1(∂BY

ρ , ∗) with d = dim Y. (6.52)

Since Y is finite-dimensional, we have

Hd−1(∂BY
ρ , ∗) = Z (see Example 6.1.34(c))

⇒ Hd(X, ∂BY
ρ ) = Z (see (6.52))

⇒ Cd(ϕ,∞) �= 0 (since j∗ is injective).

The proof is now complete. �

The next two results provide some further information about critical groups at
infinity in the context of Hilbert spaces. The proofs of these results can be found in
Bartsch and Li [38].

So, let H be aHilbert space andϕ ∈ C1(H).We introduce the following condition
on ϕ.
(A∞) ϕ(u) = 1

2 (A(u), u)H + ψ(u) for all u ∈ H , with A ∈ L (H, H) self adjoint,

0 is isolated in the spectrum of A, ψ ∈ C1(H), lim||u||→∞
ψ(u)

||u||2 = 0 (subquadratic), ψ

and ψ′ are bounded (that is, map bounded sets to bounded sets) and ϕ is bounded
from below and satisfies the C-condition.

Remark 6.2.31 If A∞ holds, then we set

Y = ker A and V = Y ⊥.

The space V admits an orthogonal direct sum decomposition

V = V− ⊕ V+
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with V+, V− being A-invariant, A|V− < 0 and A|V+ > 0. So, we can find c0 > 0 such
that

±1

2
(A(u), u)H � c0||u||2 for all u ∈ V ±.

Let m = dim V− [the Morse index of ϕ at infinity, compare with Proposition
3.4.18(b)] and ν = dim Y (known as the nullity of ϕ at infinity).

The results of Bartsch–Li [38] mentioned earlier read as follows.

Theorem 6.2.32 If H is a Hilbert space and ϕ ∈ C1(H) satisfies condition (A∞)

above, then Ck(ϕ,∞) = 0 for all k /∈ {m, m + 1, . . . , m + ν}.
Remark 6.2.33 In this theorem we do not require that m, ν are finite. If m ∈ N and
ν = 0, then Ck(ϕ,∞) = δk,mZ for all k ∈ N0.

Imposing the so-called angle conditions on ϕ, we derive more information con-
cerning the critical groups at infinity.

Theorem 6.2.34 If H is a Hilbert space, ϕ ∈ C1(H), ϕ satisfies (A∞) and m, ν ∈
N, then

(a) Ck(ϕ,∞) = δk,mZ for all k ∈ N0, when ϕ satisfies the following “angle condi-
tion”:

(A+
∞)“there exist M > 0 and ϑ ∈ (0, 1) such that

〈
ϕ′(u), y

〉
� 0 for all u = y + v ∈ H, y ∈ Y, v ∈ V

with ||u|| � M and ||v|| � ϑ||u||′′.

(b) Ck(ϕ,∞) = δk,m+νZ for all k ∈ N0, when ϕ satisfies the following angle con-
dition

(A−
∞)“there exist M > 0 and ϑ ∈ (0, 1) such that

− 〈ϕ′(u), y
〉
� 0 for all u = y + v ∈ H, y ∈ Y, v ∈ V

with ||u|| � M and ||v|| � a||u||.′′

We will derive similar information for the critical groups at an isolated critical
point. To this end, we prove three auxiliary results.

Lemma 6.2.35 If X is a reflexive Banach space, ϕ ∈ C1(X), ϕ satisfies the C-
condition and u0 ∈ Kϕ is isolated with c = ϕ(u0) isolated in ϕ(Kϕ), then there exist
ψ ∈ C1(X), U ⊆ X open with u0 ∈ U and δ > 0 such that

(a) ψ satisfies the C-condition;
(b) ϕ � ψ and ϕ|U = ψ|U ;
(c) Kϕ = Kψ;
(d) Kψ ∩ ψ−1([c − δ, c + δ]) = {u0};



6.2 Critical Groups, Morse Relations 495

(e) if X = H = a Hilbert space and ϕ ∈ Cρ(H) with ρ � 2, then we have ψ ∈
Cρ(H) too.

Proof Thanks to the Troyanski renorming theorem (see Theorem 2.7.36), we may
assume that X and X∗ are locally uniformly convexwith Fréchet differentiable norms
(except at the origin). Then the map h : X → R+ defined by

h(u) = 1

2
||u||2 for all u ∈ X

is of class C1 and we have

h′(u) = J (u) for all u ∈ X,

with J : X → X∗ being the duality map (see Definition 2.7.21 and Proposition
2.7.33). Then given 0 < ρ1 < ρ2 such that B̄ρ2(u0) ∩ Kϕ = {u0} and ϕ,ϕ′ restricted
to B̄ρ2(u0) are bounded, we can find η ∈ C1(X) such that

η(u) =
{
0 if ||u|| � ρ1
1 if ||u|| � ρ2

, 0 � η � 1, M = sup
u∈X

||η′(u)||∗ < ∞. (6.53)

The existence of such a function is easily seen if we recall that the smoothness of
X implies the existence of a C1-bump function (recall that a bump function on X is
a function on X with nonempty bounded support).

Let U = Bρ1(u0). Because ϕ satisfies the C-condition, we can find γ > 0 such
that

γ � ||ϕ′(u)||∗ for all u ∈ X with ρ1 � ||u|| � ρ2. (6.54)

Recall that c = ϕ(u0) is isolated in the critical values ϕ(Kϕ). Then we can find
c0 ∈ (c − γ

2M , c
)
and δ > 0 such that

[c0 − δ, c0 + δ] ⊆ R\ϕ(Kϕ)

(that is, [c0 − δ, c0 + δ] is a regular interval). We set

ψ(u) = ϕ(u) + (c − c0)η(u) for all u ∈ X. (6.55)

Evidently, ψ ∈ C1(X). We claim that (ψ, U, δ) as above is the desired triple
postulated by the lemma

(a) Suppose that {un}n�1 ⊆ X is a sequence such that

{ψ(un)}n�1 ⊆ R is bounded and (1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞. (6.56)
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We have

||ψ′(u)||∗ � ||ϕ′(u)||∗ − (c − c0)||η′(u)||∗ (see (6.55))

� γ − γ

2M
M = γ

2
if ρ1 � ||u|| � ρ2 see (6.54). (6.57)

From (6.56) and (6.57), we see that we can find n0 ∈ N such that

||un| /∈ [ρ1, ρ2] for all n � n0

⇒ ϕ′(un) = ψ′(un) for all n � n0 (see (6.53) and (6.55)). (6.58)

From (6.55) we see that ϕ � ψ. So, because of (6.56) we infer that

{ϕ(un)}n�1 ⊆ R is bounded. (6.59)

From (6.56), (6.58), (6.59) and since ϕ satisfies the C-condition, we conclude
that {un}n�1 ⊆ X admits a strongly convergent subsequence. Therefore ψ satisfies
the C-condition.

(b) This follows at once from (6.53) and (6.55).
(c) Recall that

ϕ′(u) = ψ′(u) when ||u|| /∈ [ρ1, ρ2]
and ϕ′(u) �= 0,ψ′(u) �= 0 when ρ1 � ||u|| � ρ2

[see (6.53), (6.55) and (6.57)]. Therefore we see that

Kϕ = Kψ.

(d) Let u ∈ Kϕ\{u0}. Then from part (c) we have u ∈ Kϕ. Recalling the choice
of ρ2, we see that ||u|| > ρ2. Because of (6.53) we have

ψ(u) = ϕ(u) + (c − c0). (6.60)

From the choices of c0 and δ it follows that

ϕ(u) /∈ [c0 − δ, c0 + δ]
⇒ ψ(u) /∈ [c − δ, c + δ] (see (6.60)).

(e) Since h(u) = 1
2 ||u||2 for all u ∈ X = H is C∞, we have η ∈ C∞(H). So, if

ϕ ∈ Cρ(H), ρ � 2, then ψ ∈ Cρ(H) [see (6.55)]. �

Remark 6.2.36 For every ϑ > 0, the set (c − ϑ, c)\ϕ(Kϕ) is open. So, in Lemma
6.2.35 we can replace the hypothesis that c = ϕ(u0) is isolated inϕ(Kϕ) by a weaker
onewhich says that there is a sequence {cn}n�1 ⊆ R\ϕ(Kϕ)with cn < c and cn → c.
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Lemma 6.2.37 If ϕ ∈ C2(RN ), U ⊆ R
N is open and bounded and K ⊆ U is com-

pact such that Kϕ ∩ (U\K ) = ∅, then for every ε > 0, we can find ψ ∈ C2(RN ) such
that

(a) |ϕ(u) − ψ(u)| + ||ϕ′(u) − ψ′(u)||∗ � ε for all u ∈ R
N ;

(b) ϕ|RN \U = ψ|RN \U ;
(c) Kψ ∩ Ū is finite and all its elements are nondegenerate critical points.

Proof By hypothesis, we have

0 < γ = inf{||ϕ′(u)||∗ : u ∈ U\K }.

Choose η ∈ C∞(RN ) such that

η(u) =
{
1 if u ∈ K
0 if u /∈ K .

(6.61)

Also, let ρ > 0 and ϑ > 0 such that

u ⊆ Bρ(0), ϑρ ||η||∞ � ε

2
and ϑ ||η||∞ + ϑρ||η′||∞ � 1

2
min{ε, 1}.

By Sard’s theorem (see Theorem 3.1.16), we can find e ∈ R
N such that

|e| � ϑ and − e is not a critical value of ϕ′

(that is, ϕ′′(u) is nondegenerate whenever ϕ′(u) = −e). We consider ψ ∈ C2(RN )

defined by
ψ(u) = ϕ(u) + η(u)(u, e)RN for all u ∈ R

N .

We have
ψ′(u) = ϕ′(u) + η′(u)(u, e)RN + η(u)e.

From the choice of η and e, we see that ψ defined above satisfies statements (a)
and (b) of the lemma. Also, we have

γ

2
� inf{||ψ′(u)||∗ : u ∈ U\K }. (6.62)

Let u ∈ Kψ ∩ Ū . Then from (6.62) it follows that u ∈ int K . Hence from (6.61)
it follows that

0 = ψ′(u) = ϕ′(u) + e.

Since e is not a critical value of ϕ′, we infer that ϕ′′(u) = ψ′′(u) is invertible.
Therefore the elements of Kψ ∩ Ū are nondegenerate, hence isolated (by the inverse
function theorem) and located in the compact set K . Therefore Kψ ∩ Ū is also finite.
This proves part (c). �
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Lemma 6.2.38 If ϕ ∈ C2(RN ), u0 ∈ Kϕ is isolated and c = ϕ(u0), then we can find
ψ ∈ C2(RN ) such that

(a) ϕ = ψ is a neighborhood of u0;
(b) Kψ is finite;
(c) K c

ψ = {u0};
(d) ψ is coercive (hence it satisfies the C-condition).

Proof By modifying ϕ outside a ball centered at u0, if necessary, we may assume
that ϕ is coercive and there exists a ρ > 0 such that Kϕ ∩ (RN \Bρ(u0)) = ∅. Let r ∈
(0, ρ) be such that Kϕ ∩ Br (u0) = {u0}. Let ψ̂ ∈ C2(RN ) be the function obtained
in Lemma 6.2.37, with U = B2ρ(u0)\B r

2
(u0), K = B̄ρ(u0)\Br (u0) and any ε > 0.

Evidently, ψ̂ satisfies parts (a),(b),(c) of the lemma. Finally apply Lemma 6.2.35 to
ψ̂ and denote by ψ0 the function we obtain in this way. Then ψ0 satisfies (a)–(d) in
the lemma. �

We will use these lemmata to derive some useful consequences concerning the
critical groups of isolated critical points for C2-functions.

Proposition 6.2.39 If ϕ ∈ C2(RN ) and u0 ∈ Kϕ is isolated, then
rank Ck(ϕ, u0) < ∞ for all k ∈ N0 and Ck(ϕ, u0) = 0 for all k /∈ {0, 1 . . . , N }.
Proof From Definition 6.2.1 and Remark 6.2.2, we know that the critical groups
Ck(ϕ, u0), k ∈ N0, depend only the local structure of ϕ. So, using Lemma 6.2.38 we
see that without any loss of generality, we may assume that ϕ is coercive (hence it
satisfies the C-condition), Kϕ is finite and K c0

ϕ = {u0}, where c0 = ϕ(u0). Let a, b ∈
R such that a < c0 = ϕ(u0) < b and Kϕ ∩ ϕ−1([a, b]) = {u0}. Invoking Proposition
6.2.16, we have

Ck(ϕ, u0) = Hk(ϕ
b,ϕa) for all k ∈ N0. (6.63)

Let r > 0 be such that

Br (u0) ⊆ {u ∈ R
N : a < ϕ(u) < b}.

Let U = Br (u0) and K = Br/2(u0). Then

a < c = inf
U

ϕ and m = sup
U

ϕ < b.

Pick ε > 0 such that
ε < min{c − a, b − d}

and letψ ∈ C2(RN ) be as postulated by Lemma 6.2.37 for the aforementioned choic-
es of U, K and ε > 0. Then from Lemma 6.2.37, we have

ψb = ϕb and ψa = ϕa . (6.64)
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Then from (6.63), (6.64) and Theorem 6.2.20 (the Morse relation), we have

rank Ck(ϕ, u0) = rank Hk(ψ
b,ψa) �

n∑

i=1

rank Ck(ψ, ui ) for all k ∈ N0,

with {ui }n
i=1 = Kψ ∩ U . Each ui is a nondegenerate critical point for ψ and so from

Proposition 6.2.6, we obtain

rank Ck(ψ, ui ) ∈ {0, 1} for all k ∈ N0, all i ∈ {1, . . . , N },
rank Ck(ψ, ui ) = 0 for all k ∈ N0, all i /∈ {1, . . . , N }.

This proves the proposition. �

As a consequence of Proposition 6.2.39 and of Theorem 6.2.13 (the shifting
theorem), we have:

Corollary 6.2.40 If H is a Hilbert space, ϕ ∈ C2(H) and u0 ∈ Kϕ is isolated with
finite Morse index m and ν = dimker ϕ′′(u0) < +∞, then rank Ck(ϕ, u0) is finite
for all k ∈ N0 and Ck(ϕ, u0) = 0 for all k /∈ {m, . . . , m + ν}.

The next proposition is useful in obtaining nontrivial critical points with a non-
trivial critical group.

Proposition 6.2.41 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite with 0 ∈ Kϕ and for some k ∈ N0 we have

Ck(ϕ, 0) = 0 and Ck(ϕ,∞) �= 0,

then there exists a u ∈ Kϕ\{0} such that Ck(ϕ, u) �= 0.

Proof From Corollary 6.2.27 we know that there exists a u ∈ Kϕ such that

Ck(ϕ, u) �= 0. (6.65)

On the other hand, by hypothesis,

Ck(ϕ, 0) = 0. (6.66)

Comparing (6.65) and (6.66), we conclude that u �= 0. �

Proposition 6.2.42 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite with 0 ∈ Kϕ and for some k ∈ N0 we have

Ck(ϕ, 0) �= 0 and Ck(ϕ,∞) = 0,

then there exists a u ∈ Kϕ such that
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ϕ(u) < 0 and Ck−1(ϕ, u) �= 0

or ϕ(u) > 0 and Ck+1(ϕ, u) �= 0.

Proof Without any loss of generality we may assume that ϕ(0) = 0. Choose ε > 0
small such that ϕ(Kϕ) ∩ [−ε, ε] = {0}. Let c < min

{−ε, inf ϕ(Kϕ)
}
. From Propo-

sition 6.2.17 we have

rank Ck(ϕ, 0) � rank Hk(ϕ
ε,ϕ−ε), (6.67)

while from Definition 6.2.22 and the choice of c we have

Hk(X,ϕc) = Ck(ϕ,∞). (6.68)

We consider the sets ϕc ⊆ ϕ−ε ⊆ ϕε ⊆ X and use Proposition 6.1.37. Then

0 < rank Ck(ϕ, 0) − rank Ck(ϕ,∞) � rank Hk−1(ϕ
−ε,ϕc) +

rank Hk+1(X,ϕε) see (6.67), (6.68)

⇒ Hk−1(ϕ
−ε,ϕc) �= 0 or Hk+1(X,ϕε) �= 0.

In the first case, by Proposition 6.2.15 we can find u ∈ Kϕ such that

ϕ(u) < 0 and Ck−1(ϕ, u) �= 0.

Similarly, in the second case, we can find ũ ∈ Kϕ such that

ϕ(ũ) > 0 and Ck+1(ϕ, ũ) �= 0.

The proof is now complete. �

We conclude this section by relating critical groups with the Leray–Schauder
degree. We start with the definition of the Leray–Schauder index.

Definition 6.2.43 Let X be a Banach space, ϕ = i − f : X → X with f compact
and u0 ∈ X be an isolated solution of the equation ϕ(u) = 0. Let r > 0 be such that
u0 is the only solution of the equation in B̄r (u0). The “Leray–Schauder index of ϕ
at u0” is defined by

iL S(ϕ, u0) = dL S(ϕ, Br (u0), 0).

Suppose that X = H = a Hilbert space, ϕ ∈ C1(H) and ∇ϕ = i − f with f :
H → H compact (here by ∇ϕ(·) we denote the gradient of ϕ). Note that both
Ck(ϕ, u0) and iL S(∇ϕ, u0) are topological invariants describing the local behavior
at an isolated critical point u0 ∈ Kϕ. So, it is reasonable to expect that the two
quantities are related. The precise relation is given in the next proposition, the proof
of which can be found in Chang [119] (Theorem 3.2, p. 100).
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Proposition 6.2.44 If H is a Hilbert space, ϕ ∈ C2(H), ϕ satisfies the C-condition,
∇ϕ = i − f with f : H → H a compact map and u0 ∈ Kϕ is isolated, then
iL S(∇ϕ, u0) = ∑

k∈N0

(−1)krank Ck(ϕ, u0).

Remark 6.2.45 This proposition reveals that for potential compact vector fields, the
critical groups provide more information than the Leray–Schauder index.

6.3 Continuity and Homotopy Invariance of Critical
Groups

In this section we show that critical groups are continuous with respect to the C1-
topology and are invariant under homotopies which preserve the isolation of the
critical point.

We start with a definition.

Definition 6.3.1 Let X be a Banach space, ϕ ∈ C1(X), C ⊆ X a nonempty closed
subset.We say thatϕ satisfies the “PS-condition overC” if every sequence {un}n�1 ⊆
C such that {ϕ(un)}n�1 is bounded and ϕ′(un) → 0 in X∗ as n → ∞ admits a
strongly convergent subsequence.

The next lemma is a property of the negative pseudogradient flow. So, let
V : X\Kϕ → X be a pseudogradient vector field corresponding to ϕ ∈ C1(X) (see
Theorem 5.1.4). We consider the abstract Cauchy problem

σ′(t) = −V (σ(t)), σ(0) = x . (6.69)

Let
[
0, η+(x)) be the maximal interval of existence for (6.69).

Lemma 6.3.2 If X is a Banach space, ϕ ∈ C1(X), u ∈ Kϕ is isolated and ϕ satisfies
the PS-condition over a closed neighborhood C of u, then there exists ε > 0 and a
neighborhood D of u such that if x ∈ D, then either σ(t, x) ∈ C for all t ∈ (0, η+(x))

or σ(t, x) ∈ C until ϕ(σ(t, x)) becomes less than ϕ(u) − ε.

Proof Let r > 0 be such B̄r (u) ⊆ C, ϕ|B̄r (u) is bounded and if A = {v ∈ X : r/2 �
||v − u|| � r}, then A ∩ Kϕ = ∅. The PS-condition and the definition of the pseu-
dogradient vector field (see Definition 5.1.1) imply that

ϑ = inf{||V (v)|| : v ∈ A} > 0. (6.70)

We set D = B̄r/2(u) ∩ ϕc+ϑ r
4 , where c = ϕ(u). Let x ∈ D be such that σ(t, x)

does not stay in C for all t ∈ (0, η+(x)). So, there exist 0 � t1 < t2 < η+(x) such
that

σ(t, x) ∈ A for t ∈ [t1, t2],
||σ(t1, x) − u|| = r

2
, ||σ(t2, x) − u|| = r. (6.71)
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Then we have

ϕ(σ(t2)) = ϕ(σ(t1)) +
∫ t2

t1

d

dτ
ϕ(σ(τ ))dτ

� ϕ(u) +
∫ t2

t1

d

dτ
ϕ(σ(τ ))dτ (since the flow σ(·) is ϕ-decreasing)

= c +
∫ t2

t1

〈
ϕ′(σ(τ )),σ′(τ )

〉
dτ (by the chain rule)

� c −
∫ t2

t1

||ϕ′(σ(τ ))||2∗dτ (see Definition 5.1.1)

� c − 1

2

∫ t2

t1

||V (σ(τ ))||2dτ (see Definition 5.1.1)

� c − ϑ

2

∫ t2

t1

||V (σ(τ ))||dτ (see (6.70))

= c − ϑ

2

∫ t2

t1

||σ′(τ )||dτ (see (6.69))

� c − ϑ

2

∥∥∥∥

∫ t2

t1

σ′(τ )dτ

∥∥∥∥

= c − ϑ

2
||σ(t2) − σ(t1)||

� c − ϑ

2
[||σ(t2) − u|| − ||σ(t1) − u||] (by the triangle inequality)

= c − ϑ

2

r

2
= c − ϑr

4
.

We finish the proof by taking ε = ϑr
4 . �

This lemma leads to some other useful observations concerning the pseudogradi-
ent flow.

Lemma 6.3.3 If X is a Banach space, ϕ ∈ C1(X), u ∈ Kϕ is isolated and ϕ satisfies
the PS-condition over a closed ball B̄r (u), then there exist ε > 0 and E ⊆ X such
that

(a) E is a closed neighborhood of u;
(b) E is positively invariant for the pseudogradient flow σ(·);
(c) ϕ−1([c − ε, c + ε]) ∩ E is complete, where c = ϕ(u);
(d) the PS-condition is satisfied over ϕ−1([c − ε, c + ε]) ∩ E.

Proof Let C = B̄r (u) and let ε > 0 and D, a neighborhood of u, be as postulated by
Lemma 6.3.2. Consider the set

F = {σ(t, v) : v ∈ D, 0 � t < η+(v)}
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where σ(·, v) is the pseudogradient flow emanating from v ∈ D and [0, η+(v)) is the
maximal interval of existence of the flow. We set

E = F .

Evidently, E is a closed neighborhood of u which is positively invariant for the
flow. So, we have proved (a) and (b). From Lemma 6.3.2 we have

ϕ−1([c − ε, c + ε]) ∩ F ⊆ B̄r (u)

⇒ ϕ−1([c − ε, c + ε]) ∩ E ⊆ B̄r (u).

So, ϕ−1([c − ε, c + ε]) ∩ E is complete (being closed). This proves (c) and be-
cause by hypothesis ϕ|B̄r (u) satisfies the PS-condition (see Definition 6.3.1), we con-
clude that (d) holds. �

In what follows, for ϕ ∈ C1(X), c ∈ R and A ⊆ X , we set

Ac = A ∩ ϕc.

Theorem 6.3.4 If X is a separable reflexive Banach space, ϕ,ψ ∈ C1(X), u ∈ X,
there exists an r > 0 such that B̄r (u) ∩ Kϕ = B̄r (u) ∩ Kψ = {u} and both ϕ and ψ
satisfy the PS-condition on B̄r (u), then there exists a δ > 0 depending only on ϕ
such that

sup
v∈X

||ϕ − ψ||C1(X) � δ ⇒ rank Ck(ϕ, u) = rank Ck(ψ, u) for all k ∈ N0.

Proof Let ε > 0 and E ⊆ X be as postulated by Lemma 6.3.3. From Definition
6.2.18 and Theorem 6.2.20, we have

rank Ck(ϕ, u) = Mk(ϕ
c+ε ∩ E,ϕc−ε ∩ E) = Bk(ϕ

c+ε ∩ E,ϕc−ε ∩ E) (6.72)
for all k ∈ N0, where c = ϕ(u).

Let ρ > 0 be such that

B̄2ρ(u) ⊆ ϕ−1([c − ε

3
, c + ε

3
]) ∩ E . (6.73)

Since by hypothesis ϕ satisfies the PS-condition on B̄r (u), we have

m = inf{||ϕ′(v)||∗ : ρ/2 � ||v − u|| � ρ} > 0. (6.74)

Choose h ∈ C1(X) such that

h|B̄ρ/2(u) = 1, h|X\Bρ(u) = 0, 0 � h � 1, η = sup
u∈X

||h′(u)||∗ < ∞. (6.75)
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This is a smooth bump function which exists since X is a separable reflexive Ba-

nach space. Let δ = min
{

ε
3 ,

n
2(1+η)

}
. We introduce the function ψ̂ ∈ C1(X) defined

by
ψ̂(v) = ϕ(v) + h(v)(ϕ(v) − ψ(v)) for all v ∈ X. (6.76)

Since ||ϕ − ψ||C1(X) � δ, we have

||ψ̂′(v)||∗ � ||ϕ′(v)||∗ − h(v)||ϕ′(v) − ψ′(v)||∗ − ||ψ′(u)||∗|ϕ(v) − ψ(v)|
� m − (1 + η)δ

� δ

2
for all v ∈ X, ρ/2 � ||v − u|| � ρ see (6.74), (6.75). (6.77)

Also, from (6.75) we have

|ψ̂(v) − ϕ(v)| � h(v)|ϕ(v) − ψ(v)| � δ � ε

3
. (6.78)

From (6.75) and (6.76) we see that

ψ̂(v) = ϕ(v) for all ||v − u|| � ρ

⇒ ψ̂c±ε = ϕc±ε (see (6.73), (6.78)).

Therefore ψ̂−1([c − ε, c + ε]) ∩ E = ϕ−1([c − ε, c + ε]) ∩ E is complete. From
(6.77) it is clear that ψ̂ satisfies the PS-condition over ψ̂−1([c − ε, c + ε]) ∩ E .More-
over, B̄ρ(u) ⊆ int E , so that E is positively invariant for the pseudogradient flow σ̂(t)
corresponding to the functional ψ̂ ∈ C1(X). From (6.76) it is clear that Kψ̂ = {u}.
Then we have

rank Ck(ϕ̂, u) = Mk(ψ̂
c+ε ∩ E, ψ̂c−ε ∩ E)

= Mk(ϕ
c+ε ∩ E,ϕc−ε ∩ E)

= Bk(ϕ
c+ε ∩ E,ϕc−ε ∩ E) for all k ∈ N0 (see (6.72)). (6.79)

But from (6.75), (6.76) and the local character of the critical groups, we have

Ck(ψ̂, u) = Ck(ψ, u) for all k ∈ N0. (6.80)

Then from (6.72), (6.79), (6.80) we conclude that

rank Ck(ϕ, u) = rank Ck(ψ, u) for all k ∈ N0.

The proof is now complete. �

Remark 6.3.5 If we choose a field F for the coefficients of the homology groups in
the definition of the critical groups of ϕ (see Definition 6.2.1), then we know that
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the critical groups are in fact F-vector spaces (for example, we can take F = R, see
Remark 6.2.2). Hence we avoid torsion phenomena and in the above theorem, we
can say that Ck(ϕ, u) = Ck(ψ, u) for all k ∈ N0.

As a consequence of Theorem 6.3.4, we see that the critical groups are invariant
under homotopies which preserve the isolation of the critical point.

Theorem 6.3.6 If X is a separable reflexive Banach space, {ht }t∈[0,1] ⊆ C1(X), u ∈
X there exists r > 0 such that B̄r (u) ∩ Kht = {u} for all t ∈ [0, 1], all {ht }t∈[0,1]
satisfy the PS-condition on B̄r (u) and t → ht is continuous from [0, 1] into C1(X),
then for all k ∈ N0 Ck(ht , u) is independent of t ∈ [0, 1].
Proof This follows at once from Theorem 6.3.4 and the compactness of [0, 1]. �

Remark 6.3.7 Under the hypotheses of Theorem 6.3.6, if u is a local minimizer of
h0, then it is also a local minimizer for all ht , t ∈ (0, 1]. In fact the above result
remains valid if X is only a Banach space (see Theorem 6.3.8 below).

Theorem 6.3.8 If X is a Banach space, {ht }t∈[0,1] ⊆ C1(X), each ht satisfies the PS-
condition, a, b : [0, 1] → Rare continuous functions such that a(t) < b(t) for all t ∈
[0, 1], both a(t), b(t) are regular values of ht , t ∈ [0, 1], and t → ht is continuous

from [0, 1] into C1(X), then for all k ∈ N0, Hk

(
hb(t)

t , ha(t)
t

)
is independent of t ∈

[0, 1].
Proof To simplify an already cumbersome notation, for every t0, t1 ∈ [0, 1] instead
of

hti , a(ti ), b(ti ) and h−1
i (a(ti ), b(ti )) ∩ Khti

we write
hi , ai , bi and Ki for i = 0, 1.

Suppose that |t1 − t0| is small. Since by hypothesis h0 satisfies the PS-condition,
we can find c < d

h0(K0) ⊆ (c, d) ⊆ [c, d] ⊆ (a0, b0) ∩ (a1, b1).

The continuity of h0 implies that we can find δ > 0 such that

h0((K0)δ) ⊆ (c, d),

where (K0)δ = {u ∈ X : d(u, K0) < δ} (the δ-neighborhood of the set K0). The PS-
condition implies that there exists an ε = ε(δ) > 0 such that

||h′
0(u)||∗ � ε for all u ∈ h−1

0 ([a0, b0])\(K0)δ.

Since |t1 − t0| is small we have
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K1 ⊆ (K0)δ, h1((K0)δ) ⊆ (c, d), h−1
1 ([c, d]) ⊆ h−1

0 (a0, b0)

⇒ hi (K j ) ⊆ (c, d) for i, j ∈ {0, 1}.

We can construct a pseudogradient vector field for h, which coincides with a pseu-

dogradient vector field for h0 on
(

hb1
1 ∩ hb0

0

)
\(K0)δ . Then according to Corollary

5.3.13, we have that

(
hd
0 ∩ hd

1 , hc
0 ∩ hc

1

)
is a strong deformation retract of

(
hb1
1 , hc

0 ∩ hc
1

)
,

hc
0 ∩ hc

1 is a strong deformation retract of hc
1.

In a similar fashion, we also show that

(
hd
0 ∩ hd

1 , hc
0 ∩ hc

1

)
is a strong deformation retract of

(
hb0
0 , hc

0 ∩ hc
1

)
,

hc
0 ∩ hc

1 is a strong deformation retract of hc
0.

So, using Proposition 6.1.18, we have

Hk(h
b0
0 , hc

0) = Hk(h
b1
1 , hc

1) for all k ∈ N0. (6.81)

On the other hand, again from Corollary 5.3.13 we have

ha0
0 is a strong deformation retract of hc

0, (6.82)

ha1
1 is a strong deformation retract of hc

1. (6.83)

From (6.81), (6.82), (6.83) and Corollary 6.1.24, we infer that

Hk(h
b0
0 , ha0

0 ) = Hk(h
b1
1 , ha1

1 ) for all k ∈ N0.

Finally the conclusion of the theorem follows from the compactness of [0, 1]. �

Remark 6.3.9 A careful reading of this proof reveals that we may have b(t) = +∞
for all t ∈ [0, 1] (hence hb(t)

t = X for all t ∈ [0, 1]).

6.4 Extended Gromoll–Meyer Theory

In this section we present the Gromoll–Meyer theory of dynamically isolated critical
sets, which is useful in dealing with resonant elliptic problems.

Definition 6.4.1 Let (X, d) be a metric space. A “flow” on X is a continuous map
σ : R × X → X such that

(a) σ(0, u) = u for all u ∈ X ;
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(b) σ(t1,σ(t2, u)) = σ(t1 + t2, u) for all t1, t2 ∈ R, all u ∈ X (the group property).

Remark 6.4.2 It is an easy consequence of the group property that, for each t ∈ R,
σ(t, ·) is a homeomorphism of X onto X (that is, a bicontinuous bijection).

Given a flow σ(t, u), a set C ⊆ X and b > 0, we introduce the following sets:

Cb =
⋃

|t|�b

σ(t, C) where σ(t, C) = {v = σ(t, u), u ∈ C},

C∞ =
⋃

t∈R
σ(t, C), C∞

+ =
⋃

t�0

σ(t, C).

Also, given t1 � 0 � t2 and 0 � t0 � +∞, we define

Gt2
t1(C) = {u ∈ C̄ : σ([t1, t2], u) ⊆ C̄} =

⋂

t1�t�t2

σ(t, C̄),

Gt0(C) = Gt0−t0(C) =
⋂

|t|�t0

σ(t, C̄),

I (C) = G∞(C) =
⋂

t∈R
σ(t, C̄) (that is, t0 = +∞),

�b(C) = {u ∈ Gb(C) : σ([0, b], u) ∩ ∂C �= ∅}.

From these definitions, we easily deduce the following lemma.

Lemma 6.4.3 (a) Gt (C) = Gt (C̄) for all t � 0.
(b) Gt1(C) ⊆ Gt2(C) if t2 � t1.
(c) Gt (C1) ⊆ Gt (C2) for all t � 0 if C1 ⊆ C2.
(d) Gt (C) is closed in X for every t � 0.
(e) Gt1+t2(C) = Gt2(Gt1(C)) for all t1, t2 � 0.
(f) If Gt (C) ⊆ int C, then G2t (C) ⊆ int Gt (C).

Proof Only part (f) is not obvious. Suppose that the implication is not true. So, we
have G2t (C) ∩ ∂(Gt (C)) �= ∅. Let û ∈ G2t (C) ∩ ∂(Gt (C)). So,

there exists un → û with σ([−t, t], un), n ∈ N, not a subset of C̄ .

Hence we can find a sequence {tn}n�1 ⊆ [−t, t] such that

σ(tn, un) /∈ C̄ for all n ∈ N.

By passing to a subsequence if necessary, we may assume that tn → t̂ ∈ [−t, t].
Then σ(t̂, û) ∈ ∂C . But û ∈ G2t (C) and so σ([−2t, 2t], û) ⊆ C̄ , which implies that
σ(t̂, û) ∈ Gt (C̄) = Gt (C) ⊆ int C , a contradiction. �
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We introduce the following family of closed sets

� = �(σ) = {C ⊆ X : C is closed and there exists a t > 0 such that Gt (C) ⊆ int C}.

Definition 6.4.4 Let (X, d) be a metric space and σ(t, u) a flow on it.

(a) A set C ⊆ X is said to be “σ-invariant” if for all u ∈ C and for all t ∈ R, we
have σ(t, u) ∈ C .

(b) A σ-invariant set C is said to be “isolated” if there is a neighborhood U of C
such that

U ∈ � and I (U ) = C.

In this case, U is called an “isolating neighborhood of C”.

Proposition 6.4.5 If C ⊆ X is σ-invariant, U is a compact neighborhood of C and
C = I (U ) ⊆ int C, then U ∈ �.

Proof Arguing indirectly, suppose that for every n ∈ N, we have

Gn(U ) is not a subset of int C.

So, we can find un ∈ Gn(U )\intU . We have

σ([−n, n], un) ⊆ U but un /∈ intU for all n ∈ N.

Due to the compactness of U , we may assume that

un → u ∈ I (U ) but u ∈ intU,

a contradiction. �

Proposition 6.4.6 If K ∈ �, then there exists a b > 0 such that Gb(K ) ∈ � and
for all t ∈ R, σ(t, K ) ∈ �.

Proof Both sets Gb(K ) and σ(t, K ) are closed (see Remark 6.4.2).
Since K ∈ �, we can find b > 0 such that Gb(K ) ⊆ int K . Using Lemma 6.4.3

we have

Gb(Gb(K )) = G2b(K ) ⊆ int Gb(K )

⇒ Gb(K ) ∈ �.

Also, we have

Gb(σ(t, K )) =
⋂

|s|�b

σ(t + s, K ) = σ(t, Gb(K )) ⊆ σ(t, int K ) = int σ(t, K )

⇒ σ(t, K ) ∈ � for all t ∈ R.
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The proof is now complete. �

Proposition 6.4.7 If K ∈ �, and b > 0, then�b(K ) is closed and�b(K ) ⊆ ∂Gb(K ).

Proof Let {un}n�1 ⊆ �b(K ) and suppose that un → u. Then we can find tn ∈ [0, b]
such that σ(tn, un) ∈ ∂K for all n ∈ N. We may assume that tn → t ∈ [0, b]. We
have

σ(t, u) ∈ ∂K

⇒ u ∈ �b(K ) and so �b(K ) is closed.

Next, let u ∈ �b(K ). We can find t ∈ [0, b] and vn ∈ X\K , n ∈ N, such that

vn → σ(t, u).

Let yn = σ(−t, vn), n ∈ N. Then from the semigroup property (see Definition
6.4.1), we have

yn → u with yn /∈ Gb(K ) for all n ∈ N.

Since the set Gb(K ) is closed, we have u /∈ int Gb(K ) and so we conclude that
u ∈ ∂Gb(K ). Therefore

�b(K ) ⊆ ∂Gb(K ).

The proof is now complete. �

We take the next definition from the theory of dynamical systems.

Definition 6.4.8 Let (X, d) be a metric space and σ(t, x) a flow on it. For every
u ∈ X the set

ω(u) =
⋂

t>0

σ([t,+∞) , u)

is called the “ω-limit set of u”. The set

ω∗(u) =
⋂

t>0

σ((−∞,−t] , u)

is called the “ω∗-limit set of u”. Also, given a set S ⊆ X , the “σ-invariant hull of S”
is defined to be the set

[S] = {u ∈ X : ω(u) ∪ ω∗(u) ⊆ S}.

Remark 6.4.9 Note that ω(u) = ω(σ(t, u)) and ω∗(u) = ω∗(σ(t, u)) for all t ∈ R.
So, it is clear that [S] is σ-invariant and is the minimal σ-invariant set containing S. If
S is σ-invariant, then S ⊆ [S]. Finally, these limit sets are described equivalently by
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ω(u) = {v ∈ X : v = lim
n→∞ σ(tn, u) for some sequence tn → +∞},

ω∗(u) = {y ∈ X : y = lim
n→∞ σ(tn, u) for some sequence tn → −∞}.

Both sets are closed and σ-invariant.
Next we present two important flows with useful invariant sets.

Example 6.4.10 (a) Let X be a Banach space and g : X → X a compact map. Let
ϕ = idX − g and consider the abstract Cauchy problem

{
σ′(t, u) = ϕ(σ(t, u)), (t, u) ∈ R × X,

σ(0, u) = u

}
.

Then σ(t, u) is a flow on X and any subset of the fixed point set of g is σ-invariant.
(b) Let X be a Banach space and suppose ϕ ∈ C1(X) satisfies the PS-condition.

Consider a pseudogradient vector field V (·) of ϕ. Let g(u) = min{d(u, Kϕ), 1} and
consider the abstract Cauchy problem.

{
σ′(t, u) = −g(σ(t, u)) V (σ(t,u))

||V (t,u)|| , (t, u) ∈ R × (X\Kϕ),

σ(0, u) = u.

}
(6.84)

Then σ(t, u) is a flow on X and any subset of Kϕ is σ-invariant.

Motivated by Example 6.4.10(b), we make the following definition.

Definition 6.4.11 A triple (X,ϕ,σ) is a “pseudogradient flow”, if X is a Banach
space, ϕ ∈ C1(X) and satisfies the PS-condition and σ(t, u) is the flow generated by
(6.84).

Proposition 6.4.12 If (X,ϕ,σ) is a pseudogradient flow, then for any u ∈ X, the
sets ω(u),ω∗(u) are compact and

ω(u) ⊆ K c
ϕ, ω∗(u) ⊆ K c∗

ϕ ,

for some critical values c, c∗ ∈ R.

Proof We prove the statement for ω(u), the proof for ω∗(u) being similar.
We claim that ω(u) is located in one level set of ϕ, that is,

ω(u) ⊆ ϕ−1(c) for some c ∈ R.

To see this, we argue by contradiction. So, suppose we could find {tn}n�1 and
{sn}n�1 in (0,+∞) such that tn, sn ↑ +∞ and

σ(tn, u) → v, σ(sn, u) → v̂, ϕ(v) < ϕ(v̂).

Without any loss of generalitywemay assume that tn < sn for all n ∈ N. Recalling
that the pseudogradient flow is ϕ-decreasing (see the proof of Theorem 5.3.7), we
have
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ϕ(σ(sn, u)) � ϕ(σ(tn, u)) for all n ∈ N

⇒ ϕ(v̂) � ϕ(v), a contradiction.

Next we show that ω(u) ⊆ Kϕ and this, combined with the first part of the proof,
implies that ω(u) ⊆ K c

ϕ. Again we argue by contradiction. So, suppose we can find
h ∈ ω(u)\Kϕ. Then choose regular values a < b such that ϕ(u),ϕ(h) ∈ (a, b). The
set K [a,b]

ϕ = Kϕ ∩ ϕ−1([a, b]) is compact. So, we can find r > 0 such that

Br (h) ∩ K [a,b]
ϕ = ∅.

Since h ∈ ω(u), from Remark 6.4.9, we know that there exists a sequence tn →
+∞ such that un = σ(tn, h) ∈ Br (h) for all n ∈ N.

There exists a sequence sn → +∞ such that yn = σ(sn, h) ∈ ∂(K [a,b]
ϕ )r , where

(K [a,b]
ϕ )r = {x ∈ X : d(x, K [a,b]

ϕ ) < r}

(the r -neighborhood of K [a,b]
ϕ ). Indeed, if this is not true, then we can find d > 0

such that
σ([d,+∞) , h) ∩ (K [a,b]

ϕ )r = ∅.

Recall that ϕ satisfies the PS-condition. So, we can find η > 0 such that

||ϕ′(v)||∗ � η for all v ∈ ϕ−1([a, b])\(K [a,b]
ϕ )r .

Then
ϕ(h) = lim

n→∞ ϕ(yn) � lim inf
t→∞ ϕ(σ(t, u)) � a,

a contradiction to the choice of a.
Now choose τn → +∞ with sn < τn for all n ∈ N such that

ŷn = σ(τn, u) ∈ Br (h),σ([sn, τn], u) ∩ (K [a,b]
ϕ )r = ∅ for all n ∈ N.

From the mean value theorem, we have

ϕ(yn) − ϕ(ŷn) � η||yn − ŷn|| � ηd(Br (h), (K [a,b]
ϕ )r ) for all n ∈ N,

which is impossible since ω(u) is located in one level set of ϕ. �

We introduce a notion concerning a flow σ(t, u), which is critical in our analysis.

Definition 6.4.13 Let (X, d) be ametric space and σ(t, u) a flow on X . A set D ⊆ X
is said to have the “mean value property” (MVP for short) for the flow σ if for all
u ∈ X and all t1 < t2
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σ(tk, u) ∈ D for k ∈ {1, 2} implies σ([t1, t2], u) ⊆ D.

Using this definition, we have the following auxiliary result.

Proposition 6.4.14 If (X,ϕ,σ) is a pseudogradient flow, S a critical set of ϕ (that
is, S ⊆ Kϕ) and D is a closed neighborhood of S with the MVP such that

D ∩ Kϕ = S,

then

(a) I (D) = [S] ⊆ int D;
(b) for any t1 < 0 < t2, the set Gt2

t1(D) is a closed neighborhood of [S] with the
MVP.

Proof (a) We first show that
[S] ⊆ I (D). (6.85)

To this end let u ∈ [S]. Then by Definition 6.4.8, we have

ω(u) ∪ ω∗(u) ⊆ S.

So, according to Remark 6.4.9 we can find t+
n → +∞ and t−

n → −∞ as n → ∞
such that

σ(t±
n , u) ∈ D for all n ∈ N.

Because D has the MVP, it follows that

σ([t−
n , t+

n ], u) ⊆ D for all n ∈ N

⇒ σ(t, u) ∈ D for all t ∈ R

⇒ u ∈ I (D) (from the Definition of I (D)).

Next we show that
I (D) ⊆ [S]. (6.86)

Let u ∈ I (D). Then σ(t, u) ∈ D for all t ∈ R. Recall that D ⊆ X is closed. So,
from Remark 6.4.9 if follows that

ω(u) ∪ ω∗(u) ⊆ D. (6.87)

Also, from Proposition 6.4.12, we have

ω(u) ∪ ω∗(u) ⊆ Kϕ. (6.88)
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From (6.87) and (6.88), we have

ω(u) ∪ ω∗(u) ⊆ D ∩ Kϕ = S

⇒ u ∈ [S] (see Definition 6.4.8).

So, we have proved (6.86). From (6.85) and (6.86), we conclude that

I (D) = [S].

Next, we show that [S] ⊆ int D. So, let u ∈ [S]. There exist t− < 0 < t+ and
neighborhoods U± of h± = σ(t±, u) such that U± ⊆ D. Let

V ± = σ(t±, U±) and V = V + ∩ V −.

Evidently, V is a neighborhood of u such that

σ(t±, V ) ⊆ U± ⊆ D.

The MVP of D implies that V ⊆ D. Therefore we conclude that

[S] ⊆ int D.

(b) From its definition it is clear that the set Gt2
t1(D) is closed and has the MVP.

We have
[S] = I (D) ⊆ Gt2

t1(D) (see part(a)).

We need to show that [S] ⊆ int Gt2
t1(D). Arguing by contradiction, suppose that

we can find u ∈ [S] ∩ ∂(Gt2
t1(D)). So, we can find a sequence {un}n�1 such that

un → u and un /∈ Gt2
t1(D) for all n ∈ N.

Therefore we can find tn ∈ [t1, t2] such that σ(tn, un) /∈ D for all n ∈ N. We may
assume that tn → t . Then σ(tn, un) → σ(t, u) (see Definition 6.4.1) and σ(t, u) /∈
int D. But u ∈ [S] and so from Definition 6.4.8 (see also Remark 6.4.9), we have

σ(t, u) ∈ [S] ⊆ int D (see part (a)),

a contradiction. �

Proposition 6.4.15 If (X,ϕ,σ) is a pseudogradient flow, S is a critical set of ϕ (that
is, S ⊆ Kϕ) and D is a closed neighborhood of S with the MVP such that

D ∩ Kϕ = S and D ⊆ ϕ−1([a, b])
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with a, b ∈ R being regular values of ϕ, then for any neighborhood U of S, we can
find c > 0 such that

Gc(D) =
⋂

|t|�c

σ(t, D) ⊆ intU.

Proof Wewill show the contrapositive. Namely, we will show that if u /∈ intU , then
we can find c > 0 and t ∈ [−c, c] such that σ(t, u) /∈ D.

Since ϕ satisfies the PS-condition, we can find η > 0 such that

d(u, Kϕ) � η and ||ϕ′(u)||∗ � η for all u ∈ D\intU. (6.89)

Choose c > 1
η2

(b − a). We consider three distinct cases:

(1) u /∈ D: Let t = 0. We have σ(0, u) = u /∈ D.
(2) u ∈ D\(intU )∞ (recall (intU )∞ = ⋃

t∈R
σ(t, U )): Suppose that for c > 0

σ([−c, c], u) ⊆ D

⇒ σ([−c, c], u) ⊆ D\(intU )∞

⇒ ϕ(σ(−c, u)) − ϕ(σ(c, u)) � 2η2c > b − a (see (6.89)),

which contradicts the hypothesis that D ⊆ ϕ−1([a, b]).
(3) u ∈ [(intU )∞\intU ] ∩ D = [(intU )∞ ∩ D]\intU : Then

(3)i u ∈
⋃

t>0

σ(t, intU ) or (3)i i u ∈
⋃

t<0

σ(t, intU ).

If (3)i holds, then we can find t1 � 0 � t2 such that

σ([t1, t2], u) ⊆ [(intU )∞ ∩ D]\intU and σ(t1 − ε, u) ∈ U,σ(t2 + ε, u) /∈ D,

for ε > 0 small. Then

b − a � η2(t2 − t1)

⇒ t2 < c.

If (3)i i holds, then in a similar fashion we show that t1 > −c.
So, for both (3)i and (3)i i we have

σ([−c, c], u) ∩ Dc �= ∅.

The proof is now complete. �

Now we are ready for our first theorem.
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Theorem 6.4.16 If (X,ϕ,σ) is a pseudogradient flow, S is a critical set of ϕ, that
is, S ⊆ Kϕ and D is a closed neighborhood of S with the MVP such that

D ∩ Kϕ = S and D ⊆ ϕ−1([a, b]),

then [S] is an isolated σ-invariant set and any closed neighborhood U of [S] with
U ⊆ D is an isolating neighborhood of [S].
Proof From Proposition 6.4.14, we have

[S] = I (D) ⊆ int D. (6.90)

Let U be a closed neighborhood of [S] such that U ⊆ D. Then

[S] = I ([S]) ⊆ I (U ) ⊆ I (D) = [S] (see (6.90))

⇒ I (U ) = [S].

By definition
I (U ) ⊆ Gt2

t1(U ) for any t1 < 0 < t2.

So, we can use Proposition 6.4.15 and find c > 0 such that

Gc(U ) ⊆ Gc(D) ⊆ intU

⇒ U is an isolating neighborhood of [S] (see Definition 6.4.4(b)).

The proof is now complete. �

We introduce the fundamental notion of “dynamically isolated critical set”.

Definition 6.4.17 Let (X,ϕ,σ) be a pseudogradient flow and S a critical set of ϕ
(that is, S ⊆ Kϕ). We say that S is a “dynamically isolated critical set” if there exists
a closed neighborhood D of S and regular values a < b of ϕ such that

D ⊆ ϕ−1([a, b]) and D∞ ∩ Kϕ ∩ ϕ−1([a, b]) = S

(recall D∞ = ⋃

t∈R
σ(t, D)). We say that (D, a, b) is an “isolating triplet” for S.

Remark 6.4.18 IfC is an isolated critical value ofϕ (that is, there exists an ε > 0 such
that [c − ε, c + ε] contains no critical values other than c), then K c

ϕ is a dynamically
isolated critical set. Similarly, if u0 is an isolated critical point ofϕ, then the singleton
S = {u0} is a dynamically isolated critical set. In particular, if u0 is a nondegenerate
critical point of ϕ ∈ C2(H) (H being a Hilbert space), then the singleton S = {u0}
is a dynamically isolated critical set.
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Lemma 6.4.19 If (X,ϕ,σ) is a pseudogradient flow, S is a critical set of ϕ (that
is, S ⊆ Kϕ) and (D, a, b) is an isolating triplet for S, then there exists a c > 0 such
that

Dc ∩ ϕ−1([a, b]) = D∞ ∩ ϕ−1([a, b]) = D∞ ∩ ϕ−1([a, b]);

moreover the set D∞ ∩ ϕ−1([a, b]) is a closed neighborhood of both S and [S],
which has the MVP.

Proof Let V = D∞ ∩ ϕ−1([a, b]). We need to show that V = Dc ∩ ϕ−1([a, b]) for
some c > 0. Since ϕ satisfies the PS-condition, we can find η > 0 such that

d(u, Kϕ) � η and ||ϕ′(u)||∗ � η for all u ∈ V \D.

If σ([0, t], u) ⊆ V \D, then

b − a � ϕ(u) − ϕ(σ(t, u)) � −
∫ t

0

〈
ϕ′(σ(s, u)),σ′(s, u)

〉
ds � η2t.

Choose c > 1
η2 (b − a). If the equality V = Dc ∩ ϕ−1([a, b]) fails, we can find

h ∈ V \Dc

⇒ h = σ(t, u) and σ([0, t], u) ∩ D = ∅ for some u ∈ D and some t > c,

a contradiction (see Definition 6.4.17). The last part of the lemma follows from
Theorem 6.4.16. �

Combining Lemma 6.4.19 with Theorem 6.4.16, we obtain:

Theorem 6.4.20 If (X,ϕ,σ) is a pseudogradient flow and S is a dynamically iso-
lated critical set of ϕ, then [S] is an isolated σ-invariant set and if (D, a, b) is an
isolating triplet for S, then any closed neighborhood U of [S] such that U ⊆ D is
an isolating neighborhood of [S].

Now we can extend the notion of critical groups from an isolated critical point
(see Definition 6.2.1) to a dynamically isolated critical set.

Definition 6.4.21 Let (X,ϕ,σ) be a pseudogradient flow, S a dynamically isolated
critical set and (D, a, b) an isolating triplet for S. The “critical groups” of S are
defined by

Ck(ϕ, S) = Hk(ϕ
b ∩ D∞

+ ,ϕa ∩ D∞
+ ) for all k ∈ N0.

For this definition to make sense, we need to show that it is independent of the
choice of the isolating triplet (D, a, b) and the choice of the pseudogradient vector
field for ϕ. This is done in the next proposition.

Proposition 6.4.22 The definition of critical groups for a dynamically isolated criti-
cal set S (see Definition 6.4.21) is independent of the particular choice of the isolating
triplet and of the pseudogradient vector field.
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Proof First we assume that in the isolating triple (D, a, b), the neighborhood D is
fixed and the regular values a, b vary. Then the invariance of Ck(ϕ, S), k ∈ N0, is a
consequence of Corollary 5.3.13.

Next suppose that (D, a, b) and (D∗, a, b) are two isolating triplets for S such
that

S ⊆ int D∗ ⊆ D∗ ⊆ int D ⊆ D. (6.91)

We need to show that

Hk(ϕ
b ∩ D∞

+ ,ϕa ∩ D∞
+ ) = Hk(ϕ

b ∩ D∞
∗,+,ϕa ∩ D∞

∗,+) for all k ∈ N0. (6.92)

Claim 1: There exists a δ > 0 such that d(∂D∞∗,+, [S]) � δ.
If Claim 1 is not true, then we can find a sequence {un}n�1 such that

un ∈ ∂D∞
∗,+ n ∈ N and un → u ∈ [S] as n → ∞.

So, we can find vn ∈ ∂D∗ and tn ∈ [0, c], n ∈ N, such that

un = σ(tn, vn) → u.

By passing to a suitable subsequence if necessary, we may assume that

vn = σ(−tn, un) → σ(−t, u) = v.

The set ∂D∗ is closed, hence v ∈ ∂D∗. But recall that u ∈ [S]. Hence v ∈ [S], a
contradiction [see (6.91)]. This proves Claim 1.

Choose a∗ < a so that (D∗, b, a∗) is still an isolating triple for S (recall a is a
regular value). We set

A = D∞
+ ∩ ϕ−1(a∗), A∗ = D∞

∗,+ ∩ ϕ−1(a∗) and E = {u ∈ D∞
+ : ω(u) ∩ Sc �= ∅}.

For each u ∈ E , there exists a unique h ∈ A and a unique t ∈ R such that

h = σ(t, u). (6.93)

Let p : E → A and q : E → R be the maps defined by

p(u) = h and q(u) = t (see (6.93)).

We set
C = A\p(E).

Claim 2: d(C, p(∂D∞+ )) > 0.
If Claim 2 is not true, then we can find a sequence {hn}n�1 such that
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hn ∈ p(∂B∞
+ ) and hn → h ∈ C.

So, we can find vn ∈ ∂D and tn ∈ [0, c] such that vn = σ(−tn, hn) for all n ∈ N.
We may assume that tn → t and so we have

vn = σ(−tn, hn) → σ(−t, h) = v

⇒ v ∈ ∂D (recall that ∂D is closed).

But h ∈ C and so we have a contradiction. This proves Claim 2.
Let E∗ = {u ∈ D∞∗,+ : ω(u) ∩ Sc �= ∅}. From Claim 2 we have

r0 = d(C, p(∂B∞
∗,+)) > 0.

Consider the parametric family of continuous functions γτ : R+ → R, τ ∈ [0, 1],
defined by

γτ (t) =
{
1 − τ

r0
t if 0 � t � r0

1 − τ if r0 < t.

Then we introduce the deformation ξ : [0, 1] × (ϕb ∩ D∞+ ) → ϕb ∩ D∞+ defined
by

ξ(τ , u) =
{

σ(−γτ (d(h, C)s), h) if u ∈ E ∩ ϕ−1([a, b])
u if u ∈ (ϕb ∩ D∞+ )\E,

where h = p(u) and s = q(u). Then ξ(0, u) = u and

ξ(1, u) =
⎧
⎨

⎩

h if u /∈ D∞∗,+ ∩ ϕ−1([a∗, b])
σ(−(1 − d(h, C) 1

r0
)s, h) if u ∈ E∗ ∩ ϕ−1([a∗, b])

u if u ∈ (ϕb ∩ D∞+ )\E .

Let L1 = ξ(1,ϕb ∩ D∗+) and L2 = L1\(A∞+ \A1). Using the properties of relative
singular homology groups (see Sect. 6.1), we have

Hk(ϕ
b ∩ D∞

+ ,ϕa ∩ D∞
+ )

= Hk(L1, ξ(1,ϕ
a ∩ D∞

+ )) (by the deformation invariance)

= Hk(L2, ξ(1,ϕ
a ∩ D∞

+ )) (by excision)

= Hk(L2, ξ(1,ϕ
a∗ ∩ D∞

∗,+)) (by the deformation invariance)

= Hk(ϕ
b ∩ D∞

∗,+,ϕa∗ ∩ D∞
∗,+) (by the deformation invariance)

= Hk(ϕ
b ∩ D∞

∗,+,ϕa ∩ D∞
∗,+) (by Corollary 5.3.13) for all k ∈ N0.

In a similar fashion,we also show the invariancewith respect to the pseudogradient
vector field. �



6.4 Extended Gromoll–Meyer Theory 519

To describe the topological properties of a dynamically isolated critical set, we
will need the following notion.

Definition 6.4.23 Let (X,ϕ,σ) be a pseudogradient flow and S a critical set of ϕ
(that is, S ⊆ Kϕ).Apair of sets (W, W−) is said to be a “Gromoll–Meyer pair” (aGM-
pair for short) associated with the pseudogradient flow if the following conditions
hold:

(a) W is a closed neighborhood of S with the MVP such that

W ∩ Kϕ = S and W ∩ ϕa = ∅ for some a ∈ R.

(b) W− is an exit set ofW , that is, for every u ∈ W and t1 > 0 such thatσ(t1, u) /∈ W ,
we can find t̂ ∈ [0, t1) for which we have

σ([0, t̂], u) ⊆ W and σ(t̂, u) ∈ W−.

(c) W− is closed and is the union of a finite number of submanifolds which are
transversal to the flow σ.

Example 6.4.24 In this example, we construct a GM-pair for an isolated critical
point. So, let X = H be a Hilbert space and suppose ϕ ∈ C1(H) satisfies the PS-
condition. For simplicity we assume that the critical point u0 = 0 and that ϕ(0) = 0.
Let ε, δ > 0 such that

0 is the only critical value in [−ε, ε] and B̄δ(0) ∩ Kϕ = {0}.

The PS-condition implies that

η = inf{||∇ϕ(u)|| : u ∈ B̄δ(0)\B̄δ/2(0)} > 0.

Let λ ∈
(
0, 2δ

η

)
and consider the functional

ψ(u) = ϕ(u) + λ||u||2.

We choose γ,μ > 0 in such a way that if W = ψμ ∩ ϕ−1([−γ, γ]) and W− =
W ∩ ϕ−1(−γ), then the following conditions hold

0 < γ < min{ε, 3δ
2λ

8
} and δ2λ/4 + γ < μ < δ2λ − γ,

B̄δ/2(0) ∩ ϕ−1([−γ, γ]) ⊆ W ⊆ B̄δ(0) ∩ ϕ−1([−ε, ε]), (6.94)

ϕ−1([−γ, γ]) ∩ ψ−1(μ) ⊆ B̄δ(0)\B̄δ/2(0), (6.95)

(∇ϕ(u),∇ψ(u))H > 0 for all u ∈ B̄δ(0)\Bδ/2(0). (6.96)

We claim that (W, W−) is a GM-pair.
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First we show that W has the MVP. There is no loss of generality if we assume
that σ(0, u),σ(t, u) ∈ W u ∈ W . Let t0 = sup{s ∈ [0, t] : σ(s ′, u) ∈ W for all u �
s ′ � s}. If t0 < t , then σ(t0, u) /∈ Bδ/2(0). But we have

γ � ϕ(σ(0, u)) � ϕ(σ(t0, u)) � ϕ(σ(t, u)) � −γ (6.97)

(recall that σ is ϕ-decreasing),

(ψ ◦ σ(·, u))′(t0) = −(∇ψ(s),∇ϕ(s))H |σ(t0,u) < 0 see (6.94), (6.96). (6.98)

From (6.97) and (6.98) we have a contradiction to the maximality of t0.
Let W̃− = {u ∈ W : σ(t, u) /∈ W for all t > 0}. Evidently,

W− ⊆ W̃−. (6.99)

By definition, W̃− ⊆ ∂W = W− ∪ (ϕ−1(γ) ∩ intψμ) ∪ (ψ−1(μ) ∩ (W\W−)). If
u ∈ ϕ−1(γ) ∩ int ψμ, then u /∈ W−. If u ∈ ψ−1(μ) ∩ (W\W−), then from (6.95) and
(6.96) we have

(ψ ◦ σ(·, u))′(0) < 0 and ϕ(u) > −γ.

So, we can find τ > 0 such that

ψ(σ(τ , u)) � μ and |ϕ(σ(τ , u))| � γ

⇒ u /∈ W̃−
⇒ W̃− ⊆ W−
⇒ W− = W̃− (see (6.99)).

From Definition 6.4.23 it follows that (W, W−) is a GM-pair.

We can extend this example from an isolated critical point to a dynamically iso-
lated critical set.

Theorem 6.4.25 If (X,ϕ,σ) is a pseudogradient flow, S is a dynamically isolated
critical set and (D, a, b) is an isolating triplet for S, then for any neighborhood U
of [S] such that

U ⊆ D∞ ∩ ϕ−1([a, b]),

there exists a GM-pair (W, W−) for S such that W ⊆ U.

Proof Let a < a0 < min[ϕ(u) : u ∈ S]. From Lemma 6.4.19 we know that D∞ ∩
ϕ−1([a0, b]) is a closed neighborhood of [S] which has the MVP. From Proposition
6.4.15, we know that there exists a c > 0 such that

W = Gc(D∞ ∩ ϕ−1([a0, b])) ⊆ intU.

Proposition 6.4.14 implies that
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W is a closed neighborhood of [S] which has the MVP.

Moreover, we have

W ∩ Kϕ = S and W ∩ ϕa = ∅.

We look for an exit set E of W . Let La0 = D∞ ∩ ϕ−1(a0). This is a submanifold
of ϕ−1(a0).

Since W is a neighborhood of S, we have

(D∞ ∩ ϕ−1([a0, b])\W ) ∩ Kϕ = ∅.

So, for all u ∈ E , we can find t > 0 such that

h = σ(t, u) ∈ La0

⇒ t = −c (recall the definition of W )

⇒ E = σ(−c, La0) is a submanifold which is transversal to σ

⇒ (W, W−) = (W, E) is a GM-pair for S.

The proof is now complete. �

Theorem 6.4.26 If (X,ϕ,σ) is a subgradient flow and S is a dynamically isolated
critical set of ϕ, then for any GM-pair for S we have

Ck(ϕ, S) = Hk(W, W−) for all k ∈ N0.

Proof Let (D, a, b) be an isolating triplet for S. Using Theorem 6.4.25, we replace
D by W . First we show that

Hk(ϕ
b ∩ W ∞

+ ,ϕa ∩ W ∞
+ ) = Hk(W ∞

+ , (W−)∞+ ) for all k ∈ N0 (6.100)

(recall that W ∞+ = ⋃

t�0
σ(t, W ) and (W−)∞+ = ⋃

t�0
σ(t, W−)).

We introduce two deformation retractions

d1 : [0, 1] × (W−)∞+ → ϕa ∩ (W−)∞+ ,

d2 : [0, 1] × W ∞
+ → ϕb ∩ W ∞

+ ,

defined as follows. Let ϑ1 : (W−)∞+ → R be the first hitting time from (W−)∞+ at the
level set ϕ−1(a). So, we have

σ(ϑ1(u), u) ∈ ϕ−1(a) for all u ∈ (W−)∞+ \ϕa,

ϑ1(u) = 0 for all u ∈ ϕa ∩ (W−)∞+ .
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The transversality of σ to ϕ−1(a) implies the continuity of ϑ1.
Similarly, let ϑ2 : W ∞+ → R be the first hitting time from W ∞+ at the level set

ϕ−1(b). So, as before we have

σ(ϑ2(u), u) ∈ ϕ−1(b) for all u ∈ W ∞
+ \ϕb,

ϑ2(u) = 0 for all u ∈ ϕb ∩ W ∞
+ .

For the same reason ϑ2 is continuous.
We set

d1(s, u) = σ(sϑ1(u), u) for all (s, u) ∈ [0, 1] × (W−)∞+ ,

d2(s, u) = σ(sϑ2(u), u) for all (s, u) ∈ [0, 1] × W ∞
+ .

Since W ∩ ϕa = ∅ (see Definition 6.4.23), we have

ϕa ∩ (W−)∞+ = ϕa ∩ W ∞
+ .

Then using the deformation retractions d1 and d2, we have that

(W ∞
+ , (W−)∞) and (ϕb ∩ W ∞

+ ,ϕa ∩ W ∞
+ )

are homotopy equivalent. Hence by Proposition 6.1.14 we have (6.100).
Next we show that

Hk(W ∞
+ , (W−)∞+ ) = Hk(W, W−) for all k ∈ N0. (6.101)

Let δ > 0 and set Wδ =⋃
t>

σ(t, W−). We consider ϑ : W ∞+ → R, the first hitting

time at the set W−. We have

σ(−ϑ(u), u) ∈ W− for all u ∈ W ∞
+ ,

ϑ(u) = 0 for all u ∈ W ∞
+ \(W−)∞+ .

Recall that the flow σ is transversal to W− [see Definition 6.4.23(c)]. So ϑ(·) is
continuous. Also, we have

Wδ = {u ∈ W ∞ : ϑ(u) > δ}

and so Wδ is relatively open in W ∞. We have

Wδ
W ∞ = {u ∈ W ∞ : ϑ(u) � δ} ⊆ {u ∈ W ∞ : ϑ(u) > 0} = int (W−)∞+ .

The excision property of singular homology implies that
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Hk(W ∞
+ , (W−)∞+ ) = Hk(W ∞

+ \Wδ, (W−)∞+ \Wδ) for all k ∈ N0. (6.102)

Let d3 : [0, 1] × (W ∞\Wδ) → W and d4 : [0, 1] × ((W−)∞+ \Wδ) → W be the
deformations defined by reversing the flow, that is,

d3(t, u) = σ(−tϑ(u), u) for all (t, u) ∈ [0, 1] × (W ∞\Wδ),

d4(t, u) = σ(−tϑ(u), u) for all (t, u) ∈ [0, 1] × ((W−)∞+ \Wδ).

These are strong deformation retractions. So, we have

Hk(W ∞
+ \Wδ, (W−)∞+ \Wδ) = Hk(W, W−) for all k ∈ N0. (6.103)

From (6.100), (6.101), (6.102), (6.103) and invoking Proposition 6.4.22, we con-
clude that

Ck(ϕ, S) = Hk(W, W−) for all k ∈ N0.

The proof is now complete. �
Wewant to study the stability of the critical groups for dynamically isolated critical

sets under perturbations of the flow (therefore under changes in the pseudogradient
vector field).

So, let (S,ϕ,σλ) λ ∈ [0, 1], be a family of pseudogradient flows. We impose the
following “uniform continuity condition”.

(UC) : “For every ε > 0 and b > 0, there exists a δ(ε, b) > 0 such that

||u − v|| + |t − s| + |λ − η| < δ and |t |, |s| � b

imply
||σλ(t, u) − ση(s, v)|| < ε.

The following proposition is an immediate consequence of this uniformity con-
dition.

Proposition 6.4.27 If (X,ϕ,σλ), λ ∈ [0, 1], is a family of pseudogradient flows
which satisfies the (UC), S is a dynamically isolated critical set of the flow σλ0 and
(D, a, b) is an isolating triplet for S, then there exists a δ > 0 such that

|λ − λ0| < δ ⇒ (D, a, b) is also an isolating triple for S for the flow σλ.

Remark 6.4.28 In fact the isolating neighborhood of S (see Definition 6.4.4(b)) is
also stable under small changes of the parameter λ ∈ [0, 1].

Next we examine the effect on GM-pairs when we perturb the functional ϕ.

Theorem 6.4.29 If (X,ϕ,σ) is a pseudogradient flow, Sϕ is critical set of ϕ and
(W, W−) is a GM-pair for Sϕ, then there exists an ε = ε(ϕ, W ) > 0 such that for all
ψ ∈ C1(X) with
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||ψ − ϕ||C1(W ) < ε

(W, W−) is still a GM-pair for any critical set Sψ of ψ such that

W ∩ Kψ = Sψ.

Proof Let U be a neighborhood of Sϕ such that U ⊆ Ū ⊆ int W . Let V be the
pseudogradient vector field associated with the flow (X,ϕ,σ). Since ϕ satisfies the
PS-condition (see Definition 6.4.11), we can find an open neighborhood U0 of Sϕ

such that
U0 ⊆ Ū0 ⊆ U and η = inf{||ϕ′(u)||∗ : u ∈ W\U0} > 0.

Let ε ∈ (0, η
6 ) and let ψ ∈ C1(X) be such that

||ψ − ϕ||C1(W ) < ε.

Evidently, Sψ ⊆ U0.
Consider a pseudogradient vector field V̂ for ψ such that

||V̂ (u) − V (u)|| < ε for all u ∈ W.

Let ϑ : X → R be a locally Lipschitz function such that

0 � ϑ � 1 and ϑ(u) =
{
1 if u ∈ Ū0

0 if u ∈ X\U.

Let V0(u) = 5
4

[
(1 − ϑ(u))V (u) + ϑ(u)V̂ (u)

]
for all u ∈ X . For u ∈ X\U0 we

have

||V0(u)|| � 5

4

[
||V̂ (u)|| + ε

]
� 13

4
||ψ′(u)||∗

and
〈
ψ′(u), V0(u)

〉
� 5

4

[||ψ′(u)||2∗ − ε||ψ′(u)||∗
]

� 5

4

[
||ψ′(u)||2∗ − 1

5
||ψ′(u)||2∗

]

= ||ψ′(u)||2∗.

If u ∈ U0, then V0(u) = V̂ (u). Therefore V0 is also a pseudogradient vector field
for ψ.

Note that V0(u) = 5
4V (u) for all u ∈ X\U . Therefore the flow σ0 corresponding

to V0 remains the same as the flow σ. In particular, they are the same on W−. Also,
we can easily check that W satisfies the MVP for the flow σ0. Therefore (W, W−)

remains a GM-pair for Sψ . �
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Definition 6.4.30 Let (X,ϕ,σ) be a pseudogradient flow and S a critical set of
ϕ (that is, S ⊆ Kϕ). A subset A ⊆ [S] is called an “attractor” in [S] if there is
a neighborhood U of A such that ω(U ∩ [S]) = A. The dual “repeller” of A in
[S] is defined by A∗ = {u ∈ [S] : ω(u) ∩ A = ∅}. The pair (A, A∗) is said to be
an “attractor-repeller pair”. An ordered collection {Mk}n

k=1 of σ-invariant subsets
Mk ⊆ [S] is said to be a “Morse decomposition” of [S] if there is an increasing
family of attractors

∅ = A0 ⊆ A1 ⊆ . . . ⊆ An = [S]

such that Mk = Ak ∩ A∗
k−1 for all k ∈ {1, . . . , n}.

Remark 6.4.31 An attractor-repeller pair (A, A∗) of [S] is a Morse decomposi-
tion with A0 = ∅, A1 = A, A2 = [S]. More generally, suppose that a, b ∈ R are
regular values of ϕ and assume that ϕ−1([a, b]) ∩ Kϕ = {uk}n

k=1 with ϕ(uk) �
ϕ(uk+1) for all k ∈ {1, . . . , n − 1}. Then {{uk}}n

k=1 is a Morse decomposition of
[S] = I (ϕ−1([a, b])).

Then we can have an extension of the Morse relation from Theorem 6.2.20. For
a proof of this result, we refer to Chang [118] (Sect. 5.5).

Theorem 6.4.32 If (X,ϕ,σ) is a pseudogradient flow, S is a critical set of ϕ (that
is, S ⊆ Kϕ), {Mi }n

i=1 is a Morse decomposition of [S] and (W, W−) is a GM-pair for

[S], then
∑

k∈N0

(
n∑

i=1
rank Hk(Wi , Wi−1)t k

)
= ∑

k∈N0

rank Hk(W, W−)t k + (1 + t)Q(t),

where (Wi , Wi−1) is the GM-pair for Mi , i ∈ {1, . . . , n} and Q(t) is a formal series
with nonnegative integer coefficients.

Remark 6.4.33 Suppose that [S] = {ui }n
i=1. From Remark 6.4.31 we know that

{ui }n
i=1 is a Morse decomposition of [S]. We set

Mk =
n∑

i=1

rank Ck(ϕ, ui ), βk = rank Hk(W, W−) for all k ∈ N0.

We assume that they are all finite and that the series that we are about to formally
introduce converge. We have

k∑

i=0

(−1)k−iβi �
k∑

i=0

(−1)k−i Mi for all k ∈ N0,

∑

k∈N0

(−1)kβk =
∑

k∈N0

(−1)k Mk .

These are the extended Morse relations.
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6.5 Local Extrema and Critical Points of Mountain
Pass Type

The main idea of Morse theory is that different critical points of a functional ϕ ∈
C1(X) can be distinguished by the topological structure of their neighborhoods in
the sublevel sets ofϕ. In fact such topological information can also be extracted from
the minimax characterization of the corresponding critical values.

We start with some easy observations concerning local extrema.
In Proposition 6.2.3, we saw that if u0 is a local minimum of ϕ, then

Ck(ϕ, u0) = δk,0Z for all k ∈ N0.

In the next proposition we complete this result.

Proposition 6.5.1 If X is a reflexive Banach space, ϕ ∈ C1(X), ϕ satisfies the C-
condition, u0 ∈ Kϕ is isolated and c0 = ϕ(u0) is isolated in ϕ(Kϕ), then the follow-
ing statements are equivalent:

(a) u0 is local minimizer of ϕ;
(b) Ck(ϕ, u0) = δk,0Z for all k ∈ N0;
(c) C0(ϕ, u0) �= 0.

Proof (a) ⇒ (b) : This implication is Proposition 6.2.3.
(b) ⇒ (c) : Obvious.
(c) ⇒ (a) : Arguing by contradiction suppose that u0 is not a local minimizer of

ϕ. By Lemma 6.2.35, we can find a, b ∈ R such that

a < c0 < b and Kϕ ∩ ϕ−1([a, b]) = {u0}.

Then Definition 6.2.1, Theorem 5.3.12 and Corollary 6.1.24 imply that

C0(ϕ, u0) = H0(ϕ
b,ϕa) = H0(ϕ

b,ϕc0\{u0}).

Let h : [0, 1] × ϕb → ϕb be the deformation intoϕc0 provided byTheorem5.3.12
(the second deformation theorem). Then for any u ∈ ϕb, h(·, u) is a path inϕb which
connects u to b(1, u) ∈ ϕc0 .

Next note that we can find a small r > 0 such that ϕ(y) < b for all y ∈ Br (u0) =
{v ∈ X : ||v − u0|| < r}. Since by hypothesis u0 is not a local minimizer of ϕ, we
can find û ∈ Br (u0) such that ϕ(û) < c0. Then γ(t) = (1 − t)u0 + t û, t ∈ [0, 1] is
a path connecting u0 and û and staying in ϕb.

So, we have seen that every element u ∈ ϕb can be connected to an element
of ϕc0\{u0} by a path staying in ϕb. Then according to Remark 6.1.50 we have
C0(ϕ, u0) = H0

(
ϕb,ϕc0\ {u0}) = 0. So, u0 is a local minimizer of ϕ. �

Combining Proposition 6.5.1 and Lemma 6.2.38, we obtain:
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Proposition 6.5.2 If ϕ ∈ C2(RN ) and u0 ∈ Kϕ is isolated, then the following state-
ments are equivalent:

(a) u0 is a local maximizer of ϕ;
(b) Ck(ϕ, u0) = δk,0Z for all k ∈ N0;
(c) CN (ϕ, u0) �= 0.

In fact a similar result holds for C2-functions on R
N and local maximizers (see

Mawhin and Willem [293, p. 193]).

Proposition 6.5.3 If ϕ ∈ C2(RN ) and u0 ∈ Kϕ is isolated, then the following state-
ments are equivalent:

(a) u0 is local minimizer of ϕ;
(b) Ck(ϕ, u0) = δk,NZ for all k ∈ N0;
(c) Cn(ϕ, u0) �= 0.

Remark 6.5.4 So, if ϕ ∈ C2(RN ) and u ∈ Kϕ is isolated and it is neither a local
minimizer or a local maximizer, then C0(ϕ, u0) = CN (ϕ, u0) = 0.

Also, as a consequence of Lemma 6.2.38, we have:

Proposition 6.5.5 If ϕ ∈ C2(RN ) and u0 ∈ Kϕ is isolated, then rank Ck(ϕ, u0) is
finite for all k ∈ N0 and Ck(ϕ, u0) = 0 for all k /∈ {0, 1, . . . , N }.

Next we recall a notion from Sect. 5.7 (see Definition 5.7.2):

Definition 6.5.6 Let X be a Banach space, ϕ ∈ C1(X) and u ∈ Kϕ. We say that u
is of “mountain pass type” if for any open neighborhood U of u, the set {v ∈ U :
ϕ(v) < ϕ(u)} is nonempty and not path connected.

Remark 6.5.7 In Theorem 5.7.7, we established that if ϕ ∈ C1(X) satisfies the C-
condition and the mountain pass geometry and Kϕ is discrete, then we can find
u ∈ K c

ϕ which is of mountain pass type (recall c = inf
γ∈�

max
0�t�1

ϕ(γ(t)), see Theorem

5.4.6).

In the next theorem we establish a useful property of the critical groups of a
u ∈ Kϕ which is of mountain pass type.

Theorem 6.5.8 If X is a reflexive Banach space, ϕ ∈ C1(X), u0 ∈ Kϕ is isolated,
c0 = ϕ(u0) is isolated in ϕ(Kϕ) and u0 of mountain pass type, then C1(ϕ, u0) �= 0.

Proof Let ψ ∈ C1(X) as postulated by Lemma 6.2.35. We know that ϕ � ψ and
ϕ|U = ψ|U with U some open neighborhood of u0.

Claim 1. u0 is a critical point of mountain pass type for the functional ψ.
From Lemma 6.2.35 we know that Kϕ = Kψ and so u0 ∈ Kψ . Let V be an open

neighborhood of u0 and define

Û = {u ∈ V : ψ(u) < c0} ∪ (U ∩ V ).
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Then we have

{u ∈ V : ψ(u) < c0} = {u ∈ Û : ϕ(u) < c0}. (6.104)

By hypothesis, u0 ∈ Kϕ is of mountain pass type. So, from (6.104) and Definition
6.5.6 we have that

{u ∈ V : ψ(u) < c0} is nonempty and not path connected,

⇒ u is of mountain pass type for ψ.

This proves Claim 1.
Using Lemma 6.2.35(d) and Claim 1, without any loss of generality we may

assume that there are a, b ∈ R such that

a < c0 < b and Kϕ ∩ ϕ−1([a, b]) = {u0}.

Let C be the connected component of U = ϕ−1((a, b)) which contains u0 ∈ Kϕ.
Then C is open, path-connected, and contains u0 and Kϕ ∩ C = {u0}. Therefore
from Definition 6.2.1, we have

C1(ϕ, u0) = H1(C ∩ ϕc0 , C ∩ ϕc0\{u0}). (6.105)

From the second deformation theorem (see Theorem 5.3.12), we can find a defor-
mation ĥ : [0, 1] × ϕb → ϕb ofϕb intoϕc0 with the properties provided by Theorem
5.3.12. We have

ĥ([0, 1] × V ) = V

⇒ ĥ([0, 1] × C) = C

(recall that ĥ([0, 1] × C) is connected and contains C).

So, it follows that ĥ : [0, 1] × C → C is a deformation into C ∩ ϕc0 and this
means that C ∩ ϕc0 is a strong deformation retract of C . Then from (6.105) and
Corollary 6.1.24(b), we have

C1(ϕ, u0) = H1(C, C ∩ ϕc0\{u0}).

Using Axiom 4 in Definition 6.1.12 we have the exact sequence

C1(ϕ, u0)
∂−→ H0(C ∩ ϕc0\{u0}) → H0(C) = Z (see Remark 6.1.22). (6.106)

Let C0 = {u ∈ C : ϕ(u) < c0}, d ∈ (a, c0) and ĥ : [0, 1] × (ϕc0\{u0}) → ϕc0\
{u0} be the deformation into ϕd provided by the second deformation theorem (see
Theorem 5.3.12).
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Claim 2. h̃([0, 1] × (C ∩ ϕc0\{u0})) ⊆ C ∩ ϕc0\{u0} and h̃([0, 1] × C0) ⊆ C0.
Take u ∈ C ∩ ϕc0\{u0}. Then h̃([0, 1] × {u}) ⊆ V , it is connected and intersects

C (since it contains u). So, from the definition of C , we have

h̃([0, 1] × {u}) ⊆ C

⇒ h̃([0, 1] × (C ∩ ϕc0\{u0})) ⊆ C ∩ ϕc0\{u0}.

If u ∈ C0, then ϕ(h̃(t, u)) � ϕ(u) < c0 for all t ∈ [0, 1] (see Theorem 5.3.12).
This proves Claim 2.

Then according to Claim 2, using h̃(t, u) we have deformations of

C ∩ ϕc0\{u0} and C0 into C ∩ ϕd .

It follows that

C ∩ ϕd is a strong deformation retract of both C ∩ ϕc\{u0} and C0

(see Theorem 5.3.12),

⇒ H0(C ∩ ϕc\{u0}) = H0(C0). (6.107)

Then from (6.106) and (6.107), we have

C1(ϕ, u0)
∂−→ H0(C0)

γ−→ Z. (6.108)

Since u0 is of mountain pass type, the set C0 is nonempty and not path connected.
Therefore

1 < rank H0(C0).

Hence the homomorphism γ in (6.108) cannot be injective and so by the exactness
of (6.108) it follows that C1(ϕ, u0) �= 0. �

In the context of Hilbert spaces and of C2-functionals, we can improve Remark
6.5.7.

Proposition 6.5.9 If H is a Hilbert space, ϕ ∈ C2(H), u0 ∈ Kϕ is isolated with
finite Morse index m0 = m(u0) and finite nullity ν0 = ν(u0) = dim ker ϕ′′(u0), when
m0 = 0 we have ν0 ∈ {0, 1} and C1(ϕ, u0) �= 0, then Ck(ϕ, u0) = δk,1Z for all k ∈
N0.

Proof Let ϕ̂ ∈ C2(W ) be as postulated by Proposition 6.2.9, with W ⊆ ker ϕ′′(u0)

a neighborhood of the origin. Then from Theorem 6.2.13 (the shifting theorem), we
have

Ck(ϕ, u0) = Ck−m0(ϕ̂, 0) for all k ∈ N0. (6.109)

Since by hypothesis C1(ϕ, u0) �= 0, it follows that m0 ∈ {0, 1}.
Case 1. m0 = 1.
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Then from (6.109) we have C0(ϕ̂, 0) �= 0 and so Proposition 6.5.2 implies that

Ck(ϕ, u0) = δk,0Z for all k ∈ N0.

Case 2. m0 = 0.
Then from (6.109) and the hypothesis we have

C1(ϕ̂, 0) �= 0.

By hypothesis dim ker ϕ′′(u0) � 1. Then from Proposition 6.2.5 we have

Ck(ϕ̂, 0) = δk,1Z for all k ∈ N0

⇒ Ck(ϕ, 0) = δk,1Z for all k ∈ N0.

The proof is now complete. �

Remark 6.5.10 The hypotheses of the above proposition imply that ϕ′′(u0) is a
Fredholm operator (see Definition 6.2.7).

Finally, combining Theorem 6.5.8 and Proposition 6.5.9, we can state the follow-
ing theorem.

Theorem 6.5.11 If H is a Hilbert space, ϕ ∈ C2(H), ϕ satisfies the C-condition,
u0 ∈ Kϕ is isolated and so is c0 = ϕ(u0) in ϕ(Kϕ), the Morse index m0 = m(u0) and
the nullity ν0 = ν(u0) = dim ker ϕ′′(u0) are finite and m0 = 0 implies ν0 ∈ {0, 1}
and u0 is of mountain pass type, then Ck(ϕ, u0) = δk,1Z for all k ∈ N0.

6.6 Computation of Critical Groups

In this sectionwe useMorse theory to compute the critical groups at certain particular
critical points.

The notion of linking sets introduced in Definition 5.4.1 played a central role
in the minimax theory of the critical values of a functional ϕ ∈ C1(X). Next, we
introduce an analogous notion, which will help us to produce pairs of sublevel sets
with nontrivial homology groups. From Proposition 6.2.15 we know that such pairs
lead to a critical level between them.

Definition 6.6.1 Let X be a Banach space and E0, E, D nonempty subsets of X
such that

E0 ⊆ E and E0 ∩ D = ∅.

We say that the pair {E0, E} “homologically links” D in dimensionm if the homo-
morphism i∗ : Hm(E, E0) → Hm(X, X\D) induced by the corresponding inclusion
of (E, E0) into (X, X\D) is nontrivial.
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Remark 6.6.2 (a) In the literature, the notion of linking introduced in Definition
5.4.1 is often called “homotopical linking” in order to distinguish it from the above
concept of linking, called “homological linking”.

(b) For every m ∈ N0 and ∗ ∈ E0, we have the following commutative diagram
of homomorphisms

Hm(E, E0)
∂1

i∗

Hm−1(E0, ∗)

j∗

Hm(X, X\D)
∂2

Hm−1(X\D, ∗)

with j∗ being the homomorphism induced by the corresponding inclusion map. Sup-
pose that E is contractible. Using the long exact sequence of Proposition 6.1.14 we
see that the boundary homomorphisms ∂1, ∂2 are isomorphisms. So, it follows that

“{E0, E} homologically links D in dimension m

if and only if (6.110)

the homomorphism j∗ is nontrivial′′.

In Example 5.4.3, we introduced some triplets of sets {E0, E, D} which arise in
the main minimax theorems and which are homotopically linking in the sense of
Definition 5.4.1. In the sequel we show that these triplets are also homologically
linking.

Proposition 6.6.3 If X is a Banach space, u0 ∈ X, U is a bounded open neigh-
borhood of u0, u1 /∈ Ū , E0 = {u0, u1}, E = {tu0 + (1 − t)u1 : t ∈ [0, 1]} and D =
∂U, then the pair {E0, E} homologically links D in dimension 1.

Proof Let j : (E0, {u1}) → (X, \D, {u1}) be the inclusion map and consider the
map r : (X\D, {u1}) → (E0, {u1}) defined by

r(u) =
{

u0 if u ∈ U
u1 if u ∈ X\Ū

for all u ∈ X\D.

Then r ◦ j = id(E0,{u1}) (here by id(E0,{u1}) we denote the identity map seen as a
map of pairs (see Definition 6.1.1(b))). Hence j∗ : H0(E0, {u1}) → H0(X\D, {u1})
is injective. From Example 6.1.34(b), we have

H0(E0, {u1}) = Z

⇒ j∗ is nontrivial
⇒ {E0, E} homologically links D in dimension 1 (see (6.110)).

The proof is now complete. �
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Recall that for ρ > 0, we have

∂Bρ(0) = {u ∈ X : ||u|| = ρ} and B̄ρ(0) = {u ∈ X : ||u|| � ρ}.
Proposition 6.6.4 If X is a Banach space, X = Y ⊕ V with dimY < ∞, E0 =
∂Bρ(0) ∩ Y , E = B̄ρ(0) ∩ Y and D = V , then the pair (E0, E) homologically links
D in dimension d = dim Y .

Proof From the proof of Proposition 6.2.30, we know that

E0 is a strong deformation retract of X\D = X\V .

So, we have

Hk(X\D, E0) = 0 for all k ∈ N0 (see Proposition 6.1.15).

Let ∗ ∈ E0 and consider the triple {∗} ⊆ E0 ⊆ X\D. Using the long exac-
t sequence from Proposition 6.1.29, we have that j∗ : Hd−1(E0, ∗) = Z → Hd−1

(X\D, ∗) is an isomorphism, thus nontrivial. Again from (6.110) we conclude that
the pair {E0, E} homologically links D in dimension d = dim Y . �

In a similar fashion, we also establish the following propositions.

Proposition 6.6.5 If X is a Banach space, X = Y ⊕ V with dim, Y < +∞, v0 ∈ V
with ||v0|| = 1 0 < ρ < r1, 0 < r2,

E0 = {y + λv0 : y ∈ Y, (0 < λ < r1, ||y|| = r2) or (λ ∈ (0, r1), ||y|| � r2)},
E = {y + λv0 : y ∈ Y, 0 � λ � r1, ||y|| � r2},
D = ∂Bρ(0) ∩ V,

then the pair {E0, E} homologically links D in dimension d = dim Y + 1.

Homological linking is invariant under homeomorphisms.

Proposition 6.6.6 If X is a Banach space, the pair {E0, E} homologically links D
in dimension m and h : X → X is a homeomorphism, then the pair (h(E), h(E0))

homologically links h(D) in dimension m.

Proof Just consider the following commutative diagram of homomorphisms

Hm(E, E0)
i∗

h∗

Hm(X, X\D)

h∗

Hm(h(E), h(E0))
j∗

Hm(X, X\h(D))

The proof is now complete. �
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Homological linking implies homotopical linking.

Proposition 6.6.7 If X is a Banach and the pair (E0, E) homotopically links D in
dimension d, then the pair (E0, E) homologically links D (that is, in the sense of
Definition 5.4.1).

Proof Since by Definition 6.6.1, i∗ is nontrivial and the homology class [id(E,E0)]
generates Hm(E, E0), we have that i∗([id(E,E0)]) �= 0 in Hm(X, X\D). So, there is
no relative singular homology (m + 1)-chain of (X, X\D) with boundary id(E,E0).
Therefore there is no map γ ∈ C(X, X\D) such that γ|E0 = id|E0 . �

Next we present a useful consequence of the notion of homological linking.

Proposition 6.6.8 If X is a Banach space, the pair {E0, E} homologically links D
in dimension m, ϕ ∈ C1(X) and a < b � +∞ are such that

ϕ|E0 � a < ϕ|D and sup
E

ϕ � b,

then

(a) Hm(ϕb,ϕa) �= ∅;
(b) if in addition ϕ satisfies the C-condition, a, b /∈ ϕ(Kϕ) and Kϕ ∩ ϕ−1((a, b)) is

finite then there exists a u ∈ Kϕ ∩ ϕ−1((a, b)) such that Cm(ϕ, u) �= 0.

Proof (a) Consider the following inclusion maps of pairs of spaces

(E, E0)
j−→ (ϕb,ϕa)

e−→ (X, X\D). (6.111)

We have i∗ = e∗ ◦ j∗ : Hm(E, E0) → Hm(X, X\D) and by hypothesis it is non-
trivial. Therefore j∗ �= 0, e∗ �= 0. From (6.111) it follows that Hm(ϕb,ϕa) �= 0.

(b) Follows from Theorem 6.2.20(b). �
Corollary 6.6.9 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite, u0, u1 ∈ X, 0 < ρ < ||u1 − u0|| and

c = max{ϕ(u0),ϕ(u1)} < inf{ϕ(u) : ||u − u0|| = ρ} = d,

then there exists a u ∈ Kϕ with d � ϕ(u) and C1(ϕ, u) �= 0.

Proof Choose a ∈ (c, d) so that [a, b) contains no critical values of ϕ. Let

E0 = {u0, u1}, E = {tu0 + (1 − t)u : 0 � t � 1} and D = ∂Bρ(0).

From Proposition 6.6.3 we know that the pair {E, E0} homologically links D in
dimension 1. Using Proposition 6.6.8(b) (with b = +∞), we can find

u ∈ Kϕ,ϕ(u) > a and C1(ϕ, u) �= 0.

Since [a, b) contains no critical values of ϕ, we must have ϕ(u) � d. �
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Remark 6.6.10 This corollary is essentially Theorem 6.5.8.

Proposition 6.6.11 If X is a Banach space, ϕ ∈ C1(X), the pair {E, E0} homolog-
ically links D in dimension m and

ϕ|E0 � a < ϕ|X\D (6.112)

then Hm(X,ϕa) �= 0.

Proof We consider the following commutative diagram of homomorphisms

Hm(E, E0)

i∗

Hm(X,ϕa)

Hm(X, X\D)

(see (6.112))

By hypothesis, i∗ �= 0 (see Definition 6.6.1). It follows that

E0 is a strong deformation retract of X\D.

Hence we have that i∗ is an isomorphism and so

rank i∗ = rank Hm(X, X\D) = 1.

The proof is now complete. �
Corollary 6.6.12 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
the pair {E, E0} homologically links D in dimension m and

ϕ|E0 � a < ϕ|X\D, a < inf ϕ(Kϕ),

then Cm(ϕ,∞) �= 0.

In Definition 5.4.14 we introduced the notion of local linking, which is important
in many variational problems. In Remark 5.4.15 we observed that this condition
implies that u = 0 is a critical point of the functional. So, we would like to compute
its critical groups. We will do this as a consequence of our analysis of a more general
notion called “homological local linking”.

Definition 6.6.13 Let X be a Banach space, ϕ ∈ C1(X), ϕ(0) = 0 and 0 ∈ Kϕ be
isolated. Let m, n ∈ N. We say that ϕ has a “local (m, n)-linking” near the origin if
there is a neighborhood U of the origin and nonempty sets E0 ⊆ E ⊆ U , D ⊆ X
such that E0 ∩ D = ∅ and

(a) ϕ0 ∩ U ∩ Kϕ = {0};
(b) rank i∗ − rank im j∗ � n, where i∗ : Hm−1(E0) → Hm−1(X\D) and

j∗ : Hm−1(E0) → Hm−1(E) are the homomorphisms induced by the inclusions
i : E0 → X\D and j : E0 → E ;
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(c) ϕ|E � 0 < ϕ|U∩D\{0} .

We want to know how this notion is related to the concept of local linking (see
Definition 5.4.14). To do this, we will need the following deformation lemma.

Lemma 6.6.14 If X is a Banach space, X = Y ⊕ V with d = dim Y < +∞, ϕ ∈
C1(X) has a local linking at 0 (with respect to the pair (Y, V )), that is, there exists
an r > 0 such that

ϕ(u) � 0 if u ∈ Y, ||u|| � r,

ϕ(u) � 0 if u ∈ V, ||u|| � r,

0 ∈ Kϕ is isolated and one of the following conditions holds

(i) 0 is a strict local minimizer of ϕ|V ; or
(ii) X = H = a Hilbert space and ϕ′ is Lipschitz near 0,

then there exist ρ ∈ (0, r) and a homeomorphism h : X → X, h(0) = 0 such that

(a) h(B̄ρ(0)) ⊆ Br (0);
(b) h(u) = u for all u ∈ Y ∩ B̄ρ(0);
(c) ϕ(u) > 0 for all u ∈ h(V ∩ B̄ρ(0)), u �= 0.

Proof Suppose that hypothesis (i) holds. Then we can take ρ ∈ (0, r) such that

0 < ϕ(u) for all u ∈ V ∩ B̄ρ(0), u �= 0 and h = idX

So, suppose that hypothesis (ii) holds. Let 0 < ρ1 < ρ2 < r be such that

Kϕ ∩ Bρ1(0) = {0} and ϕ′|Bρ2 (0)
is Lipschitz.

Take ρ ∈ (0, ρ1). Then the sets B̄ρ(0) and H\Bρ1(0) are closed and disjoint.
Consider the function f : H → [0, 1] defined by

f (u) = d(u, H\B̄ρ1(0))

d(u, B̄ρ(0)) + d(u, H\B̄ρ1(0))
for all u ∈ H.

Evidently, f (·) is locally Lipschitz and f |B̄ρ(0) = 1, f |H\Bρ1 (0)
= 0. Let pV :

H → V the projection operator onto V and consider the map ξ : H → H defined
by

ξ(u) = f (u)||pV (u)|| ∇ϕ(u) for all u ∈ H. (6.113)

Clearly, ξ(·) is Lipschitz and bounded. We consider the abstract Cauchy problem
defined by

dσ(t)

dt
= ξ(σ(t)) for t � 0, ξ(t0) = u (t0 � 0). (6.114)
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From Proposition 5.3.5 we know that problem (6.114) admits a unique global
solution σ(t0, u) : [0,+∞) → H . Consider the maps h, l : H → H defined by

h(u) = σ(0, u)(1) and l(u) = σ(1, u)(0).

The continuous dependence of the flow on the initial condition (see Proposition
5.3.5) implies that h(·) and l(·) are both continuous. We have

h ◦ l = l ◦ h = idH

⇒ h is a homeomorphism.

Note that h(0) = 0. Also, we have:

(a) If u ∈ H\Bρ1(0), then ξ(u) = 0 and so h(u) = u. Therefore h(H\B̄ρ1(0)) =
H\B̄ρ1(0). Thismean thath(B̄ρ(0)) ⊆ h(Bρ1(0)) ⊆ Bρ1(0) ⊆ Br (0). This proves
part (a) of the lemma.

(b) If u ∈ Y , then ξ(u) = 0 (see (6.113)) and so h(u) = u, which proves part (b) of
the lemma.

(c) If u ∈ V ∩ B̄ρ(0), then

ϕ(h(u)) = ϕ(u) +
∫ 1

0
ϑ(t)dt,

where ϑ(t) = f (σ(0, u)(t))||pV σ(0, u)(t)|| ||ϕ′(σ(0, u)(t))||2. Evidently, ϑ �
0 and since f (u) = 1, pV (u) = u, u /∈ Kϕ, we have

ϑ(0) = ||u|| ||∇ϕ(u)||2 > 0

⇒ ϕ(h(u)) > ϕ(u) � 0.

This proves part (c) of the lemma and completes the proof. �

Using this lemma,we obtain a precise relation between the notions of local linking
and of homological local linking.

Proposition 6.6.15 If X is a Banach space, X = Y ⊕ V with d = dim Y < ∞, ϕ ∈
C1(X) has a local linking set at 0 (with respect to the pair (Y, V )), that is, there
exists an r > 0 such that

ϕ(u) � 0 if u ∈ Y, ||u|| � r,

ϕ(u) � 0 if u ∈ V, ||u|| � r,

0 ∈ Kϕ is isolated and one of the following conditions holds

(i) 0 is a strict local minimizer of ϕ|V ; or
(ii) X = H = a Hilbert space and ϕ′ is Lipschitz near 0,
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then ϕ has local (d, 1)-linking at 0.

Proof By taking r > 0 even smaller if necessary, wemay assume that Kϕ ∩ Br (0) =
{0}. Using Lemma 6.6.14, we can find ρ ∈ (0, r) and a homeomorphism h : X → X
which have properties (a), (b), (c) from Lemma 6.6.14. We set

U = h(B̄ρ(0)) E0 = Y ∩ ∂Bρ(0), E = Y ∩ B̄ρ(0) and D = h(V ).

Then conditions (a) and (c) in Definition 6.6.13 follow from the above choices, the
local linking property and part (c) of Lemma 6.6.14. So, we need to verify property
(b) in Definition 6.6.13.

From the proof of Proposition 6.2.30, we know that

E0 is a strong deformation retract of X\D = h(X\V )

⇒ i∗ : Hd−1(E0) → Hd−1(X\D) is a bijection. (6.115)

Also, from Example 6.1.34(b), we have

rank im i∗ = rank Hd−1(E) =
{
2 if d = 1
1 if d � 2.

(6.116)

Since E is contractible, using Proposition 6.1.29, we see that

Hd−1(E, E0) = Hd−2(E0, ∗) = 0 (∗ ∈ E0).

Axiom 4 in Definition 6.1.12 implies that

j∗ : Hd−1(E0) → Hd−1(E) is surjective.

Therefore

rank im j∗ = rank Hd−1(E) =
{
1 if d = 1
0 if d � 2.

(6.117)

From (6.116) and (6.117) we see that

rank im i∗ − rank im j∗ = 1.

So, property (b) in Definition 6.6.13 is satisfied. This completes the proof of the
proposition. �

Remark 6.6.16 Homological local linking in general does not imply local linking.
Consider the function ϕ : R2 → R defined by

ϕ(u) = x3 − 3xy2 for all u =
(

x
y

)
∈ R

2.
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Then ϕ has a local (1, 2)-linking near 0, but it does not have a local linking at 0.

Now we estimate the critical groups of ϕ ∈ C1(X), when it exhibits homological
linking at 0.

Theorem 6.6.17 If X is a Banach space, ϕ ∈ C1(X), 0 ∈ Kϕ is isolated and ϕ has
a local (m, n)-linking near the origin, then rank Cm(ϕ, 0) � n.

Proof Let U, E0, E and D be as postulated by Definition 6.6.13. From Definition
6.2.1 we have

Cm(ϕ, 0) = Hm(ϕ0 ∩ U,ϕ0 ∩ U\{0}).

Consider the exact chain

Cm(ϕ, 0)
∂∗−→ Hm−1(ϕ

0 ∩ U\{0}) e∗−→ Hm−1(ϕ
0 ∩ U ), (6.118)

with e∗ being the homomorphism induced by the inclusion e : ϕ0 ∩ U\{0} → ϕ0 ∩
U . From (6.118) and the rank formula, we have

rank ker e∗ = rank im ∂∗ � rank Cm(ϕ, 0). (6.119)

Using Definition 6.6.13, we have the following commutative diagram

Hm−1(X\D)
(i∗)

l∗

Hm−1(E0)
j∗

η∗

Hm−1(E)

∂∗

Hm−1(ϕ
0 ∩ U\{0}) e∗

Hm−1(ϕ
0 ∩ U )

Here l∗, η∗, ∂∗ are the homomorphisms induced by the corresponding inclusion
maps. Then we have

rank im i∗ = rank im l∗ � rank im η∗, (6.120)

rank im η∗ − rank ker e∗ � rank im η∗ − rank ker e∗|im η∗ =
rank im (e∗ ◦ η∗) � rank im j∗ (use the rank formula). (6.121)

From (6.119), (6.120), (6.121) it follows that

n � rank im i∗ − rank im j∗ � dim ker e∗ � rank Cm(ϕ, 0).

The proof is now complete. �
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Corollary 6.6.18 If X is a Banach space, X = Y ⊕ V with d = dim Y < ∞, ϕ ∈
C1(X), ϕ has a local linking at 0, 0 ∈ Kϕ is isolated and one of the conditions (i)
and (ii) from Proposition 6.6.15 holds, then Cd(ϕ, 0) �= 0.

We can improve this corollary by restricting ourselves to Hilbert spaces and to
C2-functionals.

Proposition 6.6.19 If H is a Hilbert space, H = H̄ ⊕ Ĥ with d = dim H̄ , ϕ ∈
C2(H), ϕ has a local linking at 0 (with respect to the pair (H̄ , Ĥ)), 0 ∈ Kϕ is
isolated with Morse index m0 and nullity ν0 (that is, dim ker ϕ′′(0) = ν0 and ϕ′′(0)

is Fredholm), then Ck(ϕ, 0) =
{

δk,m0Z if d = m0

δk,m0Z if d = m0 + ν0
for all k ∈ N.

Proof From the shifting theorem (see Theorem 6.2.13), we have

Ck(ϕ, 0) = Ck−m0(ϕ̂, 0) for all k ∈ N0,

where ϕ̂ is as in Proposition 6.2.9. From Corollary 6.6.18, we have

Cd(ϕ, 0) �= 0.

If d = m0, then 0 is a local minimizer of ϕ̂ and so

Ck(ϕ, 0) = Ck−m0(ϕ̂, 0) = δk−m0,0Z = δk,m0Z for all k ∈ N0.

If d = m0 + ν0, then 0 is a local maximizer of ϕ̂ and so

Ck(ϕ, 0) = Ck,m0(ϕ̂, 0) = δk−m0,ν0Z = δk,m0+ν0Z for all k ∈ N0.

The proof is now complete. �

The next result is a useful tool in the computation of critical groups at infinity.

Proposition 6.6.20 If X is a Banach space, (t, u) → ht (u) is a function in
C1([0, 1] × X), the maps u → (ht )

′(u) and t → ∂t ht (u) are both locally Lipschitz,
h0 and h1 satisfy the C-condition,

|∂t ht (u)| � c0(||u||q + ||u||p) for all u ∈ X

with c0 > 0, 1 < q < p < ∞ and there exist γ0 > 0 and δ0 > 0 such that

ht (u) � γ0 ⇒ (1 + ||u||)||(ht)
′(u)||∗ � δ0(||u||q + ||u||p) for all t ∈ [0, 1],

then Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0.

Proof Since by hypothesis (t, u) → ht (u) belongs to the space C1([0, 1] × X), it
admits a pseudogradient vector field v̂t (u) (see Theorem 5.1.4). Moreover, from the
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construction of the pseudogradient vector field (see the proof of Theorem 5.1.4), we
have

v̂t (u) = (∂t ht (u), vt (u)),

with (t, u) → vt (u) locally Lipschitz and for all t ∈ [0, 1], vt (·) is the pseudogradient
vector field corresponding to ht ()̇. So, for all t ∈ [0, 1] and all u ∈ X , we have

||(ht)
′(u)||2∗ �

〈
(ht )

′(u), vt (u)
〉
and ||vt(u)|| � 2||(ht)

′(u)||∗. (6.122)

Given t ∈ [0, 1], we consider the map wt : X → X defined by

wt (u) = − |∂t ht (u)|
||(ht)′(u)||∗ vt (u) for all u ∈ X.

Clearly, this is a well-defined vector field and (t, u) → wt (u) is locally Lipschitz.
Let γ � γ0 be such that

hγ
0 �= 0 or hγ

t �= 0.

If no such γ � γ0 can be found, then Ck(h0,∞) = Ck(h1,∞) = δk,0Z for all
k ∈ N0.

So, to fix things we assume that hγ
0 �= 0. Let y ∈ hγ

0 and consider the following
abstract Cauchy problem

dσ

dt
= wt (σ) on [0, 1], σ(0) = y. (6.123)

This Cauchy problem admits a unique local flow (see Proposition 5.3.4) denoted
byσ(t, y). In the sequel, for notational simplicity, fromσwedrop the initial condition
y. We have

d

dt
ht (σ) =

〈
(ht )

′(σ),
dσ

dt

〉
+ ∂t ht (σ) (by the chain rule)

=
〈
(ht )

′(σ),
−|∂t ht (σ)|
||(ht)′(σ)||2∗

vt (σ)

〉
+ ∂t ht (σ) (see (6.123))

� −|∂t ht (σ)| + ∂t ht (σ) (see (6.122))

� 0

⇒ t → ht (σ) is nonincreasing.

Hence for small t � 0, we have

ht (σ(t)) � h0(σ(0)) = h0(y) � γ � γ0

⇒ (1 + ||σ(t)||)||(ht)
′(σ(t))||∗ � δ0(||σ(t)||q + ||σ(t)||p). (6.124)
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Then

|wt(σ(t))| � |∂t ht (σ(t))|
||(ht)′(σ(t))||2∗

||vt(σ(t))||

� c0(||σ(t)||q + ||σ(t)||p)

||(ht)′(σ(t))||2∗
2||(ht)

′(σ(t))||∗ (see (6.122))

� c0(||σ(t)||q + ||σ(t)||p)

δ0(||σ(t)||q + ||σ(t)||p)
(1 + ||σ(t)||) (see (6.124))

= c0
δ0

(1 + ||σ(t)||) for all small t ∈ [0, 1]

⇒ the flow σ(·) is global on [0, 1].
We have that σ(t, ·) is a homeomorphism of hγ

0 onto a subset D0 of hγ
1 . Reversing

the time (t → 1 − t) and using the corresponding flow σ∗(·, v)(v ∈ hγ
1), we have

that hγ
1 is homeomorphic to a subset D1 of hγ

0 .
We set

η(t, y) = σ∗(t,σ(1, y)) for all (t, y) ∈ [0, 1] × hγ
0 .

Then we have

η(0, ·) is homotopy equivalent to id|D0(·), (6.125)

η(1, ·) = (σ∗)1 ◦ σ1(·). (6.126)

Similarly, if

η∗(t, v) = σ(t,σ∗(1, v)) for all (t, v) ∈ [0, 1] × hγ
1 ,

then

η(0, ·) is homotopy equivalent to id|D1(·), (6.127)

η(1, ·) = σ1 ◦ (σ∗)1(·). (6.128)

Recall that D0 and hγ
0 are homeomorphic. Similarly D1 and hγ

1 are homeomorphic
too. These facts together with (6.125), (6.126), (6.127), (6.128) imply that

hγ
0 and hγ

1 are homotopy equivalent

⇒ Hk(X, hγ
0) = Hk(X, hγ

1) for all k ∈ N0 (see Proposition 6.1.14)

⇒ Ck(h0,∞) = Ck(h1,∞) for all k ∈ N0.

The proof is now complete. �

From Definition 6.2.1 it is clear that if ϕ ∈ C1(X) and u ∈ Kϕ is isolated, then
the critical groups of ϕ at u depend only on the values of ϕ near u. Now suppose
that � ⊆ R

N is a bounded domain with a C2-boundary ∂� and let f : � × R → R
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be a Carathéodory function, that is, for all x ∈ R z → f (z, x) is measurable and for
almost all z ∈ �, x → f (z, x) is continuous. We assume that

| f (z, x)| � a(z)(1 + |x |r−1) for almost all z ∈ � and all x ∈ R, (6.129)

with a ∈ L∞(�)+, 2 � r < 2∗ (recall that 2∗ =
{ 2N

N−2 if N � 3,
+∞ if N = 1, 2

, the Sobolev

critical exponent, see Definition 1.9.1). We set F(z, x) = ∫ x
0 f (z, s)ds and consider

the C1-functional ϕ : H 1
0 (�) → R defined by

ϕ(u) = 1

2
||Du||22 −

∫

�

F(z, u(z))dz for all u ∈ H 1
0 (�).

We recall that for N � 2, the Sobolev space is not embedded into L∞(�) (see
Theorem 1.7.4, the Rellich–Kondrachov embedding theorem). So, if u0 ∈ Kϕ is
isolated, then a priori it seems that the critical groups of ϕ depend on values of
f (z, ·) far away from u0(z). We will show that in fact this is not true, establishing in
an emphatic way the local character of critical groups.

First we show that without any loss of generality, we may assume that u0 = 0.
Indeed, let

ϕ̂(u) = ϕ(u + u0) − ϕ(u0)

= 1

2
||Du||22 +

∫

�

(Du, Du0)RN dz −
∫

�

(F(z, u + u0) − F(z, u0))dz

= 1

2
||Du||22 −

∫

�

[F(z, u + u0) − F(z, u0) − f (z, u0)u]dz (since u0 ∈ Kϕ). (6.130)

We set

g(z, x) = f (z, x + u0(z)) − f (z, u0(z)) for all (z, x) ∈ � × R.

Evidently, this is a Carathéodory function. Also, since u0 ∈ Kϕ, by the standard
regularity theory for semilinear elliptic problems,wehaveu0 ∈ L∞(�). So, it follows
that g(z, ·) has the same polynomial growth as f (z, ·) (see (6.129)).We setG(z, x) =∫ x
0 g(z, s)ds. Then

G(z, u(z)) = F(z, (u + u0)(z)) − F(z, u0(z)) − f (z, u0(z))u(z).

Therefore we can write (6.130) as follows:

ϕ̂(u) = 1

2
||Du||22 −

∫

�

G(z, u(z))dz for all u ∈ H 1
0 (�).

Evidently, u = 0 ∈ Kϕ̂ and it is isolated.
So, we have seen that without any loss of generality, we may assume that u0 = 0.
Also, let δ > 0 and consider a function ξ ∈ C1(R) defined by
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ξ(x) =
⎧
⎨

⎩

−δ if x � −δ

x if − δ
2 � x � δ

2
δ if δ � x .

Let ψ : H 1
0 (�) → R be the C1-functional defined by

ψ(u) = 1

2
||Du||22 −

∫

�

F(z, ξ(u(z)))dz for all u ∈ H 1
0 (�).

In the next lemma, we compare the critical groups of ϕ and ψ.

Lemma 6.6.21 If 0 ∈ Kϕ is isolated, then 0 is an isolated critical point of ψ too
and we have

Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0.

Proof We consider the following family of functions ht (u) defined on [0, 1] ×
H 1

0 (�)

ht (u) = 1

2
||Du||22 −

∫

�

F(z, (1 − t)u(z) + tξ(u(z)))dz for all t ∈ [0, 1] and all u ∈ H1
0 (�).

Evidently, h0(u) = ϕ(u) and h1(u) = ψ(u) for all u ∈ H 1
0 (�).

We will show that 0 ∈ Kht is isolated uniformly in t ∈ [0, 1]. Arguing by contra-
diction, suppose we can find {tn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ H 1

0 (�) such that

tn → t in [0, 1], un → 0 in H 1(�) and h′
tn (un) = 0 for all n ∈ N. (6.131)

From (6.131) we have for all n ∈ N

−�un(z) = f (z, (1 − tn)un(z) + tnξ(un(z))) (6.132)

for almost all z ∈ �, un|∂� = 0.

From (6.132) and the regularity theory for semilinear elliptic equations (the
Calderon–Zygmund estimates), we can find α ∈ (0, 1) and M > 0 such that

un ∈ C1,α
0 (�) and ||un||C1,α

0 (�) � M for all n ∈ N. (6.133)

Exploiting the compact embedding of C1,α
0 (�) into C1

0(�), from (6.131) and
(6.133) we have

un → 0 in C1(�) as n → ∞. (6.134)

So, we can find n0 ∈ N such that

|un(z)| � δ/2 for all n � n0 and all z ∈ �

⇒ ϕ′(un) = 0 for all n � n0,
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a contradiction to our hypothesis that 0 ∈ Kϕ is isolated (see (6.134)).
Having the isolation of the critical point u = 0 for the family {ht(·)}t∈[0,1] we

conclude that

0 ∈ Kϕ is isolated and Ck(ϕ, 0) = Ck(ψ, 0) for all k ∈ N0 (see Theorem 6.3.6).

The proof is now complete. �

This lemma leads to the following theorem, stressing the really local character of
critical groups. Its proof is immediate from Lemma 6.6.21 and the previous obser-
vations.

So, let f, g : � × R → R be two Carathéodory functions satisfying

| f (z, x)|, |g(z, x)| � a(z)(1 + |x |r−1) for almost all z ∈ � and all x ∈ R,

with a ∈ L∞(�), 2,� r < 2∗. We set

F(z, x) =
∫ x

0
f (z, s)ds and G(z, x) =

∫ x

0
g(z, s)ds

and consider the C1-functionals ϕ,ψ : H 1
0 (�) → R defined by

ϕ(u) = 1

2
||Du||22 −

∫

�

F(z, u(z))dz,

ψ(u) = 1

2
||Du||22 −

∫

�

G(z, u(z))dz for all u ∈ H 1
0 (�).

Theorem 6.6.22 If 0 ∈ Kϕ is isolated and there exists a δ > 0 such that

f (z, x + u0(z)) = g(z, x + u0(z)) for almost all z ∈ � and all |x | � δ,

then 0 ∈ Kψ is isolated too and Ck(ϕ, u0) = Ck(ψ, u0) for all k ∈ N0.

Remark 6.6.23 Evidently, this theorem is also valid for problems other than the
Dirichlet problem, such as the Neumann or Robin problems. Then H 1

0 (�) is replaced
by H 1(�).

From Palais [325] (Theorem 16), we have the following result.

Theorem 6.6.24 If V1, V2 are two paracompact locally convex topological vector
spaces, j : V1 → V2 is a continuous, linear map, j (V1) is dense in V2, W ⊆ V2 is
open and U = j−1(W ), then ĵ = j |U : U → W is a homotopy equivalence.

Remark 6.6.25 Using this general result, we see that if X is a Banach space which
is embedded continuously and densely into a Hilbert space H , then for any pair of
open sets (D, E) in H , we have
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Hk(D, E) = Hk(D ∩ X, E ∩ X) for all k ∈ N0.

This equality leads to the following useful result.

Theorem 6.6.26 If H is a Hilbert space, X is a Banach space which is continuously
and densely embedded in H, ϕ ∈ C2(H) and u ∈ K c

ϕ is isolated, then Ck(ϕ, u) =
Ck(ϕ|X , u) for all k ∈ N0.

6.7 Existence and Multiplicity of Critical Points

In this section we use critical groups to establish the existence and multiplicity of
critical points.

We start with some auxiliary results related to the so-called “Lyapunov–Schmidt
reduction method”. With this method the initial infinite-dimensional problem is re-
duced to a finite-dimensional one which is easier to deal with. In Volume 2 we will
see that this method, under some reasonable hypotheses on the data of the problem,
is very effective in dealing with resonant equations.

The setting is the following. We have H , a separable Hilbert space with H∗ its
topological dual, and 〈·, ·〉, the duality brackets for the pair (H∗, H). We assume that
H admits the following orthogonal direct sum decomposition

H = Y ⊕ V with dim Y < +∞.

So, every u ∈ H admits a unique decomposition

u = y + v with y ∈ Y, v ∈ V .

Proposition 6.7.1 If ϕ ∈ C1(H), ϕ is sequentially weakly lower semicontinuous
and

ĉ||v − v′||2 �
〈
ϕ′(y + v) − ϕ′(y + v′), v − v′〉

for all y ∈ Y , all v, v′ ∈ V and some ĉ > 0, then there exists a continuous map
ϑ : Y → V such that

ϕ(y + ϑ(y)) = inf{ϕ(y + v) : v ∈ V } for all y ∈ Y.

Proof Fix y ∈ Y and consider the C1-functional ϕy : H → R defined by

ϕy(u) = ϕ(y + u) for all u ∈ H.

Let iV : V → H denote the inclusion map and consider the map ϕ̂y : V → H
defined by

ϕ̂y = ϕy ◦ iV .
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Evidently, ϕ̂y ∈ C1(V, H) and from the chain rule we have

ϕ̂′
y = pV ∗ ◦ ϕ′

y, (6.135)

with pV ∗ being the orthogonal projection of H∗ onto V ∗ (recall that H∗ = Y ∗ ⊕ V ∗).
In what follows, by 〈·, ·〉V we denote the duality brackets for the pair (V ∗, V ). For
v, v′ ∈ V we have

〈
ϕ̂′

y(v) − ϕ̂′
y(v

′), v − v′〉
V

= 〈
ϕ′

y(v) − ϕ′
y(v

′), v − v′〉 (see (6.135))

= 〈
ϕ′(y + v) − ϕ′(y + v′), v − v′〉

� ĉ||v − v′||2 (by hypothesis) (6.136)

⇒ ϕ̂′
y is strongly monotone, hence ϕ̂y is strictly convex. (6.137)

For all v ∈ V , we have

〈
ϕ̂′

y(v), v
〉
V

= 〈ϕ̂′
y(v) − ϕ̂′

y(0), v
〉
V

+ 〈ϕ̂′
y(0), v

〉
V

�
ĉ||v||2 − c1||v|| for some c1 > 0 (6.138)

⇒ ϕ̂′
y is coercive.

Also, note that ϕ̂′
y : V → V ∗ is monotone and continuous, hence by Proposition

2.6.12 ϕ̂′
y(·) is maximal monotone. Therefore ϕ̂′

y is maximal monotone and coercive,
so it is surjective (see Theorem 2.8.6). Hence, we can find v0 ∈ V such that

ϕ̂′
y(v0) = 0. (6.139)

From (6.136) it is clear that v0 ∈ V is unique and is the unique minimizer of the
strictly convex functional ϕ̂y = ϕy |V (see (6.137)). This means that we can define
the map ϑ : Y → V by setting ϑ(y) = v0. Then we have

pV ∗ϕ(y + ϑ(u)) = 0 and ϕ(y + ϑ(y)) = inf{ϕ(y + v) : v ∈ V } for all y ∈ Y (6.140)
(see (6.135) and (6.139)).

Next we show the continuity of the map ϑ : Y → V . So, let yn → y in Y . For
every n ∈ N, we have

0 = 〈ϕ̂′
yn

(ϑ(yn)),ϑ(yn)
〉
V

(see (6.139))

� ĉ||ϑ(yn)||2 − c1||ϑ(yn)|| (see (6.138))
⇒ {ϑ(yn)}n�1 ⊆ V is bounded.

Passing to a suitable subsequence if necessary, we may assume that
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ϑ(yn)
w→ v̂ in H, v̂ ∈ V . (6.141)

Since by hypothesis ϕ(·) is sequentially weakly lower semicontinuous, we have

ϕ(y + v̂) � lim inf
n→∞ ϕ(yn + ϑ(yn)) (see (6.141)). (6.142)

From (6.140) we know that

ϕ(yn + ϑ(yn)) � ϕ(yn + v) for all n ∈ N and all v ∈ V

⇒ lim sup
n→∞

ϕ(yn + ϑ(yn)) � ϕ(y + v) (recall that yn → y in Y )

⇒ ϕ(y + v̂) � ϕ(y + v) for all v ∈ V (see (6.142))

⇒ v̂ = ϑ(y).

So, by the Urysohn criterion for the initial sequence {ϑ(yn)}n�1 ⊆ V we have

ϑ(yn) → ϑ(y) as n → ∞
⇒ ϑ(·) is continuous.

Moreover, from (6.140) we have

ϕ(y + ϑ(y)) = inf{ϕ(y + v) : v ∈ V }.

The proof is now complete. �
We set

ϕ0(y) = ϕ(y + ϑ(y)) for all y ∈ Y. (6.143)

From Proposition 6.7.1 it is clear that ϕ0 : Y → R is continuous. In fact, we can
say more.

Proposition 6.7.2 If ϕ ∈ C1(H), ϕ is sequentially weakly lower semicontinuous,

〈
ϕ′(y + v) − ϕ′(y + v′), v − v′〉 � ĉ||v − v′||2

for all y ∈ Y , all v, v′ ∈ V , some ĉ > 0 and ϕ0 : Y → R is given by (6.143), then
ϕ0 ∈ C1(Y ).

Proof Let y, h ∈ Y and t > 0. From (6.143) and Proposition 6.7.1, we have

1

t
[ϕ0(y + th) − ϕ0(y))]

� 1

t
[ϕ(y + th + ϑ(y)) − ϕ(y + ϑ(y))]

⇒ lim sup
t→0

1

t
[ϕ0(y + th) − ϕ0(y)] �

〈
ϕ′(y + ϑ(y)), h

〉
. (6.144)



548 6 Morse Theory and Critical Groups

Also, we have

1

t
[ϕ0(y + th) − ϕ0(y)]

� 1

t
[ϕ(y + th + ϑ(y + th)) − ϕ(y + ϑ(y + th))]

⇒ lim inf
t→0

1

t
[ϕ0(y + th) − ϕ0(y)] �

〈
ϕ′(y + ϑ(y)), h

〉
(6.145)

(since ϕ ∈ C1(H) and ϑ(·) is continuous, see Proposition 6.7.1).

Let 〈·, ·〉Y denote the duality brackets for the pair (Y ∗, Y ). From (6.144) and
(6.145) we have

〈
(ϕ0)

′
+(y), h

〉 = 〈ϕ′(y + ϑ(y)), h
〉
for all y, h ∈ Y. (6.146)

Similarly if t < 0, then

〈
(ϕ0)

′
−(y),−h

〉 = 〈ϕ′(y + ϑ(y)),−h
〉
for all y, h ∈ Y. (6.147)

From (6.146) and (6.147) we conclude that

ϕ0 ∈ C1(Y ) and ϕ′
0(y) = ϕ′(y + ϑ(y)) for all y ∈ Y.

The proof is now complete. �

Proposition 6.7.3 If ϕ ∈ C1(H), ϕ is sequentially weakly lower semicontinuous,

〈
ϕ′(y + v) − ϕ′(y + v′), v − v′〉 � ĉ||v − v′||2

for all y ∈ Y , all v, v′ ∈ V , some ĉ > 0 and ϕ0 : Y → R is given by (6.143), then
y ∈ Kϕ0 if and only if y + ϑ(y) ∈ Kϕ.

Proof ⇐: This is immediate from (6.135) and (6.140).
⇒: Suppose that y ∈ Kϕ0 . Then

0 = ϕ′
0(y) = pV ∗ϕ′(y + ϑ(y)) (see (6.135), (6.143)). (6.148)

Since H∗ = Y ∗ ⊕ V ∗, it follows that

ϕ′(y + ϑ(y)) ∈ Y ∗
〈
ϕ′(y + ϑ(y)), h

〉
Y = 0 for all h ∈ Y (see (6.148))

⇒ ϕ′(y + ϑ(y)) = 0

⇒ y + ϑ(y) ∈ Kϕ.

The proof is now complete. �
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Remark 6.7.4 So y ∈ Kϕ0 is isolated if and only if y + ϑ(y) ∈ Kϕ is isolated.

Based on this remark, one may ask what the relation is between the critical groups

Ck(ϕ0, y) and Ck(ϕ, y + ϑ(y)) for all k ∈ N0.

The next theorem answers this equation and shows the effectiveness of the
Lyapunov–Schmidt reduction method.

Theorem 6.7.5 If ϕ ∈ C1(H), ϕ is sequentially weakly lower semicontinuous,

〈
ϕ′(y + v) − ϕ′(y + v′), v − v′〉 � ||v − v′||2

for all y ∈ Y , all v, v′ ∈ V , some ĉ > 0, ϕ0 : Y → R is given by (6.143) and ŷ ∈ Kϕ0

is isolated, then Ck(ϕ0, ŷ) = Ck(ϕ, ŷ + ϑ(ŷ)) for all k ∈ N0.

Proof Recall that ŷ + ϑ(ŷ) ∈ Kϕ is isolated (see Proposition 6.7.3 and Remark
6.7.4).

Let c = ϕ0(y) = ϕ(y + ϑ(y)) (see (6.143)) and

D = {(y,ϑ(y)) ∈ Y × V : y ∈ ϕc
0}.

We set û = ŷ + ϑ(ŷ) ∈ H and consider the maps

ξ : ϕc → D and η : ϕc
0 → D

defined by

ξ(y, v) = (y,ϑ(y)) (with y + v ∈ ϕc),

η(y) = (y,ϑ(y)) (that is ξ(y, v) = η(y)).

We have

(ϕc,ϕc\{û}) ξ→ (D, D\{û}) and (ϕc
0,ϕ

c
0\{ŷ}) η→ (D, D\{û}). (6.149)

Note that η is a homeomorphism and η−1(y,ϑ(y)) = y for all (y,ϑ(y)) ∈ D.
Recall that v → ϕ(y + v) is strictly convex (see the proof of Proposition 6.7.1). So,
identifying u = y + v ∈ H with y ∈ Y, v ∈ V (uniquely) with the pair (y, v), we
have

ϕ(y, (1 − t)v + tv′) � (1 − t)ϕ(y, v) + tϕ(y, v′)
for all t ∈ [0, 1], all y ∈ Y, and all v, v′ ∈ V .

Therefore we can define the homotopy e : ([0, 1] × ϕc, [0, 1] × (ϕc\{û})) →
(ϕc,ϕc\{û}) by setting
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e(t, (y, v)) = (y, (1 − t)v + tϑ(y)).

Let i : (D, D\{û}) → (ϕc,ϕc\{û}) be the inclusion map. Using the homotopy
we can easily see that

ξ ◦ i = id(D,D\{û}) and i ◦ ξ � id(ϕc,ϕc\{û}).

So, the pairs (D, D\{û}) and (ϕc,ϕc\{û}) are homotopy equivalent. Then from
Proposition 6.1.14 we have

Hk(ϕ
c
0,ϕ

c
0\{û}) = Hk(D, D\{û})

⇒ Ck(ϕ, y + ϑ(y)) = Ck(ϕ0, y) for all k ∈ N0.

The proof is now complete. �

Suppose that ϕ ∈ C1(H) satisfies the assumptions of the above theorem. Let ∇ϕ
denote the gradient of ϕ, that is,

(∇ϕ(u), h)H = 〈ϕ′(u), h
〉
for all u, h ∈ H,

with (·, ·)H denoting the inner product of H . Suppose that

∇ϕ = I − K with K ∈ Lc(H).

Therefore the Leray–Schauder index iL S(∇ϕ, ŷ + ϑ(ŷ)) (see Definition 6.2.43)
can be defined. Also, since Y is finite-dimensional, the Brouwer index i(ϕ0, ŷ, c)
(see Definition 3.8.1) is also defined. We expect the two to be related. Indeed using
Theorem 6.7.5, we have the following result.

Corollary 6.7.6 If everything is as above with ŷ ∈ Kϕ0 isolated, then iL S(∇ϕ, ŷ +
ϑ(ŷ)) = i(ϕ0, ŷ, c).

Proof Using Proposition 6.2.44 we have

i(ϕ0, ŷ, c) =
∑

k�0

(−1)krank Ck(ϕ0, ŷ)

=
∑

k�0

(−1)krank Ck(ϕ, ŷ + ϑ(ŷ)) (see Theorem 6.7.5)

= iL S(∇ϕ, ŷ + ϑ(ŷ)) (see Proposition 6.2.44).

The proof is now complete. �

The next existence result is in the spirit of Proposition 6.2.42.

Proposition 6.7.7 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
u ∈ X, a, b, c ∈ R with a < c < b, Kϕ is finite, K c

ϕ = {u}, a, b /∈ ϕ(Kϕ) and
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Ck(ϕ, u) �= 0, Hk(ϕ
b,ϕa) = 0 for some k ∈ N0, then we can find u0 ∈ Kϕ such

that

a < ϕ(u0) < c and Ck−1(ϕ, u0) �= 0 or

c < ϕ(u0) < b and Ck+1(ϕ, u0) �= 0.

Proof Choose ε > 0 small so that

Kϕ ∩ ϕ−1([c − ε, c + ε]) = {u}

and a < c − ε < c + ε < b.

From Proposition 6.2.16, we have

Hk(ϕ
c+ε,ϕc−ε) = Ck(ϕ, u) �= 0

and Hk(ϕ
b,ϕa) = 0 (by hypothesis).

We consider the sets ϕa ⊆ ϕc−ε ⊆ ϕc+ε ⊆ ϕb and use Proposition 6.1.37. We
obtain Hk−1(ϕ

c−ε,ϕa) �= 0 or Hk+1(ϕ
b,ϕc+ε) �= 0. Then Proposition 6.2.15 implies

that we can find u0 ∈ Kϕ such that

a < ϕ(u0) < c − ε and Ck−1(ϕ, u0) �= 0 or

c + ε < ϕ(u0) < b and Ck+1(ϕ, u0) �= 0.

The proof is now complete. �

Corollary 6.7.8 If X is a Banach space, ϕ ∈ C1(X), ϕ satisfies the C-condition,
Kϕ is finite, K c

ϕ = {u} and Ck(ϕ, u) �= 0, Ck(ϕ,∞) = 0 for some k ∈ N0, then we
can find u0 ∈ Kϕ such that

ϕ(u0) < ϕ(u) = c and Ck−1(ϕ, u0) �= 0 or

c = ϕ(u) < ϕ(u0) and Ck+1(ϕ, u0) �= 0.

Proof Since Kϕ is finite, we can find a, b ∈ R such that

a < inf ϕ(Kϕ) < supϕ(Kϕ) < b.

Invoking Proposition 6.2.28(a), we have

Hk(ϕ
b,ϕa) = Ck(ϕ,∞) = 0 (by hypothesis).

So, we can apply Proposition 6.7.7 and find u0 ∈ Kϕ such that

ϕ(u0) < c = ϕ(u) and Ck−1(ϕ, u0) �= 0 or

ϕ(u) = c < ϕ(u0) and Ck+1(ϕ, u0) �= 0.
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The proof is now complete. �

Next, we present some multiplicity results.

Proposition 6.7.9 If X is a Banach space, ϕ ∈ C1(X), ϕ is bounded below and
satisfies the C-condition (or equivalently the PS-condition, see Proposition 5.1.14),
u ∈ Kϕ is isolated and not a global minimizer ofϕand for some m ∈ N0, Cm(ϕ, u) �=
0, then Kϕ has at least three elements.

Proof Since ϕ is bounded below and satisfies the C-condition, by Proposition 5.1.8
we can find u0 ∈ Kϕ which is a global minimizer of ϕ. Since by hypothesis u ∈ Kϕ

is not a global minimizer, we must have u �= u0 and ϕ(u0) < ϕ(u). Suppose that
Kϕ = {u, u0} and choose a, b ∈ R such that

ϕ(u0) < a < ϕ(u) < b.

Then Corollary 5.3.13 implies that ϕb is a strong deformation retract, while The-
orem 5.3.12 (the second deformation theorem) says that {u0} is a strong deformation
retract of ϕa . So, we have

Hk(ϕ
b, {u0}) = Hk(X, {u0}) for all k ∈ N0 (see Corollary 6.1.24(b)), (6.150)

Hk(X, u0) = 0 for all k ∈ N0 (6.151)
(since X is a contractible, see Proposition 6.1.30),

Hk(ϕ
a, {u0}) = 0 for all k ∈ N0 (see Proposition 6.1.15). (6.152)

Using the log exact sequence from Proposition 6.1.29 and (6.150), (6.151),
(6.152), we infer that

Hk(ϕ
b,ϕa) = 0 for all k ∈ N0

⇒ Ck(ϕ, u) = 0 for all k ∈ N0 (see Proposition 6.2.16),

a contradiction to the hypothesis Cm(ϕ, u) �= 0. So, Kϕ has a third element û. The
proof is now complete. �

Corollary 6.7.10 If X is a Banach space, ϕ ∈ C1(X) is bounded below and satisfies
the C-condition, ϕ has a local (m, n)-linking at 0 with m, n ∈ N and 0 is not a global
minimizer of ϕ, then ϕ has at least three critical points.

Proof FromTheorem6.6.17we know thatCm(ϕ, 0) �= 0. So, we can use Proposition
6.7.9 and conclude that Kϕ has at least three elements. �

Proposition 6.7.11 If X is a Banach space, ϕ ∈ C1(X) is bounded below and sat-
isfies the C-condition, and Cm(ϕ, 0) �= 0 for some m ∈ N, then

(a) ϕ has a nontrivial critical point;
(b) if m � 2, then ϕ has at least two nontrivial critical points.
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Proof (a) Since ϕ is bounded below and satisfies the C-condition, from Proposition
5.1.8, ϕ has a global minimizer u ∈ Kϕ. Then Proposition 6.2.3 implies

Ck(ϕ, u) = δk,0Z for all k ∈ N0. (6.153)

By hypothesis we have

Cm(ϕ, 0) �= 0 for some m ∈ N. (6.154)

Comparing (6.153) and (6.154) we conclude that u ∈ Kϕ is nontrivial.
(b) From Proposition 6.2.24 we have

Ck(ϕ,∞) = δk,0Z for all k ∈ N0. (6.155)

From (6.154), (6.155) and Proposition 6.2.42, we know that we can find u0 ∈ Kϕ

such that
Cm−1(ϕ, u0) �= 0 or Cm+1(ϕ, u0) �= 0. (6.156)

Since 1 � m − 1 (recall m � 2), from (6.153) and (6.156) it follows
that u0 �= u. �

6.8 Remarks

6.1: The material on Algebraic Topology is standard and can be found in the books
of Dold [148], Eilenberg and Steenrod [156], Hatcher [203], Maunder [292] and
Spanier [390]. The axiomatic treatment (see Definition 6.1.12) was first introduced
byEilenberg andSteenrod [156]. The term“homologygroup” is due toVietoris [410].
Singular homology was introduced by Eilenberg. Preceding that we had simplicial
homology, which is the result of the work of many mathematicians, including Betti
and Poincaré. The systematic introduction of group theoretic methods occurred in
the 1920s through the works of Alexander, Hopf and Lefschetz, who developed
simplicial homology. Cohomology theories can be axiomatized in the same way as
homology theories. The formalism of category theory is helpful in this respect.

6.2: Critical groups provide a powerful tool to distinguish between critical points
and to produce additional critical points of a given functional. For this reason they are
important in the study of nonlinear boundary value problems. Let X be a Hausdorff
topological space, ϕ : X → R a continuous function, K ⊆ X closed and c, d ∈ R,
c � d. As before we set

ϕc = {u ∈ X : ϕ(u) � c},
Kc = {u ∈ K : ϕ(u) = c},
ϕd

c = {u ∈ X : c � ϕ(u) � d}.
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In the case when X is a Banach space and ϕ a C1-functional, K is the critical set
of ϕ (the set Kϕ in the notation of Sect. 6.2).

Definition 6.8.1 If D ⊆ ϕ−1(c), the critical groups for the pair (ϕ, D) are defined
by

Ck(ϕ, D) = Hk(ϕ
c,ϕc\D) for all k ∈ N0.

For u ∈ ϕ−1(c), we set

Ck(ϕ, u) = Ck(ϕ, {u}) = Hk(ϕ
c,ϕc\{u}) for all k ∈ N0.

Remark 6.8.2 By excision, the critical groups depend only on the restriction of ϕ on
an arbitrary neighborhood U of u. This way, in the differentiable setting we recover
Definition 6.2.1, which stresses the local character of the theory.

As an easy application of Proposition 6.1.23, we get the following result.

Proposition 6.8.3 If D1, D2 ⊆ ϕ−1(C) are disjoint closed sets then
Ck(ϕ, D1 ∪ D2) = Ck(ϕ, D1) ⊕ Ck(ϕ, D2) for all k ∈ N0.

TheMorse lemma (see Proposition 5.4.19) was extended to the degenerate case by
Hofer [209], under the assumption thatϕ′′(u0) is of the formof a compact perturbation
of the identity. The more general form included here (see Proposition 6.2.9) is due
to Mawhin and Willem [293, p. 185]. The shifting theorem (see Theorem 6.2.13)
is due to Gromoll and Meyer [198]. The Morse relation (see Theorem 6.2.20) can
be found in the important paper of Marino and Prodi [288] on perturbation methods
in Morse theory. In the same work of Marino–Prodi we can find Lemmata 6.2.35,
6.2.37 and 6.2.38. Critical groups at infinity were introduced by Bartsch and Li [38]
as the appropriate tool for the global theory of critical points. Condition (A∞) is a
slightly more general version of the one employed by Bartsch and Li [38]. In Bartsch
and Li [38] it is assumed that ϕ′′(u) → 0 as ||u|| → ∞. However, a careful reading
of their proof reveals that it is enough to assume that ψ′(u) = 0(||u||) (see condition
(A∞)). This generalization was first used by Su and Zhao [394]. Proposition 6.2.44
is due to Rothe [361].

The next proposition gives a more convenient version of the Shifting Theorem
(see Theorem 6.2.13).

Proposition 6.8.4 If H is a Hilbert space, ϕ ∈ C2(H) and u ∈ Kϕ is isolated with
finite Morse index m and nullity ν, then one of the following holds:

(a) Ck(ϕ, u) = 0 for all k � m and all k � m + ν;
(b) Ck(ϕ, u) = δk,mZ for all k ∈ N0;
(c) Ck(ϕ, u) = δk,m+νZ for all k ∈ N0.

Remark 6.8.5 In fact, the result is also true for nontrivial critical points of C2−0

functionals (that is, C1-functionals ϕ whose derivative ϕ′(·) is locally Lipschitz,
alternatively the notation C1,1 is also used). This extension was proved by Li et
al. [268]. In the same paper, it is also proved that Proposition 6.2.44 is in fact true for
ϕ ∈ C1(H).
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6.3: The invariance of the critical groups with respect to small C1(X)-perturbat-
ions (see Theorem 6.3.4) andwith respect to homotopies which preserve the isolation
of the critical point (see Theorem 6.3.6) are two very useful tools for computing crit-
ical groups in concrete situations. The results can be found in Chang and Ghoussoub
[120] and Corvellec and Hantoute [128]. In the latter, the setting is more general
(continuous functions on metric spaces using the notions of weak slope and lower
critical point). The result on the continuity of critical groups with respect to the C1-
topology can also be found in Chang [118, p. 336] and in Mawhin and Willem [293,
p. 196] (for C2-functionals on Hilbert spaces). Similarly, the homotopy invariance
of critical groups can also be found in Chang [118, p. 53]. Theorem 6.3.8 is due to
Chang [118, p. 334].

6.4: The critical group theory can be extended to critical subsets. More precisely,
we saw that an isolated critical point is replaced by a dynamically isolated critical
set (see Definition 6.4.17) and for such sets we have an analogous critical group
theory. In the presentation of this theory we follow Chang [118] (see also Chang and
Ghoussoub [120]), who developed an extension of the Gromoll–Meyer theory (see
Gromoll and Meyer [198]). This extended theory is also related to the Conley index
theory of isolated invariant sets for gradient flows.

6.5: Recall that the notion of a critical point of mountain pass type (see Definition
6.5.6) is due to Hofer [210, 211]. Theorem 6.5.8 is usually proved using the second
deformation theorem (see Theorem 5.3.12) and arguments based on the existence
of neighborhoods which are stable with respect to the pseudogradient flow. Here,
we follow a different approach based on Lemma 6.2.35. This allows us to slightly
weaken the hypotheses in Theorem 6.5.8 and assume that the critical value ϕ(u0) is
isolated in ϕ(Kϕ). Theorem 6.5.11 can also be found in Chang [118, p. 91] and in
Mawhin andWillem [293, p. 195], under a little more restrictive conditions (see also
Bartsch [37]).

6.6: The notion of homological linking (seeDefinition 6.6.1) goes back to thework
of Liu [276], who also proved the nontriviality of the first critical group C1(ϕ, u0)

for a critical point u0 ∈ Kϕ produced by an application of the mountain pass theorem
(see also Corollary 6.6.9). The notion of local (m, n)-linking (see Definition 6.6.13)
is due to Perera [335], who also proved Theorem 6.6.17. Corollary 6.6.18 is due to
Liu [276]. Proposition 6.6.20 can be found in Papageorgiou and Rădulescu [330].
Theorem 6.6.22, stressing the local character of critical groups, is essentially due
to Degiovanni et al. [141], who employed an approach using the truncation function
ξ(·) (see Lemma 6.6.21). Theorem 6.6.26 can also be found in Chang [118, p. 14]
and in Bartsch [36].

6.7: The “reduction method” for elliptic problems was developed by Amann [12,
13] and Castro and Lazer [109]. Theorem 6.7.5 is due to Liu and Li [278] and Liu
[276]. Multiplicity results for critical points using critical groups can also be found
in Motreanu et al. [309, 310] and in Perera et al. [336].
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