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Foreword

Partial differential equations and, in particular, linear elliptic equations were cre-

ated and introduced in science in the first decades of the nineteenth century in or-

der to study gravitational and electric fields and to model diffusion processes in

Physics. The heat equation, the Navier–Stokes system, the wave equation and the

Schrödinger equations introduced later on to describe the dynamic of heat con-

duction, Newtonian fluid flows and, respectively, quantum mechanics are the basic

equations of mathematical physics which are, in spite of their complexity, centered

around the notion of Laplacian or, in other words, linear diffusion. However, these

equations, which were primarily created to model physical processes, played an im-

portant role in almost all branches of mathematics and, as a matter of fact, can be

viewed as a chapter of applied mathematics as well as of so-called pure mathemat-

ics. In fact, the linear elliptic operators and, in particular, the Laplacian represent

without any doubt a bridge that connects a large number of mathematical fields and

concepts and provides the mathematical framework for physical theories as well as

for the theory of stochastic processes and some new mathematical technologies for

image restoring and processing. The well posedness of the basic boundary value

problems associated with the Laplace operator is a fundamental topic of the the-

ory of partial differential equations. It is instructive to recall that the well posed-

ness of the Dirichlet and Neumann problem remained open and unsolved for more

than half a century until the turn of the nineteenth century, when Ivar Fredholm

solved it by a new and influential idea which is at the origin of a several branches

of mathematics which will change the analysis of the twentieth century; primarily,

I have in mind here functional analysis and operator theory. A related problem, the
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Dirichlet variational principle, had a similar history, being rigorously proved only

in the fourth decade of the last century after the creation of Sobolev spaces. This

principle is at the origin of variational theory of elliptic problems and of the con-

cept of weak or distributional solution, which fundamentally changed the basics

ideas and techniques of PDEs in the second part of the last century. The mathemati-

cians of the nineteenth century failed to prove this principle because it is not well

posed in spaces of differentiable functions, but in functional spaces with energetic

norms that is in Sobolev spaces which were discovered later on. Nonlinear elliptic

boundary value problems arise naturally in the description of physical phenomena

and, in particular, of reaction-diffusion processes, governed by nonlinear diffusion

laws, or in geometry (the minimal surface equation or uniformization theorem in

Riemannian geometry). The well posedness of most of these nonlinear problems

was treated by the new functional methods introduced in the last century such as

the Banach principle, Schauder fixed point theorem and Schauder–Leray degree

theorem and, in the 1960s, by the Minty–Browder theory of nonlinear maximal

monotone operators in Banach spaces. It should be said that most of these func-

tional approaches to nonlinear elliptic problems lead to existence results in spaces

with energetic norms (Sobolev spaces) and so quite often these are inefficient or too

rough to put in evidence sharp qualitative properties of solutions such as asymptotic

behavior, monotonicity or comparison results. Some classical methods such as the

maximum principles, integral representation of solutions or complex analysis tech-

niques are very efficient to obtain sharp results for new classes of elliptic problems

of special nature. These techniques, which perhaps have their origins in the classical

work of Peano on existence and construction of solutions to the Dirichlet problem

by method of sub and supersolutions, are still largely used in the modern theory of

nonlinear elliptic equations. This book is a very nice illustration of these techniques

in the treatment of the existence of positive solutions, which are unbounded to fron-

tier or for singular solutions to logistic elliptic equations as well as for the minimal-

ity principle for semilinear elliptic equations. Most of the elliptic equations studied

in this book are of singular nature or develop some “pathological” behavior which

requires sharp and specific investigation tools different to the standard functional

or energetic methods mentioned above. In the same category are the corresponding

variational problems which, in the absence of convexity, need some sophisticated

instruments such as the Mountains Pass theorem, the Ekeland variational principle
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or the Brezis–Lieb lemma. A fact indeed remarkable in this book is the variety of

problems studied and of methods and arguments. The authors avoid formulations,

tedious arguments and maximum generality, which is a general temptation of math-

ematicians in favor of simplicity; they confine to specific but important problems

most of them famous in literature, and try to extract from their treatment the essen-

tial ideas and features of the approach. The examples from chemistry and biology

chosen to illustrate the theory are carefully selected and significant (the Brusselator,

reaction-diffusion systems, pattern formation).

Marius Ghergu and Vicenţiu D. Rădulescu, who are well-known specialists in

the field, have coauthored in this work a remarkable monograph on recent results

on nonlinear techniques in the theory of elliptic equations, largely based on their

research works. The book is of a high scientific standard, but readable and accessible

to a large category of people interested in the modern theory of partial differential

equations.

Romanian Academy Viorel Barbu
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A Short Overview of the Book

Among all mathematical disciplines
the theory of differential equations is
the most important. It furnishes the
explanation of all those elementary
manifestations of nature which involve
time.

Sophus Lie (1842–1899)

Much of the modern science is based on the application of mathematics. It is cen-

tral to modern society, underpins scientific and industrial research, and is key to our

economy. Mathematics is the engine of science and engineering. It also has an ele-

gance and beauty that fascinates and inspires those who understand it.

Mathematics provides the theoretical framework for biosciences, for statistics

and data analysis, as well as for computer science. New discoveries within math-

ematics affect not only science, but also our general understanding of the world

we live in. Problems in biological sciences, in physics, chemistry, engineering, and

in computational science are using increasingly sophisticated mathematical tech-

niques. For this strong reason, the bridge between the mathematical sciences and

other disciplines is heavily traveled.

Biosciences are some of the most fascinating of all scientific disciplines and is an

area of applied sciences we use to explore and try to explain the uncertain world in

which we live. It is no surprise, then, that at the heart of a professional in this field

is a fascination with, and a desire to understand, the ”how and why” of the material

world around us.

The purpose of this volume is to meet the current and future needs of the interac-

tion between mathematics and various biosciences. This is first done by encouraging
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the ways that mathematics may be applied in traditional areas such as biology, chem-

istry, or genetics, as well as pointing towards new and innovative areas of applica-

tions. Next, we intend to encourage other scientific disciplines (mainly oriented to

natural sciences) to engage in a dialog with mathematicians, outlining their prob-

lems to both access new methods and suggest innovative developments within math-

ematics itself.

The first chapter presents the main mathematical methods used in the book. Such

tools include iterative methods and maximum principle, variational methods and

critical point theory as well as topological methods and degree theory.

The second chapter deals with Liouville type results for elliptic operators in di-

vergence form. Since its appearance in the nineteenth century, many results in the

theory of Partial Differential Equations have been devoted to characterize all data

functions f such that the standard elliptic inequality L u ≥ f (x,u) admits only the

trivial solution. We discuss such type of problems for elliptic operators of the form

L u =−div[A(|∇u|)∇u].

Chapter 3 is concerned with the study of solutions to the equation Δu= ρ(x) f (u)

in a smooth domain that blow-up at the boundary in the sense that limx→x0 u(x) =

+∞, for all x0 ∈ ∂Ω ; in case Ω = R
N , this condition can be simply formulated as

lim|x|→∞ u(x) = +∞. Here we emphasize the role played by the Keller–Osserman

integral condition.

Chapters 4 and 5 deal with some related singular elliptic problems. This time,

the solution is bounded but the nonlinearity appearing in the problem is unbounded

around the boundary of the domain. Particular attention is paid to the Lane–Emden

equation and the associated system in this singular framework. Chapter 4 is devoted

to the model equation −Δu = au+ u−α , 0 < α < 1 and the associated system. In

Chap. 5 we study singular elliptic problems in exterior domains. Here we point out

the role played by the geometry of the domain in the existence of a C2 solution. In

particular we completely describe the solution set of the equation −Δu = |x|αu−p

by showing that all the solutions are radially symmetric and characterized by two

parameters.

Chapter 6 presents two classes of quasilinear elliptic equations. The approach

in this chapter is variational and combines some tools in this field such as Eke-

land’s variational principle and mountain pass theorem. The lack of compactness of
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Sobolev embeddings or the presence of p-Laplace operator are the main features of

the chapter.

In Chap. 7 we are concerned with three classes of higher order elliptic problems

involving the polyharmonic operator. By adopting three different approaches we un-

derline the complex structure of such problems in which the higher order differential

operator and the type of conditions imposed on the boundary play an important role

in the qualitative study of solutions.

The last two chapters are devoted to reaction diffusion systems. In their most

general form, the models we intend to study can be stated as{
ut =duΔu+ f (u,v) (x ∈Ω , t > 0),

vt =dvΔu+ g(u,v) (x ∈Ω , t > 0).
(0.1)

These equations describe the evolution of the concentrations, u = u(x, t), v = v(x, t)

at spatial position x and time t, of two chemicals due to diffusion, with different

constant diffusion coefficients du, dv, respectively, and reaction, modeled by the

typically nonlinear functions f and g that can be derived from chemical reaction

formulas by using the law of mass action and other physical conditions.

In Chap. 9 several reaction-diffusion models are studied. Oscillating chemical re-

actions have been a rich source of varied spatial-temporal patterns since the discov-

ery of the oscillating wave in the Belousov–Zhabotinsky reaction in 1950s. These

phenomena and observations have been transferred to challenging mathematical

problems through various models, especially reaction-diffusion equations. Among

these mathematical models, we present:

• The Brusselator model introduced by Prigogine and Lefever in 1968 as a model

for an autocatalytic oscillating chemical reaction. This corresponds to

f (u,v) = a− (b+ 1)u+ u2v, g(u,v) = bu− u2v.

• The Schnackenberg model for chemical reactions with limit cycle behavior

f (u,v) = a− u+ u2v, g(u,v) = b− u2v.

• The Lengyel–Epstein model for the chlorite–iodide–malonic acid (CIMA) reac-

tion. This corresponds to (0.1) with the nonlinearities f and g given by
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f (u,v) = a− u− 4uv/(1+u2), g(u,v) = b

[
u− uv

1+u2

]
.

In the last chapter we discuss a reaction-diffusion model arising in molecular

biology proposed by Gierer and Meinhardt [98] in 1972 for pattern formation of

spatial tissue structures of hydra in morphogenesis, a biological phenomenon dis-

covered by Trembley in 1744. Following this model, the nonlinearities f and g are

given by

f (u,v) =−αu+
up

vq +ρ(x), g(u,v) =−βv+
ur

vs ,

where α,β > 0, ρ is the source distribution and the exponents p,q,r,s are positive

real numbers.

For the reader’s convenience, we have included two appendices that contain some

technical results about Caffarelli–Kohn–Nirenberg inequality and estimates for the

Green function associated with the biharmonic operator.

The few examples we have provided illustrate the great alliance between mathe-

matics and biosciences. This is recognized universally and both disciplines thrived

by supporting each other. The prerequisite for this book includes a good undergrad-

uate course in functional analysis and Partial Differential Equations. This book is

intended for advanced graduate students and researchers in both pure and applied

mathematics.

Our vision throughout this volume is closely inspired by the following words of

V.I. Arnold (1983, see [8, p. 87]) on the role of mathematics in the understanding of

real processes: In every mathematical investigation the question will arise whether

we can apply our results to the real world. Consequently, the question arises of

choosing those properties which are not very sensitive to small changes in the model

and thus may be viewed as properties of the real process.

Ireland Marius Ghergu

Romania Vicenţiu D. Rădulescu
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Chapter 1
Overview of Mathematical Methods in Partial
Differential Equations

Mathematics may be defined as the
subject in which we never know what
we are talking about, nor whether what
we are saying is true.

Bertrand Russell (1872–1970)

In this chapter we collect some results in Nonlinear Analysis that will be fre-

quently used in the book. The first part of this chapter deals with comparison prin-

ciples for second order differential operators and enables us to obtain an ordered

structure of the solution set and, in most of the cases, the uniqueness of the solution.

In the second part of this chapter we review the celebrated method of moving planes

that allows us to deduce the radial symmetry of the solution. The third part of this

chapter is concerned with variational methods. The final section contains some re-

sults in degree theory that will be mostly used to derive existence and nonexistence

of a stationary solution to some reaction-diffusion systems.

1.1 Comparison Principles

We start this section with the following result which is due to Lou and Ni (see [139]

or [140]).

Theorem 1.1 Let g ∈C1(Ω ×R).

(i) If w ∈C2(Ω)∩C1(Ω) satisfies

Δw+ g(x,w)≥ 0 in Ω ,
∂w
∂n
≤ 0 on ∂Ω , (1.1)

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 1, c© Springer-Verlag Berlin Heidelberg 2012
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2 1 Overview of Mathematical Methods in Partial Differential Equations

and w(x0) = maxΩ w, then g(x0,w(x0))≥ 0.

(ii) If w ∈C2(Ω)∩C1(Ω) satisfies

Δw+ g(x,w)≤ 0 in Ω ,
∂w
∂n
≥ 0 on ∂Ω ,

and w(x0) = minΩ w, then g(x0,w(x0))≤ 0.

Proof. We shall prove only part (i) as (ii) can be established in a similar way. There

are two possibilities for our consideration.

Case 1: x0 ∈Ω . Since w(x0) = maxΩ w we have Δw(x0)≤ 0 and now from the first

inequality in (1.1) we obtain g(x0,w(x0))≤ 0.

Case 2: x0 ∈ ∂Ω . Assume by contradiction that g(x0,w(x0))< 0. By the continuity

of g and w, there exists a ball B⊂Ω with ∂B∩∂Ω = {x0} such that

g(x,w(x)) < 0 for all x ∈ B.

Thus, from (1.1) we find Δw > 0 in B. Since w(x0) = maxB w, it follows from the

Hopf boundary lemma that ∂w/∂n(x0) > 0 which contradicts the boundary condi-

tion in (1.1). This completes the proof of Theorem 1.1. �

Basic to our purposes in this book we state and prove the following result which

is suitable for singular nonlinearities.

Theorem 1.2 LetΨ :Ω×(0,∞)→R be a Hölder continuous function such that the

mapping (0,∞) � t 	−→Ψ(x, t)/t is decreasing for each x ∈ Ω . Assume that there

exist v1, v2 ∈C2(Ω)∩C(Ω ) such that

(a) Δv1 +Ψ(x,v1)≤ 0≤ Δv2 +Ψ(x,v2) in Ω ;

(b) v1,v2 > 0 in Ω and v1 ≥ v2 on ∂Ω ;

(c) Δv1 ∈ L1(Ω) or Δv2 ∈ L1(Ω).

Then v1 ≥ v2 in Ω .

Proof. Suppose by contradiction that v ≤ w is not true in Ω . Then, we can find

ε0, δ0 > 0 and a ball B⊂⊂Ω such that

v−w≥ ε0 in B, (1.2)

∫
B

vw

(
Φ(x,w)

w
− Φ(x,v)

v

)
dx≥ δ0. (1.3)

Let us assume that Δw ∈ L1(Ω) and set
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M = max{1, ‖Δw‖L1(Ω)}, ε = min

{
1, ε0,

δ0

4M

}
.

Consider θ ∈ C1(R) a nondecreasing function such that 0 ≤ θ ≤ 1, θ (t) = 0, if

t ≤ 1/2 and θ (t) = 1 for all t ≥ 1. Define

θε (t) = θ
( t
ε

)
, t ∈ R.

Because w≥ v on ∂Ω , we can find a smooth subdomainΩ ∗ ⊂⊂Ω such that

B⊂Ω ∗ and v−w <
ε
2

in Ω \Ω ∗.

Using hypotheses (i) and (ii) we deduce

∫
Ω∗

(wΔv−vΔw)θε (v−w)dx≥
∫
Ω∗

vw

(
Φ(x,w)

w
− Φ(x,v)

v

)
θε(v−w)dx. (1.4)

By relation (1.3), we have

∫
Ω∗

vw

(
Φ(x,w)

w
− Φ(x,v)

v

)
θε(v−w)dx

≥
∫

B
vw

(
Φ(x,w)

w
− Φ(x,v)

v

)
θε(v−w)dx

=

∫
B

vw

(
Φ(x,w)

w
− Φ(x,v)

v

)
dx

≥ δ0.

To raise a contradiction, we need only to prove that the left-hand side in (1.4) is

smaller than δ0. For this purpose, define

Θε(t) :=
∫ t

0
sθ ′ε (s)ds, t ∈ R.

It is easy to see that

Θε(t) = 0, if t <
ε
2

and 0≤Θε(t)≤ 2ε, for all t ∈R. (1.5)

Now, using Green’s first formula, we evaluate the left side of (1.4):
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Ω∗

(wΔv− vΔw)θε(v−w)dx

=

∫
∂Ω∗

wθε(v−w)
∂v
∂n

dσ(x)−
∫
Ω∗

(∇w ·∇v)θε (v−w)dx

−
∫
Ω∗

wθ ′ε (v−w)∇v ·∇(v−w)dx−
∫
∂Ω∗

vθε(v−w)
∂w
∂n

dσ(x)

+

∫
Ω∗

(∇w ·∇v)θε(v−w)dx+
∫
Ω∗

vθ ′ε(v−w)∇w ·∇(v−w)dx

=
∫
Ω∗
θ ′ε(v−w)(v∇w−w∇v) ·∇(v−w)dx.

The previous relation can be rewritten as∫
Ω∗

(wΔv− vΔw)θε (v−w)dx =
∫
Ω∗

wθ ′ε (v−w)∇(w− v) ·∇(v−w)dx

+

∫
Ω∗

(v−w)θ ′ε(v−w)∇w ·∇(v−w)dx.

Because
∫
Ω∗

wθ ′ε (v−w)∇(w− v) ·∇(v−w)dx≤ 0, the last equality yields

∫
Ω∗

(wΔv− vΔw)θε (v−w)dx≤
∫
Ω∗

(v−w)θ ′ε(v−w)∇w ·∇(v−w)dx.

Therefore, ∫
Ω∗

(wΔv− vΔw)θε(v−w)dx≤
∫
Ω∗
∇w ·∇(Θε(v−w))dx.

Again by Green’s first formula, and by (1.5), we have

∫
Ω∗

(wΔv− vΔw)θε (v−w)dx≤
∫
∂Ω∗

Θε(v−w)
∂w
∂n

dσ(x)

−
∫
Ω∗
Θε(v−w)Δwdx

≤−
∫
Ω∗
Θε(v−w)Δwdx≤ 2ε

∫
Ω∗
|Δw|dx

≤ 2εM <
δ0

2
.

Thus, we have obtained a contradiction. Hence v ≤ w in Ω , which completes the

proof. �

A direct consequence of Theorem 1.2 is the result below.

Corollary 1.3 Let k ∈C(0,∞) be a positive decreasing function and a1,a2 ∈C(Ω)

with 0 < a2 ≤ a1 in Ω . Assume that there exist β ≥ 0, v1,v2 ∈C2(Ω)∩C(Ω ) such
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that v1,v2 > 0 in Ω , v1 ≥ v2 on ∂Ω and

Δv1−βv1 + a1(x)k(v1)≤ 0≤ Δv2−βv2 +a2(x)k(v2) in Ω .

Then v1 ≥ v2 in Ω .

Proof. We simply apply Theorem 1.2 in the particular case

Φ(x, t) =−β t + a1(x)k(t), (x, t) ∈Ω × (0,∞).

�

Let us now consider the more general elliptic operator in divergence form

L u := div[A(|∇u|)∇u] ,

where A ∈C(0,∞) is positive such that the mapping t 	→ tA(t) is increasing.

Theorem 1.4 Let Ω be a bounded and smooth domain in R
N (N ≥ 1), ρ ∈ C(Ω)

and f ∈C(R). Assume that u,v ∈C2(Ω)∩C(Ω) satisfy

(i) L u−ρ(x) f (u)≥ 0≥L v−ρ(x) f (v) in Ω ;

(ii) u≤ v on ∂Ω .

Then u≤ v in Ω .

Proof. Let φ : R→ [0,∞) be a C1-function such that φ = 0 on (−∞,0] and φ is

strictly increasing on [0,∞). We first multiply by φ(u− v) in (i) and obtain

(L u−L v)φ(u− v)≥ ρ(x)( f (u)− f (v))φ(u− v) in Ω .

Integrating overΩ , by the divergence theorem we find

−
∫
Ω

[
A(|∇u|)∇u−A(|∇v|)∇v

]
·∇(u− v)φ(u− v)dx

≥
∫
Ω
ρ(x)( f (u)− f (v))φ(u− v)dx≥ 0.

Hence ∫
Ω

[
A(|∇u|)∇u−A(|∇v|)∇v

]
·∇(u− v)φ(u− v)dx≤ 0. (1.6)

On the other hand,
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A(|∇u|)∇u−A(|∇v|)∇v

]
·∇(u− v)

=
[
A(|∇u|)|∇u|−A(|∇v|)|∇v|

]
(|∇u|− |∇v|)

+
[
A(|∇u|)+A(|∇v|)

]
(|∇u||∇v|−∇u ·∇v),

so that [
A(|∇u|)∇u−A(|∇v|)∇v

]
·∇(u− v)≥ 0 in Ω ,

with equality if and only if ∇u = ∇v. Using this fact in (1.6) it follows that u≤ v in

Ω . This finishes the proof of our result. �

Theorem 1.5 Let Ω ⊂ R
N (N ≥ 1) be a smooth bounded domain, T > 0, and

L u := ∂t u− a(x, t,u)Δu+ f (x, t,u),

where a, f : Ω × [0,∞)× [0,∞)→ R are continuous functions such that a ≥ 0 in

Ω × [0,∞). Assume that there exist u1,u2 ∈ C2,1(Ω × (0,T ))∩C(Ω × [0,T ]) such

that:

(i) L u1 ≤L u2 in Ω × (0,T).

(ii) u1 ≤ u2 on ΣT := (∂Ω × (0,T))∪ (Ω ×{0}).
(iii) at least for one i ∈ {1,2} we have |D2ui| ∈ L∞(Ω × [0,T ]) and the functions

a and f are Lipschitz with respect to the u variable in the neighborhood of

K := ui(Ω × [0,T ]).

Then u1 ≤ u2 in Ω × [0,T ].

1.2 Radial Symmetry of Solutions to Semilinear Elliptic
Equations

An important tool in establishing the radial symmetry of a solution to elliptic PDEs

is the so-called moving plane method that goes back to A.D. Alexandroff and J. Ser-

rin. It was then refined by Gidas, Ni and Nirenberg in the celebrated paper [97]. The

requirements on the regularity of the domain were further simplified by Berestycki

and Nirenberg [16]. We follow here the line in [16] and [25] to provide the reader

with a simple and instructive proof of the radial symmetry of solutions to semilinear

elliptic PDEs in bounded and convex domains Ω that vanish on ∂Ω .



1.2 Radial Symmetry of Solutions to Semilinear Elliptic Equations 7

Theorem 1.6 Let Ω ⊂ R
N be a convex domain which is symmetric about the x1

axis. Assume that f : R→ R is a Lipschitz continuous function and ρ : [0,∞)→ R

is a decreasing function. If u ∈C2(Ω)∩C(Ω) satisfies{−Δu = ρ(|x|) f (u) ,u > 0 in Ω ,

u = 0 on ∂Ω ,
(1.7)

then u is symmetric with respect to the x1 axis.

Proof. We first need a version of the maximum principle for small domains as stated

below.

Lemma 1.7 Let a ∈C(Ω ) and w ∈C2(ω)∩C(ω) be such that{−Δw+ a(x)w≥ 0 in ω ,

w≥ 0 on ∂ω .
(1.8)

If

||a−||LN/2(ω) ≥ SN , (1.9)

where SN is the best Sobolev constant in ω , then w≥ 0 in ω . In particular, if

‖a−‖L∞(ω)|ω |N/2 ≤ SN ,

that is, if ω is small, then w≥ 0 in ω .

Proof. We multiply the first inequality in (1.8) by w− = max{−w,0}. Integrating

over ω we obtain ∫
ω
|∇w−|2dx+

∫
ω

a(x)|w−|2dx≤ 0.

This also yields ∫
ω
|∇w−|2dx≤

∫
ω

a−(x)|w−|2dx.

On the other hand, by Sobolev and Hölder inequalities we find

SN‖w−‖L2N/(N−2)(ω) ≤
∫
ω

a−(x)|w−|2dx≤ ‖a−‖LN/2(ω)‖w−‖L2N/(N−2) (ω).

Using (1.9), the above inequality implies ‖w−‖L2N/(N−2)(ω) = 0, so w≥ 0 in ω . �

Let us now come back to the proof of Theorem 1.6. For any x=(x1,x2, . . . ,xN)∈R
N

we write x = (x1,x′), where x1 ∈ R and x′ ∈R
N−1. Let
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λ0 = max{x1 : (x1,x
′) ∈Ω}.

We claim that

u(x1,x
′)< u(y1,x

′) , (1.10)

for all (x1,x′) ∈Ω with x1 > 0 and all y1 ∈ R with |y1|< x1.

Then (1.10) implies u(x1,x′)≤ u(x1,−x′) and similarly u(x1,x′)≥ u(x1,−x′). so

u(x1,x′) = u(x1,−x′), that is, u is symmetric about the x1 axis. For any 0 < λ < λ0

define

Σλ = {x = (x1,x
′) ∈Ω : x1 > λ}

and

wλ (x) = uλ (x)− u(x) , x ∈ Σλ ,

where uλ (x) = u(2λ − x1,x′). Note that wλ is well defined in Σλ since Ω is convex

and symmetric about the hyperplane x1 = 0. Let us further remark that (1.10) is

equivalent to

wλ > 0 in Σλ , for all 0 < λ < λ0. (1.11)

From (1.7) we have

−Δwλ +ρ(|x|)
f (u)− f (uλ )

uλ − u
wλ +ρ(|x|)−ρ(|xλ |)wλ = 0 in Σλ ,

where xλ = (2λ − x1,x′). This yields

−Δwλ + a(x)wλ ≥ 0 in Σλ ,

where

a(x) =

⎧⎨
⎩ρ(|x|) f (u)− f (uλ )

uλ − u
if wλ (x) �= 0,

0 if wλ (x) = 0.

Remark that a ∈ L∞(Ω) and ‖a‖L∞(Ω) ≤ L‖ρ‖L∞(Ω), where L is the Lipschitz con-

stant of f on the interval [−‖u‖L∞(Ω),‖u‖L∞(Ω)]. Furthermore, we have

wλ > 0 on ∂Σλ ∩∂Ω , wλ = 0 on ∂Σ ∩Ω .

Thus, by taking λ close to λ0, by Lemma 1.7 we obtain wλ ≥ 0 in Σλ . Let

A = {0 < λ < λ0 : wλ ≥ 0 in Σλ}.
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It is easily seen that A is closed. We next prove that A is open. To this aim, let

λ ∈A . By the strong maximum principle, wλ > 0 in Σ . Let K ⊂ Σλ be a compact

set such that |Σμ \K| is small, for μ in a neighborhood of λ . Also, there exists c > 0

such that wλ ≥ c > 0 in K, so by continuity arguments we have wμ > 0 in K for

μ near λ . This yields wμ ≥ 0 on ∂ (Σμ \K), so by Lemma 1.7 we find wμ ≥ 0 in

Σμ \K, so wμ ≥ 0 in Σμ . This proves that A is open, so A = (0,λ0). This implies

that (1.11) holds, that is, u is symmetric with respect to the x1 axis. �

1.3 Variational Methods

1.3.1 Ekeland’s Variational Principle

Ekeland’s variational principle [67] was established in 1974, with its main feature

of how to use the norm completeness and a partial ordering to obtain a point where

a linear functional achieves its supremum on a closed bounded convex set. In its

original form, Ekeland’s variational principle can be stated as follows.

Theorem 1.8 (Ekeland’s Variational Principle) Let (M,d) be a complete metric

space and assume that Φ : M → (−∞,∞], Φ �≡ ∞, is a lower semicontinuous func-

tional that is bounded from below.

Then, for every ε > 0 and for any z0 ∈M, there exists z ∈M such that

(i) Φ(z) ≤Φ(z0)− ε d(z,z0);

(ii)Φ(x) ≥Φ(z)− ε d(x,z), for any x ∈M.

Proof. We may assume without loss of generality that ε = 1. Define the following

binary relation on M:

y≤ x if and only if Φ(y)−Φ(x)+d(x,y)≤ 0 .

Then “≤” is a partial order relation—that is,

(a) x≤ x, for any x ∈M;

(b) if x≤ y and y≤ x then x = y;

(c) if x≤ y and y≤ z then x≤ z.

For arbitrary x ∈M, set
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S(x) := {y ∈M : y≤ x}.

Let {εn} be a sequence of positive numbers such that εn → 0 and fix z0 ∈ M. For

any n≥ 0, let zn+1 ∈ S(zn) be such that

Φ(zn+1)≤ inf
S(zn)

Φ+ εn+1.

The existence of zn+1 follows from the definition of S(x). We prove that the sequence

{zn} converges to some element z, which satisfies (i) and (ii).

Let us first remark that S(y)⊂ S(x), provided that y≤ x. Hence, S(zn+1)⊂ S(zn).

It follows that for any n≥ 0,

Φ(zn+1)−Φ(zn)+d(zn,zn+1)≤ 0,

which impliesΦ(zn+1)≤Φ(zn). BecauseΦ is bounded from below, we deduce that

the sequence {Φ(zn)} converges.

We prove in what follows that {zn} is a Cauchy sequence. Indeed, for any n and

p we have

Φ(zn+p)−Φ(zn)+d(zn+p,zn)≤ 0. (1.12)

Therefore,

d(zn+p,zn)≤Φ(zn)−Φ(zn+p)→ 0 as n→ ∞,

which shows that {zn} is a Cauchy sequence, so it converges to some z ∈M. Now,

taking n = 0 in (1.12), we find

Φ(zp)−Φ(z0)+d(zp,z0)≤ 0.

So, as p→ ∞, we find (i).

To prove (ii), let us choose arbitrarily x ∈M. We distinguish the following situa-

tions.

Case 1: x ∈ S(zn), for any n ≥ 0. It follows that Φ(zn+1) ≤ Φ(x) + εn+1, which

implies that Φ(z) ≤Φ(x).

Case 2: There exists an integer N ≥ 1 such that x �∈ S(zn), for any n≥ N or, equiva-

lently,

Φ(x)−Φ(zn)+d(x,zn)> 0 for every n≥ N.

Passing to the limit in this inequality as n→ ∞ we find (ii). �
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A major consequence of Ekeland’s variational principle is that even if it is not

always possible to minimize a nonnegative C1 functional Φ on a Banach space;

however, there is always a minimizing sequence (un)n≥1 such that Φ ′(un)→ 0 as

n→ ∞. More precisely we have

Corollary 1.9 Let E be a Banach space and let Φ : E → R be a C1 functional that

is bounded from below. Then, for any ε > 0, there exists z ∈ E such that

Φ(z) ≤ inf
E
Φ+ ε and ‖Φ ′(z)‖E� ≤ ε.

Proof. The first part of the conclusion follows directly from Theorem 1.8. For

the second part we have

‖Φ ′(z)‖E� = sup
‖u‖=1

〈Φ ′(z),u〉.

But,

〈Φ ′(z),u〉= lim
δ→0

Φ(z+ δu)−Φ(z)
δ‖u‖ .

So, by Ekeland’s variational principle,

〈Φ ′(z),u〉 ≥ −ε.

Replacing now u with −u we find

〈Φ ′(z),u〉 ≤ ε,

which concludes our proof. �

1.3.2 Mountain Pass Theorem

The mountain pass theorem was established by Ambrosetti and Rabinowitz in [7].

It is a powerful tool for proving the existence of critical points of energy functionals,

hence of weak solutions to wide classes of nonlinear problems. We first recall the

following definition.

Definition 1.10 (Palais–Smale condition) Let E be a real Banach space. A func-

tional J : E → R of class C1 satisfies the Palais–Smale condition if any sequence

{un} in E is relatively compact, provided
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{J(un)} is bounded and ‖J′(un)‖E� → 0 as n→ ∞. (1.13)

By means of Ekeland’s variational principle, one deduces the following result.

Proposition 1.11 Let E be a real Banach space and assume that Φ : E → R is a

functional of class C1 that is bounded from below, and satisfies the Palais–Smale

condition. Then the following properties hold true:

(i) Φ is coercive.

(ii)Any minimizing sequence of Φ has a convergent subsequence.

We are now in position to state the mountain pass theorem.

Theorem 1.12 (Mountain Pass Theorem) Let E be a real Banach space and assume

that J : E → R is a C1 functional that satisfies the following conditions: There exist

positive constants α and R such that

(i) J(0) = 0 and J(v)≥ α for all v ∈ E with ‖v‖= R;

(ii)J(v0)≤ 0, for some v0 ∈ E with ‖v0‖> R.

Set

Γ := {p ∈C([0,1];E) : p(0) = 0 and p(1) = v0}

and

c := inf
p∈Γ

max
t∈[0,1]

J(p(t)) .

Then there exists a sequence {un} in E such that J(un)→ c and J′(un)→ 0 as

n → ∞. Moreover, if J satisfies the Palais–Smale condition, then c is a nontrivial

critical value of J, that is, there exists u ∈ E such that J(u) = c and J′(u) = 0.

1.3.3 Around the Palais–Smale Condition for Even Functionals

In this section we recall some notions and results from critical point theory for even

functionals. These results are due to Tanaka [195]. Let X be an infinite dimensional

separable Hilbert space and let J : X → R be a C2 functional such that

(A1) J is even and J(0) = 0;

(A2) For any finite dimensional subspace W of X there exists R = R(W )> 0 such

that J(u)< 0 for all u ∈W with ‖u‖ ≥ R;
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(A3) The Fréchet derivative J′ : X → X satisfies

J′(u) = u+K(u) for all u ∈ X ,

where K : X → X is a compact operator. Let {Xk} be a sequence of subspaces of X

such that

dimXk = k and X =
∞⋃

k=1

Xk.

For every k ≥ 1 let Rk = R(Xk) > 0 from the hypothesis (A2) and set Dk = Xk ∩
B(0,Rk). Let also

Ck =

{
γ ∈C(Dk,X) : γ is odd and γ

∣∣∣
Xk∩∂B(0,Rk)

= Id

}

and

bk = inf
γ∈Ck

sup
u∈Dk

J(γ(u)).

Definition 1.13 We say that

(i) J satisfies the (PS)k condition if every sequence {un} in Xk such that {J(un)} is

bounded and ∥∥∥(J
∣∣
Xk

)′
(un)

∥∥∥
Xk

→ 0 as n→ ∞

admits a convergent subsequence in Xk.

(ii) J satisfies the (PS)∗ condition if every sequence {uk} in X with uk ∈ Xk and

such that {J(uk)} is bounded and∥∥∥(J
∣∣
Xk

)′
(uk)

∥∥∥
Xk

→ 0 as k→ ∞

admits a convergent subsequence in X.

Definition 1.14 Let u be a critical point of J : X → R. The large Morse index of J

at u, denoted by m∗(J,u) is the infimum of the codimensions of all subspaces of X

on which the quadratic form J′′(u) is positive definite.

Theorem 1.15 (see [195]) Assume that J satisfies (A1)− (A3), (PS), (PS)k and

(PS)∗. Then, for each k ≥ 1 there exists a critical point uk ∈ X such that

J(uk)≤ k and m∗(J,uk)≥ k.
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1.3.4 Bolle’s Variational Method for Broken Symmetries

In the following we recall some notions and results from critical point theory for

functionals with broken symmetry in the spirit of Bolle [22]. Let X be an infinite

dimensional separable Hilbert space and let J : [0,1]×X → R be a C2 functional.

We set Jθ = J(θ , ·) and denote by Jθ : X → X the Fréchet derivative of Jθ .

Consider {ek} an orthonormal system of X and for any k ≥ 1 set Xk =

span{e1,e2, . . . ,ek}.
(B1) J satisfies the Palais–Smale condition on [0,1]×X ;

(B2) For any b > 0 there exists a positive constant C =C(b)> 0 such that∣∣∣∣ ∂J
∂θ

(θ ,u)
∣∣∣∣≤C(1+ ‖J′θ(u)‖X)(1+‖u‖K) ,

for all (θ ,u) ∈ [0,1]×X satisfying |Jθ (u)| ≤ b.

Assume that J is even and J(0) = 0;

(B3) There exist two flows ηi : [0,1]×R→ R such that ηi(θ , ·) are Lipschitz

continuous for all θ ∈ [0,1] and

η1(θ ,Jθ (u))≤ ∂J
∂θ

(θ ,u)≤ η2(θ ,Jθ (u))

at each critical point u of Jθ .

(B4) J is even and for any finite dimensional subspace W of X we have

lim
u∈W

‖u‖X→∞
sup
θ∈[0,1]

Jθ (u) =−∞.

Denote by ψi : [0,1]×X → X the solutions of the problem⎧⎨
⎩
∂ψi

∂θ
(θ ,s) = ηi(θ ,ψi(θ ,s)) ,

ψi(0,s) = s.

Remark that ψi(θ , ·) are continuous, nondecreasing and ψ1 ≤ ψ2. Define

η̄i(s) = sup
θ∈[0,1]

ηi(θ ,s).

Let

C = {ζ ∈C(X ,X) : ζ is odd and ζ (u) = u if ‖u‖X ≥ R} ,

and
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ck = inf
ζ∈C

sup
u∈Xk

J0(ζ (u)).

The main result of this section is due to Bolle [22].

Theorem 1.16 (see [22]) Assume that the sequence{
ck+1− ck

η̄1(ck+1)+ η̄2(ck)+1

}
is unbounded.

Then, the functional J1 admits a sequence of critical values {dk} such that

ψ2(1,ck)< ψ1(1,ck+1)≤ dk for all k ≥ 1.

1.4 Degree Theory

1.4.1 Brouwer Degree

We start by recalling some basic facts about Brouwer degree.

Definition 1.17 Let Ω be an open set in R
N, N ≥ 1, and F ∈C1(Ω ;RN).

(i) We say that x0 ∈Ω is a regular point if the Jacobian matrix JF(x0) = (∂Fi/∂x j)

has rank N. If x0 is not a regular point, we say that x0 is a critical point of F.

(ii) We say that y0 ∈ R
N is a regular value of F if the preimage F−1(y0) does not

contain any critical point; otherwise we say that y0 is a critical value.

A first characterization of the set of critical values is given by the following result.

Theorem 1.18 (Sard Lemma) Let Ω ⊂R
N be a bounded open set, F ∈C2(Ω ;RN).

Then the set of critical values of F has zero Lebesgue measure.

Definition 1.19 Let Ω ⊂ R
N be a bounded open set, F ∈ C2(Ω ;RN), p ∈ R

N \
F(∂Ω).

(i) If p is a regular value of F then

deg(F,Ω , p) = ∑
x∈F−1(p)

sign(detJF(x)).

(ii) If p is a critical value of F then

deg(F,Ω , p) = deg(F,Ω , p1) ,
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where p1 is a regular value of F such that ‖p− p1‖< dist(p,F(∂Ω)).

It can be proved that deg(F,Ω , p) is independent of the choice of p1.

Definition 1.20 Let Ω ⊂ R
N be a bounded open set and F ∈ C(Ω ;RN), p ∈ R

N \
F(∂Ω). The Brouwer degree of F in Ω at point p is defined as

deg(F,Ω , p) = deg(G,Ω , p) ,

where g ∈C2(Ω ;RN) is an arbitrary function such that ‖F−G‖L∞ < dist(p,∂Ω).

It can be proved that deg(F,Ω , p) is independent of the choice of G.

Some basic properties of Brouwer degree theory are stated below.

Theorem 1.21 Let Ω ⊂ R
N be a bounded open set.

(i) (Normality)

deg(F,Ω , p) =

{
1 p ∈Ω ,

0 p �∈Ω .

(ii) (Domain Additivity) Let F ∈ C(Ω ;RN). If Ω1, Ω2 are two open subsets of Ω
with Ω1∩Ω2 = /0 and p �∈ F(Ω \ (Ω1∪Ω2)) then

deg(F,Ω , p) = deg(F,Ω1, p)+ deg(F,Ω2, p).

(iii) (Invariance of Homotopy) Let H : Ω × [0,1]→ R
N be a continuous mapping.

Assume that p : [0,1]→ R
N satisfies p(t) �= H(x, t) for all (x, t) ∈ ∂Ω × [0,1].

Then deg(H(·, t),Ω , p(t)) is independent of t.

1.4.2 Leray–Schauder Degree

Let X be a Banach space and let Ω be a bounded open set in X . If T : Ω → X is

a compact operator, then there exists a sequence of finite rank operators {Tε} such

that ‖T −Tε‖→ 0 as ε→ ∞.

Let now p∈X \F(∂Ω). If 0< ε < dist(p,∂Ω), there exists a finite rank operator

Tε such that ‖T −Tε‖< ε . Letting Fε = I−Tε , then p �∈ Fε(∂Ω) so that considering

Xε = Tε(Ω ) it follows that

Fε
∣∣
Xε∩Ω : Xε ∩Ω → Xε ,
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the Brouwer degree of Fε on Xε ∩Ω at point p is well defined.

Definition 1.22 (Leray–Schauder Degree) Let F = I−T where T is a compact op-

erator. The Leray–Schauder degree of F in Ω at point p ∈ X \F(∂Ω) is defined

as

deg(F,Ω , p) = deg(Fε ,Xε ∩Ω , p).

It can be proved that deg(F,Ω , p) is independent of the choice of ε . As a conse-

quence, the results in Theorem 1.21 (i)–(ii) concerning Brouwer degree of maps

in finite dimensional space transfer to Leray–Schauder degree for F = I − T by

applying these results to the finite dimensional approximation Fε . As regards the in-

variance to the homotopy, we state here the counterpart result for Theorem 1.21(iii).

Theorem 1.23 (Invariance to Homotopy) Let H : Ω × [0,1]→ R
N be a compact

operator and let p : [0,1]→ X be a continuous function such that

p(t) �= x−H(x, t) for all (x, t) ∈ ∂Ω × [0,1].

Then deg(H(·, t),Ω , p(t)) is independent of t.

1.4.3 Leray–Schauder Degree for Isolated Solutions

As before, let Ω be a bounded open set of a Banach space and F :Ω → X such that

0 �∈ F(∂Ω) and T = I−F is compact. We assume that x0 ∈ Ω is an isolated solu-

tion of F(x) = 0 and that F ′(x0) = I−T ′(x0) is invertible. By the implicit function

theorem, there exists a ball Br(x0)⊂Ω such that F(x) �= 0 for all x ∈ Br(x0), x �= x0.

Definition 1.24 The index of F at x0 is given by

index(F,x0) = deg(F,Br(x0),0).

It can be shown that index(F,x0) is independent of r.

Theorem 1.25 Under the above conditions,

index(F,x0) = (−1)β , β = ∑
λ∈σ(T ′(x0))

λ>1

nλ ,

where
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nλ = dim
[ ⋃

p≥1

Ker(λ I−T ′(x0))
p
]
.

Proof. Without loss of generality we may assume x0 = 0. For 0≤ t ≤ 1 and x ∈Ω
let

H(x, t) =

⎧⎨
⎩x− 1

t
T (tx) 0 < t ≤ 1 ,

x−T ′(0)x t = 0 .

Then, by the invariance of the compact homotopy we have

index(F,x0) = deg(F,Br,0) = deg(H(1, ·),Br,0)

= deg(H(1, ·),Br,0) = deg(I−T ′(0),Br,0).

We next decompose X = X1
⊕

X2 where

X1 = span
{ ⋃
λ∈σ(T ′(x0))

λ>1

⋃
p≥1

Ker(λ I−T ′(x0))
p
}
.

Then

deg(I−T ′(0),Br,0)= deg((I−T ′(0))
∣∣
X1
,Br∩X1,0)·deg((I−T ′(0))

∣∣
X2
,Br∩X2,0).

Further, if Γ (t, ·) = I− tT ′(0), 0≤ t ≤ 1, then

0 �∈ Γ (x, t) for all (x, t) ∈ [0,1]× ∂ (Br∩X2)

so

deg((I−T ′(0))
∣∣
X2
,Br ∩X2,0) = deg(Γ (0, ·)∣∣X2

,Br ∩X2,0) = 1.

Thus, from the above equalities we find

deg(I−T ′(0),Br,0) = deg((I−T ′(0))
∣∣
X1
,Br ∩X1,0)

= sgn
(
det(I−T ′(0))

)
= (−1)β .

This finishes the proof. �



Chapter 2
Liouville Type Theorems for Elliptic Operators
in Divergence Form

There is no subject so old that
something new cannot be said about it.

Fyodor Dostoyevsky (1821–1881)

2.1 Introduction

The celebrated Liouville theorem in complex analysis which asserts that any

bounded holomorphic function on the entire complex plane has to be constant,

has been extended to various areas of analysis. A first well-known result directly

related to the Liouville theorem is that any bounded harmonic function defined in

R
N , N ≥ 1, is constant. The interested reader may find a valuable overview in the

recent work [70].

In this chapter (see [90]) we are concerned with the existence of positive classical

solutions to the following elliptic inequality

div[A(|∇u|)∇u]≥ ρ(|x|) f (u) in R
N ,N ≥ 1. (2.1)

Any solution of (2.1) is called a positive entire solution. Moreover, if u is an entire

solution with u(x)→ ∞ as |x| → ∞, then u is called a positive entire large solution.

The model case A≡ 1 has been largely investigated and corresponds to the semi-

linear elliptic inequality Δu≥ ρ(|x|) f (u) in R
N .

If A(t) = t p−2, p > 1 then (2.1) corresponds to the p-Laplace type inequality

Δpu := div(|∇u|p−2∇u)≥ p(|x|) f (u) in R
N .

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 2, c© Springer-Verlag Berlin Heidelberg 2012
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Another important case that will be considered in this chapter is A(t) = (1+ t2)−1/2

that corresponds to the mean curvature inequality

div

(
∇u√

1+ |∇u|2

)
≥ ρ(|x|) f (u) in R

N .

Throughout this chapter we assume that A ∈C(0,∞) is positive and

(A1) the mapping R � t 	→ tA(|t|) is of class C(R)∩C1(0,∞)
and [tA(t)]′ > 0 for all t > 0.

Assume that f is a C[0,∞) nondecreasing function satisfying f (t)> 0 for all t > 0

and f (0) = 0. The function ρ is continuous and positive on [0,∞).

Theorem 2.1 If (2.1) has a positive entire solution, then there exists a solution v of

the equation

[rN−1A(|v′|)v′]′ = rN−1ρ(r) f (v), 0 < r < ∞, (2.2)

such that v′(0) = 0.

Proof. Let U be a positive solution of (2.1) and assume that (2.2) has no solutions.

Fix 0 < a <U(0) and let v be a positive solution of

[rN−1A(|v′|)v′]′ = rN−1ρ(r) f (v), v(0) = a ,v′(0) = 0 ,

defined in a maximal interval [0,R), R < ∞. It is easy to see that v′ > 0 on (0,R) so

either v(R−) = ∞ or v′(R−) = ∞. We shall discuss separately these two cases.

Case 1. v(R−) = ∞. Then one can find 0 < R1 < R such that

v(R1)≥max
∂BR1

U. (2.3)

Then, by Theorem 1.4 we find v≥U in BR1 which contradicts v(0) = a <U(0).

Case 2. v′(R−) = ∞. If there exists 0 < R1 < R such that (2.3) holds, by the same

arguments as above we reach a contradiction. Assume next that

v(r)< max
Br

U for all 0≤ r < R.

Using the fact that v′(R−) = ∞, one can chose 0 < R1 < R such that

∂v
∂ν

(R1)> max
∂BR1

∂U
∂ν

. (2.4)
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Define

δ := max
∂BR1

(U − v)> 0

and let w= v+δ . Then, w≥U on ∂BR1 and there exists x∗ ∈ ∂BR1 such that w(x∗) =
U(x∗). Using this fact and (2.4) we can find 0 < λ < 1 such that

w(λx∗)<U(λx∗). (2.5)

On the other hand, by Theorem 1.4 we find w≥U in BR1 which contradicts (2.5).

Therefore, (2.2) has a positive solution u with u′(0) = 0. The proof of Theorem

2.1 is now complete. �

2.2 Some Related ODE Problems

In this section we are concerned with the ODE (2.2) in a slightly more general form

which reads as:

[rαA(|u′|)u′]′ = rαρ(r) f (u), r > 0, u(0)> 0, u′(0) = 0, (2.6)

where α > 0 and A satisfies (A1). We assume that Γ (r) := r−α
∫ r

0 sαρ(s)ds satisfies

(g1) Γ (r)→ ∞ as r→ ∞;

or

(g2) g′(r) ≥M > 0 for all r > 0.

Obviously, (g2) implies (g1).

Remark 2.1. (i) Examples of functions ρ that verify (g1) are

(i1) ρ(r) = ra(1+ r2)b, a+ 2b>−1; (i2) ρ(r) = er; (i3) ρ(r) = ln(2+ r).

(ii) Condition (g2) is fulfilled for (ii1) ρ(r) = rγ , γ ≥ 0; (ii2) ρ(r) = er.

Our first result concerns the nonexistence of the solution to (2.6) in the case

where lim
t→∞ tA(t)< ∞.

Theorem 2.2 Assume that A satisfies (A1), lim
t→∞ tA(t) < ∞ and ρ satisfies (g1).

Then (2.6) has no positive solutions.
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Proof. Suppose by contradiction that there exists a solution u of (2.6). Then

[A(|u′|)u′]′+ α
r

A(|u′|)u′ = ρ(r) f (u(r)), for all r > 0 (2.7)

and

A(|u′(r)|)u′(r) = r−α
∫ r

0
sαρ(s) f (u(s))ds, for all r > 0. (2.8)

We deduce that A(|u′(r)|)u′(r) > 0 for r > 0 which implies u′(r) > 0. Since f is

nondecreasing it follows that

A(u′(r))u′(r) ≤ Γ (r) f (u(r)), for all r > 0. (2.9)

Now (2.7) and (2.9) yield

[A(u′)u′]′(r)≥
(
ρ(r)− α

r
Γ (r)

)
f (u(r)), for all r > 0

that is

[A(u′)u′]′(r)≥ Γ ′(r) f (u(r)), for all r > 0. (2.10)

Since u(0)> 0 and f ,u are nondecreasing functions, from (2.7) we derive

A(u′(r))u′(r)≥ Γ (r) f (u(0)), for all r > 0. (2.11)

On the other hand, lim
t→∞ tA(t)< ∞ which implies that A(u′(r))u′(r) is bounded on

[0,∞). This fact and the above inequality lead to a contradiction since Γ (r)→ ∞ as

r→ ∞ and f (u(0))> 0. The proof of Theorem 2.2 is now complete. �

Next we consider the case where

(A2) lim
t→∞

A(t)
tm−2 = A0 ∈ (0,∞), m > 1.

Since m > 1, condition (A2) leads to lim
t→∞ tA(t) = ∞.

DefineΨ : [0,∞)→ [0,∞) by

Ψ (t) = t2A(t)−
∫ t

0
sA(s)ds , t > 0.

From (A1) it follows that Ψ is a continuous strictly increasing function with

Ψ(0) = 0.

From (A2) and l’Hospital’s rule we deduce that
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lim
t→∞

Ψ(t)
tm =

m− 1
m

A0 ∈ (0,∞). (2.12)

Theorem 2.3 Assume (A1), (A2) and (g2) hold. If

∫ ∞(∫ t
f (s)ds

)−1/m

dt < ∞, (2.13)

then (2.6) has no positive solutions.

Proof. Assume by contradiction that (2.6) has a positive solution u. From (2.11) we

get u′(r)→ ∞ as r→ ∞ and so u(r)→ ∞ as r→ ∞.

Multiplying (2.11) by u′ > 0, an integration over [0,r] and a changing of variable

gives

Ψ(u′(r)) ≥
∫ r

0
Γ ′(t) f (u(t))u′(t)dt, for all r > 0.

Using (g2) we deduce

Ψ(u′(r))≥M
∫ u(r)

u(0)
f (s)ds, for all r > 0.

Now, (2.12) implies that there exists r0 > 0 and a positive constant C > 0 such that

u′(r)≥C

(∫ u(r)

u(0)
f (u(s))ds

)1/m

, for all r > r0.

Hence (∫ u(r)

u(0)
f (u(s))ds

)−1/m

u′(r)≥C, for all r > r0.

An integration over [r0,r] yields

∫ u(r)

u(r0)

(∫ t

u(0)
f (u(s))ds

)−1/m

dt ≥C(r− r0), for all r > r0.

Letting r→ ∞ in the above relation we find

∫ ∞

u(r0)

(∫ t

u(0)
f (u(s))ds

)−1/m

dt = ∞.

This contradicts our assumption (2.13) and completes the proof. �

An existence result is as follows.

Theorem 2.4 Assume (A1) and (A2) hold. If
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∫ ∞(∫ t
f (s)ds

)−1/m

dt = ∞, (2.14)

then (2.6) has at least one positive solutions.

Proof. The existence of a solution u of (2.6) in a certain interval [0,R) follows by

the classical arguments of ODEs. Assume by contradiction that the maximal interval

of existence of u is a finite interval [0,R), R < ∞.

We first claim that u(R−0) := limr↗R u(r) =∞. Indeed, since u′ ≥ 0 on [0,R) it

follows that u(R−0) exists in (0,∞]. From (2.7) we deduce that u′(R−0) exists as

a finite value. Then, by standard arguments for initial value problems it follows that

u can be extended as a solution on an interval [0,R+ ε),ε > 0 which contradicts

the maximality of R. Hence u(R− 0) = ∞.

Using (2.7) and the fact that A(u′)u′ ≥ 0 on [0,R) we obtain

[A(u′)u′]′(r)≤ Γ (r) f (u(r)), for all 0 < r < R.

Multiplying the above inequality by u′ ≥ 0 and integrating over [0,r] we have

Ψ(u′(r))≤
∫ r

0
Γ (s) f (u(s))u′(s)ds≤C0

∫ u(r)

u(0)
f (s)ds

for all 0 < r < R, where C0 = max
r∈[0,R]

Γ (r) > 0. According to (2.12) there exists

R0 ∈ (0,R) such that

u′(r)≤C1

(∫ u(r)

u(0)
f (s)ds

)1/m

, for all r ∈ (R0,R),

where C1 > 0 is a constant independent of f andu. Hence

(∫ u(r)

u(0)
f (s)ds

)−1/m

u′(r)≤C1, for all r ∈ (R0,R).

An integration over [R0,r],r < R, and a change of variable lead to

∫ u(r)

u(R0)

(∫ t

u(0)
f (s)ds

)−1/m

dt ≤C1(r−R0), for all r > r0.

Now, letting r↗ R we find

∫ ∞

u(R0)

(∫ t

u(0)
f (u(s))ds

)−1/m

dt ≤C1(R−R0)< ∞,
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which contradicts our assumption (2.14). We conclude that there exists a solution of

(2.6) and the proof is now complete. �

Our final result in this section gives an estimate of the growth of a solution of

(2.6) in the case where f is bounded. More precisely we prove

Theorem 2.5 Assume (A1), (A2), (g1) hold and f is bounded. If u is a positive

solution of (2.6) then

lim
r→∞

u(r)∫ r

0
g1/(m−1)(r)

= lim
r→∞

(
1

A0
f (r)

)1/(m−1)

. (2.15)

Proof. Applying l’Hospital’s rule we have

lim
r→∞

u(r)∫ r

0
g1/(m−1)(s)ds

= lim
r→∞

u′(r)
g1/(m−1)(r)

. (2.16)

From (A2) we find

lim
r→∞

u′m−1(r)
Γ (r)

= lim
r→∞

u′m−1(r)
A(u′(r))u′(r)

· A(u′(r))u′(r)
Γ (r)

=
1

A0
lim
r→∞

A(u′(r))u′(r)
Γ (r)

.

(2.17)

By (2.8) and l’Hospital’s rule we deduce

lim
r→∞

A(u′(r))u′(r)
Γ (r)

= lim
r→∞

∫ r

0
sαρ(s) f (u(s))ds∫ r

0
sαρ(s)ds

= lim
r→∞ f (u(r)) = lim

r→∞ f (r).

(2.18)

Now, (2.16), (2.17), (2.18) lead to

lim
r→∞

u(r)∫ r

0
g1/(m−1)(r)

= lim
r→∞

(
1

A0
f (r)

)1/(m−1)

.

This completes the proof. �
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2.3 Main Results

We have seen (in Theorem 2.1) that (2.2) has a solution whenever the N-dimensional

inequality (2.1) has an entire positive solution. Using this fact and the results in the

previous section we obtain some Liouville type theorems regarding the nonexistence

of positive solutions to (2.1). In the sequel, the corresponding functionΓ (r) to which

conditions (g1) or (g2) apply is given by

Γ (r) := r1−N
∫ r

0
sN−1ρ(s)ds , r > 0.

Theorem 2.6 Assume that A satisfies (A1), lim
t→∞ tA(t) < ∞ and ρ satisfies (g1).

Then (2.1) has no positive entire solutions.

Theorem 2.7 Assume that (A1), (A2) and (g2) hold. If

∫ ∞(∫ t
f (s)ds

)−1/m

dt < ∞ ,

then (2.1) has no positive entire solutions.

The proofs follow by applying Theorems 2.1, 2.2 and 2.3. Further, using the exis-

tence result stated in Theorem 2.4 we have:

Theorem 2.8 Assume (A1), (A2) and (g1) hold. If

∫ ∞(∫ t
f (s)ds

)−1/m

dt = ∞ ,

then the inequality (2.1) has infinitely many positive entire large solutions.

Corollary 2.9 Assume that (A1), (A2) and (g2) hold. Then (2.1) has a positive

entire (large) solution if and only if

∫ ∞(∫ t
f (s)ds

)−1/m

dt = ∞.

Examples.(i) If ρ satisfies (g1), then the inequality

div

(
∇u√

1+ |∇u|2

)
≥ ρ(|x|) f (u), x ∈ R

N
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has no positive entire solutions.

(ii) If ρ satisfies (g2) then the inequality

div

(
∇u

(1+ |∇u|2)α
)
≥ ρ(|x|)eu, x ∈ R

N , α <
1
2

has no positive entire solutions and the inequality

div

(
∇u

(1+ |∇u|2)α
)
≥ ρ(|x|)uγ , x ∈ R

N , α <
1
2
, γ ≥ 0

has positive entire (large) solutions if and only if γ ≤ 1− 2α .

(iii) If ρ satisfies (g2) then the inequality

div(|∇u|m−2∇u)≥ ρ(|x|)uγ , x ∈R
N , m > 1, γ ≥ 0

has positive entire (large) solutions if and only if γ ≤ m− 1.

(iv) If ρ satisfies (g2) then the inequality

div(|∇u|m−2∇u)≥ ρ(|x|) lnγ (1+ u), x ∈ R
N , m > 1, γ ≥ 0

has positive entire (large) solutions.



Chapter 3
Blow-Up Boundary Solutions of the Logistic
Equation

All intelligent thoughts have already
been thought; what is necessary is only
to try to think them again.

Johann Wolfgang von Goethe
(1749–1832)

In this chapter we are concerned with singular problems of the type⎧⎨
⎩
Δu =Φ(x,u,∇u) in Ω ,
u > 0 in Ω ,
u =+∞ on ∂Ω ,

(3.1)

where Ω is an open set in the Euclidean space with smooth boundary ∂Ω . The

functionΦ is assumed to be positive and fulfilling a suitable growth assumption.

A solution of problem (3.1) is called a blow-up boundary solution or a large so-

lution. The study of large solutions was initiated in 1916 by Bieberbach [18] for

the particular case Φ(x,u,∇u) = exp(u) and N = 2. He showed that there exists

a unique solution of (3.1) such that u(x)− log(d(x)−2) is bounded as x → ∂Ω ,

where d(x) := dist(x,∂Ω). Problems of this type arise in Riemannian geometry:

if a Riemannian metric of the form |ds|2 = exp(2u(x))|dx|2 has constant Gaus-

sian curvature−c2 then Δu = c2 exp(2u). Motivated by a problem in mathematical

physics, Rademacher [169] continued the study of Bieberbach on smooth bounded

domains in R
3. Lazer and McKenna [131] extended the results of Bieberbach and

Rademacher for bounded domains in R
N satisfying a uniform exterior sphere con-

dition and for nonlinearities Φ(x,u,∇u) = b(x)exp(u), where b is continuous and

strictly positive on Ω . Let Φ(x,u,∇u) = f (u) where f ∈ C1[0,∞), f ′(s) ≥ 0 for

s ≥ 0, f (0) = 0 and f (s) > 0 for s > 0. In this case, Keller [115] and Osserman

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 3, c© Springer-Verlag Berlin Heidelberg 2012
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[155] proved that large solutions of (3.1) exist if and only if∫ ∞

1

dt√
F(t)

< ∞, where F(t) =
∫ t

0
f (s)ds.

In a celebrated paper, Loewner and Nirenberg [138] linked the uniqueness of the

blow-up solution to the growth rate at the boundary. Motivated by certain geometric

problems, they established the uniqueness for the case f (u) = u(N+2)/(N−2), N > 2.

Many results in this chapter are concerned with the case Φ(x,u,∇u) = a(x) f (u),

where f is a nondecreasing function and a(x) is a nonnegative potential. The case

a > 0 inΩ corresponds to a logistic behavior while the framework corresponding to

a≡ 0 in Ω is known as the Malthusian model. The models we study in this chapter

are often mixtures of the logistic and Malthusian models.

3.1 Singular Solutions of the Logistic Equation

Consider the semilinear elliptic equation

Δu+ au = b(x) f (u) in Ω , (3.2)

where Ω is a smooth bounded domain in R
N , N ≥ 3. Let a be a real parameter and

b ∈C0,μ(Ω ), 0 < μ < 1, such that b≥ 0 and b �≡ 0 in Ω . Set

Ω0 = int{x ∈Ω : b(x) = 0}

and suppose, throughout, that Ω 0 ⊂ Ω and b > 0 on Ω \Ω 0. Assume that f ∈
C1[0,∞) satisfies

(A1) f ≥ 0 and f (u)/u is increasing on (0,∞).

Following Alama and Tarantello [4], define by H∞ the Dirichlet Laplacian on

Ω0 as the unique self-adjoint operator associated to the quadratic form ψ(u) =∫
Ω |∇u|2 dx with form domain

H1
D(Ω0) = {u ∈ H1

0 (Ω) : u(x) = 0 for a.e. x ∈Ω \Ω0}.
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If ∂Ω0 satisfies the exterior cone condition then, according to [4], H1
D(Ω0) coincides

with H1
0 (Ω0) and H∞ is the classical Laplace operator with Dirichlet condition on

∂Ω0.

Let λ∞,1 be the first Dirichlet eigenvalue of H∞ in Ω0. We understand that λ∞,1 =
∞ if Ω0 = /0.

Set μ0 := limu↘0
f (u)

u , μ∞ := limu→∞ f (u)
u , and denote by λ1(μ0) (resp. λ1(μ∞))

the first eigenvalue of the operator Hμ0 = −Δ + μ0b (resp. Hμ∞ = −Δ + μ∞b) in

H1
0 (Ω). Recall that λ1(+∞) = λ∞,1.

Alama and Tarantello [4] proved that problem (3.2) subject to the Dirichlet

boundary condition

u = 0 on ∂Ω (3.3)

has a positive solution ua if and only if a ∈ (λ1(μ0),λ1(μ∞)). Moreover, ua is the

unique positive solution for (3.2)+(3.3) (see [4, Theorem A (bis)]). We shall refer to

the combination of (3.2)+(3.3) as problem (Ea).

Our first aim in this section is to give a corresponding necessary and sufficient

condition, but for the existence of large (or explosive) solutions of (3.2). An elemen-

tary argument based on the maximum principle shows that if such a solution exists,

then it is positive even if f satisfies a weaker condition than (A1), namely

(A1)
′ f (0) = 0, f ′ ≥ 0 and f > 0 on (0,∞).

We recall that Keller [115] and Osserman [155] supplied a necessary and suffi-

cient condition on f for the existence of large solutions to (3.2) when a ≡ 0, b ≡ 1

and f is assumed to fulfill (A1)
′. More precisely, f must satisfy the Keller–Osserman

condition (see [115, 155]),

(A2)

∫ ∞

1

dt√
F(t)

< ∞ , where F(t) =
∫ t

0
f (s)ds.

Typical examples of nonlinearities satisfying (A1) and (A2) are:

(i) f (u) = eu−1; (ii) f (u) = up, p > 1; (iii) f (u) = u[ln(u+ 1)]p, p > 2.

Our first result gives the maximal interval for the parameter a that ensures the

existence of large solutions to problem (3.2). More precisely, we prove

Theorem 3.1 Assume that f satisfies conditions (A1) and (A2). Then problem (3.2)

has a large solution if and only if a ∈ (−∞,λ∞,1).
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We point out that our framework in the above result includes the case when b

vanishes at some points on ∂Ω , or even if b ≡ 0 on ∂Ω . This later case includes

the “competition” 0 ·∞ on ∂Ω . We also point out that, under our hypotheses, μ∞ :=

limu→∞ f (u)/u= limu→∞ f ′(u)=∞. Indeed, by l’Hospital’s rule, limu→∞F(u)/u2 =

μ∞/2. But, by (A2), we deduce that μ∞ = ∞. Then, by (A1) we find that f ′(u) ≥
f (u)/u for any u > 0, which shows that limu→∞ f ′(u) = ∞.

Before giving the proof of Theorem 3.1 we claim that assuming (A1), then

problem (3.2) can have large solutions only if f satisfies the Keller–Osserman

condition (A2). Indeed, suppose that problem (3.2) has a large solution u∞. Set

f̃ (u) = |a|u+‖b‖∞ f (u) for u ≥ 0. Notice that f̃ ∈C1[0,∞) satisfies (A1)
′. For any

n≥ 1, consider the problem ⎧⎨
⎩
Δu = f̃ (u) in Ω ,
u = n on ∂Ω ,
u≥ 0 in Ω .

A standard argument based on the maximum principle shows that this problem has a

unique solution, say un, which, moreover, is positive in Ω . Applying again the max-

imum principle we deduce that 0 < un ≤ un+1 ≤ u∞, in Ω , for all n ≥ 1. Thus, for

every x ∈Ω , we can define ū(x) = limn→∞ un(x). Moreover, since (un) is uniformly

bounded on every compact subset of Ω , standard elliptic regularity arguments show

that ū is a positive large solution of the problem Δu = f̃ (u). It follows that f̃ satis-

fies the Keller–Osserman condition (A2). Then, by (A1), μ∞ := limu→∞ f (u)/u > 0

which yields limu→∞ f̃ (u)/ f (u) = |a|/μ∞+‖b‖∞<∞. Consequently, our claim fol-

lows.

Proof of Theorem 3.1. A. Necessary condition. Let u∞ be a large solution of prob-

lem (3.2). Then, by the maximum principle, u∞ is positive. Suppose λ∞,1 is finite.

Arguing by contradiction, let us assume a≥ λ∞,1. Set λ ∈ (λ1(μ0),λ∞,1) and denote

by uλ the unique positive solution of problem (Ea) with a = λ . We have⎧⎨
⎩
Δ(Mu∞)+λ∞,1(Mu∞)≤ b(x) f (Mu∞) in Ω ,
Mu∞ = ∞ on ∂Ω ,
Mu∞ ≥ uλ in Ω ,

where M := max
{

maxΩ uλ/minΩ u∞; 1
}

. By the sub-super solution method we

conclude that problem (Ea) with a = λ∞,1 has at least a positive solution (between

uλ and Mu∞). But this is a contradiction. So, necessarily, a ∈ (−∞,λ∞,1).
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B. Sufficient condition. This will be proved with the aid of several results.

Lemma 3.2 Let ω be a smooth bounded domain in R
N. Assume p, q, r are C0,μ -

functions on ω such that r ≥ 0 and p > 0 in ω. Then for any nonnegative function

0 �≡Φ ∈C0,μ(∂ω) the boundary value problem⎧⎨
⎩
Δu+ q(x)u = p(x) f (u)− r(x) in ω ,
u > 0 in ω ,
u =Φ on ∂ω ,

(3.4)

has a unique solution.

We refer to Cı̂rstea and Rădulescu [44, Lemma 3.1] for the proof of the above

result.

Under the assumptions of Lemma 3.2 we obtain the following result which gen-

eralizes [142, Lemma 1.3].

Corollary 3.3 There exists a positive large solution of the problem

Δu+ q(x)u = p(x) f (u)− r(x) in ω . (3.5)

Proof. Set Φ = n and let un be the unique solution of (3.4). By the maximum

principle, un ≤ un+1 ≤ u in ω , where u denotes a large solution of

Δu+ ‖q‖∞u = p0 f (u)− r̄ in ω .

Thus limn→∞ un(x) = u∞(x) exists and is a positive large solution of (3.5). Further-

more, every positive large solution of (3.5) dominates u∞, that is, the solution u∞ is

the minimal large solution. This follows from the definition of u∞ and the maximum

principle. �

Lemma 3.4 If 0 �≡Φ ∈C0,μ(∂Ω) is a nonnegative function and b > 0 on ∂Ω , then

the boundary value problem⎧⎨
⎩
Δu+ au = b(x) f (u) in Ω ,
u > 0 in Ω ,
u =Φ on ∂Ω ,

(3.6)

has a solution if and only if a ∈ (−∞,λ∞,1). Moreover, in this case, the solution is

unique.
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Proof. The first part follows exactly in the same way as the proof of Theorem 3.1

(necessary condition).

For the sufficient condition, fix a < λ∞,1 and let λ∞,1 > λ∗ > max{a,λ1(μ0)}.
Let u∗ be the unique positive solution of (Ea) with a = λ∗.

Let Ω i (i = 1,2) be subdomains of Ω such that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω and

Ω \Ω1 is smooth.

We define u+ ∈C2(Ω) as a positive function in Ω such that u+ ≡ u∞ on Ω \Ω2

and u+ ≡ u∗ on Ω1. Here u∞ denotes a positive large solution of (3.5) for p(x) =

b(x), r(x) = 0, q(x) = a and ω =Ω \Ω1. So, since b0 := infΩ2\Ω1
b is positive, it is

easy to check that if C > 0 is large enough then vΦ =Cu+ satisfies⎧⎪⎨
⎪⎩
ΔvΦ + avΦ ≤ b(x) f (vΦ) in Ω ,
vΦ = ∞ on ∂Ω ,
vΦ ≥max

∂Ω
Φ in Ω .

Let vΦ be the unique classical solution of the problem⎧⎨
⎩
ΔvΦ = |a|vΦ + ‖b‖∞ f (vΦ) in Ω ,
vΦ > 0 in Ω ,
vΦ =Φ on ∂Ω .

It is clear that vΦ is a positive subsolution of (3.6) and vΦ ≤ max∂Ω Φ ≤ vΦ in Ω .

Therefore, by the sub-super solution method, problem (3.6) has at least a solution

vΦ between vΦ and vΦ . Next, the uniqueness of the solution to (3.6) can be obtained

by using essentially the same technique as in [30, Theorem 1] or [26, Appendix

II]. �

Proof of Theorem 3.1 continued. Fix a ∈ (−∞,λ∞,1). Two cases may occur:

Case 1: b > 0 on ∂Ω . Denote by vn the unique solution of (3.6) withΦ ≡ n. For

Φ ≡ 1, set v := vΦ and V := vΦ , where vΦ and vΦ are defined in the proof of Lemma

3.4. The sub and supersolutions method combined with the uniqueness of the solu-

tion of (3.6) shows that v≤ vn≤ vn+1≤V inΩ . Hence v∞(x) := limn→∞ vn(x) exists

and is a positive large solution of (3.2).

Case 2: b ≥ 0 on ∂Ω . Let zn (n ≥ 1) be the unique solution of (3.4) for

p≡ b+1/n, r≡ 0, q≡ a,Φ ≡ n andω =Ω . By the maximum principle, (zn) is non-

decreasing. Moreover, {zn} is uniformly bounded on every compact subdomain of

Ω . Indeed, if K ⊂Ω is an arbitrary compact set, then d := dist(K,∂Ω)> 0. Choose
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δ ∈ (0,d) small enough so that Ω 0 ⊂Cδ , where Cδ = {x ∈ Ω : dist (x,∂Ω) > δ}.
Since b > 0 on ∂Cδ , Case 1 allows us to define z+ as a positive large solution of

(3.2) forΩ =Cδ . A standard argument based on the maximum principle implies that

zn ≤ z+ in Cδ , for all n≥ 1. So, {zn} is uniformly bounded on K. By the monotonic-

ity of {zn}, we conclude that zn → z in L∞loc(Ω). Finally, standard elliptic regularity

arguments lead to zn → z in C2,μ(Ω). This completes the proof of Theorem 3.1. ��

Denote by D and R the boundary operators

Du := u and Ru := ∂νu+β (x)u,

where ν is the unit outward normal to ∂Ω , and β ∈ C1,μ(∂Ω) is nonnegative.

Hence, D is the Dirichlet boundary operator and R is either the Neumann boundary

operator, if β ≡ 0, or the Robin boundary operator, if β �≡ 0. Throughout this work,

B can define any of these boundary operators.

Note that the Robin condition R = 0 applies essentially to heat flow problems

in a body with constant temperature in the surrounding medium. More generally,

if α and β are smooth functions on ∂Ω such that α,β ≥ 0, α + β > 0, then the

boundary condition Bu = α∂νu+ βu = 0 represents the exchange of heat at the

surface of the reactant by Newtonian cooling. Moreover, the boundary condition

Bu = 0 is called an isothermal (Dirichlet) condition if α ≡ 0, and it becomes an

adiabatic (Neumann) condition if β ≡ 0. An intuitive meaning of the condition α+

β > 0 on ∂Ω is that, for the diffusion process described by problem (3.2), either the

reflection phenomenon or the absorption phenomenon may occur at each point of

the boundary.

We are now concerned with the following boundary blow-up problem⎧⎨
⎩
Δu+ au = b(x) f (u) in Ω \Ω0 ,
Bu = 0 on ∂Ω ,
u = ∞ on ∂Ω0 ,

(3.7)

where b > 0 on ∂Ω , while Ω 0 is nonempty, connected and with smooth boundary.

Here, u=∞ on ∂Ω0 means that u(x)→∞ as x∈Ω \Ω 0 and d(x) := dist(x,Ω0)→ 0.

The question of existence and uniqueness of positive solutions for problem (3.7)

in the case of pure superlinear power in the nonlinearity is treated by Du and Huang

[64]. Our next results extend their previous paper to the case of much more general

nonlinearities of Keller–Osserman type.
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In the following, by (Ã1) we mean that (A1) is fulfilled and there exists

lim
u→∞(F/ f )′ (u) := γ.

Then, γ ≥ 0.

We prove

Theorem 3.5 Let (Ã1) and (A2) hold. Then, for any a ∈ R, problem (3.7) has a

minimal (resp. maximal) positive solution Ua (resp. Ua).

Proof. In proving Theorem 3.5 we rely on an appropriate comparison principle

which allows us to prove that {un} is nondecreasing, where un is the unique positive

solution of problem (3.9) with Φ ≡ n. The minimal positive solution of (3.7) will be

obtained as the limit of the sequence {un}. Note that, since b = 0 on ∂Ω0, the main

difficulty is related to the construction of an upper bound of this sequence which

must fit to our general framework. Next, we deduce the maximal positive solution

of (3.7) as the limit of the nonincreasing sequence {vm}m≥m1 provided m1 is large

so that Ωm1 ⊂⊂ Ω . We denoted by vm the minimal positive solution of (3.7) with

Ω0 replaced by

Ωm := {x ∈Ω : d(x)< 1/m}, m≥ m1. (3.8)

We start with the following auxiliary result (see Cı̂rstea and Rădulescu [44]).

Lemma 3.6 Assume b > 0 on ∂Ω . If (A1) and (A2) hold, then for any positive

function Φ ∈C2,μ(∂Ω0) and a ∈ R the problem⎧⎨
⎩
Δu+ au = b(x) f (u) in Ω \Ω0 ,
Bu = 0 on ∂Ω ,
u =Φ on ∂Ω0 ,

(3.9)

has a unique positive solution.

We now come back to the proof of Theorem 3.5, which will be divided into two

steps:

Step 1: Existence of the minimal positive solution for problem (3.7).

For any n≥ 1, let un be the unique positive solution of problem (3.9) withΦ ≡ n.

By the maximum principle, un(x) increases with n for all x ∈Ω \Ω 0. Moreover, we

prove
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Lemma 3.7 The sequence (un(x))n is bounded from above by some function V (x)

which is uniformly bounded on all compact subsets of Ω \Ω0.

Proof. Let b∗ be a C2-function on Ω \Ω0 such that

0 < b∗(x)≤ b(x) ∀x ∈Ω \Ω0.

For x bounded away from ∂Ω0 it is not a problem to find such a function b∗. For x

satisfying 0 < d(x) < δ with δ > 0 small such that x→ d(x) is a C2-function, we

can take

b∗(x) =
∫ d(x)

0

∫ t

0
[ min
d(z)≥s

b(z)]dsdt.

Let g ∈ G be a function such that (Ag) holds. Since b∗(x)→ 0 as d(x)↘ 0, we

deduce, by (A1), the existence of some δ > 0 such that for all x∈Ω with 0< d(x)<

δ and ξ > 1

b∗(x) f (g(b∗(x))ξ )
g′′(b∗(x))ξ

> sup
Ω\Ω0

|∇b∗|2 + g′(b∗(x))
g′′(b∗(x))

inf
Ω\Ω0

(Δb∗)+a
g(b∗(x))
g′′(b∗(x))

.

Here, δ > 0 is taken sufficiently small so that g′(b∗(x)) < 0 and g′′(b∗(x)) > 0 for

all x with 0 < d(x)< δ .

For n0 ≥ 1 fixed, define V ∗ as follows

(i) V ∗(x) = un0(x)+1 for x ∈Ω and near ∂Ω ;

(ii) V ∗(x) = g(b∗(x)) for x satisfying 0 < d(x)< δ ;

(iii) V ∗ ∈C2(Ω \Ω0) is positive on Ω \Ω 0 .

We show that for ξ > 1 large enough the upper bound of the sequence (un(x))n

can be taken as V (x) = ξV ∗(x). Since

BV (x) = ξBV ∗(x)≥ ξ min{1,β (x)} ≥ 0, for all x ∈ ∂Ω

and

lim
d(x)↘0

[un(x)−V(x)] =−∞< 0,

to conclude that un(x)≤V (x) for all x ∈Ω \Ω0 it is sufficient to show that

−ΔV (x)≥ aV(x)− b(x) f (V (x)), ∀x ∈Ω \Ω0. (3.10)

For x ∈Ω satisfying 0 < d(x)< δ and ξ > 1 we have
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−ΔV (x)− aV(x)+b(x) f (V (x))

=− ξΔg(b∗(x))− aξg(b∗(x))+ b(x) f (g(b∗(x))ξ )

≥ξg′′(b∗)
(
− g′(b∗(x))

g′′(b∗(x))
Δb∗ − |∇b∗|2− a

g(b∗(x))
g′′(b∗(x))

+b∗
f (g(b∗(x))ξ )
g′′(b∗(x))ξ

)
>0.

For x ∈Ω satisfying d(x)≥ δ ,

−ΔV (x)− aV(x)+ b(x) f (V (x)) = ξ
(
−ΔV ∗(x)−aV ∗(x)+b(x)

f (ξV ∗(x))
ξ

)
,

which is positive for ξ sufficiently large. It follows that (3.10) is fulfilled provided

ξ is large enough. This finishes the proof of the lemma. ��
By Lemma 3.7, Ua(x)≡ limn→∞ un(x) exists, for any x ∈Ω \Ω0. Moreover, Ua

is a positive solution of (3.7). Using the maximum principle once more, we find that

any positive solution u of (3.7) satisfies u ≥ un on Ω \Ω 0, for all n ≥ 1. Hence Ua

is the minimal positive solution of (3.7).

Proof of Theorem 3.5 continued.

Step 2: Existence of the maximal positive solution for problem (3.7).

Lemma 3.8 If Ω0 is replaced by Ωm defined in (3.8), then problem (3.7) has a

minimal positive solution provided that (A1) and (A2) are fulfilled.

Proof. The argument used here (more easier, since b > 0 onΩ \Ωm) is similar to

that in Step 1. The only difference which appears in the proof (except the replace-

ment of Ω0 by Ωm) is related to the construction of V ∗(x) for x near ∂Ωm. Here,

we use our Theorem 3.1 which says that, for any a ∈ R, there exists a positive large

solution ua,∞ of problem (3.2) in the domainΩ \Ωm. We define V ∗(x) = ua,∞(x) for

x ∈Ω \Ωm and near ∂Ωm. For ξ > 1 and x ∈Ω \Ωm near ∂Ωm we have

−ΔV (x)− aV(x)+b(x) f (V (x)) =−ξΔV ∗(x)−aξV∗(x)+b(x) f (ξV ∗(x))

= b(x)[ f (ξV ∗(x))− ξ f (V ∗(x))]≥ 0.

This completes the proof. ��

Let vm be the minimal positive solution for the problem considered in the state-

ment of Lemma 3.8. By the maximum principle, vm ≥ vm+1 ≥ u onΩ \Ωm, where u

is any positive solution of (3.7). Hence Ua(x) := limm→∞ vm(x)≥ u(x). A regularity
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and compactness argument shows that Ua is a positive solution of (3.7). Conse-

quently, Ua is the maximal positive solution. This concludes the proof of Theo-

rem 3.5. ��
The next question is whether one can conclude the uniqueness of positive so-

lutions of problem (3.7). We recall first what is already known in this direction.

When f (u) = up, p > 1, Du and Huang [64] proved the uniqueness of the solution

to problem (3.7) and established its behavior near ∂Ω0, under the assumption

lim
d(x)↘0

b(x)
[d(x)]τ

= c for some positive constants τ,c > 0. (3.11)

We shall give a general uniqueness result provided that b and f satisfy the fol-

lowing assumptions:

(B1) lim
d(x)↘0

b(x)
k(d(x))

= c for some constant c > 0, where 0 < k ∈ C1(0,δ0) is

increasing and satisfies

(B2) K(t) =

∫ t
0

√
k(s)ds√
k(t)

∈C1[0,δ0), for some δ0 > 0.

Assume there exist ζ > 0 and t0 ≥ 1 such that

(A3) f (ξ t)≤ ξ 1+ζ f (t), ∀ξ ∈ (0,1), ∀t ≥ t0/ξ ;

(A4) the mapping (0,1] � ξ 	−→ A(ξ ) = limu→∞
f (ξu)
ξ f (u)

is a continuous positive

function.

Our uniqueness result is

Theorem 3.9 Assume the conditions (Ã1) with γ �= 0, (A3), (A4), (B1) and (B2)

hold. Then, for any a ∈ R, problem (3.7) has a unique positive solution Ua. More-

over,

lim
d(x)↘0

Ua(x)
h(d(x))

= ξ0,

where h is defined by
∫ ∞

h(t)

ds√
2F(s)

=
∫ t

0

√
k(s)ds, ∀t ∈ (0,δ0) (3.12)

and ξ0 is the unique positive solution of A(ξ ) =
K′(0)(1−2γ)+2γ

c
.

Remark 1 (a) (A1)+(A3)⇒ (A2). Indeed, limu→∞
f (u)

u1+ζ > 0 since f (t)
t1+ζ is nonde-

creasing for t ≥ t0.
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(b) K′(0)(1−2γ)+ 2γ ∈ (0,1] when (Ã1) with γ �= 0, (A2), (B1) and (B2) hold.

(c) The function (0,∞)� ξ 	−→A(ξ )∈ (0,∞) is bijective when (A3) and (A4) hold

(see Lemma 3.10).

Among the nonlinearities f that satisfy the assumptions of Theorem 3.9 we note:

(i) f (u) = up, p > 1; (ii) f (u) = up ln(u+ 1), p > 1; (iii) f (u) = up arctanu, p > 1.

Proof of Theorem 3.9. By (A4) we deduce that the mapping (0,∞) � ξ 	−→
A(ξ ) = lim

u→∞
f (ξu)
ξ f (u)

is a continuous positive function, since A(1/ξ ) = 1/A(ξ ) for

any ξ ∈ (0,1). Moreover, we claim

Lemma 3.10 The function A : (0,∞)→ (0,∞) is bijective, provided that (A3) and

(A4) are fulfilled.

Proof. By the continuity of A, we see that the surjectivity of A follows if we prove

that limξ↘0 A(ξ ) = 0. To this aim, let ξ ∈ (0,1) be fixed. Using (A3) we find

f (ξu)
ξ f (u)

≤ ξ ζ , ∀u≥ t0
ξ

which yields A(ξ )≤ ξ ζ . Since ξ ∈ (0,1) is arbitrary, it follows that limξ↘0 A(ξ ) =
0.

We now prove that the function ξ 	−→ A(ξ ) is increasing on (0,∞) which con-

cludes our lemma. Let 0 < ξ1 < ξ2 < ∞ be chosen arbitrarily. Using assumption

(A3) once more, we obtain

f (ξ1u) = f

(
ξ1

ξ2
ξ2u

)
≤

(
ξ1

ξ2

)1+ζ
f (ξ2u), ∀u≥ t0

ξ2

ξ1
.

It follows that
f (ξ1u)
ξ1 f (u)

≤
(
ξ1

ξ2

)ζ f (ξ2u)
ξ2 f (u)

, ∀u≥ t0
ξ2

ξ1
.

Passing to the limit as u→ ∞ we find

A(ξ1)≤
(
ξ1

ξ2

)ζ
A(ξ2)< A(ξ2),

which finishes the proof. ��
Proof of Theorem 3.9 continued. Set

Π(ξ ) = lim
d(x)↘0

b(x)
f (h(d(x))ξ )
h′′(d(x))ξ

,
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for any ξ > 0. Using (B1) we find

Π(ξ ) = lim
d(x)↘0

b(x)
k(d(x))

k(d(x)) f (h(d(x)))
h′′(d(x))

f (h(d(x))ξ )
ξ f (h(d(x)))

= c lim
t↘0

k(t) f (h(t))
h′′(t)

lim
u→∞

f (ξu)
ξ f (u)

=
c

K′(0)(1− 2γ)+2γ
A(ξ ).

This and Lemma 3.10 imply that the function Π : (0,∞)→ (0,∞) is bijective. Let

ξ0 be the unique positive solution of Π(ξ ) = 1, that is

A(ξ0) =
K′(0)(1− 2γ)+2γ

c
.

For ε ∈ (0,1/4) arbitrary, we denote ξ1 = Π−1(1− 4ε), respectively ξ2 =

Π−1(1+4ε).
We choose δ > 0 small enough such that

(i) dist(x,∂Ω0) is a C2 function on the set {x ∈Ω : dist(x,∂Ω0)≤ 2δ};
(ii)

∣∣∣∣ h′(s)
h′′(s)

Δd(x)+a
h(s)
h′′(s)

∣∣∣∣< ε and h′′(s)> 0 for all 0 < s,d(x)< 2δ ;

(iii) (Π(ξ2)−ε) h′′(d(x))ξ2

f (h(d(x))ξ2)
≤ b(x)≤ (Π(ξ1)+ε)

h′′(d(x))ξ1

f (h(d(x))ξ1)
if 0< d(x)<

2δ ;

(iv) b(y)< (1+ ε)b(x), for all x,y with 0 < d(y)< d(x)< 2δ .

Let σ ∈ (0,δ ) be arbitrary. We define vσ (x) = h(d(x) +σ)ξ1, for any x with

d(x)+σ < 2δ , respectively vσ (x) = h(d(x)−σ)ξ2 for any x with σ < d(x)< 2δ .

Using (ii), (iv) and the first inequality in (iii), when σ < d(x) < 2δ , we obtain

(since |∇d(x)| ≡ 1)

−Δvσ (x)−avσ (x)+b(x) f (vσ (x))

=ξ2

[
−h′(d(x)−σ)Δd− h′′(d(x)−σ)− ah(d(x)−σ)+ b(x) f (h(d(x)−σ)ξ2)

ξ2

]
=ξ2 h′′(d(x)−σ)

×
[
− h′(d(x)−σ)

h′′(d(x)−σ) Δd(x)− a
h(d(x)−σ)
h′′(d(x)−σ) −1+

b(x) f (h(d(x)−σ)ξ2)

h′′(d(x)−σ)ξ2

]

≥ξ2 h′′(d(x)−σ)
[
− h′(d(x)−σ)

h′′(d(x)−σ) Δd(x)− a
h(d(x)−σ)
h′′(d(x)−σ) −1+

Π(ξ2)− ε
1+ ε

]
≥0,
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for all x satisfying σ < d(x)< 2δ . Similarly, using (ii), (iv) and the second inequality

in (iii), when d(x)+σ < 2δ we find

−Δvσ (x)−avσ (x)+b(x) f (vσ (x))

=ξ1 h′′(d(x)+σ)

×
[
− h′(d(x)+σ)

h′′(d(x)+σ)
Δd(x)− a

h(d(x)+σ)
h′′(d(x)+σ)

−1+
b(x) f (h(d(x)+σ)ξ1)

h′′(d(x)+σ)ξ1

]
≤ξ1 h′′(d(x)+σ)

×
[
− h′(d(x)+σ)

h′′(d(x)+σ)
Δd(x)− a

h(d(x)+σ)
h′′(d(x)+σ)

−1+(1+ ε)(Π(ξ1)+ ε)
]

≤0.

Define Ωδ ≡ {x ∈ Ω : d(x) < δ}. Let ω ⊂⊂ Ω0 be such that the first Dirichlet

eigenvalue of (−Δ) in the smooth domain Ω0 \ω is strictly greater than a. Denote

by w a positive large solution to the following problem

−Δw = aw− p(x) f (w) in Ωδ ,

where p ∈C0,μ(Ωδ ) satisfies

0 < p(x)≤ b(x) for x ∈Ωδ \Ω0 , p(x) = 0 on Ω 0 \ω and p(x)> 0 for x ∈ω .

The existence of w is guaranteed by our Theorem 3.1.

Suppose that u is an arbitrary solution of (3.7) and let v := u+w. Then v satisfies

−Δv≥ av− b(x) f (v) in Ωδ \Ω0.

Since

v|∂Ω0
= ∞> vσ |∂Ω0

and v|∂Ωδ = ∞> vσ |∂Ωδ ,

we find

u+w≥ vσ on Ωδ \Ω 0. (3.13)

Similarly

vσ +w≥ u on Ωδ \Ωσ . (3.14)

Letting σ → 0 in (3.13) and (3.14), we deduce that

h(d(x))ξ2 + 2w≥ u+w≥ h(d(x))ξ1, ∀x ∈Ωδ \Ω0.
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Since w is uniformly bounded on ∂Ω0, it follows that

ξ1 ≤ liminf
d(x)↘0

u(x)
h(d(x))

≤ limsup
d(x)↘0

u(x)
h(d(x))

≤ ξ2. (3.15)

Letting ε → 0 in (3.15) and looking at the definition of ξ1 respectively ξ2 we find

lim
d(x)↘0

u(x)
h(d(x))

= ξ0. (3.16)

This behavior of the solution will be speculated in order to prove that problem (3.7)

has a unique solution. Indeed, let u1, u2 be two positive solutions of (3.7). For any

ε > 0, denote ũi = (1+ ε)ui, i = 1,2. By virtue of (3.16) we get

lim
d(x)↘0

u1(x)− ũ2(x)
h(d(x))

= lim
d(x)↘0

u2(x)− ũ1(x)
h(d(x))

=−ε ξ0 < 0

which implies

lim
d(x)↘0

[u1(x)− ũ2(x)] = lim
d(x)↘0

[u2(x)− ũ1(x)] =−∞.

On the other hand, since f (u)
u is increasing for u > 0, we obtain

−Δ ũi =−(1+ ε)Δui

= (1+ ε)(aui− b(x) f (ui))

≥ a ũi− b(x) f (ũi) in Ω \Ω0

and

Bũi = Bui = 0 on ∂Ω .

By the maximum principle,

u1(x)≤ ũ2(x), u2(x)≤ ũ1(x), for all x ∈Ω \Ω0.

Letting ε → 0, we obtain u1 ≡ u2. The proof of Theorem 3.9 is complete. ��

3.1.1 A Karamata Regular Variation Theory Approach

The major purpose in this section is to advance innovative methods to study the

uniqueness and asymptotic behavior of large solutions of (3.2). This approach is
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due to Cı̂rstea and Rădulescu [43, 45–48] and it relies essentially on the regular

variation theory introduced by Karamata (see Bingham, Goldie, and Teugels [19],

Karamata [137]), not only in the statement but in the proof as well. This enables us

to obtain significant information about the qualitative behavior of the large solution

to (3.2) in a general framework that removes previous restrictions in the literature.

Definition 3.11 A positive measurable function R defined on [D,∞), for some D>0,

is called regularly varying (at infinity) with index q ∈ R (written R ∈ RVq) if for all

ξ > 0

lim
u→∞R(ξu)/R(u) = ξ q.

When the index of regular variation q is zero, we say that the function is slowly

varying.

We remark that any function R ∈ RVq can be written in terms of a slowly varying

function. Indeed, set R(u) = uqL(u). From the above definition we easily deduce

that L varies slowly.

The canonical q-varying function is uq. The functions ln(1 + u), ln ln(e + u),

exp{(lnu)α}, α ∈ (0,1) vary slowly, as well as any measurable function on [D,∞)
with positive limit at infinity.

In what follows L denotes an arbitrary slowly varying function and D > 0 a pos-

itive number. For details on the properties below, we refer to Seneta [176].

Proposition 3.12 (i) For any m > 0, umL(u)→ ∞, u−mL(u)→ 0 as u→ ∞.

(ii) Any positive C1-function on [D,∞) satisfying uL′1(u)/L1(u)→ 0 as u→ ∞ is

slowly varying. Moreover, if the above limit is q ∈ R, then L1 ∈ RVq.

(iii) Assume R : [D,∞)→ (0,∞) is measurable and Lebesgue integrable on each

finite subinterval of [D,∞). Then R varies regularly if and only if there exists j ∈ R

such that

lim
u→∞

u j+1R(u)∫ u
D x jR(x)dx

(3.17)

exists and is a positive number, say a j + 1. In this case, R ∈ RVq with q = a j− j.

(iv) (Karamata Theorem, 1933). If R ∈ RVq is Lebesgue integrable on each finite

subinterval of [D,∞), then the limit defined by (3.17) is q+ j + 1, for every j >

−q−1.
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Lemma 3.13 Assume (A1) holds. Then we have the equivalence

a) f ′ ∈ RVρ ⇐⇒ b) lim
u→∞u f ′(u)/ f (u) := ϑ < ∞⇐⇒ c) lim

u→∞(F/ f )′ (u) := γ > 0.

Remark 2 Let a) of Lemma 3.13 be fulfilled. Then the following assertions hold

(i) ρ is nonnegative;

(ii) γ = 1/(ρ+ 2) = 1/(ϑ + 1);

(iii) If ρ �= 0, then (A2) holds (use limu→∞ f (u)/up = ∞, ∀p ∈ (1,1+ρ)). The

converse implication is not necessarily true (take f (u) = u ln4(u+ 1)). However,

there are cases when ρ = 0 and (A2) fails so that (3.2) has no large solutions. This

is illustrated by f (u) = u or f (u) = u ln(u+ 1).

Inspired by the definition of γ , we denote by K the Karamata class, that is,

the set of all positive, increasing C1-functions k defined on (0,ν), for some ν > 0,

which satisfy

lim
t→0+

(∫ t
0 k(s)ds

k(t)

)(i)

:= �i, i = 0,1.

It is easy to see that �0 = 0 and �1 ∈ [0,1], for every k ∈K . Our next result gives

examples of functions k ∈K with limt→0+ k(t) = 0, for every �1 ∈ [0,1].

Lemma 3.14 Let S ∈ C1[D,∞) be such that S′ ∈ RVq with q > −1. Hence the fol-

lowing hold:

a) If k(t) = exp{−S(1/t)} ∀t ≤ 1/D, then k ∈K with �1 = 0.

b) If k(t) = 1/S(1/t) ∀t ≤ 1/D, then k ∈K with �1 = 1/(q+ 2)∈ (0,1).

c) If k(t) = 1/ lnS(1/t) ∀t ≤ 1/D, then k ∈K with �1 = 1.

Remark 3 If S∈C1[D,∞), then S′ ∈ RVq with q>−1 if and only if for some m > 0,

C > 0 and B > D we have S(u) =Cumexp
{∫ u

B
y(t)

t dt
}

, ∀u ≥ B, where y ∈C[B,∞)
satisfies limu→∞ y(u) = 0. In this case, S′ ∈ RVq with q = m− 1. (This is a conse-

quence of Proposition 3.12 (iii) and (iv).)

Our main result is

Theorem 3.15 Let (A1) hold and f ′ ∈ RVρ with ρ > 0. Assume b≡ 0 on ∂Ω satis-

fies

(B) b(x) = ck2(d(x)) + o(k2(d(x))) as d(x)→ 0, for some constant c > 0 and

k ∈K .
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Then, for any a ∈ (−∞,λ∞,1), (3.2) admits a unique large solution ua. Moreover,

lim
d(x)→0

ua(x)
h(d(x))

= ξ0, (3.18)

where ξ0 =

(
2+ �1ρ
c(2+ρ)

)1/ρ
and h is defined by

∫ ∞

h(t)

ds√
2F(s)

=

∫ t

0
k(s)ds, ∀t ∈ (0,ν). (3.19)

By Remark 3, the assumption f ′ ∈ RVρ with ρ > 0 holds if and only if there exist

p > 1 and B > 0 such that f (u) = Cupexp
{∫ u

B
y(t)

t dt
}

, for all u ≥ B (y as before

and p = ρ +1). If B is large enough (y > −ρ on [B,∞)), then f (u)/u is increasing

on [B,∞). Thus, to get the whole range of functions f for which our Theorem 3.15

applies we have only to “paste” a suitable smooth function on [0,B] in accordance

with (A1). A simple way to do this is to define

f (u) = upexp{
∫ u

0

z(t)
t

dt} for all u≥ 0,

where z∈C[0,∞) is nonnegative such that limt→0+ z(t)/t ∈ [0,∞) and limu→∞ z(u) =

0. Clearly, f (u) = up, f (u) = up ln(u+ 1), and f (u) = up arctanu (p > 1) fall into

this category.

Lemma 3.14 provides a practical method to find functions k which can be con-

sidered in the statement of Theorem 3.15. Here are some examples:

(i) k(t) =−1/ lnt;

(ii) k(t) = tα ;

(iii) k(t) = exp{−1/tα};
(iv) k(t) = exp

{− ln(1+ 1
t )/tα

}
;

(v) k(t) = exp
{−[

arctan
(

1
t

)]
/tα

}
;

(vi) k(t) = tα/ ln(1+ 1
t ), for some α > 0.

As we shall see, the uniqueness lies upon the crucial observation (3.18), which

shows that all explosive solutions have the same boundary behavior. Note that the

only case of Theorem 3.15 studied so far is f (u) = up (p > 1) and k(t) = tα (α > 0)

(see Garcı́a-Melián, Letelier-Albornoz, and Sabina de Lis [82]). For related results

on the uniqueness of explosive solutions (mainly in the cases b ≡ 1 and a = 0) we

refer to Bandle and Marcus [12], Loewner and Nirenberg [138], Marcus and Véron

[142].
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Proof of Lemma 3.13. From Proposition 3.12 (iv) and Remark 2 (i) we deduce

a) =⇒ b) and ϑ = ρ + 1. Conversely, b) =⇒ a) follows by Proposition 3.12 (iii)

since ϑ ≥ 1 cf. (A1).

b) =⇒ c). Indeed, limu→∞ u f (u)/F(u) = 1+ϑ , which yields

ϑ
1+ϑ

= lim
u→∞

[
1−

(
F
f

)′
(u)

]
= 1− γ.

c) =⇒ b). Choose s1 > 0 such that

(
F
f

)′
(u)≥ γ

2
, for all u≥ s1.

So, (
F
f

)
(u)≥ (u− s1)γ

2
+

(
F
f

)
(s1) for all u≥ s1.

Passing to the limit as u→ ∞, we find limu→∞F(u)/ f (u) = ∞. Thus,

lim
u→∞

u f (u)
F(u)

=
1
γ
.

Since

1− γ := lim
u→∞

F(u) f ′(u)
f 2(u)

,

we obtain

lim
u→∞

u f ′(u)
f (u)

=
1− γ
γ

.

This finishes the proof of the lemma. ��
Proof of Lemma 3.14. Since limu→∞ uS′(u) = ∞ (cf. Proposition 3.12 (i)), from the

Karamata theorem we deduce

lim
u→∞

uS′(u)
S(u)

= q+ 1 > 0.

Therefore, in any of the cases a), b), c), limt→0+ k(t) = 0 and k is an increasing

C1-function on (0,ν), for ν > 0 sufficiently small.

a) It is clear that

lim
t→0+

tk′(t)
k(t) ln k(t)

= lim
t→0+

−S′(1/t)
tS(1/t)

=−(q+ 1).

By l’Hospital’s rule we deduce
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�0 = lim
t→0+

k(t)
k′(t)

= 0 and lim
t→0+

(∫ t
0 k(s)ds

)
lnk(t)

tk(t)
=− 1

q+1
.

So,

1− �1 := lim
t→0+

(∫ t
0 k(s)ds

)
k′(t)

k2(t)
= 1.

b) We see that

lim
t→0+

tk′(t)
k(t)

= lim
t→0+

S′(1/t)
tS(1/t)

= q+ 1.

By l’Hospital’s rule,

�0 = 0 and lim
t→0+

∫ t
0 k(s)ds
tk(t)

=
1

q+2
.

So,

�1 = 1− lim
t→0+

∫ t
0 k(s)ds

tk(t)
tk′(t)
k(t)

=
1

q+2
.

c) We have

lim
t→0+

tk′(t)
k2(t)

= lim
t→0+

S′(1/t)
tS(1/t)

= q+ 1.

By l’Hospital’s rule,

lim
t→0+

∫ t
0 k(s)ds
tk(t)

= 1.

Thus,

�0 = 0 and �1 = 1− lim
t→0+

∫ t
0 k(s)ds

t
tk′(t)
k2(t)

= 1.

This finishes the proof of our lemma. ��

Proof of Theorem 3.15. Fix a ∈ (−∞,λ∞,1). By Theorem 3.1, problem (3.2) has at

least a large solution.

If we prove that (3.18) holds for an arbitrary large solution ua of (3.2), then the

uniqueness follows easily. Indeed, if u1 and u2 are two arbitrary large solutions of

(3.2), then (3.18) yields limd(x)→0+
u1(x)
u2(x)

= 1. Hence, for any ε ∈ (0,1), there exists

δ = δ (ε) > 0 such that

(1− ε)u2(x)≤ u1(x)≤ (1+ ε)u2(x), ∀x ∈Ω with 0 < d(x)≤ δ . (3.20)

Choosing eventually a smaller δ > 0, we can assume that

Ω 0 ⊂Cδ where Cδ := {x ∈Ω : d(x)> δ}.
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It is clear that u1 is a positive solution of the boundary value problem

Δφ + aφ = b(x) f (φ) in Cδ , φ = u1 on ∂Cδ . (3.21)

By (A1) and (3.20), we see that φ− = (1− ε)u2 (resp. φ+ = (1+ ε)u2) is a positive

subsolution (resp. supersolution) of (3.21). By the sub and supersolutions method,

(3.21) has a positive solution φ1 satisfying

φ− ≤ φ1 ≤ φ+ in Cδ .

Since b > 0 on Cδ \Ω0, we deduce that (3.21) has a unique positive solution, that

is, u1 ≡ φ1 in Cδ . This yields

(1− ε)u2(x)≤ u1(x)≤ (1+ ε)u2(x) in Cδ ,

so that (3.20) holds in Ω . Passing to the limit ε → 0+, we conclude that u1 ≡ u2.

In order to prove (3.18) we state some useful properties about h:

(h1) h ∈C2(0,ν), limt→0+ h(t) = ∞ (straightforward from (3.19)).

(h2) limt→0+
h′′(t)

k2(t) f (h(t)ξ )
=

1
ξρ+1

2+ρ�1

2+ρ
, ∀ξ > 0 (so, h′′ > 0 on (0,2δ ), for

δ > 0 small enough).

(h3) limt→0+ h(t)/h′′(t) = limt→0+ h′(t)/h′′(t) = 0.

We check (h2) for ξ = 1 only, since f ∈ RVρ+1. Clearly,

h′(t) =−k(t)
√

2F(h(t))

and

h′′(t) = k2(t) f (h(t))

(
1− 2

k′(t)
(∫ t

0 k(s)ds
)

k2(t)

√
F(h(t))

f (h(t))
∫ ∞

h(t)[F(s)]−1/2ds

)
, (3.22)

for all 0 < t < ν . We see that limu→∞
√

F(u)/ f (u) = 0. Thus, from l’Hospital’s rule

and Lemma 3.13 we infer that

lim
u→∞

√
F(u)

f (u)
∫ ∞

u [F(s)]−1/2ds
=

1
2
− γ = ρ

2(ρ+2)
. (3.23)

Using (3.22) and (3.23) we derive (h2) and also
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lim
t→0+

h′(t)
h′′(t)

=
−2(2+ρ)

2+ �1ρ
lim

t→0+

∫ t
0 k(s)ds

k(t)
lim
u→∞

√
F(u)

f (u)
∫ ∞

u [F(s)]−1/2ds

=
−ρ�0

2+ �1ρ
= 0.

(3.24)

From (h1) and (h2), limt→0+ h′(t) = −∞. So, l’Hospital’s rule and (3.24) yield

limt→0+ h(t)/h′(t) = 0. This and (3.24) lead to limt→0+ h(t)/h′′(t) = 0 which proves

(h3).

Proof of (3.18). Fix ε ∈ (0,c/2). Since b ≡ 0 on ∂Ω and (B) holds, we take δ > 0

so that

(i) d(x) is a C2-function on the set {x ∈ R
N : d(x)< 2δ};

(ii) k2 is increasing on (0,2δ );
(iii) (c− ε)k2(d(x))< b(x)< (c+ ε)k2(d(x)), ∀x ∈Ω with 0 < d(x)< 2δ ;

(iv) h′′(t)> 0 ∀t ∈ (0,2δ ) (from (h2)).

Let σ ∈ (0,δ ) be arbitrary. We define

ξ± =

[
2+ �1ρ

(c∓ 2ε)(2+ρ)

]1/ρ
and v−σ (x) = h(d(x)+σ)ξ−,

for all x with d(x)+σ < 2δ resp. v+σ (x) = h(d(x)−σ)ξ+, for all x with σ < d(x)<

2δ .

Using (i)–(iv), when σ < d(x)< 2δ we obtain (since |∇d(x)| ≡ 1)

Δv+σ +av+σ −b(x) f (v+σ )

≤ξ+h′′(d(x)−σ)
(

h′(d(x)−σ)
h′′(d(x)−σ)Δd(x)+a

h(d(x)−σ)
h′′(d(x)−σ) +1

−(c− ε)k2(d(x)−σ) f (h(d(x)−σ)ξ+)
h′′(d(x)−σ)ξ+

)
.

Similarly, when d(x)+σ < 2δ we find

Δv−σ+av−σ −b(x) f (v−σ )

≥ξ−h′′(d(x)+σ)
(

h′(d(x)+σ)
h′′(d(x)+σ)

Δd(x)+a
h(d(x)+σ)
h′′(d(x)+σ)

+1

−(c+ ε)k2(d(x)+σ) f (h(d(x)+σ)ξ−)
h′′(d(x)+σ)ξ−

)
.

Using (h2) and (h3) we see that, by diminishing δ , we can assume

Δv+σ (x)+av+σ (x)− b(x) f (v+σ (x))≤ 0 ∀x with σ < d(x)< 2δ ;
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Δv−σ (x)+av−σ (x)− b(x) f (v−σ (x))≥ 0 ∀x with d(x)+σ < 2δ .

Let Ω1 and Ω2 be smooth bounded domains such that Ω ⊂⊂ Ω1 ⊂⊂ Ω2 and

the first Dirichlet eigenvalue of (−Δ) in the domain Ω1 \Ω is greater than a. Let

p ∈C0,μ(Ω 2) satisfy 0 < p(x) ≤ b(x) for x ∈Ω \C2δ , p = 0 on Ω 1 \Ω and p > 0

on Ω2 \Ω1. Denote by w a positive large solution of

Δw+ aw = p(x) f (w) in Ω2 \C2δ .

The existence of w is ensured by Theorem 3.1.

Suppose that ua is an arbitrary large solution of (3.2) and let v := ua +w. Then v

satisfies

Δv+ av− b(x) f (v)≤ 0 in Ω \C2δ .

Since v|∂Ω = ∞> v−σ |∂Ω and v|∂C2δ
= ∞> v−σ |∂C2δ

, the maximum principle implies

ua +w≥ v−σ on Ω \C2δ . (3.25)

Similarly,

v+σ +w≥ ua on Cσ \C2δ . (3.26)

Letting σ → 0 in (3.25) and (3.26), we deduce

h(d(x))ξ++ 2w≥ ua +w≥ h(d(x))ξ− for all x ∈Ω \C2δ .

Since w is uniformly bounded on ∂Ω , we have

ξ− ≤ liminf
d(x)→0

ua(x)
h(d(x))

≤ limsup
d(x)→0

ua(x)
h(d(x))

≤ ξ+.

Letting ε → 0+ we obtain (3.18). This concludes the proof of Theorem 3.15. ��

Bandle and Marcus proved in [13] that the blow-up rate of the unique large so-

lution of (3.2) depends on the curvature of the boundary ofΩ . Our purpose in what

follows is to refine the blow-up rate of ua near ∂Ω by giving the second term in its

expansion near the boundary. This is a more subtle question which represents the

goal of more recent literature (see Garcı́a-Melián, Letelier-Albornoz, and Sabina de

Lis [82] and the references therein). The following is very general and, as a novelty,

it relies on the Karamata regular variation theory.
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Recall that K denotes the set of all positive increasing C1-functions k defined

on (0,ν), for some ν > 0, which satisfy

lim
t↘0

[∫ t
0 k(s)ds

k(t)

](i)
:= �i , i = 1,2.

We also recall that RVq (q ∈ R) is the set of all positive measurable functions

Z : [A,∞)→ R ,A > 0 , satisfying lim
u→∞

Z(ξu)
Z(u)

= ξ q for all ξ > 0.

Define by NRVq the class of functions

f : [B,∞)→ R ,B > 0 , f (u) =Cuqexp

{∫ u

B

φ(t)
t

dt

}
,

where C > 0 is a constant and φ ∈C[B,∞) satisfies limt→∞ φ(t) = 0. The Karamata

representation theorem shows that NRVq ⊂ RVq.

For any ζ > 0, set K0,ζ the subset of K with

�1 = 0 and lim
t↘0

[∫ t
0 k(s)ds

k(t)

]′
:= L� ∈R.

It can be proven that K0,ζ ≡ R0,ζ , where R0,ζ is the class of all functions k :

[d1,∞)→ R, d1 > 0 such that

k(u−1) = d0u [Λ(u)]−1 exp

[
−

∫ u

d1

(sΛ(s))−1 ds

]
,d0 > 0,

where Λ ∈C1[d1,∞) is a positive function such that

lim
u→∞Λ(u) = lim

u→∞uΛ ′(u) = 0 and lim
u→∞uζ+1Λ ′(u) = �� ∈R.

Define

Fρη =
{

f ∈ NRVρ+1 (ρ > 0) : φ ∈ RVη or −φ ∈ RVη
}
, η ∈ (−ρ−2,0];

Fρ0,τ = { f ∈Fρ0 : lim
u→∞(lnu)τφ(u) = �� ∈ R}, τ ∈ (0,∞).

The following result establishes a precise asymptotic estimate in the neighbor-

hood of the boundary.

Theorem 3.16 Assume that

b(x) = k2(d)(1+ c̃dθ + o(dθ )) as d(x)→ 0, (3.27)
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where k ∈R0,ζ , θ > 0 and c̃ ∈R. Suppose that f fulfills (A1) and one of the follow-

ing growth conditions at infinity:

(i) f (u) =Cuρ+1 in a neighbourhood of infinity;

(ii) f ∈Fρη with η �= 0;

(iii) f ∈Fρ0,τ1 with τ1 = ϖ/ζ , where ϖ = min{θ ,ζ}.
Then, for any a ∈ (−∞,λ∞,1), the unique positive solution ua of (3.2) satisfies

ua(x) = ξ0h(d)(1+ χdϖ+ o(dϖ)) as d(x)→ 0, (3.28)

where ξ0 = [2(2+ρ)−1]1/ρ and h is defined by

∫ ∞

h(t)

ds√
2F(s)

=

∫ t

0
k(s)ds,

for t > 0 small enough. The expression for χ is

χ =

⎧⎪⎨
⎪⎩

χ1 if (i) or (ii) holds

χ1− ��

ρ

(
−ρ��

2

)τ1
[

1
ρ+ 2

+ lnξ0

]
if f obeys (iii),

where

χ1 :=− (1+ ζ )��
2ζ

Heaviside(θ − ζ )− c̃
ρ

Heaviside(ζ −θ ).

Proof. We first state two auxiliary results. Their proofs are straightforward and we

shall omit them.

Lemma 3.17 Assume (3.27) and f ∈ NRVρ+1 satisfies (A1). Then h has the follow-

ing properties:

(i) h ∈C2(0,ν), limt↘0 h(t) = ∞ and limt↘0 h′(t) =−∞;

(ii) limt↘0 h′′(t)/[k2(t) f (h(t)ξ )] = (2+ρ�1)/[ξρ+1(2+ρ)], ∀ξ > 0;

(iii) limt↘0 h(t)/h′′(t) = limt↘0 h′(t)/h′′(t) = limt↘0 h(t)/h′(t) = 0;

(iv) limt↘0 h′(t)/[th′′(t)] =−ρ�1/(2+ρ�1) and

limt↘0 h(t)/[t2h′′(t)] = ρ2�2
1/[2(2+ρ�1)];

(v) limt↘0 h(t)/[th′(t)] = limt↘0[lnt]/[lnh(t)] =−ρ�1/2;

(vi) If �1 = 0, then limt↘0 t jh(t) = ∞, for all j > 0;

(vii) limt↘0 1/[tζ lnh(t)] =−ρ��/2 and

limt↘0 h′(t)/[tζ+1h′′(t)] = ρ��/(2ζ ), ∀k ∈R0,ζ .
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Let τ > 0 be arbitrary. For any u > 0, define

T1,τ(u) = {ρ/[2(ρ+ 2)]−Ξ(u)}(lnu)τ

and

T2,τ(u) = { f (ξ0u)/[ξ0 f (u)]− ξρ0 }(lnu)τ .

Note that if f (u) = Cuρ+1, for u in a neighborhood V∞ of infinity, then T1,τ(u) =

T2,τ(u) = 0 for each u ∈V∞.

Lemma 3.18 Assume (A1) and f ∈Fρη . The following hold:

(i) If f ∈Fρ0,τ , then

lim
u→∞T1,τ(u) =− ��

(ρ+ 2)2 and lim
u→∞T2,τ(u) = ξρ0 �

� lnξ0.

(ii) If f ∈Fρη with η �= 0, then

lim
u→∞T1,τ(u) = lim

u→∞T2,τ(u) = 0.

Fix ε ∈ (0,1/2). We can find δ > 0 such that d(x) is of class C2 on {x ∈ R
N :

d(x) < δ}, k is nondecreasing on (0,δ ), and h′(t) < 0 < h′′(t) for all t ∈ (0,δ ). A

straightforward computation shows that

lim
t↘0

t1−θk′(t)
k(t)

= ∞ , for every θ > 0.

Using now (3.27), it follows that we can diminish δ > 0 such that

(0,δ ) � t 	−→ k2(t)
[
1+(c̃− ε)tθ

]
is increasing

and

1+(c̃− ε)dθ < b(x)/k2(d)< 1+(c̃+ ε)dθ , (3.29)

for all x ∈ Ω with d = d(x) ∈ (0,δ ). We define u±(x) = ξ0h(d)(1+ χ±ε dϖ ), with

d ∈ (0,δ ), where χ±ε = χ ± ε [1+Heaviside(ζ −θ )]/ρ . Take δ > 0 small enough

such that u±(x) > 0, for each x ∈ Ω with d ∈ (0,δ ). By the Lagrange mean value

theorem, we obtain

f (u±(x)) = f (ξ0h(d))+ ξ0χ±ε dϖh(d) f ′(ϒ±(d)),

where
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ϒ±(d) = ξ0h(d)(1+λ±(d)χ±ε dϖ ) , for some λ±(d) ∈ [0,1].

We claim that

lim
d↘0

f (ϒ±(d))/ f (ξ0h(d)) = 1. (3.30)

Fix σ ∈ (0,1) and M > 0 such that |χ±ε |<M. Choose μ� > 0 so that |(1±Mt)ρ+1−
1| < σ/2, for all t ∈ (0,2μ�). Let μ� ∈ (0,(μ�)1/ϖ ) be such that, for every x ∈ Ω
with d ∈ (0,μ�)

∣∣ f (ξ0h(d)(1±Mμ�))/ f (ξ0h(d))− (1±Mμ�)ρ+1
∣∣< σ/2.

Hence,

1−σ < (1−Mμ�)ρ+1− σ
2

<
f (ϒ±(d))
f (ξ0h(d))

< (1+Mμ�)ρ+1 +
σ
2

< 1+σ ,

for every x ∈Ω with d ∈ (0,μ�). This proves (3.30).

Step 1: There exists δ1 ∈ (0,δ ) so that

Δu++au+− k2(d)[1+(c̃− ε)dθ ] f (u+)≤ 0 for all x ∈Ω with d ∈ (0,δ1)

and

Δu−+au−− k2(d)[1+(c̃+ ε)dθ ] f (u−)≥ 0 for all x ∈Ω with d ∈ (0,δ1).

Indeed, for every x ∈Ω with d ∈ (0,δ ), we have

Δu±+ au±− k2(d)
[
1+(c̃∓ ε)dθ] f (u±)

= ξ0dϖh′′(d)
[
aχ±ε

h(d)
h′′(d) + χ

±
ε Δd h′(d)

h′′(d) + 2ϖχ±ε
h′(d)

dh′′(d) +ϖχ
±
ε Δd h(d)

dh′′(d)

+ϖ(ϖ − 1)χ±ε
h(d)

d2h′′(d) +Δd h′(d)
dϖh′′(d) +

ah(d)
dϖh′′(d) +∑

4
j=1 S ±

j (d)
]

where, for any t ∈ (0,δ ), we denote
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S ±
1 (t) = (−c̃± ε)tθ−ϖ k2(t)

f (ξ0h(t))
ξ0h′′(t)

,

S ±
2 (t) = χ±ε

(
1− k2(t)h(t)

f ′(ϒ±(t))
h′′(t)

)
,

S ±
3 (t) = (−c̃± ε)χ±ε tθ k2(t)h(t)

f ′(ϒ±(t)
h′′(t)

,

S ±
4 (t) = t−ϖ

(
1− k2(t)

f (ξ0h(t))
ξ0h′′(t)

)
.

By Lemma 3.17 (ii), we find

lim
t↘0

k2(t)
f (ξ0h(t))
ξ0h′′(t)

= 1,

which yields

lim
t↘0

S ±
1 (t) = (−c̃± ε)Heaviside(ζ −θ ).

Using (3.30), we next obtain

lim
t↘0

k2(t)h(t)
f ′(ϒ±(t))

h′′(t)
= ρ+1.

Hence, limt↘0 S ±
2 (t) =−ρχ±ε and limt↘0 S ±

3 (t) = 0. Using the expression of h′′,
we derive

S ±
4 (t) =

k2(t) f (h(t))
h′′(t)

3

∑
i=1

S4,i(t) for all t ∈ (0,δ ),

where

S4,1(t) = 2
Ξ(h(t))

tϖ

[∫ t
0 k(s)ds

k(t)

]′
,

S4,2(t) = 2
T1,τ1(h(t))

[tζ lnh(t)]τ1

S4,3(t) =− T2,τ1(h(t))

[tζ lnh(t)]τ1
.

Since R0,ζ ≡K0,ζ , we find

lim
t↘0

S4,1(t) =− (1+ ζ )ρ��
ζ (ρ + 2)

Heaviside(θ − ζ ).

Cases (i), (ii). By Lemma 3.17 (vii) and Lemma 3.18 (ii), we find

lim
t↘0

S4,2(t) = lim
t↘0

S4,3(t) = 0.

In view of Lemma 3.17 (ii), we derive that
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lim
t↘0

S±4 (t) =−
(1+ ζ )ρ��

2ζ
Heaviside(θ − ζ ).

Case (iii). By Lemma 3.17 (vii) and Lemma 3.18 (i) we find

lim
t↘0

S4,2(t) =− 2��

(ρ+ 2)2

(
−ρ��

2

)τ1

and lim
t↘0

S4,3(t) =− 2��

ρ+2

(
−ρ��

2

)τ1

lnξ0.

Using Lemma 3.17 (ii) once more, we arrive at

lim
t↘0

S±4 (t) =−
(1+ ζ )ρ��

2ζ
Heaviside(θ − ζ )− ��

(
−ρ��

2

)τ1
[

1
ρ+2

+ lnξ0

]
.

Note that in each of the cases (i)–(iii), the definition of χ±ε yields

lim
t↘0

4

∑
j=1

S +
j (t) =−ε < 0 and lim

t↘0

4

∑
j=1

S −
j (t) = ε > 0.

By Lemma 3.17 (vii), we have

lim
t↘0

h′(t)
tϖh′′(t)

= 0.

But

lim
t↘0

h(t)
h′(t)

= 0 , so lim
t↘0

h(t)
tϖh′′(t)

= 0.

Thus, using Lemma 3.17 [(iii), (iv)], relation (3.31) concludes our Step 1.

Step 2: There exists M+, δ+ > 0 such that

ua(x)≤ u+(x)+M+ for all x ∈Ω with 0 < d < δ+.

Define

(0,∞) � u 	−→Ψx(u) = au− b(x) f (u) , for all x ∈Ω with d ∈ (0,δ1).

Clearly,Ψx(u) is decreasing when a≤ 0. Suppose a ∈ (0,λ∞,1). Obviously,

(0,∞) � t 	−→ f (t)
t
∈ ( f ′(0),∞) is bijective.

Let δ2 ∈ (0,δ1) be such that b(x)< 1, ∀x with d ∈ (0,δ2). Let ux define the unique

positive solution of b(x) f (u)/u = a+ f ′(0), ∀x with d ∈ (0,δ2). Hence, for any x

with d ∈ (0,δ2), u→Ψx(u) is decreasing on (ux,∞). But
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lim
d(x)↘0

b(x)
f (u+(x))

u+(x)
= +∞

which follows by using limd(x)↘0 u+(x)/h(d) = ξ0, (A1) and Lemma 3.17 [(ii) and

(iii)]. So, for δ2 small enough, u+(x)> ux, ∀x with d ∈ (0,δ2).

Fix σ ∈ (0,δ2/4) and set Nσ := {x ∈Ω : σ < d(x)< δ2/2}. We define

u∗σ (x) = u+(d−σ ,s)+M+,

where (d,s) are the local coordinates of x ∈Nσ . We choose M+ > 0 large enough

to have

u∗σ (δ2/2,s)≥ ua(δ2/2,s) for all (σ ,s) ∈ (0,δ2/4)× ∂Ω .

Using (3.29) and Step 1, we find

−Δu∗σ (x)≥ au+(d−σ ,s)− [1+(c̃− ε)(d−σ)θ ]k2(d−σ) f (u+(d−σ ,s))
≥ au+(d−σ ,s)− [1+(c̃− ε)dθ ]k2(d) f (u+(d−σ ,s))
≥Ψx(u

+(d−σ ,s))
≥Ψx(u

∗
σ ) = au∗σ (x)− b(x) f (u∗σ (x)) in Nσ .

Thus, by the maximum principle, ua ≤ u∗σ in Nσ , ∀σ ∈ (0,δ2/4). Letting σ → 0,

we have proved Step 2.

Step 3: There exists M−, δ− > 0 such that ua(x) ≥ u−(x)−M−, for all x ∈ Ω
with 0 < d < δ−.

For every r ∈ (0,δ ), define Ωr = {x ∈ Ω : 0 < d(x) < r}. We will prove that

for λ > 0 sufficiently small, λu−(x) ≤ ua(x), ∀x ∈ Ωδ2/4. Indeed, fix arbitrarily

σ ∈ (0,δ2/4). Define

v∗σ (x) = λu−(d+σ ,s) for x = (d,s) ∈Ωδ2/2.

We choose λ ∈ (0,1) small enough such that

v∗σ (δ2/4,s)≤ ua(δ2/4,s) for all (σ ,s) ∈ (0,δ2/4)× ∂Ω .

Using (3.29), Step 1 and (A1), we find

Δv∗σ (x)+ av∗σ(x)≥ λk2(d +σ)[1+(c̃+ ε)(d+σ)θ ] f (u−(d+σ ,s))

≥ k2(d)[1+(c̃+ ε)dθ ] f (λu−(d+σ ,s))≥ b f (v∗σ ),
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for all x = (d,s) ∈Ωδ2/4, that is v∗σ is a subsolution of Δu+au= b(x) f (u) inΩδ2/4.

By the maximum principle, we conclude that v∗σ ≤ ua in Ωδ2/4. Letting σ → 0, we

find λu−(x)≤ ua(x), ∀x ∈Ωδ2/4.

Since limd↘0 u−(x)/h(d) = ξ0, by using (A1) and Lemma 3.17 [(ii), (iii)], we

can easily obtain

lim
d↘0

k2(d)
f (λ 2u−(x))

u−(x)
= ∞.

So, there exists δ̃ ∈ (0,δ2/4) such that

k2(d)[1+(c̃+ ε)dθ ] f (λ 2u−)/u− ≥ λ 2|a|, ∀x ∈Ω with 0 < d ≤ δ̃ . (3.31)

By Lemma 3.17 [(i) and (v)], we deduce that u−(x) decreases with d when d ∈ (0, δ̃ )
(if necessary, δ̃ > 0 is diminished). Choose δ∗ ∈ (0, δ̃ ), close enough to δ̃ , such that

h(δ∗)(1+ χ−ε δ
ϖ
∗ )/[h(δ̃ )(1+ χ−ε δ̃

ϖ )]< 1+λ . (3.32)

For each σ ∈ (0, δ̃ − δ∗), we define zσ (x) = u−(d +σ ,s)− (1− λ )u−(δ∗,s). We

prove that zσ is a subsolution of Δu+ au= b(x) f (u) in Ωδ∗ . Using (3.32), we have

zσ (x)≥ u−(δ̃ ,s)− (1−λ )u−(δ∗,s)> 0 for all x = (d,s) ∈Ωδ∗ .

By (3.29) and Step 1, zσ is a subsolution of Δu+ au = b(x) f (u) in Ωδ∗ if

k2(d+σ)[1+(c̃+ε)(d+σ)θ ]
[

f (u−(d +σ ,s))− f (zσ (d,s))
]≥ a(1−λ )u−(δ∗,s),

(3.33)

for all (d,s) ∈ Ωδ∗ . Applying the Lagrange mean value theorem and (A1), we infer

that (3.33) is a consequence of

k2(d +σ)[1+(c̃+ ε)(d+σ)θ ]
f (zσ (d,s))

zσ (d,s)
≥ |a|, for all (d,s) ∈Ωδ∗ .

This inequality holds by virtue of (3.31), (3.32) and the decreasing character of u−

with d.

On the other hand,

zσ (δ∗,s)≤ λu−(δ∗,s)≤ ua(x) for all x = (δ∗,s) ∈Ω .

Clearly,

limsup
d→0

(zσ − ua)(x) =−∞
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and b > 0 in Ωδ∗ . Thus, by the maximum principle,

zσ ≤ ua in Ωδ∗ , for all σ ∈ (0, δ̃ − δ∗).

Letting σ → 0, we conclude the assertion of Step 3.

By Steps 2 and 3 we have

χ+
ε ≥

{
−1+

ua(x)
ξ0h(d)

}
d−ϖ − M+

ξ0dϖh(d)
if x ∈Ω ,d = d(x) ∈ (0,δ+) ,

and

χ−ε ≤
{
−1+

ua(x)
ξ0h(d)

}
d−ϖ +

M−

ξ0dϖh(d)
if x ∈Ω ,d = d(x) ∈ (0,δ−).

Passing to the limit as d → 0 and using Lemma 3.17 (vi), we obtain

χ−ε ≤ liminf
d→0

{
−1+

ua(x)
ξ0h(d)

}
d−ϖ

and

limsup
d→0

{
−1+

ua(x)
ξ0h(d)

}
d−ϖ ≤ χ+

ε .

Letting ε → 0, we conclude our proof. ��

3.2 Keller–Osserman Condition Revisited

In this section we are concerned with the existence, uniqueness, and numerical ap-

proximation of boundary blow-up solutions for elliptic PDEs as Δu = f (u), where

f satisfies a Keller–Osserman type condition. We characterize existence of such

solutions for nonmonotone f . As an example, we construct an infinite family of

boundary blow-up solutions for the equation Δu = u2(1+cosu) on a ball. We prove

uniqueness (on balls) when f is increasing and convex in a neighborhood of infin-

ity and we discuss and perform some numerical computations to approximate such

boundary blow-up solutions. Our approach relies on the methods developed in [65].
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3.2.1 Setting of the Problem

Let f be a nonnegative function defined on [0,+∞) such that f (0) = 0. We assume,

for the sake of simplicity that f is a C1 function. Considering Ω a smooth bounded

domain of RD, D≥ 1, we seek u > 0 a smooth function such that{
Δu = f (u) in Ω ,

u =+∞ on ∂Ω ,
(3.34)

where the boundary condition is to be understood as :

lim
x→x0

u(x) = +∞ ∀x0 ∈ ∂Ω .

To prove existence of such a boundary blow-up solution, it is classically assumed

that f is a nondecreasing function with suitable growth rate at infinity, as demon-

strated independently by Keller [115] and Osserman [155].

In this chapter we study existence, asymptotic behavior, uniqueness and numeri-

cal approximation of solutions of (3.34), when f may exhibit nonmonotone behav-

ior.

3.2.1.1 Existence Results

Existence of solutions of (3.34) is closely related to the following growth condi-

tions : for s ∈ [0,+∞), let F(s) =
∫ s

0 f (t)dt and define Φ : (0,+∞)→ (0,+∞] by

Φ(α) =
1√
2

∫ ∞

α

ds√
F(s)−F(α)

,

where we let by convention Φ(α) = +∞, whenever the integral is divergent or

F(s) = F(α) on a set of positive measure.

Definition 3.19 We say that f satisfies the Keller–Osserman condition whenever

∃α > 0 Φ(α) < ∞. (3.35)

We say that f satisfies the Sharpened Keller–Osserman condition whenever

liminf
α→∞ Φ(α) = 0. (3.36)
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Clearly, the Sharpened Keller–Osserman condition implies the classical one. It turns

out that both conditions are equivalent:

Proposition 3.20 Assume (3.35) holds for some α > 0. Then (3.36) holds.

We point out that in general, limα→∞Φ(α) may not exist: in the special case f (u) =

u2(1+ cosu), limsupα→∞Φ(α) = +∞. However, (3.36) still holds.

Proof of Proposition 3.20. Assume that f satisfies the Keller–Osserman condition.

Up to translation, we may always assume that

∫ +∞

0

dt√
F(t)

<+∞. (3.37)

Consider the change of variable u = F(t). Then, letting g(u) = (F−1)′(u), (3.37)

reads also

∫ +∞

0

g(u)√
u

du <+∞, (3.38)

whereas (3.36) can be rewritten as

liminf
β→+∞

∫ +∞

β

g(u)√
u−β du = 0. (3.39)

First step: we claim that

limsup
β→+∞

∫ +∞

2β

g(u)√
u−β du = 0. (3.40)

Observe that u≤ 2(u−β ) and then

∫ +∞

2β

g(u)√
u−β du≤

√
2
∫ +∞

2β

g(u)√
u

du.

Second step: it remains to prove that

liminf
β→+∞

∫ 2β

β

g(u)√
u−β du = 0. (3.41)

We argue by contradiction. Let us observe that

∫ 2β

β

g(u)√
u−β du =

1
2

∫ √β

0
g(u2 +β )du.

Let us assume that there exists C > 0 such that for any β
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0 <C ≤
∫ β

0
g(u2 +β 2)du. (3.42)

Integrate this for β between 0 and R

0 <CR≤
∫ R

0

∫ R

0
g(u2 +β 2)χu≤βdudβ . (3.43)

The right-hand side of this inequality is bounded by an integral on a half disc of

radius R. By symmetry and using polar coordinates

0 <CR≤ π
∫ R

0
g(r2)rdr =

π
2

∫ R2

0
g(s)ds. (3.44)

Remember that g is the derivative of F−1. Thus,

0 <CR≤ π
2

F−1(R2). (3.45)

Setting ξ = F−1(R2) this leads to F(ξ ) ≤ Cξ 2. This contradicts the Keller–

Osserman condition (3.35). ��
Next, we consider the special case f (u) = u2(1+ cosu).

Proposition 3.21 Let f (u) = u2(1+ cosu). Then,

limsup
α→∞

Φ(α) = ∞,

liminf
α→∞ Φ(α) = 0.

Proof. Set α = (2k+ 1)π . For t close to α , F(t)−F(α) ∼ α2(t−α)2. Therefore

Φ(α) = +∞. In particular, limsupα→∞Φ(α) = ∞. ��

With these definitions in mind, our main results concerning existence read as fol-

lows.

Theorem 3.22 The following statements are equivalent.

• f satisfies the Keller–Osserman condition (3.35).

• f satisfies the Sharpened Keller–Osserman condition (3.36).

• There exists a ballΩ = BR such that (3.34) admits (at least) a positive boundary

blow-up.

• Given any (smooth bounded) domain Ω , (3.34) admits (at least) a positive

boundary blow-up solution.
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Theorem 3.22 is a straightforward consequence of Proposition 3.20 and the follow-

ing two theorems.

Theorem 3.23 f satisfies the Keller–Osserman condition if and only if (3.34) ad-

mits (at least) a positive boundary blow-up solution on some ball.

Theorem 3.24 f satisfies the Sharpened Keller–Osserman condition if and only

if (3.34) admits (at least) a positive boundary blow-up solution on any (smooth

bounded) domain Ω .

In particular, Theorem 3.24 implies existence of boundary blow-up solutions for

functions such as f (u) = u2(1+ cosu).

3.2.1.2 Asymptotic Behavior

The blow-up rate of solutions of (3.34) is determined implicitly by the following

theorem.

Theorem 3.25 Assume Ω satisfies uniform interior and exterior sphere conditions

on its boundary. Assume (3.36) holds and let u denote any positive solution of

(3.34). Then,

lim
x→x0

∫ ∞

u(x)

dt√
2F(t)

δ (x)
= 1,

where δ (x) = dist(x,∂Ω).

3.2.1.3 Uniqueness Results

In view of the maximum principle, it seems natural to only assume that f is nonde-

creasing in order to obtain uniqueness. To the best of our knowledge, no proof (or

counter-example) of such a statement has been given yet. Extra requirements such

as the convexity of f or the monotony of f (u)/u are needed in the proofs found in

the literature (see e.g. [143]). When the domain is a ball, we relax such assumptions

as follows:

Theorem 3.26 Assume that f is nondecreasing and that f is convex in a neigh-

borhood of +∞. Assume also that f satisfies the Keller–Osserman condition (3.35).

Then on any ball B(0,R) there exists a unique boundary blow-up solution of (3.34).
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Remark 4 The same result also holds if f is nondecreasing, f (u)/u is nondecreas-

ing in a neighbourhood of +∞ and (3.35) holds.

In dimension D = 1, a necessary and sufficient condition for uniqueness can be

derived. Namely, we have the following

Proposition 3.27 Assume that f satisfies the Sharpened Keller–Osserman condi-

tion. Then (3.34) admits a unique solution on Ω = (−R,R) if and only if the equa-

tion

Φ(α) = R

admits exactly one solution.

As a straightforward consequence, we obtain

Corollary 3.28 Assume that f satisfies the Sharpened Keller–Osserman condition.

(3.34) admits a unique solution on any domain Ω = (−R,R) if and only if Φ :

(0,∞)→ (0,∞) is one-to-one.

Remark 5 In particular, if f is nondecreasing, one can easily show that Φ is one-

to-one.

3.2.2 Minimality Principle

We restate the well-known sub and supersolution method (see [50] and [51]) and

derive elementary but important corollaries.

Proposition 3.29 Consider Ω a bounded domain of RD such that all boundary

points are regular, f ∈ C(R) and g ∈ C(∂Ω). Assume there exist two functions u,

u ∈C(Ω̄) such that u≤ u and{
Δu ≥ f (u) in D ′(Ω), (resp. Δu≤ f (u) in D ′(Ω))

u≤ g on ∂Ω (resp. u≥ g on ∂Ω ).
(3.46)

Then the problem {
Δu = f (u) in D ′(Ω) ,

u = g on ∂Ω ,
(3.47)

possesses at least one solution u ∈C(Ω̄ ,R) such that u≤ u≤ u.
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Corollary 3.30 (Minimality Principle) Make the same assumptions as in Proposi-

tion 3.29. Then there exists a unique solution u ∈ C(Ω̄) of (3.47) such that u ≤ u

and u|ω ≤ v for any open subset ω of Ω and any function v ∈C(ω̄) satisfying⎧⎪⎪⎨
⎪⎪⎩
Δv≤ f (v) in D ′(ω) ,

v≥ u in ω ,

v≥ u on ∂ω .

(3.48)

We call u the minimal solution of (3.47) relative to u.

Proof. Let u,u be the sub and supersolution given in the statement of Proposition

3.29. Let (I,>) denote the set of all finite families containing u of supersolutions

of (3.47) which stay above u, ordered by inclusion : i ∈ I if there exist n ∈ N and

supersolutions vk ∈C(Ω̄ ), 1≤ k≤ n (that is, (3.46) holds when u is replaced by vk)

with vk ≥ u, such that i = {u,v1, . . . ,vn}.
I is nonempty since {u} ∈ I. I is filtrating increasing, that is, if i1, i2 ∈ I there

exists i3 ∈ I such that i3 > i1, i2 (take e.g. i3 = i1 ∪ i2). We prove that given i =

{u,v1, . . . ,vn} ∈ I there exists a solution ui ∈C(Ω̄ ) of (3.47) such that ui ≤ v for all

v ∈ i. Let indeed u0 denote the solution given by Proposition 3.29. Following [51],

since u≤ u0≤ u, u0 is also a solution of (3.47), when f is replaced by the truncation

f 0 ∈C(Ω̄ ×R) defined by

f 0(x,u) =

⎧⎪⎪⎨
⎪⎪⎩

f (u(x)) if u < u(x),

f (u) if u(x)≤ u≤ u(x),

f (u(x)) if u > u(x).

In [51], the authors prove that in fact any solution u of (3.47) with nonlinearity f 0

satisfies u ≤ u ≤ u (and solves the problem with the original nonlinearity f ). For

convenience, we reproduce here the argument of Clément and Sweers : take any

solution u of (3.47) with nonlinearity f 0. Assume by contradiction that Ω+ := {x ∈
Ω : u(x)> u(x)} is nonempty. Working if necessary on a connected component of

Ω+, we may also assume that Ω+ is connected. For x ∈ ∂Ω+, either u(x) = u(x) or

x ∈ ∂Ω , so that u(x) = g(x)≤ u(x). Hence,{
Δ(u− u)≤ f (u)− f 0(x,u) = 0 in D ′(Ω+),

u− u≥ 0 on ∂Ω+.
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By the (weak) Maximum Principle, u ≥ u in Ω+, which is a contradiction. Hence,

u≤ u and we can prove similarly that u≥ u.

Define now the truncation f 1 ∈C(Ω̄ ×R) of f 0 associated to v1 by :

f 1(x,u) =

⎧⎪⎪⎨
⎪⎪⎩

f 0(x,u(x)) if u < u(x),

f 0(x,u) if u(x)≤ u≤ v1(x),

f 0(x,v1(x)) if u > v1(x).

Clearly, u and v1 are a sub and a supersolution of (3.47) with nonlinearity f 1.

Applying Proposition 3.29 (which still holds for nonautonomous nonlinearities, see

[51]), we can thus construct a solution u1 of (3.47) with nonlinearity f 1, satisfying

u ≤ u1 ≤ v1. Clearly, u1 is a solution of the problem with nonlinearity f 0 and, as

we mentioned earlier, we must have u1 ≤ u. Repeating the process inductively, we

obtain a solution ui := un such that u≤ ui ≤ u,v1, . . . ,vn.

Note that ui may not be unique. Nevertheless, using the Axiom of Choice on

the set of all such solutions, we can construct a well-defined generalized sequence

(ui)i∈I , contained in the set K of all solutions u satisfying u≤ u≤ u.

By standard elliptic estimates, K is a compact subset of C(Ω̄ ) so there exists a

generalized subsequence {uφ( j)} j∈J converging to a solution u of (3.47).

Choose now an arbitrary supersolution v≥ u and let i1 := {v,u} ∈ I. Given ε > 0,

let j0 ∈ J such that j > j0 =⇒ ‖uφ( j)− u‖∞ < ε . Also choose j1 ∈ J such that

j > j1 =⇒ φ( j) > i1. Finally pick j3 > j1, j2. Then, for j > j3,

u≤ ‖uφ( j)− u‖∞+ uφ( j) ≤ ε+ v.

Letting ε → 0, we conclude that u ≤ v for any supersolution v≥ u. Clearly, u is the

unique such solution.

It remains to prove that given any subdomain ω and any function v ∈C(ω̄) sat-

isfying (3.48), u≤ v. Fix such a function v and define hk ∈C(Ω̄ ×R), k = 0,1, by

h0(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

f (u(x)) if t < u(x),

f (t) if u(x)≤ t ≤ u(x),

f (u(x)) if t > u(x).
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and

h1(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

h1(x,u(x)) if t < u(x),

h1(x, t) if x ∈Ω \ω or if x ∈ ω and u(x)≤ t ≤ v(x),

h1(x,v(x)) if x ∈ ω and t > v(x).

Working as before, we may solve (3.47) with nonlinearity h1 and obtain a solu-

tion ũ of (3.47) with nonlinearity f such that u ≤ ũ ≤ u and ũ|ω ≤ v. Since ũ is a

supersolution of (3.47), we also have u≤ ũ. Hence u|ω = ũ|ω ≤ v. ��
We present in what follows a short proof of Corollary 3.30 in the case where f is

a locally Lipschitz function.

Proof. Uniqueness : Let u1, u2 be two such solutions. Choosing ω = Ω and v = u2

in the statement of Corollary 3.30, we conclude that u1 ≤ u2. Reversing the roles of

u1 and u2, we conclude that u1 = u2.

Existence : Let Λ = sup
[minu,maxu]

| f ′|, u0 = u and for k ≥ 1, define uk ∈ C(Ω̄ ) induc-

tively by {
Δuk−Λuk = f (uk−1)−Λuk−1 in D ′(Ω),

uk = g on ∂Ω .

Then it is known that the sequence {uk} is nondecreasing and converges to a solution

u ∈C2(Ω)∩C(Ω̄ ) of (3.47), which satisfies in addition u≤ u≤ u.

Let v ∈ C(ω̄) verify (3.48) and assume by contradiction that the set ω1 := {x ∈
ω : v(x) < u(x)} is nonempty. Clearly ω1 is open. Working if necessary with a

connected component ofω1, we assume thatω1 is connected. We prove by induction

that v ≥ uk in ω1 for all k ∈ N. Passing to the limit as k → ∞, we then obtain a

contradiction with the definition of ω1.

By assumption, v ≥ u = u0 in ω1. Given k ≥ 1, assume that v ≥ uk−1 in ω1. In

particular, we have that v(x) ∈ [minu,maxu] for x ∈ ω1.

Observe that if x ∈ ∂ω1 then either v(x) = u(x), or x ∈ ∂ω , whence v(x) ≥ u(x).

Since u≥ uk, we conclude that v≥ u≥ uk on ∂ω1. Hence,{
Δ(v−uk)−Λ(v− uk)≤ f (v)− f (uk−1)−Λ(v−uk−1)≤ 0 in D ′(ω1),

v− uk ≥ 0 on ∂ω1.

By the (weak) Maximum Principle, v≥ uk in ω1. ��
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Remark 6 Applying the Minimality Principle to (3.47) with nonlinearity − f , we

also obtain the existence and uniqueness of a maximal solution relative to u, defined

in the straightforward way.

Remark 7 Assume Ω = BR is a ball centered at the origin and g is a positive con-

stant. If u is radial , one easily sees that the minimal solution u relative to u is radial

: just apply the Minimality Principle 3.30 with v(x) = u(O(x)), where O ∈ OD is

an arbitrary rotation of the Euclidean space. A well-known result of Gidas, Ni and

Nirenberg [97] states that any solution u > g is radially symmetric, provided f is

e.g. locally Lipschitz.

Finally, letting φ(r) = u(x) for r = |x|, it follows from standard ODE theory that

φ ′(0) = 0 and φ ′(r)> 0 in (0,R).

Corollary 3.31 (Minimality Principle for blow-up solutions) Let Ω be a bounded

domain of RD such that all boundary points are regular, f ∈ C(R). Assume there

exist a function u ∈C(Ω̄) such that Δu ≥ f (u) in D ′(Ω) and a function v ∈C(Ω)

such that Δv≤ f (v) in D ′(Ω), limx→x0 v(x) = +∞ for all x0 ∈ ∂Ω and v≥ u.

Then there exists a unique solution u ∈ C(Ω) of (3.34) such that u ≤ u and

u|ω ≤ v for any open subset ω ⊂Ω and any v ∈C(ω) satisfying⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δv≤ f (v) in D ′(ω),

v≥ u in ω ,

lim
x→x0

v(x) = +∞ f or all x0 ∈ ∂ω .
(3.49)

We call u the minimal solution of (3.34) relative to u.

Proof. Clearly, there exists at most one such solution. Let now N denote any

integer larger than ‖u‖L∞(Ω) and let uN denote the minimal solution relative to u of

{
ΔuN = f (uN) in D ′(Ω),

uN = N on ∂Ω .

Using the Minimality Principle 3.30, one can easily show that the sequence (uN)

is nondecreasing and that uN ≤ N. Take any (smooth) open set ω ⊂⊂ Ω such that

v≥N on ∂ω . By the Minimality Principle 3.30 again, we conclude that v|ω ≥ uN |ω .

Since this holds for any such ω , we conclude that v ≥ uN in Ω . In particular the
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sequence (uN) is bounded on compact subsets of Ω and using elliptic regularity, we

conclude that (uN) converges to a blow-up solution u of (3.34) such that u≤ u≤ v.

Now take ω ⊂ Ω open and v ∈C(ω) satisfying (3.49). Take ω̃ ⊂⊂ ω such that

v ≥ N on ∂ω̃ . Applying the Minimality Principle 3.30, we have that uN |ω̃ ≤ v|ω̃ .

Again, since ω̃ ⊂⊂ω is arbitrary, we conclude that uN |ω ≤ v. Letting N →∞ yields

the desired inequality. ��

Remark 8 In contrast with Remark 6, there does not exist in general a maximal

boundary blow-up solution of (3.34). See Sect. 3.2.10.3 for enlightening counter-

examples.

3.2.3 Existence of Solutions on Some Ball

In this section, we prove that (3.35) implies the existence of a boundary blow-up

solution on some ball. First, we state and prove a useful technical lemma.

Lemma 3.32 Let φ ∈C2(0,R) be a nondecreasing function solving

φ ′′+
D− 1

r
φ ′ = f (φ) in (0,R). (3.50)

Then, given 0 < r1 < r2 < R,

1√
2

∫ φ(r2)

φ(r1)

1√
F(s)−F(φ(r1))

ds≥ 1
D− 2

r1

(
1−

(
r1

r2

)D−2
)
,

if D �= 2 and
1√
2

∫ φ(r2)

φ(r1)

1√
F(s)−F(φ(r1))

ds≥ r1 ln
r2

r1
,

if D = 2.

Proof. For r ∈ (r1,r2), (3.50) is equivalent to

d
dr

(
rD−1φ ′

)
= rD−1 f (φ). (3.51)

Multiplying the above equation by rD−1φ ′ and integrating between r1 and r, we

obtain
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1
2

r2D−2 (φ ′(r))2 ≥ 1
2

(
r2D−2 (φ ′(r))2− r2D−2

1

(
φ ′(r1)

)2
)

=

∫ r

r1

t2D−2 f (φ(t))φ ′(t)dt

≥ r2D−2
1 (F(φ(r))−F(φ(r1))) .

So,
1√
2

φ ′(r)√
F(φ(r))−F(φ(r1))

≥
( r1

r

)D−1
.

Integrating the above equation between r1 and r2, we obtain the desired result.��
Assume now (3.35) holds for some α > 0. If D �= 2, assume temporarily that

Φ(α)< 1
|D−2| . Applying Proposition 3.29 with u= 0 and u=α , let u be the minimal

solution relative to u of {
Δu = f (u) in B1,

u = α on ∂B1.

Using Remark 7 and letting α̃ = u(0), φ(r) := u(x) for r = |x| solves (3.50), subject

to the initial conditions φ(0) = α̃ and φ ′(0) = 0. φ can thus be extended on some

maximal interval (0,R). Assume temporarily that R<∞. Then u is a boundary blow-

up solution on BR. Indeed, by definition of R, we must have either φ(R) = +∞ or

φ ′(R) =+∞. In the latter case, multiply (3.50) by φ ′ and integrate between 0 and r to

obtain that 1
2 (φ

′)2 ≤ F(φ). Hence F(φ(R)) = +∞, φ(R) = +∞ and u is a boundary

blow-up solution. It remains to prove that R <∞.

Assume by contradiction that R = ∞. Apply Lemma 3.32 between r1 = 1 and

r2 > 1 :

Φ(α) ≥ 1
D− 2

(
1−

(
1
r2

)D−2
)
,

if D≥ 3 and

Φ(α) ≥ lnr2,

if D = 2. Letting r2 converge to ∞, we obtain a contradiction if either D = 2 or

Φ(α) < 1
|D−2| .

If D �= 2 and Φ(α) ≥ 1
|D−2| , choose K > 0 so large that 1

KΦ(α) < 1
|D−2| . The

above proof provides a boundary blow-up solution u of (3.34) on some ball BR,

when f is replaced by K2 f . ũ(x) := u(x/K) is then a boundary blow-up solution of

(3.34) with nonlinearity f on BRK.��
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Remark 9 Let B be a ball of radius R and assume u ∈C(B̄) is such that Δu≥ f (u)

in B. Assume (3.35) holds for some α ≥ supB u and let u = α . Using Proposition

3.29, let u be the minimal solution relative to u of{
Δu = f (u) in B,

u = α on ∂B.

Repeating the above proof, we conclude that u can be extended to a radially sym-

metric boundary blow-up solution on some ball B̃ of radius R̃ > R, satisfying u ≥ u

in B.

3.2.4 Existence of Solutions on Small Balls

Assume (3.36) holds. By Theorem 3.23, (3.34) has a solution on some ball and we

may define

R0 := inf{R > 0 : (3.34) has a solution in BR}.

We assume by contradiction that R0 > 0. Let (βn) be a sequence of real numbers

increasing to infinity and satisfying

lim
βn→∞

Φ(βn) = 0.

Applying Proposition 3.29 with u = 0 and u = βn, let un be the minimal solution

relative to u of {
Δun = f (un) in BR0/2,

un = βn on ∂BR0/2.

By Remark 7, letting αn = un(0), φn(r) := un(x) for r = |x| solves (3.50) with initial

conditions φn(0) =αn and φ ′n(0) = 0. By definition of R0, φn can be extended so that

φn remains a solution of (3.50) in (0,R0). Now apply Lemma 3.32 with r1 = R0/2

and r2 = R0 :

Φ(βn)≥ 1
D− 2

R0

2

[
1−

(
1
2

)D−2
]
,

if D≥ 3 and

Φ(βn)≥ R0

2
ln(2),
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if D = 2. Passing to the limit as n→ ∞, we obtain a contradiction in both cases. We

have just proved that

inf{R > 0 : (3.34) has a solution in BR}= 0. (3.52)

Remark 10 Let B be a ball of radius R and assume u ∈ C(B̄) is such that Δu ≥
f (u) in B. Using Remark 9 and working as above, one can show that inf{R̃ > R :

(3.34) has a solution u in BR̃ such that u≥ u in B}= R.

3.2.5 Existence of Solutions on Smooth Domains

We assume here that (3.36) is valid. Applying Proposition 3.29 with u = 0 and

u = N, N ∈N, let uN be the minimal solution relative to u of (3.47) with g≡ N. For

x ∈Ω , choose a ball B(x,r)⊂Ω such that there exists a boundary blow-up solution

ur on B(x,r). This is always possible since (3.52) holds. Applying the Minimality

Principle 3.30 with v̄ = ur, we conclude that 0 ≤ uN ≤ ur in B(x,r). In particular,

the sequence (uN) is uniformly bounded in B(x,r/2).

Let K denote an arbitrary compact subset of Ω . Covering K by finitely many

balls B(xi,ri/2), we conclude that {uN} is uniformly bounded on K by a constant

depending only on K and f . Applying the Minimality Principle 3.30 with v̄ = uN+1,

we can also infer that {uN} is a nondecreasing sequence. Using these two facts

and elliptic regularity, we conclude that {uN} converges to a function u solving

Δu = f (u) in Ω .

Fix a point x0 ∈ ∂Ω and an arbitrary sequence (xk) in Ω converging to x0. Then,

since u≥ uN ,

liminf
k→∞

u(xk)≥ liminf
k→∞

uN(xk) = N.

Letting N converge to infinity, we conclude that u is a boundary blow-up solution of

(3.34) in Ω .

Proof of Theorem 3.23 continued. By Sect. 3.2.3, we know that if (3.35) holds,

there exists a blow-up solution on some ball. Conversely, assume that u > 0 solves

(3.34) on some ball B of radius R centered at the origin. By Corollary 3.31, we may

always assume that u is the minimal solution relative to u = 0 of (3.34). In particular

u is radial and we define φ(r) = u(x) for r = |x|, so that φ solves (3.51) in (0,R).
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Multiplying (3.51) by rD−1φ ′ and integrating between 0 and r, we obtain

1
2

r2D−2φ ′(r)2 =
∫ r

0
t2D−2 f (φ(t))φ ′(t) dt ≤ r2D−2 [F(φ(r))−F(φ(0))] .

Integrating once more between 0 and R,

0≤
∫ R

0

φ ′(r)√
2 [F(φ(r))−F(φ(0))]

dr ≤ R, (3.53)

which implies (3.35) with α = φ(0). ��

Proof of Theorem 3.24 continued. By Sect. 3.2.5, we know that if (3.36) holds,

there exists a blow-up solution on any domain. Conversely, given n∈N, assume that

un > 0 solves (3.34) on the ball B of radius 1/n centered at the origin. By Corollary

3.31, we may always assume that un is the minimal solution relative to u = 0. In

particular un is radial. Let now βn = un(0). We claim that (βn) is unbounded. Taking

a subsequence if necessary, we then have that limnβn = ∞ and (3.36) follows from

(3.53) applied with R = 1/n.

It remains to prove that (βn) is unbounded. If not, up to a subsequence, (βn)

converges to some β ≥ 0. By (3.53) applied with R = 1/n, we have

0≤
∫ ∞

βn

dt√
2 [F(t)−F(βn)]

dr ≤ 1/n.

By Fatou’s lemma, we conclude that
∫ ∞

β

dt√
2 [F(t)−F(β )]

dr = 0,

which is not possible. ��

3.2.6 Blow-Up Rate of Radially Symmetric Solutions

Proposition 3.33 Assume that f satisfies the Keller–Osserman condition (3.35).

Assume φ is a radially symmetric and monotone boundary blow-up solution on the

unit ball. Then, for r ∼ 1,

∫ +∞

φ(r)

dt√
F(t)

∼
√

2(1− r). (3.54)
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Proof. Multiplying (3.51) by rD−1φ ′ and integrating by parts, we easily obtain that

given r ∈ (0,1),
(φ ′)2 (r)

2
= F(φ(r))−Gφ (r), (3.55)

where

Gφ (r) =
2D− 2

r

∫ r

0

( s
r

)2D−1
F(φ(s))ds.

We claim that

Gφ (r) = o(F(φ(r))), as r→ 1. (3.56)

Let indeed ε > 0. Then, since F is nondecreasing,

Gφ (r)

F(φ(r))
=

2D− 2
r

∫ 1−ε

0

( s
r

)2D−1 F(φ(s))
F(φ(r))

ds

+
2D− 2

r

∫ r

1−ε

( s
r

)2D−1 F(φ(s))
F(φ(r))

ds.

≤C
F(φ(1− ε))

F(φ(r))
+Cε.

Letting r→ 1 and then ε → 0, we obtain the desired result. Returning to (3.55), we

obtain

1− φ ′√
2F(φ)

= 1−
[

1− Gφ

F(φ)

]1/2

.

Combining this with (3.56), it follows that for r ∼ 1,

1− φ ′√
2F(φ)

∼ Gφ

2F(φ)

and, integrating between r and 1,

(1− r)−
∫ ∞

φ(r)

dt√
2F(t)

∼
∫ 1

r

Gφ (s)

2F(φ(s))
ds= o(1),

which implies (3.54).

3.2.7 Blow-Up Rate of Solutions on Smooth Domains

Let u be a blow-up solution on a domain Ω , which satisfies an interior and an exte-

rior sphere condition at any boundary point. Fix x0 ∈ ∂Ω and let BR ⊂ Ω denote a

small ball which is tangent to ∂Ω at x0. Fix η ∈ (0,1). Let u := u|BηR . By Remark 9,
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there exists a radial boundary blow-up solution v defined on some ball B̃⊃BηR, such

that v≥ u in BηR. Let K > 0 such that KB̃ = BR and let vK(x) := v((x−x1)/K+x1),

where x1 is the center of BR. Then vK solves⎧⎨
⎩ΔvK =

1
K2 f (vK) in BR,

vK =+∞ on ∂BR.

Since u(x1)≤ v(x1) = vK(x1), Proposition 3.33 implies that

K
∫ +∞

u(x1)

dt√
F(t)

≥ K
∫ +∞

vK(x1)

dt√
F(t)

∼
√

2R.

Letting R→ 0, we then have

K liminf
x→x0

∫+∞
u(x)

dt√
F(t)

δ (x)
≥
√

2.

By Remark 10, we may take K arbitrarily close to 1/η . Also, 0 < η < 1 was chosen

arbitrarily, so letting K,η → 1, we finally obtain

liminf
x→x0

∫ +∞
u(x)

dt√
F(t)

δ (x)
≥
√

2.

Choose another ball BR′ ⊂ R
N \ Ω̄ which is tangent to ∂Ω at x0 and a concentric

ball BR′′ with R′′ > R′ so large thatΩ ⊂ BR′′ . Finally, let A = BR′′ \BR′ . Let v denote

the minimal boundary blow-up solution (relative to u = 0) on A. By the Minimality

Principle 3.31, we deduce that u ≥ v in Ω . Applying Proposition 3.33 (which still

holds on an annulus) with v, we conclude that

limsup
x→x0

∫+∞
u(x)

dt√
F(t)

δ (x)
≤ limsup

x→x0

∫ +∞
v(x)

dt√
F(t)

δ (x)
≤
√

2.

This finishes the proof of Theorem 3.25. More can be said about the asymptotic

behavior of solutions provided F satisfies some extra growth assumption.

Lemma 3.34 Let u,v denote two radially symmetric boundary blow-up solutions

defined on the unit ball B. Assume there exist β > 0 and M > 0 such that F(v)
v2 ≥

β 2 F(u)
u2 whenever M ≤ u≤ v. Then u(r)∼ v(r) on ∂B.

Proof. We recall from the proof of Proposition 3.33 that for φ a radially symmetric

boundary blow-up solution and for r ∼ 1,
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(1− r)−
∫ ∞

φ(r)

dt√
2F(t)

≤C
∫ 1

r

Gφ (s)

F(φ(s))
ds≤C

∫ 1

r

φ(s)√
F(φ(s))

ds.

Using that
˙φ(s)√

2F(φ(s))
∼ 1, we then obtain that, introducing K(r) such that 1− r =∫ ∞

K(r)
dt√
2F(t)

,

∫ φ(r)

K(r)

dt√
2F(t)

≤C
∫ ∞

φ(r)

t
F(t)

dt. (3.57)

Since F is increasing, we thus obtain

(
1− K(r)

φ(r)

)
≤C

√
F(φ(r))
φ(r)

∫ ∞

φ(r)

t
F(t)

dt. (3.58)

Since F(v)
v2 ≥ β 2 F(u)

u2 for u≤ v large enough, (3.58) implies that

(
1− K(r)

φ(r)

)
≤ C
β

∫ ∞

φ(r)

dt√
F(t)

.

The classical Keller–Osserman (3.35) condition gives the result. �

Corollary 3.35 Assume either that f is convex on some interval [a,+∞) or that

f (t)/t is nondecreasing on [a,+∞). Then the result of the previous lemma holds.

Proof. Assume f is convex in [a,+∞) and let G(t) = F(t +a)−F(a)− f (a)t. Then

G(0) = G′(0) = 0 and G′ is convex in R
+. So G(t)/t2 is nondecreasing, that is,

t → F(t+a)−L(t)
t2 is nondecreasing, where L(t) = F(a)+ f (a)t is affine. Observe that

limt→∞F(t)/t2 =+∞ since the Keller–Osserman condition (3.35) implies

u

2
√

F(u)
≤

∫ u

u/2

dt√
F(t)

= o(1) as u→ ∞.

It follows that there exists β > 0 such that F(v)
v2 ≥ β 2 F(u)

u2 for u≤ v large enough and

we may apply Lemma 3.34. The case where f (t)/t is nondecreasing on [a,+∞) is

similar, so we skip it. ��

3.2.8 A Uniqueness Result

We start with the following auxiliary result.
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Lemma 3.36 Assume that f is nondecreasing on [0,+∞) and convex in a neigh-

borhood of +∞ (say [a,+∞)). Consider two radially symmetric boundary blow-up

solutions such that u(r)≤ v(r) on B(0,R), then in fact u = v everywhere.

Proof. Set R = 1 for the sake of simplicity. Since f is nondecreasing, either u(0) =

v(0) (and then u = v everywhere) or u(r)< v(r) everywhere since ∂ (rD−1(v̇− u̇)) =

rD−1( f (v)− f (u)) so the map r→ v(r)−u(r) is nondecreasing. Assume then u(0)<

v(0).

Let ε > 0. Consider the set ωε = {r ∈ [0,1);∀s < r, (1+ ε)u(s)< v(s)}. If ε is

small enough, 0 ∈ ωε . Due to Lemma 3.34, R = 1 �∈ ωε since u ∼ v close to the

boundary. Then introduce r0
ε = supωε , which satisfies 0 < r0

ε < 1. We now have

v(0)− u(0)≤ v(r0
ε )− u(r0

ε) = εu(r0
ε ). (3.59)

Then either r0
ε converges towards R = 1 when ε → 0 or, letting ε → 0, u(0) = v(0)

and the proof is complete.

Introduce now a such that f is convex on [a,+∞). Introduce R0 such that u(r) ≥ a

for r ≥ R0. Then for ε small enough r0
ε > R0. Set w(r) = (1+ ε)u(r). Then, on the

annulus R0 < s < r0
ε , using the convexity

Δ(v−w) = f (v)− (1+ ε) f (u)

≥ f (v)− (1+ ε)
[

f (w)− f (a)
u− a
w− a

− (1+ ε) f (a)

]

≥ f (v)− f (w)+
ε

w− a
(a f (w)−w f (a)).

(3.60)

Observe now that the map X → X f (a)−a f (X)
X−a is majorized by some constant C for

X ≥ a. Then introducing χ that satisfies −Δχ = 1 with homogeneous Dirichlet

condition at R = 1 (χ(1) = 0)

Δ(v−w−Cεχ)≥ 0 (3.61)

and by the maximum principle, for any r in R0 < r < r0
ε

v(r)−w(r)−Cεχ(r)≤max(−Cεχ(r0
ε ),v(R0)−w(R0)−Cεχ(R0)). (3.62)

Then letting ε → 0 we obtain that for any fixed r such that R0 < r < 1,
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v(r)− u(r)≤ v(R0)− u(R0). (3.63)

Since the map r → v(r)− u(r) is nondecreasing, this implies that v(r)− u(r) is

constant on [R0,1). By standard ODE theory, this implies that v and u coincide

everywhere on [0,1]. �

Remark 11 Since f is nondecreasing, there exist U ,U the minimal and the maxi-

mal boundary blow-up solutions of the problem (the latter can be obtained e.g. as

the monotone limit of u(R) as R → 1−, where u(R) denotes the minimal bound-

ary blow-up solution on BR). Clearly both U and U are radial and they coincide

by the previous lemma. Since any solution u of the problem must stay between U

and U , Theorem 3.26 follows. Alternatively, according to a result of Poretta and

Veron [160], any boundary blow-up solution is radially symmetric if f is convex

in a neighborhood of +∞, whence again Theorem 3.26 follows from the previous

lemma.

Remark 12 The previous lemma is still valid if we substitute the assumption f (u)
u

increasing in a neighborhood of infinity to the convexity assumption. Since the

proofs are easier they are left as an exercise to the reader.

3.2.9 Discrete Equations

We are concerned with finite difference approximations of (3.34) when D = 1 or

D = 2 on a cube or a ball. After introducing some notation, we observe that both

the maximum principle and the minimality principle extend to the case of finite

difference operators. We conclude this section with some theoretical error estimates,

assuming that f is a nondecreasing function.

3.2.9.1 Finite Differences

To begin with, consider the interval [−1,1] or the unit square [−1,1]2. Consider a

uniform gridΩh with mesh size h = 1
L for some integer L. The nodes on the grid are

respectively jh if D=1, −L≤ j ≤ L, or (ih, jh) if D = 2, with −L≤ i, j ≤ L.
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The discrete Laplace operator is then defined on each point/node of the grid re-

spectively by

(ΔhU) j =
1
h2 (−2Uj +Uj+1+Uj−1), (3.64)

if D = 1 and

(ΔhU)i, j =
1
h2 (−4Ui, j +Ui, j+1 +Ui, j−1+Ui+1, j +Ui−1, j), (3.65)

if D = 2. In the above, U is a vector in R
2L+1 (or R(2L+1)2 in 2D) with compo-

nents Uj � u( jh) (or Ui, j � u(ih, jh)). If D = 2, we then solve ΔhU = f (U), that is,

(ΔhU)i, j = f (Ui, j) for all interior nodes (i, j) and set U±L, j =Ui,±L =N at all bound-

ary nodes, where N is a fixed large constant. We work accordingly when D = 1.

It is standard to prove that the matrix Δh has positive inverse, that is, the entries

of the inverse matrix are positive. Therefore, the maximum principle is valid (see

[40]). Actually, if U satisfies ΔhU ≤ 0 on the interior nodes of the grid and U ≥ 0

on the boundary, then U ≥ 0 everywhere. Here and throughout this section we write

U ≥ 0 if and only if Ui, j ≥ 0 for all (i, j) nodes of the grid. We shall use the same

notation for B a matrix: B≥ 0 if and only if the entries of B are all nonnegative.

When working on the unit ball, we use a slightly modified scheme. Focussing on

radially symmetric functions, we approximate the equation

1
r
∂
∂ r

(r
∂u
∂ r

) = f for r ∈ (0,1). (3.66)

Discretize [0,1] by setting Lh = 1, 0 ≤ j ≤ L. At j = L set UL = N (boundary con-

dition). For 0 < j < L solve

1
r
∂ (r∂u)� 1

jh
D+( jhD−U) =

−2Uj +Uj+1+Uj−1

h2 +
Uj+1−Uj

jh2 = Fj, (3.67)

where (D+U) j =
Uj+1−Uj

h , (D−U) j =
Uj−Uj−1

h . It remains to define the equation

at j = 0. For that purpose, we use the symmetry property u(h) = u(−h) and the

approximation u̇(0)
0 = ü(0) to set

4
h2 (−U0 +U1) = F0.

This approximation of the Laplace operator satisfies the maximum principle. Indeed,

it can be easily checked that if Fj ≥ 0 then j → Uj is increasing. The maximum

principle follows promptly.
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3.2.9.2 Computing an Approximation

We aim to solve the following problem{
Δhuh = f (uh) in Ω ,

uh = N on ∂Ω ,
(3.68)

for N large enough.

We expect that uh is an approximation for u, the minimal boundary blow-up so-

lution corresponding to u = 0. As in Proposition 3.29, uh is obtained by monotone

iteration, starting from the discrete subsolution 0. We claim that Proposition 3.29

and Corollary 3.30 are valid for the finite difference approximation. The proof fol-

lows the guidelines of the continuous case and is left as an exercise for the reader.

An approximation of the solution to problem (3.68) is recursively obtained by

the following discrete iterative scheme:

Consider uk ∈ R
(2L+1)D, where L = 1

h , recursively defined by

u0 = 0

and for k ≥ 0, uk+1 solves{
(Δh−ΛNId)uk+1 = f (uk)−ΛNuk in Ωh,

uk+1 = N on ∂Ωh,
(3.69)

where ΛN = sup[0,N] f ′.
Therefore the error between u, the minimal boundary blow-up solution, and uk

the k-th iterate of (3.69) can be split as follows:

Ih(u)− uk = Ih(u− uN)+ (Ih(uN)−uh)+ (uh−uk) (3.70)

where Ih is the interpolation operator defined by Ih(u)i = u(xi) when D = 1 (respec-

tively by Ih(u)a = u(a) when D = 2 for a node a = (ih, jh) on the grid), and uN is

the solution of {
Δu = f (u) in Ω ,

u = N on ∂Ω .
(3.71)
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3.2.9.3 Error Estimate

Throughout this section, we assume that f is a convex increasing function and that

Ω = [−1,1]D. We first bound from above the rate of convergence of the algorithm

(3.69).

Lemma 3.37 Let uk ∈R
(2L+1)D be given by (3.69) and uh = limk→∞ uk. Then, there

exist constants C =C(D), μ = μ(D)> 0 and λ = λ ( f ) <ΛN such that

‖uk−uh‖�∞ ≤C

(
1− λ

ΛN

)k

min

(
1,

1

hD/2

[
1− μ

ΛN
+
μ2

Λ2
N

]k
)
‖u0−uh‖�∞ . (3.72)

Proof. In the sequel let us denote by a a node of the grid (that is a = ih in 1D or

a = (ih, jh) in 2D). (uk) is a nondecreasing sequence in R
(2L+1)D (that is, uk

a ≤ uk+1
a

for each node a). By the mean value theorem, there exists θa ∈ (uk
a,(uh)a) such that

f (uk
a)− f ((uh)a) = f ′(θa)(u

k
a− (uh)a). (3.73)

Therefore∣∣∣∣
(
(uh)a− f ((uh)a)

ΛN

)
−

(
(uk)a− f ((uk)a)

ΛN

)∣∣∣∣≤ (1− λ
ΛN

)((uh)a−uk
a), (3.74)

where λ = inf f ′.
On the other hand

uh−uk =

(
Id− Δh

ΛN

)−1((
uh− f (uh)

ΛN

)
−

(
uk− f (uk)

ΛN

))
, (3.75)

where f (u) denotes the vector with components f (u)a = f (ua). The key argument

is to observe that the matrix Id− Δh
ΛN

satisfies the maximum principle. Therefore,

0≤ uh− uk+1 ≤
(

1− λ
ΛN

)(
Id− Δh

ΛN

)−1

(uh−uk), (3.76)

where inequalities hold component by component. We thus obtain that

‖uh−uk‖�∞ ≤
(

1− λ
ΛN

)k
∥∥∥∥∥
(

Id− Δh

ΛN

)−k
∥∥∥∥∥

L (�∞)

‖uh−u0‖�∞ . (3.77)
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On the one hand, the maximum principle implies that∥∥∥∥∥
(

Id− Δh

ΛN

)−k
∥∥∥∥∥

L (�∞)

≤C, (3.78)

for some constant C depending only on the dimension D.

On the other hand, since the spectrum of −Δh lies in a segment [μ , μ
h2 ] (see [40])

and 1√
(2/h+1)D

‖ · ‖�2 ≤ ‖ · ‖�∞ ≤ ‖ · ‖�2 in R
(2L+1)D, we get

||(Id− Δh

ΛN
)−k||L (�∞) ≤Ch−D/2||(Id− Δh

ΛN
)−k||L (�2) =Ch−D/2

(
1

1+ μ
ΛN

)k

.

(3.79)

Using that 1
1+ μ

ΛN

≤ 1− μ
ΛN

+ μ2

Λ2
N

and collecting (3.77), (3.78) and (3.79), the proof

is complete. �

We now provide an upper bound for uh− Ih(uN).

Lemma 3.38 Assume f is convex. Let uh be the solution of (3.68) and uN be the

solution of (3.71). Then,

‖uh− Ih(uN)‖�∞ ≤Ch2α(N, f ) (3.80)

where α(N, f ) = ‖u(4)N ‖L∞ is a constant depending only on N and f .

Proof. For the sake of simplicity we will denote Ih(uN) by uN ; this introduces no

confusion.

We write down the proof for the 2D problem, leaving the 1D case as an exercise

for the reader. Let a = (ih, jh) be a node on the grid. By the mean value theorem,

for each node a, there exist ξ ,η in R
2 such that

|ξ − a|< h and |η− a|< h, (3.81)

and

Δh(uN)a− (ΔuN)a = ch2(
∂ 4u
∂x4 (ξ )+

∂ 4u
∂y4 (η)). (3.82)

Therefore⎧⎪⎨
⎪⎩
Δh(uh−uN)a = f (uh)a− f (uN)a− ch2

[
∂ 4u
∂x4 (ξ )+

∂ 4u
∂y4 (η)

]
in Ωh,

(uh−uN)a = 0 on ∂Ωh.
(3.83)
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Consider ω = uh−uN, then working as in the previous lemma we obtain

wa =

[
(Δh +ΛN)

−1
(

Id−D

(
f ′(θ )
ΛN

))
ΛN

]
ch2

(
∂ 4u
∂x4 (ξ )+

∂ 4u
∂y4 (η)

)
, (3.84)

where θa ∈ (uN(a),(uh)a).

We therefore obtain

‖wa‖�∞ ≤ 1
ΛN

4

1+ 4
ΛN

‖Δ−1
h ‖L (�∞)Ch2‖u(4)N ‖L∞ , (3.85)

where ‖u(4)N ‖L∞ = max|α |≤4(‖∂αuN‖L∞).��
Remark 13 When D = 1 and f (u) = up with p ≥ 2, the constant α(N, f ) is given

by

α(N, f ) = ‖u(4)N ‖L∞ =
p(3p− 1)

p+1
N2p−1.

3.2.9.4 Error Estimate for‖u− uN‖

Assume here that the Sharpened Keller–Osserman condition (3.36) is valid. Con-

sider then a sequence (αN) such that Φ(αN) converges towards 0. Consider the

minimal solution uN of

{
ΔuN = f (uN) inΩ = B(0,1),

uN = αN on ∂Ω .
(3.86)

Then one may wonder how uN approximates the minimal boundary blow-up solu-

tion u defined on the unit ball. We first state a qualitative result.

Proposition 3.39 There exists RN such that uN is a boundary blow-up solution on

B(0,RN). Moreover

RN− 1∼ 1√
2

∫ +∞

αN

dt√
F(t)

. (3.87)

Remark 14 This proposition shows that when we plot the approximation uN , we

plot in fact a boundary blow-up solution on a ball that is close to the unit ball.

Let us proceed to the proof in the case where D ≥ 3. The cases D = 1,2 are very

similar and so omitted. Assume that uN extends to R
D. Then by Lemma 3.32

1√
2

∫ uN(r)

uN(1)

dt√
F(t)−F(uN(1))

≥ 1
D− 2

(1− (
1
r
)D−2). (3.88)
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Here we have used that uN is radially symmetric. Therefore since uN(1) = αN ,

Φ(αN)≥ 1
D−2 (1− ( 1

r )
D−2). N → +∞ leads to a contradiction. The estimate (3.87)

comes from Proposition 3.33. �

Remark 15 Observe that if f (u) = up, then uN(r) = R
− 2

p−1
N u(rRN). In that case,

0 ≤ u(r)− uN(r) ≤ C(RN − 1)(u̇(r)+ u(r)). The inequality is sharp for some nu-

merical constant C. To prove the estimate in a more general context, we need extra

hypotheses.

Definition 3.40 Consider g : [0,+∞)→ [0,+∞) a function. We say that g is strongly

increasing if the function

ρ(λ ) = inf
u≥0

g(λu)
g(u)

is a C1 increasing function on [1,+∞) that satisfies ρ̇(1) �= 0.

A strongly increasing function is increasing in the usual sense. g(u) = up, p > 0 is

strongly increasing. g(u) = ln(u+ 1) is not.

We now state and prove

Proposition 3.41 Assume that f (u)
u is strongly increasing. Then

0≤ u(r)− uN(r) ≤C(RN− 1)(u̇(r)+ u(r)).

Proof. v(r) = λuN(rRN) is a blow-up function on the unit ball. We have

Δv = λR2
N f

( v
λ

)
≤ R2

N

ρ(λ )
f (v). (3.89)

For N large enough, we choose λN close to 1 such that ρ(λN) = R2
N . Then v is

a blow-up supersolution to (3.34). Since u is the minimal blow-up solution, then

u(r)≤ v(r). Therefore

0≤u(r)−uN(r)≤ u(r)− 1
λN

v(
r

RN
)

≤(RN−1)u̇(r)+ (1− 1
λN

)u(rR−1
N )≤C(RN −1)(u̇(r)+ u(r)),

(3.90)

since (1− 1
λN

)≤ 2 RN−1
ρ̇(1) . �
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3.2.10 Numerical Computations

In this section, we present some numerical results obtained with our method of

approximation.

Remark 16 At this stage, we would like to point out that our method is self-

contained, and does not use the knowledge of the boundary blow-up behavior of

the solution. In fact, as in [119], one can introduce another approximate problem

such as taking Ωε ⊂Ω where dist(Ω ,Ωε )≤ ε , and solve the problem{
Δuε = f (uε ) in Ωε ,

uε(x) = K(x) on ∂Ωε ,
(3.91)

where
1√
2

∫ +∞

K(x)

dt√
F(t)

= dist(x,∂Ω).

We discuss our numerical results successively on three examples:

• f (u) = u2 (that is, f (u)
u is increasing),

• f (u) = u2(2+ cosu),

• f (u) = u2(1+ cosu).

3.2.10.1 Case f (u) = u2

Since f (u)
u is increasing, on any domain we have a unique boundary blow-up solution

(see e.g. [2] and references therein).

We see in Fig. 3.1 that Φ is a strictly decreasing function.

For the sake of completeness, we plot in 1D the values of uh(0) for several val-

ues of h and we compare them to theoretical results (see Fig. 3.2 and Proposition

3.41).

Remark 17 The value of u(0) is obtained by solving

1√
2

∫ +∞

u(0)

dt√
F(t)−F(u(0))

= 1.
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Fig. 3.2 Convergence of uh(0) to u(0) versus h

3.2.10.2 Case f (u) = u2(2+ cosu)

This function f satisfies the Sharpened Keller–Osserman condition (3.36).

Figure 3.3 shows that Φ(α) tends to 0 when α tends to +∞ (then the Sharpened

Keller–Osserman condition is valid). Note that Φ is not a decreasing function; for
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Fig. 3.3 Φ when f (u) = u2(2+ cos(u))

instance for c≈ 0.49 there exist α �= β such that Φ(α) = Φ(β ) = c. Therefore, at

least in 1D, uniqueness does not hold.

Remark: The uniqueness result for f (u) = u2(2+ cosu) in B(0,1)⊂ R
D is still an

open question for D≥ 2.

Figure 3.4 shows an approximation of the minimal boundary blow-up radial so-

lution on B(0,1)⊂ R
2.

Radial solution when f(u)=u2 (2+cos(u))
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Fig. 3.4 Solution on the disk when f (u) = u2(2+ cosu)
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3.2.10.3 Case f (u) = u2(1+ cosu)

We first state

Proposition 3.42 The function f (u) = u2(1+cosu) satisfies the Sharpened Keller–

Osserman condition (3.36). Moreover,

lim
α→(2k+1)π

Φ(α) = +∞.

For a proof, see Proposition 3.21.

Figure 3.5 shows that for any domain, there exist an infinite sequence of boundary

blow-up solutions.
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Fig. 3.5 Φ when f (u) = u2(1+ cos(u))

When D = 1, this follows from the fact thatΦ(α) = R admits an infinite number

of solutions α . When D≥ 2, fix an integer m and observe that αm = (2m+ 1)π is a

subsolution. Let um denote the minimal boundary blow-up solution relative to u =

αm. Infinitely many um must be distinct. Indeed, choose m1 such that αm1 > u0(0).

Then um1(0) ≥ αm1 > u0(0). Repeating this process inductively yields infinitely

many distinct solutions umk .
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We plot in Fig. 3.6 approximations of different boundary blow-up solutions on

the interval [−1,1].
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Fig. 3.6 Some solutions when f (u) = u2(1+ cosu)

Figure 3.7 shows two radial approximations of different boundary blow-up solu-

tions on the unit ball in R
2.

Two radial solutions when f(u) = u2(1+cos(u))
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Fig. 3.7 Solutions on the disk when f (u) = u2(1+ cosu)
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3.3 Entire Large Solutions

Let f ∈ C1[0,∞) be a nonnegative function such that f (0) = 0. f is assumed to be

positive at infinity, in the sense that

there exists a ∈R s.t. f (a)> 0 and f (t)≥ 0 for t > a. (3.92)

and f is superlinear in the sense that

∫ +∞ ds√
F(s)

<+∞, (KO)

where F(s) =
∫ s

a f (t)dt.

In this section we are interested in the qualitative properties of solutions to{
Δu = ρ(|x|) f (u) ,u ≥ 0 in R

D,

u(x)→ 0 as |x| →+∞,
(3.93)

where D≥ 3 is a positive integer and ρ ∈C[0,∞) is a positive function such that∫ ∞

0
rρ(r)dr <+∞. (3.94)

Such solutions are called entire large solutions (in short ELS).

3.3.1 A Useful Result: Bounded Entire Solutions

In this section we are concerned with bounded entire solutions associated with

(3.93).

Proposition 3.43 Assume (KO) and (3.94). Then, for any 0≤ β ≤∞, there exists a

radially symmetric function wβ ∈C2(RD) such that

⎧⎨
⎩
Δwβ ≤ ρ(|x|) f (wβ ) in R

D,

lim
|x|→∞

wβ (x) = β . (3.95)

Moreover, the family {wβ}β∈[0,+∞] is increasing in β and limβ→∞wβ = w∞.

Proof. Integrating by parts and using (3.94) we have
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∫ r

0
t1−D

∫ t

0
sD−1ρ(s)dsdt =

1
D− 2

[∫ r

0
sρ(s)ds− r2−D

∫ r

0
sD−1ρ(s)ds

]

<
1

D− 2

∫ ∞

0
sρ(s)ds.

Hence, for all x ∈ R
D we can define

U(x) =
∫ ∞

|x|
t1−D

∫ t

0
sD−1ρ(s)dsdt.

It follows that

−ΔU(x) = ρ(|x|) in R
D and lim

|x|→+∞
U(x) = 0.

Let f̄ ∈C1[0,∞) be an increasing function such that

f̄ ≥ f , f̄ (0) = 0 and f̄ > 0 in (0,∞).

Before we proceed with the construction of wβ let us first show that

∫ ∞ 1

f̄ (s)
ds <+∞. (3.96)

Indeed, let F̄(t) =
∫ t

a f̄ (s)ds, using the fact that f̄ is increasing we have

0 = lim
t→∞

∫ ∞

t

1√
F̄(s)

ds≥ lim
t→∞

∫ 2t

t

1√
F̄(s)

ds≥ lim
t→∞

t√
F̄(2t)

.

Therefore, for t > a large enough we have

F̄(t)≥ t2. (3.97)

On the other hand,

F̄(t) =
∫ t

a
f̄ (s)ds≤ t f̄ (t) for all t > a. (3.98)

Now, using (3.97) and (3.98) we deduce∫ ∞

t

1

f̄ (s)
ds≤

∫ ∞

t

s
F̄(s)

ds≤
∫ ∞

t

1√
F̄(s)

ds→ 0 as t → ∞,

so (3.96) follows. As a consequence of (3.96) we derive that for all 0 < β ≤ ∞ the

mapping
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(0,β ) � t 	→
∫ β

t

ds

f̄ (s)
∈ (0,∞)

is bijective. Therefore, for any 0 < β ≤ ∞, there is a unique

wβ : RD → (0,β )

such that ∫ β

wβ (x)

ds

f (s)
=U(x) for all x ∈R

D. (3.99)

Since U(x) is radial, wβ is radial too. Furthermore, wβ is increasing with respect to

β and |x|. This proves the limit equality as β → ∞ in (3.95). Now,

∇U(x) =− 1
f̄ (wβ (x))

∇wβ (x) in R
D

and

ρ(|x|) =−ΔU =
1

f̄ (wβ )
Δwβ −

f̄ ′(wβ )
f̄ 2(wβ )

|∇wβ |2 ≤
1

f̄ (wβ )
Δwβ in R

D.

Hence wβ satisfies (3.95). �

3.3.2 Existence of an Entire Large Solution

We are now in a position to derive the existence of solutions to (3.93). Our main

result in this sense is the following.

Theorem 3.44 Assume that (3.92), (KO) and (3.94) hold.

(a) There exists a minimal ELS u0 of (3.93) in the sense that any ELS u of (3.93)

satisfies u≥ u0 in R
D. Furthermore, u0 is radially symmetric.

(b) If r 	→ ρ(r) is decreasing, then for any ELS u of (3.93) there exists a radial ELS

u such that u≤ u in R
D.

Proof. We shall perform the proof of Theorem 3.44 in three steps.

Step 1: Any ELS u of (3.93) satisfies u ≥ w∞ in R
D, where w∞ is the function

defined in Proposition 3.43 (given by (3.99)) for β = ∞.

Let u be an arbitrary ELS of (3.93). Define

E = {β ≥ 0 : wβ ≤ u in R
D}
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and remark first that E is nonempty. Indeed, if m := infRD u ≥ 0 then wm ≤ m ≤ u

in R
D where wm is the function defined by (3.99) for β = m. Also, if β ∈ E then

[0,β ]⊂ E .

Lemma 3.45 E = [0,∞).

Proof. Assume by contradiction that β0 = supE < +∞. Then, wβ0
≤ u in R

D. We

claim that there exists x0 ∈ R
D such that wβ0

(x0) = u(x0). Indeed, if this is not the

case, we have wβ0
< u in R

D. Since lim|x|→∞(u(x)−wβ0
(x)) = ∞, it follows that

there exists c > 0 such that

wβ0
+ c < u in R

D. (3.100)

In addition, from (3.99) we have

∫ β0

wβ0

ds

f̄ (s)
=

∫ β

wβ

ds

f̄ (s)
, for all β > β0.

This yields ∫ β

β0

ds

f̄ (s)
=

∫ wβ

wβ0

ds

f̄ (s)
, for all β > β0.

Since f̄ is increasing, we find

|wβ −wβ0
| ≤ f̄ (wβ )

f̄ (wβ0
)
|β −β0| ≤ f̄ (β )

f̄ (wβ0
)
|β −β0| for all β > β0.

In particular,

|wβ0+ε −wβ0
| ≤ ε f̄ (β0 + ε)

f̄ (wβ0
)

.

Thus, for small values of ε > 0 we find wβ0+ε ≤ wβ0
+ c/2 in R

D. Combining this

last estimate with (3.100) we obtain wβ0+ε + c/2 < u in R
D, which contradicts the

definition of β0.

Hence, there exists x0 ∈ R
D such that wβ0

(x0) = u(x0). We fix now R > |x0| and

let

Λ := sup{ f ′(s) : min
BR

wβ0
≤ s≤max

BR
u}.

Then g(t) = f (t)−Λ t is a nonincreasing function on [minBR wβ0
,maxBR u] and

Δ(u−wβ0
)−Λ(u−wβ0

)≤ g(u)− g(wβ0
)≤ 0 in BR,
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0≤ u−wβ0
on ∂BR, u(x0) = wβ0

(x0).

By the strong maximum principle it follows that u ≡ wβ0
in BR. Since R > |x0| was

arbitrarily chosen, this yields u ≡ wβ0
. But this is clearly a contradiction since u is

an ELS to (3.93), while wβ0
is bounded in R

D.

Therefore E = [0,∞). �

By Lemma 3.45 it follows that wβ ≤ u in R
D for all β > 0. It remains now to

pass to the limit with β → ∞ to reach the conclusion in Step 1.

Step 2: There exists a radial ELS u0 to (3.93) such that for any ELS u to (3.93),

we have u≥ u0.

For any R > 0 denote by uR the unique minimal solution relative to w∞, to the

problem {
ΔuR = ρ(|x|) f (uR) in BR,

uR = w∞ on ∂BR.

Also, by Proposition 3.31 there exists UR a unique minimal boundary blow-up solu-

tion (in short BBUS) relative to w∞, solving{
ΔUR = ρ(|x|) f (UR) in BR,

UR =+∞ on ∂BR.
(3.101)

Since w∞ is radially symmetric, so is uR. Moreover, for all R > 0 we have

w∞ ≤ uR ≤ uR+1 ≤UR in BR. (3.102)

Indeed, the first two inequalities follow from the minimality principle for uR as

stated in Proposition 3.29 whereas the last inequality is obtained as follows. We first

consider 0 < R′ < R such that

uR+1 <UR in BR \BR′ .

Again by Proposition 3.29 and the minimality of uR+1 relative to w∞ we find uR+1≤
UR in BR′ . Hence, uR+1 ≤UR in BR and (3.102) follows.

Next, by (3.102) and the Arzela–Ascoli theorem, there exists a subsequence of

{uR} (still denoted {uR}) that converges uniformly to some u0 on each compact

subset of RD. By standard elliptic regularity it follows that u0 = limR→+∞uR is a

radial solution of (3.93) and by (3.102) we also have w∞ ≤ u0 in R
D. Thus, u0 is a
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radial ELS of (3.93). Now, if u is any ELS of (3.93), from Step 1 we have w∞ ≤ u

in R
D. Thus, in virtue of the minimality of uR relative to w∞ we have uR ≤ u in BR.

This yields u0 = limR→+∞ uR ≤ u in R
D.

Step 3: Assume that r 	→ ρ(r) is nonincreasing and u is an ELS of (3.93). Then,

there exists u a radial ELS of (3.93) such that u≤ u.

Let u be an arbitrary ELS of (3.93). We fix R > 0 and let N =N(u,R)≥ 1 be such

that maxBR u < N. By Proposition 3.29, for all n≥ N there exists a minimal solution

un
R relative to u of the problem{

Δun
R = ρ(|x|) f (un

R) in BR,

un
R = n on ∂BR.

By minimality arguments we have u≤ un
R < n in BR. Therefore, the function

v := n− un
R

satisfies {−Δv = ρ(|x|) f (n− v), v > 0 in BR,

v = 0 on ∂BR.

Since r 	→ ρ(r) is nonincreasing, Theorem 1.6 implies that v and so un
R are radially

symmetric functions.

Let UR be the BBUS of (3.101) which is minimal relative to u. As in Step 2 one

can easily see that

u≤ un
R ≤UR in BR. (3.103)

Applying further Proposition 3.29 we find

un
R ≤ un+1

R , un
R+1 ≤ un

R in BR, for all n≥ N. (3.104)

Using the first inequality in (3.104) together with (3.103) we obtain

u≤ ũ := lim
n→∞un

R ≤UR in BR.

Remark that ũ is radially symmetric. Also, by elliptic regularity we derive that ũ is

a BBUS of (3.101). Thus, by the minimality of UR it follows that ũ ≡UR, so UR is

radially symmetric.
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From the second inequality in (3.104) and (3.103) we obtain

UR = lim
n→∞un

R ≥ lim
n→∞un

R+1 =UR+1 ≥ u in BR,

so {UR} is nonincreasing. Therefore, u := limR→∞UR satisfies u is radial, u ≥ u in

R
D and by standard elliptic arguments u is a solution of (3.93). This completes the

proof of Theorem 3.44. �

The uniqueness does not hold in general due to the lack of monotonicity of f .

If f is strongly oscillating, our problem (3.93) exhibits infinitely many solutions.

More precisely we have

Corollary 3.46 Assume that (3.94) holds and f satisfies (3.92), (KO) and that there

exists a sequence {tk} ⊂ (0,∞) such that f (tk) = 0 for all k≥ 1 and limk→∞ = ∞.

Then (3.93) has infinitely many solutions.

Proof. Let fk(t) = f (t + tk), t ≥ 0, k ≥ 1. Then fk ∈ C1[0,∞), fk(0) = 0, fk ≥ 0

and fk satisfies (KO). Therefore, by Theorem 3.44 there exists an ELS vk of Δvk =

ρ(|x|) fk(vk) in R
D. Now, if uk = vk + tk we have that uk is an ELS of (3.93) and

uk ≥ tk. Since {tk} is unbounded, it follows that we have infinitely many solutions

of (3.93). �

It follows from Theorem 3.44 that any ELS u to (3.93) is sandwiched between

two radial ELS U,V to the same equation:

U(|x|)≤ u(x)≤V (|x|), for all x ∈R
D.

The lower bound U can be chosen to be universal for all ELS to (3.93). However,

there need not exist a maximal ELS to (3.93) as we see in the next result.

Corollary 3.47 Consider the equation

Δu = ρ(|x|)u2(1+ cosu) ,u > 0 in R
D, (3.105)

where ρ satisfies (3.94). Then:

(a) Equation (3.105) has infinitely many ELS.

(b) Equation (3.105) has a minimal ELS.

(c) Equation (3.105) has no maximal ELS.
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Proof. This follows from Corollary 3.46 by taking f (t) = t2(1+ cost) and tk =

(2k+ 1)π , k ≥ 1. Finally, if U would be a maximal ELS of (3.105) then U ≥ uk ≥
tk = (2k+ 1)π in R

D, a contradiction. �

3.3.3 Uniqueness of Solution

In this section, we establish the uniqueness of radial solution under the hypothesis

that f is nondecreasing. In view of Theorem 3.44 this implies the uniqueness in

general of a solution to entire large solutions (ELS) of (3.93). More precisely we

have:

Theorem 3.48 Assume that f is nondecreasing and satisfies (KO) and (3.92). As-

sume also that ρ(r) =Cr2−D for some r ≥ r0.

Then (3.93) has a unique ELS.

Proof. By the results in Theorem (3.44) it is enough to prove the uniqueness of a

radial ELS to (3.93). We start with the following result.

Lemma 3.1. Let u1, u2 be two ELS of (3.93) such that

lim
|x|→∞

(u1− u2)(x) = 0.

Then, u1 = u2.

Proof. Set w = u1− u2 which verifies⎧⎨
⎩ Δw = ρ(|x|) f (u1)− f (u2)

u1− u2
w in R

D,

w(x)→ 0 as x→ ∞.

Fix ε > 0 and let R > 0 be large enough such that w(x)< ε for all |x|> R. Then{
Δw = a(x)w in BR,

w≤ ε on ∂BR,

where

a(x) :=

⎧⎨
⎩ρ(|x|) f (u1(x))− f (u2(x))

u1(x)− u2(x)
if u1(x) �= u2(x),

ρ(|x|) f ′(u1(x)) if u1(x) = u2(x).
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Since f is nondecreasing, a is nonnegative. By the Strong Maximum Principle, we

have w ≤ ε in BR. Hence, u1− u2 ≤ ε on R
D. Since ε > 0 was arbitrarily chosen,

we have u1 ≤ u2 in R
D. In the same way we obtain u2 ≤ u1 in R

D so u1 ≡ u2. �

Consider u1,u2 two radial ELS of (3.93) and let t = r2−D. Then vi(t) := ui(r)

satisfies ⎧⎨
⎩

d2vi

dt2 (t) =C0 f (vi(t)) for all 0 < t ≤ t0 = r1/(2−D)
0 ,

vi(t)→+∞, as t → 0+.
(3.106)

We multiply (3.106) by v′i and we integrate over [t, t0]. We obtain, for i = 1, 2

v′2i (t) = 2c0(F(vi(t))+Ci) for all 0 < t ≤ t0,

where Ci = v′2i (t0)−F(vi(t0)), i = 1,2. Thus,

−v′1√
F(v1)+C1

=
−v′2√

F(v2)+C2
.

Integrating between 0 and t we find∫ ∞

v1(t)

ds√
F(s)+C1

=

∫ ∞

v2(t)

ds√
F(s)+C2

.

Without loss of generality, we assume that v2 ≥ v1. Then,

∫ v2(t)

v1(t)

ds√
F(s)+C1

=
∫ ∞

v2(t)

√
F(s)+C1−

√
F(s)+C2√

(F(s)+C1)(F(s)+C2)
ds.

Since F is increasing, we have

v2(t)− v1(t)√
F(v2(t))+C1

≤
∫ ∞

v2(t)

C

F(s)3/2
ds≤ C√

F(v2(t))

∫ ∞

v2(t)

1
F(s)

ds.

This implies

0≤ v2(t)− v1(t)≤C
∫ ∞

v2(t)

1
F(s)

ds→ 0 as t → 0+.

This implies u2(r)−u1(r)→ 0 as r→ ∞. By Lemma 3.1 we now obtain u1 ≡ u2 so

(3.93) has a unique solution. �
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3.4 Elliptic Equations with Absorption

Consider the problem {
Δu+ q(x)|∇u|a = p(x) f (u) in Ω ,
u≥ 0, u �≡ 0 in Ω ,

(3.107)

where Ω ⊂ R
N (N ≥ 3) is a smooth domain (bounded or possibly unbounded) with

compact (possibly empty) boundary. We assume that a≤ 2 is a positive real number,

p,q are nonnegative functions such that p �≡ 0, p,q ∈C0,α(Ω ) if Ω is bounded, and

p,q ∈ C0,α
loc (Ω) otherwise. Throughout this section (see [91]) we assume that the

nonlinearity f fulfills the following conditions:

( f 1) f ∈C1[0,∞), f ′ ≥ 0, f (0) = 0 and f > 0 on (0,∞).

( f 2)

∞∫
1

[F(t)]−1/2 dt < ∞ , where F(t) =

t∫
0

f (s)ds.

( f 3)
F(t)

f 2/a(t)
→ 0 as t → ∞.

Cf. Véron [199], f is called an absorption term. The above conditions hold pro-

vided that f (t) = tk, k > 1 and 0 < a < 2r
r+1 (< 2), or f (t) = et −1, or f (t) = et − t

and a < 2. We observe that by ( f 1) and ( f 3) it follows that f/Fa/2 ≥ β > 0 for t

large enough, that is, (F1−a/2)′ ≥ β > 0 for t large enough which yields 0 < a≤ 2.

We also deduce that conditions ( f 2) and ( f 3) imply

∞∫
1

f−1/a(t)dt < ∞ .

We are mainly interested in finding properties of large (explosive) solutions of

(3.107), that is solutions u satisfying u(x)→ ∞ as dist(x,∂Ω)→ 0 (if Ω �≡ R
N), or

u(x)→ ∞ as |x| → ∞ (if Ω = R
N). In the latter case the solution is called an entire

large (explosive) solution.

Problems of this type appear in stochastic control theory and were first studied

by Lasry and Lions [129]. The corresponding parabolic equation was considered in

Quittner [167] and in Galaktionov and Vázquez [80]. In terms of the dynamic pro-

gramming approach, an explosive solution of (3.107) corresponds to a value func-

tion (or Bellman function) associated to an infinite exit cost (see Lasry and Lions

[129]).

Bandle and Giarrusso [11] studied the existence of a large solution of problem

(3.107) in the case p ≡ 1, q ≡ 1 and Ω bounded. Lair and Wood [126] studied the
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sublinear case corresponding to p≡ 1, while Cı̂rstea and Rădulescu [42] proved the

existence of large solutions to (3.107) in the case q≡ 0.

As observed by Bandle and Giarrusso [11], the simplest case is a = 2, which can

be reduced to a problem without gradient term. Indeed, if u is a solution of (3.107)

for q≡ 1, then the function v = eu (Gelfand transformation) satisfies{
Δv = p(x)v f (ln v) in Ω ,
v(x)→+∞ if dist(x,∂Ω)→ 0.

We shall therefore mainly consider the case where 0 < a < 2.

The main results in this section are due to Ghergu, Niculescu, and Rădulescu

[87]. These results generalize those obtained by Cı̂rstea and Rădulescu [42] in the

case of the presence of a convection (gradient) term.

Our first result concerns the existence of a large solution to problem (3.107) when

Ω is bounded.

Theorem 3.49 Suppose that Ω is bounded and assume that p satisfies

(p1) for every x0 ∈ Ω with p(x0) = 0, there exists a domain Ω0 � x0 such that

Ω0 ⊂Ω and p > 0 on ∂Ω0.

Then problem (3.107) has a positive large solution.

A crucial role in the proof of the above result is played by the following auxiliary

result (see Ghergu, Niculescu, and Rădulescu [87]).

Lemma 3.50 Let Ω be a bounded domain. Assume that p,q ∈ C0,α(Ω ) are non-

negative functions, 0 < a < 2 is a real number, f satisfies ( f 1) and g : ∂Ω → (0,∞)
is continuous. Then the boundary value problem⎧⎨

⎩
Δu+ q(x)|∇u|a = p(x) f (u), in Ω ,
u = g, on ∂Ω ,
u≥ 0, u �≡ 0, in Ω

(3.108)

has a classical solution. If p is positive, then the solution is unique.

Sketch of the proof of Theorem 3.49. By Lemma 3.50, the boundary value prob-

lem ⎧⎪⎪⎨
⎪⎪⎩
Δvn + q(x)|∇vn|a =

(
p(x)+

1
n

)
f (vn), in Ω ,

vn = n, on ∂Ω ,
vn ≥ 0, vn �≡ 0, in Ω
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has a unique positive solution, for any n ≥ 1. Next, by the maximum principle,

the sequence {vn} is nondecreasing and is bounded from below in Ω by a positive

function.

To conclude the proof, it is sufficient to show that

(a) for all x0 ∈Ω there exists an open set O ⊂⊂Ω which contains x0 and M0 =

M0(x0)> 0 such that vn ≤M0 in O for all n≥ 1;

(b) limx→∂Ω v(x) = ∞, where v(x) = limn→∞ vn(x).

We observe that the statement (a) shows that the sequence (vn) is uniformly

bounded on every compact subset of Ω . Standard elliptic regularity arguments (see

Gilbarg and Trudinger [99]) show that v is a solution of problem (3.107). Then, by

(b), it follows that v is a large solution of problem (3.107).

To prove (a) we distinguish two cases:

Case p(x0) > 0. By the continuity of p, there exists a ball B = B(x0,r)⊂⊂Ω such

that

m0 := min{p(x); x ∈ B}> 0.

Let w be a positive solution of the problem{
Δw+ q(x)|∇w|a = m0 f (w), in B
w(x)→ ∞, as x→ ∂B.

The existence of w follows by considering the problem{
Δwn + q(x)|∇wn|a = m0 f (wn), in B
wn = n, on ∂B.

The maximum principle implies wn ≤ wn+1 ≤ θ , where{
Δθ + ‖q‖L∞|∇θ |a = m0 f (θ ), in B
θ (x)→ ∞, as x→ ∂B.

Standard arguments show that vn ≤ w in B. Furthermore, w is bounded in

B(x0,r/2). Setting M0 = sup
O

w, where O = B(x0,r/2), we obtain (a).

Case p(x0) = 0. Our hypothesis (p1) and the boundedness ofΩ imply the existence

of a domain O ⊂⊂ Ω which contains x0 such that p > 0 on ∂O . The above case

shows that for any x ∈ ∂O there exist a ball B(x,rx) strictly contained in Ω and a

constant Mx > 0 such that vn≤Mx on B(x,rx/2), for any n≥ 1. Since ∂O is compact,

it follows that it may be covered by a finite number of such balls, say B(xi,rxi/2),
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i = 1, · · · ,k0. Setting M0 = max{Mx1 , · · · ,Mxk0
} we have vn ≤M0 on ∂O , for any

n≥ 1. Applying the maximum principle we obtain vn ≤M0 in O and (a) follows.

Let z be the unique function satisfying −Δz = p(x) in Ω and z = 0, on ∂Ω .

Moreover, by the maximum principle, we have z > 0 in Ω . We first observe that for

proving (b) it is sufficient to show that

∞∫
v(x)

dt
f (t)

≤ z(x) for any x ∈Ω . (3.109)

By [42, Lemma 1], the left-hand side of (3.109) is well defined in Ω . We choose

R > 0 so thatΩ ⊂ B(0,R) and fix ε > 0. Since vn = n on ∂Ω , let n1 = n1(ε) be such

that

n1 >
1

ε(N− 3)(1+R2)−1/2 + 3ε(1+R2)−5/2
, (3.110)

and

∞∫
vn(x)

dt
f (t)

≤ z(x)+ ε(1+ |x|2)−1/2 ∀ x ∈ ∂Ω ,∀ n≥ n1 . (3.111)

In order to prove (3.109), it is enough to show that

∞∫
vn(x)

dt
f (t)

≤ z(x)+ ε(1+ |x|2)−1/2 ∀ x ∈Ω , ∀n≥ n1. (3.112)

Indeed, taking n→∞ in (3.112) we deduce (3.109), since ε > 0 is arbitrarily chosen.

Assume now, by contradiction, that (3.112) fails. Then

max
x∈Ω

⎧⎪⎨
⎪⎩

∞∫
vn(x)

dt
f (t)

− z(x)− ε(1+ |x|2)−1/2

⎫⎪⎬
⎪⎭ > 0.

Using (3.111) we see that the point where the maximum is achieved must lie in Ω .

A straightforward computation shows that at this point, say x0, we have

0≥ Δ

⎛
⎜⎝

∞∫
vn(x)

dt
f (t)

− z(x)− ε(1+ |x|2)−1/2

⎞
⎟⎠
|x=x0

> 0.

This contradiction shows that inequality (3.111) holds and the proof of Theorem

3.49 is complete. ��
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Similar arguments based on the maximum principle and the approximation of

large balls B(0,n) imply the following existence result.

Theorem 3.51 Assume that Ω = R
N and that problem (3.107) has at least one

solution. Suppose that p satisfies the condition

(p1)′ There exists a sequence of smooth bounded domains (Ωn)n≥1 such that

Ωn ⊂Ωn+1, RN = ∪∞n=1Ωn, and (p1) holds in Ωn, for any n≥ 1.

Then there exists a classical solution U of (3.107) which is a maximal solution if

p is positive.

Assume that p verifies the additional condition

(p2)

∞∫
0

rΦ(r)dr < ∞ , where Φ(r) = max{p(x) : |x|= r}.

Then U is an entire large solution of (3.107).

We now consider the case in which Ω �= R
N and Ω is unbounded. We say that

a large solution u of (3.107) is regular if u tends to zero at infinity. In [141, Theo-

rem 3.1] Marcus proved for this case (and if q = 0) the existence of regular large

solutions to problem (3.107) by assuming that there exist γ > 1 and β > 0 such that

liminf
t→0

f (t)t−γ > 0 and liminf
|x|→∞

p(x)|x|β > 0.

The large solution constructed in Marcus [141] is the smallest large solution of

problem (3.107). In the next result we show that problem (3.107) admits a maximal

classical solution U and that U blows-up at infinity if Ω = R
N \B(0,R).

Theorem 3.52 Suppose that Ω �= R
N is unbounded and that problem (3.107) has

at least a solution. Assume that p satisfies condition (p1)′ in Ω . Then there exists a

classical solution U of problem (3.107) which is a maximal solution if p is positive.

If Ω = R
N \B(0,R) and p satisfies the additional condition (p2), with Φ(r) = 0

for r ∈ [0,R], then the solution U of (3.107) is a large solution that blows-up at

infinity.

We refer to Ghergu, Niculescu and Rădulescu [87] for complete proofs of Theo-

rems 3.51 and 3.52.

A useful observation is given in the following property.
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Remark 18 Assume that p∈C(RN) is a nonnegative and nontrivial function which

satisfies (p2). Let f be a function satisfying assumption ( f 1). Then condition

∞∫
1

dt
f (t)

< ∞ (3.113)

is necessary for the existence of entire large solutions to (3.107).

Indeed, let u be an entire large solution of problem (3.107). Define

ū(r) =
1

ωNrN−1

∫
|x|=r

⎛
⎝ u(x)∫

a0

dt
f (t)

⎞
⎠ dS =

1
ωN

∫
|ξ |=1

⎛
⎝ u(rξ )∫

a0

dt
f (t)

⎞
⎠ dS,

where ωN denotes the surface area of the unit sphere in R
N and a0 is chosen such

that a0 ∈ (0,u0), where u0 = infRN u > 0. By the divergence theorem we have

ū′(r) =
1

ωNrN−1

∫
B(0,r)

Δ

⎛
⎝ u(x)∫

a0

dt
f (t)

⎞
⎠ dx.

Since u is a positive classical solution it follows that

|ū′(r)| ≤Cr→ 0 as r→ 0 .

On the other hand

ωN
(
RN−1ū′(R)− rN−1ū′(r)

)
=

R∫
r

⎛
⎜⎝ ∫
|x|=z

Δ

⎛
⎝ u(x)∫

a0

dt
f (t)

⎞
⎠ dS

⎞
⎟⎠ dz.

Dividing by R− r and taking R→ r we find

ωN(rN−1ū′(r))′ =
∫
|x|=r

Δ

⎛
⎝ u(x)∫

a0

dt
f (t)

⎞
⎠ dS =

∫
|x|=r

div

(
1

f (u(x))
∇u(x)

)
dS

=

∫
|x|=r

[(
1
f

)′
(u(x)) · |∇u(x)|2 + 1

f (u(x))
Δu(x)

]
dS

≤
∫
|x|=r

p(x) f (u(x))
f (u(x))

dS≤ ωNrN−1Φ(r).
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The above inequality yields by integration

ū(r)≤ ū(0)+

r∫
0

σ1−N

⎛
⎝ σ∫

0

τN−1Φ(τ)dτ

⎞
⎠ dσ for all r ≥ 0. (3.114)

On the other hand, according to (p2), for all r > 0 we have

r∫
0

σ1−N

⎛
⎝ σ∫

0

τN−1Φ(τ)dτ

⎞
⎠ dσ

=
1

2−N
r2−N

r∫
0

τN−1Φ(τ)dτ − 1
2−N

r∫
0

σΦ(σ)dσ

≤ 1
N− 2

∞∫
0

rΦ(r)dr < ∞.

So, by (3.114), ū(r) ≤ ū(0)+K, for all r ≥ 0. The last inequality implies that ū is

bounded and assuming that (3.113) is not fulfilled it follows that u cannot be a large

solution. ��
We point out that the hypothesis (p2) on p is essential in the statement of Remark

18. Indeed, let us consider f (t) = t, p≡ 1, α ∈ (0,1), q(x) = 2α−2 · |x|α , a= 2−α ∈
(1,2). Then the corresponding problem has the entire large solution u(x) = |x|2 +
2N, but (3.113) is not fulfilled.

3.5 Lack of the Keller–Osserman Condition

We have already seen that if f is smooth and increasing on [0,∞) such that f (0) = 0

and f > 0 in (0,∞), then the problem⎧⎨
⎩
Δu = f (u) in Ω ,
u > 0 in Ω ,
u =+∞ on ∂Ω

has a solution if and only if the Keller–Osserman condition
∫ ∞

1 [F(t)]−1/2 dt < ∞
is fulfilled, where F(t) =

∫ t
0 f (s)ds. In particular, this implies that f must have a

superlinear growth. In this section we are concerned with the problem{
Δu+ |∇u|= p(x) f (u) in Ω ,
u≥ 0 in Ω ,

(3.115)
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where Ω ⊂ R
N (N ≥ 3) is either a smooth bounded domain or the whole space.

Our main assumption on f is that it has a sublinear growth, so we cannot expect

that problem (3.115) admits a blow-up boundary solution. Our main purpose in this

section is to establish a necessary and sufficient condition on the variable potential

p(x) for the existence of an entire large solution.

Throughout this section we assume that p is a nonnegative function such that

p ∈C0,α(Ω)(0 < α < 1) if Ω is bounded, and p ∈ C0,α
loc (R

N) otherwise. The non-

decreasing nonlinearity f ∈C0,α
loc [0,∞) fulfills f (0) = 0 and f > 0 on (0,∞). We also

assume that f is sublinear at infinity, in the sense that Λ := sups≥1
f (s)

s < ∞.
If Ω is bounded we prove the following nonexistence result.

Theorem 3.53 Suppose that Ω ⊂ R
N is a smooth bounded domain. Then prob-

lem (3.115) has no positive large solution in Ω .

Proof. Suppose by contradiction that problem (3.115) has a positive large solution

u and define v(x) = ln(1+ u(x)), x ∈ Ω . It follows that v is positive and v(x)→ ∞
as dist(x,∂Ω)→ 0. We have

Δv =
1

1+ u
Δu− 1

(1+ u)2 |∇u|2 in Ω

and so

Δv≤ p(x)
f (u)

1+ u
≤ ‖p‖∞ f (u)

1+ u
≤ A in Ω ,

for some constant A > 0. Therefore

Δ(v(x)−A|x|2)< 0, for all x ∈Ω .

Let w(x) = v(x)−A|x|2, x ∈Ω . Then Δw < 0 in Ω . Moreover, sinceΩ is bounded,

it follows that w(x)→ ∞ as dist(x,∂Ω)→ 0.

Let M > 0 be arbitrary. We claim that w≥M in Ω . For all δ > 0, we set

Ωδ = {x ∈Ω ; dist(x,∂Ω)> δ}.

Since w(x)→ ∞ as dist(x,∂Ω)→ 0, we can choose δ > 0 such that

w(x)≥M for all x ∈Ω \Ωδ . (3.116)
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On the other hand,
−Δ(w(x)−M)> 0 in Ωδ ,

w(x)−M ≥ 0 on ∂Ωδ .

By the maximum principle we get w(x)−M ≥ 0 in Ωδ . So, by (3.116), w ≥M in

Ω . Since M > 0 is arbitrary, it follows that w≥ n inΩ , for all n≥ 1. Obviously, this

is a contradiction and the proof is now complete. ��
Next, we consider the problem (3.115) when Ω = R

N . For all r ≥ 0 we set

φ(r) = max
|x|=r

p(x), ψ(r) = min
|x|=r

p(x), and h(r) = φ(r)−ψ(r).

We suppose that
∞∫

0

rh(r)Ψ (r)dr < ∞, (3.117)

where

Ψ(r) = exp

⎛
⎝ΛN

r∫
0

sψ(s)ds

⎞
⎠ , ΛN =

Λ
N− 2

.

Obviously, if p is radial then h≡ 0 and (3.117) occurs. Assumption (3.117) shows

that the variable potential p(x) has a slow variation. An example of nonradial

potential for which (3.117) holds is p(x) =
1+ |x1|2

(1+ |x1|2)(1+ |x|2)+1
. In this case

φ(r) =
r2 +1

(r2 +1)2 +1
and ψ(r) =

1
r2 + 2

. If ΛN = 1, by direct computation we get

rh(r)Ψ(r) = O
(
r−2

)
as r→ ∞ and so (3.117) holds.

Theorem 3.54 Assume Ω = R
N and p satisfies (3.117). Then problem (3.115) has

a positive entire large solution if and only if

∞∫
1

e−tt1−N

t∫
0

essN−1ψ(s)dsdt = ∞. (3.118)

Proof. Several times in the proof of Theorem 3.54 we shall apply the following

elementary inequality:

r∫
0

e−tt1−N

t∫
0

essN−1g(s)dsdt ≤ 1
N− 2

r∫
0

tg(t)dt, ∀ r > 0, (3.119)

for any continuous function g : [0,∞)→ [0,∞). The proof follows easily by integra-

tion by parts.
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Necessary condition. Suppose that (3.117) fails and (3.115) has a positive entire

large solution u. We claim that

∞∫
1

e−tt1−N

t∫
0

essN−1φ(s)dsdt < ∞. (3.120)

We first recall that φ = h+ψ . Thus

∞∫
1

e−tt1−N

t∫
0

essN−1φ(s)dsdt =

∞∫
1

e−t t1−N

t∫
0

essN−1ψ(s)dsdt

+

∞∫
1

e−tt1−N

t∫
0

essN−1h(s)dsdt.

By virtue of (3.119) we find

∞∫
1

e−tt1−N

t∫
0

essN−1φ(s)dsdt ≤
∞∫

1

e−t t1−N

t∫
0

essN−1ψ(s)dsdt +

∞∫
0

th(t)dt

N− 2

≤
∞∫

1

e−t t1−N

t∫
0

essN−1ψ(s)dsdt +

∞∫
0

th(t)Ψ(t)dt

N− 2
.

Since

∞∫
1

e−tt1−N

t∫
0

essN−1ψ(s)dsdt < ∞, by (3.117) we deduce (3.120).

Now, let ū be the spherical average of u, that is,

ū(r) =
1

ωNrN−1

∫
|x|=r

u(x)dσx, r ≥ 0,

where ωN is the surface area of the unit sphere in R
N . Since u is a positive entire

large solution of (3.107) it follows that ū is positive and ū(r)→ ∞ as r → ∞. With

the change of variable x→ ry, we have

ū(r) =
1
ωN

∫
|y|=1

u(ry)dσy, r ≥ 0

and

ū′(r) =
1
ωN

∫
|y|=1

∇u(ry) · ydσy, r ≥ 0. (3.121)
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Hence

ū′(r) =
1
ωN

∫
|y|=1

∂u
∂ r

(ry)dσy =
1

ωNrN−1

∫
|x|=r

∂u
∂ r

(x)dσx,

that is

ū′(r) =
1

ωNrN−1

∫
B(0,R)

Δu(x)dx, for all r ≥ 0. (3.122)

Due to the gradient term |∇u| in (3.107), we cannot infer that Δu≥ 0 in R
N and

so we cannot expect that ū′ ≥ 0 in [0,∞). We define the auxiliary function

U(r) = max
0≤t≤r

ū(t), r ≥ 0. (3.123)

Then U is positive and nondecreasing. Moreover, U ≥ ū and U(r)→ ∞ as r→ ∞.

The assumptions ( f 1) and ( f 2) yield f (t)≤Λ(1+t), for all t ≥ 0. So, by (3.121)

and (3.122) we have

ū′′+
N− 1

r
ū′+ ū′ ≤ 1

ωNrN−1

∫
|x|=r

[Δu(x)+ |∇u|(x)]dσx

=
1

ωNrN−1

∫
|x|=r

p(r) f (u(x))dσx

≤ Λφ(r)
1

ωNrN−1

∫
|x|=r

(1+u(x))dσx

= Λφ(r)(1+ ū(r))≤ Λφ(r)(1+U(r)) ,

for all r ≥ 0. It follows that

(
rN−1erū′

)′ ≤ ΛerrN−1φ(r)(1+U(r)) , for all r ≥ 0.

So, for all r ≥ r0 > 0 ,

ū(r)≤ ū(r0)+Λ
∫ r

r0

e−t t1−N
∫ t

0
essN−1φ(s)(1+U(s))dsdt.

The monotonicity of U implies

ū(r)≤ ū(r0)+Λ(1+U(r))
∫ r

r0

e−tt1−N
∫ t

0
essN−1φ(s)dsdt, (3.124)

for all r ≥ r0 ≥ 0. By (3.120) we can choose r0 ≥ 1 such that
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r0

e−t t1−N
∫ t

0
essN−1φ(s)dsdt <

1
2Λ

. (3.125)

Thus (3.124) and (3.125) yield

ū(r)≤ ū(r0)+
1
2
(1+U(r)), for all r ≥ r0. (3.126)

By the definition of U and lim
r→∞ ū(r) = ∞, we find r1 ≥ r0 such that

U(r) = max
r0≤t≤r

ū(r), for all r ≥ r1. (3.127)

Considering now (3.126) and (3.127) we obtain

U(r)≤ ū(r0)+
1
2
(1+U(r)), for all r ≥ r1.

Hence

U(r)≤ 2ū(r0)+1, for all r ≥ r1.

This means that U is bounded, so u is also bounded, a contradiction. It follows that

(3.107) has no positive entire large solutions.

Sufficient condition. We need the following auxiliary comparison result.

Lemma 3.55 Assume that (3.117) and (3.118) hold. Then the equations

Δv+ |∇v|= φ(|x|) f (v) Δw+ |∇w|= ψ(|x|) f (w) (3.128)

have positive entire large solution such that

v≤ w in R
N . (3.129)

Proof. Radial solutions of (3.128) satisfy

v′′+
N− 1

r
v′+ |v′|= φ(r) f (v)

and

w′′+
N− 1

r
w′+ |w′|= ψ(r) f (w).

Assuming that v′ and w′ are nonnegative, we deduce

(
errN−1v′

)′
= errN−1φ(r) f (v)

and
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errN−1w′

)′
= errN−1ψ(r) f (w).

Thus any positive solutions v and w of the integral equations

v(r) = 1+

r∫
0

e−t t1−N

t∫
0

essN−1φ(s) f (v(s))dsdt, r ≥ 0, (3.130)

w(r) = b+

r∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (w(s))dsdt, r ≥ 0, (3.131)

provide a solution of (3.128), for any b > 0. Since w ≥ b, it follows that f (w) ≥
f (b)> 0 which yields

w(r) ≥ b+ f (b)

r∫
0

e−tt1−N

t∫
0

essN−1ψ(s)dsdt, r ≥ 0.

By (3.118), the right-hand side of this inequality goes to +∞ as r → ∞. Thus

w(r)→∞ as r→ ∞. With a similar argument we find v(r)→ ∞ as r→ ∞.
Let b > 1 be fixed. We first show that (3.131) has a positive solution. Similarly,

(3.130) has a positive solution.

Let {wk} be the sequence defined by w1 = b and

wk+1(r) = b+

r∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (wk(s))dsdt, k ≥ 1. (3.132)

We remark that {wk} is a nondecreasing sequence. To get the convergence of

{wk} we will show that {wk} is bounded from above on bounded subsets. To this

aim, we fix R > 0 and we prove that

wk(r)≤ beMr, for any 0≤ r ≤ R, and for all k ≥ 1, (3.133)

where M ≡ΛN max
t∈[0,R]

tψ(t).

We achieve (3.133) by induction. We first notice that (3.133) is true for k = 1.

Furthermore, the assumption ( f 2) and the fact that wk ≥ 1 lead us to f (wk)≤Λwk,

for all k ≥ 1. So, by (3.132),

wk+1(r)≤ b+Λ
r∫

0

e−t t1−N

t∫
0

essN−1ψ(s)wk(s)dsdt, r ≥ 0.
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Using now (3.119) (for g(t) = ψ(t)wk(t)) we deduce

wk+1(r)≤ b+ΛN

r∫
0

tψ(t)wk(t)dt, ∀ r ∈ [0,R].

The induction hypothesis yields

wk+1(r)≤ b+ bM

r∫
0

eMtdt = beMr, ∀ r ∈ [0,R].

Hence, by induction, the sequence {wk} is bounded in [0,R], for any R> 0. It follows

that w(r) = lim
k→∞

wk(r) is a positive solution of (3.131). In a similar way we conclude

that (3.130) has a positive solution on [0,∞).
The next step is to show that the constant b may be chosen sufficiently large so

that (3.129) holds. More exactly, if

b > 1+KΛN

∞∫
0

sh(s)Ψ (s)ds, (3.134)

where K = exp

(
ΛN

∞∫
0

th(t)dt

)
, then (3.129) occurs.

We first prove that the solution v of (3.130) satisfies

v(r)≤ KΨ(r), ∀ r ≥ 0. (3.135)

Since v≥ 1, from ( f 2) we have f (v)≤Λv. We use this fact in (3.130) and then we

apply the estimate (3.119) for g = φ . It follows that

v(r)≤ 1+ΛN

r∫
0

sφ(s)v(s)ds, ∀ r ≥ 0. (3.136)

By Gronwall’s inequality we obtain

v(r)≤ exp

⎛
⎝ΛN

r∫
0

sφ(s)ds

⎞
⎠ , ∀ r ≥ 0,

and, by (3.136),

v(r)≤ 1+ΛN

r∫
0

sφ(s)exp

⎛
⎝ΛN

s∫
0

tφ(t)dt

⎞
⎠ds, ∀ r ≥ 0.
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Hence

v(r)≤ 1+

r∫
0

⎛
⎝exp

⎛
⎝ΛN

s∫
0

tφ(t)dt

⎞
⎠

⎞
⎠
′

ds, ∀ r ≥ 0,

that is

v(r)≤ exp

⎛
⎝ΛN

r∫
0

tφ(t)dt

⎞
⎠ , ∀ r ≥ 0. (3.137)

Inserting φ = h+ψ in (3.137) we have

v(r)≤ e
ΛN

r∫
0

th(t)dt
Ψ(r)≤ KΨ (r), ∀ r ≥ 0,

so (3.135) follows.

Since b > 1 it follows that v(0)< w(0). Then there exists R > 0 such that v(r)<

w(r), for any 0≤ r ≤ R. Set

R∞ = sup{ R > 0 |v(r)< w(r), ∀r ∈ [0,R]}.

In order to conclude our proof, it remains to show that R∞=∞. Suppose the contrary.

Since v≤ w on [0,R∞] and φ = h+ψ , from (3.130) we deduce

v(R∞) =1+

R∞∫
0

e−tt1−N

t∫
0

essN−1h(s) f (v(s))dsdt

+

R∞∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (v(s))dsdt.

So, by (3.119),

v(R∞)≤ 1+
1

N− 2

R∞∫
0

th(t) f (v(t))dt +

R∞∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (w(s))dsdt.

Taking into account that v≥ 1 and the assumption ( f 2), it follows that

v(R∞)≤ 1+KΛN

R∞∫
0

th(t)Ψ(t)dt +

R∞∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (w(s))dsdt.
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Now, using (3.134) we obtain

v(R∞)< b+

R∞∫
0

e−t t1−N

t∫
0

essN−1ψ(s) f (w(s))dsdt = w(R∞).

Hence v(R∞) < w(R∞). Therefore, there exists R > R∞ such that v < w on [0,R],

which contradicts the maximality of R∞. This contradiction shows that inequality

(3.129) holds and the proof of Lemma 3.55 is now complete. ��
Proof of Theorem 3.54 continued. Suppose that (3.118) holds. For all k ≥ 1 we

consider the problem{
Δuk + |∇uk|= p(x) f (uk) in B(0,k),
uk(x) = w(k) on ∂B(0,k).

(3.138)

Then v and w defined by (3.130) and (3.131) are positive sub and supersolutions of

(3.138). So this problem has at least a positive solution uk and

v(|x|)≤ uk(x)≤ w(|x|) in B(0,k), for all k≥ 1.

By Theorem 14.3 in Gilbarg and Trudinger [99], the sequence {∇uk} is bounded on

every compact set in R
N . Hence the sequence {uk} is bounded and equicontinuous

on compact subsets of RN . So, by the Arzela–Ascoli theorem, the sequence {uk} has

a uniform convergent subsequence, {u1
k} on the ball B(0,1). Let u1 = limk→∞ u1

k .

Then { f (u1
k)} converges uniformly to f (u1) on B(0,1) and, by (3.138), the se-

quence {Δu1
k + |∇u1

k|} converges uniformly to p f (u1). Since the sum of the Laplace

and Gradient operators is a closed operator, we deduce that u1 satisfies (3.107) on

B(0,1).

Now, the sequence {u1
k} is bounded and equicontinuous on the ball B(0,2), so it

has a convergent subsequence {u2
k}. Let u2 = lim

k→∞
u2

k on B(0,2) and suppose u2 sat-

isfies (3.107) on B(0,2). Proceeding in the same way, we construct a sequence {un}
so that un satisfies (3.107) on B(0,n) and un+1 = un on B(0,n) for all n. Moreover,

the sequence {un} converges in L∞loc(R
N) to the function u defined by

u(x) = um(x), for x ∈ B(0,m).

Since v≤ un ≤w on B(0,n) it follows that v≤ u≤w on R
N , and u satisfies (3.107).

From v ≤ u we deduce that u is a positive entire large solution of (3.107). This

completes the proof. ��



Chapter 4
Singular Lane–Emden–Fowler Equations
and Systems

Do not go where the path may lead, go
instead where there is no path and
leave a trail.

Ralph Waldo Emerson (1803–1882)

4.1 Bifurcation Problems for Singular Elliptic Equations

In this section we study the bifurcation problem⎧⎪⎪⎨
⎪⎪⎩
−Δu = λ f (u)+a(x)g(u) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(Pλ )

where λ ∈R is a parameter and Ω ⊂R
N (N ≥ 2) is a bounded domain with smooth

boundary ∂Ω . The main feature of this boundary value problem is the presence

of the “smooth” nonlinearity f combined with the “singular” nonlinearity g. More

exactly, we assume that 0< f ∈C0,β [0,∞) and 0≤ g∈C0,β (0,∞) (0< β < 1) fulfill

the hypotheses

( f 1) f is nondecreasing on (0,∞) while f (s)/s is nonincreasing for s > 0.

(g1) g is nonincreasing on (0,∞) with lims↘0 g(s) = +∞.

(g2) there exist C0,η0 > 0 and α ∈ (0,1) so that g(s)≤C0s−α , ∀s ∈ (0,η0).

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 4, c© Springer-Verlag Berlin Heidelberg 2012
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The assumption (g2) implies the following Keller–Osserman-type growth condi-

tion around the origin

∫ 1

0

(∫ t

0
g(s)ds

)−1/2

dt <+∞. (4.1)

As proved by Bénilan, Brezis and Crandall in [14], condition (4.1) is equivalent to

the property of compact support, that is, for any h ∈ L1(RN) with compact support,

there exists a unique u∈W 1,1(RN) with compact support such that Δu∈L1(RN) and

−Δu+ g(u) = h a.e. in R
N .

In many papers (see, e.g., Dalmasso [56], Kusano and Swanson [125]) the poten-

tial a(x) is assumed to depend “almost” radially on x, in the sense that C1 p(|x|) ≤
a(x)≤C2 p(|x|), where C1, C2 are positive constants and p(|x|) is a positive function

satisfying some integrability condition. We do not impose any growth assumption

on a, but we suppose that the variable potential a(x) satisfies a ∈C0,β (Ω) and a > 0

in Ω .

If λ = 0 this equation is called the Lane–Emden–Fowler equation and arises

in the boundary-layer theory of viscous fluids (see Wong [213]). Problems of this

type, as well as the associated evolution equations, describe naturally certain phys-

ical phenomena. For example, super-diffusivity equations of this type have been

proposed by de Gennes [62] as a model for long range Van der Waals interactions

in thin films spreading on solid surfaces.

Our purpose is to study the effect of the asymptotically linear perturbation f (u)

in (Pλ ), as well as to describe the set of values of the positive parameter λ such

that problem (Pλ ) admits a solution. In this case, we also prove a uniqueness result.

Due to the singular character of (Pλ ), we can not expect to find solutions in C2(Ω ).

However, under the above assumptions we will show that (Pλ ) has solutions in the

class

E := {u ∈C2(Ω)∩C1,1−α(Ω); Δu ∈ L1(Ω)}.

We first observe that, in view of the assumption ( f 1), there exists

m := lim
s→∞

f (s)
s
∈ [0,∞).

This number plays a crucial role in our analysis. More precisely, the existence of

the solutions to (Pλ ) will be separately discussed for m > 0 and m = 0. Let a∗ =
min
x∈Ω

a(x).
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Theorem 4.1 Assume ( f 1), (g1), (g2) and m = 0. If a∗ > 0 (resp. a∗ = 0), then

(Pλ ) has a unique solution uλ ∈ E for all λ ∈ R (resp. λ ≥ 0) with the properties:

(i) uλ is strictly increasing with respect to λ .

(ii) there exist two positive constant c1,c2 > 0 depending on λ such that c1d(x) ≤
uλ ≤ c2d(x) in Ω .

The bifurcation diagram in the “sublinear” case m = 0 is depicted in Fig. 4.1.

λ

u

Fig. 4.1 The “sublinear” case m = 0

Proof. We first recall the following existence result that we need in the proof.

Lemma 4.2 (Shi and Yao [180]). Let F : Ω × (0,∞)→ R be a Hölder continuous

function with exponent β ∈ (0,1) on each compact subset of Ω × (0,∞) which

satisfies

(F1) limsups→+∞
(
s−1 maxx∈Ω F(x,s)

)
< λ1.

(F2) for each t > 0, there exists a constant D(t)> 0 such that

F(x,r)−F(x,s)≥−D(t)(r− s), for x ∈Ω and r ≥ s≥ t.

(F3) there exists η0 > 0 and an open subset Ω0 ⊂Ω such that

min
x∈Ω

F(x,s)≥ 0 for s ∈ (0,η0),

and

lim
s↘0

F(x,s)
s

=+∞ uniformly for x ∈Ω0.



120 4 Singular Lane–Emden–Fowler Equations and Systems

Then for any nonnegative function φ0 ∈C2,β (∂Ω), the problem⎧⎪⎪⎨
⎪⎪⎩
−Δu = F(x,u) in Ω ,

u > 0 in Ω ,

u = φ0 on ∂Ω ,

has at least one positive solution u ∈ C2,β (G)∩C(Ω), for any compact set G ⊂
Ω ∪{x ∈ ∂Ω ; φ0(x)> 0}.

Lemma 4.3 (Shi and Yao [180]). Let F :Ω × (0,∞)→ R be a continuous function

such that the mapping (0,∞) � s 	−→ F(x,s)
s

is strictly decreasing at each x ∈ Ω .

Assume that there exists v, w ∈C2(Ω)∩C(Ω) such that

(a) Δw+F(x,w) ≤ 0≤ Δv+F(x,v) in Ω .

(b) v,w > 0 in Ω and v≤ w on ∂Ω .

(c) Δv ∈ L1(Ω).

Then v≤ w in Ω .

Now, we are ready to give the proof of Theorem 4.1. This will be divided into

four steps.

Step 1: Existence of solutions to problem (Pλ ).

For any λ ∈ R, define the function

Φλ (x,s) = λ f (s)+a(x)g(s), (x,s) ∈Ω × (0,∞). (4.2)

Taking into account the assumptions of Theorem 4.1, it follows that Φλ verifies the

hypotheses of Lemma 4.2 for λ ∈ R if a∗ > 0 and λ ≥ 0 if a∗ = 0. Hence, for λ in

the above range, (Pλ ) has at least one solution uλ ∈C2,β (Ω)∩C(Ω).

Step 2: Uniqueness of solution.

Fix λ ∈ R (resp. λ ≥ 0) if a∗ > 0 (resp. a∗ = 0). Let uλ be a solution of (Pλ ).

Denote λ− = min{0,λ} and λ+ = max{0,λ}. We claim that Δuλ ∈ L1(Ω). Since

a ∈ C0,β (Ω ), by [99, Theorem 6.14], there exists a unique nonnegative solution

ζ ∈C2,β (Ω) of { −Δζ = a(x) in Ω ,

ζ = 0 on ∂Ω .
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By the weak maximum principle (see e.g., [99, Theorem 2.2]), ζ > 0 in Ω . More-

over, we are going to prove that

(a) z(x) := cζ (x) is a subsolution of (Pλ ), for c > 0 small enough.

(b) z(x) ≥ c1d(x) in Ω , for some positive constant c1 > 0.

(c) uλ ≥ z in Ω .

Therefore, by (b) and (c), uλ ≥ c1d(x) in Ω . Using (g2), we obtain g(uλ ) ≤
Cd−α(x) in Ω , where C > 0 is a constant. So, g(uλ ) ∈ L1(Ω). This implies

Δuλ ∈ L1(Ω).

Proof of (a). Using ( f 1) and (g1), we have

Δz(x)+Φλ (x,z) =−ca(x)+λ f (cζ )+a(x)g(cζ )

≥−ca(x)+λ− f (c‖ζ‖∞)+a(x)g(c‖ζ‖∞)

≥ ca(x)

[
g(c‖ζ‖∞)

2c
− 1

]
+ f (c‖ζ‖∞)

[
a∗

g(c‖ζ‖∞)
2 f (c‖ζ‖∞) +λ

−
]

for each x ∈ Ω . Since λ < 0 corresponds to a∗ > 0, using limt↘0 g(t) = +∞ and

limt→0 f (t) ∈ (0,∞), we can find c > 0 small enough that

Δz+Φλ (x,z) ≥ 0, ∀x ∈Ω .

This concludes (a).

Proof of (b). Since ζ ∈C2,β (Ω), ζ > 0 in Ω and ζ = 0 on ∂Ω , by Lemma 3.4 in

Gilbarg and Trudinger [99], we have

∂ζ
∂ν

(y)< 0, ∀y ∈ ∂Ω .

Therefore, there exists a positive constant c0 such that

∂ζ
∂ν

(y) := lim
x∈Ω ,x→y

ζ (y)− ζ (x)
|x− y| ≤ −c0, ∀y ∈ ∂Ω .

So, for each y ∈Ω , there exists ry > 0 such that

ζ (x)
|x− y| ≥

c0

2
, ∀x ∈ Bry(y)∩Ω . (4.3)
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Using the compactness of ∂Ω , we can find a finite number k of balls Bryi
(yi) such

that ∂Ω ⊂ ∪k
i=1Bryi

(yi). Moreover, we can assume that for small d0 > 0,

{x ∈Ω : d(x)< d0} ⊂ ∪k
i=1Bryi

(yi).

Therefore, by (4.3) we obtain

ζ (x)≥ c0

2
d(x), ∀x ∈Ω with d(x)< d0.

This fact, combined with ζ > 0 in Ω , shows that for some constant c̃ > 0

ζ (x)≥ c̃d(x), ∀x ∈Ω .

Thus, (b) follows by the definition of z.

Proof of (c). We distinguish two cases:

Case 1. λ ≥ 0. We see that Φλ verifies the hypotheses in Theorem 1.2. Since

Δuλ +Φλ (x,uλ )≤ 0≤ Δz+Φλ (x,z) in Ω ,

uλ , z > 0 in Ω ,

uλ = z on ∂Ω ,

Δz ∈ L1(Ω),

by Theorem 1.2 it follows that uλ ≥ z in Ω .

Now, if u1 and u2 are two solutions of (Pλ ), we can use Theorem 1.2 in order to

deduce that u1 = u2.

Case 2. λ < 0 (corresponding to a∗ > 0). Let ε > 0 be fixed. We prove that

z≤ uλ + ε(1+ |x|2)τ in Ω , (4.4)

where τ < 0 is chosen such that τ|x|2 +1 > 0, ∀x ∈Ω . This is always possible since

Ω ⊂ R
N (N ≥ 2) is bounded.

We argue by contradiction. Suppose that there exists x0 ∈ Ω such that uλ (x0)+

ε(1+ |x0|)τ < z(x0). Then minx∈Ω{uλ (x)+ ε(1+ |x|2)τ − z(x)} < 0 is achieved at

some point x1 ∈Ω . Since Φλ (x,z) is nonincreasing in z, we have

0≥−Δ [uλ (x)− z(x)+ ε(1+ |x|2)τ ]|x=x1

=Φλ (x1,uλ (x1))−Φλ (x1,z(x1))− εΔ [(1+ |x|2)τ ]|x=x1
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≥−εΔ [(1+ |x|2)τ ]|x=x1 =−2ετ(1+ |x1|2)τ−2[(N + 2τ−2)|x1|2 +N]

≥−4ετ(1+ |x1|2)τ−2(τ|x1|2 + 1)> 0.

This contradiction proves (4.4). Passing to the limit ε→ 0, we obtain (c).

In a similar way we can prove that (Pλ ) has a unique solution.

Step 3: Dependence on λ .

We fix λ1 < λ2, where λ1, λ2 ∈ R if a∗ > 0 resp. λ1, λ2 ∈ [0,∞) if a∗ = 0. Let

uλ1
, uλ2

be the corresponding solutions of (Pλ1
) and (Pλ2

) respectively.

If λ1≥ 0, thenΦλ1
verifies the hypotheses in Theorem 1.2. Furthermore, we have

Δuλ2
+Φλ1

(x,uλ2
)≤ 0≤ Δuλ1

+Φλ1
(x,uλ1

) in Ω ,

uλ1
,uλ2

> 0 in Ω ,

uλ1
= uλ2

on ∂Ω ,

Δuλ1
∈ L1(Ω).

Again by Theorem 1.2, we conclude that uλ1
≤ uλ2

in Ω . Moreover, by the maxi-

mum principle, uλ1
< uλ2

in Ω .

Let λ2 ≤ 0; we show that uλ1
≤ uλ2

in Ω . Indeed, supposing the contrary, there

exists x0 ∈ Ω such that uλ1
(x0) > uλ2

(x0). We conclude now that max
x∈Ω

{uλ1
(x)−

uλ2
(x)} > 0 is achieved at some point in Ω . At that point, say x̄, we have

0≤−Δ(uλ1
− uλ2

)(x̄) =Φλ1
(x̄,uλ1

(x̄))−Φλ2
(x̄,uλ2

(x̄))< 0,

which is a contradiction. It follows that uλ1
≤ uλ2

in Ω , and by the maximum prin-

ciple we have uλ1
< uλ2

in Ω .

If λ1 < 0 < λ2, then uλ1
< u0 < uλ2

in Ω . This finishes the proof of Step 3.

Step 4: Regularity of the solution.ı̈¿ 1
2

Fix λ ∈R and let uλ ∈C2(Ω)∩C(Ω ) be the unique solution of (Pλ ). An impor-

tant result in our approach is the following estimate

c1d(x)≤ uλ (x)≤ c2d(x), for all x ∈Ω , (4.5)

where c1,c2 are positive constants. The first inequality in (4.5) was established in

Step 2. For the second one, we apply an idea found in Gui and Lin [107].
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Using the smoothness of ∂Ω , we can find δ ∈ (0,1) such that for all x0 ∈Ωδ :=

{x ∈ Ω ; d(x) ≤ δ}, there exists y ∈ R
N \Ω with d(y,∂Ω) = δ and d(x0) = |x0−

y|− δ .

Let K > 1 be such that diam(Ω)< (K− 1)δ and let w be the unique solution of

the Dirichlet problem⎧⎪⎪⎨
⎪⎪⎩
−Δw = λ+ f (w)+g(w) in BK(0)\B1(0),

w > 0 in BK(0)\B1(0),

w = 0 on ∂ (BK(0)\B1(0)),

(4.6)

where Br(0) is the open ball in R
N of radius r and centered at the origin. By unique-

ness, w is radially symmetric. Hence w(x) = w̃(|x|) and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w̃′′+
N− 1

r
w̃′+λ+ f (w̃)+g(w̃) = 0 for r ∈ (1,K),

w̃ > 0 in (1,K),

w̃(1) = w̃(K) = 0.

(4.7)

Integrating in (4.7) we have

w̃′(t) = w̃′(a)aN−1t1−N− t1−N
∫ t

a
rN−1 [λ+ f (w̃(r))+ g(w̃(r))

]
dr,

= w̃′(b)bN−1t1−N + t1−N
∫ b

t
rN−1 [λ+ f (w̃(r))+ g(w̃(r))

]
dr,

where 1 < a < t < b < K. Since g(w̃) ∈ L1(1,K), we deduce that both w̃′(1) and

w̃′(K) are finite, so w̃ ∈C2(1,K)∩C1[1,K]. Furthermore,

w(x)≤C min{K−|x|, |x|− 1}, for any x ∈ BK(0)\B1(0). (4.8)

Let us fix x0 ∈Ωδ . Then we can find y0 ∈ R
N \Ω with d(y0,∂Ω) = δ and d(x0) =

|x0− y|− δ . Thus, Ω ⊂ BKδ (y0) \Bδ(y0). Define v(x) = cw

(
x− y0

δ

)
, x ∈ Ω . We

show that v is a supersolution of (Pλ ), provided that c is large enough. Indeed, if

c > max{1,δ 2‖a‖∞}, then for all x ∈Ω we have

Δv+λ f (v)+a(x)g(v)≤ c
δ 2

(
w̃′′(r)+

N− 1
r

w̃′(r)
)

+λ+ f (cw̃(r))+ a(x)g(cw̃(r)),
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where r =
|x− y0|
δ

∈ (1,K). Using the assumption ( f 1) we get f (cw̃) ≤ c f (w̃) in

(1,K). The above relations lead us to

Δv+λ f (v)+a(x)g(v)≤ c
δ 2

(
w̃′′+

N− 1
r

w̃′
)
+λ+c f (w̃)+ ‖a‖∞g(w̃)

≤ c
δ 2

(
w̃′′+

N− 1
r

w̃′+λ+ f (w̃)+g(w̃)

)
= 0.

Since Δuλ ∈ L1(Ω), with a similar proof as in Step 2 we get uλ ≤ v in Ω . This

combined with (4.8) yields

uλ (x0)≤ v(x0)≤C min{K− |x0− y0|
δ

,
|x0− y0|
δ

−1} ≤ C
δ

d(x0).

Hence uλ ≤ C
δ d(x) in Ωδ and the last inequality in (4.5) follows.

Let G be the Green’s function associated with the Laplace operator in Ω . Then,

for all x ∈Ω we have

uλ (x) =−
∫
Ω

G(x,y) [λ f (uλ (y))+ a(y)g(uλ (y))]dy,

and

∇uλ (x) =−
∫
Ω

Gx(x,y) [λ f (uλ (y))+ a(y)g(uλ (y))]dy.

If x1,x2 ∈Ω , using (g2) we obtain

|∇uλ (x1)−∇uλ(x2)| ≤ |λ |
∫
Ω
|Gx(x1,y)−Gx(x2,y)| · f (uλ (y))dy

+ c̃
∫
Ω
|Gx(x1,y)−Gx(x2,y)| ·u−αλ (y)dy.

Now, taking into account that uλ ∈ C(Ω ), by the standard regularity theory (see

Gilbarg and Trudinger [99]) we get∫
Ω
|Gx(x1,y)−Gx(x2,y)| · f (uλ (y))≤ c̃1|x1− x2|.

On the other hand, with the same proof as in [107, Theorem 1], we deduce∫
Ω
|Gx(x1,y)−Gx(x2,y)| ·u−αλ (y)≤ c̃2|x1− x2|1−α .

The above inequalities imply uλ ∈C2(Ω)∩C1,1−α (Ω ). The proof of Theorem 4.1

is now complete. ��
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Next, consider the case m > 0. The results in this case are different from those

presented in Theorem 4.1. A careful examination of (Pλ ) reveals the fact that the

singular term g(u) is not significant. Actually, the conclusions are close to those es-

tablished in Mironescu and Rădulescu [144, Theorem A], where an elliptic problem

associated to an asymptotically linear function is studied.

Let λ1 be the first Dirichlet eigenvalue of (−Δ) in Ω and λ ∗ =
λ1

m
. Our result in

this case is the following.

Theorem 4.4 Assume ( f 1), (g1), (g2) and m > 0. Then the following hold.

(i) If λ ≥ λ ∗, then (Pλ ) has no solutions in E .

(ii) If a∗ > 0 (resp. a∗ = 0) then (Pλ ) has a unique solution uλ ∈ E for all −∞ <

λ < λ ∗ (resp. 0 < λ < λ ∗) with the properties:

(ii1) uλ is strictly increasing with respect to λ .

(ii2) there exist two positive constants c1,c2 > 0 depending on λ such that

c1d(x)≤ uλ ≤ c2d(x) in Ω .

(ii3) lim
λ↗λ ∗

uλ =+∞, uniformly on compact subsets of Ω .

The bifurcation diagram in the “linear” case m > 0 is depicted in Fig. 4.2.

λ

u

λ*

Fig. 4.2 The “linear” case m > 0

Proof. (i) Let φ1 be the first eigenfunction of the Laplace operator in Ω with

Dirichlet boundary condition. Arguing by contradiction, let us suppose that there

exists λ ≥ λ ∗ such that (Pλ ) has a solution uλ ∈ E .
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Multiplying by φ1 in (Pλ ) and then integrating overΩ we get

−
∫
Ω
φ1Δuλ = λ

∫
Ω

f (uλ )φ1 +
∫
Ω

a(x)g(uλ )φ1. (4.9)

Since λ ≥ λ1

m
, in view of the assumption ( f 1) we get λ f (uλ ) ≥ λ1uλ in Ω . Using

this fact in (4.9) we obtain

−
∫
Ω
φ1Δuλ > λ1

∫
Ω

uλφ1.

The regularity of uλ yields−
∫
Ω

uλΔφ1 > λ1

∫
Ω

uλφ1. This is clearly a contradiction

since −Δφ1 = λ1φ1 in Ω . Hence (Pλ ) has no solutions in E for any λ ≥ λ ∗.
(ii) From now on, the proof of the existence, uniqueness and regularity of solution

is the same as in Theorem 4.1.

(ii3) In what follows we shall apply some ideas developed in Mironescu and

Rădulescu [144]. Due to the special character of our problem, we will be able to

prove that, in certain cases, L2 boundedness implies H1
0 boundedness!

Let uλ ∈ E be the unique solution of (Pλ ) for 0 < λ < λ ∗. We prove that

lim
λ↗λ ∗

uλ = +∞, uniformly on compact subsets of Ω . Suppose the contrary. Since

{uλ}0<λ<λ ∗ is a sequence of nonnegative super-harmonic functions in Ω , by Theo-

rem 4.1.9 in Hörmander [111], there exists a subsequence of {uλ}λ<λ ∗ (still denoted

by {uλ}λ<λ ∗ ) which is convergent in L1
loc(Ω).

We first prove that {uλ}λ<λ ∗ is bounded in L2(Ω). We argue by contradiction.

Suppose that {uλ}λ<λ ∗ is not bounded in L2(Ω). Thus, up to a subsequence we

have uλ = M(λ )wλ , where

M(λ ) = ||uλ ||L2(Ω)→ ∞ as λ ↗ λ ∗ and wλ ∈ L2(Ω), ‖wλ‖L2(Ω) = 1. (4.10)

Using ( f 1), (g2) and the monotonicity assumption on g, we deduce the existence of

A, B, C, D > 0 (A > m) such that

f (t)≤ At +B, g(t)≤Ct−α +D, for all t > 0. (4.11)

This implies

1
M(λ )

(λ f (uλ )+a(x)g(uλ))→ 0 in L1
loc(Ω) as λ ↗ λ ∗
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that is,

−Δwλ → 0 in L1
loc(Ω) as λ ↗ λ ∗. (4.12)

By Green’s first identity, we have∫
Ω
∇wλ ·∇φ dx =−

∫
Ω
φ Δwλ dx =−

∫
Suppφ

φ Δwλ dx ∀φ ∈C∞0 (Ω). (4.13)

Using (4.12) we derive that∣∣∣∣
∫

Suppφ
φ Δwλ dx

∣∣∣∣≤
∫

Suppφ
|φ ||Δwλ |dx

≤ ‖φ‖L∞

∫
Suppφ

|Δwλ |dx→ 0 as λ ↗ λ ∗.
(4.14)

Combining (4.13) and (4.14), we arrive at
∫
Ω
∇wλ ·∇φ dx→ 0 as λ ↗ λ ∗, ∀φ ∈C∞0 (Ω). (4.15)

By definition, the sequence {wλ}0<λ<λ ∗ is bounded in L2(Ω).

We claim that {wλ}λ<λ ∗ is bounded in H1
0 (Ω). Indeed, using (4.11) and Hölder’s

inequality, we have

∫
Ω
|∇wλ |2 =−

∫
Ω

wλΔwλ =
−1

M(λ )

∫
Ω

wλΔuλ

=
1

M(λ )

∫
Ω
[λwλ f (uλ )+a(x)g(uλ)wλ ]

≤ λ
M(λ )

∫
Ω

wλ (Auλ +B)+
||a||∞
M(λ )

∫
Ω

wλ (Cu−αλ +D)

= λA
∫
Ω

w2
λ +

||a||∞C
M(λ )1+α

∫
Ω

w1−α
λ +

λB+‖a‖∞D
M(λ )

∫
Ω

wλ

≤ λ ∗A+
||a||∞C

M(λ )1+α |Ω |(1+α)/2 +
λB+‖a‖∞D

M(λ )
|Ω |1/2.

From the above estimates, it is easy to see that {wλ}λ<λ ∗ is bounded in H1
0 (Ω), so

the claim is proved. Then, there exists w ∈ H1
0 (Ω) such that (up to a subsequence)

wλ ⇀ w weakly in H1
0 (Ω) as λ ↗ λ ∗ (4.16)

and, because H1
0 (Ω) is compactly embedded in L2(Ω),

wλ → w strongly in L2(Ω) as λ ↗ λ ∗. (4.17)
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On the one hand, by (4.10) and (4.17), we derive that ‖w‖L2(Ω) = 1. Furthermore,

using (4.15) and (4.16), we infer that
∫
Ω
∇w ·∇φ dx = 0, ∀φ ∈C∞0 (Ω).

Since w ∈ H1
0 (Ω), using the above relation and the definition of H1

0 (Ω), we get

w = 0. This contradiction shows that {uλ}λ<λ ∗ is bounded in L2(Ω). As above for

wλ , we can derive that uλ is bounded in H1
0 (Ω). So, there exists u∗ ∈ H1

0 (Ω) such

that, up to a subsequence,⎧⎪⎪⎨
⎪⎪⎩

uλ ⇀ u∗ weakly in H1
0 (Ω) as λ ↗ λ ∗,

uλ → u∗ strongly in L2(Ω) as λ ↗ λ ∗,

uλ → u∗ a.e. in Ω as λ ↗ λ ∗.

(4.18)

Now we can proceed to get a contradiction. Multiplying by φ1 in (Pλ ) and inte-

grating over Ω we have

−
∫
Ω
ϕ1Δuλ = λ

∫
Ω

f (uλ )ϕ1 +

∫
Ω

a(x)g(uλ )ϕ1, for all 0 < λ < λ ∗. (4.19)

On the other hand, by ( f 1) it follows that f (uλ ) ≥ muλ in Ω , for all 0 < λ < λ ∗.
Combining this with (4.19) we obtain

λ1

∫
Ω

uλϕ1 ≥ λm
∫
Ω

uλϕ1 +
∫
Ω

a(x)g(uλ )ϕ1, for all 0 < λ < λ ∗. (4.20)

Notice that by (g1), (4.18) and the monotonicity of uλ with respect to λ we can

apply the Lebesgue convergence theorem to find∫
Ω

a(x)g(uλ )ϕ1 dx→
∫
Ω

a(x)g(u∗)ϕ1 dx as λ ↗ λ1.

Passing to the limit in (4.20) as λ ↗ λ ∗, and using (4.18), we get

λ1

∫
Ω

u∗ϕ1 ≥ λ1

∫
Ω

u∗ϕ1 +

∫
Ω

a(x)g(u∗)ϕ1. (4.21)

Hence
∫
Ω

a(x)g(u∗)ϕ1 = 0, which is a contradiction. This fact shows that lim
λ↗λ ∗

uλ =

+∞, uniformly on compact subsets of Ω . This ends the proof. ��
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4.2 Lane–Emden–Fowler Systems with Negative Exponents

In this section we study the elliptic system

⎧⎪⎪⎨
⎪⎪⎩
−Δu = u−pv−q , u > 0 in Ω ,

−Δv = u−rv−s , v > 0 in Ω ,

u = v = 0 on ∂Ω ,

(4.22)

whereΩ ⊂R
N (N ≥ 1) is a bounded domain with C2 boundary, p,s≥ 0 and q,r > 0.

By solution of (4.22) we understand a pair (u,v) with u,v∈C2(Ω)∩C(Ω ) such that

u,v > 0 in Ω and satisfies (4.22) pointwise.

The first motivation for the study of system (4.22) comes from the so-called

Lane–Emden equation (see [68, 77, 128])

−Δu = up in BR(0), R > 0, (4.23)

subject to Dirichlet boundary condition. In astrophysics, the exponent p is called

the polytropic index and positive radially symmetric solutions of (4.23) are used

to describe the structure of the polytropic stars (we refer the interested reader to

the book by Chandrasekhar [37] for an account on the above equation as well as

for various mathematical techniques to describe the behavior of the solution to the

Lane–Emden equation).

Systems of type (4.22) with p,s ≤ 0 and q,s < 0 have received considerable at-

tention in the last decade (see, e.g., [33, 49, 72, 75, 146, 166, 171, 177, 178, 183, 216]

and the references therein). It has been shown that for such range of exponents sys-

tem (4.22) has a rich mathematical structure. Various techniques such as the moving

plane method, Pohozaev-type identities, and rescaling arguments have been devel-

oped and suitably adapted to deal with (4.22) in this case.

Recently, there has been some interest in systems of type (4.22) where not all the

exponents are negative. In [85,93,94] the system (4.22) is considered under the hy-

pothesis p,r < 0 < q,s. This corresponds to the singular Gierer–Meinhardt system

arising in molecular biology. In [111] the authors provide a nice sub and supersolu-

tion device that applies to general systems both in cooperative and noncooperative

settings. This method was then used to discuss singular counterparts of some well-

known models such as Gierer–Meinhardt, Lotka–Volterra or predator–prey systems.
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We shall be concerned with system (4.22) in case p,s ≥ 0 and q,r > 0. This

corresponds to the prototype equation (4.23) in which the polytropic index p is

negative. For such range of exponents, the above-mentioned methods do not apply;

another difficulties in dealing with system (4.22) come from the noncooperative

character of our system and from the lack of a variational structure. In turn, our

approach relies on the boundary behavior of solutions to (4.23) (with p < 0) or

more generally, to singular elliptic problems of the type{−Δu = k(δ (x))u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.24)

where

δ (x) = dist(x,∂Ω), x ∈Ω ,

and k : (0,∞)→ (0,∞) is a decreasing function such that limt↘0 k(t) = ∞.

The approach we adopt here is inspired from [86] and can be used to study more

general systems in the form⎧⎪⎪⎨
⎪⎪⎩
−L u = f (x,u,v) , u > 0 in Ω ,

−L v = g(x,u,v) , v > 0 in Ω ,

u = v = 0 on ∂Ω ,

where L is a second order differential operator not necessarily in divergence form

and

f (x,u,v) = k1(x)u
−pv−q, g(x,u,v) = k2(x)u

−rv−s,

or

f (x,u,v) = k11(x)u
−p + k12(x)v

−q, g(x,u,v) = k21(x)u
−r + k22(x)v

−s,

with ki,ki j :Ω → (0,∞) (i, j = 1,2) continuous functions that behave like

δ (x)−a logb
(

A
δ (x)

)
near ∂Ω , (4.25)

for some A,a > 0 and b ∈ R.
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4.2.1 Preliminary Results

In this section we collect some old and new results concerning problems of type

(4.24). Note that the method of sub and supersolutions is also valid in the singular

framework as explained in [95, Theorem 1.2.3]. Our first result is a straightforward

comparison principle between subsolutions and supersolutions for singular elliptic

equations.

Proposition 4.5 Let p ≥ 0 and φ : Ω → (0,∞) be a continuous function. If u is a

subsolution and u is a supersolution of{−Δu = φ(x)u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

then u≤ u in Ω .

Proof. If p = 0 the result follows directly from the maximum principle. Let now

p> 0. Assume by contradiction that the set ω := {x∈Ω : u(x)< u(x)} is not empty

and let w := u− u. Then, w achieves its maximum on Ω at a point that belongs to

ω . At that point, say x0, we have

0≤−Δw(x0)≤ φ(x0)[u(x0)
−p− u(x0)

−p]< 0,

which is a contradiction. Therefore, ω = /0, that is, u≤ u in Ω . �

Proposition 4.6 Let u ∈C2(Ω)∩C(Ω ) be such that u = 0 on ∂Ω and

0≤−Δu≤ cδ (x)−a in Ω ,

where 0 < a < 2 and c > 0. Then, u ∈C0,γ (Ω) for some 0 < γ < 1. Furthermore, if

0 < a < 1, then u ∈C1,1−a(Ω ).

Proof. Let G denote the Green’s function for the negative Laplace operator. Thus,

for all x ∈Ω we have

u(x) =−
∫
Ω

G (x,y)Δu(y)dy.

Let x1,x2 ∈Ω . Then
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|u(x1)− u(x2)| ≤ −
∫
Ω
|G (x1,y)−G (x2,y)|Δu(y)dy

≤ c
∫
Ω
|G (x1,y)−Gx(x2,y)|δ (y)−ady.

Next, using the method in [107, Theorem 1.1] we have

|u(x1)− u(x2)| ≤C|x1− x2|γ for some 0 < γ < 1.

Hence u ∈C0,γ (Ω). Assume now 0 < a < 1. Then,

∇u(x) =−
∫
Ω

Gx(x,y)Δu(y)dy for all x ∈Ω ,

and
|∇u(x1)−∇u(x2)| ≤ −

∫
Ω
|Gx(x1,y)−Gx(x2,y)|Δu(y)dy

≤ c
∫
Ω
|Gx(x1,y)−Gx(x2,y)|δ (y)−ady.

The same technique as in [107, Theorem 1.1] yields

|∇u(x1)−∇u(x2)| ≤C|x1− x2|1−a for all x1,x2 ∈Ω .

Therefore u ∈C1,1−a(Ω). �

Proposition 4.7 Let (u,v) be a solution of system (4.22). Then, there exists a con-

stant c > 0 such that

u(x)≥ cδ (x) and v(x)≥ cδ (x) in Ω . (4.26)

Proof. Let w be the solution of{−Δw = 1 , w > 0 in Ω ,

w = 0 on ∂Ω .
(4.27)

Using the smoothness of ∂Ω , we have w ∈ C2(Ω ) and by Hopf’s boundary point

lemma (see [162]), there exists c0 > 0 such that w(x) ≥ c0δ (x) in Ω . Since −Δu≥
C = −Δ(Cw) in Ω , for some constant C > 0, by standard maximum principle we

deduce u(x)≥Cw(x)≥ cδ (x) in Ω and similarly v(x)≥ cδ (x) in Ω , where c > 0 is

a positive constant. �

Let (λ1,ϕ1) be the first eigenvalue/eigenfunction of −Δ in Ω . It is well known

that λ1 > 0 and ϕ1 ∈C2(Ω) has constant sign in Ω . Further, using the smoothness
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of Ω and normalizing ϕ1 with a suitable constant, we can assume

c0δ (x)≤ ϕ1(x)≤ δ (x) in Ω , (4.28)

for some 0 < c0 < 1. By Hopf’s boundary point lemma we have ∂ϕ1
∂n < 0 on ∂Ω ,

where n is the outer unit normal vector at ∂Ω . Hence, there exists ω ⊂⊂ Ω and

c > 0 such that

|∇ϕ1|> c in Ω \ω . (4.29)

Theorem 4.8 Let p≥ 0, A > diam(Ω) and k : (0,A)→ (0,∞) be a decreasing func-

tion such that ∫ A

0
tk(t)dt = ∞.

Then, the inequality {−Δu≥ k(δ (x))u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.30)

has no solutions u ∈C2(Ω)∩C(Ω).

Proof. Suppose by contradiction that there exists a solution u0 of (4.30). For any

0 < ε < A− diam(Ω)

we consider the perturbed problem{−Δu = k(δ (x)+ ε)(u+ ε)−p , u > 0 in Ω ,

u = 0 on ∂Ω .
(4.31)

Then, u = u0 is a supersolution of (4.31). Also, if w is the solution of problem

(4.27) it is easy to see that u = cw is a subsolution of (4.31) provided c > 0 is small

enough. Further, by Proposition 4.5 it follows that u ≤ u in Ω . Thus, by the sub

and supersolution method we deduce that problem (4.31) has a solution uε ∈C2(Ω)

such that

cw≤ uε ≤ u0 in Ω . (4.32)

Multiplying with ϕ1 in (4.31) and then integrating overΩ we find

λ1

∫
Ω

uεϕ1dx =
∫
Ω

k(δ (x)+ ε)(uε + ε)−pϕ1dx.
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Using (4.32) we obtain

M := λ1

∫
Ω

u0ϕ1dx≥ λ1

∫
Ω

uεϕ1dx≥
∫
ω

k(δ (x)+ ε)(u0 + ε)−pϕ1dx,

for all ω ⊂⊂ Ω . Passing to the limit with ε → 0 in the above inequality and using

(4.28) we find

M ≥
∫
ω

k(δ (x))u−p
0 ϕ1dx≥ c0‖u0‖−p

∞

∫
ω

k(δ (x))δ (x)dx.

Since ω ⊂⊂Ω was arbitrary, we deduce∫
Ω

k(δ (x))δ (x)dx < ∞.

Using the smoothness of ∂Ω , the above condition yields
∫ A

0 tk(t)dt < ∞, which

contradicts our assumption on k. Hence, (4.30) has no solutions. �

A direct consequence of Theorem 4.8 is the following result.

Corollary 4.9 Let p≥ 0 and q≥ 2. Then, there are no functions u∈C2(Ω)∩C(Ω )

such that {−Δu≥ δ (x)−qu−p , u > 0 in Ω ,

u = 0 on ∂Ω .

Proposition 4.10 Let p ≥ 0 and 0 < q < 2. There exists c > 0 and A > diam(Ω)

such that any supersolution u of{−Δu = δ (x)−qu−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.33)

satisfies:

(i) u(x)≥ cδ (x) in Ω , if p+ q < 1.

(ii) u(x)≥ cδ (x) log
1

1+p

(
A
δ (x)

)
in Ω if p+ q = 1.

(iii) u(x)≥ cδ (x)
2−q
1+p in Ω , if p+ q > 1.

A similar result holds for subsolutions of (4.33).

Proof. If p > 0 then the result follows from Theorem 3.5 in [66] (see also [95,

Section 9]). If p = 0 we proceed as in [66, Theorem 3.5], namely, for m > 0 we

show that the function
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u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mϕ1(x) if q < 1,

mϕ1(x) log

(
A

ϕ1(x)

)
if q = 1,A > diam(Ω),

mϕ1(x)
2−q if q > 1,

satisfies −Δu≤ δ (x)−q in Ω . Thus, the estimates in Proposition 4.10 follows from

(4.28) and the maximum principle. �

Theorem 4.11 Let 0< a< 1, A> diam(Ω), p≥ 0 and q> 0 be such that p+q= 1.

Then, the problem⎧⎪⎨
⎪⎩
−Δu = δ (x)−q log−a

(
A
δ (x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

(4.34)

has a unique solution u which satisfies

c1δ (x) log
1−a
1+p

(
A
δ (x)

)
≤ u(x)≤ c2δ (x) log

1−a
1+p

(
A
δ (x)

)
in Ω , (4.35)

for some c1,c2 > 0.

Proof. Let

w(x) = ϕ1(x) logb
(

A
ϕ1(x)

)
, x ∈Ω ,

where b = 1−a
1+p ∈ (0,1). A straightforward computation yields

−Δw =λ1ϕ1 logb
(

A
ϕ1(x)

)
+ b(|∇ϕ1|2−λ1ϕ2

1 )ϕ−1
1 logb−1

(
A

ϕ1(x)

)

+b(1− b)|∇ϕ1|2ϕ−1
1 logb−2

(
A

ϕ1(x)

)
in Ω .

Using (4.29) we can find C1,C2 > 0 such that

C1ϕ−1
1 logb−1

(
A

ϕ1(x)

)
≤−Δw≤C2ϕ−1

1 logb−1
(

A
ϕ1(x)

)
in Ω ,

that is,

C1ϕ
−q
1 log−a

(
A

ϕ1(x)

)
w−p ≤−Δw≤C2ϕ

−q
1 log−a

(
A

ϕ1(x)

)
w−p in Ω .

We now deduce that u = mw and u = Mw are respectively subsolution and super-

solution of (4.34) for suitable 0 < m < 1 < M. Hence, the problem (4.34) has a
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solution u ∈C2(Ω)∩C(Ω) such that

mϕ1 log
1−a
1+p

(
A

ϕ1(x)

)
≤ u≤M log

1−a
1+p

(
A

ϕ1(x)

)
in Ω . (4.36)

The uniqueness follows from Proposition 4.5 while the boundary behavior of u fol-

lows from (4.36) and (4.28). This finishes the proof. �

Corollary 4.12 Let C > 0 and a,A, p,q be as in Theorem 4.11. Then, there exists

c > 0 such that any solution u of⎧⎪⎨
⎪⎩
−Δu≥Cδ (x)−q log−a

(
A
δ (x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≥ cδ (x) log
1−a
1+p

(
A
δ (x)

)
in Ω .

Proposition 4.13 Let A > 3diam(Ω) and C > 0. There exists c > 0 such that any

solution u ∈C2(Ω)∩C(Ω) of⎧⎪⎨
⎪⎩
−Δu≥Cδ−1(x) log−1

(
A
δ (x)

)
, u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≥ cδ (x) log

[
log

(
A
δ (x)

)]
in Ω . (4.37)

Proof. Let

w(x) = ϕ1(x) log

[
log

(
A

ϕ1(x)

)]
, x ∈Ω .

An easy computation yields

−Δw =λ1ϕ1 log

[
log

(
A

ϕ1(x)

)]
+
|∇ϕ1|2−λ1ϕ2

1

ϕ1 log
(

A
ϕ1(x)

) +
|∇ϕ1|2

ϕ1 log2
(

A
ϕ1(x)

)
≤ c0

ϕ1 log
(

A
ϕ1(x)

) in Ω ,

for some c0 > 0. Using (4.28) we can find m > 0 small enough such that

−Δ(mw)≤ C

δ (x) log
(

A
δ (x)

) in Ω .
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Now by the maximum principle we deduce u ≥ mw in Ω and by (4.28) we obtain

that u satisfies the estimate (4.37). �

Theorem 4.14 Let p≥ 0, A > diam(Ω) and a ∈R. Then, problem⎧⎪⎨
⎪⎩
−Δu = δ (x)−2 log−a

(
A
δ (x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

(4.38)

has solutions if and only if a > 1. Furthermore, if a > 1 then (4.41) has a unique

solution u and there exist c1,c2 > 0 such that

c1 log
1−a
1+p

(
A
δ (x)

)
≤ u(x)≤ c2 log

1−a
1+p

(
A
δ (x)

)
in Ω . (4.39)

Proof. Fix B > A such that the function k : (0,B)→ R, k(t) = t−2 log−a
(

B
t

)
is

decreasing on (0,A). Then, any solution u of (4.38) satisfies{−Δu≥ ck(δ (x))u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

where c > 0. By virtue of Theorem 4.8 we deduce
∫ A

0 tk(t)dt < ∞, that is, a > 1.

For a > 1, let

w(x) = logb
(

B
ϕ1(x)

)
, x ∈Ω ,

where b = 1−a
1+p < 0. It is easy to see that

−Δw =− b(|∇ϕ1|2 +λ1ϕ2
1 )ϕ

−2
1 logb−1

(
B

ϕ1(x)

)

− b(b− 1)|∇ϕ1|2ϕ−2
1 logb−2

(
B

ϕ1(x)

)
in Ω .

Choosing B > 0 large enough, we may assume

log

(
B

ϕ1(x)

)
≥ 2(1− b) in Ω . (4.40)

Therefore, from (4.29) and (4.40) there exist C1,C2 > 0 such that

C1ϕ−2
1 logb−1

(
B

ϕ1(x)

)
≤−Δw≤C2ϕ−2

1 logb−1
(

B
ϕ1(x)

)
in Ω ,

that is,
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C1ϕ−2
1 log−a

(
B

ϕ1(x)

)
w−p ≤−Δw≤C2ϕ−2

1 log−a
(

B
ϕ1(x)

)
w−p in Ω .

As before, from (4.28) it follows that u = mw and u = Mw are respectively subsolu-

tion and supersolution of (4.38) provided m > 0 is small and M > 1 is large enough.

The rest of the proof is the same as for Theorem 4.11. �

Corollary 4.15 Let C > 0, p≥ 0, A > diam(Ω) and a > 1. Then, there exists c > 0

such that any solution u ∈C2(Ω)∩C(Ω ) of⎧⎪⎨
⎪⎩
−Δu≥Cδ (x)−2 log−a

(
A

ϕ1(x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

(4.41)

satisfies

u(x)≥ c log
1−a
1+p

(
A
δ (x)

)
in Ω .

4.2.2 Nonexistence of a Solution

Our first result concerning the study of (4.22) is the following.

Theorem 4.16 (Nonexistence) Let p,s≥ 0, q,r > 0 be such that one of the follow-

ing conditions holds:

(i) r min
{

1, 2−q
1+p

}
≥ 2.

(ii) qmin
{

1, 2−r
1+s

}≥ 2.

(iii) p > max{1,r− 1}, 2r > (1− s)(1+ p) and q(1+ p− r)> (1+ p)(1+ s).

(iv) s > max{1,q− 1}, 2q > (1− p)(1+ s) and r(1+ s− q)> (1+ p)(1+ s).

Then the system (4.22) has no solutions.

Remark that condition (i) in Theorem 4.16 restricts the range of the exponent q to

the interval (0,2) while in (iii) the exponent q can take any value greater than 2,

provided we adjust the other three exponents p,r,s accordingly. The same remark

applies for the exponent r from the above conditions (ii) and (iv).

Proof. Since the system (4.22) is invariant under the transform

(u,v, p,q,r,s)→ (v,u,s,r,q, p),

we only need to prove (i) and (iii).
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(i) Assume that there exists (u,v) a solution of system (4.22). Note that from (i)

we have 0 < q < 2. Also, using Proposition 4.7, we can find c > 0 such that (4.26)

holds.

Case 1: p+ q < 1. From our hypothesis (i) we deduce r ≥ 2. Using the estimates

(4.26) in the first equation of the system (4.22) we find{−Δu≤ c1δ (x)−qu−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.42)

for some c1 > 0. From Proposition 4.10(i) we now deduce u(x) ≤ c2δ (x) in Ω , for

some c2 > 0. Using this last estimate in the second equation of (4.22) we find{−Δv≥ c3δ (x)−rv−s , v > 0 in Ω ,

u = 0 on ∂Ω ,
(4.43)

where c3 > 0. According to Corollary 4.9, this is impossible, since r ≥ 2.

Case 2: p+q> 1. From hypothesis (i) we also have r(2−q)
1+p ≥ 2. In the same manner

as above, u satisfies (4.42). Thus, by Proposition 4.10(iii), there exists c4 > 0 such

that

u(x)≤ c4δ (x)
2−q
1+p in Ω .

Using this estimate in the second equation of system (4.22) we obtain⎧⎨
⎩−Δv≥ c5δ (x)−

r(2−q)
1+p v−s , v > 0 in Ω ,

u = 0 on ∂Ω ,

for some c5 > 0, which is impossible in view of Corollary 4.9, since r(2−q)
1+p ≥ 2.

Case 3: p+q = 1. From (i) it follows that r ≥ 2. As in the previous two cases, we

easily find that u is a solution of (4.42), for some c1 > 0. Using Proposition 4.10(ii),

there exists c6 > 0 such that

u(x)≤ c6δ (x) log
1

1+p

(
A
δ (x)

)
in Ω ,

for some A > 3diam(Ω). Using this estimate in the second equation of (4.22) we

obtain ⎧⎪⎨
⎪⎩
−Δv≥ c7δ (x)−r log−

r
1+p

(
A
δ (x)

)
v−s , v > 0 in Ω ,

u = 0 on ∂Ω ,

(4.44)
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where c7 is a positive constant. From Theorem 4.8 it follows that

∫ 1

0
t1−r log−

r
1+p

(
A
t

)
dt < ∞.

Since r ≥ 2, the above integral condition implies r = 2. Now, using (4.44) (with

r = 2) and Corollary 4.15, there exists c8 > 0 such that

v(x)≥ c8 log
p−1

(1+p)(1+s)

(
A
δ (x)

)
in Ω . (4.45)

Using the estimate (4.45) in the first equation of system (4.22) we deduce

⎧⎪⎨
⎪⎩
−Δu≤ c9 log

q(1−p)
(1+p)(1+s)

(
A
δ (x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

(4.46)

for some c9 > 0. Fix 0< a< 1− p. Then, from (4.46) we can find a constant c10 > 0

such that u satisfies {−Δu≤ c10δ (x)−au−p , u > 0 in Ω ,

u = 0 on ∂Ω .

By Proposition 4.10(i) (since a + p < 1) we derive u(x) ≤ c11δ (x) in Ω , where

c11 > 0. Using this last estimate in the second equation of (4.22) we finally obtain

(note that r = 2):

{−Δv≥ c12δ (x)−2v−s , v > 0 in Ω ,

v = 0 on ∂Ω ,

which is impossible according to Corollary 4.9. Therefore, the system (4.22) has no

solutions.

(iii) Suppose that the system (4.22) has a solution (u,v) and let M = maxx∈Ω v.

From the first equation of (4.22) we have

{−Δu≥ c1u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,



142 4 Singular Lane–Emden–Fowler Equations and Systems

where c1 =M−q > 0. Using Proposition 4.10(iii) there exists c2 > 0 such that u(x)≥
c2δ (x)

2
1+p inΩ . Combining this estimate with the second equation of (4.22) we find⎧⎨

⎩−Δv≤ c3δ (x)−
2r

1+p v−s , v > 0 in Ω ,

v = 0 on ∂Ω .

Since 2r
1+p + s > 1, again by Proposition 4.10(iii) we obtain that the function v sat-

isfies

v(x)≤ c4δ (x)
2(1+p−r)
(1+p)(1+s) in Ω ,

for some c4 > 0. Using the above estimate in the first equation of (4.22) we find

c5 > 0 such that ⎧⎨
⎩−Δu≥ c5δ (x)

− 2q(1+p−r)
(1+p)(1+s) u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

which contradicts Corollary 4.9 since q(1+ p−r)> (1+ p)(1+s). Thus, the system

(4.22) has no solutions. This ends the proof of Theorem 4.16. �

4.2.3 Existence of a Solution

The existence of solutions to (4.22) is obtained under the following assumption on

the exponents p,q,r,s:

(1+ p)(1+ s)− qr> 0. (4.47)

We also introduce the quantities

α = p+ qmin

{
1,

2− r
1+ s

}
, β = r+ smin

{
1,

2−q
1+ p

}
.

The above values of α and β are related to the boundary behavior of the solution to

the singular elliptic problem (4.24) as explained in Proposition 4.10. Our existence

result is as follows.

Theorem 4.17 Let p,s ≥ 0, q,r > 0 satisfy (4.47) and one of the following condi-

tions:

(i) α ≤ 1 and r < 2.

(ii) β ≤ 1 and q < 2.

(iii) p,s≥ 1 and q,r < 2.
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Then, the system (4.22) has at least one solution.

The proof of the existence is based on the Schauder’s fixed point theorem in a suit-

ably chosen closed convex subset of C(Ω )×C(Ω ) that contains all the functions

having a certain rate of decay expressed in terms of the distance function δ (x) up to

the boundary of Ω .

Proof. (i) We divide the proof into six cases according to the boundary behavior of

singular elliptic problems of type (4.24), as described in Proposition 4.10.

Case 1 : r + s > 1 and α = p+ q(2−r)
1+s < 1. By Proposition 4.10(i) and (iii) there

exist 0 < c1 < 1 < c2 such that:

• Any subsolution u and any supersolution u of the problem⎧⎨
⎩−Δu = δ (x)−

q(2−r)
1+s u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.48)

satisfies

u(x)≥ c1δ (x) and u(x)≤ c2δ (x) in Ω . (4.49)

• Any subsolution v and any supersolution v of the problem{−Δv = δ (x)−rv−s , v > 0 in Ω ,

v = 0 on ∂Ω ,
(4.50)

satisfies

v(x)≥ c1δ (x)
2−r
1+s and v(x)≤ c2δ (x)

2−r
1+s in Ω . (4.51)

We fix 0 < m1 < 1 < M1 and 0 < m2 < 1 < M2 such that

M
r

1+s
1 m2 ≤ c1 < c2 ≤M1m

q
1+p
2 , (4.52)

and

M
q

1+p
2 m1 ≤ c1 < c2 ≤M2m

r
1+s
1 . (4.53)

Note that the above choice of mi,Mi (i = 1,2) is possible in view of (4.47). Set

A =

{
(u,v) ∈C(Ω )×C(Ω) :

m1δ (x) ≤ u(x)≤M1δ (x) in Ω

m2δ (x)
2−r
1+s ≤ v(x)≤M2δ (x)

2−r
1+s in Ω

}
.
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For any (u,v) ∈A , we consider (Tu,Tv) the unique solution of the decoupled sys-

tem ⎧⎪⎪⎨
⎪⎪⎩
−Δ(Tu) = v−q(Tu)−p , Tu > 0 in Ω ,

−Δ(T v) = u−r(T v)−s , T v > 0 in Ω ,

Tu = T v = 0 on ∂Ω ,

(4.54)

and define

F : A →C(Ω)×C(Ω) by F (u,v) = (Tu,Tv) for any (u,v) ∈A . (4.55)

Thus, the existence of a solution to system (4.22) follows once we prove that F has

a fixed point in A . To this aim, we shall prove that F satisfies the conditions:

F (A )⊆A , F is compact and continuous.

Then, by Schauder’s fixed point theorem we deduce that F has a fixed point in A ,

which, by standard elliptic estimates, is a classical solution to (4.22).

Step 1: F (A )⊆A . Let (u,v) ∈A . From

v(x)≤M2δ (x)
2−r
1+s in Ω ,

it follows that Tu satisfies⎧⎨
⎩−Δ(Tu)≥M−q

2 δ (x)−
q(2−r)

1+s (Tu)−p , Tu > 0 in Ω ,

Tu = 0 on ∂Ω .

Thus, u := M
q

1+p
2 Tu is a supersolution of (4.48). By (4.49) and (4.53) we obtain

Tu = M
− q

1+p
2 u≥ c1M

− q
1+p

2 δ (x)≥ m1δ (x) in Ω .

From v(x)≥ m2δ (x)
2−r
1+s in Ω and the definition of Tu we deduce that⎧⎨

⎩−Δ(Tu)≤ m−q
2 δ (x)−

q(2−r)
1+s (Tu)−p , Tu > 0 in Ω ,

Tu = 0 on ∂Ω .

Thus, u :=m
q

1+p
2 Tu is a subsolution of problem (4.48). Hence, from (4.49) and (4.52)

we obtain

Tu = m
− q

1+p
2 u≤ c2m

− q
1+p

2 δ (x) ≤M1δ (x) in Ω .

We have proved that Tu satisfies
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m1δ (x)≤ Tu≤M1δ (x) in Ω .

In a similar manner, using the definition of A and the properties of the sub and

supersolutions of problem (4.50) we show that Tv satisfies

m2δ (x)
2−r
1+s ≤ T v≤M2δ (x)

2−r
1+s in Ω .

Thus, (Tu,T v) ∈A for all (u,v) ∈A , that is, F (A )⊆A .

Step 2: F is compact and continuous. Let (u,v) ∈A . Since F (u,v) ∈A , we can

find 0 < a < 2 such that

0≤−Δ(Tu),−Δ(T v)≤ cδ (x)−a in Ω ,

for some positive constant c > 0. Using Proposition 4.6 we now deduce Tu,T v ∈
C0,γ(Ω ) (0 < γ < 1). Since the embedding C0,γ(Ω) ↪→C(Ω) is compact, it follows

that F is also compact.

It remains to prove that F is continuous. To this aim, let {(un,vn)} ⊂A be such

that un → u and vn → v in C(Ω ) as n→ ∞. Using the fact that F is compact, there

exists (U,V ) ∈A such that up to a subsequence we have

Tun →U, T vn →V in C(Ω) as n→ ∞.

On the other hand, by standard elliptic estimates, the sequences {Tun} and {Tvn}
are bounded in C2,β (ω) (0 < β < 1) for any smooth open set ω ⊂⊂ Ω . Therefore,

up to a diagonal subsequence, we have

Tun →U, T vn →V in C2(ω) as n→ ∞,

for any smooth open set ω ⊂⊂ Ω . Passing to the limit in the definition of Tun and

T vn we find that (U,V ) satisfies⎧⎪⎪⎨
⎪⎪⎩
−ΔU = v−qU−p , U > 0 in Ω ,

−ΔV = u−rV−s , V > 0 in Ω ,

U =V = 0 on ∂Ω .

By uniqueness of (4.54), it follows that Tu =U and T v =V . Hence

Tun → Tu, T vn → T v in C(Ω) as n→ ∞.
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This proves that F is continuous.

We are now in a position to apply the Schauder’s fixed point theorem. Thus, there

exists (u,v) ∈A such that F (u,v) = (u,v), that is, Tu = u and T v = v. By standard

elliptic estimates, it follows that (u,v) is a solution of system (4.22).

The remaining five cases will be considered in a similar way. Due to the different

boundary behavior of solutions described in Proposition 4.10, the set A and the

constants c1,c2 have to be modified accordingly. We shall point out the way we

choose these constants in order to apply Schauder’s fixed point theorem.

Case 2: r+ s = 1 and α = p+ q < 1. According to Proposition 4.10(i)–(ii) there

exist 0 < a < 1 and 0 < c1 < 1 < c2 such that:

• Any subsolution u of the problem{−Δu = δ (x)−qu−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≤ c2δ (x) in Ω .

• Any supersolution u of the problem{−Δu = δ (x)−q(1−a)u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≥ c1δ (x) in Ω .

• Any subsolution v and any supersolution v of problem (4.50) satisfies the esti-

mates

v(x)≤ c2δ (x)1−a and v(x)≥ c1δ (x) in Ω .

We now define

A =

{
(u,v) ∈C(Ω)×C(Ω) :

m1δ (x)≤ u(x)≤M1δ (x) in Ω

m2δ (x)≤ v(x)≤M2δ (x)1−a in Ω

}
,

where 0 < mi < 1 < Mi (i = 1,2) satisfy (4.52), (4.53) and

m2[diam(Ω)]a < M2. (4.56)
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We next define the operator F in the same way as in Case 1 by (4.54) and (4.55).

The fact that F (A ) ⊆ A and F is continuous and compact follows in the same

manner.

Case 3: r+ s < 1 and α = p+ q < 1. In the same manner we define

A =

{
(u,v) ∈C(Ω)×C(Ω) :

m1δ (x)≤ u(x)≤M1δ (x) in Ω

m2δ (x)≤ v(x)≤M2δ (x) in Ω

}
,

where 0 < mi < 1 < Mi (i = 1,2) satisfy (4.52)–(4.53) for suitable constants c1 and

c2.

Case 4: r+ s < 1 and α = p+ q = 1. The approach is the same as in Case 2 above

if we interchange u with v in the initial system (4.22).

Case 5: r+ s > 1 and α = p+ q = 1. Let 0 < a < 1 be fixed such that ar+ s > 1.

From Proposition 4.10(i), (iii), there exist 0 < c1 < 1 < c2 such that:

• Any subsolution u of the problem⎧⎨
⎩−Δu = δ (x)−

q(2−ar)
1+s u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≤ c2δ (x)a in Ω .

• Any supersolution u of the problem⎧⎨
⎩−Δu = δ (x)−

q(2−r)
1+s u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≥ c1δ (x) in Ω .

• Any subsolution v of problem (4.50) satisfies

v(x)≤ c2δ (x)
2−r
1+s in Ω .

• Any supersolution v of the problem{−Δv = δ (x)−arv−s , v > 0 in Ω ,

v = 0 on ∂Ω ,
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satisfies

v(x)≥ c1δ (x)
2−ar
1+s in Ω .

We now define

A =

{
(u,v) ∈C(Ω)×C(Ω) :

m1δ (x)≤ u(x)≤M1δ (x)a in Ω

m2δ (x)
2−ar
1+s ≤ v(x)≤M2δ (x)

2−r
1+s in Ω

}
,

where 0 < mi < 1 < Mi (i = 1,2) satisfy (4.52)–(4.53) in which the constants c1,c2

are those given above and

m1[diam(Ω)]1−a < M1, m2[diam(Ω)]
r(1−a)

1+s < M2.

Case 6: r+ s = 1 and α = p+q = 1. We proceed in the same manner as above by

considering

A =

{
(u,v) ∈C(Ω )×C(Ω) :

m1δ (x) ≤ u(x)≤M1δ (x)1−a in Ω

m2δ (x) ≤ v(x)≤M2δ (x)1−a in Ω

}
,

where 0 < a < 1 is a fixed constant and mi,Mi (i = 1,2) satisfy (4.52)–(4.53) for

suitable c1,c2 > 0 and

mi[diam(Ω)]a < Mi, i = 1,2.

(iii) Let

a =
2(1+ s− q)

(1+ p)(1+ s)− qr
, b =

2(1+ p− r)
(1+ p)(1+ s)− qr

.

Then

(1+ p)a+ bq= 2, ar+(1+ s)b = 2. (4.57)

Since p+bq> 1 and s+ar > 1, from Proposition 4.10(iii) and (4.57) above we can

find 0 < c1 < 1 < c2 such that

• Any subsolution u and any supersolution u of the problem{−Δu = δ (x)−bqu−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

satisfies

u(x)≥ c1δ (x)a and u(x)≤ c2δ (x)a in Ω .
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• Any subsolution v and any supersolution v of the problem{−Δv = δ (x)−arv−s , v > 0 in Ω ,

v = 0 on ∂Ω ,

satisfies

v(x)≥ c1δ (x)b and v(x)≤ c2δ (x)b in Ω .

As before, we now define

A =

{
(u,v) ∈C(Ω )×C(Ω) :

m1δ (x)a ≤ u(x)≤M1δ (x)a in Ω

m2δ (x)b ≤ v(x)≤M2δ (x)b in Ω

}
,

where 0 < m1 < 1 < M1 and 0 < m2 < 1 < M2 satisfy (4.52)–(4.53). This concludes

the proof of Theorem 4.17. �

From Theorem 4.16(i)–(ii) and Theorem 4.17(i)–(ii) we have the following nec-

essary and sufficient conditions for the existence of solutions to (4.22).

Corollary 4.18 Let p,s≥ 0, q,r > 0 satisfy (4.47).

(i) Assume p+ q≤ 1. Then system (4.22) has solutions if and only if r < 2.

(ii) Assume r+ s≤ 1. Then system (4.22) has solutions if and only if q < 2.

4.2.4 Regularity of Solution

A particular feature of system (4.22) is that it does not possess C2(Ω ) solutions.

Indeed, due to the fact that q,r < 0 and to the homogeneous Dirichlet boundary con-

dition imposed on u and v we have that u−pv−q and u−rv−s are unbounded around

∂Ω , so there are no C2(Ω) solutions of (4.22). In turn, C2(Ω)∩C1(Ω) may exist

and our next result provides necessary and sufficient conditions in terms of p,q,r

and s for the existence of such solutions.

Theorem 4.19 Let p,s≥ 0, q,r > 0 satisfy (4.47). Then

(i) System (4.22) has a solution (u,v) with u ∈ C1(Ω ) if and only if α < 1 and

r < 2.

(ii) System (4.22) has a solution (u,v) with v ∈ C1(Ω) if and only if β < 1 and

q < 2.
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(iii) System (4.22) has a solution (u,v) with u,v ∈ C1(Ω) if and only if p+ q < 1

and r+ s < 1.

Proof. (i) Assume first that the system (4.22) has a solution (u,v) with u ∈C1(Ω ).

Then, there exists c > 0 such that u(x) ≤ cδ (x) in Ω . Using this fact in the second

equation of (4.22), we derive that v satisfies the elliptic inequality (4.43) for some

c3 > 0. By Corollary 4.9 this entails r < 2.

In order to prove that α < 1 we argue by contradiction. Suppose that α ≥ 1 and

we divide our argument into three cases.

Case 1: r+ s > 1. Then, α = p+ q(2−r)
1+s ≥ 1. From Proposition 4.7 we have u(x)≥

cδ (x) in Ω , for some c > 0. Then v satisfies{−Δv≤ c1δ (x)−rv−s , v > 0 in Ω ,

u = 0 on ∂Ω ,
(4.58)

where c1 > 0. Since r < 2, from Proposition 4.10(iii) we find v(x) ≤ c2δ (x)
2−r
1+s in

Ω , for some c2 > 0. Using this estimate in the first equation of system (4.22) we

deduce ⎧⎨
⎩−Δu≥ c3δ (x)−

q(2−r)
1+s u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,
(4.59)

where c3 > 0. Now, if q(2−r)
1+s ≥ 2, from Corollary 4.9 the above inequality is impos-

sible. Assume next that q(2−r)
1+s < 2.

If α > 1, from (4.28), (4.59) and Proposition 4.10(iii) we find

u(x)≥ c4δ (x)τ ≥ c4ϕ1(x)
τ in Ω , (4.60)

where

τ =
2− q(2−r)

1+s

1+ p
∈ (0,1) and c4 > 0.

Fix x0 ∈ ∂Ω and let n be the outer unit normal vector on ∂Ω at x0. Using (4.60) and

the fact that 0 < τ < 1 we have

∂u
∂n

(x0) = lim
t↗0

u(x0 + tn)− u(x0)

t

≤ c4 lim
t↗0

ϕ1(x0 + tn)−ϕ1(x0)

t
ϕτ−1

1 (x0 + tn)

= c4
∂ϕ1

∂n
(x0) lim

t↗0
ϕτ−1

1 (x0 + tn)

=−∞.
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Hence, u �∈C1(Ω).

If α = 1 we proceed in the same manner. From (4.59) and Proposition 4.10(ii)

we deduce

u(x)≥ c5δ (x) log
1

1+p

(
A
δ (x)

)
≥ c6ϕ1(x) log

1
1+p

(
A

ϕ1(x)

)
in Ω ,

where c5,c6 > 0. As before, we obtain ∂u
∂n(x0) = −∞, x0 ∈ ∂Ω , which contradicts

u ∈C1(Ω ).

Case 2: r + s < 1. Then, α = p+ q ≥ 1. As in Case 1, v fulfills (4.58) and by

Proposition 4.10(i) we find v(x)≤ c7δ (x) in Ω , for some c7 > 0. Thus, u satisfies{−Δu≥ c8δ (x)−qu−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

where c8 > 0. From Corollary 4.9 it follows that q < 2. Since α = p+ q ≥ 1, it

follows that u satisfies either the estimate (ii) (if p+ q = 1) or the estimate (iii) (if

p+q > 1) in Proposition 4.10. Proceeding in the same way as before we derive that

the outer unit normal derivative of u on ∂Ω is −∞, which is impossible.

Case 3: r+ s = 1. This also yields α = p+ q≥ 1. As before v satisfies (4.58) and

by Proposition 4.10(ii) we deduce

v(x)≤ c9δ (x) log
1

1+s

(
A
δ (x)

)
in Ω ,

where c9 > 0. It follows that u satisfies⎧⎪⎨
⎪⎩
−Δu≥ c10δ (x)−q log−

q
1+s

(
A
δ (x)

)
u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

(4.61)

where c10 > 0. If q− b ≥ 2 the above inequality is impossible in the light of

Corollary 4.9. Assume next that q− b < 2. If α = p + q > 1, we fix 0 < b <

min{q, p+q− 1} and from (4.61) we have that u satisfies

{−Δu≥ c11δ (x)−(q−b)u−p , u > 0 in Ω ,

u = 0 on ∂Ω ,

for some c11 > 0. Now, since p+ q− b> 1, from Proposition 4.10(iii) we find
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u(x)≥ c12δ (x)
2−(q−b)

1+p in Ω ,

where c12 > 0. Since 0< 2−(q−b)
1+p < 1, we obtain as before that the normal derivative

of u on ∂Ω is infinite, which is impossible.

It remains to consider the case α = p+ q = 1, that is, p+ q = r+ s = 1. First, if

q < 1+ s, that is, q �= 1 and s �= 0, by (4.61) and Corollary 4.12 we deduce

u(x)≥ c13δ (x) log
1+s−q

(1+p)(1+s)

(
A
δ (x)

)
in Ω ,

for some c13 > 0. Proceeding as before we obtain ∂u
∂n =−∞ on ∂Ω , which is impos-

sible.

If q = 1 and s = 0 then we apply Proposition 4.13 to obtain

u(x)≥ c14δ (x) log

[
log

(
A
δ (x)

)]
in Ω ,

where c14 > 0. This also leads us to the same contradiction ∂u
∂n =−∞ on ∂Ω . Thus,

we have proved that if the system (4.22) has a solution (u,v) with u ∈C1(Ω ) then

α < 1 and r < 2.

Conversely, assume now that α < 1 and r < 2. By Theorem 4.17(i) (Cases 1,2

and 3) there exists a solution (u,v) of (4.22) such that

u(x)≥ cδ (x) in Ω ,

and

v(x)≥ cδ (x) in Ω , if r+ s≤ 1,

or

v(x)≥ cδ (x)
2−r
1+s in Ω , if r+ s > 1,

for some c > 0. Using the above estimates we find

−Δu = u−pv−q ≤Cδ (x)−α in Ω ,

for some C > 0. By Proposition 4.6, we now deduce u ∈ C1,1−α(Ω). The proof of

(ii) is similar.

(iii) Assume first that the system (4.22) has a solution (u,v) with u,v ∈ C1(Ω ).

Then, there exists c > 0 such that v(x)≤ cδ (x) in Ω . Using this estimate in the first

equation of (4.22) we find that
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u = 0 on ∂Ω ,

whereC is a positive constant. If p+q≥ 1, then we combine the result in Proposition

4.10(ii)–(iii) with the techniques used above to deduce ∂u
∂n = −∞ on ∂Ω , so u �∈

C1(Ω). Thus, p+ q < 1 and in a similar way we obtain r+ s < 1.

Assume now that p+q < 1 and r+ s < 1. By Theorem 4.17(i) (Case 3) we have

that (4.22) has a solution (u,v) such that u(x),v(x) ≥ cδ (x) in Ω , for some c > 0.

This yields

−Δu≤Cδ (x)−(p+q) in Ω ,

−Δv≤Cδ (x)−(r+s) in Ω ,

where C > 0. Now Proposition 4.6 implies u,v∈C1(Ω). This concludes the proof.�

4.2.5 Uniqueness

Another feature of system (4.22) is that under some conditions on p,q,r,s it has

a unique solution (see Theorem 4.20 below). This is a striking difference between

our setting and the case p,s≤ 0 and q,r < 0 largely investigated in the literature so

far, where the uniqueness does not seem to occur. In our framework, the uniqueness

is achieved from the boundary behavior of the solution to (4.22) deduced from the

study of the prototype model (4.24).

Theorem 4.20 Let p,s ≥ 0, q,r > 0 satisfy (4.47) and one of the following condi-

tions:

(i) p+ q < 1 and r < 2.

(ii) r+ s < 1 and q < 2.

Then, the system (4.22) has a unique solution.

Proof. We shall prove only (i); the case (ii) follows in the same manner.

Let (u1,v1) and (u2,v2) be two solutions of system (4.22). Using Proposition 4.7

there exists c1 > 0 such that

ui(x),vi(x)≥ c1δ (x) in Ω , i = 1,2. (4.62)
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Hence, ui satisfies{−Δui ≤ c2δ (x)−qu−p
i , ui > 0 in Ω ,

ui = 0 on ∂Ω ,

for some c2 > 0. By Proposition 4.10(i) and (4.62) there exists 0 < c < 1 such that

cδ (x)≤ ui(x)≤ 1
c
δ (x) in Ω , i = 1,2. (4.63)

This means that we can find a constant C > 1 such that Cu1 ≥ u2 and Cu2 ≥ u1 inΩ .

We claim that u1 ≥ u2 in Ω . Supposing the contrary, let

M = inf{A > 1 : Au1 ≥ u2 in Ω}.

By our assumption, we have M > 1. From Mu1 ≥ u2 in Ω , it follows that

−Δv2 = u−r
2 v−s

2 ≥M−ru−r
1 v−s

2 in Ω .

Therefore v1 is a solution and M
r

1+s v2 is a supersolution of{−Δw = u−r
1 w−s , w > 0 in Ω ,

w = 0 on ∂Ω .

By Proposition 4.5 we obtain

v1 ≤M
r

1+s v2 in Ω .

The above estimate yields

−Δu1 = u−p
1 v−q

1 ≥M− qr
1+s u−p

1 v−q
2 in Ω .

It follows that u2 is a solution and M
qr

(1+p)(1+s) u1 is a supersolution of{−Δw = v−q
2 w−p , w > 0 in Ω ,

w = 0 on ∂Ω .

By Proposition 4.5 we now deduce

M
qr

(1+p)(1+s) u1 ≥ u2 in Ω .
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Since M > 1 and qr
(1+p)(1+s) < 1, the above inequality contradicts the minimality

of M. Hence, u1 ≥ u2 in Ω . Similarly we deduce u1 ≤ u2 in Ω , so u1 ≡ u2 which

also yields v1 ≡ v2. Therefore, the system has a unique solution. This completes the

proof of Theorem 4.20. �

4.3 Sublinear Lane–Emden Systems with Singular Data

Let Ω ⊂ R
N be a bounded domain with C2,α(0 < α < 1) boundary. In this section

we shall be concerned with the following elliptic system⎧⎪⎪⎨
⎪⎪⎩
−Δu = δ (x)−avp ,u > 0 in Ω ,

−Δv = δ (x)−buq ,v > 0 in Ω ,

u = v = 0 on ∂Ω ,

(4.64)

where δ (x) =dist(x,∂Ω), a,b≥ 0 and p,q ∈ R satisfy −1 < pq < 1.

Our discussion splits up into four cases according to the sign of p and q.

4.3.1 Case p > 0 and q > 0

Theorem 4.21 Assume that p,q > 0 satisfy pq < 1 and one of the following holds:

(i) a− p < 2 and b− qmin{1,2− a+ p}< 1.

(ii) b−q < 2 and a− pmin{1,2− b+ q}< 1.

Then, the system (4.64) has at least one solution.

Proof. Before we proceed with the proof of Theorem 4.21 we state the following

auxiliary result whose proof is similar to those in Sect. 4.2.1.

Lemma 4.22 Let 0 < a < 2 and u ∈C2(Ω)∩C(Ω ) be such that

0≤−Δu≤ δ (x)−a, u > 0 in Ω , and u = 0 on ∂Ω .

Then:

(i) There exists 0 < γ < 1 such that u ∈ C0,γ(Ω). Moreover, if 0 < a < 1 then

u ∈C1,1−a(Ω).
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(ii) If 0 < a < 1 then there exists c > 0 such that u≤ cδ (x) in Ω .

(iii) If a = 1 and τ > 1 then, there exist c > 0 and A > diam(Ω) such that

u≤ cδ (x) logτ
(

A
δ (x)

)
in Ω .

In particular, for any 0 < ε < 1 there exist c > 0 such that u≤ cδ (x)1−ε in Ω .

(iv) If 1 < a < 2 then, there exists c > 0 such that u≤ cδ (x)2−a in Ω .

We shall prove only (i), the proof of (ii) is similar. First, we fix τ > 0 such that

(p+τ)q< 1. We divide our argument into three cases according to the boundary be-

havior of the solutions to some singular elliptic inequalities as described in Lemma

4.22.

Case 1: 1 < a− p < 2. By Lemma 4.22, there exists C > 0 such that:

• Any function w ∈C2(Ω)∩C(Ω) such that{−Δw≤ δ (x)−a+p , w > 0 in Ω ,

w = 0 on ∂Ω ,
(4.65)

satisfies

w(x)≤Cδ (x)2−a+p in Ω . (4.66)

• Any function w ∈C2(Ω)∩C(Ω) such that{−Δw≤ δ (x)−b+q(2−a+p) , w > 0 in Ω ,

w = 0 on ∂Ω ,
(4.67)

satisfies

w(x) ≤Cδ (x) in Ω . (4.68)

We fix M > 1 with the property

C < min{Mτ ,M1−(p+τ)q} (4.69)

and define

A :=

{
(u,v) ∈C(Ω )×C(Ω) :

0≤ u≤Mp+τδ (x)2−a+p in Ω

0≤ v≤Mδ (x) in Ω

}
.
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For any (u,v) ∈A , we consider (Tu,T v) the unique solution of⎧⎪⎪⎨
⎪⎪⎩
−Δ(Tu) = δ (x)−avp , Tu > 0 in Ω ,

−Δ(T v) = δ (x)−buq , Tv > 0 in Ω ,

Tu = Tv = 0 on ∂Ω ,

(4.70)

and define F : A →C(Ω )×C(Ω) by

F (u,v) = (Tu,T v) for any (u,v) ∈A . (4.71)

Remark that (4.70) has a unique solution, in other words, F is well defined. Indeed

for the existence of Tu we remark that 0≤ δ (x)−avp ≤ cδ (x)−a+p in Ω . Therefore,

by Lemma 4.22(iv) we find that w ≡ 0 and w = Aϕ2−a
1 , A > 1 large, are sub and

supersolutions respectively. Therefore, there exists Tu ∈ C2(Ω)∩C(Ω) such that

−Δ(Tu) = δ (x)−avp in Ω and Tu = 0 on ∂Ω . The uniqueness of Tu and the fact

that Tu > 0 in Ω follows from the standard maximum principle. The existence and

uniqueness of T v is similar.

As in the previous section we next prove that F is compact and continuous and

that F (A )⊆A . By the Schauder fixed point theorem we then obtain that F has a

fixed point which is a solution of (4.64).

Case 2: a− p= 1. We fix ε > 0 small enough such that b−q(1−ε)< 1. By Lemma

4.22(ii)–(iii), there exists C > 0 such that

• Any function w ∈C2(Ω)∩C(Ω) such that{−Δw≤ δ (x)−1 , w > 0 in Ω ,

w = 0 on ∂Ω ,

satisfies

w(x)≤Cδ (x)1−ε in Ω .

• Any function w ∈C2(Ω)∩C(Ω) such that

{−Δw≤ δ (x)−b+q(1−ε) , w > 0 in Ω ,

w = 0 on ∂Ω ,

satisfies

w(x) ≤Cδ (x) in Ω .
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We next proceed as before by considering

A =

{
(u,v) ∈C(Ω)×C(Ω) :

0≤ u(x)≤Mp+τδ (x)1−ε in Ω

0≤ v(x)≤Mδ (x) in Ω

}
,

where M > 1 is a constant that fulfills (4.69).

Case 3: a− p < 1. In this case −b+ q < 1 and by Lemma 4.22 there exists C > 0

such that

• Any function w ∈C2(Ω)∩C(Ω) such that{−Δw≤ δ (x)−a+p , w > 0 in Ω ,

w = 0 on ∂Ω ,

satisfies

w(x) ≤Cδ (x) in Ω .

• Any function w ∈C2(Ω)∩C(Ω) such that

{−Δw≤ δ (x)−b+q(1−ε) , w > 0 in Ω ,

w = 0 on ∂Ω ,

satisfies

w(x) ≤Cδ (x) in Ω .

We next proceed as in Case 1 by considering

A =

{
(u,v) ∈C(Ω )×C(Ω) :

0≤ u(x)≤Mp+τδ (x) in Ω

0≤ v(x)≤Mδ (x) in Ω

}
.

This finishes the proof of Theorem 4.21. �

4.3.2 Case p > 0 and q < 0

In this section we shall be concerned with the case p > 0 > q. First, we obtain the

following nonexistence result.

Theorem 4.23 Assume p > 0 > q and one of the following holds:

(i) a− p≥ 2 or b≥ 2.

(ii) 0 < a < 1 and b− q≥ 2.
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(iii) a = 1 and b > 1 and b≥ 2+ q.

(iv) 1 < a < 2 and b− q(2− a)≥ 2.

Then, the system (4.64) has no solutions.

Proof. (i) Assume a− p≥ 2. By Lemma 4.7 we have v≥ cδ (x) in Ω , for some

c > 0. Using this estimate in the first equation of (4.64) we find −Δu ≥ c1δ (x)a−p

in Ω , for some c1 > 0, which is impossible by Corollary 4.9.

If b≥ 2, we use the second equation of (4.64) to derive

−Δv≥ ‖u‖q
∞δ (x)

−b in Ω ,

which is impossible according to Corollary 4.9.

(ii) From the first equation of (4.64) and p > 0 we deduce

−Δu≤ ‖v‖p
∞δ (x)

−a in Ω .

Since 0 < a < 1, Lemma 4.22(ii) yields u ≤ c0δ (x) in Ω , for some c0 > 0. Using

this estimate in the second equation of (4.64) we deduce −Δv≥ c1δ (x)−b+q in Ω .

Since b−q≥ 2, we arrive at a contradiction according to Corollary 4.9.

(iii) Let τ > 1. Since −Δu≤ ‖v‖p
∞δ (x)−1 in Ω , there exists c > 0 such that

u≤ cδ (x) logτ
(

A
δ (x)

)
in Ω .

Thus,

−Δv = δ (x)−buq ≥Cδ (x)−b+q logτq
(

A
δ (x)

)
in Ω ,

where C is a positive constant. By Theorem 4.8 we now deduce

∫ 1

0
t−b+q+1 logτq

(
A
t

)
dt < ∞

which, in view of the fact that b ≥ q+ 2 and b > 1, yields b− q = 2 and τq <

−1. Since τ > 1 was arbitrary, it follows that q ≤ −1 so b = q+ 2 ≤ 1, which is

impossible.

(iv) As before, from the first equation of (4.64) we have

−Δu≤ ‖v‖p
∞δ (x)−a in Ω .

From Lemma 4.22(iv) we find u ≤ c2δ (x)2−a in Ω , where c2 is a positive

constant. Using this last inequality in the second equation of (4.64) we derive
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−Δv≥ c3δ (x)−b+q(2−a) in Ω , which is impossible by Corollary 4.9. This ends the

proof of Theorem 4.23. �

Theorem 4.24 Let p > 0 > q satisfy pq >−1.

(i) If b− q < 1 then the system (4.64) has solutions if and only if a− p < 2.

(ii) If 0 < a < 1 then the system (4.64) has solutions if and only if b−q < 2.

Furthermore, in both the above cases the system (4.64) has a unique solution.

Proof. (i) If a− p ≥ 2, then by Theorem 4.23 there are no solutions of system

(4.64). Suppose next that a− p < 2. The proof is similar to that for Theorem 4.21.

Fix τ > 0 such that (p+ τ)q > −1 and assume first that 1 < a− p < 2. According

to Proposition 4.10(i) and Lemma 4.22(iv) there exist c1 > c2 > 0 such that

• Any function w ∈C2(Ω)∩C(Ω) that satisfies (4.65) also fulfills

w(x)≤ c1δ (x)2−a+p in Ω .

• Any function w ∈C2(Ω)∩C(Ω) that satisfies (4.67) also fulfills

w(x)≤ c1δ (x) in Ω .

• Any function w ∈C2(Ω)∩C(Ω) that satisfies{−Δw≥ δ (x)−a+p , w > 0 in Ω ,

w = 0 on ∂Ω ,

also has the property that

w(x)≥ c2δ (x)2−a+p in Ω .

• Any function w ∈C2(Ω)∩C(Ω) such that

{−Δw≥ δ (x)−b+q(2−a+p) , w > 0 in Ω ,

w = 0 on ∂Ω ,

satisfies

w(x)≥ c2δ (x) in Ω .

Now we fix M > 1 such that

min{Mτ ,M1+(p+τ)q}> max{c1,c
−1
2 }.
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We apply Schauder’s fixed point theorem for the mapping F defined by (4.70)

and (4.71) where this time the set A ⊂C(Ω)×C(Ω) is given by

A =

⎧⎪⎨
⎪⎩(u,v) ∈C(Ω)×C(Ω) :

1
Mp+τ δ (x)

2−a+p ≤u(x)≤Mp+τδ (x)2−a+p in Ω

1
M
δ (x)≤v(x)≤Mδ (x) in Ω

⎫⎪⎬
⎪⎭ .

If a− p = 1 we fix 0 < ε < 1 and proceed in the same fashion with the set

A =

⎧⎪⎨
⎪⎩(u,v) ∈C(Ω )×C(Ω) :

1
Mp+τ δ (x)≤ u(x)≤Mp+τδ (x)1−ε in Ω

1
M
δ (x)≤ v(x)≤Mδ (x) in Ω

⎫⎪⎬
⎪⎭ ,

where M > 1 is a suitably chosen constant. Finally, if a− p < 1 we define the set A

as

A =

⎧⎪⎨
⎪⎩(u,v) ∈C(Ω)×C(Ω) :

1
Mp+τ δ (x)≤ u(x)≤Mp+τδ (x) in Ω

1
M
δ (x)≤ v(x)≤Mδ (x) in Ω

⎫⎪⎬
⎪⎭ .

For the uniqueness, we first remark that any solution (u,v) of (4.64) satisfies v ∈
C2(Ω)∩C1(Ω). Indeed, by Proposition 4.7 there exists c > 0 such that u,v≥ cδ (x)
in Ω . Thus, −Δv≤ cδ (x)−b+q in Ω so, by Lemma 4.22(i)–(ii) we have v ∈C1(Ω)

and v(x)≤ c0δ (x) in Ω for some c0 > 0.

Let (u1,v1) and (u2,v2) be two solutions of (4.64). Using the above remark, there

exists 0 < m < 1 such that

mδ (x)≤ vi(x)≥ 1
m
δ (x) in Ω , i = 1,2. (4.72)

Therefore, we can find a constant C > 1 such that Cv1 ≥ v2 and Cv2 ≥ v1 in Ω .

We claim that v1 ≥ v2 in Ω . Supposing the contrary, let

M = inf{A > 1 : Av1 ≥ v2 in Ω}.

By our assumption, we have M > 1. From Mv1 ≥ v2 in Ω , it follows that −Δu2 =

δ (x)−avp
2 ≤ Mpδ (x)−avp

1 in Ω . Hence −Δ(M−pu2) ≤ δ (x)−avp
1 = −Δu1 in Ω ,

which yields M−pu2 ≤ u1 in Ω . Using the last inequality we have

−Δv1 = δ (x)−buq
1 ≤M−pqδ (x)−buq

2 in Ω .
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It follows that −Δ(Mpqv1) ≤ δ (x)−buq
2 = −Δv2 in Ω , which implies Mpqv1 ≤ v2

in Ω . Further we obtain −Δu2 = δ (x)−avp
2 ≥ Mp2qδ (x)−avp

1 in Ω . As before we

now derive M−p2qu2 ≥ u1 in Ω . Finally we have

−Δv1 = δ (x)−buq
1 ≥M−p2q2

δ (x)−buq
2 in Ω .

It follows that

−Δ(Mp2q2
v1)≥ δ (x)−buq

2 =−Δv2 in Ω .

Thus, Mp2q2
v1 ≥ v2 in Ω . Since 0 < p2q2 < 1, the above inequality contradicts the

definition of M. Thus, v1 ≥ v2 in Ω and similarly we obtain v2 ≥ v1 in Ω . Hence

v1 ≡ v2 which yields u1 ≡ u2. The proof of (ii) is similar. �

4.3.3 Case p < 0 and q < 0

Theorem 4.25 Let p,q < 0 satisfy pq < 1 and assume one of the following condi-

tions holds:

(i) b−q < 1 and a− p < 2.

(ii) a− p < 1 and b− q < 2.

Then, the system (4.64) has a unique solution.

Proof. The proof is similar to that for Theorem 4.24. We only point out the

differences. We fix τ > 0 such that (p− τ)q < 1.

(i) If 1 < a− p < 2 then we proceed as in the proof of Theorem 4.24 for the set

A ⊂C(Ω)×C(Ω) given by

A =

⎧⎨
⎩(u,v) ∈C(Ω)×C(Ω) :

Mp−τδ (x)2−a+p ≤u(x)≤M−p+τ δ (x)2−a+p in Ω
1
M
δ (x)≤v(x)≤Mδ (x) in Ω

⎫⎬
⎭ .

If a− p = 1 we fix 0 < ε < 1 and proceed in the same way with the set

A =

⎧⎨
⎩(u,v) ∈C(Ω )×C(Ω) :

Mp−τδ (x) ≤ u(x)≤M−p+τδ (x)1−ε in Ω
1
M
δ (x) ≤ v(x)≤Mδ (x) in Ω

⎫⎬
⎭ ,

where M > 1 is a suitably chosen constant. Finally, if a− p < 1 we define A as
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A =

⎧⎨
⎩(u,v) ∈C(Ω)×C(Ω) :

Mp−τδ (x)≤ u(x)≤M−p+τδ (x) in Ω
1
M
δ (x)≤ v(x)≤Mδ (x) in Ω

⎫⎬
⎭ .

For the uniqueness, we first remark that any solution (u,v) of (4.64) satisfies

c1δ (x) ≤ v ≤ c2δ (x) in Ω . Indeed, by Proposition 4.7 there exists c > 0 such that

u,v≥ cδ (x) in Ω . Then −Δv≤ cqδ (x)−b+q in Ω so, according to Lemma 4.22(ii)

we have v≤ c0δ (x) in Ω for some c0 > 0.

Let (u1,v1) and (u2,v2) be two solutions of (4.64). By the above remark vi

(i = 1,2), are both comparable to the distance function δ (x) up to the boundary.

Therefore, we can find a constant C > 1 such that Cv1 ≥ v2 and Cv2 ≥ v1 in Ω . We

next proceed in the same manner as in the proof of Theorem 4.24. The proof of (ii)

is similar. �

4.3.4 Further Extensions: Superlinear Case

We want to point out here some features of the superlinear case p,q > 0 and pq> 1.

In this setting, system (4.64) has a variational structure. More precisely, one can see

(4.64) as a Hamiltonian system:⎧⎪⎪⎨
⎪⎪⎩
−Δu = Hv(x,u,v) in Ω ,

−Δv = Hu(x,u,v) in Ω ,

u = v = 0 on ∂Ω ,

where

H(x,u,v) =
up+1

(p+ 1)δ (x)a +
vq+1

(q+1)δ (x)b .

The approach in this case is variational, it consists of using the fractional powers

of the negative Laplace operator subject to homogeneous Dirichlet boundary condi-

tions.

In fact, we deduce the existence of solutions for a more general system, namely⎧⎪⎪⎨
⎪⎪⎩
−Δu = δ (x)−a|v|p−1v in Ω ,

−Δv = δ (x)−b|u|q−1u in Ω ,

u = v = 0 on ∂Ω .

(4.73)

Our main result concerning system (4.73) is the following.
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Theorem 4.26 Let p,q > 0 satisfy pq > 1 and

1− a
1+ p

+
1− b
1+ q

>
N− 2

N
, (4.74)

p <
2N(1− a)

N− 4
and q <

2N(1− b)
N− 4

if N ≥ 5. (4.75)

Then, the system (4.73) has infinitely many solutions of which at least one is positive.

Proof. The proof is similar to that in [63, Theorem 1]; we only point out here the

main differences. Consider the Laplace operator

−Δ : H2(Ω)∩H1
0 (Ω)⊂ L2(Ω)→ L2(Ω),

and denote by {λn,en} the corresponding eigenvalues and eigenfunctions with

0 < λ1 ≤ λ2 ≤ ·· · ≤ λn → ∞ and ‖en‖2 = 1.

Thus, any u ∈H2(Ω)∩H1
0 (Ω) has the unique representation

u = ∑
n≥1

anen where an =

∫
Ω

uendx.

For any 0 < s < 1 we define

Es = {u = ∑
n≥1

anen ∈ L2(Ω) : ∑
n≥1

λ 2s
n a2

n < ∞}.

The s-power As of −Δ is defined as

As : Es ⊂ L2(Ω)→ L2(Ω), As = ∑
n≥1

λ s
nanen.

It turns out that Es is a Hilbert space with the inner product

〈u,v〉Es =
∫
Ω

AsuAsvdx.

Moreover, Es is a fractional Sobolev space (see [135]) and Es ⊆ H2s(Ω) for all

0 < s < 1. Further, the embedding Es ↪→ Lr(Ω) is compact provided 1
r ≥ 1

2 − 2s
N .

Note that by Hölder inequality we have

∫
Ω

uq+1

δ (x)b dx≤ ‖u‖q+1
Lr(Ω)

(∫
Ω
δ (x)

−br
r−(q+1) dx

) r−(q+1)
r ≤C‖u‖q+1

Lr(Ω)
,
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for all u ∈ Es and r > (q+ 1)/(1− b). Thus the embedding

Es ↪→ Lq+1(Ω ,δ (x)−b)

is compact. Using (4.74)–(4.75), one can find 0 < s, t < 1 such that s+ t = 1 and

N− 4t <
2N(1− a)

1+ p
and N− 4s <

2N(1− b)
1+q

.

Then the embeddings

Es ↪→ Lq+1(Ω ,δ (x)−b) and Et ↪→ Lp+1(Ω ,δ (x)−a)

are compact.

Let E = Es×Et . We first look for (s, t)-weak solutions to (4.73) in the following

sense.

Definition 4.1. We say that (u,v) is an (s, t)-weak solution of system (4.73) if

∫
Ω

AsuAtφdx+
∫
Ω

AtvAsψdx−
∫
Ω

vp

δ (x)a φdx−
∫
Ω

uq

δ (x)b
ψdx = 0,

for all (φ ,ψ) ∈ E .

It is easy to see that any (s, t)-weak solution of (4.73) is in fact a critical point of

the functional

I : E → R, I(u,v) =
∫
Ω

AsuAtvdx−
∫
Ω

H(x,u,v)dx.

Remark that if (u,v) is an (s, t)-weak solution of (4.73) then

u ∈W 2,p1(Ω) and v ∈W 2,q1(Ω),

for all p1,q1 > 1 that satisfy

p1

(
p+

2Na
N− 4t

)
<

2N
N− 4s

and q1

(
q+

2Nb
N−4s

)
<

2N
N−4s

.

From now on we employ step by step the same arguments as in [63] in order to

deduce that system (4.73) has infinitely many solutions of which at least one is

positive. �



Chapter 5
Singular Elliptic Inequalities in Exterior
Domains

The true sign of intelligence is not
knowledge but imagination.

Albert Einstein (1879–1955)

5.1 Introduction

In this chapter we study the existence and nonexistence of C2 positive solutions u(x)

of the following semilinear elliptic inequality

−Δu≥ ϕ(δK(x)) f (u) in R
N \K, (5.1)

where K is a compact set in R
N (N ≥ 2) and δK(x) = dist(x,∂K). We assume that

ϕ ∈ C0,γ(0,∞) (0 < γ < 1) and f ∈ C1(0,∞) are positive functions such that ϕ is

nonincreasing and f is decreasing.

Elliptic equations or inequalities in unbounded domains have been subject to ex-

tensive study recently (see, e.g., [59,60,95,120,121,136,164,165] and the references

therein). In [59, 60] the authors are concerned with elliptic problems with superlin-

ear nonlinearities f (t) in exterior domains. Large classes of elliptic inequalities in

exterior or cone-like domains involving various types of differential operators are

considered in [120, 121, 136, 164, 165]. In [190–194] elliptic inequalities are stud-

ied in a punctured neighborhood of the origin and asymptotic radial symmetry of

solutions is investigated. The main novelty here is the presence of the distance func-

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 5, c© Springer-Verlag Berlin Heidelberg 2012
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tion δK(x) to the boundary of the compact set K which, as we shall see, will play a

significant role in the qualitative study of (5.1).

In our approach to (5.1) we shall distinguish between the case where K is nonde-

generate, that is, K has at least one component which is the closure of a C2 domain,

and the case where K is degenerate which means that K reduces to a finite set of

points.

We provide general nonexistence results of solutions to (5.1) for various types of

compact sets K ⊂ R
N , N ≥ 2. Our study points out the role played by the geometry

of K in the existence of C2 positive solutions to (5.1). For instance, if K consists of

finitely many components each of which is the closure of a C2 domain, then (5.1)

has solutions if and only if ∫ ∞

0
rϕ(r)dr < ∞. (5.2)

In turn, if K consists of a finite number of points, then the existence of a C2 positive

solution to (5.1) depends on both ϕ and f . If f (t) = t−p, p > 0, and K reduces to a

single point (by translation one may consider K = {0}) we describe the solution set

of

−Δu = ϕ(|x|)u−p in R
N \ {0}. (5.3)

For a large class of functions ϕ , we show that any C2 positive solution of (5.3)

(if it exists) is radially symmetric. Furthermore, the solution set of (5.3) consists of

a two-parameter family of radially symmetric functions.

If (5.1) has solutions, we prove that it has a minimal C2 positive solution ũ in

the sense of the usual order relation. Moreover, ũ is a ground-state of (5.1), that is,

ũ(x)→ 0 as |x| →∞. In some cases depending on the geometry of ∂K we prove that

ũ is continuous up to the boundary of K.

5.2 Some Elliptic Problems in Bounded Domains

In this section we obtain some results for related elliptic problems in bounded do-

mains that will be further used in the sequel. We start with the following comparison

result.

Lemma 5.1 Let Ω ⊂ R
N (N ≥ 2) be a nonempty open set and g : Ω × (0,∞)→

(0,∞) be a continuous function such that g(x, ·) is decreasing for all x ∈Ω . Assume
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that u,v are C2 positive functions that satisfy

Δu+ g(x,u)≤ 0≤ Δv+ g(x,v) in Ω ,

lim
x∈Ω ,x→y

(v(x)− u(x))≤ 0 for all y ∈ ∂∞Ω .

Then u≥ v inΩ . (Here ∂∞Ω stands for the Euclidean boundary ∂Ω ifΩ is bounded

and for ∂Ω ∪{∞} if Ω is unbounded.)

Proof. Assume by contradiction that the set ω := {x∈Ω : u(x)< v(x)} is not empty

and let w := v− u. Since limx∈Ω ,x→y w(x) ≤ 0 for all y ∈ ∂∞Ω , it follows that w is

bounded from above and it achieves its maximum onΩ at a point that belongs to ω .

At that point, say x0, we have

0≤−Δw(x0)≤ g(x0,v(x0))− g(x0,u(x0))< 0,

which is a contradiction. Therefore, ω = /0, that is, u≥ v in Ω . �

Lemma 5.2 Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with C2 boundary and let

g :Ω × (0,∞)→ (0,∞) be a Hölder continuous function such that for all x ∈Ω we

have g(x, ·) ∈ C1(0,∞) and g(x, ·) is decreasing. Then, for any φ ∈C(∂Ω), φ ≥ 0,

the problem {−Δu = g(x,u), u > 0 in Ω ,

u = φ(x) on ∂Ω ,
(5.4)

has a unique solution u ∈C2(Ω)∩C(Ω).

Proof. For all n≥ 1 consider the following perturbed problem⎧⎨
⎩−Δu = g

(
x,u+

1
n

)
, u > 0 in Ω ,

u = φ(x) on ∂Ω .
(5.5)

It is easy to see that u≡ 0 is a subsolution. To construct a supersolution, let w be the

solution of {−Δw = 1, w > 0 in Ω ,

w = 0 on ∂Ω .

Then u=Mw+ ||φ ||∞+1 is a supersolution of (5.5) provided M > 1 is large enough.

Thus, by the sub and supersolution method and Lemma 5.1, there exists a unique

solution un ∈ C2(Ω)∩C(Ω ) of (5.5). Furthermore, since g(x, ·) is decreasing, by
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Lemma 5.1 we deduce

u1 ≤ u2 ≤ ·· · ≤ un ≤ ·· · ≤ u in Ω , (5.6)

un +
1
n
≥ un+1 +

1
n+ 1

in Ω . (5.7)

Hence {un(x)} is increasing and bounded for all x ∈ Ω . Letting u(x) :=

limn→∞ un(x), a standard bootstrap argument (see [54], [99]) implies un → u in

C2
loc(Ω) so that passing to the limit in (5.5) we deduce −Δu = g(x,u) in Ω . From

(5.6) and (5.7) we obtain un + 1/n ≥ u ≥ un in Ω , for all n ≥ 1. This yields

u ∈C(Ω) and u = φ(x) on ∂Ω . Therefore u ∈C2(Ω)∩C(Ω) is a solution of (5.4).

The uniqueness follows from Lemma 5.1. �

Lemma 5.3 and Lemma 5.4 below extend the existence results obtained in [88,

89, 92].

Lemma 5.3 Let Ω ⊂R
N (N ≥ 2) be a bounded domain with C2 boundary. Also let

ϕ ∈C0,γ(0,∞) (0 < γ < 1) and f ∈C1(0,∞) be positive functions such that:

(i) f is decreasing;

(ii) ϕ is nonincreasing and
∫ 1

0 rφ(r)dr < ∞.

Then, the problem {−Δu = ϕ(δΩ (x)) f (u), u > 0 in Ω ,

u = 0 on ∂Ω ,
(5.8)

has a unique solution u ∈ C2(Ω)∩C(Ω ). Furthermore, there exist c1,c2 > 0 and

0 < r0 < 1 such that the unique solution u of (5.8) satisfies

c1 ≤ u(x)
H(δΩ (x))

≤ c2 in {x ∈Ω : 0 < δΩ (x)< r0}, (5.9)

where H : [0,1]→ (0,∞) is the unique solution of{−H ′′(t) = ϕ(t) f (H(t)), H(t)> 0 0 < t < 1,

H(0) = H(1) = 0.
(5.10)

The existence of a solution to (5.10) follows from [3, Theorem 2.1].

Proof. Let (λ1,e1) be the first eigenvalue and the first eigenfunction of −Δ in Ω
subject to Dirichlet boundary condition. It is well known that e1 has constant sign
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in Ω so that normalizing, we may assume that e1 > 0 in Ω . Also, since Ω has a C2

boundary, we have ∂e1/∂ν < 0 on ∂Ω and

C1δΩ (x)≤ e1(x)≤C2δΩ (x) in Ω , (5.11)

where ν is the outward unit normal at ∂Ω and C1,C2 are two positive constants. We

claim that there exist M > 1 and c > 0 such that u = MH(ce1) is a supersolution

of (5.8). First, since the solution H of (5.10) is positive and concave, we can find

0 < a < 1 such that H ′ > 0 on (0,a]. Let c > 0 be such that

ce1(x)≤min{a,δΩ (x)} in Ω .

Then

−Δu =−Mc2H ′′(ce1)|∇e1|2 +Mcλ1e1H ′(ce1)

= Mc2ϕ(ce1) f (H(ce1))|∇e1|2 +Mcλ1e1H ′(ce1)

≥Mc2ϕ(δΩ (x)) f (u)|∇e1|2 +Mcλ1e1H ′(ce1) in Ω .

(5.12)

Since e1 > 0 in Ω and ∂e1/∂ν < 0 on ∂Ω , we can find d > 0 and a subdomain

ω ⊂⊂Ω such that

|∇e1|> d in Ω \ω .

Therefore, from (5.12) we obtain

−Δu≥Mc2d2ϕ(δΩ (x)) f (u) in Ω \ω , −Δu≥Mcλ1e1H ′(ce1) in ω .
(5.13)

Now, we choose M > 0 large enough such that

Mc2d2 > 1 and Mcλ1e1H ′(ce1)≥ ϕ(δΩ (x)) f (u) in ω . (5.14)

Note that the last relation in (5.14) is possible since inω the right side of the inequal-

ity is bounded and the left side is bounded away from zero. Thus, from (5.13) and

(5.14), u is a supersolution for (5.8). Similarly, we can choose m > 0 small enough

such that u = mH(ce1) is a subsolution of (5.8). Therefore, by the sub and superso-

lution method we find a solution u ∈C2(Ω)∩C(Ω ) such that u ≤ u≤ u in Ω . The

uniqueness follows from Lemma 5.1. In order to prove the boundary estimate (5.9),

note first that ce1 ≤ δΩ (x) in Ω so
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u(x)≤ u(x)≤MH(δΩ (x)) in {x ∈Ω : 0 < δΩ (x)< a}.

On the other hand, since H is concave and H(0) = 0, we easily derive that t →
H(t)/t is decreasing on (0,1). Also we can assume cC1 < 1. Thus,

u(x)≥ mH(ce1)≥ mH(cC1δΩ (x))≥ mcC1H(δΩ (x)),

for all x ∈Ω with 0 < δΩ (x)< 1. The proof of Lemma 5.3 is now complete. �

Lemma 5.4 Let K ⊂ R
N (N ≥ 2) be a compact set, Ω ⊂ R

N be a bounded domain

such that K ⊂ Ω and Ω \K is connected and has C2 boundary. Let ϕ and f be as

in Lemma 5.3. Then, there exists a unique solution u ∈C2(Ω \K)∩C(Ω \ int(K))

of the problem {−Δu = ϕ(δK(x)) f (u), u > 0 in Ω \K,

u = 0 on ∂ (Ω \K).
(5.15)

Furthermore, there exist c1,c2 > 0 and 0 < r0 < 1 such that the unique solution u of

(5.15) satisfies

c1 ≤ u(x)
H(δK(x))

≤ c2 in {x ∈Ω \K : 0 < δK(x)< r0}, (5.16)

where H is the unique solution of (5.10).

Proof. According to Lemma 5.3 there exists v ∈C2(Ω \K)∩C(Ω \K) such that{−Δv = ϕ(δΩ\K(x)) f (v), v > 0 in Ω \K,

v = 0 on ∂ (Ω \K),

which further satisfies

c1 ≤ v(x)
H(δΩ\K(x))

≤ c2 in {x ∈Ω \K : 0 < δΩ\K(x)< ρ0}, (5.17)

for some 0 < ρ0 < 1 and c1,c2 > 0. Since δK(x) ≥ δΩ\K(x) for all x ∈ Ω \K and

ϕ is nonincreasing, it is easy to see that u = v is a supersolution of (5.15). Also it

is not difficult to see that u = mw is a subsolution to (5.15) for m > 0 sufficiently

small, where w satisfies{−Δw = 1, w > 0 in Ω \K,

w = 0 on ∂ (Ω \K).
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Using Lemma 5.1 we have u ≤ u in Ω \K. Therefore, there exists a solution u ∈
C2(Ω \K)∩C(Ω \ int(K)) of (5.15). As before, the uniqueness follows from Lemma

5.1. In order to prove (5.16), let 0 < r0 < ρ0 be small such that

ω := {x∈Ω \K : 0< δK(x)< r0}⊂⊂Ω and δΩ\K(x) = δK(x) for all x∈ω .

Then, from (5.17) we have

u≤ u≤ c2H(δK(x)) in ω .

For the remaining part of (5.16), let M > 1 be such that Mu ≥ v on ∂ω \ ∂K. Also

−Δ(Mu) = Mϕ(δK(x)) f (u) ≥ ϕ(δK(x)) f (Mu) in ω .

By Lemma 5.1 we have Mu ≥ v in ω and from (5.17) we obtain the first inequality

in (5.16). This concludes the proof. �

The following result is a direct consequence of Lemma 5.4.

Lemma 5.5 Let K1,K2,L ⊂ R
N (N ≥ 2) be three compact sets (see Fig. 5.1) such

that

K1∩L = /0, K2 ⊂ int(L), K1,L are the closure of C2 domains.

K1
K2

L

Fig. 5.1 The compact sets K1, K2 and L

Also let Ω ⊂ R
N be a bounded domain with C2 boundary such that K1 ∪L ⊂ Ω

and Ω \ (K1 ∪ L) is connected. Let ϕ , f be as in Lemma 5.3. Then, there exists a

unique solution
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u ∈C2(Ω \ (K1∪L))∩C(Ω \ int(K1∪L))

of the problem{−Δu = ϕ(δK1∪K2(x)) f (u), u > 0 in Ω \ (K1∪L),

u = 0 on ∂ (Ω \ (K1∪L)).
(5.18)

Furthermore, there exist c1,c2 > 0 and 0 < r0 < 1 such that the unique solution u of

problem (5.18) satisfies

c1 ≤ u(x)
H(δK1(x))

≤ c2 in {x ∈Ω \ (K1∪L) : 0 < δK1(x)< r0}, (5.19)

where H is the unique solution of (5.10).

Proof. By Lemma 5.4 there exists a unique v∈C2(Ω \(K1∪L))∩C(Ω \ int(K1∪
L)) such that{−Δv = ϕ(δK1∪L(x)) f (v), v > 0 in Ω \ (K1∪L),

v = 0 on ∂ (Ω \ (K1∪L)).

Since δK1∪L(x) ≤ δK1∪K2(x) in Ω \ (K1∪L) and ϕ is nonincreasing, we derive that

u = v is a supersolution of (5.18). As a subsolution we use u = mw where m is

sufficiently small and w satisfies{−Δw = 1, w > 0 in Ω \ (K1∪L),

w = 0 on ∂ (Ω \ (K1∪L)).

Therefore, problem (5.18) has a solution u. The uniqueness follows from Lemma

5.1 while the asymptotic behavior of u around K1 is obtained in the same manner as

in Lemma 5.4. This ends the proof. �

5.3 An Equivalent Integral Condition

Several times in this section we shall use the following elementary result that pro-

vides an equivalent integral condition to (5.2).

Lemma 5.6 Let N ≥ 3 and ϕ : (0,∞)→ [0,∞) be a continuous function.

(i)
∫ 1

0
rϕ(r)dr < ∞ if and only if

∫ 1

0
t1−N

∫ t

0
sN−1ϕ(s)dsdt < ∞.
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(ii)
∫ ∞

1
rϕ(r)dr < ∞ if and only if

∫ ∞

1
t1−N

∫ t

1
sN−1ϕ(s)dsdt < ∞.

(iii)
∫ ∞

0
rϕ(r)dr < ∞ if and only if

∫ ∞

0
t1−N

∫ t

0
sN−1ϕ(s)dsdt < ∞.

Proof. We prove only (i). The proof of (ii) is similar, while (iii) follows from (i)–(ii).

Assume first that
∫ 1

0 rϕ(r)dr < ∞. Integrating by parts we have

∫ 1

0
t1−N

∫ t

0
sN−1ϕ(s)dsdt =− 1

N− 2

∫ 1

0

(
t2−N

)′ ∫ t

0
sN−1ϕ(s)dsdt

=
1

N− 2

(∫ 1

0
tϕ(t)dt−

∫ 1

0
tN−1ϕ(t)dt

)

≤ 1
N− 2

∫ 1

0
tϕ(t)dt < ∞.

Conversely, for 0 < ε < 1/2 we have

∫ 1

ε
t1−N

∫ t

0
sN−1ϕ(s)dsdt =

1
N−2

(∫ 1

ε
tϕ(t)dt−

∫ 1

0
tN−1ϕ(t)dt + ε2−N

∫ ε

0
tN−1ϕ(t)dt

)

≥ 1
N−2

(∫ 1

ε
tϕ(t)dt−

∫ 1

ε
tN−1ϕ(t)dt

)

=
1

N−2

∫ 1

ε
(1− tN−2)tϕ(t)dt

≥ 1
N−2

(
1−

( 1
2

)N−2
)∫ 1/2

ε
tϕ(t)dt.

Passing to the limit with ε↘ 0 we deduce
∫ 1

0 tϕ(t)dt <∞. This concludes the proof

of Lemma 5.6. �

5.4 The Nondegenerate Case

5.4.1 Nonexistence Results

We present some nonexistence results that hold in a more general setting for f and ϕ .

Theorem 5.7 Let ϕ : (0,∞)→ [0,∞) and f : (0,∞)→ (0,∞) be continuous func-

tions such that:

(i) liminft↘0 f (t)> 0.

(ii) ϕ(r) is monotone for r large.

(iii)
∫ ∞

1 rϕ(r)dr = ∞.
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Then, for any compact set K ⊂R
N (N ≥ 3) there does not exist a C2 positive solution

u(x) of (5.1).

Proof. It is easy to construct a C1 function g : [0,∞)→ (0,∞) such that g < f in

(0,∞) and g′ is negative and nondecreasing. Therefore, we may assume f : [0,∞)→
(0,∞) is of class C1 and f ′ is negative and nondecreasing.

Suppose for contradiction that u(x) is a C2 positive solution of (5.1). By transla-

tion, we may assume that 0 ∈ K. Choose r0 > 0 such that

K ⊂ Br0/2(0), ϕ(r0/2)> 0, and ϕ is monotone on [r0/2,∞).

Define ψ : [r0/2,∞)→ (0,∞) by

ψ(r) = min
r0/2≤ρ≤r

ϕ(ρ) =

{
ϕ(r) if ϕ is nonincreasing for r ≥ r0/2,

ϕ(r0/2) if ϕ is nondecreasing for r ≥ r0/2.

Then
∫ ∞

r0
rψ(r)dr = ∞. Also, since r0/2 ≤ δK(x) ≤ |x| for all x ∈ R

N \Br0(0), we

have

ϕ(δK(x))≥ ψ(|x|) for all x ∈R
N \Br0(0).

Thus, the solution u of (5.1) satisfies

−Δu≥ ψ(|x|) f (u) in R
N \Br0(0). (5.20)

Averaging (5.20) and using Jensen’s inequality, we get

−
(

ū′′(r)+
n− 1

r
ū′(r)

)
≥ ψ(r) f (ū(r)) for all r ≥ r0. (5.21)

Here ū is the spherical average of u, that is

ū(r) =
1

σNrN−1

∫
∂Br(0)

u(x)dσ(x), (5.22)

where σ denotes the surface area measure in R
N and σN = σ(∂B1(0)).

Making in (5.21) the change of variables ū(r) = v(ρ), ρ = r2−N we get

−v′′(ρ)≥ 1
(N− 2)2ρ

2(N−1)/(2−N)ψ(ρ1/(2−N)) f (v(ρ)) for all 0 < ρ ≤ ρ0,
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where ρ0 = r2−N
0 . Since v is concave down and positive, v is bounded for 0< ρ ≤ ρ0.

Hence f (v(ρ))≥ (N− 2)2C for some positive constant C. Consequently

−v′′(ρ)≥Cρ2(N−1)/(2−N)ψ(ρ1/(2−N)) for all 0 < ρ ≤ ρ0.

Integrating this inequality twice we get

∞>

∫ ρ0

0
v′(ρ)dρ−ρ0v′(ρ0)

≥C
∫ ρ0

0

∫ ρ0

ρ
ρ̄2(N−1)/(2−N)ψ(ρ̄1/(2−N))dρ̄ dρ

=C
∫ ρ0

0
ρ̄1+2(N−1)/(2−N)ψ(ρ̄1/(2−N))dρ̄

= (N− 2)C
∫ ∞

r0

rψ(r)dr =∞.

This contradiction completes the proof. �

Theorem 5.8 Let ϕ : (0,∞)→ [0,∞) and f : (0,∞)→ (0,∞) be continuous func-

tions such that

(i) liminft↘0 f (t)> 0.

(ii)
∫ 1

0 rϕ(r)dr = ∞.

Then there does not exist a C2 positive solution u(x) of

−Δu≥ ϕ(δΩ (x)) f (u) in {x ∈ R
N \Ω : 0 < δΩ (x)< 2r0}, N ≥ 2, (5.23)

where Ω is a C2 bounded domain in R
N and r0 > 0.

For the proof of Theorem 5.8 we shall use the following lemma concerning the

geometry of a C2 bounded domain. One can prove it using standard methods of

differential geometry.

Lemma 5.9 Let Ω be a C2 bounded domain in R
N, N ≥ 2, such that RN \Ω is

connected. Then, there exists r0 > 0 such that

(i) Ωr : = {x ∈ R
N : dist(x,Ω) < r} is a C1 domain for each 0 < r ≤ r0.

(ii) For 0 ≤ r ≤ r0 the function T (·,r) : ∂Ω → R
N defined by T (ξ ,r) = ξ + rηξ ,

where ηξ is the outward unit normal to ∂Ω at ξ , is a C1 diffeomorphism from

∂Ω onto ∂Ωr (onto ∂Ω if r = 0) whose volume magnification factor (that is,
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the absolute value of its Jacobian determinant) J(·,r) : ∂Ω → (0,∞) is contin-

uous on ∂Ω and C∞ with respect to r.

(iii) If ηT (ξ ,r) is the unit outward normal to ∂Ωr at T (ξ ,r) then ηT (ξ ,r) and ηξ are

equal (but have different base points) for ξ ∈ ∂Ω and 0≤ r ≤ r0.

Proof. [of Theorem 5.8] Without loss of generality we can assume R
N \Ω is

connected. Suppose for contradiction that u(x) is a C2 positive solution of (5.23).

By decreasing r0 if necessary, the conclusion of Lemma 5.9 holds.

Lemma 5.10 The function

g(r) =
∫
∂Ωr

u(x)dσ(x), 0 < r ≤ r0,

is continuously differentiable and there exists a positive constant C such that∣∣∣∣g′(r)−
∫
∂Ωr

∂u
∂η

dσ(x)
∣∣∣∣≤Cg(r) for all 0 < r ≤ r0,

where η is the outward unit normal to ∂Ωr.

Proof. By Lemma 5.9 we have

g(r) =
∫
∂Ω

u(ξ + rηξ )J(ξ ,r)dσ(ξ ) for all 0 < r ≤ r0,

and thus

g′(r) =
∫
∂Ω

[
∂
∂ r

(
u(ξ + rηξ )

)]
J(ξ ,r)dσ(ξ )+

∫
∂Ω

u(ξ + rηξ )Jr(ξ ,r)dσ(ξ )

=

∫
∂Ωr

∂u
∂η

(x)dσ(x)+
∫
∂Ωr

u(x)
Jr(ξ ,r)
J(ξ ,r)

dσ(x),

(5.24)

for all 0 < r ≤ r0, where in the last integral ξ = x− rηξ ∈ ∂Ω . Since, by Lemma

5.9, J(ξ ,r) is positive and continuous for ξ ∈ ∂Ω and 0 ≤ r ≤ r0 and Jr(ξ ,r) is

continuous there, we see that Lemma 5.10 follows from (5.24). �

We now come back to the proof of Theorem 5.8. For 0 < r ≤ r0 we have

0≤
∫
Ωr0\Ωr

−Δu(x)dx =
∫
∂Ωr

∂u
∂η

dσ(x)−
∫
∂Ωr0

∂u
∂η

dσ(x)

≤ g′(r)+Cg(r)+C

(5.25)
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for some positive constant C by Lemma 5.10. Hence(
eCr(g(r)+1)

)′ ≥ 0 for all 0 < r ≤ r0,

and integrating this inequality over [r,r0] we obtain

g(r)≤ eC(r0−r)(g(r0)+1)− 1≤C1 for all 0 < r ≤ r0 (5.26)

and for some C1 > 0. Thus

U(r) : =
1

|∂Ωr|
∫
∂Ωr

u(x)dσ(x) =
g(r)
|∂Ωr|

is bounded for 0 < r ≤ r0. Consequently, by the assumption (i) of f , it follows that

|∂Ωρ | f (U(ρ))≥ ε > 0 for all 0 < ρ ≤ r0. (5.27)

As in the proof of Theorem 5.7, we may assume that f : [0,∞)→ (0,∞) is of class

C1 and f ′ is negative and nondecreasing. From (5.23), (5.25)–(5.27) and Jensen’s

inequality we now obtain

g′(r)+C2 ≥
∫
Ωr0\Ωr

−Δudx

≥
∫ r0

r
ϕ(ρ)

∫
∂Ωρ

f (u(x))dσ(x)dρ

≥
∫ r0

r
ϕ(ρ)|∂Ωρ | f (U(ρ))dρ

≥ ε
∫ r0

r
ϕ(ρ)dρ for all 0 < r ≤ r0.

Integrating over [r,r0] in the above estimate we find

g(r0)−g(r)+C2r0 ≥ ε
∫ r0

r

∫ r0

s
ϕ(ρ)dρ ds

= ε
∫ r0

r
(ρ− r)ϕ(ρ)dρ→ ε

∫ r0

0
ρϕ(ρ)dρ =∞ as r↘ 0,

which contradicts g > 0 and completes the proof. �
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5.4.2 Existence Results

In this section we obtain existence results for (5.1) in the nondegenerate case on K.

We prove that for a large class of compact sets, condition (5.2) is sufficient for (5.1)

to have C2 positive solutions.

In the sequel, unless otherwise stated, we assume that ϕ and f satisfy the same

hypotheses as in Lemma 5.3, that is, ϕ ∈C0,γ (0,∞) (0< γ < 1) and f ∈C1(0,∞) are

positive functions such that ϕ is nondecreasing and f is decreasing. Our first result

in this sense concerns the case where K consists of a finite number of components

each of which is of class C2. We have

Theorem 5.11 Let K be a compact set in R
N (N ≥ 3) having a finite number of

components each of which is the closure of a C2 domain. Then (5.1) has C2 positive

solutions if and only if (5.2) holds. Furthermore, if (5.2) is fulfilled, then there exists

a minimal solution ũ of (5.1) such that

ũ ∈C2(RN \K)∩C(RN \ int(K))

and ⎧⎪⎪⎨
⎪⎪⎩
−Δ ũ = ϕ(δK(x)) f (ũ), ũ > 0 in R

N \K,

ũ = 0 on ∂K,

ũ(x)→ 0 as |x| → ∞.

(5.28)

In addition, there exist c1,c2 > 0 and 0 < r0 < 1 such that ũ satisfies

c1 ≤ ũ(x)
H(δK(x))

≤ c2 in {x ∈ R
N \K : 0 < δK(x)< r0}, (5.29)

where H is the unique solution of (5.10).

Proof. The necessity of (5.2) follows from Theorems 5.7 and 5.8. To prove the

sufficiency of (5.2), assume first that RN \K is connected.

We fix 0 < ρ < R such that K ⊂ Bρ(0). By Lemma 5.4 there exists

u ∈C2(Bρ(0)\K)∩C(Bρ(0)\ int(K))

such that {−Δu = ϕ(δK(x)) f (u), u > 0 in Bρ(0)\K,

u = 0 on ∂ (Bρ(0)\K).
(5.30)
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We next construct a solution v of (5.1) in a neighborhood of infinity. To this aim, let

A(r) :=
∫ ∞

r
t1−N

∫ t

R
sN−1ϕ(s−ρ)dsdt for all r ≥ R.

Since
∫ ∞

R rϕ(r− ρ)dr < ∞, by Lemma 5.6 we have that A is well defined for all

r ≥ R. Also, it is easy to check that

−ΔA(|x|) = ϕ(|x|−ρ) in R
N \BR(0).

Since the mapping

[0,∞) � t 	−→
∫ t

0

1
f (s)

ds ∈ [0,∞)

is bijective, we can define v : RN \BR(0)→ (0,∞) implicitly as the unique solution

of ∫ v(x)

0

1
f (t)

dt = A(|x|) for all x ∈ R
N \BR(0). (5.31)

Then, using the properties of A we deduce that v ∈ C2(RN \ BR(0)), v > 0 and

v(x)→0 as |x| → ∞. Further from (5.31) we obtain

∇A(|x|) = 1
f (v)

∇v in R
N \BR(0),

and

ϕ(|x|−ρ) =−ΔA(|x|) = f ′(v)
f 2(v)

|∇v|2− 1
f (v)

Δv in R
N \BR(0).

Since f is decreasing, we have f ′ ≤ 0 which implies

−Δv≥ ϕ(|x|−ρ) f (v) in R
N \BR(0).

Therefore, v ∈C2(RN \BR(0)) satisfies{−Δv≥ ϕ(δK(x)) f (v), v > 0 in R
N \BR(0),

v(x)→ 0 as |x| → ∞.
(5.32)

Let now 0 < ρ0 < ρ be such that K ⊂ Bρ0(0) and let u, v be the solutions of (5.30)

and (5.32) respectively. Consider

w : (Bρ0(0)\ int(K))∪ (RN \BR(0))→ [0,∞),

defined by
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w(x) = u(x) if x ∈ Bρ0(0)\ int(K), w(x) = v(x) if x ∈ R
N \BR(0).

Let W be a positive C2 extension of w to R
N \K. We claim that there exists M > 0

large enough such that

U(x) =W (x)+M(1+ |x|2)(2−N)/2, x ∈ R
N \ int(K) (5.33)

satisfies (5.1). Indeed, since (1 + |x|2)(2−N)/2 is superharmonic, this condition is

already satisfied in Bρ0(0)\K and R
N \BR(0). In BR(0)\Bρ0(0) we use the fact that

−Δ(1+ |x|2)(2−N)/2 is positive and bounded away from zero. Therefore we have

constructed a solution U ∈ C2(RN \K)∩C(RN \ int(K)) of (5.1) that tends to zero

at infinity.

Let us prove the existence of a minimal solution ũ of (5.1). According to Lemma

5.4, for any n≥ 1 there exists a unique

un ∈C2(BR+n(0)\K)∩C(BR+n(0)\ int(K))

such that{−Δun = ϕ(δK(x)) f (un), un > 0 in BR+n(0)\K,

un = 0 on ∂ (BR+n(0)\K).
(5.34)

We extend un = 0 on R
N \BR+n(0) and by Lemma 5.1 we have that {un} is a non-

decreasing sequence of functions and un ≤U in R
N \K. Let

ũ(x) := lim
n→∞un(x) for all x ∈ R

N \ int(K).

By standard elliptic arguments, we have ũ ∈C2(RN \K) and

−Δ ũ = ϕ(δK(x)) f (ũ) in R
N \K.

We next prove that ũ vanishes continuously on ∂K.

Let u1 be the unique solution of (5.34) with n = 1 and ω := {x ∈ R
N \K : 0 <

δK(x) < 1}. Since both u1 and ũ are continuous and positive on ∂ω \K, we can

find M > 1 such that Mu1 ≥ ũ on ∂ω \K. Now, using the fact that the sequence

{un} is nondecreasing, this also yields Mu1 ≥ un on ∂ω \K, for all n ≥ 1. The

above inequality also holds true on ∂K (since u1 and un are zero there). Therefore

Mu1 ≥ un on ∂ω for all n≥ 1, which by the comparison result in Lemma 2.1 (note
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that the function Mu1 satisfies (5.1) in ω) gives

Mu1 ≥ un in ω ,

for all n ≥ 1. Passing to the limit with n → ∞ in the above estimate, we obtain

Mu1 ≥ ũ in ω and since u1 vanishes continuously on ∂K, so does ũ.

The boundary behavior of ũ near K follows from the fact that u1 ≤ ũ ≤Mu1 in

ω and u1 satisfies (5.16). From Lemma 5.1 we obtain that any solution u of (5.1)

satisfies u≥ un in R
N \K which implies u ≥ ũ. Hence, ũ is the minimal solution of

(5.1).

Assume now that RN \K is not connected. We shall construct a solution to (5.1)

by considering each component of RN \K. Note that since K is compact, RN \K has

only one unbounded component on which we proceed as above. Since ϕ satisfies

(5.2), by Lemma 5.3, on each bounded component of RN \K we construct a solution

of −Δu = ϕ(δK(x)) f (u) that vanishes continuously on its boundary and has the

behavior described by (5.9). This completes the proof of Theorem 5.11. �

Remark 19 The approach in Theorem 5.11 can be used to study the inequality (5.1)

in some cases where the compact set K consists of infinitely many components, all

of them with C2 boundary. For instance, it is easy to see that the same arguments

apply for compact sets K of the form

K = B1(0)∪
⋃
n≥1

{
x ∈R

N : 1+
1

2n+ 1
< |x|< 1+

1
2n

}

or

K = ∂B1(0)∪
⋃
n≥1

∂B1+1/n(0).

Remark 20 The existence of a positive ground state solution in the exterior of a

compact set is a particular feature of the case N ≥ 3. Such solutions do not exist in

dimension N = 2. Indeed, suppose that u is a C2 positive solution of

−Δu≥ 0 in R
2 \K, u(x)→ 0 as |x| → ∞,

where K ⊂ R
2 is a compact set, not necessarily with smooth boundary. Choose

r0 > 0 such that K ⊂ Br0(0) and let m = min|x|=r0
u(x)> 0. For each r1 > r0 define
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vr1 : R2 \ {0}→ R, vr1(x) =
m(logr1− log |x|)

logr1− logr0
.

Then

vr1 is harmonic in R
2 \ {0}, vr1 = m on ∂Br0(0), vr1 = 0 on ∂Br1(0).

Let wr1(x) = u(x)− vr1(x), x ∈ R
N \Br0(0). Thus,

−Δwr1 =−Δu≥ 0 in Br1(0)\Br0(0), wr1 ≥ 0 on ∂Br1(0)∪∂Br0(0).

By the maximum principle it follows that wr1 ≥ 0 in Br1(0) \Br0(0), that is u(x) ≥
vr1(x) in Br1(0)\Br0(0).

Let now x ∈ R
2 \ Br0(0) be fixed. Then, for r1 > |x| we have

u(x)≥ vr1(x)→ m as r1 → ∞,

so u(x)≥ m in R
2 \Br0(0), which contradicts u(x)→ 0 as |x| → ∞.

If K = K1∪K2 where K1 has a finite number of components each of which is the

closure of a C2 domain and K2 consists of a finite number of isolated points we have

the following result.

Theorem 5.12 Let K = K1 ∪K2 ⊂ R
N (N ≥ 3) where K1 is a compact set having

a finite number of components each of which is the closure of a C2 domain and

K2 ⊂ R
N consists of a finite number of isolated points such that K1∩K2 = /0. Then,

inequality (5.1) has C2 positive solutions if and only if (5.2) holds. Furthermore, if

(5.2) is fulfilled, then there exists a minimal solution ũ of (5.1) that satisfies

ũ ∈C2(RN \K)∩C(RN \ int(K1))

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δ ũ = ϕ(δK(x)) f (ũ), ũ > 0 in R
N \K,

ũ = 0 on ∂K1,

ũ > 0 on K2,

ũ(x)→ 0 as |x| → ∞.

(5.35)

In addition, ũ has the same behavior around K1 as described in (5.29).
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Proof. By Theorems 5.7 and 5.8, condition (5.2) is necessary in order to have C2

positive solutions for (5.1). Assume now that (5.2) holds. Using, if necessary, a

dilation argument, we can assume that dist(K1,K2) > 2 and the distance between

any two distinct points of K2 is greater than 2. We fix R > 0 large enough such that

K1∪
⋃

a∈K2

B1(a)⊂ BR(0).

We now apply Lemma 5.5 for L =
⋃

a∈K2
B1/n(a) and Ω = BR+n(a). Thus, there

exists a unique solution un of

⎧⎪⎪⎨
⎪⎪⎩
−Δun = ϕ(δK(x)) f (un), un > 0 in BR+n(0)\

(
K1∪

⋃
a∈K2

B1/n(a)
)
,

un = 0 on ∂BR+n(0)∪∂K1∪
⋃

a∈K2

∂B1/n(a).

(5.36)

Extending un = 0 outside of BR+n(0)\⋃a∈K2
B1/n(a), by Lemma 5.1 we obtain

0≤ u1 ≤ u2 ≤ ·· · ≤ un ≤ un+1 ≤ ·· · in R
N \K.

In order to pass to the limit in (5.36) we need to provide a barrier for {un}. Pro-

ceeding in the same manner as we did in the proof of Theorem 5.11 we can find a

function

U ∈C2(RN \K1)∩C(RN \ int(K1))

such that {−ΔU ≥ ϕ(δK1(x)) f (U), U > 0 in R
N \K1,

U(x)→ 0 as |x| → ∞.
(5.37)

We shall use a similar approach to construct a function V ∈ C2(RN \K2)∩C(RN)

such that {−ΔV ≥ ϕ(δK2(x)) f (V ), V > 0 in R
N \K2,

V (x)→ 0 as |x| → ∞.
(5.38)

First, since (5.2) holds, by Lemma 5.6(iii), the function

D(r) :=
∫ ∞

r
t1−N

∫ t

0
sN−1ϕ(s)dsdt for all r ≥ 0,

is well defined and −ΔD(|x|) = ϕ(|x|) in R
N \{0}. We next define v : RN → (0,∞)

by
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∫ v(x)

0

1
f (t)

dt = D(|x|) for all x ∈ R
N .

Using the same arguments as in the proof of Theorem 5.11 we have v ∈ C2(RN \
{0})∩C(RN) and {−Δv≥ ϕ(|x|) f (v), v > 0 in R

N \ {0},
v(x)→ 0 as |x| → ∞.

(5.39)

Let now V : RN → (0,∞) defined by

V (x) = ∑
a∈K2

v(x− a).

By (5.39) we have V ∈C2(RN \K2)∩C(RN), V (x)→ 0 as |x| → ∞ and

−ΔV (x) =− ∑
a∈K2

Δv(x− a)≥ ∑
a∈K2

ϕ(|x− a|) f (v(x− a))

≥
(
∑

a∈K2

ϕ(|x− a|)
)

f (V (x)) ≥ ϕ(min
a∈K2

|x− a|) f (V (x))

= ϕ(δK2(x)) f (V (x)) for all x ∈ R
N \K2.

Therefore, V fulfills (5.38). Now W :=U +V satisfies W (x)→ 0 as |x| → ∞ and

−ΔW (x)≥ ϕ(δK1(x)) f (U)+ϕ(δK2(x)) f (V )

≥ (ϕ(δK1(x))+ϕ(δK2(x))) f (W )

≥ ϕ
(

min{δK1(x),δK2(x)}
)

f (W )

= ϕ(δK(x)) f (W ) for all x ∈ R
N \K.

By Lemma 5.1 we obtain un ≤W in R
N \K. Thus, passing to the limit in (5.36) and

by elliptic arguments, we obtain that ũ := limn→∞ un satisfies

−Δ ũ = ϕ(δK(x)) f (ũ) in R
N \K.

The fact that ũ is minimal, vanishes continuously on ∂K1 and has the behavior near

∂K1 as described by (5.29) follows exactly in the same way as in the proof of The-

orem 5.11.

It remains to prove that ũ can be continuously extended at any point of K2 and

ũ > 0 on K2. To this aim, we state and prove the following auxiliary results.
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Lemma 5.13 Let r > 0 and x ∈ R
N \ ∂Br(0), N ≥ 3. Then

1
σNrN−1

∫
∂Br(0)

1
|x− y|N−2 dσ(y) =

⎧⎪⎪⎨
⎪⎪⎩

1
|x|N−2 if |x|> r,

1
rN−2 if |x|< r.

Proof. Suppose first |x| > r. Then u(y) = |y− x|2−N is harmonic in Br+ε(0), for

ε > 0 small. By the mean value theorem we have

1
σNrN−1

∫
∂Br(0)

1
|x− y|N−2 dσ(y) = u(0) =

1
|x|N−2 .

Assume now |x|< r. Since

v(x) :=
1

σNrN−1

∫
∂Br(0)

1
|x− y|N−2 dσ(y)

is harmonic and radially symmetric, it follows that v is constant in Br(0). Thus

v(x) = v(0) = r2−N for x ∈ Br(0). �

Lemma 5.14 Let u be a C2 positive solution of

−Δu≥ 0 in B2r1(0)\ {0}, N ≥ 2.

Then

u(x)≥ m := min
|y|=r1

u(y) for all x ∈ Br1(0)\ {0}.

Proof. For 0 < r0 < r1 define vr0 : RN \ {0}→ R by

vr0(x) =
m(Φ(r0)−Φ(|x|))
Φ(r0)−Φ(r1)

,

where

Φ(r) =

⎧⎪⎨
⎪⎩

log
1
r

if N = 2,

1
rN−2 if N ≥ 3.

Then vr0 is harmonic in R
N \ {0} and vr0 ≤ u on ∂Br1(0)∪ ∂Br0(0). Thus, by the

maximum principle, vr0 ≤ u in Br1(0)\Br0(0). Fix x ∈ Br1(0)\ {0}. Then, for 0 <

r0 < |x| we have u(x)≥ vr0(x)→ m as r0 ↘ 0. This concludes the proof. �

Lemma 5.15 Let ϕ , f : (0,∞)→ [0,∞) be continuous functions such that
∫ 1

0 rϕ(r)dr

< ∞. Suppose that u is a C2 positive bounded solution of −Δu = ϕ(|x|) f (u) in a
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punctured neighborhood of the origin in R
N, N ≥ 3. Then, for some L > 0 we have

u(x)→ L as x→ 0.

Proof. By Lemma 5.14 we can find r0 > 0 small such that u is bounded away from

zero in Br0(0)\ {0}. Hence, for some M > 0 we have

f (u(x))≤M in Br0(0)\ {0}. (5.40)

For x ∈ R
N let

I(x) :=
1
σN

∫
Br0 (0)

ϕ(y) f (u(y))
|x− y|N−2 dy.

Then,

I(x) =
∫ r0

0
F(x,r)dr, where F(x,r) =

ϕ(r)
σN

∫
∂Br(0)

f (u(y))
|x− y|N−2 dσ(y).

Since, by (5.40) and Lemma 5.13 we have

(i) F(x,r)≤Mrϕ(r) for x ∈ R
N and 0 < r < r0.

(ii)
∫ r0

0 rϕ(r)dr < ∞.

(iii) F(x,r)→ F(0,r) as x→ 0 pointwise for 0 < r < r0,

it follows that I is bounded in R
N and by the dominated convergence theorem,

I(x)→ I(0) as x→ 0. (5.41)

Since v := u− 1
N−2 I is harmonic and bounded in Br0(0)\ {0}, it is well known that

limx→0 v(x) exists. Thus, by (5.41), limx→0 u(x) exists and is finite. �

Now, the fact that the minimal solution ũ can be continuously extended on K2

and ũ > 0 on K2 follows by applying Lemma 5.15 for each point of K2. This finishes

the proof of Theorem 5.12. �

5.5 The Degenerate Case

In this section we study the inequality (5.1) in the case where K ⊂ R
N (N ≥ 3)

reduces to a finite number of points. In this setting, the existence of a C2 positive

solution to (5.1) depends on both ϕ and f . To better emphasize this dependence

we shall assume that f (t) = t−p, p > 0. Therefore, we shall be concerned with the
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semilinear elliptic inequality

−Δu≥ ϕ(δK(x))u
−p in R

N \K. (5.42)

Theorem 5.16 Let K ⊂ R
N (N ≥ 3) be a finite set of points and ϕ ∈ C0,γ(0,∞)

(0 < γ < 1) be a positive function such that ϕ(r) is monotone for large values of r.

Then, (5.42) has C2 positive solutions if and only if

∫ ∞

1
rϕ(r)dr < ∞ and

∫ 1

0
r(1+p)(N−2)+1ϕ(r)dr < ∞. (5.43)

Furthermore, if (5.43) holds, then, there exists a minimal solution ũ of (5.42) that

satisfies {−Δ ũ = ϕ(δK(x))ũ
−p, ũ > 0 in R

N \K,

ũ(x)→ 0 as |x| → ∞.
(5.44)

In addition, ũ can be extended to a continuous positive function on the whole of RN

if and only if
∫ 1

0 rϕ(r)dr < ∞.

Note that condition (5.43) above is weaker than (5.2) which is the optimal con-

dition on ϕ in case when some components of K are the closure of C2 domains.

Proof. Assume first that (5.42) has a C2 positive solution u. From Theorem 5.7

it follows that
∫ ∞

1 rϕ(r)dr < ∞. By translation one may assume that 0 ∈ K and fix

ρ > 0 such that δK(x) = |x| in Bρ(0). Let now u∗ be the image of u through the

Kelvin transform, that is,

u∗(x) = |x|2−Nu

(
x
|x|2

)
, x ∈R

N \ {0}. (5.45)

Then u∗ satisfies

−Δu∗ ≥ |x|−2−Nϕ
(

1
|x|

)
u−p

(
x
|x|2

)

= |x|−2−N−p(N−2)ϕ
(

1
|x|

)
u−p
∗ (x) in R

N \B1/ρ(0).

With the same proof as in Theorem 5.7 (note that here we do not need ϕ(r) to be

monotone for small values of r > 0) we deduce

∫ ∞

1
t−1−N−p(N−2)ϕ

(
1
t

)
dt < ∞.
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Now with the change of variable r = t−1, 0 < r ≤ 1 we derive the second condition

in (5.43).

Conversely, assume now that (5.43) holds and let us construct a solution to (5.42).

We first assume that K = {0}. The construction follows the general lines given in

the proof of Theorem 5.11, the only difference is that one cannot use Lemmas 5.4

or 5.5 since K is degenerate. Instead, we shall use the Kelvin transform to reduce

the construction of a solution to (5.42) near the origin to a solution of a similar

inequality that holds in a neighborhood of infinity.

First, let

D(r) :=
∫ ∞

r
t1−N

∫ t

1
sN−1ϕ(s)dsdt for all r ≥ 1.

Since (5.43) holds, by Lemma 5.6(ii) D is well defined and converges to zero at

infinity. We now consider

u(x) :=
[
(p+ 1)D(|x|)

]1/(p+1)
x ∈ R

N \B1(0).

Then u ∈C2(RN \B1(0)) and in the same manner as in the proof of Theorem 5.11

we have {−Δu ≥ ϕ(|x|)u−p(x), u > 0 in R
N \B1(0),

u(x)→ 0 as |x| → ∞.

Proceeding similarly, with r−2−N−p(N−2)ϕ(1/r) instead of ϕ(r) and then using the

Kelvin transform, we obtain a function v ∈C2(B1(0)\ {0}) such that{−Δv≥ ϕ(|x|)v−p(x), v > 0 in B1(0)\ {0},
|x|N−2v(x)→ 0 as |x| → 0.

From now on we proceed exactly as in the proof of Theorem 5.11. Let w be any C2

extension of

x 	−→
{

u(x) if x ∈R
N \B1(0),

v(x) if x ∈ B1/2(0)\ {0},
to the whole RN \ {0}. Now, one can find M > 0 large enough such that

U(x) := w(x)+M(1+ |x|2)(2−N)/2, x ∈ R
N \ {0}

fulfills
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⎪⎪⎩
−ΔU ≥ ϕ(|x|)U−p(x), U > 0 in R

N \ {0},
U(x)→ 0 as |x| → ∞,

|x|N−2U(x)→ 0 as |x| → 0.

(5.46)

In particular U is a solution of (5.42) with K = {0}. In the general case, if K is a

finite set of points, we consider V (x) = ∑a∈K U(x−a) for all x ∈ R
N \K. As in the

proof of Theorem 5.12 we deduce that V satisfies (5.42).

Assume that condition (5.43) is satisfied. Then, the existence of the minimal

solution ũ of (5.42) is obtained with the same proof as in Theorem 5.12. Note that

ũ is obtained as a pointwise limit of the sequence {un} where un satisfies (5.36) in

which K1 = /0 and K2 = K. It remains to prove that ũ can be continuously extended

to a positive continuous function in R
N if and only if

∫ 1
0 rϕ(r)dr < ∞.

Assume first that the minimal solution ũ of (5.42) is bounded. Using a translation

argument, one can also assume that 0 ∈ K. Fix r0 > 0 such that δK(x) = |x| for all

x ∈ Br0(0). Then averaging (5.42) we obtain

− (rN−1ū′(r))′ ≥ crN−1ϕ(r) for all 0 < r ≤ r0, (5.47)

where c > 0. Hence rN−1ū′(r) is decreasing and its limit as r ↘ 0 must be zero for

otherwise ū−and hence u−would be unbounded for small r > 0. Thus integrating

(5.47) twice we obtain

∞>
(

limsup
r↘0

ū(r)
)
− ū(r0)≥ c

∫ r0

0
t1−N

∫ t

0
sN−1ϕ(s)dsdt,

which by Lemma 5.6(ii) yields
∫ 1

0 rϕ(r)dr < ∞.

Assume now that
∫ 1

0 rϕ(r)dr < ∞. The conclusion will follow by Lemma 5.15

once we prove that ũ is bounded around each point of K. Again by translation and a

scaling argument we may assume that 0 ∈ K and δK(x) = |x| for all x ∈ B1(0). Set

v(x) := M
∫ 2

|x|
t1−N

∫ t

0
sN−1ϕ(s)dsdt, for all x ∈ B2(0).

By Lemma 5.6(i), v is bounded and positive in B2(0) and

−Δv(x) = Mϕ(|x|) = Mϕ(δK(x)) in B1(0)\ {0}. (5.48)

Therefore, we can take M > 1 large enough such that
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−Δv(x)≥ ϕ(δK(x))v
−p(x) in B1(0)\ {0} and v≥ ũ on ∂B1(0). (5.49)

Let un be the solution of (5.36) with K1 = /0 and K2 = K. Recall that {un} converges

pointwise to ũ. Since ũ ≥ un in R
N \K, from (5.49) we have v ≥ un on ∂B1(0).

According to the definition of un, this inequality also holds true on ∂B1/n(0). Now,

by (5.49) and Lemma 5.1 it follows that v ≥ un in B1(0) \B1/n(0). Passing to the

limit with n→ ∞ it follows that v ≥ ũ in B1(0) \ {0} and so, ũ is bounded around

zero. Proceeding similarly we derive that ũ is bounded around every point of K. By

Lemma 5.15 we now obtain that ũ can be continuously extended on K. This finishes

the proof of Theorem 5.16. �

In the remaining part of this section we shall be concerned with (5.3). The first

result establishes the structure of the solution set of (5.3) when ϕ has a power-type

growth near zero and near infinity. More precisely, we shall assume that ϕ satisfies

c1rα ≤ ϕ(r)≤ c2rα for all 0 < r < 1, (5.50)

and

c1rβ ≤ ϕ(r)≤ c2rβ for all r > 1, (5.51)

for some c1,c2 > 0. Our main result is the following.

Theorem 5.17 Assume that ϕ ∈ C0,γ(0,∞) (0 < γ < 1) satisfies (5.50)–(5.51).

Then, (5.3) has C2 positive solutions if and only if

N +α+ p(N− 2)> 0 and β <−2. (5.52)

Furthermore, if (5.52) holds, then:

(i) For any a,b≥ 0 there exists a radially symmetric solution ua,b of (5.3) such that

lim
|x|→0

|x|N−2ua,b(x) = a and lim
|x|→∞

ua,b(x) = b. (5.53)

(ii) The solution set of (5.3) consists only of {ua,b : a,b≥ 0}. In particular, any C2

positive solution of (5.3) is radially symmetric.

Proof. Condition (5.52) follows directly from Theorem 5.16. For the proof of (i),

(ii) we divide our arguments into four steps.
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Step 1: There exists a minimal solution ξ : RN \ {0} → (0,∞) which in addition

satisfies

lim
|x|→0

|x|N−2ξ (x) = 0 and lim
|x|→∞

ξ (x) = 0. (5.54)

Indeed, by Lemma 5.2 there exists a unique function ξn such that{−Δξn = ϕ(|x|)ξ−p
n , ξn > 0 in Bn(0)\B1/n(0),

ξn = 0 on ∂Bn(0)∪∂B1/n(0).
(5.55)

By uniqueness, it also follows that ξn is radially symmetric. We next extend ξn = 0

outside Bn(0) \B1/n(0). Now, by Lemma 5.1 we have that {ξn} is nondecreasing.

Since (5.52) holds, proceeding as in the proof of Theorem 5.16 we construct a func-

tion U : RN \{0}→ (0,∞) that satisfies (5.46). By Lemma 5.1 it follows that ξn ≤U

in R
N \{0}. Hence, there exists ξ (x) := limn→∞ ξn(x), x∈R

N \{0} and ξ ≤U . Also

ξ is radially symmetric and by standard elliptic arguments it follows that ξ is a solu-

tion of (5.3). From ξ ≤U it follows that ξ satisfies (5.54). Finally, if v is an arbitrary

solution of (5.3), by Lemma 5.1 we deduce

ξn ≤ v in Bn(0)\B1/n(0).

Passing to the limit in the above inequality with n→∞, we obtain ξ ≤ v in R
N \{0}.

Therefore ξ is the minimal solution of (5.3).

Step 2: Proof of (i).

Fix a,b≥ 0. We shall construct a radially symmetric solution of (5.3) that satisfies

(5.53) with the aid of the minimal solution ξ constructed at Step 1. By virtue of

Lemma 5.2, for any n≥ 2 there exists a unique function

un ∈C2(Bn(0)\B1/n(0))∩C(Bn(0)\B1/n(0))

such that {−Δun = |x|αu−p
n , un > 0 in Bn(0)\B1/n(0),

un = a|x|2−N + b+ ξ (x) on ∂Bn(0)∪∂B1/n(0).
(5.56)

Since ξ is radially symmetric, so is un. Furthermore, a|x|2−N + b is a subsolution

while a|x|2−N +b+ ξ (x) is a supersolution of (5.56). Thus, in view of Lemma 5.1,

we obtain
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a|x|2−N +b≤ un(x)≤ a|x|2−N + b+ ξ (x) in Bn(0)\B1/n(0). (5.57)

As usual we extend un = 0 outside Bn(0) \B1/n(0). By standard elliptic regularity

and a diagonal process, up to a subsequence there exists

ua,b(x) := lim
n→∞un(x), x ∈ R

N \ {0}

and ua,b is a solution of problem (5.3). Furthermore, from (5.57) we deduce that ua,b

satisfies

a|x|2−N + b≤ ua,b(x)≤ a|x|2−N + b+ ξ (x) in R
N \ {0}. (5.58)

Now, (5.54) and (5.58) imply (5.53).

Step 3: There exists c > 0 depending on N,α,β , p such that any solution u of (5.3)

satisfies

u(x)≥ c|x|(2+α)/(1+p) for all x ∈ B1(0)\ {0}, (5.59)

u(x)≥ c|x|(2+β )/(1+p) for all x ∈ R
N \B1(0). (5.60)

The proof uses an idea that goes back to Véron [199, Theorem 3.11] (see also

[121, Section 1]). Let R > 1/2 be fixed. By Harnack’s inequality (see, e.g., [99,

Theorem 8.18]) and a scaling argument, there exists a constant C0 > 0 depending

only on N such that ∫
B3R(0)\B2R(0)

udx≤C0RN inf
B3R(0)\B2R(0)

u. (5.61)

Let ψ ∈C∞0 (R
N) be such that suppψ ⊆ B4R(0)\BR(0) and

0≤ ψ ≤ 1 in R
N , ψ = 1 on B3R(0)\B2R(0), and ‖∇ψ‖∞ ≤ 1/R. (5.62)

Multiplying in (5.3) with ψ2/u and then integrating we obtain

∫
∇
(
ψ2

u

)
·∇udx≥

∫
|x|βψ2u−1−pdx. (5.63)

In order to estimate the left-hand side in (5.63) we use (5.62). We have
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∫
∇
(
ψ2

u

)
·∇udx = 2

∫
∇ψ ·∇u

ψ
u

dx−
∫
|∇u|2

(ψ
u

)2
dx

≤
∫ (

|∇ψ |2 + |∇u|2
(ψ

u

)2
)

dx−
∫
|∇u|2

(ψ
u

)2
dx

≤
∫
|∇ψ |2dx≤CRN−2.

(5.64)

To estimate the right-hand side in (5.63) we use Jensen’s inequality together with

(5.61). We have∫
|x|βψ2u−1−pdx≥CRβ

∫
B3R(0)\B2R(0)

u−1−pdx

≥CRβ+N(2+p)
(∫

B3R(0)\B2R(0)
udx

)−1−p

≥CRN+β

(
inf

B3R(0)\B2R(0)
u

)−1−p

.

(5.65)

Thus, combining (5.63), (5.64) and (5.65) we arrive at

inf
B3R(0)\B2R(0)

u≥CR(2+β )/(1+p),

for some constant C > 0 independent of u and R. This proves (5.60). For the proof

of (5.59) we proceed in a similar way.

Step 4: Proof of (ii).

Let u be an arbitrary solution of (5.3). From (5.50) and (5.59) it follows that

ϕ(|x|)u−p ≤ c0|x|αu−p ≤ c|x|(α−2p)/(1+p) in B1(0)\ {0}, (5.66)

for some c0,c > 0. Thus, by (5.52) we have

−Δu = ϕ(|x|)u−p ∈ L1
loc(R

N). (5.67)

Lemma 5.18 There exists a real number a≥ 0 such that

Δu+ϕ(|x|)u−p+ aδ (0) = 0 in D ′(B1(0)), (5.68)

where δ (0) denotes the Dirac mass concentrated at zero.

Proof. Let g(x) = ϕ(|x|)u−p, x ∈ B̄1(0) \ {0} and denote by ū and ḡ the spherical

averages of u and g respectively over ∂Br(0), 0 < r ≤ 1. From −Δu = g(x) in
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B̄1(0)\ {0} we obtain −Δ ū(r) = ḡ(r), 0 < r ≤ 1, so that

−(
rN−1ū′(r)

)′
= rN−1ḡ(r) for all 0 < r ≤ 1.

Integrating the above equation over [r,1], 0 < r ≤ 1 we find

rN−1ū′(r) = A+ o(r) as r→ 0, (5.69)

where

A = ū′(1)+
∫ 1

0
tN−1ḡ(t)dt.

We claim that A ≤ 0. Indeed, if A > 0, then, from (5.69) there exists r0 > 0 small

such that

rn−1ū′(r)> c > 0 for all 0 < r ≤ r0.

Integrating the above inequality over [r,r0] we obtain

ū(r0)− ū(r)>
C

N− 2
(r2−N− r2−N

0 ) 0 < r ≤ r0,

which implies limr→0 ū(r) =−∞. This is clearly a contradiction since ū > 0. There-

fore A≤ 0.

Let now ψ ∈C∞0 (B1(0)). For ε > 0 small enough we have

∫
B1(0)\Bε(0)

uΔψdx =
∫

B1(0)\Bε(0)
ψΔudx+

∫
∂Bε(0)

ψ
∂u
∂n

dσ(x)−
∫

∂Bε(0)

u
∂ψ
∂n

dσ(x)

=−
∫

B1(0)

g(x)ψ(x)dx+ψ(0)
∫
∂Bε(0)

∂u
∂n

dσ(x)+o(ε),

(5.70)

as ε → 0, where n is the outer unit normal vector at ∂Bε(0). By (5.69) we have

∫
∂Bε(0)

∂u
∂n

dσ(x) = σNεn−1ū′(ε) = σNA+o(ε) as ε → 0.

Combining this relation with (5.70) we find∫
B1(0)

uΔψdx = lim
εri0

∫
B1(0)\Bε(0)

uΔψdx =−
∫

B1(0)

g(x)ψ(x)dx+σNA,

which proves (5.68) with a =−σNA≥ 0. �
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Using Lemma 5.18 and standard potential theory arguments (see [134], [194]) it

follows that

u(x) = a|x|2−N +C
∫

B1(0)

−Δu(y)
|x− y|N−2 dy+ h(x) for all x ∈ B1(0)\ {0}, (5.71)

where C is a positive constant depending on the dimension N ≥ 3 and h : B1(0)→R

is a harmonic function.

Lemma 5.19 lim|x|→0 |x|N−2u(x) = a.

Proof. In view of (5.71), we only need to show that

∫
B1(0)

−Δu(y)
|x− y|N−2 dy = o(|x|2−N) as |x| → 0. (5.72)

To this aim, we split the above integral into

∫
B1(0)

−Δu(y)
|x− y|N−2 dy =

∫
y∈B1(0),
|y−x|≥|x|/2

−Δu(y)
|x− y|N−2 dy+

∫
y∈B1(0),
|y−x|<|x|/2

−Δu(y)
|x− y|N−2 dy. (5.73)

Using (5.67), for |x|> 0 small we have

∫
y∈B1(0),
|y−x|≥|x|/2

−Δu(y)
|x− y|N−2 dy =

∫
y∈B1(0),

|x|/2≤|y−x|<
√
|x|

−Δu(y)
|x− y|N−2 dy+

∫
y∈B1(0),

|y−x|>
√
|x|

−Δu(y)
|x− y|N−2 dy

≤
(

2
|x|

)N−2 ∫
y∈B1(0),

|y−x|<
√
|x|

−Δu(y)dy+ |x|(2−N)/2
∫

y∈B1(0),

|y−x|>
√
|x|

−Δu(y)dy

= o(|x|2−n) as |x| → 0.

In order to evaluate the second integral on the right-hand side in (5.67) we first

note that by (5.50) and (5.66) we have

−Δu = ϕ(|x|)u−p = O(|x|−N) as |x| → 0.

Thus, there exists c > 0 such that

−Δu≤ c|x|−N for |x| small and |y− x|< |x|
2
.

Let
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r(x) =

⎡
⎢⎣ 1

cσN |x|
∫

|y−x|<|x|/2

−Δu(y)dy

⎤
⎥⎦

1/N

.

Then r(x) = o(|x|) as |x| → 0. Since
∫

|y−x|<r(x)

C|x|−Ndy =
∫

|y−x|<|x|/2

−Δu(y)dy,

it follows that r(x)≥ |x|/2 for small values of |x|. Therefore

∫
y∈B1(0),
|y−x|<|x|/2

−Δu(y)
|x− y|N−2 dy≤

∫
y∈B1(0),
|y−x|<r(x)

c|x|−N dy
|x− y|N−2

= c|x|−N
∫

|z|<r(x)

|z|2−Ndx

= c′|x|−Nr(x)2 = o(|x|2−N) as |x| → 0.

This concludes the proof of (5.72).

By (5.71) we now deduce lim|x|→0 |x|N−2u(x) = a. �

Let u∗ be the Kelvin transform of u given by (5.45). Then u∗ satisfies

−Δu∗ = |x|−2−N−p(N−2)ϕ
(

1
|x|

)
u−p
∗ (x) in R

N \ {0}.

Note that by (5.45), (5.51) and (5.59) we have

|x|−2−N−p(N−2)ϕ
(

1
|x|

)
≤ c2|x|−β−2−N−p(N−2) for all x ∈ B1(0)\ {0},

u∗(x)≥ c|x|2−N−(2+β )/(1+p) for all x ∈ B1(0)\ {0}.

Combining the last estimates we arrive at

−Δu∗(x) = O(|x|−N) as |x| → 0. (5.74)

With the same arguments as above, there exists

b := lim
|x|→0

|x|N−2u∗(x)≥ 0. (5.75)

This yields
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lim
|x|→∞

u(x) = b≥ 0. (5.76)

Let ua,b be the solution of (5.3) that satisfies (5.53). We claim that u ≡ ua,b. To this

aim, for ε > 0 define

uε(x) := u(x)+ ε(a|x|2−N + b), x ∈ R
N \ {0}.

Also let un be the unique solution of (5.56). Taking into account Lemma 5.19, (5.76)

and the definition of un in (5.56), we can find n0 = n0(ε)≥ 2 such that for all n≥ n0

we have

uε ≥ un in ∂Bn(0)∪∂B1/n(0),

for all n≥ n0. We also have

Δuε + |x|αu−p
ε ≤ 0≤ Δun + |x|αu−p

n in Bn(0)\B1/n(0).

Hence, by Lemma 5.1 we obtain

uε ≥ un in Bn(0)\B1/n(0),

for all n≥ n0. Passing to the limit with n→ ∞ we obtain

uε ≥ ua,b in R
N \ {0}.

Now, letting ε ↘ 0 we deduce

u≥ ua,b in R
N \ {0}. (5.77)

Next, consider the spherical average ū of u as defined in (5.22). Then

lim
r↘0

rN−2ū(r) = lim
r↘0

rN−2ua,b(r) = a, (5.78)

lim
r→∞ ū(r) = lim

r→∞ua,b(r) = b. (5.79)

A straightforward computation shows that

rN−1ū′(r)− εN−1ū′(ε) =
1
σN

∫
Br(0)\Bε(0)

Δu(x)dx

=− 1
σN

∫
Br(0)\Bε(0)

ϕ(|x|)u−p(x)dx < 0,
(5.80)

for all 0 < ε < r. From (5.80) it follows that
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(0,∞) � r 	−→ rN−1ū′(r) is decreasing,

so that there exists � := limr↘0 rN−1ū′(r).
By l’Hospital’s rule and (5.78) it follows that

lim
r↘0

rN−1ū′(r) = �= a(2−N).

On the other hand, from (5.67) we have ϕ(|x|)u−p ∈ L1(Br(0)) for all r > 0.

Hence, passing to the limit in (5.80) with ε ↘ 0 we obtain

rN−1ū′(r) = a(2−N)− 1
σN

∫
Br(0)

ϕ(|x|)u−p(x)dx for all r > 0.

A similar relation holds for ua,b and using the fact that u≥ ua,b it follows that

ū′(r)≥ u′a,b(r) for all r > 0.

This means that ū− ua,b is increasing in (0,∞) and so, by (5.79),

ū(r)−ua,b(r)≤ lim
t→∞(ū(t)− ua,b(t)) = 0 for all r > 0.

Hence ū ≤ ua,b in (0,∞) which by continuity and (5.77) implies ū ≡ u ≡ ua,b. This

completes the proof of Theorem 5.17. �

Remark 21 If N = 2 then (5.3) has no C2 positive solutions even for more general

nonlinearities than u−p. More precisely, if u ∈C2(R2 \ {0}) satisfies

−Δu≥ 0, u≥ 0 in R
2 \ {0},

then u is constant (see [162, Theorem 29, page 130]).

Corollary 5.20 Let α ∈ R, p > 0. Then, the equation

−Δu = |x|αu−p in R
N \ {0}, N ≥ 3, (5.81)

has solutions if and only if

N +α+ p(N− 2)> 0 and α <−2. (5.82)

Furthermore, if (5.82) is fulfilled, then the same conclusion as in Theorem 5.17 holds

true and the function
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ξ (x) :=

[ −(1+ p)2

(α+2)(p(N− 2)+N−α)
]1/(1+p)

|x|(2+α)/(1+p), x ∈ R
N \ {0},

(5.83)

is the minimal solution of (5.81).

Proof. The conclusion follows directly from Theorem 5.17. Also, if (5.82) holds,

then the solution set of (5.81) consists of a two-parameter family of functions {ua,b :

a,b ≥ 0} that satisfy (5.53). It is easy to see that the function ξ defined by (5.83)

satisfies (5.81) and (5.54). It follows that ξ is the minimal solution of (5.81). ��
Using the approach in the proof of Theorem 5.17, one can obtain the same struc-

ture of the solution set for (5.3) for a large class of functions ϕ(|x|) having not only

a power-type behavior at zero or at infinity.

Corollary 5.21 Let α ∈ R, β , p > 0 and ϕ(r) = rα logβ (1+ r). Then, (5.3) has

solutions if and only if

N +α+β + p(N− 2)> 0 and α <−2. (5.84)

Furthermore, if (5.84) holds, then the solution set of (5.3) consists of a two-

parameter family of radially symmetric functions as described in Theorem 5.17.

Proof. Condition (5.84) follows directly from Theorem 5.16. For the remaining

part, let ε be small enough such that 0 < ε <−α−2 and let φ : (0,∞)→ (0,∞) be

a continuous function that satisfies

φ(r) ≥ ϕ(r) for all r > 0,

φ(r) ∼ rα+β as r↘ 0 and φ(r)∼ rα+ε as r→ ∞.

The construction of the minimal solution ξ of (5.3) is obtained by considering

the sequence {ξn} where ξn satisfies (5.55). Since φ satisfies the condition (5.43),

there exists a function U : RN \ {0}→ (0,∞) with the property⎧⎪⎪⎨
⎪⎪⎩
−ΔU ≥ φ(|x|)U−p(x), U > 0 in R

N \ {0},
U(x)→ 0 as |x| → ∞,

|x|N−2U(x)→ 0 as |x| → 0.
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Further, from φ ≥ ϕ in (0,∞) we deduce that ξn ≤U in R
N \{0}which implies that

ξ (x) := limn→∞ ξn(x), x ∈ R
N \{0} is well defined and it is the minimal solution of

(5.3).

The construction of the two-parameter family of solutions to (5.3) is the same as

in Step 2 of Theorem 5.17. We next show that this is the whole solution set of (5.3).

Using the fact that ϕ(|x|) ≥ c|x|α+β in B1 \ {0} and ϕ(|x|) > c|x|α in R
N \B1(0),

with the same argument as in the proof of Step 3 in Theorem 5.17 we obtain the

existence of a positive constant C > 0 such that any solution u of (5.3) satisfies

u(x)≥C|x|(2+α+β )/(1+p) for all x ∈ B1(0)\ {0} (5.85)

and

u(x)≥C|x|(2+α)/(1+p) for all x ∈R
N \B1(0). (5.86)

Using (5.85) we have

−Δu(x) = ϕ(|x|)u−p ≤ |x|α+βu−p ≤ c|x|(α+β−2p)/(1+p)≤ |x|−N as |x| → 0.

Now with the same method as in Lemmas 5.18 and 5.19 we find

lim
|x|→0

|x|N−2u(x) = a.

Next, if u∗ is the Kelvin transform of u as defined in (5.45), by (5.86) we have

−Δu∗ = |x|−2−N−p(N−2)ϕ
(

1
|x|

)
u−p
∗ (x)

≤C|x|−N−(2+α)/(1+p) logβ
(

1+
1
|x|

)
≤C|x|−N in B1(0)\ {0}.

This yields (5.74) and then (5.75). From now on, we proceed exactly in the same

way as we did in the proof of Theorem 5.17. �

With the same arguments we have.

Corollary 5.22 Let α ∈ R, β1,β2, . . . ,βm, p > 0 and

ϕ(r) = rα logβ1(1+ logβ2(1+ · · ·+ logβm(1+ r)) . . .), t > 0.

Then, (5.3) has solutions if and only if
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N +α+β1 +β2 + · · ·+βm + p(N− 2)> 0 and α <−2. (5.87)

Furthermore, if (5.87) holds, then the solution set of (5.3) consists of a two-

parameter family of radially symmetric functions as described in Theorem 5.17.

5.6 Application to Singular Elliptic Systems in Exterior Domains

Let Ω be an exterior domain (that is, RN \Ω is bounded) in R
N , N ≥ 3, that does

not contain the origin. In this section we study the existence of C2 solutions to the

elliptic system {−Δu = f (|x|,v), u > 0 in Ω ,

−Δv = g(|x|,u), v > 0 in Ω ,
(5.88)

where f ,g ∈C(0,∞) are positive functions such that

(A) for all r > 0 the mappings f (r, ·) and g(r, ·) are nonincreasing and convex.

Our first result concerns the case where Ω is nondegenerate with respect to the

origin.

Theorem 5.23 Assume Br0(0) ⊂ R
N \Ω for some r0 > 0. Then system (5.88) has

solutions if and only if there exists c > 0 such that∫ ∞

1
r f (r,c)dr < ∞ and

∫ ∞

1
rg(r,c)dr < ∞. (5.89)

Proof. Assume that (5.88) has a solution (u,v) and let w = u+v. Adding the two

equations in (5.88) we have

−Δw≥ f (|x|,w) in Ω , (5.90)

−Δw≥ g(|x|,w) in Ω . (5.91)

Fix R > 0 such that RN \Ω ⊂ B(0,R) and let w̄(r) be the average of w on B(0,r),

r ≥ R, that is,

w̄(r) =
1

σNrN−1

∫
∂Br(0)

w(y)dσ(y) for all r ≥ R, (5.92)

where σ denotes the surface area measure in R
N and σN = σ(∂B1(0)). A straight-

forward computation using Green’s formula yields
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w̄′(r) =
1

σNrN−1

∫
∂Br(0)

∂w
∂νr

(x)dσ(x) =
1

σNrN−1

∫
Br(0)

Δu(x)dx, (5.93)

where νr represents the outer unit normal at ∂Br(0).

Averaging (5.90) and using Jensen’s inequality, we find

−
[
w̄′′(r)+

N− 1
r

w̄′(r)
]
≥ f (r, w̄(r)) for all r ≥ R. (5.94)

Let now

z(t) = w̄(r) , t = r2−N .

From (5.94) we find

−z′′(t)≥ 1
(N− 2)2 t2(N−1)/(2−N) f (t1/(2−N),z(t)),

for all 0 < t ≤ T := R2−N . Since v is concave and positive, v is bounded from above

by a constant c > 0 for 0 < t ≤ T . Hence

−z′′(t)≥Ct2(N−1)/(2−N) f (t1/(2−N),c) for all 0 < ρ ≤ T.

Integrating this inequality twice we find

∞>

∫ T

0
z′(t)dt−Tz′(T )

≥C
∫ T

0

∫ T

t
s2(N−1)/(2−N) f (s1/(2−N),c)dsdt

=C
∫ T

0
s1+2(N−1)/(2−N) f (s1/(2−N),c)ds

= (N− 2)C
∫ ∞

R
r f (r,c)dr.

Proceeding in the same way with v from (5.91) we deduce the second estimate in

(5.89).

Assume now that (5.89) holds for some c > 0 and let us prove that (5.88) has

solutions. More precisely, we shall construct a radially symmetric solution (u,v) of

(5.88) in the larger exterior domain R
N \Br0(0).

Let A,B > 0 be such that

A > c+
∫ ∞

r0

r f (r,c)dr and B > c+
∫ ∞

r0

rg(r,c)dr. (5.95)

Consider f̃ , g̃ : (0,∞)×R→ (0,∞) defined as
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f̃ (r,v) =

{
f (r,c) for v≤ c

f (r,v) for v > c
and g̃(r,u) =

{
g(r,c) for u≤ c

g(r,u) for u > c.

For all n≥ 1 let

un(r) = A−
∫ r

r0

t1−N
∫ t

r0

sN−1 f̃ (s,vn−1(s))dsdt, r ≥ r0, (5.96)

and

vn(r) = B−
∫ r

r0

t1−N
∫ t

r0

sN−1g̃(s,un−1(s))dsdt, r ≥ r0, (5.97)

where u0 ≡ A, v0 ≡ B. Remark first that {un} and {vn} are well defined. Indeed,

from Lemma 5.6(iii) we have

un(r)≥ A−
∫ r

r0

t1−N
∫ t

r0

sN−1 f̃ (s,c)dsdt

≥ A−
∫ ∞

r0

t1−N
∫ t

r0

sN−1 f (s,c)dsdt

= A−
∫ ∞

r0

r f (r,c)dr ≥ c,

and similarly vn ≥ c for all n≥ 0. It follows that un and vn satisfy (5.96) and (5.97)

with f and g instead of f̃ and g̃ respectively. Further, it is easy to see that u′n(r)≤ 0

and v′n(r)≤ 0 for all r ≥ r0. A straightforward induction argument yields un+1 ≤ un

and vn+1 ≤ vn for all n ≥ 0. Here, there exists u(r) := limn→∞ un(r) and v(r) :=

limn→∞ vn(r), r ≥ r0. Passing to the limit in (5.96) and (5.97) we obtain

u(r) = A−
∫ r

r0

t1−N
∫ t

r0

sN−1 f (s,v(s))dsdt, r ≥ r0,

v(r) = B−
∫ r

r0

t1−N
∫ t

r0

sN−1g(s,u(s))dsdt, r ≥ r0.

Hence U(x) = u(|x|), V (x) = v(|x|) is a solution of (5.88) in R
N \Br0(0).

This finishes the proof of Theorem 5.23. �

Remark 22 If f has separable variables, we do not require f (r, ·) to be convex.

Indeed, if f (r,v) = a(r)b(v) with a,b ∈ C(0,∞) positive and b decreasing, we can

always find h ∈C(0,∞) convex and decreasing such that b ≥ h > 0 in (0,∞). From

(5.90) we deduce −Δw ≥ a(|x|)h(v) in Ω and we follow the same arguments as

above (with f (|x|,v) replaced by (a|x|)h(v)). In particular, if both f and g have

separable variables we can remove the convexity assumption in hypothesis (A).
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We are next concerned with the case where Ω = R
N \ {0}. In this case we have:

Theorem 5.24 Let Ω = R
N \ {0}.

(i) The system (5.88) has solutions if and only if (5.89) together with

∫ 1

0
rN−1 f (r,cr2−N)dr < ∞ and

∫ 1

0
rN−1g(r,cr2−N)dr < ∞ (5.98)

hold.

(ii) The system (5.88) has solutions which are bounded in the neighborhood of the

origin if and only if the following (stronger) condition holds∫ ∞

0
r f (r,c)dr < ∞ and

∫ ∞

0
rg(r,c)dr < ∞ , (5.99)

for some c > 0.

The proof of Theorem (5.24) relies on that of Theorem (5.23). To derive condition

(5.89) we use the Kelvin transform.

Proof. (i) Assume first that (5.88) has a solution (u,v) in Ω = R
N \ {0}. Since

(u,v) is also a solution of (5.88) in R
N \ B2(0) by Theorem 5.23 it follows that

(5.89) holds. Next, to deduce (5.98) let u∗ and v∗ be the Kelvin transforms of u and

v respectively, that is

u∗(x) = |x|2−Nu

(
x
|x|2

)
, x ∈ R

N \ {0}, (5.100)

v∗(x) = |x|2−Nv

(
x
|x|2

)
, x ∈R

N \ {0}. (5.101)

Then u∗ satisfies

−Δu∗(x) = |x|−2−N(−Δu)

(
x
|x|2

)

= |x|−2−N f

(
1
|x| ,v

(
x
|x|2

))

= |x|−2−N f

(
1
|x| ,v∗(x)

)
in R

N \B1(0).

Similarly v∗ satisfies

−Δv∗(x) = |x|−2−Ng

(
1
|x| ,u∗(x)

)
in R

N \B1(0).
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Hence, (u∗,v∗) are solutions of

⎧⎪⎪⎨
⎪⎪⎩
−Δu∗ = |x|−2−N f

(
1
|x| ,v∗

)
in R

N \B1(0) ,

−Δv∗ = |x|−2−Ng

(
1
|x| ,u∗

)
in R

N \B1(0) .

Since the mappings

f̃ (r,v) = r−2−N f (r−1,rN−2v) , r,v > 0

g̃(r,u) = r−2−Ng(r−1,rN−2u) , r,u > 0
(5.102)

satisfy the assumption (A), by Theorem 5.23 we find∫ ∞

1
t−1−N f (t−1,ctN−2)dt < ∞ and

∫ ∞

1
t−1−Ng(t−1,ctN−2)dt < ∞ ,

for some c > 0. Now the change of variable t = r−1 leads us to (5.98).

Assume now that (5.89) and (5.98) hold. Note that by letting c > 1 large enough,

we can assume the same value for c in all the above integrals. Let

u0(r) = v0(r) = c+ cr2−N

and for all n≥ 1 define

un(r) = u0(r)+
∫ ∞

r
t1−N

∫ t

r0

sN−1 f (s,vn−1(s))dsdt, r > 0, (5.103)

and

vn(r) = v0(r)+
∫ r

r
t1−N

∫ t

r0

sN−1g(s,un−1(s))dsdt, r > 0. (5.104)

Let us first remark that {un} and {vn} are well defined. Indeed, since un ≥ u0 and

vn ≥ v0, by Lemma 5.6(ii) and (5.98) we have

∫ ∞

r
t1−N

∫ t

0
sN−1 f (s,vn−1(s))dsdt

≤
∫ ∞

1
t1−N

∫ 1

0
sN−1 f (s,v0(s))dsdt +

∫ ∞

1
t1−N

∫ t

1
sN−1 f (s,v0(s))dsdt

≤ 1
N− 2

∫ 1

0
sN−1 f (s,cs2−N)ds+

∫ ∞

1
t f (t,c)dt < ∞.

Using the fact that u1 ≥ u0 and v1 ≥ v0 we have
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v0 ≤ v2 ≤ v1 and u0 ≤ u2 ≤ u1.

Further iterations imply

v0 ≤ v2n ≤ v2n+2 ≤ v1 and u0 ≤ u2n+1 ≤ u2n−1 ≤ u1,

for all n≥ 1. Thus, there exists

u(r) = lim
n→∞u2n−1(r) , v(r) = lim

n→∞v2n(r) ,r > 0.

Using (5.103) and (5.104) we find

u(r) = u0(r)+
∫ ∞

r
t1−N

∫ t

r0

sN−1 f (s,v(s))dsdt, r > 0,

v(r) = v0(r)+
∫ r

r
t1−N

∫ t

r0

sN−1g(s,u(s))dsdt, r > 0.

It is now easy to check that U(x) = u(|x|) and V (x) = v(|x|), x ∈ R
N \ {0} is a

solution of (5.88).

(ii) Let (u,v) be a solution of (5.88) such that u,v ≤ M in B1(0) \ {0} and let

ū, v̄ be the spherical average of u and v respectively. Then ū(r), v̄(r) ≤ M for all

0 < r ≤ 1. In the same manner as for (5.94) we find

−
[
ū′′(r)+

N− 1
r

ū′(r)
]
≥ f (r,M) for all r > 0 ,

which yields

− (rN−1ū′)′ ≥ rN−1 f (r,M) > 0 for all 0 < r ≤ 1. (5.105)

In particular (0,1] � r 	−→ rN−1ū′(r) is decreasing.

Claim: ū′(r)≤ 0 for all 0 < r ≤ 1.

Assume by contradiction that ū′(R) > 0 for some 0 < R ≤ 1. Since rN−1ū′ is

decreasing, it follows that

ū′(r)≥ RN−1ū′(R)r1−N for all 0 < r ≤ R.

Integrating the above inequality on [r,R] we find

ū(r)≤ ū(R)− C
N− 2

r2−N for all 0 < r ≤ R ,
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where C = RN−1ū′(R) > 0. The above estimates yield ū(r)→−∞ as r → 0, which

is impossible, since ū > 0. Thus, the claim is proved.

Since rN−1ū′(r) is decreasing and negative in a neighborhood of the origin, there

exists �= limr→0+ rN−1ū′(r)≤ 0. Integrating in (5.105) we find

−ū′(r)≥−�r1−N + r1−N
∫ r

0
f (s,M)ds

≥ r1−N
∫ r

0
f (s,M)ds for all 0 < r ≤ 1.

A further integration over [r,1] in the above estimate produces

M ≥ ū(1)− ū(r)≥
∫ 1

r
t1−N

∫ t

0
f (s,M)dsdt ,

for all 0 < r ≤ 1. Hence,
∫ 1

0 t1−N ∫ t
0 f (s,M)dsdt is convergent which by Lemma

5.6(i) yields
∫ 1

0 r f (r,M)dr < ∞. This final estimate compounded with (5.89) yields

(5.99).

For the converse part, assume now that (5.99) holds for some c > 0. We follow

step by step the proof of the second part in Theorem 5.23 in which r0 = 0. This

concludes the proof. �

From Theorem 5.24 we deduce:

Corollary 5.25 Let p,q > 0 and α,β be real numbers. Then the system{−Δu = |x|αv−p , u > 0 in R
N \ {0},

−Δv = |x|βu−q , v > 0 in R
N \ {0},

has solutions if and only if α,β <−2 and

N +α+ p(N− 2)> 0 , N +β + p(N−2)> 0.

Corollary 5.26 Let p,q > 0 and α,β be real numbers. Then the system

{−Δu = |x|αev−p
, u > 0 in R

N \ {0},
−Δv = |x|β eu−q

, v > 0 in R
N \ {0},

has solutions if and only if −2 > α,β >−N.
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Corollary 5.27 Let p,q > 0 and α,β be real numbers. Then the system{−Δu = (|x|α + v)−p , u > 0 in R
N \ {0},

−Δv = (|x|β + u)−q , v > 0 in R
N \ {0},

has solutions if and only if

α >
2
p
, β >

2
q
.



Chapter 6
Two Quasilinear Elliptic Problems

Science never solves a problem
without creating ten more.

George Bernard Shaw (1856–1950)

6.1 A Degenerate Elliptic Problem with Lack of Compactness

6.1.1 Introduction

In the last few decades, many researchers have been concerned with the study of

degenerate elliptic problems. We start with the following example{
div(a(x)∇u)+ f (u) = 0 in Ω ,
u = 0 on ∂Ω ,

(6.1)

where Ω is an arbitrary domain in R
N (N ≥ 1), and a is a nonnegative function

that may have “essential” zeros at some points or even may be unbounded. The

continuous function f satisfies f (0) = 0 and t f (t) behaves like |t|p as |t| → ∞, with

2< p< 2∗, where 2∗ denotes the critical Sobolev exponent. Notice that equations of

this type come from the consideration of standing waves in anisotropic Schrödinger

equations (see [34, 117, 181, 185, 200]). Equations like (6.1) are also introduced as

models for several physical phenomena related to equilibrium of anisotropic media

which possibly are somewhere “perfect” insulators or “perfect” conductors (see

[57], p. 79). Problem (6.1) has also some interest in the framework of optimization

and G-convergence (see, e.g., [78] and the references therein).

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 6, c© Springer-Verlag Berlin Heidelberg 2012
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Classical results (see [7, 168]) ensure the existence and the multiplicity of pos-

itive or nodal solutions for problem (6.1), provided that the differential operator

Tu := div(a(x)∇u) is uniformly elliptic. Several difficulties occur both in the de-

generate case (if inf
Ω

a = 0) and in the singular case (if sup
Ω

a = +∞). In these situ-

ations the classical methods fail to be applied directly so that the existence and the

multiplicity results (which hold in the nondegenerate case) may become a delicate

matter that is closely related to some phenomena due to the degenerate character

of the differential equation. These problems have been intensively studied starting

with the pioneering paper by Murthy and Stampacchia [145] (see also [41,71,156],

as well as the monograph [186]).

A natural question that arises in concrete applications is to see what happens

if these elliptic (degenerate or nondegenerate) problems are affected by a certain

perturbation. It is worth pointing out here that the idea of using perturbation methods

in the treatment of nonlinear boundary value problems was introduced by Struwe

[187].

Our aim in this chapter is to study the following degenerate perturbed problem

−div(|x|−2a∇u) = K(x)|x|−bp|u|p−2u+λg(x) in R
N , (6.2)

where

(i) if N ≥ 3 : −∞< a <
N− 2

2
, a < b < a+ 1 and p =

2N
N− 2+ 2(b− a)

.

(ii) if N = 2 : −∞< a < 0 , a < b < a+ 1 and p =
2

b−a
,

(iii) if N = 1 : −∞< a <−1
2

, a+
1
2
< b < a+ 1 and p =

2
−1+ 2(b− a)

.

Equation (6.2) contains the critical Caffarelli–Kohn–Nirenberg exponent p (see

Appendix A) defined as in (3.108). In this critical case, some concentration phenom-

ena may occur, due to the action of the noncompact group of dilations in R
N . The

lack of compactness of problem (6.2) is also given by the fact that we are looking

for entire solutions, that is, solutions defined on the whole space.

The reason for which we choose the parameters a, b, and p in the above range

has to do with the Caffarelli–Kohn–Nirenberg inequality (see Appendix A):

(∫
RN
|x|−bp |u|pdx

)1/p

≤Ca,b

(∫
RN
|x|−2a|∇u|2dx

)1/2

, (6.3)
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for all u∈C∞0 (R
N). We point out that the inequality (6.3) also holds true for b= a+1

(if N ≥ 1) and b = a (if N ≥ 3) but, in these cases, the best embedding constant Ca,b

in (6.3) is never achieved (see [36] for details).

Throughout this chapter, the function K is assumed to fulfill:

(K1) K ∈ L∞(RN),

(K2) esslim|x|→0K(x) = esslim|x|→∞K(x) =K0 ∈ (0,∞) and K(x)≥K0 a.e. in R
N ,

(K3) meas
({x ∈R

N : K(x)> K0}
)
> 0.

The Palais–Smale condition (PS) plays a central role when variational methods

are applied in the study of problem (6.2). In this chapter, we establish the existence

and the multiplicity of nontrivial solutions of (6.2) with λ > 0 sufficiently small,

in a case where the (PS) condition is not assumed even for λ = 0. More precisely,

we will show that there exists at least two weak solutions of (6.2) for g �= 0 in

an appropriate weighted Sobolev space and λ > 0 small enough. Our proof relies

on Ekeland’s variational principle and on the mountain pass theorem without the

Palais–Smale condition (in the sense of Brezis and Nirenberg, see [29]), combined

with a weighted variant of the Brezis–Lieb lemma.

The natural functional space to study problem (6.2) is H1
a (R

N), defined as the

completion of C∞0 (R
N) with respect to the norm

‖u‖=
(∫

RN
|x|−2a|∇u|2dx

)1/2

. (6.4)

It turns out that H1
a (R

N) is a Hilbert space with respect to the inner product

〈u,v〉=
∫
RN
|x|−2a∇u ·∇vdx, ∀u,v ∈ H1

a (R
N).

It follows that (6.3) holds for all u ∈ H1
a (R

N). Also we have

H1
a (R

N) =C∞0 (RN \ {0})‖·‖, (6.5)

where ‖ ·‖ is given by (6.4). Let ‖ ·‖−1 denote the norm in the dual space H−1
a (RN)

of H1
a (R

N).

Throughout this chapter we suppose that g ∈ H−1
a (RN)\ {0}.
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For an arbitrary open set Ω ⊂ R
N , let Lp

b(Ω) be the space of all measurable real

functions u defined on Ω such that
∫
Ω
|x|−bp |u|pdx is finite. By (6.3) it follows that

the weighted Sobolev space H1
a (Ω) is continuously embedded in Lp

b(Ω).

Definition 6.1 We say that a function u ∈ H1
a (R

N) is a weak solution of problem

(6.2) if∫
RN
|x|−2a∇u ·∇vdx−

∫
RN

K(x)|x|−bp |u|p−2uvdx−λ
∫
RN

g(x)vdx = 0,

for all u ∈C∞0 (R
N).

Obviously, the solutions of problem (6.2) correspond to critical points of the

energy functional

Jλ (u) =
1
2

∫
RN
|x|−2a|∇u|2 dx− 1

p

∫
RN

K(x)|x|−bp |u|p dx−λ
∫
RN

g(x)udx,

where u ∈ H1
a (R

N).

Our main result is the following.

Theorem 6.2 Suppose that assumptions (K1), (K2), (K3) are fulfilled and fix g ∈
H−1

a (RN)\{0}. Then there exists λ0 > 0 such that for all λ ∈ (0,λ0), problem (6.2)

has at least two weak solutions.

Since the embedding H1
a (R

N) ↪→ Lp
b(R

N) is not compact, the energy functional

Jλ fails to satisfy the (PS) condition. Such a failure brings about difficulty in apply-

ing a variational approach to (6.2). Furthermore, since g �≡ 0, then 0 is no longer a

trivial solution of problem (6.2) and, therefore, the mountain pass theorem cannot be

applied directly. We obtain the first solution by applying Ekeland’s variational prin-

ciple. Then, the mountain pass theorem without the Palais–Smale condition yields

a bounded Palais–Smale sequence whose weak limit is a critical point of Jλ . The

proof is concluded by showing that these two solutions are distinct because they

realize different energy levels.

6.1.2 Auxiliary Results

Define the functionals J0, I : H1
a (R

N)→ R by
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J0(u) =
1
2

∫
RN
|x|−2a|∇u|2 dx− 1

p

∫
RN

K(x)|x|−bp |u|p dx,

I(u) =
1
2

∫
RN
|x|−2a|∇u|2 dx− 1

p

∫
RN

K0|x|−bp |u|p dx.

The Caffarelli–Kohn–Nirenberg inequality (6.3) and the conditions (K1), (K2) im-

ply that the functionals Jλ , J0, and I are well defined and Jλ ,J0, I ∈C1(H1
a (R

N),R).

Remark 23 IfΩ ⊂R
N is a smooth bounded set such that 0 �∈Ω then, by the Sobolev

inequality, we have

(∫
Ω
|x|−bp |u|pdx

)1/p

≤C1

(∫
Ω
|u|pdx

)1/p

≤C2

(∫
Ω
|∇u|2dx

)1/2

≤C3

(∫
Ω
|x|−2a|∇u|2dx

)1/2

,

for all u ∈ H1
a (Ω). It follows that H1

a (Ω) is compactly embedded in Lp
b(Ω).

Remark 23 implies that if {un} is a sequence that converges weakly to some u0

in H1
a (R

N) then {un} is bounded in H1
a (R

N). Therefore, we can assume (up to a

subsequence) that

un → u0 in Lp
b, loc(R

N \ {0}) and un → u0 a.e. in R
N . (6.6)

Definition 6.3 Let X be a Banach space, F : X → R be a C1−functional and c be

a real number. A sequence {un} ⊂ X is called a (PS)c sequence of F if F(un)→ c

and ‖F ′(un)‖X∗ → 0.

Our first result shows that if a (PS)c sequence of Jλ is weakly convergent then its

limit is a solution of problem (6.2).

Lemma 6.4 Let {un}⊂H1
a (R

N) be a (PS)c sequence of Jλ for some c∈R. Suppose

that {un} converges weakly to some u0 in H1
a (R

N). Then u0 is a solution of problem

(6.2).

Proof. Let φ ∈ C∞0 (R
N \ {0}) be an arbitrary function and set Ω := suppφ . Since

J′λ (un)→ 0 in H−1
a (RN) we obtain 〈J′λ (un),φ 〉 → 0 as n→ ∞, that is,
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lim
n→∞

(∫
Ω
|x|−2a∇un ·∇φ dx−

∫
Ω

K(x)|x|−bp |un|p−2unφ dx−λ
∫
Ω

g(x)φ dx

)
= 0.

(6.7)

Since un ⇀ u0 in H1
a (R

N), it follows that

lim
n→∞

∫
Ω
|x|−2a∇un ·∇φ dx =

∫
Ω
|x|−2a∇u0 ·∇φ dx. (6.8)

The boundedness of {un} in H1
a (R

N) and the Caffarelli–Kohn–Nirenberg in-

equality imply that {|un|p−2un} is bounded in Lp/p−1
b (RN). Since |un|p−2un →

|u0|p−2u0 a.e. in R
N (which is a consequence of (6.6)), we deduce that |u0|p−2u0

is the weak limit in Lp/p−1
b (RN) of the sequence {|un|p−2un}. Therefore

lim
n→∞

∫
Ω

K(x)|x|−bp |un|p−2unφ dx =
∫
Ω

K(x)|x|−bp |u0|p−2u0φ dx. (6.9)

Consequently, relations (6.7), (6.8), and (6.9) yield∫
Ω
|x|−2a∇u0 ·∇φ dx−

∫
Ω

K(x)|x|−bp |u0|p−2u0φ dx−λ
∫
Ω

g(x)φ dx = 0.

By virtue of (6.5) we deduce that the above equality holds for all φ ∈H1
a (R

N) which

means that J′λ (u0) = 0. The proof of our lemma is now complete. ��

The next result is a weighted variant of the Brezis–Lieb lemma (see [27]).

Lemma 6.5 Let {un} be a sequence which is weakly convergent to u0 in H1
a (R

N).

Then

lim
n→∞

∫
RN

K(x)|x|−bp (|un|p−|un− u0|p)dx =
∫
RN

K(x)|x|−bp |u0|p dx.

Proof. Using the boundedness of {un} in H1
a (R

N) and the Caffarelli–Kohn–

Nirenberg inequality, it follows that the sequence {un} is bounded in Lp
b(R

N).

Let ε > 0 be a positive real number. By (K1) and (K2), we can choose Rε > rε > 0

such that ∫
|x|<rε

K(x)|x|−bp |u0|p dx < ε (6.10)

and ∫
|x|>Rε

K(x)|x|−bp |u0|p dx < ε. (6.11)

DenoteΩε := B(0,Rε) \B(0,rε). We have
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∫
RN

K(x)|x|−bp (|un|p−|u0|p−|un− u0|p)dx

∣∣∣∣
≤

∣∣∣∣
∫
Ωε

K(x)|x|−bp (|un|p−|u0|p)dx

∣∣∣∣+
∫
Ωε

K(x)|x|−bp |un−u0|p dx

+
∫

|x|<rε

K(x)|x|−bp |u0|p dx+

∣∣∣∣
∫
|x|<rε

K(x)|x|−bp (|un|p−|un−u0|p)dx

∣∣∣∣
+

∫
|x|>Rε

K(x)|x|−bp |u0|p dx+

∣∣∣∣
∫
|x|>Rε

K(x)|x|−bp (|un|p−|un−u0|p)dx

∣∣∣∣ .
By the Lagrange mean value theorem we have∫

|x|<rε
K(x)|x|−bp (|un|p−|un− u0|p)dx

= p
∫
|x|<rε

K(x)|x|−bp |θu0 +(un−u0)|p−1|u0|dx ,
(6.12)

where 0 < θ (x) < 1. Next, we employ the following elementary inequality: for all

s > 0 there exists a constant c = c(s) such that

(x+ y)s ≤ c(xs + ys), for any x,y ∈ (0,∞).

Then, by Hölder’s inequality and relation (6.10) we deduce that
∫
|x|<rε

K(x)|x|−bp |θu0 +(un−u0)|p−1|u0|dx

≤c
∫
|x|<rε

K(x)|x|−bp (|u0|p + |un−u0|p−1|u0|)dx

=c
∫
|x|<rε

K(x)|x|−bp |u0|p dx+ c
∫
|x|<rε

K(x)|x|−bp |un−u0|p−1|u0|dx

≤cε+ c

(∫
|x|<rε

K(x)|x|−bp |un−u0|p dx

)(p−1)/p

×
(∫

|x|<rε
K(x)|x|−bp |u0|p dx

)1/p

≤c1 (ε+ ε1/p),

where the constant c1 is independent of n and ε. Using relation (6.12) we have

∫
|x|<rε

K(x)|x|−bp |u0|p dx+

∣∣∣∣
∫
|x|<rε

K(x)|x|−bp (|un|p−|un−u0|p)dx

∣∣∣∣
≤ p c̃1 (ε + ε1/p).

(6.13)

In a similar manner we obtain
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∫
|x|>Rε

K(x)|x|−bp |u0|p dx+

∣∣∣∣
∫
|x|>Rε

K(x)|x|−bp (|un|p−|un−u0|p)dx

∣∣∣∣
≤ p c̃2 (ε+ ε1/p).

(6.14)

Since un ⇀ u0 in H1
a (R

N), relation (6.6) yields

lim
n→∞

∫
Ωε

K(x)|x|−bp (|un|p−|u0|p)dx = 0,

lim
n→∞

∫
Ωε

K(x)|x|−bp |un− u0|p dx = 0.
(6.15)

Now, by (6.13), (6.14), and (6.15) we find

limsup
n→∞

∣∣∣∣
∫
RN

K(x)|x|−bp (|un|p−|u0|p−|un− u0|p)dx

∣∣∣∣≤ (pC+ 1)(ε+ ε1/p).

Since ε > 0 is arbitrary, it follows that

lim
n→∞

∫
RN

K(x)|x|−bp (|un|p−|un− u0|p)dx =
∫
RN

K(x)|x|−bp |u0|p dx.

This concludes the proof. ��

Lemma 6.6 Let {vn} be a sequence which converges weakly to 0 in H1
a (R

N). Then

the following properties hold true

lim
n→∞[Jλ (vn)− I(vn)] = 0,

lim
n→∞[〈J

′
λ (vn),vn〉− 〈I′(vn),vn〉] = 0.

Proof. A straightforward computation yields

Jλ (vn) = I(vn)− 1
p

∫
RN

(K(x)−K0)|x|−bp |vn|p dx−λ
∫
RN

g(x)vn dx,

〈J′λ (vn),vn〉= 〈I′(vn),vn〉−
∫
RN

(K(x)−K0)|x|−bp |vn|p dx−λ
∫
RN

g(x)vn dx.

Since vn ⇀ 0 in H1
a (R

N), it follows from the above equalities that it suffices to prove

that

lim
n→∞

∫
RN

(K(x)−K0)|x|−bp |vn|p dx = 0. (6.16)

Fix ε > 0. By our assumptions (K1) and (K2), there exists Rε > rε > 0 such that

|K(x)−K0|= K(x)−K0 < ε for a.e. x ∈ R
N \Ωε ,
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where Ωε = B(0,Rε)\B(0,rε). Next, we have∫
RN

(K(x)−K0)|x|−bp |vn|p dx

=
∫
RN\Ωε

(K(x)−K0)|x|−bp |vn|p dx+
∫
Ωε
(K(x)−K0)|x|−bp |vn|p dx

≤ ε
∫
RN\Ωε

|x|−bp |vn|p dx+(‖K‖∞−K0)

∫
Ωε
|x|−bp |vn|p dx

≤ ε
∫
RN
|x|−bp |vn|p dx+(‖K‖∞−K0)

∫
Ωε
|x|−bp |vn|p dx.

Since vn ⇀ 0 in H1
a (R

N), the Caffarelli–Kohn–Nirenberg inequality implies that

{vn} is bounded in Lp
b(R

N). Moreover, by (6.6), it follows that vn → 0 in Lp
b, loc(R

N \
{0}). The above relations yield

limsup
n→∞

∫
RN

(K(x)−K0)|x|−bp |vn|p dx≤Cε

for some constant C > 0 independent of n and ε . Since ε > 0 was arbitrarily chosen,

we conclude that (6.16) holds and the proof of Lemma 6.6 is now complete. ��

Lemma 6.7 There exists λ1 > 0 and R = R(λ1)> 0 such that for all λ ∈ (0,λ1), the

functional Jλ admits a (PS)c0,λ sequence with c0,λ = c0,λ (R) = inf
u∈BR

Jλ (u). More-

over, c0,λ is achieved by some u0 ∈ H1
a (R

N) with J′λ (u0) = 0.

Proof. Fix λ ∈ (0,1). For all u ∈ H1
a (R

N), the assumption (K1) and the Caffarelli–

Kohn–Nirenberg inequality imply

Jλ (u) =
1
2
‖u‖2− 1

p

∫
RN

K(x)|x|−bp |u|p dx−λ
∫
RN

g(x)udx

≥1
2
‖u‖2− ‖K‖∞

p
Cp

a,b‖u‖p−λ‖g‖−1‖u‖.

We now apply the inequality αβ ≤ α2 +β 2

2
, for any α,β ≥ 0. Hence

Jλ (u)≥
1−λ

2
‖u‖2− ‖K‖∞

p
Cp

a,b ‖u‖p− λ
2
‖g‖2

−1. (6.17)

Since p > 2 and the right-hand side of (6.17) is a decreasing function on λ , we find

λ1 > 0 and R = R(λ1)> 0, δ = δ (λ1)> 0 such that

Jλ (u)≥−
λ
2
‖g‖2

−1, for all u ∈ BR and λ ∈ (0,λ1) (6.18)
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and

Jλ (u)≥ δ > 0, for all u ∈ ∂BR and λ ∈ (0,λ1). (6.19)

For instance, we can take

λ1 := min

{
1
2
,

1

2‖g‖2
−1

(
1
2
− 1

p

)
r2

0

}
, r0 :=

[
1

2‖K‖∞Cp
a,b

]1/(p−2)

and

R :=

[
1−λ1

‖K‖∞Cp
a,b

]1/(p−2)

, δ (λ1) :=
λ1

2
‖g‖2

−1.

Using now the estimate (6.17), we easily deduce (6.18) and (6.19).

Next, we define c0,λ := c0,λ (R) = inf{Jλ (u) : u ∈ BR}. We first note that c0,λ ≤
Jλ (0) = 0. The set BR becomes a complete metric space with respect to the distance

dist(u,v) := ‖u− v‖, for any u,v ∈ BR.

The functional Jλ is lower semicontinuous and bounded from below on BR. Then,

by Ekeland’s variational principle, for any positive integer n there exists un such that

c0,λ ≤ Jλ (un)≤ c0,λ +
1
n

(6.20)

and

Jλ (w)≥ Jλ (un)− 1
n
‖un−w‖, for all w ∈ BR. (6.21)

We first show that ‖un‖ < R for n large enough. Indeed, if not, then ‖un‖ = R for

infinitely many n, and so (up to a subsequence) we can assume that ‖un‖ = R for

all n ≥ 1. It follows that Jλ (un) ≥ δ > 0. Using (6.20) and letting n→ ∞, we have

0≥ c0,λ ≥ δ > 0, which is a contradiction.

We now claim that J′λ (un)→ 0 in H−1
a (RN). Fix u ∈ H1

a (R
N) with ‖u‖ = 1 and

let wn = un + tu. For some fixed n, we have ‖wn‖ ≤ ‖un‖+ t < R if t > 0 is small

enough. Then relation (6.21) yields

Jλ (un + tu)≥ Jλ (un)− t
n
‖u‖ ,

that is,
Jλ (un + tu)− Jλ(un)

t
≥−1

n
‖u‖=−1

n
.
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Letting t ↘ 0 it follows that 〈J′λ (un),u〉 ≥ −1
n

. Arguing in a similar way for t ↗ 0,

we obtain 〈J′λ (un),u〉 ≤ 1
n

. Since u ∈ H1
a (R

N) with ‖u‖ = 1 has been arbitrarily

chosen, we have

‖J′λ (un)‖= sup
u∈H1

a (R
N ),‖u‖=1

|〈J′λ (un),u〉| ≤ 1
n
→ 0 as n→ ∞.

We have proved the existence of a (PS)c0,λ sequence, that is, a sequence {un} ⊂
H1

a (R
N) with

Jλ (un)→ c0,λ and J′λ (un)→ 0 in H1
a (R

N). (6.22)

Since ‖un‖ ≤ R, it follows that {un} converges weakly (up to a subsequence) in

H1
a (R

N) to some u0. Moreover, relations (6.6) and (6.22) yield

un ⇀ u0 in H1
a (R

N), un → u0 a.e. in R
N (6.23)

and

J′λ (u0) = 0. (6.24)

Next, we prove that Jλ (u0) = c0,λ . Indeed, using relations (6.22) and (6.23) we

have

o(1) = 〈J′λ (un),un〉
=

∫
RN
|x|−2a|∇un|2 dx−

∫
RN

K(x)|x|−bp |un|p dx−λ
∫
RN

g(x)un dx.

Therefore

Jλ (un) =

(
1
2
− 1

p

)∫
RN

K(x)|x|−bp|un|p dx− λ
2

∫
RN

g(x)un dx+o(1).

Hence

Jλ (u0) =

(
1
2
− 1

p

)∫
RN

K(x)|x|−bp|u0|p dx− λ
2

∫
RN

g(x)u0 dx+o(1).

Fatou’s lemma and relations (6.22), (6.23), (6.24) imply
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c0,λ = liminf
n→∞ Jλ (un)

≥
(

1
2
− 1

p

)∫
RN

K(x)|x|−bp|u0|p dx− λ
2

∫
RN

g(x)u0 dx

= Jλ (u0).

Thus, c0,λ ≥ Jλ (u0). On the other hand, since u0 ∈BR, we deduce that Jλ (u0)≥ c0,λ ,

so Jλ (u0) = c0,λ . This concludes the proof of Lemma 6.7. ��

6.1.3 Proof of the Main Result

Define

S := {u ∈ H1
a (R

N)\ {0} : 〈I′(u),u〉= 0}.

We claim that S �= /0. For this purpose we fix u ∈ H1
a (R

N) \ {0} and set, for any

λ > 0,

Ψ (λ ) = 〈I′(λu),λu〉= λ 2
∫
RN
|x|−2a|∇u|2 dx−λ p

∫
RN

K0|x|−bp |u|p dx.

Since p > 2, it follows that Ψ(λ ) < 0 for λ large enough and Ψ(λ ) > 0 for λ
sufficiently close to the origin. So, there exists λ > 0 such thatΨ(λ ) = 0, that is,

λu ∈S .

Proposition 6.8 Let I∞ := inf{ I(u) : u ∈S }. Then there exists ū ∈ H1
a (R

N) such

that

I∞ = I(ū) = sup
t≥0

I(tū). (6.25)

Proof. For some fixed φ ∈ H1
a (R

N)\ {0} denote

f (t) = I(tφ) =
t2

2

∫
RN
|x|−2a|∇φ |2 dx− K0

p
t p

∫
RN
|x|−bp |φ |p dx.

We have

f ′(t) = t
∫
RN
|x|−2a|∇φ |2 dx−K0 t p−1

∫
RN
|x|−bp |φ |p dx.

Then f attains its maximum at

t0 = t0(φ) :=

⎧⎪⎨
⎪⎩

∫
RN
|x|−2a|∇φ |2 dx∫

RN
K0|x|−bp|φ |p dx

⎫⎪⎬
⎪⎭

1/(p−2)

.
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Hence

f (t0) = I(t0φ) = sup
t≥0

I(tφ) =
(

1
2
− 1

p

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
RN
|x|−2a|∇φ |2 dx(∫

RN
K0|x|−bp|φ |p dx

)2/p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p/(p−2)

.

It follows that

inf
φ∈H1

0 (R
N )\{0}

sup
t≥0

I(tφ) =
(

1
2
− 1

p

)
[S(a,b)]p/(p−2) , (6.26)

where

S(a,b) = inf
φ∈H1

0 (R
N )\{0}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
RN
|x|−2a|∇φ |2 dx(∫

RN
K0|x|−bp|φ |p dx

)2/p

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (6.27)

We now easily observe that for every u ∈ S we have t0(u) = 1. So, by (6.26), it

follows that

I(u) = sup
t≥0

I(tu), for all u ∈S . (6.28)

By Remark A.1 in Appendix A, the infimum in (6.27) is achieved by a function

U ∈ H1
a (R

N) such that
∫
RN K0|x|−bp|U |pdx = 1. Letting ū = [S(a,b)]1/(p−2)U , we

see that ū ∈S and

I(ū) =

(
1
2
− 1

p

)
[S(a,b)]p/(p−2) . (6.29)

Relations (6.28) and (6.29) yield

I∞ = inf
u∈S

I(u)

= inf
u∈S

sup
t≥0

I(tu)

≥ inf
u∈H1

0 (R
N )\{0}

sup
t≥0

I(tu)

=

(
1
2
− 1

p

)
[S(a,b)]p/(p−2) = I(ū),

which concludes our proof. ��

Proposition 6.9 Assume that {un} is a (PS)c sequence of Jλ which is weakly con-

vergent in H1
a (R

N) to some u0. Then the following alternative holds: either {un}
converges strongly in H1

a (R
N), or c≥ Jλ (u0)+ I∞.
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Proof. Since {un} is a (PS)c sequence and un ⇀ u0 in H1
a (R

N) we have

Jλ (un) = c+ o(1) and 〈J′λ (un),un〉= o(1). (6.30)

Denote vn = un−u0. It follows that vn ⇀ 0 in H1
a (R

N) which implies

lim
n→∞

∫
RN
|x|−2a∇vn ·∇u0 dx = 0,

lim
n→∞

∫
RN

g(x)vn dx = 0.

The above relations imply

‖un‖2 = ‖u0‖2 + ‖vn‖2 +o(1),

Jλ (vn) = J0(vn)+o(1).
(6.31)

Using Lemmas 6.4 to 6.6 and relations (6.30), (6.31) we deduce that

o(1)+ c = Jλ (un) = Jλ (u0)+ Jλ (vn)+o(1) = Jλ (u0)+ I(vn)+o(1), (6.32)

o(1) = 〈J′λ (un),un〉
= 〈J′λ (u0),u0〉+ 〈J′λ (vn),vn〉+o(1)

= 〈I′(vn),vn〉+ o(1).

(6.33)

If vn → 0 in H1
a (R

N) then un → u0 in H1
a (R

N). It follows that Jλ (u0) = lim
n→∞Jλ (un).

If the sequence {vn} does not converge strongly to 0 in H1
a (R

N), then, since vn ⇀ 0

in H1
a (R

N), we can assume (up to a subsequence) that ‖vn‖→ l > 0.

By virtue of (6.32), it remains only to show that I(vn)≥ I∞+o(1). Taking t > 0

we have

〈I′(tvn), tvn〉= t2
∫
RN
|x|−2a|∇vn|2 dx− t p K0

∫
RN
|x|−bp |vn|p dx.

If we prove the existence of a sequence {tn} ⊂ (0,∞) with tn → 1 and 〈I′(tnvn),

tnvn〉= 0, then tnvn ∈S . This implies that

I(vn) = I(tnvn)+
1− t2

n

2
‖vn‖2− 1− t p

n

p
K0

∫
RN
|x|−bp |vn|p dx

= I(tnvn)+o(1)≥ I∞+ o(1),

and the conclusion follows. For this purpose, we denote

αn =

∫
RN
|x|−2a|∇vn|2 dx = ‖vn‖2 ≥ 0,
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βn = K0

∫
RN
|x|−bp|vn|p dx≥ 0,

μn = αn−βn.

From (6.33) it follows that μn = 〈I′(vn),vn〉 → 0 as n→ ∞. If μn = 0, then we take

tn = 1. Next, we assume that μn �= 0. Let δ ∈ R with |δ | > 0 sufficiently small and

t = 1+ δ . Then

〈I′(tvn), tvn〉 = (1+ δ )2αn− (1+ δ )pβn

= (1+ δ )2αn− (1+ δ )p(αn− μn)
= αn(2δ − pδ + o(δ ))+ (1+ δ )pμn

= αn(2− p)δ +αno(δ )+ (1+ δ )pμn.

Since p > 2, αn → l2 > 0 and μn → 0, for n large enough we can define δ+n =
2|μn|

αn(p−2)
and δ−n =− 2|μn|

αn(p− 2)
. It follows that

δ+n ↘ 0 and 〈I′((1+ δ+n )vn),(1+ δ+n )vn〉< 0,

δ−n ↗ 0 and 〈I′((1+ δ−n )vn),(1+ δ−n )vn〉< 0.

From the above relations we deduce the existence of some tn ∈ (1+ δ−n ,1+ δ+n )

such that tn → 1 and 〈I′(tnvn), tnvn〉= 0. This concludes the proof. ��
We now fix ū ∈ H1

a (R
N) such that (6.25) holds. Since p > 2, there exists t̄ such

that
I(tū)< 0, for all t > t̄,

Jλ (tū)< 0, for all t > t̄ and λ > 0.

Set

P := {γ ∈C([0,1],H1
a (R

N)) : γ(0) = 0, γ(1) = t̄ ū}, (6.34)

cg := inf
γ∈P

sup
u∈γ

Jλ (u). (6.35)

Proposition 6.10 There exists λ0 > 0, R0 = R0(λ0)> 0, δ0 = δ0(λ0)> 0 such that

for all λ ∈ (0,λ0), Jλ ≥ δ0 on ∂BR0 and cg < c0,λ + I∞, where c0,λ := inf
u∈BR0

Jλ (u).

Proof. By our hypothesis (K3) and the definition of I we can assume that

J0(tū)< I(tū), for all t > 0.

An elementary computation implies the existence of some t0 ∈ (0, t̄) such that

sup
t≥0

J0(tū) = J0(t0ū)< I(t0ū)≤ sup
t≥0

I(tū) = I∞.
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So, we can choose ε0 ∈ (0,1) such that

sup
t≥0

J0(tū)< I∞− ε0. (6.36)

Set

λ0 := min

{
λ1,

ε0

2t̄ ‖ū‖‖g‖−1
,

ε0

2‖g‖2
−1

}
. (6.37)

By the above definition of λ0 and applying Lemma 6.7, it follows that there exists

R0 = R0(λ0) > 0 such that for all λ ∈ (0,λ0) the conclusion of Lemma 6.7 holds.

Moreover, by virtue of its proof, there exists δ0 = δ (λ0) > 0 such that Jλ ≥ δ0 on

∂BR0 . Then relations (6.18) and (6.37) yield

c0,λ = inf
u∈BR0

Jλ (u)≥−
λ
2
‖g‖2

−1 >−
ε0

2
, for all λ ∈ (0,λ0). (6.38)

Fix u ∈ γ0 := {tt̄ū : 0≤ t ≤ 1} ∈P . Then

|Jλ (u)− J0(u)|= λ
∣∣∣∣
∫
RN

g(x)udx

∣∣∣∣≤ λ t̄ ‖ū‖‖g‖−1 ≤ ε0

2
, for all λ ∈ (0,λ0).

Therefore

Jλ (u)≤ J0(u)+
ε0

2
, for all λ ∈ (0,λ0). (6.39)

Using relations (6.36), (6.38) and (6.39) we obtain

cg = inf
γ∈P

sup
u∈γ

Jλ (u)≤ sup
u∈γ0

Jλ (u)

≤ sup
u∈γ0

J0(u)+
ε0

2
≤ sup

t≥0
J0(tū)+

ε0

2
< I∞− ε0

2
< I∞+ c0,λ .

This completes the proof. ��

Proof of Theorem 6.2 continued. Consider R0 > 0 and δ0 > 0 given by Proposition

6.10. In view of its proof, we deduce that for all λ ∈ (0,λ0) the conclusion of Lemma

6.7 holds. Therefore, we obtain the existence of a solution u0 of problem (6.2) such

that Jλ (u0) = c0,λ .

On the other hand, applying the mountain pass theorem without the Palais–Smale

condition, there exists a (PS)cg sequence {un} of Jλ , that is,

Jλ (un) = cg + o(1) and J′λ (un)→ 0 in H−1
a (RN).
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Therefore

cg +o(1)+
1
p
‖J′λ (un)‖−1‖un‖ ≥ Jλ (un)− 1

p 〈J′λ (un),un〉

≥
(

1
2
− 1

p

)
‖un‖2−λ

(
1− 1

p

)
‖g‖−1‖un‖.

The above inequality shows that {un} is bounded in H1
a (R

N). Thus, we can assume

(up to a subsequence) that un ⇀ u1 in H1
a (R

N). By Lemma 6.4 it follows that u1 is

a weak solution of problem (6.2).

We claim that u0 �= u1. Indeed, by Proposition 6.9, the following alternative

holds: either un → u1 in H1
a (R

N), which gives

Jλ (u1) = lim
n→∞Jλ (un) = cg > 0≥ c0,λ = Jλ (u0)

and the conclusion follows; or

cg = lim
n→∞Jλ (un)≥ Jλ (u1)+ I∞.

In the last case, if we suppose that u1 = u0 then Jλ (u1) = Jλ (u0) = c0,λ and so

cg ≥ c0,λ + I∞, which contradicts Proposition 6.10. The proof of Theorem 6.2 is

now complete. ��

6.2 A Quasilinear Elliptic Problem for p-Laplace Operator

Nonlinear elliptic equations with convex–concave nonlinearities in bounded do-

mains have been studied starting with the seminal paper by Ambrosetti, Brezis and

Cerami [6]. They considered the Dirichlet problem⎧⎪⎨
⎪⎩
−Δu = λuq−1 + up−1 in Ω
u > 0 in Ω
u = 0 on ∂Ω ,

(6.40)

where λ is a positive parameter,Ω ⊂ R
N is a bounded domain with smooth bound-

ary, and 1 < q < 2 < p < 2� (2� = 2N/(N − 2) if N ≥ 3, 2� = ∞ if N = 1, 2).

Ambrosetti, Brezis and Cerami proved that there exists λ0 > 0 such that problem

(6.40) admits at least two solutions for all λ ∈ (0,λ0), has one solution for λ = λ0,

and no solution exists provided that λ > λ0.
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Further, Alama and Tarantello [5] studied the related Dirichlet problem with in-

definite weights ⎧⎪⎨
⎪⎩
−Δu−λu = k(x)uq− h(x)up in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(6.41)

where λ ∈ R, Ω ⊂ R
N , N ≥ 3, is a bounded open set with smooth boundary, the

functions h, k ∈ L1(Ω) are nonnegative, and 1< p< q. For λ ∈R in a neighborhood

of λ1 (the first eigenvalue of the Laplace operator in H1
0 (Ω)), the solvability of

(6.41) (and corresponding multiplicities) is obtained under various assumptions on

h and k. So far, existence, nonexistence and multiplicity results depending on λ and

according to the integrability properties of the ratio kp−1/hq−1 are already known.

Motivated by these results, we are concerned in this section with the existence

and multiplicity of solutions in the quasilinear case. More precisely, we consider the

problem{
−div(|∇u|m−2∇u)+ |u|m−2u = λ |u|q−2u− h(x)|u|p−2u in R

N

u≥ 0, in R
N ,

(6.42)

where Δmu := div(|∇u|m−2∇u) is the standard m-Laplace operator, h ∈ C(RN)∩
Lq/(q−p)(RN) is positive, λ > 0 and

2≤ m < q < p < m�,

with

m� =

⎧⎨
⎩

Nm
N−m

if N > m

∞ if N ≤ m.

Without altering the proof arguments below, the coefficient 1 of the dominating

term |u|m−2u can be replaced by any function f ∈ L∞(RN) with infess‖ f‖L∞ > 0.

Hence (6.42) is the renormalized form.

In the sequel we denote by W 1,m(RN) the Sobolev space equipped with the norm

‖u‖W1,m =

(∫
RN

(|∇u|m + |u|m) dx

)1/m

.

For simplicity we often denote the above norm by ‖u‖.
By Lp

r (R
N), 1≤ p < ∞, we denote the weighted Lebesgue space
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Lp
r (R

N) =

{
u ∈ L1

loc(R
N) :

∫
RN

r(x)|u|pdx < ∞
}
, r ∈C(RN) ,r > 0 ,

where r(x) is a positive continuous function on R
N , equipped with the norm

‖u‖r,p =

(∫
RN

r(x)|u|pdx

)1/p

.

If r(x)≡ 1 on R
N , the norm is denoted by ‖ · ‖p.

We are concerned with the existence and multiplicity of weak solutions of prob-

lem (6.42) in a subspace E of W 1,m(RN), which is defined by

E =

{
u ∈W 1,m(RN) :

∫
RN

h(x)|u|pdx < ∞
}
.

Then E is a Banach space if equipped with the norm

‖u‖E =
(‖u‖m

W1,m + ‖u‖m
r,p

)1/m
.

We define a weak solution of problem (6.42) as a function u ∈ E with u(x) ≥ 0

a.e. in R
N , satisfying∫
RN
|∇u|m−2∇u∇vdx+

∫
RN
|u|m−2uvdx−λ

∫
RN
|u|q−2uvdx

+
∫
RN

h(x)|u|p−2uvdx = 0,

for all v ∈ E .

The main result in the present section establishes the following properties: the

nonexistence of nontrivial solutions to problem (6.42) if λ is small enough; the

existence of at least two nontrivial solutions for problem (6.42) if λ is large enough.

Theorem 6.11 Under the above hypotheses there exists λ � > 0 such that

(i) if 0 < λ < λ �, then problem (6.42) does not possess any nontrivial weak solu-

tion.

(ii) if λ > λ �, then problem (6.42) admits at least two nontrivial weak solutions.

(iii) if λ = λ �, then problem (6.42) has at least one nontrivial weak solution.

Before proceeding with the proof, let us outline the main ideas:

(a) There exists λ � > 0 such that problem (6.42) does not have any solution

for any λ < λ �. This means that if a solution exists then λ must be sufficiently

large. One of the key arguments in this proof is based on the assumption p > q. In
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particular, this proof yields an energy lower bound of solutions in term of λ that will

be useful to conclude that problem (6.42) has a nontrivial solution if λ = λ �.

(b) There exists λ �� > 0 such that problem (6.42) admits at least two solutions

for all λ > λ ��. Next, by the properties of λ � and λ �� we deduce that λ � = λ ��.

Proof. We shall perform the proof in several steps.

Step 1: Nonexistence for λ > 0 small.

Let Φλ : E → R be the energy functional given by

Φλ (u) =
1
m
‖u‖m− λ

q
‖u‖q

q+
1
p
‖u‖p

h,p .

Then Φλ ∈C1(E,R) and for all u, v ∈ E

〈Φ ′λ (u),v〉=
∫
RN

(|∇u|m−2∇u∇v+ |u|m−2uv)dx−λ
∫
RN
|u|q−2uvdx

+

∫
RN

h(x)|u|p−2uvdx.

Weak solutions of problem (6.42) are found as the critical points of the functional

Φλ in E .

Let us now assume that u ∈ E is a weak solution of problem (6.42). Then

‖u‖m+ ‖u‖p
h,p = λ‖u‖q

q. (6.43)

Define

H :=
∫
RN

h(x)q/(q−p)dx ∈ R
+. (6.44)

To proceed further, we need Young’s inequality

ab≤ aα

α
+

bβ

β
for all a,b > 0,

where α , β > 1 satisfy 1/α+ 1/β = 1.

Taking a = h(x)q/p|u|q, b = λ/[h(x)]q/p, α = p/q and β = p/(p−q), we obtain

h(x)q/p|u|q λ
h(x)q/p

≤ q
p
(h(x)q/p|u|q)p/q +

p−q
p

(
λ

h(x)q/p

)p/(p−q)

.

Integrating over RN we have

λ‖u‖q
q ≤

q
p
‖u‖p

h,p+
p− q

p
λ p/(p−q)

∫
RN

h(x)q/(q−p)dx.
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The above inequality and relation (6.43) imply

‖u‖m ≤ p− q
p

λ p/(p−q)
∫
RN

h(x)q/(q−p)dx+
q− p

p
‖u‖p

h,p

≤ p− q
p

λ p/(p−q)H,
(6.45)

for q < p.

Since m < q < m�, the Sobolev embedding W 1,m(RN) ⊂ Lq(RN) is continuous,

so that there exists a positive constant Cq such that

Cq‖v‖m
q ≤ ‖v‖m for all v ∈W 1,m(RN).

On the other hand, for ‖u‖h,p ≥ 0, it follows from (6.43) that

‖u‖m ≤ λ‖u‖q
q.

Combining the last two inequalities we obtain

Cq‖u‖m
q ≤ ‖u‖m ≤ λ‖u‖q

q. (6.46)

Retaining the first and the last terms of (6.46) we get

(Cqλ−1)q/(q−m) ≤ ‖u‖q
q.

That inequality combined with (6.46) leads to

Cq[(Cqλ−1)q/(q−m)]m/q ≤ ‖u‖m.

By relation (6.45) and the above inequality we have

Cq(Cqλ−1)m/(q−m) ≤ ‖u‖m ≤ p− q
p

λ p/(p−q)H. (6.47)

Retaining the first and the last term it follows that

λ >

(
Cq/(m−q)

q
p− q

p
H

)(q−p)(q−m)/q(p−m)

,

for H > 0 by (6.44). Denoting the term in the right-hand side of the above inequality

by μ , we conclude that Theorem 6.11–(i) holds true, by putting

λ � := sup{λ > 0 : (6.42) does not admit any nontrivial weak solution}. (6.48)
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Clearly λ � ≥ μ > 0.

Step 2: Existence if λ is large

We start with several auxiliary results.

Lemma 6.12 The functionalΦλ is coercive.

Proof. We need the following elementary inequality: for every k1 > 0, k2 > 0 and

0 < s < r we have

k1|t|s− k2|t|r ≤Crsk1

(
k1

k2

)s/(r−s)

for all t ∈ R, (6.49)

where Crs > 0 is a constant depending on r and s.

Taking k1 = λ/q, k2 = (m− 1)h(x)/mp, s = q and r = p (so that s < r is verified,

for q < p), in (6.49) for all x ∈ R
N we obtain

λ
q
|u(x)|q− (m− 1)h(x)

mp
|u(x)|p ≤Cpq

λ
q

(
λ/q

(m− 1)h(x)/mp

)q/(p−q)

=
Cpq

q

(
mp

q(m− 1)

)q/(p−q)

λ p/(p−q)h(x)q/(q−p),

where Cpq > 0 is a constant depending on p and q. Integrating the above inequality

over RN , we find∫
RN

(
λ
q
|u|q− (m− 1)h(x)

mp
|u|p

)
dx≤ Kλ p/(p−q)

∫
RN

h(x)q/(q−p)dx.

By assumption (6.44) there exists a constant Cλ > 0 such that

λ
q
‖u‖q

q−
m− 1
mp

‖u‖p
h,p ≤Cλ .

Therefore

Φλ (u) =
1
m
‖u‖m−

[
λ
q
‖u‖q

q−
m− 1
mp

‖u‖p
h,p

]
− m−1

mp
‖u‖p

h,p+
1
p
‖u‖p

h,p

≥ 1
m
‖u‖m +

1
mp
‖u‖p

h,p−Cλ ,

and so Φλ is coercive in E . �

Lemma 6.13 If {un} is a sequence in E such that {Φλ (un)} is bounded in R, then

there exists a subsequence of {un}, still relabeled {un}, which converges weakly in

E to some u0 ∈ E and
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Φλ (u0)≤ liminf
n→∞ Φλ (un).

Proof. By the fact that {Φλ (un)} is bounded, it follows that both sequences {‖un‖}
and {‖un‖h,p} are bounded. Therefore, {‖un‖E} is bounded and there exists u0 ∈ E

such that

un ⇀ u0 in W 1,m(RN),

un → u0 in Lp
h(R

N),

un → u0 in Ls
loc(R

N) for all s ∈ [1,m�).

Let us define

F(x,u) =
λ
q
|u|q− h(x)

|u|p
p

and

f (x,u) = Fu(x,u) = λ |u|q−2u−h(x)|u|p−2u,

so that

fu(x,u) = λ (q− 1)|u|q−2− h(x)(p− 1)|u|p−2.

Using again inequality (6.49) for k1 = λ (q− 1), k2 = h(x)(p− 1), s = q− 2, r =

p−2, we obtain

fu(x,u) = λ (q− 1)|u|q−2− h(x)(p− 1)|u|p−2

≤C ·λ · (q− 1) ·
(

λ (q− 1)
h(x)(p− 1)

)(q−2)/(p−q)

,

where C is a positive constant depending only on p and q.

This yields,

fu(x,u)≤Cpq ·λ ·
(

λ
h(x)

)(q−2)/(p−q)

, (6.50)

where Cpq is a positive constant depending only on p and q. According to the defi-

nition of Φλ and F we obtain the following estimate for Φλ (u0)−Φλ (un)

Φλ (u0)−Φλ (un) =
1
m
(‖u0‖m−‖un‖m)

+

∫
RN

[F(x,un)−F(x,u0)]dx.
(6.51)

By position
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0
fu(x,u0 + t(un− u0))dt =

1
un− u0

[ f (x,u0 + s(un−u0))− f (x,u0)]

=
1

un− u0
[Fu(x,u0 + s(un−u0))−Fu(x,u0)].

Integrating the above relation over [0,1], we obtain

∫ 1

0

(∫ s

0
fu(x,u0 + t(un− u0))dt

)
ds

=
1

un− u0

∫ 1

0
[Fu(x,u0 + s(un−u0))−Fu(x,u0)]ds

=
1

(un− u0)2 [F(x,un)−F(x,u0)]− f (x,u0)

un−u0
.

The above equality can be rewritten in the following way

F(x,un)−F(x,u0) = (un− u0)
2
∫ 1

0

(∫ s

0
fu(x,u0 + t(un−u0))dt

)
ds

+(un−u0) f (x,u0).

(6.52)

Introducing relation (6.52) in (6.51) we get

Φλ (u0)−Φλ (un) =
1
m
(‖u0‖m−‖un‖m)+

∫
RN

(un−u0) f (x,u0)dx

+

∫
RN

(un− u0)
2
∫ 1

0

∫ s

0
fu(x,u0 + t(un−u0))dtdsdx

≤ 1
m
(‖u0‖m−‖un‖m)+

∫
RN

(un− u0) f (x,u0)dx

+C1

∫
RN

(un− u0)
2h(x)(q−2)/(q−p)dx,

(6.53)

where the last inequality follows from (6.50) and C1 =Cpqλ (p−2)/(p−q). It remains

to show that the last two integrals converge to 0 as n→ ∞.

We define J : E → R by

J(v) =
∫
RN

f (x,u0)vdx.

Obviously, J is linear. We shall show that J is also continuous. Indeed,

|J(v)| ≤
∫
RN
| f (x,u0)| · |v|dx

≤ λ
∫
RN
|u0|q−1|v|dx+

∫
RN

h(x)|u0|p−1|v|dx.
(6.54)
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On the other hand, using Hölder’s inequality, it follows that∫
RN
|u0|q−1|v|dx≤ ‖u0‖q−1

q ‖v‖q.

Since W 1,m(RN) is continuously embedded in Lq(RN) we deduce that there exists a

constant C > 0 such that

‖v‖q ≤C‖v‖W1,m(RN) for all v ∈W 1,m(RN).

Combining the last two inequalities with the fact that

‖v‖W1,m(RN) ≤ ‖v‖E ,

we deduce that there exists a positive constant cq > 0 such that∫
RN
|u0|q−1|v| dx≤ cq‖v‖E . (6.55)

Applying again Hölder’s inequality we obtain∫
RN

h(x)|u0|p−1|v|dx =
∫
RN

(h(x)(p−1)/p|u0|p−1)(h(x)1/p|v|)dx

≤ ‖u0‖p−1
h,p ‖v‖h,p ≤C0‖v‖h,p

≤C0‖v‖E ,

(6.56)

where C0 is a positive constant.

By (6.54), (6.55) and (6.56) we conclude that there exists a positive constant κ
such that

|J(v)| ≤ κ‖v‖E for all v ∈ E,

and so J is continuous.

Since {un} converges weakly to u0 in E and J is linear and continuous we deduce

that

J(un)→ J(u0),

in other words

lim
n→∞

∫
RN

f (x,u0)(un− u0) dx = 0. (6.57)

In order to show that

lim
n→∞

∫
RN

(un− u0)
2h(x)(q−2)/(q−p)dx = 0, (6.58)
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we first note that for all R > 0∫
RN

(un−u0)
2h(x)(q−2)/(q−p)dx =

∫
{|x|<R}

(un−u0)
2h(x)(q−2)/(q−p)dx

+
∫
{|x|≥R}

(un− u0)
2h(x)(q−2)/(q−p)dx

≤
(∫

{|x|<R}
h(x)q/(q−p)dx

)(q−2)/q

·
(∫

{|x|<R}
|un−u0|qdx

)2/q

+

(∫
{|x|≥R}

h(x)q/(q−p)
)(q−2)/q

·
(∫

{|x|≥R}
|un−u0|qdx

)2/q

.

(6.59)

By hypothesis (6.44) we have
∫
{|x|<R}

h(x)q/(q−p)dx≤
∫
RN

h(x)q/(q−p)dx = H < ∞ for all R > 0.

On the other hand, for all ε > 0 there exists Rε > 0 such that∫
{|x|≥Rε}

h(x)q/(q−p)dx < ε.

Using the fact that m < q < m� we deduce that W 1,m(BRε (0)) is compactly embed-

ded in Lq(BRε (0)) and thus

lim
n→∞

(∫
|x|<Rε

|un− u0|q dx

)2/q

= 0.

Since {un−u0} is bounded in E , it is also bounded in Lq(RN) and so there exists a

positive constant M > 0 such that

(∫
|x|≥Rε

|un− u0|qdx

)2/q

≤ ‖un−u0‖2
q ≤M.

Combining the above information with relation (6.59), we conclude that for any

ε > 0 there exists Nε > 0 such that for all n≥ Nε we have∫
RN

(un− u0)
2h(x)(q−2)/(q−p)dx≤ Hε+Mε(q−2)/q.

Therefore, (6.58) holds true.

Since (un)n converges weakly to u0 in W 1,m(RN) we have

liminf
n→∞ ‖un‖m

W1,m(RN)
≥ ‖u0‖m

W1,m(RN)
.
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Passing to the limit in (6.53) and taking into account that (6.57) and (6.58) hold true,

we obtain

Φλ (u0)≤ liminf
n→∞ Φλ (un).

Thus, Φλ is weakly lower semicontinuous.

The proof of Lemma 6.13 is now complete. �

Proof of Theorem 6.11 continued. Using Lemmas 6.12, 6.13 and Theorem 1.2 in

[188] we deduce that there exists a global minimizer u ∈ E of Φλ , that is,

Φλ (u) = inf
v∈E

Φλ (v).

It is obvious that u is a weak solution of problem (6.42). We prove that u �≡ 0 in E .

To do that we show that infE Φλ < 0, provided that the parameter λ is sufficiently

large.

Let us set

λ = inf
u∈E

{
q
m
‖u‖m +

q
p
‖u‖p

h,p : ‖u‖q = 1

}
.

We point out that λ > 0. Indeed, for any u∈ E with ‖u‖q = 1 by Hölder’s inequality

and by (6.44) we have

1 = ‖u‖q
q ≤

(∫
RN

h(x)q/(q−p)dx

)(p−q)/p

·
(∫

RN
h(x)|u|p dx

)q/p

= H(p−q)/p‖u‖q
h,p,

so that

λ ≥ q
p

H(q−p)/q > 0,

for H > 0 by assumption. Let λ > λ . Then there exists a function u1 ∈ E , with

‖u1‖q = 1, such that

λ ‖u1‖q
q = λ >

q
m
‖u1‖m +

q
p
‖u1‖p

h,p.

This can be rewritten as

Φλ (u1) =
1
m
‖u1‖m− λ

q
‖u1‖q

q +
1
p
‖u1‖p

h,p < 0
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and consequently infu∈EΦλ (u) < 0. Therefore, there exists λ0 = λ > 0 such

that problem (6.42) has a nontrivial weak solution u1 ∈ E for any λ > λ0, and

Φλ (u1)<0. SinceΦλ (u1) =Φλ (|u1|) and |u1| ∈ E , we may assume that u1 ≥ 0 a.e.

in R
N . �

In the following we are looking for the second nontrivial weak solution for prob-

lem (6.42).

Fix λ ≥ λ0. Set

g(x, t) =

⎧⎪⎨
⎪⎩

0 if t < 0,

λ tq−1− h(x)t p−1 if 0≤ t ≤ u1(x),

λu1(x)q−1− h(x)u1(x)p−1 if t > u1(x),

and

G(x, t) =
∫ t

0
g(x,s)ds.

Define the functionalΨ : E → R by

Ψ(u) =
1
m
‖u‖m−

∫
RN

G(x,u)dx.

Clearly,Ψ ∈C1(E,R) and

〈Ψ ′(u),v〉=
∫
RN

(|∇u|m−2∇u∇v+ |u|m−2uv)dx−
∫
RN

g(x,u)vdx,

for all u, v ∈ E . Moreover, if u is a critical point ofΨ , then u≥ 0 a.e. in R
N .

Next, we are concerned with the location of critical points of the energy func-

tionalΨ .

Lemma 6.14 If u is a critical point of Ψ , then u≤ u1.

Proof. For a function v we define the positive part v+(x) = max{v(x),0}. Then v+ ∈
E whenever v ∈ E . We have

0 = 〈Ψ ′(u)−Φ ′λ (u1),(u− u1)
+〉

=

∫
RN

(|∇u|m−2∇u−|∇u1|m−2∇u1)∇(u− u1)
+dx

+
∫
RN

(|u|m−2u−|u1|m−2u1)(u−u1)
+dx

−
∫
RN

[g(x,u)−λuq−1
1 + h(x)up−1

1 ](u−u1)
+dx,

which yields
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0 =
∫
{u>u1}

(|∇u|m−2∇u−|∇u1|m−2∇u1)(∇u−∇u1)dx

+

∫
{u>u1}

(|u|m−2u−|u1|m−2u1)(u−u1)dx

≥
∫
{u>u1}

(|∇u|m−1−|∇u1|m−1)(|∇u|− |∇u1|)dx

+

∫
{u>u1}

(|u|m−1−|u1|m−1)(|u|− |u1|)dx≥ 0.

Thus, we obtain u≤ u1 and the proof of Lemma 6.14 is complete. �

In the following, via the mountain pass theorem, we determine a critical point

u2 ∈ E of Ψ such that Ψ(u2) > 0. By the above lemma we shall deduce that 0 ≤
u2 ≤ u1 in Ω . Therefore,

g(x,u2) = λuq−1
2 − h(x)up−1

2 and G(x,u2) =
λ
q

uq
2−

h(x)
p

up
2 ,

so that

Ψ (u2) =Φλ (u2) and Ψ ′(u2) =Φ ′λ (u2).

More precisely, we find

Φλ (u2)> 0 =Φλ (0)>Φλ (u1) and Φ ′λ (u2) = 0 .

This shows that u2 is a weak solution of problem (6.42) such that 0≤ u2≤ u1, u2 �= 0

and u2 �= u1.

In order to find u2 described above we prove the following result.

Lemma 6.15 There exists ρ ∈ (0,‖u1‖) and a > 0 such that

Ψ(u)≥ a for all u ∈ E with ‖u‖= ρ .

Proof. We have

Ψ (u) =
1
m
‖u‖m−

∫
{u>u1}

G(x,u)dx−
∫
{u≤u1}

G(x,u)dx

=
1
m
‖u‖m− λ

q

∫
{u>u1}

uq
1dx+

1
p

∫
{u>u1}

h(x)up
1dx

− λ
q

∫
{0≤u≤u1}

uqdx+
1
p

∫
{0≤u≤u1}

h(x)updx

≥ 1
m
‖u‖m− λ

q
‖u‖q

q.
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On the other hand, the continuous Sobolev embedding of E into Lq(RN) implies

that there exists a positive constant L > 0 such that

‖v‖q ≤ L‖v‖ for all v ∈ E.

The above inequalities yield

Ψ(u)≥ 1
m
‖u‖m−L1‖u‖q = ‖u‖m

(
1
m
−L1‖u‖q−m

)
,

where L1 = λ Lq/q is a positive constant. Since q > m it is clear that Lemma 6.15

holds true. �

Lemma 6.16 The functionalΨ is coercive.

Proof. For each u ∈ E we have

Ψ (u) =
1
m
‖u‖m− λ

q

∫
{u>u1}

uq
1dx+

1
p

∫
{u>u1}

h(x)up
1dx

− λ
q

∫
{0≤u≤u1}

uqdx+
1
p

∫
{0≤u≤u1}

h(x)updx

≥ 1
m
‖u‖m− λ

q

∫
RN

uq
1dx

=
1
m
‖u‖m−L2,

where L2 is a positive constant, for u1 �= 0. The above inequality implies that

Ψ(u)→ ∞ as ‖u‖→ ∞, that is,Ψ is coercive, as required. �

Proof of Theorem 6.11 continued. Using Lemma 6.15 and the mountain pass theo-

rem, there exists a sequence {vn} ⊂ E such that

Ψ (vn)→ c > 0 and Ψ ′(vn)→ 0, (6.60)

where

c = inf
γ∈Γ

max
t∈[0,1]

Ψ(γ(t))

and

Γ = {γ ∈C([0,1],E) : γ(0) = 0, γ(1) = u1}.

By relation (6.60) and Lemma 6.16 we obtain that {vn} is bounded and thus

passing eventually to a subsequence, still denoted by {vn}, we may assume that
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there exists u2 ∈ E such that vn converges weakly to u2. Standard arguments based

on the Sobolev embeddings will show that

lim
n→∞〈Ψ

′(vn),ϕ〉= 〈Ψ ′(u2),ϕ〉

for any ϕ ∈C∞0 (R
N). Taking into account that E ⊂W 1,m(RN) and C∞0 (R

N) is dense

in W 1,m(RN), the above information implies that u2 is a weak solution of problem

(6.42).

We conclude that problem (6.42) admits at least two nontrivial weak solutions

for all λ > λ0.

Set

λ �� := inf{λ > 0 : problem (6.42) admits a nontrivial weak solution}.

Then λ �� ≥ λ � > 0, where λ � is the parameter defined in (6.48).

Let us consider the constrained minimization problem

Λ := inf
v∈E

{
1
m
‖v‖m +

1
p
‖v‖p

h,p : ‖v‖q
q = q

}
. (6.61)

Let {vn}⊂ E be a minimizing sequence of (6.61). Then {vn} is bounded in E , hence

we can assume, without loss of generality, that it converges weekly to some v ∈ E

with ‖v‖q
q = q. Moreover, by lower semicontinuity arguments we have

Λ =
1
m
‖v‖m +

1
p
‖v‖p

h,p.

Thus, Φλ (v) =Λ −λ for all λ >Λ .

To complete the proof of Theorem 6.11 it is enough to show the following crucial

facts:

(a) problem (6.42) has at least two distinct solutions for any λ > λ ��.

(b) λ �� = λ � and problem (6.42) admits a nontrivial weak solution if λ = λ �.

Claim (a) follows by standard monotonicity techniques; as for claim (b) we shall

use some arguments from Filippucci, Pucci and Rădulescu [76].

Fix λ > λ ∗∗. By the definition of λ ∗∗, there exists μ ∈ (λ ∗∗,λ ) such that Φμ
has a nontrivial critical point uμ ∈ E . Clearly, uμ is a subsolution of (6.42). In order

to find a supersolution of (6.42) which dominates uμ , we consider the constrained

minimization problem
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inf

{
1
m
‖w‖m +

1
p
‖w‖p

p−
λ
q
‖w‖q

q : w ∈ E and w≥ uμ

}
.

As before, one can show that the above minimization problem has a solution uλ ≥ uμ

which is also a weak solution of problem (6.42), provided λ > λ ∗∗. Thus, problem

(6.42) has a weak solution for all λ > λ ∗∗ so λ ∗∗ = λ ∗.
It remains to show that (6.42) has solutions for λ = λ ∗. To this aim, let {λn} be a

decreasing sequence converging to λ ∗ and let {un} be a corresponding sequence of

nonnegative weak solutions of (6.42). By the properties ofΨ , the sequence {un} is

bounded in E , so that, without loss of generality, we may assume that it converges

weakly in E , strongly in Lp
h(Ω), and pointwise to some u∗ ∈ E , with u∗ ≥ 0.

Replacing u by un in the definition of a weak solution and then passing to the

limit as n→ ∞ we find that U∗ is a weak solution of (6.42) for λ = λ ∗.
It remains to show that u∗ �= 0.

A key ingredient in this argument is the lower bound energy given in (6.46).

Hence, since un is a nontrivial weak solution of problem (7.2) corresponding to λn,

we have ‖un‖p
a,b ≥ (Cr/λ p)1/(r−p) by (6.46), where C > 0 is a positive constant

independent of λn. Next, since λn ↘ λ ∗ as n→ ∞ and λ ∗ > 0, it is enough to show

that

‖un− u∗‖a,b → 0 as n→ ∞. (6.62)

Since un and u∗ are weak solutions of (6.42) corresponding to λn and λ ∗, we have∫
RN

(|∇un|m−2∇un−|∇u∗|p−2∇u∗
) ·∇(un−u∗)dx

+

∫
RN

(|un|m−2un−|u∗|m−2u∗
)
(un−u∗)dx

+
∫
RN

h(x)(|un|p−2un−|u∗|p−2u∗)(un−u∗)dx

=

∫
RN

(
λn |un|q−2un−λ ∗ |u∗|q−2u∗

)
(un−u∗)dx.

Elementary monotonicity properties imply that∫
RN

h(x)
(|un|p−2un−|u∗|p−2u∗

)
(un−u∗)dx≥ 0.

Hence
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RN

(|∇un|m−2∇un−|∇u∗|p−2∇u∗
) ·∇(un−u∗)dx

+

∫
RN

(|un|m−2un−|u∗|m−2u∗
)
(un− u∗)dx

≤
∫
RN

(
λn |un|q−2un−λ ∗ |u∗|q−2u∗

)
(un− u∗)dx→ 0 as n→ ∞.

(6.63)

On the other hand, since m≥ 2, there exists a positive constant c = c(m)> 0 such

that

|ξ − ζ |m ≤ c(|ξ |m−2ξ −|ζ |m−2ζ )(ξ − ζ ) for all ξ ,ζ ∈ R
N .

Combining this fact with (6.63) we find

‖un−u∗‖ ≤ c
∫ N

R

(
λn |un|q−2un−λ ∗ |u∗|q−2u∗

)
(un−u∗)dx→ 0 as n→ ∞.

Therefore, un →U∗ in E . Finally, from (6.47) we have

‖un‖m ≥Cλm/(m−q) for all n≥ 1.

Passing to the limit in the above estimate we find ‖u∗‖m ≥C(λ ∗)m/(m−q) so u∗ �≡ 0.

This completes the proof of Theorem 6.11. �

We point out that (6.42) can be studied also in the case when p is supercritical us-

ing similar arguments, since the |u|p term in the energy continues to be coercive. In

these cases standard regularity results will lead to stronger results in what concerns

the smoothness of solutions, since W 1,m is embedded into C1.



Chapter 7
Some Classes of Polyharmonic Problems

As for everything else, so for a
mathematical theory: beauty can be
perceived but not explained.

Arthur Cayley (1821–1881)

In this chapter we present several results concerning elliptic problems involving

the polyharmonic operator. The first section is devoted to the study of an eigenvalue

problem that exhibits a continuous spectrum. The second section of the chapter deals

with a boundary value problem with infinitely many solutions while the last section

is concerned with a biharmonic problem involving a singular nonlinearity. By taking

a different approach in each of these situations we emphasize the complex structure

of elliptic problems involving the polyharmonic operator.

7.1 An Eigenvalue Problem with Continuous Spectrum

Let B = BR(0) be the ball in R
N , N ≥ 1, centered at the origin and having radius

R > 0. Consider the linear eigenvalue problem{
(−Δ)Ku = λu in B
u = Du = · · ·= DK−1u = 0 on ∂B,

(7.1)

where K is a positive integer. Then the lowest eigenvalue λ1 of problem (7.1) is

simple, that is, the associated eigenfunctions are merely multiples of each other.

Moreover they are radial, strictly monotone in r = |x| and never change sign in B. We

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 7, c© Springer-Verlag Berlin Heidelberg 2012
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refer to Pucci and Serrin [163] for further properties of eigenvalues of polyharmonic

operators.

In this section we are concerned with the nonlinear eigenvalue problem{
(−Δ)Ku = λ f (x,u) in B
u = Du = · · ·= DK−1u = 0 on ∂B,

(7.2)

where λ is a positive parameter and the nonlinear function f is given by

f (x, t) =

{
t, if t < 0
h(x, t), if t ≥ 0,

(7.3)

where h : B×R
+
0 → R is a Carathéodory function, H(x, t) :=

∫ t
0 h(x,s)ds, and the

following conditions are fulfilled:

(H1) There exists c ∈ (0,1) such that |h(x, t)| ≤ ct for all t ∈ R and a.a. x ∈ B.

(H2) There exists t0 > 0 such that H(x, t0)> 0 for a.a. x ∈ B.

(H3) lim
t→∞

h(x, t)
t

= 0 uniformly in B\O , where O is a set of zero Lebesgue measure.

Some examples of functions h verifying (H1)–(H3) in B×R
+
0 are as follows:

(i) h(x, t) = sin(ct);

(ii) h(x, t) = c log(1+ t);

(iii) h(x, t) = g(x)[tq(x)−1− t p(x)−1], where c ∈ (0,1), p, q : B→ (1,2) continuous

in B, maxB p(x)< minB q(x), g ∈ L∞(B), ‖g‖∞ = c.

The main result of this section is the following.

Theorem 7.1 Suppose that f is of type (7.3) and that (H1)–(H3) are fulfilled. Then

the first eigenvalue λ1 of (7.1) is an isolated eigenvalue of problem (7.2) and the

corresponding set of eigenfunctions is a cone. Moreover, any λ ∈ (0,λ1) is not an

eigenvalue of (7.2), while there exists μ1 > λ1 such that any λ ∈ (μ1,∞) is an eigen-

value of (7.2).

Proof. Consider the standard higher order Hilbertian Sobolev space HK
0 (B), en-

dowed with the scalar product

〈u,v〉K =

⎧⎪⎪⎨
⎪⎪⎩

∫
B
(Δmu)(Δmv)dx, if K = 2m,

∫
B
(DΔmu)(DΔmv)dx, if K = 2m+ 1,

(7.4)
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and denote by ‖ ·‖K the corresponding norm. In case of higher order Sobolev space

HK
0 (B), the decomposition in the positive and negative part of u ∈ HK

0 (B) is no

longer admissible in HK
0 (B). However, we have the following result.

Lemma 7.2 For any u ∈ HK
0 (B) there exists a unique couple (u1,u2) ∈K ×K ′

such that u = u1 + u2 and 〈u1,u2〉K = 0, where K is the convex closed cone of

positive functions

K = {v ∈ HK
0 : v(x)≥ 0 a.e. in B},

while K ′ is the dual cone of K , that is

K ′ = {w ∈ HK
0 : 〈w,v〉K ≤ 0 for all v ∈K }.

Moreover, K ′ is contained in the cone of negative functions, that is,

K ′ ⊆ {w ∈ HK
0 : w(x) ≤ 0 a.e. in B}.

Proof. Let u1 be the projection of u onto K defined by

‖u− u1‖K = inf
v∈K

‖u− v‖K,

and let u2 = u− u1. Then, for any v ∈K we have

‖u2‖K = ‖u− u1‖K ≤ ‖u− (u1+ εv)‖K

= ‖u− u1‖K− 2ε〈u−u1,v〉K + ε2‖v‖2
K.

This implies

2〈u2,v〉K ≤ ε‖v‖2
K for all v ∈K .

By letting ε→ 0, it follows that u2 ∈K ′. Replacing v by ±εu1 (note that u+ εv =

u1− εu1 ∈K ) we deduce 〈u1,u2〉K = 0. In order to prove the uniqueness, let

u = u1 + u2 = v1 + v2

be two decompositions of u such that u1,v1 ∈K and u2,v2 ∈K ′ and 〈u1,u2〉K =

〈v1,v2〉K = 0. Then



248 7 Some Classes of Polyharmonic Problems

0 = 〈u1 + u2− v1− v2,u1 + u2− v1− v2〉K
= 〈(u1− v1)+ (u2− v2),(u1− v1)+ (u2− v2)〉K
= ‖u1− v1‖K + ‖u2− v2‖K− 2〈u1− v1,u2− v2〉K
= ‖u1− v1‖K + ‖u2− v2‖K− 2〈u1,v2〉K−〈v1,u2〉K
≥ ‖u1− v1‖K + ‖u2− v2‖K .

Thus, u1 = v1 and u2 = v2. It remains to prove the fact that ‖′ ⊂ −K . To this aim,

let w ∈K ′ and ψ ∈C∞0 (B)∩K . Consider v ∈ HK
0 (B) that satisfies

{
(−Δ)Kv = ψ in B
u = Du = · · ·= DK−1u = 0 on ∂B,

Using the fact that the Green function in any ball is positive (so that the maximum

principle holds) it follows that v ∈K . Thus

0≥ 〈w,v〉K =
∫

B
w · (−Δ)Kvdx =

∫
B

wψdx

for all ψ ∈ C∞0 (B)∩K . By density, the above inequality holds for all ψ ∈ L2(B),

hence w≤ 0 a.e. in B. This concludes the proof. �

The number λ > 0 is an eigenvalue of problem (7.2), with f of the type (7.3), if

there exists u ∈ HK
0 \ {0} such that

〈u,v〉K = λ
∫

B
f (x,u)vdx (7.5)

for any v ∈ HK
0 .

Lemma 7.3 If λ > 0 is an eigenvalue of (7.2), then λ ≥ λ1.

Proof. Assume that λ > 0 is and eigenvalue of (7.2), with corresponding eigen-

function u ∈ HK
0 \ {0}. Letting v = u in (7.5), and putting B− = {x ∈ B : u(x)≤ 0}

and B+ = {x ∈ B : u(x)≥ 0}, we get by (H1)

‖u‖2
K = λ

[∫
B+

h(x,u)udx+
∫

B−
u2dx

]
≤ λ

[
c
∫

B+

u2dx+
∫

B−
u2dx

]
≤ λ |u|22,

for c ∈ (0,1). By the definition of λ1

λ1|u|22 ≤ ‖u‖2
K ≤ λ |u|22.

Since u �= 0, then the above inequality shows that λ ≥ λ1. ��
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Lemma 7.4 The first eigenvalue λ1 of (7.1) is also an eigenvalue of (7.2) and the

set of the corresponding eigenfunctions is a cone of HK
0 .

Proof. As already noted in the introduction the lowest eigenvalue λ1 of (7.1) is

simple, so that there exists a first eigenfunction ϕ ∈ HK
0 \ {0}, with ϕ < 0 in B.

Hence ϕ is an eigenfunction also of (7.2), since clearly satisfies (7.5) with λ = λ1

as

〈ϕ ,v〉K = λ1

∫
B
ϕvdx = λ1

∫
B

f (x,ϕ)vdx,

by (7.3). Moreover the set of the corresponding eigenfunctions lies in a cone of HK
0 .

��

Lemma 7.5 The first eigenvalue λ1 of (7.1) is isolated in the set of eigenvalues of

(7.2).

Proof. Let λ > 0 be an eigenvalue of (7.2) whose corresponding eigenfunction

u has Moreau’s decomposition with u1 �≡ 0. Then, for u1 ∈ HK
0 , we take v = u1 in

(7.5), and by the definition of λ1 and (H1) we get

λ1|u1|22 ≤ ‖u1‖2
K = λ

[∫
B+

h(x,u)u1dx+
∫

B−
uu1dx

]
≤ λc|u1|22.

Hence λ ≥ λ1/c > λ1, for c ∈ (0,1). In particular, any eigenfunction u correspond-

ing to an eigenvalue λ ∈ (0,λ1/c) has decomposition u = u2, so that u is also an

eigenfunction of (7.1), since u = u2 ≤ 0 a.e. in B. It is known, as noted in the in-

troduction, that λ1 < λ2, where λ2 is the second eigenvalue of (7.1). Hence any

λ ∈ (λ1,δ ), with δ = min{λ1/c,λ2}, cannot be an eigenvalue of (7.1) and in turn is

not an eigenvalue of (7.2), by the argument above. This completes the proof. ��
As already noted, λ > 0 is an eigenvalue of the problem{

(−Δ)Ku = λh(x,u+) in B
u = Du = · · ·= DK−1u = 0 on ∂B,

(7.6)

if there exists u ∈ HK
0 \ {0} such that 〈u,v〉K = λ

∫
B h(x,u+)vdx for all v ∈ HK

0 , that

is if and only if u is a nontrivial critical point of the C1 functional Iλ : HK
0 → R

defined by

Iλ (u) =
1
2
‖u‖2

K−λ
∫

B
H(x,u+)dx.

If λ > 0 is an eigenvalue of (7.6), with corresponding eigenfunction u = u1 + u2,

then taking as test function v = u2 by (H1) we get, for 〈u1,u2〉K = 0 and h(x,0) = 0
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a.e. in B,

‖u2‖2
K = 〈u,u2〉K = λ

∫
B

h(x,u+)u2dx = λ
∫

B+

h(x,u)u2dx≤ 0,

for u2 ≤ 0 a.e. in B, that is u = u1≥ 0 in B and u �= 0. In particular, any eigenvalue λ
of (7.6) is also an eigenvalue of (7.2). Assumption (H3) implies that for every λ > 0

there exists Cλ > 0 such that

λH(x, t)≤Cλ +λ1t2/4 for a.a. x ∈ B and all t ∈ R,

where λ1 is the first eigenvalue of (7.1). Hence, by the definition of λ1, we have that

for all u ∈ HK
0

Iλ (u)≥
1
2
‖u‖2

K−
λ1

4
|u|22−Cλ |B| ≥

1
4
‖u‖2

K−Cλ |B|,

in other words Iλ is bounded from below, weakly lower semicontinuous and coercive

on HK
0 . ��

Lemma 7.6 There exists λ ∗ > 0 such that infHK
0

Iλ (u)< 0 for all λ ≥ λ ∗.

Proof. By (H2) there exists t0 > 0 such that H(x, t0)> 0 a.e. in B. Let Ω ⊂ B be

a compact subset, sufficiently large, such that

|B\Ω |< 1

ct2
0

∫
Ω

H(x, t0)dx,

where c ∈ (0,1) is given in (H1). Take u0 ∈ C∞0 (B), with u0(x) = t0 if x ∈ Ω and

0≤ u0(x)≤ t0 if x ∈ B\Ω . Hence, by (H1),∫
B

H(x,u0(x))dx≥
∫
Ω

H(x, t0)dx− ct2
0 |B\Ω |> 0,

and so Iλ (u0)< 0 for λ > 0 sufficiently large. The lemma follows at once. ��

Now, we return to the proof of Theorem 7.1. Since Iλ is bounded from below,

weakly lower semicontinuous and coercive on HK
0 , then Lemma 7.5 and [188, The-

orem 1.2] show that Iλ has a negative global minimum for λ > 0 sufficiently large.

This means that all such λ are eigenvalues of problem (7.6) and, consequently, of

(7.2). This fact and Lemmas 7.3–7.5 complete the proof of Theorem 7.1. �
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7.2 Infinitely Many Solutions for Perturbed Nonlinearities

Let Ω ⊂ R
N , N ≥ 1, be a smooth and bounded domain, K ≥ 1 be a positive integer

such that N > 2K. In this section we study the problem{
(−Δ)Ku = |u|p−2u+φ in Ω ,

u = ∂νu = · · ·= ∂K−1
ν u = 0 on ∂Ω ,

(7.7)

where φ ∈ L2(Ω), ν is the exterior unit normal at ∂Ω and

∂ j
νu =

∂ ju
∂ν j , 0≤ j ≤ K− 1.

The exponent p satisfies

2 < p <
2(N−K)

N− 2K
. (7.8)

We say that u ∈ HK
0 (Ω) is a solution of (7.7) if

〈u,v〉K =

∫
Ω
|u|p−2uvdx+

∫
Ω
φvdx for all v ∈ HK

0 (Ω),

where 〈·, ·〉K is the scalar product defined by (7.4).

Before stating the main result concerning (7.7), let us recall what is known re-

garding the case K = 1. If φ ≡ 0 the problem (7.7) is symmetric and multiplicity

results can be obtained from the equivalent Lusternik–Schnirelmann theory. In turn,

if φ �≡ 0, the symmetry of the problem fails to hold and different techniques are

needed. The classical critical point theory still applies provided p is close to 2. The

problem of whether (7.7) has infinitely many solutions for all exponents p in the

range 2 < p < 2N/(N− 2) is still open. For a dense subset of function φ in L2(Ω)

a positive answer was given by Bahri and Lions [10].

In the study of (7.7) we shall employ a method devised by Bolle [22] as described

in Sect. 1.3.4.

The key is to exhibit a continuous path of functionals {Jθ}0≤θ≤1 such that J0 is

symmetric and J1 is the functional associated to (7.7), that is,

J1(u) =
1
2
‖u‖2

K−
1
p

∫
Ω
|u|pdx−

∫
Ω
φudx.

Further, as θ varies, we wish to control the min-max critical levels of Jθ , thus getting

estimates for critical points of J1. Due to the compact embedding of HK
0 (Ω) into
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Lp(Ω) for all

2 < p < K∗ :=
2N

N− 2K
,

we would expect to formulate our result for all exponents p in the above range.

However, the method we employ requires a further restriction on p as stated in

(7.8). Our main result regarding (7.7) is the following.

Theorem 7.7 Assume p satisfies (7.8). Then, for all φ ∈ L2(Ω) the problem (7.7)

has infinitely many solutions.

Proof. For all 0≤ θ ≤ 1 consider the functional

Jθ : HK
0 (Ω)→ R , Jθ (u) =

1
2
‖u‖2

K−
1
p

∫
Ω
|u|pdx−θ

∫
Ω
φudx,

and let J(θ ,u) = Jθ (u). Remark that Φ0 is even and any solution u of (7.7) corre-

sponds to a critical point of Φ1.

We first wish to apply Theorem 1.15 to J0. It is clear that J0 satisfies the hypothe-

ses (A1)− (A2) in Sect. 1.3.3. Since

J′0(u)v = 〈u,v〉K−
∫
Ω
|u|p−2uvdx for all v ∈ HK

0 (Ω) ,

and the mapping

HK
0 (Ω)

T−→ LK∗/(p−1)(Ω)
((−Δ )K)−1

−−−−−−→ HK
0 (Ω) , where T (u) = |u|p−2u , (7.9)

is compact, it follows that J0 satisfies (A3).

For any k ≥ 1, let ϕk be the k-th eigenfunction of (−Δ)K with homogeneous

Dirichlet boundary conditions. Let

Xk = span{ϕ1,ϕ2, . . . ,ϕk} so that X =
∞⋃

k=1

Xk. (7.10)

For any k ≥ 1, let Rk > 0 be such that

J0(u)< 0 for all u ∈ Xk with ‖u‖K ≥ R.

Define

Ck =

{
γ ∈C(Xk ∩B(0,Rk),H

K
0 (Ω)) : γ is odd and γ

∣∣∣
Xk∩∂B(0,Rk)

= Id

}

and
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bk = inf
γ∈Ck

sup
u∈Xk∩B(0,Rk)

J0(γ(u)). (7.11)

By Theorem 1.15 there exists a sequence {uk} of critical points of J0 in HK
0 (Ω) such

that

J0(uk)≤ bk and m∗(J0,uk)≥ k. (7.12)

Our next result provides a lower bound for bk.

Proposition 7.8 There exists a positive constant A > 0 such that

bk ≥ Ak2K p/(N(p−2)) for all k ≥ 1. (7.13)

Proof. Fix k ≥ 1 and let {μ j} be the sequence of eigenvalues (repeated according

to their multiplicity) of the operator

(−Δ)K− (p− 1)|uk|p−2 ,k ≥ 1.

Since

J′′0 (uk)(v,v) = 〈((−Δ)K − (p− 1)|uk|p−2)v,v〉K ,

the definition of the large Morse index (see Definition 1.14) together with the second

relation in (7.12) imply

|{ j ≥ 1 : μ j ≤ 0}|= m∗(J0,uk)≥ k. (7.14)

To derive an upper bound for the set |{ j ≥ 0 : μ j ≤ 0}|, we state without proof a

more general result regarding spectral properties of higher order Schrödinger oper-

ators.

Lemma 7.9 Let N > 2K, V ∈ LN/(2K)(Ω) and let {μ j} be the sequence of eigenval-

ues (repeated according to their multiplicity) of the operator (−Δ)K +V (x). Then,

there exists M = M(N,K)> 0 such that

|{ j ≥ 1 : μ j ≤ 0}| ≤M
∫
RN

V−(x)N/(2K)dx.

For the proof, we refer the reader to Rozenbljum [173, Theorem 3]. We apply the

above lemma for

V =

{ − (p− 1)|uk|p−2 in Ω ,

0 in R
N \Ω .
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Using Lemma 7.9 together with (7.14) we find

k ≤ |{ j ≥ 1 : μ j ≤ 0}| ≤M‖uk‖N(p−2)/(2K)
N(p−2)/(2K)

so

‖uk‖N(p−2)/(2K)
N(p−2)/(2K)

≥Ck ,

for some C > 0. On the other hand, from 〈J′0(uk),uk〉K = 0 we find

bk ≥ J0(uk) =

(
1
2
− 1

p

)
‖uk‖p

p.

Combining the last two estimates we find

bk ≥
(

1
2
− 1

p

)
‖uk‖p

p ≥C‖uk‖p
N(p−2)/(2K)

≥ Ak2kp/(N(p−2))

which proves (7.13). �

We next prove that Jθ satisfies conditions (B1)− (B4) in Sect. 1.3.4.

Lemma 7.10 Let {(θn,un)} ⊂ [0,1]×HK
0 (Ω) be such that

{Jθn(un)} is bounded and lim
n→∞J′θn

(un) = 0.

Then, up to a subsequence, {(θn,un} converges in [0,1]×HK
0 (Ω).

Proof. We have

(J′θn
(un),un) = ‖u‖2

K−
∫
Ω
|u|pdx−θ

∫
Ω
φudx.

Since (J′θn
(un),un) = 0(‖un‖K) as n→ ∞, for M > 1 large enough and 1/p < ρ <

1/2 we find

M+ρ‖u‖K ≥ Jθn(un)−ρ(J′θn
(un),un)

=

(
1
2
−ρ

)
‖u‖2

K +

(
ρ− 1

p

)∫
Ω
|u|pdx−θ (1−ρ)

∫
Ω
φundx.

(7.15)

By Young’s inequality we obtain

(1−ρ)
∫
Ω
φundx≤

(
ρ− 1

p

)∫
Ω
|u|pdx+C‖φ‖p′

Lp′ (Ω)
, (7.16)
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where p′ = p/(p− 1) and C > 0 is a positive constant depending on ρ and p only.

Combining (7.15) and (7.16) we derive

M+ρ‖u‖K ≥
(

1
2
−ρ

)
‖u‖2

K−C(p,‖φ‖Lp′ (Ω)
) ,

which shows that {un} is bounded in HK
0 (Ω). Since the mapping in (7.9) is com-

pact, it follows that {un} converges strongly in HK
0 (Ω). This finishes the proof of

lemma. �

Lemma 7.11 For any b > 0 there exists C > 0 such that∣∣∣∣ ∂J
∂θ

(θ ,u)
∣∣∣∣≤C(1+ ‖J′θ(u)‖)(1+ ‖u‖K) ,

for all (θ ,u) ∈ [0,1]×HK
0 (Ω) satisfying |Jθ (u)| ≤ b.

Proof. From |Jθ (u)| ≤ b it follows that

θ
∫
Ω
φudx≥ p

2
‖u‖2

K−
∫
Ω
|u|pdx− (p− 1)θ

∫
Ω
φudx− pb.

Hence
−(J′θ (u),u) =−‖u‖2

K +

∫
Ω
|u|pdx+θ

∫
Ω
φudx

≥
( p

2
− 1

)
‖u‖2

K− (p−1)θ
∫
Ω
φudx− pb.

In particular

−(J′θ (u),u)≥ c1‖u‖2
K− c2 ,

where c1,c2 are two positive constants. On the other hand,∣∣∣∣ ∂J
∂θ

(θ ,u)
∣∣∣∣≤

∫
Ω
|φ ||u|dx≤ ‖u‖Lp(Ω)‖φ‖Lp′ (Ω)

≤ ε‖u‖2
K +C(ε, p,‖φ‖Lp′ (Ω)

).

Now the conclusion follows from the last two inequalities from above. �

Lemma 7.12 There exist two flows ηi : [0,1]×R→ R such that ηi(θ , ·) are Lisp-

chitz continuous for all θ ∈ [0,1] and

η1(θ ,Jθ (u))≤ ∂J
∂θ

(θ ,u)≤ η2(θ ,Jθ (u)) (7.17)

at each critical point u of Jθ .

Proof. Let u ∈HK
0 (Ω) be a critical point of Jθ . By Hölder’s inequality we have
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∂θ

(θ ,u)
∣∣∣∣≤ ‖u‖Lp(Ω)‖φ‖Lp′ (Ω)

. (7.18)

On the other hand,

0 = (J′θ (u),u) = ‖u‖2
K−

∫
Ω
|u|pdx−θ

∫
Ω
φudx = 0 ,

which yields

‖u|pLp(Ω)
= ‖u‖2

K−θ
∫
Ω
φudx

= 2Jθ (u)+
2
p

∫
Ω
|u|pdx+θ

∫
Ω
φudx

≤ 2Jθ (u)+

(
ε+

2
p

)∫
Ω
|u|pdx+C(ε, p,‖φ‖Lp′(Ω)

).

By taking ε > 0 small, we deduce

‖u|pLp(Ω)
≤C(Jθ (u)+1). (7.19)

Combining (7.18) with (7.19) we obtain∣∣∣∣ ∂J
∂θ

(θ ,u)
∣∣∣∣≤C‖u‖Lp(Ω) ≤C(Jθ (u)+1)1/p≤ 2C(J2

θ (u)+1)2/p.

It is now enough to consider

η2(θ , t) = 2C(t2 + 1)2/p , η1(θ , t) =−η2(θ , t).

�

Lemma 7.13 For any finite dimensional subspace W of HK
0 (Ω) we have

lim
u∈W ,‖u‖K→∞

sup
θ∈[0,1]

Jθ (u) =−∞.

Proof. By Hölder’s inequality and the continuous embedding of HK
0 (Ω) into Lp(Ω)

we can find C > 0 such that

Jθ (u)≤C(‖u‖2
K−‖u‖p

K− 1) for all (θ ,u) ∈ [0,1]×W.

This proves our lemma. �

We are now able to complete the argument and finish the proof of Theorem 7.7. Let
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C =

{
ζ ∈C(HK

0 (Ω),HK
0 (Ω)) : ζ is odd and ζ

∣∣∣
HK

0 (Ω)\B(0,R)
= Id

}
,

and

ck = inf
ζ∈C

sup
u∈Xk

J0(ζ (u)) ,

where Xk are defined in (7.10). In order to apply Theorem 1.16 we only have to

check that the sequence{
ck+1− ck

η̄1(ck+1)+ η̄2(ck)+1

}
is unbounded,

where ηi are given by Lemma 7.12. Assuming the contrary, it follows that{
ck+1− ck

c1/p
k+1− c1/p

k + 1

}
is bounded,

so that {∣∣∣c(p−1)/p
k+1 − c(p−1)/p

k

∣∣∣}
is bounded. Therefore, there exists a positive constant B > 0 such that

ck ≤ Bkp/(p−1) for all k ≥ 1.

Combining this estimate with Proposition 7.8 and bk ≤ ck we reach a contradiction

in view of (7.8). Thus, one can apply Theorem 1.16, which implies the existence

of infinitely many solutions of problem (7.7). This concludes the proof of Theorem

7.7. �

Remark 24 The approach in this section follows an idea from Lancelotti et al.

[127]. In fact, in [127] is obtained the existence of infinitely many solutions for

the nonhomogeneous problem{
(−Δ)Ku = |u|p−2u+φ in Ω ,

∂ j
νu = φ j , j = 0,1, . . . ,K− 1 on ∂Ω ,

where φ ∈ L2(Ω), φ j ∈HK− j− 1
2 (∂Ω), j = 0,1, . . . ,K−1 and 2 < p < 2(N+K)/N.
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7.3 A Biharmonic Problem with Singular Nonlinearity

In this section we study the biharmonic elliptic problem{
Δ2u = u−α , u > 0 in Ω ,

u = ∂νu = 0 on ∂Ω ,
(7.20)

where 0 < α < 1, Ω ⊂ R
N (N ≥ 2) is a smooth bounded domain, ν is the exterior

unit normal at ∂Ω and ∂ν = ∂
∂ν is the outer normal derivative at ∂Ω .

We denote by G(·, ·) the Green function associated with the biharmonic operator

Δ2 subject to Dirichlet boundary conditions.

Throughout this section we assume that Ω ⊂ R
N , N ≥ 2 satisfies:

(A1) The boundary ∂Ω is of class C16 if N = 2 and of class C12 if n≥ 3.

(A2) The Green function G(·, ·) is positive.

The assumption (A1) on the regularity of ∂Ω goes back to Krasovskiı̆ [122] (see

also Dell’Acqua and Sweers [55]) and allows us to employ some sharp estimates

for the biharmonic Green function (see Appendix B). The need for condition (A2)

will become more clear once we specify what it is understood by a solution of (7.20).

Definition 7.14 We say that u is a solution of (7.20) if

u ∈C(Ω ), u > 0 in Ω ,

and u satisfies the integral equation

u(x) =
∫
Ω

G(x,y)u−α(y)dy for all x ∈Ω . (7.21)

The restriction 0 < α < 1 is needed in order to make the integral in (7.21) finite.

It will appear several times in the proofs in the following sections. Note also that

condition (A2) above implies the standard maximum principle for the biharmonic

operator in Ω .

Let ϕ1 be the first eigenfunction of (−Δ) in H1
0 (Ω). It is well known that ϕ1 has

constant sign in Ω , so by a suitable normalization we may assume ϕ1 > 0 in Ω .

Therefore, ϕ1 satisfies { −Δϕ1 = λ1ϕ1 , ϕ1 > 0 in Ω ,

ϕ1 = 0 on ∂Ω ,
(7.22)
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where λ1 > 0 is the first eigenvalue of (−Δ). By the Hopf maximum principle [162]

we have ∂νϕ1 < 0 on ∂Ω . Also, by the regularity of Ω we have ϕ1 ∈C4(Ω ) and

cδ (x) ≤ ϕ1(x)≤ 1
c
δ (x) in Ω , (7.23)

for some 0 < c < 1, where δ (x) = dist(x,∂Ω).

Proposition 7.15 Let u be a solution of problem (7.20). Then, there exist c1,c2 > 0

such that u satisfies

c1δ 2(x)≤ u(x)≤ c2δ 2(x) in Ω . (7.24)

Proof. Let a(x)=ϕ2
1 (x), x∈Ω . It is easy to see that since ϕ1 ∈C4(Ω ) then f :=Δ2a

is bounded in Ω , so, by the continuity of u there exists m > 0 small enough such

that

u(x)−ma(x) =
∫
Ω

G(x,y)
[
u−α(y)−m f (y)

]
dy≥ 0 for all x ∈Ω .

Therefore,

u(x)≥ ma(x)≥ c0δ 2(x) in Ω , (7.25)

for some c0 > 0. This proves the first part of the inequality in (7.31). For the second

part, assume first N > 4 and let x ∈Ω . Using Proposition B.1(ii1), for all y ∈Ω we

have

G(x,y)≤ c|x− y|2−Nδ 2(x)min

{
1,
δ (y)
|x− y|

}2

≤ c|x− y|2−Nδ 2(x)min

{
1,
δ (y)
|x− y|

}2α

= c|x− y|2−2α−Nδ 2(x)δ 2α(y).

(7.26)

Now, from (7.25) and (7.26) we have

u(x) =
∫
Ω

G(x,y)u−α(y)dy

≤ c1

∫
Ω

G(x,y)δ−2α (y)dy ≤ c2δ 2(x)
∫
Ω
|x− y|2−2α−Ndy

≤ c2δ 2(x)
∫

0≤|x−y|≤diam(Ω)
|x− y|2−2α−Ndy

= c2δ 2(x)
∫ diam(Ω)

0
t1−2αdt

≤ c3δ 2(x).

(7.27)
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Let now N = 4. We use Proposition B.1(ii2) to derive a similar inequality to

(7.26). More precisely, for all y ∈Ω we have

G(x,y)≤ c log

(
2+

δ (y)
|x− y|

)
min

{
1,
δ (x)
|x− y|

}2

min

{
1,
δ (y)
|x− y|

}2α

≤ c|x− y|−2−2αδ 2(x)δ 2α (y) log

(
2+

diam(Ω)

|x− y|
)
.

(7.28)

If N = 3, let β = max{0,2α− 1/2}< 3/2 and by Proposition B.1(ii4) we have

G(x,y)≤ cδ 1/2(x)δ 1/2(y)min

{
1,
δ (x)
|x− y|

}3/2

min

{
1,
δ (y)
|x− y|

}3/2

≤ c|x− y|−3/2−βδ 2(x)δβ+1/2(y)

≤C|x− y|−3/2−βδ 2(x)δ 2α(y).

(7.29)

Finally, if N = 2, let β = max{0,2α− 1}< 1 and by Proposition B.1(ii3) we have

G(x,y)≤ cδ (x)δ (y)min

{
1,
δ (x)
|x− y|

}
min

{
1,
δ (y)
|x− y|

}

≤ c|x− y|−1δ 2(x)δ (y)min

{
1,
δ (y)
|x− y|

}β

≤ c|x− y|−1−βδ 2(x)δ 1+β (y)

≤C|x− y|−1−βδ 2(x)δ 2α (y).

(7.30)

We now use the estimates (7.28)–(7.30) to derive a similar inequality to that in

(7.27).

This completes the proof of Proposition 7.15. �

Proposition 7.16 Let 0 < α < 1 and u ∈ C(Ω ) be such that u(x) ≥ c0δ 2(x) in Ω
for some c0 > 0. Consider

w(x) =
∫
Ω

G(x,y)u−α(y)dy for all x ∈Ω .

Then

(i) w ∈C2(Ω).

(ii) w ∈C3(Ω) for any 0 < α < 1/2.

Proof. With the same proof as in Proposition 7.15 it is easy to see that v is well

defined. For 0< ε < 1 small, defineΩε = {x∈Ω : δ (x)< ε}. Set uε =max{u,c0ε2}
and
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wε(x) =
∫
Ω

G(x,y)u−αε (y)dy for all x ∈Ω .

It is easy to see that wε = w onΩ \Ωε . Since u−αε is bounded inΩ , by the estimates

in Proposition B.1 it follows that wε ∈C3(Ω) and

Dk
xwε(x) =

∫
Ω

Dk
xG(x,y)u−αε (y)dy for all x ∈Ω ,

for any N−dimensional multi-index k with |k| ≤ 3. The proof of this fact is similar

to that of Lemma 4.1 in [99]. We employ in the following the same approach as in

[99] to show that w ∈C2(Ω) (resp. w ∈C3(Ω ) if 0 < α < 1/2).

Assume first N > 4 and let k be an N−dimensional multi-index with |k| ≤ 2. Fix

β > 0 such that 2α < β < 2.

By Proposition B.1(i1) (if |k|= 2) and (ii1) (if |k| ≤ 1) we have

∣∣∣Dk
xwε(x)−

∫
Ω

Dk
xG(x,y)u−α(y)dy

∣∣∣∣
≤

∫
Ωε
|Dk

xG(x,y)|(u−α(y)+ (c0ε2)−α)dy

≤ c1ε−2α
∫
Ωε
|x− y|4−|k|−N min

{
1,
δ (y)
|x− y|

}2

dy

≤ c1ε−2α
∫
Ωε
|x− y|4−|k|−N min

{
1,
δ (y)
|x− y|

}β
dy

≤ c1ε−2α
∫
Ωε
|x− y|4−|k|−β−Nδβ (y)dy

≤ c1εβ−2α
∫
Ω
|x− y|4−|k|−β−Ndy

≤ c1εβ−2α
∫

0≤|x−y|≤diam(Ω)
|x− y|4−|k|−β−Ndy

≤ c1εβ−2α
∫ diam(Ω)

0
t3−|k|−βdt

≤ c2εβ−2α
∫ diam(Ω)

0
t1−βdt

≤ c3εβ−2α → 0 as ε → 0.

The case 2≤ N ≤ 4 can be analyzed in the same way. For instance, if N = 3 and

|k|= 1, we use Proposition B.1(ii2) to derive
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xwε(x)−

∫
Ω

Dk
xG(x,y)u−α(y)dy

∣∣∣∣
≤ c1ε−2α

∫
Ωε

log

(
2+

δ (y)
|x− y|

)
min

{
1,
δ (y)
|x− y|

}2

dy

≤ c1ε−2α
∫
Ωε
|x− y|−βδβ (y) log

(
2+

δ (y)
|x− y|

)
dy

≤ c1εβ−2α
∫
Ωε
|x− y|−β log

(
2+

diam(Ω)

|x− y|
)

dy

≤ c2εβ−2α
∫ diam(Ω)

0
t2−β log

(
2+

diam(Ω)

t

)
dt

≤ c3εβ−2α → 0 as ε → 0.

We have obtained that

Dk
xwε →

∫
Ω

Dk
xG(·,y)u−α(y)dy uniformly as ε→ 0,

for any N−dimensional multi-index k with 0 ≤ |k| ≤ 2. It follows that w ∈ C2(Ω)

and

Dk
xw(x) =

∫
Ω

Dk
xG(x,y)u−α(y)dy for all x ∈Ω ,

for any multi-index k with 0≤ |k| ≤ 2.

(ii) Let k be a multi-index with |k|= 3 and 2α < β < 1. From Proposition B.1(i1)

we have∣∣∣∣Dk
xwε (x)−

∫
Ω

Dk
xG(x,y)u−α(y)dy

∣∣∣∣≤ 2(c0ε2)−α
∫
Ωε
|Dk

xG(x,y)|dy

≤ c1ε−2α
∫
Ωε
|x− y|1−N min

{
1,
δ (y)
|x− y|

}β
dy

≤ c1εβ−2α
∫
Ω
|x− y|1−N−βdy

≤ c1εβ−2α
∫ diam(Ω)

0
t−βdt

≤ c2εβ−2α → 0 as ε → 0,

since β < 1. With the same arguments as above we find w ∈C3(Ω). This ends the

proof. �

Our main result concerning (7.20) is the following.
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Theorem 7.17 Assume 0 < α < 1 and conditions (A1), (A2) hold. Then, the prob-

lem (7.20) has a unique solution u and there exist c1,c2 > 0 such that

c1δ 2(x)≤ u(x)≤ c2δ 2(x) in Ω , (7.31)

where δ (x) = dist(x,∂Ω). Moreover, u∈C2(Ω) and if 0<α < 1/2 then u∈C3(Ω ).

The existence of a solution will be obtained by means of the Schauder fixed point

theorem. To this aim, we employ the estimates for the biharmonic Green function

stated in Appendix B. The uniqueness relies heavily on the boundary estimate (7.31)

which is obtained by using the behavior of the Green function (see Proposition 7.15).

Let a(x) = ϕ2
1 (x), x ∈ Ω . Motivated by Proposition 7.15 we will be looking for

solutions u of (7.20) in the form

u(x) = a(x)v(x)

where v ∈C(Ω ), v > 0 in Ω . This leads us to the following integral equation for v:

v(x) =
1

a(x)

∫
Ω

G(x,y)
aα(y)

v−α(y)dy for all x ∈Ω . (7.32)

We can now regard (7.32) as the fixed point problem

F (v) = v,

where

F (v) =
1

a(x)

∫
Ω

G(x,y)
aα(y)

v−α(y)dy.

Remark that F is an integral operator of the form

F (v) =
∫
Ω

K(x,y)v−α(y)dy,

where the kernel K is given by

K :Ω ×Ω → [0,∞], K(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

G(x,y)
a(x)aα(y)

if x,y ∈Ω ,

∂ 2
νG(x,y)

∂ 2
ν a(x)aα(y)

if x ∈ ∂Ω ,y ∈Ω .

Note that K is well defined since ∂ 2
ν a(x) = 2(∂νϕ1(x))2 > 0 on ∂Ω .

We first need the following result.
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Lemma 7.18 (i) For any y ∈Ω , the function K(·,y) :Ω → [0,∞] is continuous;

(ii) The mapping

Ω � x 	→
∫
Ω

K(x,y)dy

is continuous and there exists M > 1 such that

1
M
≤

∫
Ω

K(x,y)dy≤M for all x ∈Ω . (7.33)

Proof. (i) By the results in the Appendix B, G : Ω ×Ω → (0,∞] is continuous

(in the extended sense). Therefore K(·,y) is continuous (in the extended sense) in

Ω . It remains to prove the continuity of K(·,y) on ∂Ω . Let ε > 0. Since G(·,y) ∈
C4(Ω \ {y}) and a ∈C4(Ω), for any z ∈ ∂Ω we have

G(z+ tν,y) =t2
(

1
2
∂ 2
νG(z,y)+G1(z, t)

)
as t ↗ 0,

a(z+ tν,y) =t2
(

1
2
∂ 2
ν a(z,y)+a1(z, t)

)
as t ↗ 0,

where

lim
t↗0

G1(z, t) = lim
t↗0

a1(z, t) = 0 uniformly for z ∈ ∂Ω .

Hence, as t ↗ 0 we have

|K(z+ tν,y)−K(z,y)|=
∣∣∣∣∣

1
2∂

2
νG(z,y)+G1(z, t)

1
2∂ 2
ν a(z,y)+a1(z, t)

− ∂
2
νG(z,y)
∂ 2
ν a(z,y)

∣∣∣∣∣
≤ |G1(z,y)|∂ 2

ν a(z,y)+ |a1(z, t)||∂ 2
νG(z,y)|

∂ 2
ν a(z,y)| 12∂ 2

ν a(z,y)+a1(z, t)|
.

Thus, there exists η1 > 0 such that

|K(z+ tν,y)−K(z,y)|< ε
2

for all z ∈ ∂Ω and −η1 < t < 0. (7.34)

Also, by the smoothness of the boundary ∂Ω there exists η2 > 0 such that

|K(z,y)−K(z̄,y)|< ε
2

for all z, z̄ ∈ ∂Ω , |z− z̄|< η2. (7.35)

Define η = min{η1,η2}/2 and fix z ∈ ∂Ω . Let now x ∈Ω be such that |x− z|< η .

Also, let x̄∈ ∂Ω be such that |x− x̄|= δ (x) = dist(x,∂Ω). Then |x− x̄| ≤ |x−z|<η
and |x̄− z| ≤ |x− x̄|+ |z− x|< 2η < η2 so by (7.35) we have

|K(x̄,y)−K(z,y)|< ε
2
. (7.36)
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Now, from (7.34) and (7.36) we obtain

|K(x,y)−K(z,y)| ≤ |K(x,y)−K(x̄,y)|+ |K(x̄,y)−K(z,y)|< ε

so K(·,y) is continuous at z ∈ ∂Ω . This completes the proof of (i).

(ii) Assume first N > 4. Using (7.23) and Proposition B.1(ii1) we have

K(x,y)≤ c1δ−2(x)δ−2α(y)G(x,y)

≤ c2|x− y|2−Nδ−2α(y)min

{
1,
δ (y)
|x− y|

}2

≤ c2|x− y|2−Nδ−2α(y)min

{
1,
δ (y)
|x− y|

}2α

≤ c2|x− y|2−2α−N for all x,y ∈Ω .

Since 0 < α < 1, the mapping x 	→ |x−y|2−2α−N is integrable onΩ , so by means of

Lebesgue’s dominated convergence theorem we deduce that Ω � x 	→ ∫
Ω K(x,y)dy

is continuous. This fact combined with K > 0 inΩ proves the existence of a number

M > 1 that satisfies (7.33).

For 2 ≤ N ≤ 4 we proceed similarly with different estimates (as in the proof of

Proposition 7.15) to derive the same conclusion. This finishes the proof of Lemma

7.18. �

We are now ready to prove Theorem 7.17. Let M > 1 satisfy (7.33) and fix 0 <

ε < 1 such that

ε1−α2 ≤M−1−α . (7.37)

Define

gε : R→ R, gε(t) =

{
ε−α if t < ε,

t−α if t ≥ ε,
and for any v ∈C(Ω ), v > 0 in Ω consider the operator

Tε(v)(x) =
∫
Ω

K(x,y)gε (v(y))dy for all x ∈Ω .

If v ∈ C(Ω) satisfies v > 0 in Ω , then gε(v) ≤ ε−α in Ω so by (7.33) we find

Tε(v)≤Mε−α in Ω . Let now

v1 ≡M−1−αεα
2
, v2 ≡Mε−α .
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and

[v1,v2] = {v ∈C(Ω ) : v1 ≤ v≤ v2}.

By Lemma 7.18 it is easy to see that Tε([v1,v2])⊆ [v1,v2]. Further, by Lemma 7.18

and the Arzela–Ascoli theorem, it follows that

Tε : [v1,v2]→ [v1,v2] is compact.

Hence, by Schauder’s fixed point theorem, there exists v ∈ C(Ω ), v1 ≤ v ≤ v2 in

Ω such that Tε(v) = v. By (7.37) it follows that v ≥ v1 ≥ ε in Ω , so gε(v) = v−α .

Therefore, v satisfies (7.32), that is, u = av is a solution of (7.20). Now, the bound-

ary estimate (7.31) and the regularity of solution u follows from Proposition 7.15

and Proposition 7.16 respectively. In the following we derive the uniqueness of the

solution to (7.20).

Let u1, u2 be two solutions of (7.20). Using Proposition 7.15 there exists 0 < c <

1 such that

cδ 2(x)≤ ui(x)≤ 1
c
δ 2(x) in Ω , i = 1,2. (7.38)

This means that we can find a constant C > 1 such that Cu1 ≥ u2 and Cu2 ≥ u1 in

Ω .

We claim that u1 ≥ u2 in Ω . Supposing the contrary, let

M = inf{A > 1 : Au1 ≥ u2 in Ω}.

By our assumption, we have M > 1. From Mu1 ≥ u2 in Ω , it follows that

Mαu2(x)−u1(x) =
∫
Ω

G(x,y)
[
Mαu−α2 (y)− u−α1 (y)

]
dy≥ 0 for all x ∈Ω ,

and then

Mα2
u1(x)−u2(x) =

∫
Ω

G(x,y)
[
Mα2

u−α1 (y)− u−α2 (y)
]
dy≥ 0 for all x ∈Ω .

We have thus obtained Mα2
u1 ≥ u2 in Ω . Since M > 1 and α2 < 1, this last in-

equality contradicts the minimality of M. Hence, u1 ≥ u2 inΩ . Similarly we deduce

u1 ≤ u2 in Ω , so u1 ≡ u2 and the uniqueness is proved. This finishes the proof of

Theorem 7.17. �



Chapter 8
Large Time Behavior of Solutions
for Degenerate Parabolic Equations

The saddest aspect of life right now is
that science gathers knowledge faster
than society gathers wisdom.

Isaac Asimov (1902–1992)

8.1 Introduction

We are concerned in this chapter with degenerate parabolic problems of type⎧⎪⎪⎨
⎪⎪⎩
∂t u = a(δ (x))upΔu+ g(x,u) in Ω × (0,∞),

u = 0 in ∂Ω × (0,∞),

u(x,0) = u0(x) in Ω ,

(8.1)

whereΩ ⊂R
N (N ≥ 1) is a smooth bounded domain, δ (x) = dist(x,∂Ω) and p≥ 1.

The initial data u0 verifies u0 ∈Cα(Ω) and u0 > 0 in Ω .

If a ≡ 1, p = 2 and g(x,u) = u, problem (8.1) arises in a model for the resistive

diffusion of a forced free magnetic field in a plasma confined between two walls (we

refer to Friedman and McLeod [79] and the references therein for further details).

We mention here the works of Winkler [208–212] that deal with the case a ≡ 1.

However, the case where a is not constant have been less investigated.

Our aim in this chapter is to provide conditions such that (8.1) admits solutions

which are global in time. If such solutions exist we also investigate their behav-

ior as t → ∞. It turns out that both existence and behavior of global solutions is

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 8, c© Springer-Verlag Berlin Heidelberg 2012
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268 8 Large Time Behavior of Solutions for Degenerate Parabolic Equations

strongly related to the behavior of g (resp. a) at infinity (resp. around the origin).

These features are observed in our study by a close analysis of the associated el-

liptic equations whose solutions are the stabilizers for the time dependent problem

(8.1). In our subsequent analysis we shall distinguish between the superlinear and

sublinear case. The linear case will be considered in the last section of this chapter.

8.2 Superlinear Case

We are concerned in this section with the following parabolic problem⎧⎪⎪⎨
⎪⎪⎩
∂tu = a(δ (x))upΔu+ g(u) in Ω × (0,∞),

u = 0 in ∂Ω × (0,∞),

u(x,0) = u0(x) in Ω .

(8.2)

We assume that g ∈C1(0,∞)∩C[0,∞) satisfies g > 0 in (0,∞) and

(g1) the mapping (0,∞) � s 	−→ g(s)
sp+1 is nondecreasing.

As a consequence, g is increasing and g(0) = 0. Moreover, there exists

� := lim
s↘0

g(s)
sp+1 ∈ [0,∞). (8.3)

The potential a : [0,∞)→ [0,∞) is Hölder continuous and nondecreasing such that

a(0) = 0 and a > 0 in (0,∞).
The main result in this section is the following.

Theorem 8.1 Assume that the potential a fulfills the condition

∫ 1

0

s
a(s)

ds < ∞. (8.4)

Then, problem (8.2) has a unique solution u which, in addition, satisfies

lim
t→∞‖(1+ pt)1/pu(·, t)−W‖L∞(Ω) = 0,

where W ∈C2(Ω)∩C(Ω) is the unique solution of
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⎪⎪⎩
−a(δ (x))ΔW + �W =W 1−p in Ω ,

W > 0 in Ω ,

W = 0 on ∂Ω .

(8.5)

Condition (8.4) appears as a naturally one in the context of stationary problems

associated to (8.2). More precisely we have

Proposition 8.2 Assume that a satisfies (8.4). Then, for all �≥ 0 problem (8.5) has

a unique classical solution W ∈C2(Ω)∩C(Ω).

In our setting we prove that condition (8.4) is also sufficient in order to ensure

the existence of global solutions to the parabolic problem (8.2). This requirement

enables us to determine the asymptotic profile of the unique solution to (8.2) as

t → ∞.

Proof of Theorem 8.1. We divide the proof into several steps.

Step 1: Existence. Let (un,0)n≥1 ⊂C2(Ω) be a positive smooth sequence such that

(un,0)n≥1 is decreasing and ‖un,0− u0‖L∞(Ω)→ 0 as n→ ∞.

For 0 < ε < 1 consider the approximated problem{
∂t u = aε(δ (x)) fε (u)Δu− g(u) in Ω × (0,T ),

u = un,0 + ε on ΣT ,

where aε(δ (x)) = a(δ (x))+ ε and fε : R→ [0,∞) is a C1 function defined by

fε(s) =

{
ε p if s≤ ε/2,

sp if s > ε.

By standard parabolic arguments, for all 0 < ε < 1 there exists a local solution

un,ε ∈C2,1(Ω × [0,Tn,ε)) such that un,ε ≥ ε . Hence, un,ε satisfies{
∂t un,ε = aε(δ (x))up

n,εΔun,ε − g(un,ε) in Ω × (0,Tn,ε),

un,ε = un,0 + ε on ΣTn,ε .
(8.6)

We claim that Tn,ε = ∞. To this aim, we provide uniform bounds for un,ε . Let ζ
be a positive superharmonic function in Ω such that ζ ≥ un,0 in Ω ; for instance we

may consider ζ = M− |x|2 with M > 0 large enough. Then un,ε := ζ + ε satisfies

un,ε ≥ un,0 + ε on ΣTn,ε and

∂t un,ε −aε(δ (x))up
n,εΔun,ε + g(un,ε)≥ 0 in Ω × (0,Tn,ε).
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By Theorem 1.5 we have

un,ε ≤ un,ε ≤ ζ + 1 in Ω × (0,Tn,ε). (8.7)

Let now η > 0 be small enough andΩη = {x∈Ω : dist(x,∂Ω)> η}. We denote

by λ1,η , ϕ1,η the first eigenvalue and the first eigenfunction of (−Δ) inΩη . By (8.7)

we also may define

β := sup
0<ε<1

max
Ω×(0,Tn,ε )

[
fε (uε)(a(δ )+1)λ1,η+

g(uε)
uε

]
< ∞.

Let now un,ε = Ce−β tϕ1,η , where C = C(n,η) > 0 is small enough such that

Cϕ1,η < un,0 in Ωδ . Then un,ε satisfies

un,ε ≤ un,0 + ε on (∂Ωη × (0,Tn,ε))∪ (Ωη ×{0})

and

∂t un,ε −aε(δ (x))up
n,εΔun,ε +

g(un,ε)

un,ε
un,ε

= un,ε

[
−β + fε(un,ε)(a(δ )+1)λ1,η+

g(un,ε)

un,ε

]
≥ 0 in Ωη × (0,Tn,ε).

By Theorem 1.5 we now derive

un,ε ≥ un,ε =Ce−β tϕ1,η in Ωη × (0,Tn,ε).

This last estimate combined with (8.7) leads us to Tn,ε = ∞. Let vn,ε = ∂t un,ε . By

(8.6) we obtain

∂t vn,ε = aε(δ (x))pup−1
n,ε vn,εΔun,ε + aε(δ (x))up

n,εΔvn,ε −g′(un,ε)vn,ε

= aε(δ (x))up
n,εΔvn,ε + vn,ε

pvn,ε + pg(un,ε)−un,εg′(un,ε)

un,ε
in Ω × (0,∞),

and vn,ε = 0 on Σ∞. Again by Theorem 1.5 and taking into account that ∇2vn,ε ∈
L∞(Ω × (0,∞)) we deduce ∂t un,ε = vn,ε ≥ 0 in Ω× (0,∞). In particular this implies

that Δun,ε ≥ 0 in Ω × (0,∞). This allows us to apply Theorem 1.5 once more in

order to derive that {un,ε}n≥1 is nonincreasing in Ω × (0,∞).
For all (x, t) ∈ Ω × (0,∞), let un(x, t) = limε↘0 un,ε(x, t). By standard parabolic

arguments un ∈C2,1(Ω × (0,∞))∩C(Ω × [0,∞)) and un satisfies
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∂tun = a(δ (x))up

nΔun− g(un) in Ω × (0,∞),

un = un,0 on Σ∞.
(8.8)

Since un,ε ≥ un+1,ε on Σ∞ we may apply Theorem 1.5 in order to deduce that

{un} is decreasing. Let now u(x, t) = limn→∞ un(x, t), for all (x, t) ∈ Ω × (0,∞).
Then, by standard estimates we deduce from (8.8) that u is a solution of (8.2). This

completes the proof of the existence part.

Step 2: Uniqueness. We first consider the case p > 1. Let v ∈ C2,1(Ω × [0,T ))∩
C(Ω × [0,T ]) be another solution of problem (8.2). By Theorem 1.5 we deduce

v≤ uε in Ω × [0,T ] so that, passing to the limit with ε → 0 we obtain

v≤ u in Ω × [0,T ]. (8.9)

Let K be a compact subset of Ω × (0,T ) and fix Ω0 ⊂⊂Ω such that K ⊂⊂Ω0.

Also denote by μ1, φ1 the first eigenvalue resp. the first eigenfunction corresponding

to the Laplace operator (−Δ) in H1
0 (Ω0). Subtracting the two equations correspond-

ing to u and v we find

d
dt

[
v1−p(x, t)− u1−p(x, t)

(p−1)a(δ (x))

]
= Δ(u− v)+

h(u)− h(v)
a(δ (x))

in Ω × (0,T ),

where h(s) = g(s)/sp, s > 0. We now integrate over [η , t], 0 < η < t < T in the

above equality and then we let η → 0. We find

v1−p(x, t)− u1−p(x, t)
(p−1)a(δ (x))

=

∫ t

0

[
Δ(u− v)+

h(u)− h(v)
a(δ (x))

]
ds in Ω × (0,T).

Next we multiply by φ1 and we integrate over Ω0. We obtain

∫
Ω0

v1−p(x, t)− u1−p(x, t)
(p−1)a(δ (x))

φ1dx=
∫ t

0

∫
Ω0

[
Δ(u−v)+

h(u)− h(v)
a(δ (x))

]
φ1dxds. (8.10)

Setting

y(t) :=
∫
Ω0

[v1−p(x, t)− u1−p(x, t)
a(δ (x))

]
φ1dx, 0 < t < T, (8.11)

from (8.10) we have

y(t)≤C
∫ t

0

∫
Ω0

[
Δ(uλ − vλ )+

h(u)− h(v)
a(δ (x))

]
φ1dxds, 0 < t < T.
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By Green’s identity and (8.9) we further obtain

y(t)≤Cμ1

∫ t

0

∫
Ω0

(v− u)φ1dxds+C
∫ t

0

∫
∂Ω0

(v− u)
∂φ1

∂ν
dσ(x)ds

+Cλ
∫ t

0

∫
Ω0

h(u)− h(v)
a(δ (x))

φ1dxds

≤C
∫ t

0

∫
∂Ω0

(v− u)
∂φ1

∂ν
dσ(x)ds+Cλ

∫ t

0

∫
Ω0

h(u)−h(v)
a(δ (x))

φ1dxds

≤c1t max
∂Ω0

w+Cλ
∫ t

0

∫
Ω0

h(u)− h(v)
a(δ (x))

φ1dxds,

(8.12)

where w = u−v. Using the hypothesis (g1) we have that the mapping (0,∞)� s 	−→
h(s)/s is nondecreasing so that (h(s)/s)′ ≤ 0 for all s > 0. Thus,

sh′(s)≤ h(s) for all s > 0. (8.13)

By the mean value theorem we deduce

h(u)− h(v)
v1−p−u1−p =

h′(θ )θ p

p− 1
≤ sup{h′(s)sp : 0≤ s≤ ‖u‖L∞(Ω×[0,T ])}

p−1
< ∞.

Hence, there exists a positive constant c > 0 depending only on ‖u‖L∞(Ω×[0,T ]) such

that

h(u)− h(v)≤ c(v1−p− u1−p) in Ω × (0,T ). (8.14)

By (8.11)–(8.14) we finally obtain

y(t)≤ c1T max
∂Ω0

wλ (x)+ c2

∫ t

0
y(s)ds for all 0 < t < T.

Now, Gronwall’s inequality leads us to∫
K
(v1−p(x, t)− u1−p(x, t))φ1dx≤ y(t)≤C max

∂Ω0

wλ (x).

Since the right-hand side tends to zero asΩ0→Ω , it follows that u= v in K. Hence,

u≡ v and the problem (8.2) has a unique solution.

If p = 1 we proceed in the same manner. We have only to replace the definition

of y(t) in (8.11) by

y(t) :=
∫
Ω0

(lnu(x, t)− lnv(x, t))φ1dx, 0 < t < T,

and then use (8.13) to derive the uniqueness of the global solution.
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Step 3: Large time behavior.

Fix 0 < ε < 1 and let

vε(x, t) = (Cε + pt)−1/p(W (x)+ ε), (x, t) ∈Ω × (0,∞),

where W is the unique solution of (8.5) and Cε > 0 is small enough such that

ε ≥C1/p
ε ‖u0‖L∞(Ω). (8.15)

Then vε ≥ u on Σ∞ and

∂t vε−a(δ (x))vεΔvε + g(vε)

≥ ∂t vε −a(δ (x))vεΔvε + �vp+1
ε

= (Cε + pt)−
1+p

p
[−(W + ε)− a(δ (x))(W + ε)pΔW + �(W + ε)p+1]

= (Cε + pt)−
1+p

p
[−(W + ε)+ (W + ε)p(W 1−p− �W)+ �(W + ε)p+1]

≥ (Cε + pt)−
1+p

p

[
−(W + ε)+ (W + ε)

(
W + ε

W

)p−1
]

≥ 0 in Ω × (0,∞).

By Theorem 1.5 we obtain u≤ vε in Ω × (0,∞). This yields

(1+ pt)1/pu(x, t)−W ≤
(

Cε + pt
1+ pt

)1/p

(W + ε)−W

=

[
1+O

(
1
t

)]
(W + ε)−W as t → ∞

= O

(
1
t

)
(W + ε)+ ε as t → ∞.

Hence, we can find t1 = t1(ε)> 0 such that

sup
x∈Ω

[
(1+ pt)1/pu(x, t)−W

]
≤ 2ε for all t ≥ t1. (8.16)

According to Proposition 8.2, there exists Wη ∈C2(Ω)∩C(Ω ) a unique solution

of ⎧⎪⎪⎨
⎪⎪⎩
−a(δ (x))ΔW +(�+η)W =W 1−p in Ωη ,

W > 0 in Ωη ,

W = 0 on ∂Ωη .

(8.17)

We claim that ‖Wη −W‖L∞(Ωη )→ 0 as η → ∞.
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Indeed, extending Wη by zero onΩ \Ωη , by Theorem 1.2 we obtain that {Wη} is

decreasing as η↘ 0 and Wη ≤W inΩ . By standard elliptic arguments the sequence

{Wη}0<η<1 converges in C2
loc(Ω) to a C2(Ω)∩C(Ω ) function which is a solution

of (8.5). Since (8.5) has a unique solution we find ‖Wη −W‖L∞(Ωη )→ 0 as η → ∞.

This proves our claim.

In view of the above arguments, there exists η > 0 such that

‖W −Wη‖L∞(Ωη ) < ε and ‖W‖L∞(Ω\Ωη ) < ε, (8.18)

where Wη is the unique solution of (8.17).

Define

wη (x, t) = (Cη + pt)−1/pW (x), (x, t) ∈Ω × (0,∞),

where Cη > 0 is such that

wη (x,0) =C−1/p
η W (x)< u0(x) in Ωη . (8.19)

Furthermore, taking into account the hypothesis (g1) and (8.3) we may choose Cη >

0 such that

g(wη )< (�+η)wp+1
η in Ωη . (8.20)

Then wη ≤ u on (∂Ωη × (0,∞))∪ (Ωδ ×{0}) and

∂twη−a(δ (x))wηΔwη + g(wη)

≤ ∂twη − a(δ (x))wηΔwη +(�+η)vp+1
ε

= (Cε + pt)−
1+p

p
[−Wη − a(δ (x))W p

η ΔWη +(�+η)W p+1]
= (Cε + pt)−

1+p
p W p

η

[
−W 1−p

η + a(δ (x))W p
η ΔWη + �(W + ε)p+1

]
= 0 in Ωη × (0,∞).

Again by Theorem 1.5 we derive that wη ≤ u in Ωη × (0,∞) which yields

Wη− (1+ pt)1/pu(x, t)≤
[
(Cη + pt)1/pu(x, t)− (1+ pt)1/p

]
u(x, t)→ 0 as t → 0.

Hence, we may choose t2 = t2(ε,η) > 0 such that

sup
x∈Ωη

[
Wη (x)− (1+ pt)1/pu(x, t)

]
≤ ε for all t ≥ t2. (8.21)

By (8.18) and (8.21) we then obtain
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sup
x∈Ωη

[
W (x)− (1+ pt)1/pu(x, t)

]

≤‖W −Wη‖L∞(Ωδ ) + sup
x∈Ωη

[
Wη (x)− (1+ pt)1/pu(x, t)

]
≤2ε for all t ≥ t2.

Also by (8.18) we have

sup
x∈Ω\Ωη

[
W (x)− (1+ pt)1/pu(x, t)

]
≤ ‖W‖L∞(Ω\Ωη ) < ε for all t ≥ 0.

Hence

sup
x∈Ω

[
W (x)− (1+ pt)1/pu(x, t)

]
≤ 2ε for all t ≥ 0. (8.22)

Combining now (8.16) and (8.22) we obtain the conclusion. This completes the

proof. ��

8.3 Sublinear Case

In this section we are concerned with the following parabolic problem⎧⎪⎪⎨
⎪⎪⎩
∂t u = a(δ (x))up(Δu+λg(u)) in Ω × (0,T ),

u = 0 in ∂Ω × (0,T ),

u(x,0) = u0(x) in Ω ,

(8.23)

where Ω ⊂ R
N (N ≥ 1) is a smooth bounded domain, δ (x) = dist(x,∂Ω), T > 0,

λ > 0, and p ≥ 1. Here we assume that g ∈ C1(0,∞)∩C[0,∞) is a nondecreasing

function such that g > 0 in (0,∞) and g has a sublinear growth, that is,

(g1) The mapping (0,∞) � s 	−→ g(s)
s is nonincreasing.

(g2) lims↘0
g(s)

s = ∞ and lims→∞ g(s)
s = 0.

The standard example of function g that satisfies (g1)− (g2) is g(s) = sq with

0 < q < 1. We also may consider:

g(s) = sq ln(1+ sr) , g(s) = sq lnr(1+ s) , g(s) = sq arctansr ,

where q,r ≥ 0 with 0 < q+ r < 1.
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The initial data u0 satisfies u0 ∈C1(Ω ), u0 > 0 in Ω and

c0δ (x)≤ u0(x)≤ c1δ (x) in Ω , (8.24)

for some positive constants c0,c1 > 0.

The main result in this section is the following.

Theorem 8.3 Assume that conditions (g1)−(g2) hold. Then, for all λ > 0, problem

(8.23) has a unique global solution uλ such that:

(i) The mapping (0,∞) � λ 	−→ uλ (x, t) is increasing for all (x,s) ∈Ω × (0,∞).
(ii) We have:

lim
t→∞‖uλ (·, t)−wλ‖L∞(Ω) = 0, (8.25)

where wλ ∈C2(Ω)∩C(Ω) is the unique solution of⎧⎪⎪⎨
⎪⎪⎩
−Δw = λg(w) in Ω ,

w > 0 in Ω ,

w = 0 on ∂Ω .

(8.26)

The first step in proving Theorem 8.3 is the following.

Proposition 8.4 Assume that g ∈C1(0,∞)∩C[0,∞) is positive on (0,∞) and satis-

fies (g1)− (g2). Then, for all λ > 0, problem (8.26) has a unique classical solution

wλ ∈C2(Ω)∩C(Ω) such that

c1δ (x) ≤ wλ ≤ c2δ (x) in Ω , (8.27)

for some positive constants c1,c2.

Moreover, if for fixed λ > 0 we denote by wε ∈ C2(Ω)∩C(Ω ), 0 < ε < 1, the

unique solution of ⎧⎪⎪⎨
⎪⎪⎩
−Δwε = λg(wε) in Ω ,

wε > 0 in Ω ,

wε = ε on ∂Ω ,

(8.28)

then the sequence {wε}0<ε<1 converges to wλ as ε ↘ 0 uniformly in Ω .

Proof. We divide the proof of Theorem 8.3 into several steps.

Step 1: Existence. Fix λ > 0 and for 0 < ε < 1 consider the approximated problem
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⎪⎪⎩
∂t uε = aε(δ (x)) fε (uε)(Δuε +λg(uε)) in Ω × (0,T ),

uε = ε in ∂Ω × (0,T),

uε(x,0) = u0(x)+ ε in Ω ,

where aε(δ (x)) = a(δ (x))+ ε and fε : R→ [0,∞) is defined by

fε (s) =

{
ε p if s≤ ε,
sp if s > ε.

By standard parabolic arguments, for all 0 < ε < 1 there exists a local solution

uε ∈C2,1(Ω × [0,Tε)) and uε ≥ ε . Hence, uε satisfies⎧⎪⎪⎨
⎪⎪⎩
∂t uε = aε(δ (x))up

ε (Δuε +λg(uε)) in Ω × (0,Tε),

uε = ε in ∂Ω × (0,Tε),

uε(x,0) = u0(x)+ ε in Ω .

(8.29)

We claim that Tε = ∞. To this aim, we provide a uniform upper bound for uε .

Let wλ and wε be the unique solutions of (8.26) and (8.28) respectively. Set uε :=

Mwε where M > 1 is large. In view of (g1) we derive that g(uε) ≤Mg(wε ) in Ω .

Furthermore we have

∂t uε −aε(δ (x))up
ε

(
Δuε +λg(uε )

)
=−aε(δ (x))up

ε

(
Δuε +λg(uε)

)
≥−aε(δ (x))Mp+1wp

ε

(
Δwε +λg(wε)

)
= 0 in Ω × (0,Tε).

(8.30)

In view of (8.27) and Proposition 8.4, for all x ∈Ω we also have

uε = Mwε ≥ ε+(M− 1)wε ≥ ε+(M− 1)wλ ≥ ε+(M− 1)c1δ (x).

Letting M > 1 sufficiently large, by (8.24) we deduce

uε(x,0)≥ u0(x)+ ε in Ω . (8.31)

Combining (8.30) and (8.31), by virtue of Lemma 4.5 we find ε ≤ uε ≤ Mwε in

Ω × (0,Tε). Hence, we may continue the local solution uε of (8.29) for all times.

This means that Tε = ∞ for all 0 < ε < 1.
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Next, let uε := mϕ1 +ε . Using (8.24), we may find 0 < m < 1 small enough such

that mϕ1 ≤ u0 in Ω . In Ω × (0,∞) we also have

∂t uε −aε(δ (x))up
ε

(
Δuε +λg(uε)

)
=−aε(δ (x))up

ε

(
Δuε +λg(uε)

)
≤ aε(δ (x))up

ε

(
mλ1ϕ1−λg(mϕ1 + ε)

)
≤ aε(δ (x))up

ε

(
λ1(mϕ1 + ε)−λg(mϕ1+ ε)

)
.

(8.32)

Since lims↘0 g(s)/s = ∞, we may choose 0 < m,ε0 < 1 sufficiently small such that

g(mϕ1 + ε)
mϕ1 + ε

>
λ1

λ
in Ω , for all 0 < ε < ε0. (8.33)

By (8.32) and (8.33) we deduce

∂t uε − aε(δ (x))up
ε

(
Δuε +λg(uε)

)
≤ 0 in Ω × (0,∞).

Since uε = ε on ∂Ω and uε ≤ ε+ u0 in Ω , by Lemma 4.5 we obtain mϕ1 + ε ≤ uε

in Ω × (0,∞). Hence, for all 0 < ε < ε0 we have

mϕ1 + ε ≤ uε ≤Mwε in Ω × (0,∞). (8.34)

Now, interior Hölder and Schauder estimates can be deduced in order to show

that (uε)0<ε<1 converges monotonically in any compact subset of Ω × (0,∞) to a

function uλ ∈ C2,1(Ω × (0,∞))∩C(Ω × [0,∞)) which is a solution of (8.23). Fur-

thermore, from (8.34) we derive

mϕ1 ≤ uλ ≤Mwλ in Ω × (0,∞). (8.35)

Step 2: Uniqueness and dependence on λ . We first consider the case p > 1. Let

vλ ∈ C2,1(Ω × [0,T ))∩C(Ω × [0,T ]) be another solution of problem (8.23). By

Lemma 4.5 we deduce vλ ≤ uε in Ω × [0,T ] so that, passing to the limit and by

(8.35) we obtain

vλ ≤ uλ ≤ wλ in Ω × [0,T ]. (8.36)

Let K be a compact subset ofΩ and fixΩ0 ⊂Ω such that K ⊂⊂Ω0 ⊂⊂Ω . Also

denote by μ1, φ1 the first eigenvalue resp. the first eigenfunction corresponding to

the Laplace operator (−Δ) in H1
0 (Ω0). Subtracting the two equations corresponding
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to u and v we find

∂t(v
1−p
λ −u1−p

λ )

(p−1)a(δ (x))
= Δ(uλ − vλ )+λg(uλ)−λg(vλ) in Ω × (0,T).

We now integrate over [η , t], 0 < η < t < T in the above equality and then we let

η → 0. We find

v1−p
λ (x, t)− u1−p

λ (x, t)

(p−1)a(δ (x))
=

∫ t

0

(
Δ(uλ − vλ )+λg(uλ)−λg(vλ )

)
ds in Ω × (0,T).

Next we multiply the last equality by φ1 and we integrate overΩ0. We obtain

∫
Ω0

v1−p
λ (x, t)− u1−p

λ (x, t)

(p−1)a(δ (x))
φ1dx=

∫ t

0

∫
Ω0

(
Δ(uλ−vλ )+λg(uλ )−λg(vλ )

)
φ1dxds.

(8.37)

Since vλ ≤ uλ in Ω × (0,T) and p > 1, we deduce

v1−p
λ (x, t)− u1−p

λ (x, t)

a(δ (x))
≥ v1−p

λ (x, t)− u1−p
λ (x, t)

‖a ◦ δ‖L∞(Ω)
in Ω × (0,T). (8.38)

Setting

y(t) :=
∫
Ω0

(v1−p
λ (x, t)− u1−p

λ (x, t))φ1(x)dx, 0 < t < T, (8.39)

from (8.37) and (8.38) we have

y(t)≤C
∫ t

0

∫
Ω0

(
Δ(uλ − vλ )+λg(uλ)−λg(vλ )

)
φ1dxds, 0 < t < T,

where C = (p−1)‖a ◦ δ‖L∞(Ω). By Green’s identity and (8.36) we further obtain

y(t)≤Cμ1

∫ t

0

∫
Ω0

(vλ − uλ )φ1dxds+C
∫ t

0

∫
∂Ω0

(vλ −uλ )
∂φ1

∂ν
dσ(x)ds

+Cλ
∫ t

0

∫
Ω0

(g(uλ )− g(vλ ))φ1dxds

≤C
∫ t

0

∫
∂Ω0

(vλ − uλ )
∂φ1

∂ν
dσ(x)ds+Cλ

∫ t

0

∫
Ω0

(g(uλ )−g(vλ))φ1dxds

≤c1t max
∂Ω0

wλ +Cλ
∫ t

0

∫
Ω0

(g(uλ )− g(vλ ))φ1dxds.

(8.40)

Using the hypothesis (g1) we have (g(s)/s)′ ≤ 0 for all s > 0. Thus,

sg′(s)≤ g(s) for all s > 0, (8.41)
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and by the mean value theorem we deduce

g(uλ )−g(vλ )

v1−p
λ −u1−p

λ

=
g′(θ )θ p

p− 1
≤ sup{g′(s)sp : 0≤ s≤ ‖uλ‖L∞(Ω×[0,T ])}

p−1
< ∞.

Hence, there exists a positive constant c> 0 depending only on ‖uλ‖L∞(Ω×[0,T ]) such

that

g(uλ )− g(vλ )≤ c(v1−p
λ − u1−p

λ ) in Ω × (0,T ). (8.42)

By (8.39)–(8.42) we finally obtain

y(t)≤ c1T max
∂Ω0

wλ (x)+ c2

∫ t

0
y(s)ds for all 0 < t < T. (8.43)

Now, Gronwall’s inequality leads us to∫
K
(v1−p
λ (x, t)− u1−p

λ (x, t))φ1(x)dx≤ y(t)≤C max
∂Ω0

wλ (x).

Since the right-hand side tends to zero as Ω0 → Ω , it follows that uλ = vλ in K.

Hence, uλ ≡ vλ and so problem (8.23) has a unique solution.

If p = 1 we proceed in the same manner. We have only to replace the definition

of y(t) in (8.39) by

y(t) :=
∫
Ω0

(lnuλ (x, t)− lnvλ (x, t))φ1(x)dx, 0 < t < T.

Then, estimate (8.40) holds in our case. Also by (8.41) and the mean value property

we have

g(uλ )−g(vλ)
lnuλ − lnvλ

= g′(θ )θ ≤ sup{g′(s)s : 0≤ s≤ ‖uλ‖L∞(Ω×[0,T ])}< ∞.

Hence, there exists a positive constant c> 0 depending only on ‖uλ‖L∞(Ω×[0,T ]) such

that

g(uλ )− g(vλ)≤ c(lnuλ − lnvλ ) in Ω × (0,T).

Therefore, we again obtain (8.43) and use Gronwall’s inequality which finally pro-

duces uλ ≡ vλ .

In order to prove the dependence on λ let us fix 0 < λ1 < λ2 and let uλ1,ε and

uλ2,ε be the solutions of (8.29) corresponding to λ1 and λ2 respectively. By Lemma

4.5 we obtain uλ1,ε ≤ uλ2,ε in Ω × [0,∞). Then, passing to the limit with ε ↘ 0 we
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find uλ1
≤ uλ2

in Ω × [0,∞). By the strong maximum principle we further deduce

uλ1
< uλ2

in Ω × (0,∞).

Step 3: Asymptotic behavior. Fix λ > 0. For all 0 < ε < ε0 (where ε0 is defined by

(8.33)) let u−ε and u+ε be the unique solutions of{
∂t u

−
ε = aε(δ (x))(u−ε )p(Δu−ε +λg(u−ε )) in Ω × (0,∞),

u−ε = mϕ1 +ψ−ε (t) on Σ∞,
(8.44)

and {
∂t u

+
ε = aε(δ (x))(u+ε )p(Δu+ε +λg(u+ε )) in Ω × (0,∞),

u+ε = Mwε +ψ+
ε (t) on Σ∞,

(8.45)

where wε is the unique solution of (8.28) and ψ±ε : [0,∞)→ R are continuous dif-

ferentiable functions such that

ψ−ε (0) =
ε
2
, (ψ−ε )

′ ≥ 0 in [0,∞) , and lim
t→∞ψ

−
ε (t) = ε,

ψ+
ε (0) = 0 , (ψ+

ε )
′ ≤ 0 in [0,∞) , and lim

t→∞ψ
+
ε (t) = ε(1−M)< 0.

It is easy to see that u±ε ∈C2,1(Ω × [0,∞)) and for all 0 < ε < ε0 there holds

mϕ1 +
ε
2
≤ u−ε ≤ uε ≤ u+ε ≤Mwε in Ω × [0,∞).

Furthermore, letting v±ε := ∂t u±ε , by (8.44) and (8.45) we derive

∂t v
±
ε = aε(δ (x))(up

ε )
±(Δvε +λg′(u±ε )v

±
ε )+ p

(v±ε )2

u±ε
in Ω × (0,∞). (8.46)

Also notice that the coefficients in (8.46) are bounded. Since ±v±ε ≤ 0 on Σ∞ by

Lemma 4.5 we deduce ±v±ε ≤ 0 in Ω × [0,∞). Thus, there exists w±ε : Ω → [0,∞)
such that

u−ε (x, t)↗ w−ε (x) and u+ε (x, t)↘ w+
ε (x) as t → ∞.

Letting u±n,ε(x, t) := u±ε (x, t + n), (x, t) ∈ Ω × [0,2], with the same arguments as

in [207, Theorem 3.2] we obtain

u±n,ε → w±ε in C2,1(Ω × [0,2]) as n→ ∞.
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This also yields

u±ε (·, t)→ w±ε uniformly in Ω as t → ∞. (8.47)

Furthermore, w±ε satisfies⎧⎪⎪⎨
⎪⎪⎩
−Δw±ε = λg(w±ε ) in Ω ,

w±ε > 0 in Ω ,

w±ε = ε in ∂Ω .

By the uniqueness of (8.28) it follows that w−ε ≡ w+
ε ≡ wε .

Let η > 0. Since ‖wε −wλ‖L∞(Ω)→ 0 as ε ↘ 0, we can find ε > 0 such that

|wε −wλ | ≤ η in Ω .

On the other hand, by (8.47) we can find T1 > 0 such that u+ε ≤wε+η inΩ× [T1,∞).
Hence,

u≤ uε ≤ u+ε ≤ wε +η ≤ wλ + 2η in Ω × [T1,∞). (8.48)

Let now Ω̃ ⊂⊂Ω be such that

|wλ − w̃λ |< η in Ω̃ , (8.49)

where w̃λ is the unique solution of (8.26) in Ω̃ . This yields wλ ≤ η on ∂Ω̃ . Using

the asymptotic behavior of wλ described in (8.27) we obtain δ (x) ≤ η/c1 on ∂Ω̃
and

wλ ≤
c2

c1
η in Ω \ Ω̃ . (8.50)

Let Σ̃∞ = (∂Ω̃ × (0,∞))∪ (Ω̃ ×{0}) and 0 < ε̃ < infΣ̃∞ u be such that for all

0 < ε < ε̃ the solution ũ−ε of (8.44) in Ω̃ × [0,∞) converges uniformly to some w̃ε

as t → ∞. As we have already proved, w̃ε is the unique solution of (8.28) in Ω̃ and

w̃ε → w̃λ uniformly in Ω̃ as ε ↘ 0.

Fix 0 < ε < ε̃ and T2 > 0 such that

w̃ε ≥ w̃λ −η ≥ wλ − 2η in Ω̃ and ũ−ε ≥ w̃ε −η in Ω̃ × [T2,∞). (8.51)

Furthermore, since uλ ≥ ũ−ε on Σ̃∞, by Lemma 4.5 we deduce uλ ≥ ũ−ε in Ω̃× [0,∞).
Combining (8.49)–(8.51) we obtain
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uλ ≥ ũ−ε ≥ w̃ε −η ≥ wλ − 3η in Ω̃ × [T2,∞),

uλ ≥ 0≥ wλ −
c2

c1
η in (Ω \ Ω̃)× [0,∞).

Therefore,

uλ −wλ ≥−cη in Ω × [T2,∞), (8.52)

for some c > 0 independent of ε and η . Now, by (8.48) and (8.52) we finally obtain

lim
t→∞‖uλ (·, t)−wλ‖L∞(Ω) = 0.

This finishes the proof. �

8.4 Linear Case

In this section we study the parabolic problem (8.23) for g(u) = u. We also assume

that the potential a satisfies ∫ 1

0

s
a(s)

ds < ∞. (8.53)

Theorem 8.5 Assume that g(u) = u and condition (8.53) holds. Then, for all 0 <

λ < λ1, problem (8.23) has a unique global solution uλ which is increasing with

respect to λ .

Moreover, if Uλ (x, t) := uλ (x, t)(1+ pt)1/p, (x, t) ∈Ω × [0,∞) then:

(i) For all 0 < λ < λ1 we have

lim
t→∞‖Uλ (·, t)−Wλ‖L∞(Ω) = 0,

where Wλ ∈C2(Ω)∩C(Ω ) is the unique solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ΔW =

1
a(δ (x))

W 1−p +λW in Ω ,

W > 0 in Ω ,

W = 0 on ∂Ω .

(8.54)

(ii) If 1≤ p < 2 then limλ↗λ1
‖Uλ (x, ·)‖L∞(0,∞) = ∞ uniformly on compact subsets

of Ω .



284 8 Large Time Behavior of Solutions for Degenerate Parabolic Equations

Before we start the proof of Theorem 8.5 we present some qualitative results

regarding problem (8.54). More precisely, let us consider

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ΔW =

1
a(δ (x))

W−α +λW in Ω ,

W > 0 in Ω ,

W = 0 on ∂Ω ,

(8.55)

where a satisfies (8.53) and α ≥ 0. We have:

Proposition 8.6 Let α ≥ 0, λ > 0, and a satisfy (8.53). We have:

(i) Problem (8.55) has classical solutions if and only if λ < λ1.

(ii) For all 0 < λ < λ1 problem (8.55) has a unique classical solution Wλ . In addi-

tion, Wλ has the following properties:

(ii1) The mapping (0,λ1) � λ 	−→Wλ (x) is increasing for all x ∈Ω .

(ii2) There exists a nondecreasing function H : [0,∞)→ [0,∞) such that for all

0 < λ < λ1 we can find 0 < m < M (depending on λ ) with the property

mδ (x)≤Wλ ≤MH(δ (x)) in Ω . (8.56)

(ii3) If 0≤ α < 1 then limλ↗λ1
Wλ =∞ uniformly on compact subsets of Ω .

Proof of Theorem 8.5. Let us remark first that u is a global solution of (8.23) if and

only if

U(x, t) := u(x, t)(1+ pt)1/p, (x, t) ∈Ω × [0,∞)

satisfies⎧⎪⎪⎨
⎪⎪⎩
(1+ pt)∂tU = a(δ (x))U p(ΔU +λU)+U in Ω × (0,∞),

U = 0 on ∂Ω × (0,∞),

U(x,0) = u0(x) on Ω .

Next, with the change of variable

t =
1
p
(eps− 1), s≥ 0,

we find that V (x,s) :=U(x, 1
p (e

ps− 1)) verifies
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⎪⎪⎩
∂sV = a(δ (x))V p(ΔV +λV)+V in Ω × (0,∞),

V = 0 on ∂Ω × (0,∞),

V (x,0) = u0(x) on Ω .

(8.57)

As in the proof of Theorem 8.3, for all 0 < ε < 1 there exists a unique solution Vε

of the approximated problem⎧⎪⎪⎨
⎪⎪⎩
∂sV = aε(δ (x))V p(ΔV +λV)+V in Ω × (0,sε),

V = ε on ∂Ω × (0,sε),

V (x,0) = u0(x)+ ε on Ω ,

(8.58)

in a maximal interval [0,sε) with respect to the time variable. In order to prove that

sε = ∞, let us consider V ε := mϕ1 + ε . By (8.24) we can find m > 0 small enough

such that V ε ≤ u0 + ε in Ω . We have

∂sV ε −aε(δ (x))V p
ε (ΔV ε +λV ε)−V ε ≤

[
(a(δ (x))+1)(mϕ1 +ε)p(λ1−λ )−1

]
mϕ1,

in Ω × (0,sε). Thus, we can chose m,ε0 > 0 small enough such that

∂sV ε −aε(δ (x))V p
ε (ΔV ε +λV ε)−V ε ≤ 0 in Ω × (0,sε),

for all 0 < ε < ε0. By Lemma 4.5 we deduce Vε ≥V ε in Ω × [0,sε).

Let Wε ∈C2(Ω)∩C(Ω ) be the unique solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ΔW =

1
a(δ (x))+ ε

W−α +λW in Ω ,

W > 0 in Ω ,

W = ε on ∂Ω .

(8.59)

Due to the presence of the potential a(δ (x))+ε in (8.59) we are not able to show

that {Wε}0<ε<1 is monotone with respect to ε . However, we still have the following

result which is essential in our further analysis.

Proposition 8.7 The sequence (Wε )0<ε<1 converges uniformly as ε ↘ 0 to the

unique solution Wλ of problem (8.55).

It is now easy to see that V ε := MWε satisfies

∂sV ε −aε(δ (x))V
p
ε (ΔV ε +λV ε )−V ε ≥ 0 in Ω × (0,sε). (8.60)
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On the other hand, cϕ1 +ε is a subsolution of (8.59) for c > 0 sufficiently small and

by Theorem 1.2 we deduce Wε ≥ cϕ1 + ε in Ω . Hence, taking M > 1 large enough,

in view of (8.24) we have

V ε = MWε ≥M(cϕ1 + ε)≥ u0 + ε in Ω . (8.61)

By (8.60), (8.61) and Theorem 1.5 we obtain

V ε ≤Vε ≤V ε in Ω × [0,sε).

This shows that Vε is actually a global solution of (8.58). From now on we can

employ the same technique as in the proof of Theorem 8.3 in order to show that for

all 0 < λ < λ1 problem (8.57) has a unique global solution Vλ ∈C2,1(Ω × (0,∞))∩
C(Ω × [0,∞)) such that the mapping (0,λ1) � λ 	−→ Vλ (x,s) is increasing for all

(x,s) ∈Ω × (0,∞).
Next, the estimate (ii2) in Proposition 8.6 allows us to employ the same argu-

ments as in Step 3 of Theorem 8.3 in order to obtain

lim
s→∞‖Vλ (·,s)−Wλ‖L∞(Ω) = 0, (8.62)

where Wλ ∈ C2(Ω)∩C(Ω) is the unique solution of (8.55). The only difference

is that due to the estimate (8.56), relation (8.50) should be replaced by Wλ ≤
MH(η/m) in Ω \ Ω̃ , where m,M > 0 are the constants from (8.56).

We now prove that asymptotic behavior in (ii) holds for Vλ . To this aim, assume

that 1 ≤ p < 2 and let ω ⊂⊂ Ω be fixed. By Proposition 8.6 (ii3), for any M > 0

there exists 0 < λ0 < λ1 such that Wλ0
> M+ 1 in ω . In view of (8.62) we can find

s0 > 0 such that

|Vλ0
−Wλ0

| ≤ 1 in ω× [s0,∞),

which yields Vλ0
≥Wλ0

− 1≥M in ω× [s0,∞). Since Vλ is increasing with respect

to λ we find that

Vλ ≥M in ω× [s0,∞), for all λ0 ≤ λ < λ1.

Hence limλ↗λ1
‖Vλ (x, ·)‖L∞(0,∞) = ∞ uniformly on compact subsets of Ω .

Finally, since Uλ and Vλ are related by Uλ (x, t) = Vλ (x,
1
p ln(1+ pt)), the con-

clusion in Theorem 8.5 follows immediately. This completes the proof. ��



Chapter 9
Reaction-Diffusion Systems Arising
in Chemistry

To accomplish great things, we must
not only act, but also dream; not only
plan, but also believe.

Anatole France (1844–1924)

9.1 Introduction

Many physical, chemical, biological, environmental and even sociological processes

are driven by reaction-diffusion systems. These are multi-component models involv-

ing two different mechanisms: on the one hand there is diffusion, a random particle

movement, and on the other hand there are chemical, biological or sociological re-

actions representing instantaneous interactions, which depend on the state variables

themselves and possibly also explicitly on the particles’ position.

In the early 1950s, the British mathematician Alan M. Turing [197] proposed

a model that accounts for pattern formation in morphogenesis. Turing [197] sug-

gested that under certain conditions, chemicals can react and diffuse in such a way

to produce steady-state heterogeneous spatial patterns of chemical or morphogen

concentrations. He showed that a system of two reacting and diffusing chemicals

could give rise to spatial patterns from initial near-homogeneity. The idea behind

Turing’s model is the existence of a low-range diffusing activator and a wide-

range diffusing inhibitor. The activator production is inhibited by the presence of

inhibitors and enhanced by the presence of the activator. In contrast, the inhibitor

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 9, c© Springer-Verlag Berlin Heidelberg 2012
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is not self-enhancing, that is, its production is not linked to the presence of other

inhibitors, but to the presence of activators. Turing systems show a very rich behav-

ior from the pattern formation point of view, varying from spots to stripes and from

lamellar to chaotic structures.

Lately, many Turing-type models described by coupled systems of reaction-

diffusion equations have been used for generating patterns in both organic and inor-

ganic systems.

9.2 Brusselator Model

In this section we shall be concerned with Turing patterns in a general Brusselator

model for autocatalytic oscillating chemical reactions. An autocatalytic reaction is

one in which a species acts to increase the rate of its producing reaction. In many

autocatalytic systems complex dynamics are seen, including multiple steady-states

and periodic orbits. The study of oscillating reactions has only been the subject of

interest for the last fifty years, starting with the Belousov–Zhabotinsky chemical

reactions.

There is now a large number of real and hypothetical systems that provide insight

into the complex behavior of autocatalytic systems. Among them we mention the

Brusselator model [161], Gray–Scott model [100], Lengyel–Epstein model [133],

Oregonator model [73], Schnakenberg model [174], Sel’klov model [175].

The Brusselator model was introduced by Prigogine and Lefever [161] in 1968.

It consists of the following four intermediate reaction steps

A→ X , B+X → Y +D, 2X +Y → 3X , X → E.

The global reaction is A+B→D+E and corresponds to the transformation of input

products A and B into output products D and E .

Using the law of mass action, we can derive the reaction-diffusion system asso-

ciated to the above reactions as{
ut − d1Δu = a− (b+ 1)u+ f (u)v in Ω × (0,T ),

vt − d2Δv = bu− f (u)v in Ω × (0,T ).
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The unknowns u, v in the above system represent the concentrations of two in-

termediary reactants having the diffusion rates d1,d2 > 0 while a, b > 0 are fixed

concentrations. The Brusselator system has been extensively investigated in re-

cent decades from both analytical and numerical points of view (see for instance

[9, 32, 69, 84, 113, 124, 157, 159, 198, 217]).

In the following we shall be concerned with the more general system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = a− (b+ 1)u+ f (u)v in Ω × (0,T ),

vt − d2Δv = bu− f (u)v in Ω × (0,T ),

u(x,0) = u0(x),v(x,0) = v0(x) on Ω ,

∂u
∂ν

(x, t) =
∂u
∂ν

(x, t) = 0 on ∂Ω × (0,T),

(9.1)

where Ω ⊂ R
N (N ≥ 1) is a smooth and bounded domain, a,b,d1,d2 are positive

constants and f ∈ C1(0,∞)∩C[0,∞) is a nonnegative and nondecreasing function

such that f > 0 in (0,∞). The initial data u0,v0 are nonnegative continuous functions

in Ω .

Our further analysis will reveal the fact that the dynamics of (9.1) and its associ-

ated steady-state is strongly related to the behavior of the nonlinearity f . We shall

assume that f satisfies one of the following hypotheses:

either f is sublinear, that is,

( f 1) the mapping (0,∞) � s−→ f (s)
s is nonincreasing;

of f has a superlinear character, namely,

( f 2) the mapping (0,∞) � s−→ f (s)
s is nondecreasing.

Particular attention will be paid to the steady states of (9.1), that is, solutions of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1Δu = a− (b+ 1)u+ f (u)v in Ω ,

−d2Δv = bu− f (u)v in Ω ,

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω .

(9.2)

It is easily seen that there exists a unique uniform steady state of (9.2), namely

(u,v) =
(

a,
ab

f (a)

)
. (9.3)

We shall also investigate the asymptotic stability of the above constant solution. In

particular, we shall see that if f has a sublinear growth, then the constant solution
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(u,v) defined by (9.3) is uniformly asymptotically stable. Moreover, in the sublinear

case on f we prove that (9.3) is the unique solution of system (9.2), so there are

no Turing patterns in this case. In turn, if f satisfies ( f 2), the analysis of (9.2)

is more involved. The existence of Turing patterns (and implicitly of nonconstant

solutions to (9.2)) is strongly dependent on the diffusion coefficients d1,d2 and on

the parameters a,b. The most important issue in the study of steady-state solutions

are the a priori estimates. Using a similar approach to that in [84], we are able to

find precise upper and lower bounds for solutions to (9.2) in terms of a,b,d1,d2 for

any dimension N ≥ 1. This allows us to extend the study of the standard Brusselator

system started in [32, 84, 159]. As a consequence, we are able to provide existence

results in terms of a, b, d1 and d2 in case where f has a superlinear growth.

9.2.1 Existence of Global Solutions

In this section we establish the existence of global solutions to (9.1). Our first result

concerns the case where f is sublinear.

Theorem 9.1 Assume that f satisfies ( f 1) and lims→∞ f (s)/s = 0. Then, for any

a,b,d1,d2 > 0 and any nonnegative continuous functions u0,v0, the system (9.1)

has at least one global solution.

Proof. The proof relies on the invariant region method (see, e.g., [182, 215]). To

this aim, we rewrite the system (9.1) in the vectorial form

wt =

(
d1 0
0 d2

)
Δw+F(w) in Ω × (0,∞), (9.4)

where w = (u,v)T and

F(w) =

(
a− (b+ 1)u+ f (u)v

bu− f (u)v

)
.

We claim that the rectangle Σ := [0,c1]× [0,c2] is an invariant region for

(9.4) provided c1,c2 > 0 are large enough. In view of ( f 1) we can choose c1 >

max{2a,‖u0‖L∞} such that

(b+ 1/2)c1

f (c1)
> ‖v0‖L∞
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and define

c2 :=
(b+ 1/2)c1

f (c1)
.

We also write Σ as

Σ = {w = (u,v)T ∈C(Ω)∩C(Ω) : Gi(w)≤ 0,1≤ i≤ 4},

where

G1(w) =−u, G2(w) = u− c1, G3(w) =−v, G4(w) = v− c2.

It is obviously that the initial data (u0,v0) belongs to the interior of Σ . If w =

(u,v)T ∈ ∂Σ , by the definition of c1 and c2 we have

∇G1 ·F|u=0
=−a− f (0)v < 0,

∇G2 ·F|u=c1
= a− (b+ 1)c1+ f (c1)v≤ a− (b+ 1)c1+ f (c1)c2 = a− c1

2
≤ 0,

∇G3 ·F|v=0
=−bu≤ 0,

∇G4 ·F|v=c2
= bu− f (u)v = u

(
b− f (u)

u

)
≤ u

(
b− f (c1)

c1
c2

)
< 0.

By Theorem 14.13 in [182] it follows that Σ is invariant for (9.4). Thus, there exists

a global solution of (9.4). �

Next, we turn our attention to the case where f is superlinear. For the standard

Brusselator model, that is, f (u) = u2, the existence of a global solution to (9.1) was

obtained by Rothe [172]. Here, the existence of global solution to (9.1) is derived

for more general nonlinearities f under the restriction d1 = d2 and the initial data u0

is strictly positive in Ω (see [96]).

Theorem 9.2 Assume that d1 = d2 > 0, the initial data u0,v0 are continuous func-

tions in Ω such that u0 > 0, v0 ≥ 0 in Ω and the nonlinearity f satisfies ( f 2) and

lims→0 f (s)/s = 0. Then, for any a,b > 0, the system (9.1) has a global solution.

Proof. With the change of variable we can assume d1 = d2 = 1. For ε > 0 small

enough we consider the related problem
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⎪⎪⎪⎪⎪⎪⎩

ut −Δu = a− (b+ 1)u+ f (u)v in Ω × (0,∞),

vt −Δv = bu− f (u)v in Ω × (0,∞),

u(x,0) = u0(x),v(x,0) = v0(x)+ ε on Ω ,

∂u
∂ν

(x, t) =
∂v
∂ν

(x, t) = 0 on ∂Ω × (0,∞),

(9.5)

By standard parabolic arguments, there exists a classical solution (uε ,uε) of (9.5)

in a maximal interval (0,T εmax). We claim that T εmax =∞. First, by (9.5) we have that

Uε satisfies

uεt −Δuε+(b+ 1)uε ≥ a > 0 in Ω × (0,T εmax).

Since u0 > 0 in Ω , there exists a constant k > 0 independent of ε such that

uε ≥ k in Ω × (0,T εmax). (9.6)

Since lims→0 f (s)/s = 0, we can choose k > 0 small enough such that

v0 + 1≤ bk
f (k)

in Ω . (9.7)

The function v satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vεt −Δvε = buε − f (uε)vε in Ω × (0,T εmax),

vε(x,0) = v0(x)+ ε on Ω ,

∂vε

∂ν
(x, t) = 0 on ∂Ω × (0,T εmax).

(9.8)

Using (9.6) and that fact that f satisfies ( f 2) we can easily deduce that the interval

Σ := [0,bk/ f (k)]

is an invariant region for (9.8). This means that

v(x, t)≤ bk
f (k)

= const. in Ω × (0,T εmax). (9.9)

Adding the first two equations in (9.5) we have

(uε +uε)t −Δ(uε+ uε)+
1
d1

(uε + uε)≤ a+
bk

d1 f (k)
in Ω × (0,T εmax).

By maximum principle we deduce that uε + vε ≤ M in Ω × (0,T εmax), for some

constant M > 0 independent of ε . Therefore, for ε > 0 small enough, uε , uε satisfy
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ε ≤ uε ,vε ≤M in Ω × (0,T εmax).

This yields T εmax = ∞, so uε and vε exist globally. Also by standard parabolic argu-

ments and up to a subsequence, uε and vε converge to some functions u and v which

are global solutions to (9.1). This finishes the proof of Theorem 9.2. �

9.2.2 Stability of the Uniform Steady State

The linearization of (9.4) at w0 = (a,ab/ f (a))T is

wt =

(
d1 0
0 d2

)
Δw+∇F(w0) ·w+O(‖w−w0‖2). (9.10)

Denote by

0 = μ0 < μ1 < μ2 < · · ·< μn < · · ·

the eigenvalues of −Δ with homogeneous Neumann boundary condition. For any

k ≥ 0 we also denote by e(μk) the multiplicity of μk. Consider

X =

{
w = (u,v) ∈C1(Ω)×C1(Ω) :

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω
}

(9.11)

and decompose

X =
⊕
k≥0

Xk, (9.12)

where Xk denotes the eigenspace corresponding to μk, k ≥ 0.

Theorem 9.3 Assume that

f (a)>
ba f ′(a)

f (a)
− b− 1 (9.13)

and the first eigenvalue μ1 of the Dirichlet operator subject to homogeneous Neu-

mann condition satisfies

μ1 >
1
d1

(
ba f ′(a)

f (a)
− b− 1

)
− f (a)

d2
. (9.14)

Then the steady-state w0 is uniformly asymptotically stable.
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Proof. Define L : X→C(Ω )×C(Ω) by

L =

(
d1Δ + ba f ′(a)

f (a) − b− 1 f (a)

b− ba f ′(a)
f (a) d2Δ − f (a)

)
.

Then Xk is invariant for L and ξk is an eigenvalue of L on Xk if and only if ξ is

an eigenvalue of the matrix

Ak =

(
−d1μk +

ba f ′(a)
f (a) − b− 1 f (a)

b− ba f ′(a)
f (a) −d2μk− f (a)

)
.

The determinant and trace of Ak are

det(Ak) = μk

[
d1d2μk + d1 f (a)− d2

(ba f ′(a)
f (a)

− b− 1
)]

+ f (a),

Tr(Ak) =
ba f ′(a)

f (a)
− b− 1− f (a)− (d1+ d2)μk.

(9.15)

Remark that for any k≥ 0 we have

det(Ak)> 0 > Tr(Ak).

Denote by ξ+k and ξ−k the two eigenvalues of Ak, k≥ 0.

If ξ+k , ξ−k are complex numbers, then by (9.14) we have

Re(ξ+k ) = Re(ξ−k ) =
1
2

Tr(Ak)≤ 1
2

(
ba f ′(a)

f (a)
−b− 1− f (a)

)
< 0.

If ξ+k , ξ−k are real numbers, then by (9.14) we have

ξ−k ≤ ξ+k =
Tr(Ak)+

√
Tr2(Ak)−4det(Ak)

2

=
2det(Ak)

Tr(Ak)−
√

Tr2(Ak)−4det(Ak)

≤ det(Ak)

Tr(Ak)

< 0.

Since μk → ∞ as k→ ∞, from the above estimate we deduce ξ+k →−∞ as k→ ∞.

Hence, in both the above cases we can find δ > 0 such that the spectrum of L

lies in the region {z ∈ C : Re(z)< −δ}. By Theorem 5.1.1. in [110] we obtain that

w0 is asymptotically uniformly stable for (9.4). This ends the proof. �
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If f satisfies ( f 1) then ba f ′(a)
f (a) −b−1< 0 so that both conditions (9.13) and (9.14)

are satisfied. In this case we obtain

Corollary 9.4 If f satisfies ( f 1) then w0 is uniformly asymptotically stable.

9.2.3 Diffusion-Driven Instability

In this section we point out that under certain conditions on the parameters a and

b, the uniform steady state (u0,v0) defined by (9.3) can be linearly stable in the

absence of diffusion but unstable in the presence of diffusion. This is the well-known

phenomenon of diffusion-driven instability emphasized by Turing in his pioneering

work [197].

Let us consider the spatially homogeneous system corresponding to (9.1):

⎧⎪⎨
⎪⎩

du
dt

= a− (b+ 1)u+ f (u)v , t > 0,

dv
dt

= bu− f (u)v , t > 0.
(9.16)

We have the following result.

Theorem 9.5 Assume that

f (a)>
ba f ′(a)

f (a)
− b− 1 > 0. (9.17)

Then, there exist d∗,D∗ > 0 such that for all

0 < d1 < d∗ and d2 > D∗,

the steady-state w0 = (a,ba/ f (a))T is uniformly asymptotically stable for the sys-

tem (9.16) and instable for the system (9.1), that is, Turing instabilities occur.

Remark that (9.17) does not hold if f satisfies ( f 1).

Proof. Using the same approach as in Theorem 9.3 we have that w0 is uniformly

asymptotically stable for (9.16) provided (9.17) holds. Also by (9.17) we can choose

D∗ > 0 large enough such that

μ1D∗
(

ba f ′(a)
f (a)

− b− 1

)
> f (a).
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Using (9.15), for all d2 > D∗ we have

lim
d1↘0

det(A1)≤ f (a)− μ1D∗
(

ba f ′(a)
f (a)

−b− 1

)
< 0.

Therefore we can find d∗ > 0 such that

det(A1)< 0 for all 0 < d1 < d∗, d2 > D∗.

This implies that A1, and so the operator L , has at least one positive eigenvalue. By

[110, Corollary 5.1.1] it follows that w0 is uniformly asymptotically unstable. This

finishes the proof. �

9.2.4 A Priori Estimates

Using Theorem 1.1 we first derive that if f satisfies ( f 1) then (9.2) has no noncon-

stant solutions. More precisely we have.

Theorem 9.6 Assume that f satisfies ( f 1). Then, (u,v) =
(
a, ab

f (a)

)
is the unique

solution of system (9.2).

Proof. Let (u,v) be a classical solution of (9.2). Let also x1 (resp. x2) be a max-

imum point of u (resp. v) and x3 (resp. x4) be a minimum point of u (resp. v) in Ω .

Using Theorem 1.1(i) in the first equation of (9.2) we have

(b+ 1)u(x1)≤ a+ f (u(x1))v(x1). (9.18)

Now, Theorem 1.1(i) applied to the second equation in (9.2) yields

bu(x2)≥ f (u(x2))v(x2),

that is, v(x2)≤ b u(x2)
f (u(x2))

. By virtue of ( f 1) we next derive

v(x1)≤ v(x2)≤ b
u(x2)

f (u(x2))
≤ b

u(x1)

f (u(x1))
. (9.19)

Therefore (9.18) and (9.19) imply (b+ 1)u(x1)≤ a+ bu(x1), that is,

u≤ u(x1)≤ a in Ω . (9.20)
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On the other hand, Theorem 1.1(ii) applied to the second equation of (9.2) leads us

to v(x4)≥ b u(x4)
f (u(x4))

. Again by ( f 1) it follows that

v(x3)≥ v(x4)≥ b
u(x4)

f (u(x4))
≥ b

u(x3)

f (u(x3))
. (9.21)

Next, Theorem 1.1(ii) applied to the first equation in (9.2) yields

(b+ 1)u(x3)≥ a+ f (u(x3))v(x3)≥ a+ bu(x3),

which implies

u≥ u(x3)≥ a in Ω . (9.22)

Now (9.20) and (9.22) produce u ≡ a in Ω and by (9.2) we also have v≡ ab/ f (a).

This ends the proof. �

When f satisfies ( f 2) the analysis of the steady state system (9.2) is more deli-

cate. In some cases, depending on the parameters a,b,d1,d2 we obtain the existence

of nonconstant solutions to (9.1). We start this study with the following crucial result

that provides a priori estimates for solutions to (9.2).

Theorem 9.7 Assume that f satisfies ( f 2). Then, any solution (u,v) of (9.2) satis-

fies
a

b+ 1
≤ u≤ a+

d2

d1
· ab
(b+ 1) f ( a

b+1)
in Ω , (9.23)

and

ab

(b+1) f
(
a+ d2

d1
· ab
(b+1) f ( a

b+1 )

) ≤ v≤ ab
(b+ 1) f ( a

b+1)
in Ω . (9.24)

Proof. Consider first a minimum point x0 ∈Ω of u. By Theorem 1.1(ii) it follows

a− (b+ 1)u(x0)+ f (u(x0))v(x0)≤ 0

which implies u(x0)≥ a/(b+ 1). Hence

u≥ a
b+ 1

in Ω . (9.25)

At maximum point of v we have bu− f (u)v ≥ 0, that is, v≤ bu/ f (u). By virtue of

( f 2) and (9.25) we deduce
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v≤ ab
(b+ 1) f ( a

b+1)
in Ω . (9.26)

Let w = d1u+d2v. Adding the first two relations in (9.2) we have

−Δw = a− u in Ω ,
∂w
∂ν

= 0 on ∂Ω .

Let now x1 ∈ Ω be a maximum point of w. According to Theorem 1.1(i) we have

a− u(x1)≥ 0, that is, u(x1)≤ a. By virtue of (9.26), for all x ∈Ω we have

d1u(x)≤ w(x) ≤ w(x1)≤ d1a+ d2 · ab
(b+1) f ( a

b+1)
in Ω .

This yields

u≤ a+
d2

d1
· ab
(b+ 1) f ( a

b+1)
in Ω . (9.27)

We have proved that u satisfies (9.23). Again by Theorem 1.1(ii), at minimum points

of v we have bu− f (u)v≤ 0, which yields v≥ bu/ f (u). Combining this inequality

with (9.27) we obtain the first estimate in (9.24). This concludes our proof. �

From the estimates (9.23)–(9.24) in Theorem 9.7 we derive the following.

Proposition 9.8 Assume that f satisfies ( f 2) and let a,b,D1,D2 > 0 be fixed. Then,

there exist two positive constants C1,C2 > 0 depending on a,b,D1,D2 such that for

all

d1 ≥ D1, 0 < d2 ≤ D2,

any solution (u,v) of (9.2) satisfies

C1 < u,v <C2 in Ω .

Furthermore, by standard elliptic arguments and Theorem 9.7 we now obtain:

Proposition 9.9 Assume that f satisfies ( f 2) and let a,b,D1,D2 > 0 be fixed. Then,

for any positive integer k ≥ 1 there exists a constant

C =C(a,b,D1,D2,k,N,Ω) > 0

such that for all

d1 ≥ D1, 0 < d2 ≤ D2,

any solution (u,v) of (9.2) satisfies
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‖u‖Ck(Ω) + ‖v‖Ck(Ω) ≤C.

In particular, any solution of (9.2) belongs to C∞(Ω )×C∞(Ω).

9.2.5 Nonexistence Results

Theorem 9.10 (i) Let a,b,d2 > 0 be fixed. There exists D = D(a,b,d2) > 0 such

that system (9.2) has no nonconstant solutions for all d1 > D.

(ii) Let a,d1,d2 > 0 be fixed. There exists B = B(a,d1,d2)> 0 such that system (9.2)

has no nonconstant solutions for all 0 < b < B.

Proof. (i) Remark first that if (u,v) is a solution of (9.2), then, integrating the

two equations in (9.2) overΩ and adding up we have∫
Ω

u(x)dx = a|Ω |. (9.28)

Lemma 9.11 Let a,b,d2 > 0 be fixed and let {δn} ⊂ (0,∞) be such that δn → ∞ as

n→ ∞. If (un,vn) is a solution of (9.2) with d1 = δn then

(un,vn)→
(

a,
ab

f (a)

)
in C2(Ω)×C2(Ω) as n→ ∞.

Proof. By Proposition 9.9 the sequence {(un,vn)} is bounded in C3(Ω )×C3(Ω ).

Hence, passing to a subsequence if necessary, {(un,vn)} converges in C2(Ω)×
C2(Ω) to some (u,v)∈C2(Ω )×C2(Ω). We divide by δn in the corresponding equa-

tion to un and then we pass to the limit with n→ ∞. We obtain that (u,v) satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = 0 in Ω ,

−d2Δv = bu− f (u)v in Ω ,

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω .

(9.29)

Also, un and u satisfy (9.28). Now, the first equation in (9.29) together with

∂u/∂ν = 0 on ∂Ω implies that u is constant. Combining this fact with (9.28) it

follows that u≡ a. Thus, from (9.29), v satisfies

−d2Δv = ab− f (a)v in Ω ,
∂v
∂ν

= 0 on ∂Ω .
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Multiplying the above equality with ab− f (a)v and then integrating over Ω we

obtain

0≤ d2

f (a)

∫
Ω
|∇(ab− f (a)v)|2dx =−

∫
Ω
(ab− f (a)v)2dx≤ 0.

Hence v≡ ab
f (a) and the proof follows. �

We first introduce the function spaces

H2
n (Ω) =

{
w ∈W 2,2(Ω) :

∂w
∂ν

= 0

}
, L2

0(Ω) =

{
w ∈ L2(Ω) :

∫
Ω

w = 0

}
.

Thus, letting w= u−a, by (9.28) and the standard elliptic regularity, system (9.2)

is equivalent to⎧⎪⎪⎨
⎪⎪⎩

−Δw = δ (a− (b+ 1)(w+ a)+ f (w+ a)v) in Ω ,

−d2Δv = b(w+ a)− f (w+ a)v in Ω ,

w ∈H2
n (Ω)∩L2

0(Ω), v ∈ H2
n (Ω),

(9.30)

where δ = 1/d1. Define

F : R× (H2
n (Ω)∩L2

0(Ω))×H2
n (Ω)→ L2

0(Ω)×L2(Ω),

by

F (δ ,w,v) =

⎛
⎝Δw+ δP(a− (b+ 1)(w+a)+ f (w+ a)v)

d2Δv+ b(w+ a)− f (w+a)v

⎞
⎠ ,

where P : L2(Ω) → L2
0(Ω) is the projection operator from L2(Ω) onto L2

0(Ω),

namely,

P(z) = z− 1
|Ω |

∫
Ω

z(x)dx, for all z ∈ L2(Ω).

Now (9.30) is equivalent to

F (δ ,w,v) = 0.

Indeed, if F (δ ,w,v) = 0, then

d2Δv+ b(w+ a)− f (w+ a)v= 0 in Ω , v ∈ H2
n (Ω).

It is easy to see that the above relations imply b(w+a)− f (w+a)v∈ L2
0(Ω). Since

w ∈ L2
0(Ω), this yields
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a− (b+ 1)(w+ a)+ f (w+ a)v∈ L2
0(Ω),

so that

P(a− (b+ 1)(w+ a)+ f (w+a)v)= a− (b+ 1)(w+a)+ f (w+ a)v.

Therefore (9.30) is satisfied.

We have that the equation F (0,w,v) = 0 has the unique solution (w,v) =

(0,ab/ f (a)). Next it is easy to see that

D(w,v)F (0,0,ab/ f (a)) : (H2
n (Ω)∩L2

0(Ω))×H2
n (Ω)→ L2

0(Ω)×L2(Ω),

is given by

D(w,v)F (0,0,ab/ f (a)) =

⎛
⎜⎝

Δ 0

b f (a)−a f ′(a)
f (a) d2Δ − f (a)

⎞
⎟⎠ .

Thus D(w,v)F (0,0,ab/ f (a)) is invertible and we are in the frame of the implicit

function theorem. It follows that there exists δ0,r > 0 such that (0,0,ab/ f (a)) is

the unique solution of

F (δ ,w,v) = 0 in [0,δ0]×Br

(
0,

ab
f (a)

)
,

where Br(0, ab
f (a) ) denotes the open ball in (H2

n (Ω)∩L2
0(Ω))×H2

n (Ω) centered at

(0,ab/ f (a)) and having the radius r > 0.

Let now {δn} be a sequence of positive real numbers such that δn → ∞ as n→∞
and let (un,vn) be an arbitrary solution of (9.2) for a,b,d2 fixed and d1 = δn. Letting

wn = un−a, it follows that

F
( 1
δn

,wn,vn

)
= 0.

According to Lemma 9.11 we have

(wn,vn)→
(

0,
ab

f (a)

)
in C2(Ω )×C2(Ω ) as n→ ∞.

This means that for n ≥ 1 large enough there holds (1/δn,wn,vn) ∈ (0,δ0)×
Br(0, ab

f (a) ) which yields (wn,vn) = (0, ab
f (a) ). Hence, for d1 = 1/δn small enough,

system (9.2) has only the constant solution (a, ab
f (a) ). The proof of (ii) is similar. �
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9.2.6 Existence Results

Let X be the space defined in (9.11) and let

X+ = {(u,v) ∈ X : u,v > 0 in C(Ω )}.

We write the system (9.2) in the form

−Δw = G (w) , w ∈X+, (9.31)

where

G (w) =

⎛
⎝

1
d1
(a− (b+ 1)u+ f (u)v)

1
d2
(bu− f (u)v)

⎞
⎠ .

It is more convenient to write (9.31) in the form

F (w) = 0 , w ∈ X+, (9.32)

where

F (w) = w− (I−Δ)−1(G (w)+w) , w ∈ X+. (9.33)

Let w0 = (a,ab/ f (a))T be the uniform steady state solution of (9.2). Then

∇F (w0) = I− (I−Δ)−1(I+A),

where

A := ∇G (w0) =

⎛
⎜⎝

1
d1

(
b a f ′(a)− f (a)

f (a) −1
)

f (a)
d1

− b
d2

a f ′(a)− f (a)
f (a) − f (a)

d2

⎞
⎟⎠ .

If ∇F (w0) is invertible, by [154, Theorem 2.8.1] the index of F at w0 is given

by

index(F ,w0) = (−1)γ , (9.34)

where γ denotes the number of negative eigenvalues of ∇F (w0). On the other hand,

using the decomposition (9.12) we have that Xi is an invariant space under∇F (w0)

and ξ ∈ R is an eigenvalue of ∇F (w0) in Xi if and only if ξ is an eigenvalue of

(μi+1)−1(μiI−A). Therefore,∇F (w0) is invertible if and only if for any i≥ 0 the

matrix (μiI−A) is invertible.
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Let us define

H(a,b,d1,d2,μ) = det(μI−A). (9.35)

Then, if (μiI−A) is invertible for any i ≥ 0, with the same arguments as in [158]

we have

γ = ∑
i≥0,

H(a,b,d1,d2,μi)<0

e(μi). (9.36)

A straightforward computation yields

H(a,b,d1,d2,μ) = μ2−
(ab f ′(a)− (b+ 1) f (a)

d1 f (a)
− f (a)

d2

)
μ+

f (a)
d1d2

.

If

b
a f ′(a)− f (a)

f (a)
>

(
1+

√
d1

d2
f (a)

)2
, (9.37)

then the equation H(μ) = 0 has two positive solutions μ±(a,b,d1,d2) given by

μ±(a,b,d1,d2) =
1
2

(
θ (a,b,d1,d2)±

√
θ (a,b,d1,d2)2−4 f (a)/(d1d2)

)
,

where

θ (a,b,d1,d2) =
ab f ′(a)− (b+ 1) f (a)

d1 f (a)
− f (a)

d2
.

We have the following result.

Theorem 9.12 Assume that condition (9.37) holds and there exist i > j ≥ 0 such

that

(i) μi < μ+(a,b,d1,d2)< μi+1 and μ j < μ−(a,b,d1,d2)< μ j+1.

(ii) ∑i
k= j+1 ek is odd.

Then (9.2) has at least one nonconstant solution.

Proof. The proof uses some topological degree arguments (see [23, 24]). By

Theorem 9.10(i) we can fix D > d1 such that

(a) System (9.2) with diffusion coefficients D and d2 has no nonconstant solutions,

(b) H(a,b,D,d2,μ)> 0 for all μ ≥ 0.

Further, by Proposition 9.8 one can find C1,C2 > 0 depending on a,b,d1,d2 such

that for any d ≥ d1, any solution (u,v) of (9.2) with diffusion coefficients d and d2

satisfies

C1 < u,v <C2 in Ω .
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Set

M = {(u,v) ∈C(Ω )×C(Ω) : C1 < u,v <C2 in Ω},

and define

Ψ : [0,1]×M →C(Ω )×C(Ω),

by

Ψ (t,w) = (−Δ + I)−1

⎛
⎜⎝u+

(
1−t
D + t

d1

)
(a− (b+ 1)u+ f (u)v)

v+ 1
d2
(bu− f (u)v)

⎞
⎟⎠ .

It is easy to see that solving (9.2) is equivalent to find a fixed point ofΨ(1, ·) in M .

Further, from the definition of M and Proposition 9.8, we have thatΨ(t, ·) has no

fixed points in ∂M for all 0 ≤ t ≤ 1. Therefore, the Leray–Schauder topological

degree deg(I−Ψ(t, ·),M ,0) is well defined.

Using (9.33) we have I−Ψ (1, ·)=F . Thus, if (9.2) has no other solutions except

the constant one w0, then by (9.34) and (9.36) we have

deg(I−Ψ(1, ·),M ,0) = index(F ,w0) = (−1)∑
i
k= j+1 e(μk) =−1. (9.38)

On the other hand, from the invariance of the Leray–Schauder degree at the homo-

topy we deduce

deg(I−Ψ(1, ·),M ,0) = deg(I−Ψ(0, ·),M ,0). (9.39)

Remark that by our choice of D, we have that w0 is the only fixed point ofΨ (0, ·).
Furthermore by (b) above we have

deg(I−Ψ(0, ·),M ,0) = index(I−Ψ(·,0),w0) = 1. (9.40)

Now, from (9.38) to (9.40) we reach a contradiction. Therefore, there exists a

nonconstant solution of (9.2). This ends the proof. �

Corollary 9.13 Let a,b,d2 > 0 be fixed. Assume that

ab f ′(a)> (b+ 1) f (a) (9.41)

and all the eigenvalues μi have odd multiplicity. Then, there exists a sequence of

intervals {(kn,Kn)} with 0 < kn < Kn < kn−1 → 0 (as n→ ∞) such that the steady-

state system (9.2) has at least one nonconstant solution for all d1 ∈ ⋃
n≥1(kn,Kn).
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Proof. In view of (9.41), condition (9.37) holds for small values of d1 > 0. Also for

a,b,d2 > 0 fixed we have

μ−(a,b,d1,d2)→ f (a)2

d2(ab f ′(a)− (b+ 1) f (a))
as d1 → 0,

μ+(a,b,d1,d2)→ ∞ as d1 → 0.

Therefore we can find a sequence of intervals {(kn,Kn)}n such that

∑
i≥0,

μ−(a,b,d1,d2)<μi<μ+(a,b,d1,d2)

e(μi) is odd (9.42)

for all d1 ∈ ⋃
n≥1(kn,Kn). Therefore, conditions (i)–(ii) in Theorem 9.12 are ful-

filled. �

Corollary 9.14 Let a,b,d1 > 0 be fixed. Assume that (9.41) holds and

∑
i≥0,

0<μi<
ab f ′(a)−(b+1) f (a)

d1 f (a)

e(μi) is odd. (9.43)

Then there exists D > 0 such that the steady-state system (9.2) has at least one

nonconstant solution for any d2 > D.

Proof. By virtue of (9.41), for any d2 > 0 large enough condition (9.37) holds. Also

for any a,b,d1 fixed we have

0 < μ−(a,b,d1,d2)< μ+(a,b,d1,d2)<
ab f ′(a)− (b+ 1) f (a)

d1 f (a)

and

μ−(a,b,d1,d2)→ 0 , μ+(a,b,d1,d2)→ ab f ′(a)− (b+ 1) f (a)
d1 f (a)

as d2 → ∞.

Therefore, for d2 > 0 large, condition (9.43) implies (i)–(ii) in Theorem 9.12. This

concludes the proof. �

Corollary 9.15 Let a,d1,d2 > 0 be fixed. Assume that a f ′(a) > f (a) and all the

eigenvalues μi have odd multiplicity. Then, there exists a sequence of intervals
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{(bn,Bn)} with 0 < bn < Bn < bn+1 → ∞ (as n → ∞) such that the steady-state

system (9.2) has at least one nonconstant solution for all b ∈ ∪n≥1(bn,Bn).

Proof. We proceed similarly. Since a f ′(a) > f (a), for large values of b condition

(9.37) is fulfilled. Also for a,d1,d2 > 0 fixed we have

μ−(a,b,d1,d2)→ 0 , μ+(a,b,d1,d2)→ ∞ as b→ ∞.

Hence, we can find a sequence of nonoverlapping intervals {(bn,Bn)} such that

bn → ∞ as n→ ∞ and (9.42) holds for all b ∈⋃
n≥1(bn,Bn). �

If f (s) = sm, m > 1, then condition (9.41) is independent of a. We obtain

Corollary 9.16 Let f (s) = sm, m > 1. Assume that b(m− 1)> 1 and

∑
i≥0,

0<μi<(b(m−1)−1)/d1

e(μi) is odd. (9.44)

Then there exists A > 0 such that the steady-state system (9.2) has at least one

nonconstant solution for any 0 < a < A.

Proof. It is easy to see that (9.37) holds for small values of a > 0. As before

0 < μ−(a,b,d1,d2)< μ+(a,b,d1,d2)<
b(m− 1)− 1

d1

and

μ−(a,b,d1,d2)→ 0 , μ+(a,b,d1,d2)→ b(m−1)− 1
d1

as a→ 0.

Therefore, for a > 0 small, condition (9.44) implies (i)–(ii) in Theorem 9.12. This

ends the proof. �

9.3 Schnackenberg Model

The Schnakenberg model [174] was introduced in 1979 to describe chemical reac-

tions with limit cycle behavior. This is a two-species model for trimolecular reac-

tions that reads as

A � X , B→ Y, 2X +Y → 3X .
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Using the law of mass action, one can derive the nondimensional equations for

the concentrations u and v of the chemical products X and Y as follows

ut −d1Δu = a− u+ u2v and vt −d2Δv = b−u2v.

In the above equations d1,d2 are the diffusion coefficients of the chemicals X , Y

and a, b are the concentrations of A and B. It is also assumed that A and B are in

abundance so a and b are approximately constant. The Schnackenberg model has

received considerable attention in recent decades from both qualitative and quanti-

tative points of view, see [15, 147, 184, 202, 203] and the references therein.

In this section we shall be concerned with the following general reaction-

diffusion system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − d1Δu = a− u+ upv in Ω × (0,∞),

vt − d2Δv = b− upv in Ω × (0,∞),

u(x,0) = u0(x),v(x,0) = v0(x) on Ω ,

∂u
∂ν

(x, t) =
∂u
∂ν

(x, t) = 0 on ∂Ω × (0,∞),

(9.45)

where Ω ⊂ R
N (N ≥ 1), a,b,d1,d2 > 0 and p > 1. For p = 2 we obtain the stan-

dard model derived by Schnackenberg [174]. We will also investigate existence and

nonexistence of nonconstant steady-states, that is, solutions of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−d1Δu = a− u+ upv in Ω ,

−d2Δv = b− upv in Ω ,

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω .

(9.46)

9.3.1 The Evolution System and Global Solutions

We are concerned in this section with the parabolic system (9.45). Our main result

is Theorem 9.17 below.

Theorem 9.17 Assume that 1 < p < (N + 4)/N and the initial data u0,v0 satisfy

u0,v0 ∈C1(Ω ), u0 > 0, v0 ≥ 0 in Ω .
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Then, the system (9.45) has at least one solution which is bounded and global in

time.

Proof. We first recall the following useful result, the proof of which can be found

in [215].

Proposition 9.18 (see [215, Proposition 2.2]) Let w be a classical solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt −Δw = f (x,w) in Ω × (0,T),

w(x,0) = w0(x) on Ω ,

∂w
∂ν

(x, t) = 0 on ∂Ω × (0,T ),

where w0 ∈C(Ω) and f :Ω × [0,∞)→ R satisfies

f (x,s) ≤C(1+ sγ) for all (x,s) ∈Ω × [0,∞),

for some C > 0 and 1≤ γ < 1+ 2q/N, q > 1. If

sup
t
‖w(·, t)‖q < ∞,

then there exist C,σ > 0 independent of T such that

sup
t
‖w(·, t)‖∞ ≤C max{1,‖w‖σq }.

By [172, Theorem 1, pag. 111] there exists a solution (u,v) of (9.45) defined in

a maximal time interval [0,Tmax). Furthermore, if Tmax < ∞, then

lim
t↗Tmax

[
‖u(·, t)‖∞+ ‖v(·, t)‖∞

]
= ∞. (9.47)

We divide our arguments into three steps.

Step 1: There exists m = m(u0,a)> 0 such that u≥ m in Ω × [0,Tmax).

Indeed, let m=min{minΩ u0,a}. Since u0 > 0 inΩ , we have m> 0. We multiply

by (m−u)+ in the first equation of (9.45) and integrate over Ω . We obtain

−1
2

d
dt

∫
Ω
|(m− u)+|2dx =d1

∫
Ω
|∇(m− u)+|2dx+

∫
Ω
(a−u)(m− u)+dx

+

∫
Ω

up(m− u)+dx≥ 0.

Hence,
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Ω
|(m− u(x, t))+|2dx≤

∫
Ω
|(m− u(x,0))+|2dx = 0 for all 0≤ t < Tmax,

that is, u≥ m in Ω × [0,Tmax).

Step 2: There exists M = M(u0,v0,a,b)> 0 such that v≤M in Ω × [0,Tmax).

Using the fact that u≥m> 0 inΩ× [0,Tmax), from the second equation of (9.45)

we have

vt − d2Δv+mpv≤ b in Ω × [0,Tmax).

By standard comparison results we find v≤M = M(u0,v0,a,b) in Ω × [0,Tmax).

Step 3: Tmax = ∞.

Adding the two equations in (9.45) we find

(u+ v)t−Δ(d1u+ d2v) = a+ b− u in Ω × [0,Tmax).

We multiply the above equality by (u+ v) and then integrate overΩ . We obtain

1
2

d
dt

∫
Ω
(u+ v)2dx+

∫
Ω
∇(d1u+ d2v) ·∇(u+ v)dx =

∫
Ω
(a+b−u)(u+ v)dx,

that is,

d
dt

∫
Ω
(u+ v)2dx+ 2

∫
Ω

[
d1|∇u|2 +(d1 + d2)∇u ·∇v+ d2|∇2

]
dx

= 2
∫
Ω
(a+b−u)(u+ v)dx.

(9.48)

Using the inequality

d1|∇u|2 +(d1 + d2)∇u ·∇v+ d2|∇v|2 ≥ d1

2
|∇u|2− d2

1 +d2
2

2d1
|∇v|2 in Ω ,

from (9.48) we find

d
dt

∫
Ω
(u+ v)2dx+

d1

2

∫
Ω
|∇u|2− d2

1 + d2
2

d1

∫
Ω
|∇v|2dx≤ 2

∫
Ω
(a+b−u)(u+ v)dx.

(9.49)

Next, we consider the second equation in (9.45) and we integrate it overΩ . We find

d
dt

∫
Ω

v2dx+2d2

∫
Ω
|∇v|2 = 2

∫
Ω
(b− upv)vdx≤ 2

∫
Ω
(b−mpv)vdx≤ b2

2mp |Ω |.
(9.50)
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We now multiply (9.50) with (d2
1 + d2

2)/(2d1d2) and add it to (9.49). We deduce

d
dt

∫
Ω

[
(u+ v)2 +

d2
1 + d2

2

2d1d2
v2

]
dx≤C1 + 2

∫
Ω
(a+b−u)(u+ v)dx,

where C1 depends on a,b,d1,d2,u0,v0 and |Ω |. Hence

d
dt

∫
Ω

[
(u+ v)2+

d2
1 + d2

2

2d1d2
v2

]
dx+ 2

∫
Ω
(u+ v)2dx≤C1 +2

∫
Ω
(a+b+ v)(u+ v)dx.

≤C2 +2‖a+b+ v‖2‖u+ v‖2

≤C2 +‖a+ b+ v‖2
2+‖u+ v‖2

2.

Using now the fact that v is bounded from above by M, we find(
1+

d
dt

)∫
Ω

[
(u+ v)2 +

d2
1 + d2

2

2d1d2
v2

]
dx≤C3,

for some constant C3 > 0 independent of Tmax. Integrating the above inequality we

now obtain ‖u+ v‖2 is bounded from above by a positive constant independent of

Tmax. Since v ≤ M in Ω × [0,Tmax) it follows that ‖u‖2 ≤ C for some constant C

independent of Tmax.

It remains now to apply Proposition 9.18 to deduce that supt ‖u(·, t)‖∞<∞ so by

(9.47) it follows that Tmax = ∞. This concludes the proof. �

9.3.2 A Priori Estimates

Using Theorem 1.1 we can establish various a priori estimates for solutions to

(9.46).

Lemma 9.19 Any solution (u,v) of (9.46) satisfies

a≤ u≤ a+ b+
d2b
d1ap in Ω , (9.51)

and

b

(
a+ b+

d2b
d1ap

)−p

≤ v≤ ba−p in Ω . (9.52)

Proof. Let x0 ∈ Ω be a minimum point of u. By Theorem 1.1(ii) it follows that

a− u(x0)+ up(x0)v(x0)≤ 0 which implies u(x0)≥ a. Hence

u≥ a in Ω . (9.53)
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At any maximum point of v we have b− upv≥ 0, that is, v≤ b/u−p. By (9.53) we

deduce

v≤ b
ap in Ω . (9.54)

Let w = d1u+d2v. Adding the first two relations in (9.46) we have

−Δw = a+ b− u in Ω ,
∂w
∂ν

= 0 on ∂Ω .

Let now x1 ∈Ω be a maximum point of w. According to Theorem 1.1(i) we deduce

a+ b− u(x1)≥ 0, that is, u(x1)≤ a+ b. By virtue of (9.54), for all x ∈Ω we have

d1u(x)≤ w(x)≤ w(x1)≤ d1(a+ b)+
d2b
ap in Ω .

This yields

u≤ a+ b+
d2b
d1ap in Ω . (9.55)

We have proved that u satisfies (9.51). Again by Theorem 1.1(ii), at minimum points

of v we have b− upv ≤ 0, which yields v ≥ b/up. Combining this inequality with

(9.55), we obtain the first estimate in (9.52). This concludes our proof. ��
From the estimates in Lemma 9.19 we derive the following.

Proposition 9.20 Let a,B,D1,D2 > 0 be fixed. Then, there exist two positive con-

stants C1,C2 > 0 depending on a,B,D1,D2 such that for all

0 < b < B, d1 > D1, 0 < d2 < D2,

any solution (u,v) of (9.46) satisfies

C1 ≤ u,v≤C2 in Ω .

Furthermore, by standard elliptic arguments and Lemma 9.19 we now obtain:

Proposition 9.21 Let a,B,D1,D2 > 0 be fixed. Then, for any positive integer k ≥ 1

there exists a constant

C =C(a,B,D1,D2,k,N,Ω) > 0

such that for all

0 < b < B, d1 > D1, 0 < d2 < D2,

any solution (u,v) of (9.46) satisfies
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‖u‖Ck(Ω) + ‖v‖Ck(Ω) ≤C.

In particular, any solution of (9.46) belongs to C∞(Ω)×C∞(Ω).

For any solution (u,v) of (9.46) we denote by ū and v̄ the average over Ω of u

respectively v, that is

ū =
1
|Ω |

∫
Ω

udx , v̄ =
1
|Ω |

∫
Ω

vdx.

Integrating in (9.46) we deduce

ū = a+ b and
∫
Ω

upvdx = b|Ω |. (9.56)

Let now

φ = u− ū, ψ = v− v̄.

Our next result provides energy estimates for φ and ψ .

Proposition 9.22 Let (u,v) be a nonconstant solution of (9.46). Then:

(i)
μ2

1

(2μ2
1 +2μ1 +1)

(d2

d1

)2 ≤ ‖∇φ‖2
2

‖∇ψ‖2
2

≤
(d2

d1

)2
,

(ii)
μ3

1

(μ1 +1)(2μ2
1 + 2μ1 + 1)

(d2

d1

)2 ≤ ‖∇φ‖2
2 +‖φ‖2

2

‖∇ψ‖2
2 +‖ψ‖2

2

≤ μ1 +1
μ1

(d2

d1

)2
.

Proof. (i) Adding the first two equations in (9.46) we obtain −Δ(d1u+ d2v) =

a+b−u in Ω , that is,

Δw = φ in Ω , (9.57)

where w = d1φ +d2ψ . Multiplying by φ in (9.57) and integrating overΩ we have∫
Ω
∇w∇φdx =−

∫
Ω
φ2dx,

which yields

d2

∫
Ω
∇φ∇ψdx =−

∫
Ω
φ2dx− d1

∫
Ω
|∇φ |2dx. (9.58)

Now from (9.58) we have

0≤
∫
Ω
|∇w|2dx =

∫
Ω
|∇(d1φ + d2ψ)|2

= d2
1

∫
Ω
|∇φ |2dx+ 2d1d2

∫
Ω
∇φ∇ψdx+d2

2

∫
Ω
|∇ψ |2dx

=−d2
1

∫
|∇φ |2dx− 2d2

∫
Ω
φ2dx+d2

∫
Ω
|∇ψ |2dx.
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This implies

d2
2

∫
Ω
|∇ψ |2dx− d2

1

∫
|∇φ |2dx≥ 0,

which proves the last estimate in (i). Next we multiply (9.57) by w and integrate

over Ω . We obtain ∫
Ω
|∇w|2dx =−

∫
Ω

wφdx,

that is,

d2
1

∫
|∇φ |2dx+2d1d2

∫
Ω
∇φ∇ψdx+d2

2

∫
Ω
|∇ψ |2dx =−d2

1

∫
Ω
φ 2dx−d1d2

∫
Ω
φψdx.

From (9.58) we have

d2
2

∫
Ω
|∇ψ |2dx = d2

1

∫
Ω
|∇φ |2dx+ d2

1

∫
Ω
φ2dx−d1d2

∫
Ω
φψdx.

On the other hand

−d1d2φψ ≤ d2
1

2μ1
φ2 +

μ1d2
2

2
ψ2,

where μ1 is the first positive eigenvalue of the negative Laplace operator in Ω sub-

ject to homogeneous Neumann boundary condition. Combining the last two esti-

mates we find

d2
2

∫
Ω
|∇ψ |2dx≤ d2

1

(
1+

1
2μ1

)∫
Ω
φ2dx+ d2

1

∫
Ω
|∇φ |2dx+

μ1d2
2

2

∫
Ω
ψ2dx.

(9.59)

By Poincaré’s inequality we have∫
Ω
φ2dx≤ 1

μ1

∫
Ω
|∇φ |2dx,

∫
Ω
ψ2dx≤ 1

μ1

∫
Ω
|∇ψ |2dx. (9.60)

Therefore, from (9.59) to (9.60) we now obtain

d2
2

∫
Ω
|∇ψ |2dx≤ d2

1(2μ2
1 + 2μ1 +1)

μ2
1

∫
Ω
|∇φ |2dx,

which completes the proof of (i).

(ii) The proof in this part follows directly from (i) together with the following

estimate which is a direct consequence of Poincaré’s inequality

μ1

μ1 +1
‖∇φ‖2

2

‖∇ψ‖2
2

≤ ‖∇φ‖2
2 + ‖φ‖2

2

‖∇ψ‖2
2 + ‖ψ‖2

2

≤ μ1 +1
μ1

‖∇φ‖2
2

‖∇ψ‖2
2

.

This finishes the proof. �
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9.3.3 Nonexistence of Nonconstant Steady States

Our first result in this part establishes that a nonconstant steady state may exist

only if the first eigenvalue μ1 of −Δ subject to Neumann boundary condition is

sufficiently small. We have:

Theorem 9.23 Let a,b,d1,d2 > 0 be fixed. Then, there exists L = L(a,b,d1,d2)> 0

such that system (9.2) has no nonconstant solutions if μ1 > L.

Proof. By Lemma 9.19, there exist two positive constants C1,C2 depending only on

a,b,d1,d2 such that any solution (u,v) of (9.2) satisfies

C1 ≤ u,v≤C2 in Ω . (9.61)

We first multiply by φ = u− ū in the first equation of (9.2) and integrate overΩ . By

(9.61) and Poincaré’s inequality we obtain

d1

∫
Ω
|∇φ |2dx =−

∫
Ω
φ2dx+

∫
Ω

upvφdx≤
∫
Ω

upvφdx

=

∫
Ω

upφψdx+ v̄
∫
Ω
(up− ūp)φdx

≤ c
∫
Ω
φψdx+ pv̄

∫
Ω
ξ p−1φ2dx (with ξ between u and ū)

≤ c1

∫
Ω
(|φ ||ψ |+

∫
Ω
φ2)dx≤ 2c1

∫
Ω
(φ2 +ψ2)dx

≤ 2c1

μ1

∫
Ω
(|∇φ |2 + |∇ψ |2)dx,

where c1,c2 depend only on C1,C2 from (9.61). Similarly we have

d2

∫
Ω
|∇ψ |2dx≤ c2

μ1

∫
Ω
(|∇φ |2 + |∇ψ |2)dx.

Adding the above two relations we find

min{d1,d2}
∫
Ω
(|∇φ |2 + |∇ψ |2)dx≤ C

μ1

∫
Ω
(|∇φ |2 + |∇ψ |2)dx, (9.62)

where C depends only on a,b,d1 and d2. From (9.62) it follows that if μ1 is large

enough then
∫
Ω |∇φ |2dx =

∫
Ω |∇ψ |2dx = 0, that is, u and v are constant functions.

This ends the proof. �
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Theorem 9.24 (i) Let a,b,d2 > 0 be fixed. Then, there exists D = D(a,b,d2) > 0

such that system (9.2) has no nonconstant solutions for all d1 > D.

(ii) Let a,d1,d2 > 0 be fixed. Then, there exists B = B(a,d1,d2)> 0 such that system

(9.2) has no nonconstant solutions for all 0 < b < B.

Proof. We first prove the following result.

Lemma 9.25 Let a,b,d2 > 0 be fixed and let {δn} ⊂ (0,∞) be such that δn → ∞ as

n→ ∞. If (un,vn) is a solution of (9.2) with d1 = δn then

un → a+ b , vn → b
(a+ b)p in C2(Ω) as n→ ∞.

Proof. By Proposition 9.21 the sequence {(un,vn)} is bounded in C3(Ω )×C3(Ω ).

Hence, passing to a subsequence if necessary, {(un,vn)} converges in C2(Ω)×
C2(Ω) to some (u,v)∈C2(Ω )×C2(Ω). We divide by δn in the corresponding equa-

tion to un and then we pass to the limit with n→ ∞. We obtain that (u,v) satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu = 0 in Ω ,

−d2Δv = b− upv in Ω ,

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω .

(9.63)

Also, un and u satisfy (9.56). Now, the first equation in (9.63) together with

∂u/∂ν = 0 on ∂Ω implies that u is a constant. Combining this fact with (9.56)

it follows that u≡ a+ b. Thus, from (9.63), v satisfies

−d2Δv = b− (a+ b)pv in Ω ,
∂v
∂ν

= 0 on ∂Ω .

Multiplying the above equality with b− (a+ b)pv and then integrating over Ω we

obtain

0≤ d1

(a+b)p

∫
Ω
|∇(b− (a+ b)pv)|2dx =−

∫
Ω
(b− (a+ b)pv)2dx≤ 0.

Hence v≡ b(a+b)−p and the proof of Lemma 9.25 is now complete. ��

We first introduce the function spaces

H2
n (Ω) =

{
w ∈W 2,2(Ω) :

∂w
∂ν

= 0

}
, L2

0(Ω) =

{
w ∈ L2(Ω) :

∫
Ω

wdx = 0

}
.
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Thus, letting w = u− (a+ b) and δ = 1/d1, by (9.56) and the standard elliptic

regularity theory, the system (9.2) is equivalent to⎧⎪⎪⎨
⎪⎪⎩
−Δu = δ (−b−w+(w+ a+ b)pv) in Ω ,

−d2Δv = b− (w+ a+ b)pv in Ω ,

w ∈ H2
n (Ω)∩L2

0(Ω), v ∈ H2
n (Ω).

(9.64)

Define

F : R× (H2
n (Ω)∩L2

0(Ω))×H2
n (Ω)→ L2

0(Ω)×L2(Ω),

by

F (δ ,w,v) =

⎛
⎝Δw+ δP(−w+(w+ a+ b)pv)

d2Δv+ b− (w+ a+ b)pv

⎞
⎠ ,

where P : L2(Ω) → L2
0(Ω) is the projection operator from L2(Ω) onto L2

0(Ω),

namely,

P(z) = z− 1
|Ω |

∫
z(x)dx, for all z ∈ L2(Ω).

Now (9.64) is equivalent to

F (δ ,w,v) = 0.

Indeed, if F (δ ,w,v) = 0, then

d2Δv+ b− (w+ a+ b)pv = 0 in Ω , v ∈ H2
n (Ω).

By integration, it is easy to see that the above relations imply b− (w+ a+ b)pv ∈
L2

0(Ω). Since w ∈ L2
0(Ω), this yields

−b−w+(w+ a+ b)pv ∈ L2
0(Ω),

so that

P(−w+(w+ a+ b)pv) =−b−w+ f (w+ a+ b)v.

Therefore (9.64) is satisfied.

With the same method as in the proof of Lemma 9.25 we have that the equation

F (0,w,v) = 0

has the unique solution (w,v) = (0,b(a+ b)−p). Also remark that
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D(w,v)F (0,0,b(a+ b)−p) : (H2
n (Ω)∩L2

0(Ω))×H2
n (Ω)→ L2

0(Ω)×L2(Ω),

is given by

D(w,v)F (0,0,b(a+ b)−p) =

⎛
⎝ Δ 0

− bp
(a+b)p d2Δ − (a+b)p

⎞
⎠ .

Thus D(w,v)F (0,0,b(a+ b)−p) is invertible and we are in the frame of the implicit

function theorem. It follows that there exist δ0,r > 0 such that (0,0,b(a+ b)−p) is

the unique solution of

F (δ ,w,v) = 0 in [0,δ0]×Br(0,b(a+ b)−p),

where Br(0,b(a+ b)−p) denotes the open ball in (H2
n (Ω)∩L2

0(Ω))×H2
n (Ω) cen-

tered at (0,b(a+b)−p) and having the radius r > 0.

Let now {δn} be a sequence of positive real numbers such that δn → ∞ as n→∞
and let (un,vn) be an arbitrary solution of (9.2) for a,b,d2 fixed and d1 = δn. Letting

wn = un− (a+b), it follows that

F
( 1
δn

,wn,vn

)
= 0.

According to Lemma 9.25 we have

(wn,vn)→ (0,b(a+ b)−p) in C2(Ω )×C2(Ω) as n→ ∞.

This means that for n ≥ 1 large enough there holds (1/δn,wn,vn) ∈ (0,δ0)×
Br(0,b(a+b)−p) which yields (wn,vn) = (0,b(a+b)−p). Hence, for d1 = 1/δn > 0

small enough, the system (9.2) has only the constant solution (a+ b,b(a+ b)−p).

The proof of (ii) is similar. �

9.3.4 Existence Results

Let

X =

{
w = (u,v) ∈C1(Ω)×C1(Ω) :

∂u
∂ν

=
∂v
∂ν

= 0 on ∂Ω
}

(9.65)
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and decompose

X =
⊕
k≥1

Xk, (9.66)

where Xk denotes the eigenspace corresponding to μk, k ≥ 1. Also consider

X+ = {(u,v) ∈ X : u,v > 0 in Ω}.

We write the system (9.2) in the form

−Δw = G (w) , w ∈X+, (9.67)

where

G (w) =

⎛
⎝

1
d1
(a− u+ upv)

1
d2
(b− upv)

⎞
⎠ .

It is more convenient to write (9.67) in the form

F (w) = 0 , w ∈ X+,

where

F (w) = w− (I−Δ)−1(G (w)+w) , w ∈ X+. (9.68)

Furthermore, at the uniform stationary steady state w0 we have

∇F (w0) = I− (I−Δ)−1(I+A),

where

A := ∇G (w0) =

⎛
⎜⎝

1
d1

(
bp

a+b − 1
)

(a+b)p

d1

− bp
d2(a+b) − (a+b)p

d2

⎞
⎟⎠ .

If ∇F (w0) is invertible, by [154, Theorem 2.8.1] the index of F at w0 is given

by

index(F ,w0) = (−1)γ , (9.69)

where γ denotes the number of the negative eigenvalues of ∇F (w0). On the other

hand, using the decomposition (9.66) we have that Xi is an invariant space under

∇F (w0) and ξ ∈ R is an eigenvalue of ∇F (w0) in Xi if and only if ξ is an eigen-

value of (μi +1)−1(μiI−A). Therefore,∇F (w0) is invertible if and only if for any

i≥ 0 the matrix (μiI−A) is invertible.
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Let us define

S(a,b,d1,d2,μ) = det(μI−A). (9.70)

Then, if μiI−A is invertible for any i≥ 0, we have

γ = ∑
i≥0, H(μi)<0

e(μi). (9.71)

A straightforward computation yields

S(a,b,d1,d2,μ) = μ2−
[ 1

d1

( bp
a+ b

− 1
)
− (a+ b)p

d2

]
μ+

(a+ b)p

d1d2
. (9.72)

If
bp

a+ b
>

(
1+

√
d1

d2
(a+ b)p

)2
, (9.73)

then the equation S(a,b,d1,d2,μ) = 0 has two positive solutions μ±(a,b,d1,d2)

given by

μ±(a,b,d1,d2) =
1
2

(
θ (a,b,d1,d2)±

√
θ (a,b,d1,d2)2− 4(a+ b)p

d1d2

)
,

where

θ (a,b,d1,d2) =
1
d1

( bp
a+ b

− 1
)
− (a+ b)p

d2
.

Our main existence result is the following.

Theorem 9.26 Assume that condition (9.73) holds and there exist i > j ≥ 0 such

that

(i) μi < μ+(a,b,d1,d2)< μi+1 and μ j < μ−(a,b,d1,d2)< μ j+1.

(ii) ∑i
k= j+1 ek is odd.

Then (9.2) has at least one nonconstant solution.

Proof. We follow a similar approach to that in the previous section. According

to Theorem 9.24 and the definition of S in (9.70) and (9.72), we can choose D > 0

large enough such that system (9.2) with diffusion coefficients D and d2 has no

nonconstant solutions and

S(a,b,D,d2,μ)> 0 for all μ ≥ 0. (9.74)
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Further, by Proposition 9.20 there exist C1,C2 depending on a,b,d1,d2 such that any

solution (u,v) of (9.2) with diffusion coefficients d and d2 (d ≥ d1) satisfies

C1 < u,v <C2 in Ω . (9.75)

We next consider

M = {(u,v) ∈C(Ω )×C(Ω) : C1 < u,v <C2 in Ω},

and define

H : M × [0,1]→C(Ω )×C(Ω),

by

H (w, t) = (I−Δ)−1

⎛
⎜⎝u+

(
1−t
d1

+ t
D

)
(a− u+ upv)

v+ 1
d1
(b−upv)

⎞
⎟⎠ .

Remark that H is a compact perturbation of the identity and by (9.75) we have

H (w) �= 0 on ∂M . Therefore, the Leray–Schauder degree deg(H ,M ,0) is well

defined.

Further, it is easy to see that solving (9.2) is equivalent to finding a fixed point of

H (·,1) in M . According to the above choice of δ we have that w0 is the only fixed

point of H (·,0). Furthermore by (9.74) we have

deg(I−H (·,0),M ,0) = index(I−H (·,0),w0) = 1. (9.76)

Using (9.68) we have I−H (·,1) = F . Thus, if (9.2) has no other solutions except

the constant one w0, then by (9.69)–(9.71) we have

deg(I−H (·,1),M ,0) = index(F ,w0) = (−1)∑
i
k= j+1 e(μk) =−1. (9.77)

On the other hand, from (9.76), (9.77) and the invariance of the Leray–Schauder

degree to the homotopy we deduce

1 = deg(I−H (·,0),M ,0) = deg(I−H (·,1),M ,0) =−1,

a contradiction. Therefore, there exists a nonconstant solution of (9.2). This finishes

the proof. �

Corollary 9.27 Let a,b,d2 > 0 be fixed. Assume that

b(p− 1)> a (9.78)
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and all the eigenvalues μi have odd multiplicity. Then, there exists a sequence of

intervals {(kn,Kn)}n with 0 < kn < Kn < kn−1 → 0 (as n → ∞) such that system

(9.2) has at least one nonconstant solution for all d1 ∈ ⋃
n≥1(kn,Kn).

Proof. In view of (9.78), condition (9.73) holds for small values of d1 > 0. Also for

a,b,d2 > 0 fixed we have

μ+(a,b,d1,d2)→ ∞ as d1 → 0,

and

μ−(a,b,d1,d2)→ (a+ b)p+1

d2(b(p− 1)− a)
as d1 → 0.

Therefore we can find a sequence of intervals {(kn,Kn)}n with 0 < kn < Kn <

kn−1 → 0 as n→ ∞ and such that

∑
i≥0,

μ−<μi<μ+

e(μi) is odd (9.79)

for all d1 ∈ ⋃
n≥1(kn,Kn). Now, conditions (i)–(ii) in Theorem 9.26 are fulfilled,

whence the conclusion of the corollary. �

Corollary 9.28 Let a,b,d1 > 0 be fixed. Assume that (9.78) holds and

∑
i≥0,

0<μi<
b(p−1)−a
d1(a+b)

e(μi) is odd. (9.80)

Then there exists D > 0 such that the steady-state system (9.2) has at least one

nonconstant solution for any d2 > D.

Proof. By virtue of (9.78), for any d2 > 0 large enough condition (9.73) holds. Also

for any a,b,d1 fixed we have

0 < μ−(a,b,d1,d2)< μ+(a,b,d1,d2)<
b(p− 1)− a

d1(a+b)

and

μ−(a,b,d1,d2)→ 0 , μ+(a,b,d1,d2)→ b(p− 1)− a
d1(a+b)

as d2 → ∞.

Therefore, for d2 > 0 large, condition (9.80) implies (i)–(ii) in Theorem 9.26. This

concludes the proof. �
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Corollary 9.29 Let a,b,d1,d2 > 0 be fixed such that 0< a+b≤ 1 and all the eigen-

values μi have odd multiplicity. Then, there exists a sequence of intervals {(pn,Pn)}n

with 0 < pn < Pn < pn+1 → ∞ (as n → ∞) such that system (9.2) has at least one

nonconstant solution for all p ∈⋃
n≥1(pn,Pn).

Proof. The proof is similar to that of Corollary 9.27. It relies on the fact that for

large values of p > 1 condition (9.73) holds and for a,b,d2 > 0 fixed we have

μ+(a,b,d1,d2)→ ∞ as p→ ∞,

and

μ−(a,b,d1,d2)→ 0 as p→ ∞.

�

9.4 Lengyel–Epstein Model

The Lengyel–Epstein model accounts for the chlorite–iodide–malonic acid and

starch reaction (CIMA) in an open unstirred gel reactor. There are five reactants

involved in the CIMA reaction, three of them having a slowly oscillating concen-

tration. In a first approach, one can assume that three of the concentrations remain

constant over the reaction process. Using this assumption, Lengyel and Epstein de-

duce the mathematical model of the CIMA reaction which, after a proper rescaling,

reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −Δu = a− u− 4uv
1+ u2 in Ω × (0,∞),

vt − dΔv = b

(
u− uv

1+ u2

)
in Ω × (0,∞),

u(x,0) = u0(x),v(x,0) = v0(x) on Ω ,

∂u
∂ν

(x, t) =
∂u
∂ν

(x, t) = 0 on ∂Ω × (0,∞),

(9.81)

where Ω ⊂ R
N (N ≥ 1), a,b,d > 0. Here u and v represent the concentrations of

iodide and chlorite ions respectively. The parameters a, b > 0 are related to the

feed concentrations and to experimentally determined rate constants. In our case,

a shift towards higher values of a represents an increase in the supply of malonic
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acid relative to the supply of the chloride dioxide, and increasing b corresponds to a

higher supply of iodine.

9.4.1 Global Solutions in Time

We are concerned in this section with the parabolic system (9.81). The main result

is the following.

Theorem 9.30 Assume that u0,v0 > 0 in Ω . Then, system (9.81) has a unique solu-

tion (u,v) which is global in time.

Furthermore we have

(i) There exist two constants C1,C2 > 0 depending only on a, u0 and v0 such that

C1 < u,v <C2 in Ω × (0,∞). (9.82)

(ii) limsupt→∞ ‖u(·, t)‖L∞(Ω) < a and limsupt→∞ ‖v(·, t)‖L∞(Ω) < a2 +1.

Proof. (i) The existence and uniqueness part follows once we exhibit an invariant

region for our system. To this aim, let

M1 = max{a,max
Ω

u0} , M2 = max{2+M2
1 ,max

Ω
v0}

m1 = min

{
a

1+ 4M2
,min
Ω

u0

}
, m2 = min

{
1
2
,min
Ω

v0

}
.

It is easily seen that the rectangle (m1,M1)× (m2,M2) is an invariant region with

respect to the vector field generated by (9.81). Therefore, there exists a unique solu-

tion (u,v) of (9.81) which is global in time. The two constants in (9.82) can now be

chosen as

C1 = min{m1,m2} , C2 = max{M1,M2}.

(ii) In view of (9.82), there exists ε > 0 such that

ε < 4uv/(1+ u2) in Ω × (0,∞)
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and let U be the unique global solution of{
Ut = a− ε−U in (0,∞),

U(0) = 2‖u0‖L∞(Ω),
(9.83)

that is,

U(t) = a− ε+ e−t
(

2‖u0‖L∞(Ω)− a+ ε
)
, t ≥ 0.

By the maximum principle we find u≤U in Ω × (0,∞) so

limsup
t→∞

‖u(·, t)‖L∞(Ω) ≤ lim
t→∞U(t) = a− ε < a.

The proof of the second part in (ii) is more involved. To this aim, let us fix m > 0

such that (a− ε)2 +m < a2 and define

H(U,V ) = sup
C1<ξ<U

ξ
(

1− V −m
1+ ξ 2

)
.

Let now V be the unique global solution of{
Vt = bH(U,V ) in (0,∞),

V (0) = 2‖v0‖L∞(Ω),
(9.84)

Let w = v−V . Then w satisfies⎧⎪⎪⎨
⎪⎪⎩
−wt +dΔw = b

[
H(U,V )−

(
u− uv

1+ u2

)]
in Ω × (0,∞),

∂w
∂ν

= 0 on ∂Ω × (0,∞).
(9.85)

We claim that w < 0 in Ω × (0,∞). This is clearly true for t = 0. Assume that w < 0

is not true in Ω × (0,∞). Then, using the fact that w(x,0) < 0 in Ω it follows that

there exists (x0, t0) ∈Ω × (0,∞) such that

w(x, t)< 0 in Ω × (0, t0) and w(x0, t0) = 0.

This yields

wt(x0, t0)≥ 0 and max
Ω

w(·, t0) = 0. (9.86)

Further, from the fact that v(x0, t0) =V (t0) we have
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H(U(x0, t0),V (x0, t0)) = sup
C1<ξ<U(x0,t0)

ξ
(

1− V (t0)−m
1+ ξ 2

)

> sup
C1<ξ<U(x0,t0)

ξ
(

1− v(x0, t0)
1+ ξ 2

)

> sup
C1<ξ<u(x0,t0)

ξ
(

1− v(x0, t0)
1+ ξ 2

)

≥ u(x0, t0)

(
1− v(x0, t0)

1+u2(x0, t0)

)
.

Combining this last estimate with (9.85) we find

−wt(x0, t0 + dΔw(x0, t0)> 0. (9.87)

Our analysis splits up into two distinct cases.

Case 1. x0 ∈Ω . From (9.86) we find Δw(x0, t0)≤ 0 so

−wt(x0, t0)+dΔw(x0, t0)≤ 0

which contradicts (9.87).

Case 2. x0 ∈ ∂Ω . Then, from (9.87) it follows that Δw(x0, t0) > 0 so there exists a

smooth open set ω ⊂Ω such that x0 ∈ ∂ω and w satisfies{
Δw(x, t0)≥ 0 ,w < 0 in ω ,

w(x0) = 0.

By Hopf’s boundary point lemma it follows now that

∂w
∂ν

(x0, t0)> 0

which contradicts the fact that the outer normal derivative ∂w/∂ν vanishes on ∂Ω×
(0,∞).

Hence, in both the above cases we raise a contradiction, which means that v <V

in Ω × (0,∞).
Let us now remark that

(U0,V0) = (a− ε,1+(a− ε)2+m)

is the unique equilibrium point of the ODE system (9.83)–(9.85). Also, the above

equilibrium point is asymptotically stable and so
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lim
t→∞V (t) = 1+(a− ε)2+m < 1+ a2.

The last estimates in (ii) follows now from the above relation and the fact that v <V

in Ω × (0,∞). This finishes our proof. �

9.4.2 Turing Instabilities

Remark that

(u,v) = (α,1+α2) ,α = a/5 (9.88)

is the only equilibrium state of (9.81). In this subsection we discuss the Turing

instability of (9.88). this occurs when (9.88) is unstable for (9.81) but stable for the

associated ODE system, that is⎧⎪⎪⎨
⎪⎪⎩

du
dt

= a− u− 4uv
1+ u2

dv
dt

= b

(
u− uv

1+ u2

)
.

(9.89)

As in the previous section, we first rewrite (9.81) in vectorial form as follows:

wt =

(
1 0
0 d

)
Δw+T (w) in Ω × (0,∞), (9.90)

where

w =

(
u
v

)
and T (w) =

[
a−u− 4uv

1+u2

bu− buv
1+u2

]
.

Denote by

0 = μ0 < μ1 ≤ μ2 ≤ ·· · ≤ μn < · · ·

the eigenvalues of −Δ with homogeneous Neumann boundary condition and by

m(μk) the multiplicity of μk, k≥ 0. Consider also the space X and its decomposition

as in (9.65) and (9.66).

The linearization of (9.90) at the uniform steady state w0 = (α,1+α2)T is

L : X→C(Ω)×C(Ω) , L =

(
1 0
0 d

)
Δ +T (w0).

Then Xk is invariant for L and ξk is an eigenvalue of L on Xk if and only if ξ is

an eigenvalue of the matrix
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Ak =

⎛
⎜⎝−μk +

3α2− 5
1+α2 − 4α

1+α2

2bα2

1+α2 −dμk− bα
1+α2

⎞
⎟⎠ .

Further,

det(Ak) = dμk

(
μk− 3α2− 5

1+α2

)
+

bα
1+α2 (μk +5),

Tr(Ak) =−(1+ d)μk− (b+ 4)α
1+α2 < 0.

If μ1 ≥ (3α2− 5)/(1+α2) then det(Ak)> 0 for all k≥ 0.

If μ1 < (3α2− 5)/(1+α2), then let p ≥ 1 be the largest positive integer such

that

0 = μ0 < μ1 ≤ μ2 ≤ ·· · ≤ μp <
3α2− 5
1+α2 ≤ μp+1 ≤ μp+2 ≤ . . . .

and let

D =
bα

1+α2 min
1≤k≤p

μk +5
3α2−5
1+α2 − μk

. (9.91)

Following a similar approach to that in Theorems 9.3 and 9.5 we find:

Theorem 9.31 Assume bα > 3α2− 5.

(i) If one of the following holds:

(i1) μ1 ≥ (3α2− 5)/(1+α2).

(i2) μ1 < (3α2− 5)/(1+α2) and d < D.

then the uniform steady state (9.88) is asymptotically stable.

(ii) If μ1 < (3α2−5)/(1+α2) and d > D then (9.88) is stable for the ODE system

(9.89) but unstable for (9.81), so Turing instabilities occur.

Proof. Remark first that condition bα > 3α2− 5 is equivalent to the stability of

(9.88) for the ODE system (9.89).

(i) both conditions (i1) and (i2) imply tr(Ak) < 0 <det(Ak) for all k ≥ 0 so the

spectrum of the linearized operator L lies in the region {z ∈ C : Re(z) < −c},
where c > 0 is a positive real number. By standard methods (see e.g. Theorem 5.1.1.

in [110, Theorem 5.11]) it follows that (9.88) is asymptotically stable for (9.81).

(ii) Let k≥ 1 be the index that achieves the minimum in (9.91). Then det(Ak)< 0

which by Corollary 5.1 in [110] implies that (9.88) is unstable for (9.81). This con-

cludes the proof. �
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9.4.3 A Priori Estimates for Stationary Solutions

In this section we shall be concerned with the steady state system corresponding to

(9.81), that is, ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu = a− u− 4uv
1+ u2 in Ω ,

−dΔv = b

(
u− uv

1+ u2

)
in Ω ,

∂u
∂ν

(x) =
∂u
∂ν

(x) = 0 on ∂Ω .

(9.92)

Using Theorem 1.1 we have:

Lemma 9.32 Any solution (u,v) of (9.46) satisfies

a
5+ 4a2 < u < a in Ω , (9.93)

and

1+

(
a

5+ 4a2

)2

< v < 1+ a2 in Ω . (9.94)

For any solution (u,v) of (9.46) we denote by ū and v̄ the average over Ω of u

respectively v. Then, by integrating the two equations in (9.92) we find ū = a.

Let now

φ = u− ū, ψ = v− v̄.

Our next result provides energy estimates for φ and ψ .

Proposition 9.33 Let (u,v) be a nonconstant solution of (9.46). Then:

(i)
∫
φψ > 0 and

∫
∇φ ·∇ψ > 0;

(ii)
3d2μ2

1

b2(3μ2
1 +15μ1+ 20)

≤ ‖∇φ‖2
2

‖∇ψ‖2
2

≤ 16d2

b2 ;

(iii)
μ3

1

(μ1 +1)(2μ2
1 + 2μ1 + 1)

(d2

d1

)2 ≤ ‖∇φ‖2
2 +‖φ‖2

2

‖∇ψ‖2
2 +‖ψ‖2

2

≤ μ1 +1
μ1

(d2

d1

)2
.

Proof. (i) From (9.92) we have

−Δ(bu− 4dv) = b(a− 5u) =−5bφ in Ω . (9.95)

We next multiply this equality by bu− 4dv and integrate over Ω . We obtain∫
|∇(bu− 4dv)|2 =−5b

∫
φ(bu− 4dv) =−5b2

∫
φ2 +20bd

∫
φψ .
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This yields ∫
φψ ≥ b

4d

∫
φ2 > 0. (9.96)

We now multiply (9.95) by φ and integrate over Ω . We have

−5b
∫
φ2 =

∫
∇φ∇(bu− 4dv) = b

∫
|∇φ |2−4d

∫
∇φ∇ψ ,

so

4d
∫
∇φ∇ψ = 5b

∫
φ2 + b

∫
|∇φ |2 > 0. (9.97)

(ii) We multiply (9.95) by bu− 4dv and integrate over Ω . Using (9.97) we find

16d2
∫
|∇ψ |2 = b2

∫
|∇φ |2 + 5b2

∫
φ2 + 20bd

∫
φψ

≤ b2
∫
|∇φ |2 + 5b2

∫
φ2 + 20bd

(
b

3dμ1

∫
φ2 +

3dμ1

4d

∫
ψ2

)

= b2
∫
|∇φ |2 +

(
5b2 +

4b2

3μ1

)∫
φ2 +15d2μ1

∫
ψ2.

Next, by Poincaré’s inequality (9.60) we derive

16d2
∫
|∇ψ |2 ≤

[
b2 +

1
μ1

(
5b2 +

4b2

3μ1

)]∫
|∇φ |2 +15d2

∫
|∇ψ |2,

so ∫
|∇ψ |2 ≤ b2(3μ2

1 + 15μ1 + 20)

3μ2
1

∫
|∇φ |2,

which implies the first inequality in (ii). For the second inequality in (ii) we start

from

0≤
∫
|∇(bu− 4dv)|2 = 16d2

∫
|∇ψ |2− 10b2

∫
φ2−b2

∫
|∇φ |2,

which yields

16d2
∫
|∇ψ |2− b2

∫
|∇φ |2 ≥ 0,

and so
‖∇φ‖2

2

‖∇ψ‖2
2

≤ 16d2

b2 .

(iii) By Poincaré’s inequality we find

μ1

μ1 +1
‖∇φ‖2

2

‖∇ψ‖2
2

≤ ‖∇φ‖2
2 + ‖φ‖2

2

‖∇ψ‖2
2 + ‖ψ‖2

2

≤ μ1 +1
μ1

‖∇φ‖2
2

‖∇ψ‖2
2

.
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It only remains to use (ii) and the above estimates to deduce (iii). This finishes the

proof. �

9.4.4 Nonexistence Results

Theorem 9.34 (i) Let a,b > 0 be fixed. Then, there exists D = D(a,b,μ1)> 0 such

that if 0 < d < D then (9.92) has no nonconstant solutions.

(ii) Let a,d > 0, then there exists B = B(a,d,μ1) > 0 such that (9.92) has no

nonconstant solutions if b > B.

Proof. Assume that (u,v) is a nonconstant solution of (9.92). Let us first multiply

by ψ in the second equation of (9.92). Integrating overΩ we find

d
∫
|∇ψ |2 =

∫
φψ−

∫
uv

1+ u2ψ

=

∫
φψ−

∫ (
uv

1+ u2 −
uv̄

1+ u2

)
ψ−

∫ (
uv̄

1+u2 −
ūv̄

1+ ū2

)
ψ

=

∫
φψ−

∫
u

1+ u2ψ
2 +

∫
(uū−1)v̄

(1+ u2)(1+ ū2)
ψ .

From Theorem 9.32, there exist C1,C2 > 0 depending on a such that

d
∫
|∇ψ |2a≤C1

∫
|φ ||ψ |−C2

∫
ψ2.

By Poincaré’s inequality and Theorem 9.33(ii) we now derive

d
∫
|∇ψ |2 ≤C1

(
C2

C1

∫
ψ2 +

C1

4C2

∫
φ2

)
−C2

∫
|ψ |2

=
C2

1

4C2

∫
φ2 ≤ C2

1

4C2μ1

∫
|∇φ |2

≤ C
μ1

16d2

b2

∫
|∇ψ |2,

where C > 0 depends only on a. This last inequality yields

d
∫
|∇ψ |2 ≤ C

μ1

16d
b2

∫
|∇ψ |2.

Now, it is clear that if d is small or b > 0 is large enough the above inequality

implies ψ =const so u and v are both constant solutions, which contradicts our

assumption. �
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Theorem 9.35 Assume that a≤ 5
√

3 and

b
d
>

8a
5
− 25

a
.

Then, (9.92) has no nonconstant solutions.

Proof. Let (u,v) be a nonconstant solution of (9.92). We multiply the first equation

in (9.92) by (1+ u2)φ and integrate over Ω . We obtain∫
∇φ∇(φ + u2φ) =

∫
(a− u)(1+ u2)φ −4

∫
uvφ ,

and hence∫
(1+2uφ+ u2)|∇φ |2 =

∫
(a− u)φ+

∫
(a−u)u2φ −4

∫
uvφ

=−
∫
φ2 +

∫
(a− u)u2φ −4

∫
uvφ .

(9.98)

Remark that

1+2uφ+ u2 = 3u2− 2a
5

u+ 1
∫
(a−u)u2φ =

∫ (
−u2 +

4a
5

u+
4a2

25

)
φ2

∫
uvφ =

∫ (
u− a

5

)
vφ +

a
5

∫
vφ =

∫
vφ2 +

a
5
φψ .

Thus, from (9.98) we find

∫ (
3u2− 2a

5
u+1

)
|∇φ |2 =

∫ (
−u2 +

4a
5

u+
4a2

25
−1

)
φ2−4

∫
vφ2+

4a
5

∫
φψ .

From Theorem 9.33 we have v≥ 1 in Ω so

∫ (
3u2− 2a

5
u+1

)
|∇φ |2 =

∫ (
−u2 +

4a
5

u+
4a2

25
−5

)
φ2 +

4a
5

∫
φψ . (9.99)

We next use the fact that

3u2− 2a
5

u+ 1≥ 1− a2

75
, −u2 +

4a
5

u+
4a2

25
≤ 8a2

25
.

Also, from (9.96) we find
4a
5

∫
φψ ≥ ab

5d

∫
φ2.
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Using all these estimates in (9.99) we now obtain(
1− a2

75

)∫
|∇φ |2 ≤

(
8a2

25
− 5− ab

5d

)∫
φ2.

It is now clear that under the condition on a,b and d stated in theorem 9.35 the left-

hand side of the above inequality is positive while the right-hand side is negative,

which is a contradiction. �

9.4.5 Existence

We first formulate the steady state system (9.92) in a framework in which the Leray–

Schauder degree theory can be easily applied. Remark first that (9.92) is equivalent

to

F (w) = w− (I−Δ)−1(G (w)+w) , w ∈ X+,

where

G (w) =

⎡
⎣ a− u− 4uv

1+u2

b
d (u− uv

1+u2 )

⎤
⎦ .

Further, if w0 is the uniform steady state defined in (9.88), then

∇F (w0) = I− (I−Δ)−1(I+A),

where

A := ∇G (w0) =
1

1+α2

⎛
⎝3α2−5 −4α

− 2bα2

d − bα
d

⎞
⎠ .

If ∇F (w0) is invertible, then the index of F at w0 is given by

index(F ,w0) = (−1)γ , (9.100)

where γ denotes the number of negative eigenvalues of ∇F (w0).

To better quantify the index of F at w0, let us introduce

P(a,b,d,μ) = det(μI−A).

Then, it is easy to see that ∇F (w0) is invertible if and only if μkI−A is invertible

for all k ≥ 0, that is
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P(a,b,d,μk) �= 0 for all k ≥ 0.

Remark now that

P(a,b,d,μ) = μ2−
(3α2− 5

1+α2 −
bα

d(1+α2)

)
μ+

5bα3

d(1+α2)
.

Therefore, if

3α2− 5 >
bα
d

+ 2

√
5bα

d
(1+α2), (9.101)

then the equation P(a,b,d,μ) = 0 has exactly two positive solutions μ±(a,b,d)
given by

μ±(a,b,d) =
1
2

[
σ2±

√
σ2− 20bα

d(1+α2)

]
,

where

σ =
3α2− 5
1+α2 −

bα
d(1+α2)

.

Our main existence result is the following.

Theorem 9.36 Assume that condition (9.101) holds and there exist i > j ≥ 0 such

that

(i) μi < μ+(a,b,d)< μi+1 and μ j < μ−(a,b,d)< μ j+1.

(ii) ∑i
k= j+1 m(μk) is odd.

Then (9.92) has at least one nonconstant solution.

The next results that follow from Theorem 9.36 show that the Turing patterns

may occur in the Lengyel–Epstein model (9.81) provided a,1/b and d are large.

Corollary 9.37 Let b,d > 0 be fixed. Assume that all the eigenvalues μk have odd

multiplicity. Then, there exists a sequence of intervals {(an,An)}n with 0 < an <

An < an+1 → ∞ (as n → ∞) such that system (9.92) has at least one nonconstant

solution for all a ∈⋃
n≥1(an,An).

Proof. Note first that for large values of a > 0 condition (9.101) is satisfied. Further,

since

μ+(a,b,d)→ ∞ as a→ ∞,

and

μ−(a,b,d)→ ∞ as a→ ∞,
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one can find a sequence of intervals {(an,An)}n as in the statement of Corollary 9.38

such that

∑
k≥0,

μ−<μk<μ+

m(μk) is odd (9.102)

for all a ∈ ⋃
n≥1(an,An). The conclusion follows now from Theorem 9.36. �

Corollary 9.38 Let d > 0 , a > 5
√

15
3 be fixed and assume that

∑
k≥0,

0<μk<
3α2−5
1+α2

e(μi) is odd. (9.103)

Then, there exists B > 0 such that the steady-state system (9.92) has at least one

nonconstant solution for any 0 < b < B.

Proof. It is easy to see that (9.101) holds for small values of b > 0. Also

0 < μ−(a,b,d)< μ+(a,b,d)<
3α2−5
1+α2

and

μ−(a,b,d)→ 0 , μ+(a,b,d)→ 3α2−5
1+α2 as b→ ∞.

Therefore, for b > 0 small enough, conditions (i) and (ii) in Theorem 9.36 are satis-

fied. �

Corollary 9.39 Let a > 5
√

15
3 , b > 0 be fixed and assume that (9.103) holds. Then

there exists D > 0 such that the steady-state system (9.92) has at least one noncon-

stant solution for any d > D.

Proof. First, let us remark that for large d > 0 condition (9.101) holds. Also for any

a,b fixed we have

0 < μ−(a,b,d)< μ+(a,b,d)<
3α2−5
1+α2

and

μ−(a,b,d)→ 0 , μ+(a,b,d)→ 3α2−5
1+α2 as d → ∞.

Therefore, for d > 0 large, conditions (9.103) and (i)–(ii) in Theorem 9.36 are ful-

filled. This implied the existence of a nonconstant solution for large d > 0. �
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Combining Corollary 9.39 with Theorem 9.35 we now obtain

Corollary 9.40 Let b > 0 be fixed.

(i) If 0 < a≤ 5
√

15
3 and 0 < d

b <
√

15
25 then (9.92) has no nonconstant solutions.

(ii) If a > 5
√

15
3 and (9.103) holds, then there exists D > 0 such that (9.92) has at

least one nonconstant solution for all d > D.



Chapter 10
Pattern Formation and the Gierer–Meinhardt
Model in Molecular Biology

Mathematics is a part of physics.
Physics is an experimental science, a
part of natural sciences. Mathematics
is the part of physics where
experiments are cheap.

Vladimir Arnold (1937– 2010)

10.1 Introduction

In 1972 Gierer and Meinhardt [98] proposed a mathematical model for pattern for-

mation of spatial tissue structures in morphogenesis, a biological phenomenon dis-

covered by Trembley [196] in 1744. The mechanism behind the Gierer–Meinhardt’s

model is based on the existence of two chemical substances: a slowly diffusing ac-

tivator and a rapidly diffusing inhibitor. The ratio of their diffusion rates is assumed

to be small.

The model introduced by Gierer and Meinhardt reads as⎧⎪⎨
⎪⎩

ut = d1Δu−αu+ cρ
up

vq +ρ0ρ in Ω × (0,T ),

vt = d2Δv−βv+ c′ρ ′
ur

vs in Ω × (0,T ),
(10.1)

subject to Neumann boundary conditions in a smooth bounded domainΩ . Here the

unknowns u and v stand for the concentration of activator and inhibitor with the

source distributions ρ and ρ ′ respectively. In system (10.1), d1, d2 are the diffu-

sion coefficients and α,β ,c,c′,ρ0 are positive constants. The exponents p,q,r,s > 0

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9 10, c© Springer-Verlag Berlin Heidelberg 2012

337
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verify the relation

qr > (p− 1)(s+ 1)> 0.

The model introduced by Gierer and Meinhardt has been used with satisfactory

quantitative results for modelling the head regeneration process of hydra, an animal

of a few millimeters in length, consisting of 100,000 cells of about 15 different types

and having a polar structure.

The Gierer–Meinhardt system originates in the Turing one [197] introduced in

1952 as a mathematical model for the development of complex organisms from a

single cell. It has been emphasized that localized peaks in concentration of chem-

ical substances, known as inducers or morphogenesis, could be responsible for a

group of cells developing differently from the surrounding cells. Turing discovered

through linear analysis that a large difference in relative size of diffusivities for ac-

tivating and inhibiting substances carries instability of the homogeneous, constant

steady state, thus leading to the presence of nontrivial, possibly stable stationary

configurations.

A global existence result for a more general system than (10.1) is given in the

recent paper of Jiang [112]. It has also been shown that the dynamics of the system

(10.1) exhibit various interesting behaviors such as periodic solutions, unbounded

oscillating global solutions, and finite time blow-up solutions. We refer the reader

to Ni, Suzuki, and Takagi [150] for a description of the dynamics concerning the

system (10.1).

Many works have been devoted to the study of the steady-state solutions of

(10.1), that is, solutions of the stationary system⎧⎪⎨
⎪⎩

d1Δu−αu+ cρ
up

vq +ρ0ρ = 0 in Ω ,

d2Δv−βv+ c′ρ ′
ur

vs = 0 in Ω ,
(10.2)

subject to Neumann boundary conditions. The main difficulty in the treatment of

(10.2) is the lack of variational structure. Another direction of research is to consider

the shadow system associated to (10.2), an idea due to Keener [114]. This system is

obtained by dividing by d2 in the second equation and then letting d2 → ∞. It has

been shown that nonconstant solutions of the shadow system associated to (10.2)

exhibit interior or boundary concentrating points. Among the large number of works
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in this direction we refer the interested reader to [151–153], [204], [205] as well as

to the survey papers of Ni [148], [149].

In the following, new features of Gierer–Meinhardt type systems are emphasized.

More exactly, we shall be concerned with systems of the type⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δu−αu+
up

vq +ρ(x) = 0, u > 0 in Ω ,

Δv−βv+
ur

vs = 0, v > 0 in Ω ,

u = 0, v = 0 on ∂Ω ,

(10.3)

in a smooth bounded domain Ω ⊂ R
N (N ≥ 1). Here u and v represent the concen-

tration of the activator and inhibitor and ρ ∈ C0,γ(Ω ) (0 < γ < 1) represents the

source distribution of the activator. We assume that ρ ≥ 0 in Ω , ρ �≡ 0 and α,β
are nonnegative real numbers. The case ρ ≡ 0 is more delicate and involves a more

careful analysis of the Gierer–Meinhardt system. This situation has been analyzed

in the recent works [38], [39], [150], [153], [204], [205].

We are mainly interested in the case where the activator and inhibitor have dif-

ferent source terms, that is, (p,q) �= (r,s).

Let us notice that the homogeneous Dirichlet boundary condition in (10.3) (in-

stead of Neumann’s one as in (10.2)) turns the system singular in the sense that the

nonlinearities up

vq and ur

vs become unbounded around the boundary.

The existent results in the literature for (10.3) concern the case of common

sources of the concentrations, that is, (p,q) = (r,s). If p = q = r = s = 1 and ρ ≡ 0,

the system (10.3) was studied in Choi and McKenna [38]. In Kim [116], [117] it

is studied the system (10.3) with p = r and q = s. In the case of common sources,

a decouplization of the system is suitable in order to provide a priori estimates for

the unknowns u and v. More precisely, if p = r and q = s then, subtracting the two

equations in (10.3) and letting w = u− v we get the equivalent form⎧⎪⎨
⎪⎩
Δw−αw+(β −α)wv+ρ(x) = 0 in Ω ,

Δv−βv+
(v+w)p

vq = 0 in Ω ,

v = w = 0 on ∂Ω .

(10.4)

Thus, the study of system (10.3) amounts to the study of (10.4) in which the first

equation is linear. This is more suitable to derive upper and lower barriers for u and

v (see [38], [116], [117]). For more applications of the decouplization method in
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the context of elliptic systems we refer the reader to [118]. We also mention here

the paper of Choi and McKenna [39] where the existence of radially symmetric

solutions in the case p = r > 1, q = 1, s = 0 andΩ = B1 ⊂R
2 is discussed. In [39],

a priori bounds for concentrations u and v are obtained through sharp estimates for

the associated Green’s function.

In our case, such a decouplization is not possible due to the fact that (p,q) �=(r,s).

In order to overcome this, we shall exploit the boundary behavior of solutions of

single singular equations associated to system (10.3). In turn, this approach requires

uniqueness or suitable comparison principles for single singular equations that come

from our system. These features are usually associated with nonlinearities having a

sublinear growth and that is why we restrict our attention to the case p < 1. Our re-

sults extend those presented in [94], [93] and give precise answers to some questions

raised in Choi and McKenna [38], [39] and Kim [116], [117]. Also the approach

we give here enables us to deal with various type of exponents. For instance, we

shall consider the case p < 0 (see Theorems 10.15 and 10.16) which means that the

nonlinearity in the first equation of (10.3) is singular in both its variables u and v.

Furthermore, these results can be successfully applied to treat the case −1 < s ≤ 0

(see Remark 26).

We are interested in the following range of exponents

−∞< p < 1,

q,r,s > 0 and s≥ r− 1. (10.5)

In our approach we do not require any order relation between the nonnegative

numbers α and β . Also we do not impose any growth condition on the source dis-

tribution ρ(x) of the activator. A major role in our analysis will be played by the

number

σ = min

{
1,

2+ r
1+ s

}
. (10.6)

10.2 Some Preliminaries

Throughout this section ‖ · ‖∞ denotes the L∞(Ω) norm. Also we denote by λ1 and

ϕ1 the first eigenvalue and the first normalized eigenfunction of −Δ in H1
0 (Ω) with

‖ϕ1‖∞ = 1. As is well known, ϕ1 ∈C2(Ω), ϕ1 > 0 inΩ , and there exists C > 0 such
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that

C d(x)≤ ϕ1 ≤ 1
C

d(x) in Ω . (10.7)

We also recall the following useful result which is due to Lazer and McKenna.

Lemma 10.1 (Lazer and McKenna [130])
∫
Ω ϕτ1 dx < ∞ if and only if τ >−1.

Proposition 10.2 Let 0 ≤ p < 1, 0 < q < p+ 1 and a ∈ C0,γ(Ω) (0 < γ < 1) be

such that

a1ϕ−q
1 (x)≤ a(x)≤ a2ϕ−q

1 (x) in Ω , (10.8)

for some a1,a2 > 0. Then, the problem⎧⎨
⎩
Δu−αu+ a(x)up+ρ(x) = 0 in Ω ,
u > 0 in Ω ,
u = 0 on ∂Ω ,

(10.9)

has a unique solution u∈C2(Ω)∩C(Ω ). Moreover, there exist m1,m2 > 0 such that

m1ϕ1 ≤ u≤ m2ϕ1 in Ω . (10.10)

Proof. Let w be the unique solution of⎧⎨
⎩
Δw−αw+ρ(x) = 0 in Ω ,
w > 0 in Ω ,
w = 0 on ∂Ω .

(10.11)

By standard elliptic arguments and the maximum principle we have w ∈ C2(Ω ).

Obviously u := w is a subsolution of (10.9). Furthermore, by virtue of (10.7) we can

find c1,c2 > 0 such that

c1ϕ1 ≤ w≤ c2ϕ1 in Ω . (10.12)

Since q < p+1, by a result in Wei [206], there exists h ∈C2(0,1)∩C1[0,1] such

that ⎧⎨
⎩
−h′′(t) = t−qhp(t), for all 0 < t < 1,
h > 0 in (0,1),
h(0) = h(1) = 0.

Using the fact that h′(0)> 0 we have

c3t ≤ h(t)≤ c4t, (10.13)

for t > 0 small enough and for some c3,c4 > 0. Furthermore, we may find c > 0

such that h′(cϕ1)> 0 in Ω .
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We are looking for a supersolution of (10.9) in the form u := Mh(cϕ1)+w, for

M > 1 large enough. For this purpose we have to check that the inequality −Δu+

αu≥ a(x)up +ρ(x) holds in Ω provided that M > 1 is sufficiently large.

We have

−Δu+αu≥−Δ(Mh(cϕ1))+ρ(x)

= Mc2−qϕ−q
1 hp(cϕ1)|∇ϕ1|2 +Mλ1cϕ1h′(cϕ1)+ρ(x) in Ω .

(10.14)

By (10.13) we may write

−Δu+αu≥Mc2+p−qcp
3ϕ

p−q
1 |∇ϕ1|2 +Mλ1cϕ1h′(cϕ1)+ρ(x) in Ω . (10.15)

On the other hand, by (10.8), (10.12) and (10.13) we have

a(x)up ≤ a2ϕ
−q
1 (Mh(cϕ1)+w)p ≤ a2ϕ

p−q
1 (Mcc4 + c2)

p in Ω . (10.16)

Using Hopf’s maximum principle, there exist ω ⊂⊂Ω and δ > 0 such that

|∇ϕ1|> δ in Ω \ω and ϕ1 > δ in ω . (10.17)

Since 0≤ p < 1, we may choose M > 1 such that

Mc2+p−qcp
3δ

2 > a2(Mcc4 + c2)
p, (10.18)

Mλ1cmin
ω
ϕ1h′(cϕ1)≥ a2(Mcc4 + c2)

p max
ω
ϕ p−q

1 . (10.19)

Combining (10.15), (10.16) and (10.18) we obtain

−Δu+αu≥Mc2+p−qcp
3ϕ

p−q
1 |∇ϕ1|2+ρ(x)≥ a(x)up+ρ(x) in Ω \ω . (10.20)

Furthermore, by (10.15), (10.16) and (10.19) we deduce

−Δu+αu≥Mλ1cϕ1h′(cϕ1)+ρ(x)≥ a(x)up +ρ(x) in ω . (10.21)

Now the claim follows by (10.20) and (10.21). Thus, the problem (10.9) has a solu-

tion u ∈C2(Ω)∩C(Ω ) such that u≤ u≤ u in Ω . By (10.12) and (10.13) we obtain

the estimate (10.10). This also implies that

C1ϕ
p−q
1 ≤ a(x)up ≤C2ϕ

p−q
1 in Ω ,
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for some C1,C2 > 0. Since p− q > −1, by Lemma 10.1 we get a(x)up ∈ L1(Ω)

which finally yields Δu ∈ L1(Ω). Now the uniqueness follows by Theorem 1.2.

This concludes the proof of Proposition 10.2. �

We next consider the problem⎧⎨
⎩
Δv−βv+ a(x)v−s+ b(x) = 0 in Ω ,
v > 0 in Ω ,
v = 0 on ∂Ω ,

(10.22)

where a ∈C0,γ(Ω) (0 < γ < 1) satisfies

a1ϕr
1(x)≤ a(x)≤ a2ϕr

1(x) in Ω , (10.23)

for some a1,a2 > 0 and r ∈ R. We also assume that b ∈C0,γ(Ω), β ≥ 0 and s > 0.

For convenience, let us introduce Γs,r : (0,∞)→ (0,∞) defined by

Γs,r(t) =

⎧⎨
⎩

t , if s < r+1,
t(1+ | logt|)1/(1+s) , if s = r+ 1,
t(2+r)/(1+s) , if s > r+ 1,

(10.24)

for all r >−2 and s > 0. It is easy to see that

Γs,r(t)≥ tσ for all t > 0, (10.25)

where σ is defined in (10.6). Moreover, for all m > 0 there exists m1,m2 > 0 such

that

m1Γs,r(t)≤ Γs,r(mt)≤ m2Γs,r(t) for all t > 0. (10.26)

Proposition 10.3 (i) If r ≤−2 then the problem (10.22) has no classical solutions.

(ii) If r >−2 then the problem (10.22) has a unique solution u ∈C2(Ω)∩C(Ω ).

Moreover, there exist c1,c2 > 0 such that

c1Γr,s(ϕ1)≤ v≤ c2Γr,s(ϕ1) in Ω . (10.27)

A general nonexistence result for singular elliptic equations with unbounded po-

tentials can be found in [66]. Also a nonexistence result in the case b ≡ 0, β = 0

and r ≤ −2 is presented in [214]*Theorem 1.2. Concerning the existence part in

Proposition 10.3, a similar result can be found in [107] in the case b≡ 0, β = 0 and

r ≥ 0. We shall give here a different proof which relies on a direct construction of a

sub and supersolution. This will provide the estimate (10.27).
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Proof. (i) Assume that there exist r≥−2 and v∈C2(Ω)∩C(Ω) a classical solution

of (10.22). For 0 < ε < 1 consider the problem⎧⎨
⎩
Δz−β z+ a1(ϕ1 + ε)r(z+ ε)−s = 0 in Ω ,
z > 0 in Ω ,
z = 0 on ∂Ω .

(10.28)

Obviously, z = 0 is a subsolution and z = v is a supersolution of (10.28). Hence, for

all 0< ε < 1 there exists zε ∈C2(Ω ) a solution of (10.28) such that 0< zε ≤ v inΩ .

Multiplying by ϕ1 in (10.28) and then integrating overΩ we get

(β +λ1)

∫
Ω

zεϕ1dx = a1

∫
Ω
ϕ1(ϕ1 + ε)r(zε + ε)−sdx.

Since zε ≤ v in Ω , the above equality yields

(β +λ1)
∫
Ω

vϕ1dx≥ a1(1+ ‖v‖∞)−s
∫
Ω
ϕ1(ϕ1 + ε)rdx.

This implies ∫
ω
ϕ1(ϕ1 + ε)rdx < M for all ω ⊂⊂Ω ,

where M > 0 does not depend on ε . Passing to the limit with ε → 0 in the above

inequality we find
∫
ω ϕ

1+r
1 dx < M, for all ω ⊂⊂ Ω , that is,

∫
Ω ϕ

1+r
1 dx < ∞. Since

r ≥−2, the last inequality contradicts Lemma 10.1. Therefore, the problem (10.22)

has no classical solutions if r ≥−2.

(ii) Let r > −2 and s ≥ r− 1. According to [189]*Theorem 1, there exists H ∈
C2(0,1)∩C[0,1] such that⎧⎨

⎩
−H ′′(t) = trH−s(t), for all 0 < t < 1,
H > 0 in (0,1),
H(0) = H(1) = 0.

(10.29)

Since H is concave, there exists H ′(0+) > 0. Hence, taking 0 < η < 1 sufficiently

small, we can assume that H ′ > 0 in (0,η). From [189]*p. 904 (see also Theorem

3.5 in [66]), there exist c1,c2 > 0 such that

c1Γs,r(t)≤ H(t)≤ c2Γs,r(t) in (0,η). (10.30)

As a consequence of (10.30) and the fact that s≥ r− 1 we derive

H(t)s+1 ≤ c3tr in (0,η), (10.31)
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for some positive constant c3 > 0. Let c > 0 be such that cϕ1 < η in Ω . We claim

that we can find 0 < m < 1 small enough such that v := mH(cϕ1) satisfies

2βv1+s ≤ a(x) in Ω and −Δv≤ 1
2

a(x)v−s in Ω . (10.32)

Then, from (10.32) we deduce

Δv−βv+ a(x)v−s ≥ 0 in Ω , (10.33)

that is, v is a subsolution of (10.22).

By virtue of (10.23) and (10.31) we have

2βv1+s = 2βm1+sH1+s(cϕ1)≤ 2βm1+sc3(cϕ1)
r ≤ 2βm1+scrc3

a1
a(x) in Ω .

Let us chose now m > 0 such that 2βm1+scrc3 < a1. This concludes the first in-

equality in (10.32).

In order to establish the second inequality in (10.32), a straightforward computa-

tion yields

−Δv =−mc2|∇ϕ1|2H ′′(cϕ1)+mλ1cϕ1H ′(cϕ1)

= mc2+rϕr
1|∇ϕ1|2H−s(cϕ1)+mλ1cϕ1H ′(cϕ1)

= m1+sc2+rϕr
1|∇ϕ1|2v−s +mλ1cϕ1H ′(cϕ1) in Ω .

(10.34)

Since H ′ is decreasing on (0,η), it follows that tH ′(t) ≤ H(t) for all t ∈ (0,η).
Furthermore, from (10.31) we deduce

cϕ1H ′(cϕ1)≤ H(cϕ1)≤ c3(cϕ1)
rH−s(cϕ1) in Ω . (10.35)

Combining (10.34) and (10.35), for 0 < m < 1 we obtain

−Δv≤ m1+sc2+rϕr
1|∇ϕ1|2v−s +mλ1crc3ϕr

1H−s(cϕ1)

≤ mc2+rϕr
1|∇ϕ1|2v−s +mλ1crc3ϕr

1v−s

= mcrϕr
1v−s(c2|∇ϕ1|2 + c3λ1)

≤ mcr

a1
(c2‖∇ϕ1‖2

∞+ c3λ1)a(x)v
−s in Ω .
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Now, it suffices to choose 0 < m < 1 such that mcr

a1
(c2‖∇ϕ1‖2

∞+ c3λ1) <
1
2 . This

establishes the second inequality in (10.32) and the fact that v is a subsolution of

(10.22).

Next we provide a supersolution v of (10.22) such that v ≤ v in Ω . To this aim

we first claim that there exists M > 1 large enough such that z := MH(cϕ1) satisfies

Δz+ a(x)z−s ≤ 0 in Ω . (10.36)

As before we have

Δz =−M1+sc2+rϕr
1|∇ϕ1|2z−s−Mλ1cϕ1H ′(cϕ1) in Ω . (10.37)

Let ω ⊂⊂ Ω and δ > 0 be such that (10.17) holds and let us consider M > 1

such that

M1+sc2+rδ 2 > a2, (10.38)

M1+scλ1 min
ω
ϕ1H ′(cϕ1)≥ a2 max

ω
ϕr

1H−s(cϕ1). (10.39)

Then, as in the proof of Proposition 10.2, by (10.17) and (10.38)–(10.39) we get

Δz+a(x)z−s ≤−M1+sc2+rϕr
1|∇ϕ1|2z−s +a(x)z−s

≤−M1+sc2+rδ 2ϕr
1z−s + a2ϕr

1z−s

=−
(

M1+sc2+rδ 2− a2

)
ϕr

1z−s ≤ 0 in Ω \ω ,

and

Δz+a(x)z−s ≤−Mλ1cϕ1H ′(cϕ1)+a(x)z−s

≤−Mλ1cϕ1H ′(cϕ1)+a2ϕr
1z−s

=− 1
Ms

(
M1+scλ1ϕ1H ′(cϕ1)−a2ϕr

1H−s(cϕ1)
)

≤ 0 in ω .

Hence, we have obtained the inequality in (10.36).

Let w̃ ∈C2(Ω ) be the unique solution of⎧⎨
⎩
Δ w̃−β w̃+ b(x) = 0 in Ω ,
w̃ > 0 in Ω ,
w̃ = 0 on ∂Ω .

Then v := z+ w̃ satisfies v > 0 in Ω , v = 0 on ∂Ω and by (10.36) we have
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Δv−βv+ a(x)v−s + b(x)≤ Δz−β z+a(x)z−s ≤ 0 in Ω .

Hence, v is a supersolution of (10.22) and clearly we have v ≤ v in Ω . It follows

that problem (10.22) has a classical solution v ∈C2(Ω)∩C(Ω ) such that v≤ v≤ v

in Ω .

On the other hand, since w̃ ∈C2(Ω), we deduce that there exists c̃1 > 0 such that

w̃ ≤ c̃1ϕ1 in Ω . This implies w̃ ≤ c̃2Γs,r(ϕ1) in Ω , for some c̃2 > 0. Finally, using

the last inequality, the definition of v,v and (10.30), we get the estimate (10.27).

The uniqueness of the solution follows by Corollary 1.3. This finishes the proof of

Proposition 10.3. �

10.3 Case 0≤ p < 1

10.3.1 Existence

The main existence result in this case is the following:

Theorem 10.4 Assume that 0 ≤ p < 1, qσ < p+ 1 and q,r,s satisfy (10.5). Then

the system (10.3) has at least one classical solution and there exist c1,c2 > 0 such

that any solution (u,v) of (10.3) satisfies the following estimates in Ω :

c1d(x)≤ u≤ c2d(x) in Ω ,

and

c1d(x)≤ v≤ c2d(x) if s < r+ 1,

c1d(x)(1+ | lnd(x)|)1/(1+s) ≤ v≤ c2d(x)(1+ | lnd(x)|)1/(1+s) if s = r+ 1,

c1d(x)(2+r)/(1+s) ≤ v≤ c2d(x)(2+r)/(1+s) if s > r+ 1,

where d(x) = dist(x,∂Ω).

Proof. Let 0 < ε0 < 1 and set

Ωε := {x ∈Ω : d(x)> ε}, for all 0 < ε < ε0. (10.40)

For ε0 small enough, Ωε remains a smooth domain. The existence of a solution to

(10.3) will be proved by considering the approximated system
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⎪⎪⎪⎪⎩

Δu−αu+
up

vq +ρ(x) = 0, u > 0 in Ωε ,

Δv−βv+
ur

vs = 0, v > 0 in Ωε ,

u = ε, v = Γs,r(ε) on ∂Ωε .

(10.41)

The existence of a classical solution to (10.41) is obtained by using the

Schauder’s fixed point theorem. For 0 < ε < ε0 and m1,m2 < 1 < M1,M2 con-

sider

A =

⎧⎪⎪⎨
⎪⎪⎩(u,v) ∈C(Ωε )×C(Ωε) :

m1ϕ1 ≤ u≤M1ϕ1 in Ωε ,

m2Γs,r(ϕ1)≤ v≤M2Γs,r(ϕ1) in Ωε ,

u = ε, v = Γs,r(ε) on ∂Ωε

⎫⎪⎪⎬
⎪⎪⎭ .

Next, we define the mapping T : A →C(Ωε)×C(Ωε) as follows. For (u,v) ∈
A we set

T (u,v) = (Tu,T v), (10.42)

where Tu and T v satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Δ(Tu)−α(Tu)+

(Tu)p

vq +ρ(x) = 0, Tu > 0 in Ωε ,

Δ(T v)−β (Tv)+
ur

(T v)s = 0, T v > 0 in Ωε ,

Tu = ε, T v = Γs,r(ε) on ∂Ωε .

(10.43)

Using the definition of A , by the sub and supersolution method combined with

Theorem 1.2 and Corollary 1.3, the above system has a unique solution (Tu,T v)

with Tu,T v ∈ C2(Ωε). Basic to our approach are the following two results which

allows us to apply Schauder’s fixed point theorem.

Lemma 10.5 There exist m1 < 1 < M1 and m2 < 1 < M2 which are independent of

ε such that T (A )⊆A , for all 0 < ε < ε0.

Proof. Let w ∈ C2(Ω ) be the unique solution of problem (10.11). In view of

(10.7) and (10.12) we have

w(x)≤ c2ϕ1 ≤ c2

C
d(x) =

c2

C
ε on ∂Ωε .

Hence, if δ1 = min{1, C
c2
} then δ1w≤ ε on ∂Ωε . Furthermore,

Δ(Tu)−α(Tu)+ρ(x)≤ 0≤ Δ(δ1w)−α(δ1w)+ρ(x) in Ωε ,



10.3 Case 0≤ p < 1 349

Tu = ε ≥ δ1w on ∂Ωε .

By the maximum principle, we obtain Tu ≥ δ1w in Ωε . In view of (10.12), let us

choose m1 = δ1c1 in the definition of A (where c1 is the constant in (10.12)). Then,

(10.12) combined with the last estimates yields

Tu≥ m1ϕ1 in Ωε . (10.44)

From the second equation in (10.43) and the fact that u≥ m1ϕ1 in Ωε we have

Δ(T v)−β (Tv)+
mr

1ϕr
1

(T v)s ≤ 0 in Ωε . (10.45)

Let us consider the problem⎧⎨
⎩
Δξ −βξ +ϕr

1ξ
−s = 0 in Ω ,

ξ > 0 in Ω ,
ξ = 0 on ∂Ω .

(10.46)

Using Proposition 10.3 (ii), there exists ξ ∈ C2(Ω)∩C(Ω ) a unique solution of

(10.46) with the additional property

c3Γs,r(ϕ1)≤ ξ ≤ c4Γs,r(ϕ1) in Ω , (10.47)

for some c3,c4 > 0. Moreover, by (10.47), (10.7) and the property (10.26) of Γs,r we

can find c5,c6 > 0 such that

c5Γs,r(d(x)) ≤ ξ ≤ c6Γs,r(d(x)) in Ω . (10.48)

Let δ2 = min{1,mr/(1+s)
1 , 1

c6
}. Then

Δ(δ2ξ )−β (δ2ξ )+mr
1ϕ

r
1(δ2ξ )−s ≥ δ2

(
Δξ −βξ +ϕr

1ξ
−s

)
= 0 in Ω ,

(10.49)

and by (10.48) we have

δ2ξ ≤ δ2c6Γs,r(d(x)) ≤ Γs,r(ε) on ∂Ωε . (10.50)

Therefore, from (10.45), (10.49) and (10.50) we have obtained

Δ(T v)−β (Tv)+mr
1ϕ

r
1(T v)−s ≤ 0≤ Δ(δ2ξ )−β (δ2ξ )+mr

1ϕ
r
1(δ2ξ )−s in Ω ,

T v = Γs,r(ε)≥ δ2ξ on ∂Ωε .
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By Corollary 1.3 it follows that Tv≥ δ2ξ inΩε . In view of (10.47), the last inequal-

ity leads us to Tv≥ δ2c3Γs,r(ϕ1) in Ωε . Thus, we consider

m2 = min{1,δ2c3}> 0

in the definition of the set A . Note that m2 is independent of ε and T v≥m2Γs,r(ϕ1)

in Ωε .
The definition of A and (10.25) yield

v≥ m2Γs,r(ϕ1)≥ m2ϕσ1 in Ωε .

Using the estimate v≥ m2ϕσ1 in the first equation of (10.43) we get

Δ(Tu)−α(Tu)+m−q
2 ϕ−qσ

1 (Tu)p +ρ(x)≥ 0 in Ωε . (10.51)

As above, we next consider the problem⎧⎨
⎩
Δζ −αζ +m−q

2 ϕ−qσ
1 ζ p +ρ(x) = 0 in Ω ,

ζ > 0 in Ω ,
ζ = 0 on ∂Ω .

(10.52)

Since qσ < p+ 1, by Proposition 10.2 there exists ζ ∈ C2(Ω)∩C(Ω) a unique

solution of (10.52) such that

c7ϕ1 ≤ ζ ≤ c8ϕ1 in Ω , (10.53)

for some c7,c8 > 0. Note that qσ < p+ 1, (10.53) and Lemma 10.1 imply Δζ ∈
L1(Ω). Let A1 = max{1, 1

Cc7
}. Then

Δ(A1ζ )−α(A1ζ )+m−q
2 ϕ−qσ

1 (A1ζ )p +ρ(x)≤ 0 in Ωε .

Also by (10.7) and (10.53) we have

A1ζ ≥ A1c7ϕ1 ≥ A1Cc7d(x)≥ ε on ∂Ωε .

Define

Ψ(x, t) =−αt +m−q
2 ϕ−qσ

1 (x)(A1t)p +ρ(x), (x, t) ∈Ωε × (0,∞).

ThenΨ satisfies the hypotheses in Theorem 1.2 and
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Δ(A1ζ )+Ψ(x,A1ζ )≤ 0≤ Δ(Tu)+Ψ(x,Tu) in Ωε ,

Tu,A1ζ > 0 in Ωε , Tu = ε ≤ A1ζ on Ωε ,

Δ(A1ζ ) ∈ L1(Ωε).

By Theorem 1.2 it follows that Tu ≤ A1ζ in Ωε . In view of (10.53), let us take

M1 := max{1,A1c8} in the definition of the set A . Then M1 does not depend on ε
and by (10.53) we have

Tu≤M1ϕ1 in Ωε .

The definition of A yields u ≤ M1ϕ1 in Ωε . Then, the second equation of system

(10.43) produces

Δ(T v)−β (Tv)+
Mr

1ϕr
1

(T v)s ≥ 0 in Ωε . (10.54)

Let A2 = max{1,Mr
1,

1
c5
}. If ξ is the unique solution of (10.46), then

Δ(A2ξ )−β (A2ξ )+Mr
1ϕ

r
1(A2ξ )−s ≤ 0 in Ωε ,

and, by (10.48) we also have

A2ξ ≥ A2c5Γs,r(d(x))≥ Γs,r(ε) on ∂Ωε .

Therefore, by Corollary 1.3 it follows that T v ≤ A2ξ in Ωε . Now, we take M2 :=

max{1,A2c4} in the definition of the set A . It follows that M2 is independent of ε
and, by virtue of (10.47), we obtain Tv≤M2Γs,r(ϕ1) in Ωε . This finishes the proof

of our Lemma 10.5. �

Lemma 10.6 The mapping T : A →A defined in (10.42)–(10.43) is compact and

continuous.

Proof. Let us fix (u,v) ∈A . Then u,v,Tu and T v are bounded away from zero

in Ωε which yields∥∥∥∥ (Tu)p

vq

∥∥∥∥
L∞(Ωε )

,

∥∥∥∥ ur

(T v)s

∥∥∥∥
L∞(Ωε )

≤ cε = c(ε,m1,m2,M1.M2, p,q,r,s).

Hence, by Hölder estimates, for all τ > N we obtain

‖Tu‖W2,τ (Ωε ),‖Tv‖W2,τ (Ωε ) ≤ c1,ε ,
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for some c1,ε > 0 independent of u and v. Since the embedding W 2,τ(Ωε) ↪→
C1,γ(Ωε) , 0 < γ < 1−N/τ is compact, we derive that the mapping T : A →
A ⊂C(Ωε )×C(Ωε) is also compact.

It remains to prove that T is continuous. To this aim, let {(un,vn)}n≥1 ⊂A be

such that un → u and vn → v in C(Ωε) as n→ ∞. Since T is compact, there exists

(U,V ) ∈A such that up to a subsequence we have

T (un,vn)→ (U,V ) in A as n→ ∞.

Using the L∞(Ωε ) bounds of
(
(Tun)

p

vq
n

)
n≥1

and
(

ur
n

(T vn)s

)
n≥1

, it follows that (Tun)n≥1

and (T vn)n≥1 are bounded in W 2,τ(Ωε) for all τ > N. As before, this implies that

(Tun)n≥1 and (T vn)n≥1 are bounded in C1,γ (Ωε) (0 < γ < 1− N/τ). Next, by

Schauder estimates, it follows that (Tun)n≥1 and (T vn)n≥1 are bounded in C2,γ(Ωε ).

Since C2,γ (Ωε) is compactly embedded in C2(Ωε), we deduce that up to a subse-

quence, we have that

Tun →U and T vn →V in C2(Ωε ) as n→ ∞.

Passing to the limit in (10.43) we get that (U,V ) satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΔU−αU +
U p

vq +ρ(x) = 0, U > 0 in Ωε ,

ΔV −βV +
ur

V s = 0, V > 0 in Ωε ,

U = ε, V = Γs,r(ε) on ∂Ωε .

Using the uniqueness of (10.43), it follows that Tu =U and T v =V . Thus, we have

obtained that any subsequence of {T (un,vn)}n≥1 has a subsequence converging to

T (u,v) in A . But this implies that the entire sequence {T (un,vn)}n≥1 converges

to T (u,v) in A , whence the continuity of T . The proof of Lemma 10.6 is now

complete. �

We now come back to the proof of Theorem 10.4. According to Lemmas 10.5

and 10.6 we are now in position to apply Schauder’s fixed point theorem. Thus,

for all 0 < ε < ε0, there exists (uε ,vε) ∈ A such that T (uε ,vε ) = (uε ,vε). By

standard elliptic regularity arguments, we deduce uε ,vε ∈C2(Ωε). Therefore, for all

0 < ε < ε0 we have proved the existence of a solution (uε ,vε) ∈C2(Ωε )×C2(Ωε)

of system (10.41). Next, we extend uε = ε , vε = Γs,r(ε) in Ω \Ωε . Furthermore, by
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the definition of A we have

m1ϕ1 ≤ uε ≤M1ϕ1 + ε ≤M1ϕ1 + ε0 in Ω , (10.55)

m2Γs,r(ϕ1)≤ vε ≤M2Γs,r(ϕ1)+Γs,r(ε)≤M1ϕ1 + cε0 in Ω . (10.56)

As above, L∞ bounds together with Hölder estimates yield (uε)0<ε<ε0 ,(vε )0<ε<ε0

are bounded in W 2,τ
loc (Ω), for all τ > N. With similar arguments, there exist u,v ∈

C2(Ω) such that for all ω ⊂⊂ Ω , (uε)0<ε<ε0 and (vε)0<ε<ε0 converge up to a sub-

sequence to u and v respectively in C2(ω) as ε→ 0. Passing to the limit with ε→ 0

in (10.41) and (10.55)–(10.56) we get⎧⎪⎨
⎪⎩
Δu−αu+

up

vq +ρ(x) = 0 in Ω ,

Δv−βv+
ur

vs = 0 in Ω ,

and

m1ϕ1 ≤ u≤M1ϕ1 in Ω , (10.57)

m2Γs,r(ϕ1)≤ v≤M2Γs,r(ϕ1) in Ω . (10.58)

Now, we extend u = v = 0 on ∂Ω . From (10.57) and (10.58) we deduce that u,v ∈
C(Ω). Hence, the system (10.3) has a classical solution (u,v).

It remains to establish the boundary estimates of the solution to (10.3). This

follows essentially by using the same arguments as above. Let (u,v) be an ar-

bitrary solution of (10.3). Then Δu− αu + ρ(x) ≤ 0 in Ω which implies that

u ≥ w in Ω , where w is the unique solution of (10.11). By (10.12) it follows that

u ≥ c1ϕ1 in Ω . Using this inequality in the second equation of (10.3) we deduce

Δv−βv+ c2ϕr
1v−s ≤ 0 in Ω for some c2 > 0 (we actually have c2 = cr

1 > 0). Next,

let ξ be the unique solution of (10.46). A similar argument to that used in before

yields v≥ c3ξ in Ω . In view of estimate (10.27) in Proposition 10.3 we derive that

v≥ c4Γs,r(ϕ1) in Ω for some c4 > 0. According to (10.25) it follows that v≥ c5ϕσ1
in Ω . This inequality combined with the first equation in system (10.3) produces

Δu−αu+ c6ϕ−qσ
1 up +ρ(x)≥ 0 in Ω .

Consider the problem⎧⎨
⎩
Δz−αz+ c6ϕ−qσ

1 zp +ρ(x) = 0 in Ω ,
z > 0 in Ω ,
z = 0 on ∂Ω .

(10.59)



354 10 Pattern Formation and the Gierer–Meinhardt Model in Molecular Biology

Since qσ < p+1, by Proposition 10.2 there exists a unique solution of (10.59) such

that z≤ c7ϕ1 in Ω . Thus, by Theorem 1.2 we get u≤ z≤ c7ϕ1 in Ω . Using this last

inequality in the second equation of (10.3) we finally obtain Δv−βv+c8ϕr
1v−s ≥ 0

in Ω for some c8 > 0. By virtue of Proposition 10.3 we have v ≤ c9Γs,r(ϕ1) in Ω .

Thus, we have obtained

m1ϕ1 ≤ u≤ m2ϕ1 in Ω ,

m1Γs,r(ϕ1)≤ u≤ m2Γs,r(ϕ1) in Ω ,

for some fixed constants m1,m2 > 0. Now, the boundary estimates in Theorem

10.4 follows from the above inequalities combined with (10.7). This concludes the

proof. �

10.3.2 Further Results on Regularity

Further regularity of the solution to (10.3) can be obtained using the same arguments

as in Gui and Lin [107]. More precisely, it is proved in [107] that if u ∈ C2(Ω)∩
C(Ω) satisfies −Δu = u−ν in a smooth bounded domain Ω and u = 0 on ∂Ω , then

u ∈C1,1−ν(Ω ). Using the conclusion in Theorem 10.4 we have

Corollary 10.7 Assume that 0≤ p < 1 and q,r,s satisfy (10.5).

(i) If q ≤ p and s ≤ r, then the system (10.3) has at least one classical solution.

Moreover, any solution of (10.3) belongs to C2(Ω)×C2(Ω ).

(ii) If −1 < p−q < 0 and −1 < r− s < 0, then the system (10.3) has at least one

classical solution. Moreover, any solution (u,v) of (10.3) satisfies u ∈C2(Ω)∩
C1,1+p−q(Ω ) and v ∈C2(Ω)∩C1,1+r−s(Ω ).

Proof. Let (u,v) be a classical solution of (10.3). We rewrite the system (10.3)

in the form

Δu = f1(x) in Ω , Δv = f2(x) in Ω , u = v = 0 on ∂Ω ,

where

f1(x) = αu(x)− up(x)
vq(x)

−ρ(x), f2(x) = βv(x)− ur(x)
vs(x)

, for all x ∈Ω .
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Note that in our settings we have σ = 1 in (10.6) and by virtue of Theorem 10.4

there exist c1,c2 > 0 such that c1d(x)≤ u,v≤ c2d(x) in Ω . Hence,

| f1(x)| ≤ m1d p−q(x)+ρ(x) in Ω and | f2(x)| ≤ m2dr−s(x) in Ω . (10.60)

(i) Since 0≤ p−q and 0≤ r−s, by (10.60) we get f1, f2 ∈L∞(Ω). Next, standard

elliptic arguments lead us to u,v ∈C2(Ω).

(ii) Let us assume that −1 < p− q < 0 and −1 < r− s < 0. From (10.60) we

derive

| f1(x)| ≤ cd p−q(x) in Ω and | f2(x)| ≤ cdr−s(x) in Ω ,

for some positive constant c > 0.

If N = 1 then, for all x1,x2 ∈Ω we have

|u′(x1)−u′(x2)| ≤
∣∣∣∣
∫ x2

x1

| f1(t)|dt

∣∣∣∣≤ c

∣∣∣∣
∫ x2

x1

d p−q(t)dt

∣∣∣∣≤ c̃|x1− x2|1+p−q,

where c̃ > 0 does not depend on x1, x2 . This yields u ∈C1,1+p−q(Ω ) and similarly

v ∈C1,1+r−s(Ω ).

If N ≥ 2, the conclusion follows exactly in the same way as in [107]. More pre-

cisely, let G denote the Green’s function for the Laplace operator. Then for all x∈Ω
we have

u(x) =
∫
Ω

G (x,y) f1(y)dy, v(x) =
∫
Ω

G (x,y) f2(y)dy,

and

∇u(x) =
∫
Ω

Gx(x,y) f1(y)dy, ∇v(x) =
∫
Ω

Gx(x,y) f2(y)dy.

Then, for all x1,x2 ∈Ω , x1 �= x2 we have

|∇u(x1)−∇u(x2)| ≤
∫
Ω
|Gx(x1,y)−Gx(x2,y)|| f1(y)|dy

≤ c
∫
Ω
|Gx(x1,y)−Gx(x2,y)|d p−q(y)dy,

and similarly

|∇v(x1)−∇v(x2)| ≤ c
∫
Ω
|Gx(x1,y)−Gx(x2,y)|dr−s(y)dy.
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From now on, we need only to employ the sharp estimates given in [107, Theorem

1.1] in order to obtain u∈C1,1+p−q(Ω) and v∈C1,1+r−s(Ω ). This finishes the proof

of Corollary 10.7. �

10.3.3 Uniqueness of a Solution

The issue of uniqueness is a delicate matter even in one dimension. In this case the

system (10.3) reads⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′ −αu+
up

vq +ρ(x) = 0 in (0,1),

v′′ −βv+
ur

vs = 0 in (0,1),

u(0) = u(1) = 0, v(0) = v(1) = 0.

(10.61)

In [38] it is proved that the system (10.61) has a unique solution provided that

p = q = r = s = 1. The main idea is to write (10.61) as a linear system with smooth

coefficients and then to use the C2[0,1]×C2[0,1] regularity of the solution. This

approach has been used in [94] (see also [95] or [93, Theorem 2.7]) in the case

β ≤ α , 0 < q≤ p≤ 1 and r− p = s− q≥ 0.

We are able to show that the uniqueness of the solution to (10.61) still holds

provided that

− 1 < p− q < 1, −1 < r− s < 1. (10.62)

Note that for the above range of exponents, the solutions of (10.61) do not necessar-

ily belong to C2[0,1]×C2[0,1]. We prove that a C1+δ -regularity up to the boundary

of the solution suffices in order to have uniqueness. Therefore, we prove

Theorem 10.8 Let Ω = (0,1), 0 ≤ p < 1 and q,r,s > 0 verify (10.62). Then the

system (10.61) has a unique classical solution.

Unlike the Neumann boundary condition, in which large multiplicities of solu-

tions are observed, the uniqueness in the above result seems to be a particular feature

of the Dirichlet boundary condition together with the sublinear character of the first

equation in the system (10.61).

Proof. Let (u,v) be a classical solution of (10.61). Then, by virtue of Corollary

10.7, we have
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u,v ∈C2[0,1]×C2[0,1] if 0≤ p− q, 0≤ r− s,

and

u ∈C2(0,1)∩C1,1+p−q[0,1], v ∈C2(0,1)∩C1,1+r−s[0,1],

if −1 < p−q < 0,−1 < r− s < 0. Furthermore, by Hopf’s maximum principle we

also have that u′(0)> 0, v′(0)> 0, u′(1)< 0 and v′(1)< 0.

Assume that there exist (u1,v1) and (u2,v2) two different solutions of (10.61).

First we claim that we cannot have u2 ≥ u1 or v2 ≥ v1 in [0,1]. Assume by con-

tradiction that u2 ≥ u1 in [0,1]. Then

v′′2−βv2 +
ur

2

vs
2
= 0 = v′′1−βv1 +

ur
1

vs
1

in (0,1),

and by Corollary 1.3 we get v2 ≥ v1 in [0,1]. This implies that

u′′1−αu1 +
up

1

vq
2
+ρ(x)≤ 0 = u′′2−αu2 +

up
2

vq
2
+ρ(x) in (0,1). (10.63)

On the other hand, the mapping Ψ(x, t) = −αt + t p

vq
2(x)

+ ρ(x), (x, t) ∈ (0,1)×
(0,∞) satisfies the hypotheses in Theorem 1.2. Hence u2 ≤ u1 in [0,1], that is u1 ≡
u2. This also implies v1 ≡ v2, which is a contradiction. Replacing u1 by u2 and v1

by v2, we also get that the situation u1 ≥ u2 or v1 ≥ v2 in [0,1] is not possible.

Set U = u2− u1 and V = v2− v1. From the above arguments, both U and V

change sign in (0,1). The key result in our approach is the following.

Proposition 10.9 U and V vanish only at finitely many points in the interval [0,1].

Proof. Subtracting the corresponding equations for (u1,v1) and (u2,v2) we obtain

the following linear problem{
W′′(x)+A(x)W(x) = 0 in (0,1),
W(0) = W(1) = 0,

(10.64)

where W = (U,V )T and A(x) = (Ai j(x))1≤i, j≤2 is a 2× 2 matrix defined as

A11(x) =−α+

⎧⎪⎪⎨
⎪⎪⎩

1
vq

2(x)
· up

2(x)− up
1(x)

u2(x)− u1(x)
, u1(x) �= u2(x)

p
up−1

1 (x)

vq
1(x)

, u1(x) = u2(x)
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A12(x) =

⎧⎪⎪⎨
⎪⎪⎩
− up

1(x)

vq
1(x)v

q
2(x)

· vq
2(x)− vq

1(x)

v2(x)− v1(x)
, v1(x) �= v2(x)

−q
up

1(x)

vq+1
1 (x)

, v1(x) = v2(x)

A21(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
vs

2(x)
· ur

2(x)− ur
1(x)

u2(x)− u1(x)
, u1(x) �= u2(x)

r
ur−1

1 (x)

vs
1(x)

, u1(x) = u2(x)

A22(x) =−β −

⎧⎪⎪⎨
⎪⎪⎩

ur
1(x)

vs
1(x)v

s
2(x)

· vs
2(x)− vs

1(x)
v2(x)− v1(x)

, v1(x) �= v2(x)

s
ur

1(x)

vs+1
1 (x)

, v1(x) = v2(x).

Lemma 10.10 We have

(i) Ai j ∈C(0,1), for all 1≤ i, j ≤ 2.

(ii) A12(x) �= 0 and A21(x) �= 0 for all x ∈ (0,1).

(iii) d1−(p−q)(x)A1 j ∈ L∞(0,1) and d1−(r−s)(x)A2 j ∈ L∞(0,1), for j = 1,2.

Proof. The claims in (i) and (ii) are easy to verify. We prove only the statement

in (iii). To this aim, let us notice first that by the regularity of solutions, there exist

c1,c2 > 0 such that

c1d(x)≤ ui,vi ≤ c2d(x) in (0,1), 1≤ i≤ 2. (10.65)

By (10.65) and the fact that

|aq−bq| ≤ q|a− b|max{aq−1,bq−1} for all a,b > 0,

we have

d(x)|A12(x)| ≤ qd(x)
up

1(x)

vq
1(x)v

q
2(x)

max{vq−1
1 (x),vq−1

2 (x)}

≤ qd p−q(x)

(
u1(x)
d(x)

)p

max

{(
d(x)
v1(x)

)q+1

,

(
d(x)
v2(x)

)q+1
}

≤ cd p−q(x) for all 0 < x < 1.

Hence d1−(p−q)(x)A12 ∈ L∞(0,1). We obtain similar estimates for d1−(p−q)(x)A11

and d1−(r−s)(x)A2 j, j = 1,2. This concludes the proof. �
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Next, Lemma 10.10 (i)–(ii) allows us to employ the following result which is

proved in [38, Lemma 7].

Lemma 10.11 (see [38]) Let 0 < a < b < 1 and A = (Ai j)1≤i, j≤2 be such that

(i) Ai j ∈C[a,b], for all 1≤ i, j ≤ 2.

(ii) A12(x) �= 0 and A21(x) �= 0 for all x ∈ [a,b].

Assume that there exists W = (U,V )T ∈C2[a,b]×C2[a,b] such that W �≡ 0 and

W′′(x) +A(x)W(x) = 0 in [a,b]. Then, neither U nor V can have infinitely many

zeros in [a,b].

As a consequence, we deduce that if W is a solution of (10.64) and W vanishes

for infinitely many times in an interval [a,b] ⊂ (0,1) then, applying Lemma 10.11

in [ε,1− ε] for all ε > 0 sufficiently small, we get W≡ 0.

It remains to show that U and V cannot vanish infinitely many times in the neigh-

borhood of x = 0 and x = 1. We shall consider only the case x = 0; the situation

where U or V have infinitely many zeros near x = 1 can be handled in the same

manner.

Without losing the generality, we may assume that V has infinitely many zeros in

a neighborhood of x = 0. By the continuity of V it follows that V (0) = 0. Further-

more, since V ∈C2(0,1)∩C1[0,1], by Rolle’s theorem we get that both V ′ and V ′′

have infinitely many zeros near x = 0. Therefore, V ′(0) = 0, that is, v′1(0) = v′2(0).
If U ′(0) = 0, then W(0) = W′(0) = 0. Let γ = min{0, p− q,r− s}. Then −1 <

γ ≤ 0 and by Lemma 10.10 (iii) it follows that x1−γAi j ∈ L∞(0,1/2). Thus, we can

use Proposition 10.12 in order to get that W≡ 0 in [0,1/2]. Then, by Lemma 10.11

we obtain W ≡ 0 in [0,1], which is a contradiction. Hence U ′(0) �= 0. Subtracting

the second equation corresponding to v1 and v2 in the system (10.61) we have

V ′′(x) = βV (x)+
ur

1(x)
vs

1(x)
− ur

2(x)
vs

2(x)

= xr−s
{
β

V (x)
xr−s +

(
u1(x)

x

)r ( x
v1(x)

)s

−
(

u2(x)
x

)r ( x
v2(x)

)s}
.

(10.66)

Since r− s < 1, v′1(0) = v′2(0)> 0 and u′1(0) �= u′2(0) we get

lim
x→0+

{
β

V (x)
xr−s +

(
u1(x)

x

)r ( x
v1(x)

)s

−
(

u2(x)
x

)r ( x
v2(x)

)s}

=
u′r1 (0)− u′r2 (0)

v′s1 (0)
�= 0.

(10.67)
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From (10.66) and (10.67) we derive that V ′′ has constant sign in a small neighbor-

hood of x = 0 which contradicts the fact that V vanishes infinitely many times in the

neighborhood of x = 0. This finishes the proof of Proposition 10.9. �

Proposition 10.12 Let 0< a< 1,−1< γ ≤ 0 and A=(Ai j)1≤i, j≤2 be a 2×2 matrix

such that for all 1≤ i, j ≤ 2 we have

Ai j ∈C(0,a] and x1−γAi j ∈ L∞(0,a).

Assume that there exists W = (W1,W2)
T ∈ (C2(0,a]∩C1[0,a])2 a solution of{

W′′(x)+A(x)W(x) = 0 in (0,a],
W(0) = W′(0) = 0.

Then W≡ 0 in [0,a].

Proof. First we need the following result whose proof is a simple exercise of

calculus.

Lemma 10.13 Let f ∈ C(0,a]∩ L1+δ (0,a) for some a,δ > 0 and u ∈ C2(0,a]∩
C1[0,a] be such that u(0) = u′(0) = 0 and u′′ = f in (0,a). Then

u(x) =
∫ x

0
(x− t) f (t)dt, for all 0≤ x≤ a.

Since W ∈ C1[0,1]×C1[0,1] we have AW ∈ C(0,a]∩L1+δ (0,a) provided that

0 < δ <−1− γ−1. Therefore, by Lemma 10.13 we get

W(x) =−
∫ x

0
(x− t)A(t)W(t)dt for all 0≤ x≤ a. (10.68)

Define B = (Bi j)1≤i, j≤2 by Bi j(x) = x1−γAi j(x), 0 < x ≤ a, 1 ≤ i, j ≤ 2. Then

Bi j ∈C(0,a]∩L∞(0,a). Set

M = max
1≤i, j≤2

‖Bi j‖∞, k = max

{ |W(x)|
x

;0 < x≤ a

}
,

where |W(x)| = max{|W1(x)|, |W2(x)|}. Notice that both M and k are finite, since

W ∈C1[0,a]. From (10.68) we have

W(x) =−
∫ x

0
(x− t)B(t)

W(t)
t

tγdt for all 0≤ x≤ a,

which yields
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|W(x)| ≤M
∫ x

0
(x− t)

|W(t)|
t

tγdt for all 0≤ x≤ a. (10.69)

It follows that

|W(x)| ≤Mk
∫ x

0
(x− t)tγdt =

Mk
(1+ γ)(2+ γ)

x2+γ for all 0≤ x≤ a. (10.70)

Using (10.70) in (10.69) we obtain

|W(x)| ≤ M2k
(1+ γ)(2+ γ)

∫ x

0
(x− t)t1+2γdt

=
M2k

(1+ γ)(2+ γ)(2+ 2γ)(3+2γ)
x3+2γ

≤ M2k
2(1+ γ)2 x3+2γ for all 0≤ x≤ a.

By induction, we deduce that for all n≥ 2 we have

|W(x)| ≤ Mnk
n!(1+ γ)n xn+1+nγ for all 0≤ x≤ a.

Since −1 < γ ≤ 0, we can pass to the limit in the last inequality in order to get

W≡ 0. This completes the proof. �

Proof of Theorem 10.8 continued. Let us define

I + = {x ∈ [0,1] : U(x)≥ 0}, I − = {x ∈ [0,1] : U(x)≤ 0},

J + = {x ∈ [0,1] : V (x)≥ 0}, J − = {x ∈ [0,1] : V (x)≤ 0}.

Since both U and V have a finite number of zeros, it follows that the above sets

consist of finitely many disjoint closed intervals. Therefore, I + = ∪m
i=1I+i . For our

convenience, let I+ denote any interval I+i and similar notations will be used for I−,

J+ and J−. We have

Lemma 10.14 For all intervals I+, I−, J+ and J− defined above, the following

situations can not occur:

(i) I+ ⊂ J+; (ii) I− ⊂ J−; (iii) J+ ⊂ I−; (iv) J− ⊂ I+.

Proof. (i) Assume by contradiction that I+ ⊂ J+. This yields u2 ≥ u1 and v2 ≥ v1

in I+. Furthermore we have
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u′′1−αu1 +
up

1

vq
2
+ρ(x)≤ 0 = u′′2−αu2 +

up
2

vq
2
+ρ(x) in I+,

u1,u2 > 0 in I+, u1 = u2 = 0 on ∂ I+, u′′1 ∈ L1(0,1).

Thus, by Theorem 1.2 with Ψ(x, t) = −αt + t p

vq
2(x)

+ ρ(x), (x, t) ∈ I+× (0,∞), it

follows that u2 ≤ u1 in I+. Since u2 ≥ u1 in I+, we deduce u1 = u2 in I+, that is,

U ≡ 0 which contradicts Proposition 10.9. Replacing u1,v1 with u2,v2 in the above

arguments we deduce the statement (ii).

(iii) Suppose that J+ ⊂ I−. Then v2 ≥ v1 and u1 ≥ u2 in J+ which yield

ur
1

vs
1
≥ ur

2

vs
2

in J+.

Hence V = v2− v1 satisfies⎧⎨
⎩V ′′ −βV =

ur
1

vs
1
− ur

2

vs
2
≥ 0 in J+,

V = 0 on ∂J+.

Therefore, by the maximum principle, we have V ≤ 0 in J+. Since V ≥ 0 in J+, it

follows that V ≡ 0 in J+ which again contradicts Proposition 10.9. The proof of (iv)

follows in a similar way. �

From now on, the proof of Theorem 10.8 follows in the same manner as in [38,

Theorem 6]. �

10.4 Case p < 0

10.4.1 A Nonexistence Result

Theorem 10.15 Suppose−∞< p < 0, q,r,s > 0 and one of the following hold

(i) q≥ 2 and s < 1.

(ii) q > 2 and s = 1.

(iii) q > s+ 1 and s > 1.

Then the system (10.3) has no classical solutions.
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Proof. Assume that the system (10.3) has a classical solution (u,v) and set M =

‖u‖∞. Then v satisfies

Δv−βv+ c1v−s ≥ 0 in Ω ,

where c1 = Mr > 0. By Corollary 1.3 we get v ≤ z, where z is the unique solution

of the problem ⎧⎨
⎩
Δz−β z+ c1z−s = 0 in Ω ,
z > 0 in Ω ,
z = 0 on ∂Ω .

Furthermore, from the estimate (10.27) in Proposition 10.3 (with r = 0) there exists

c2 > 0 such that v≤ z≤ c2Γs,0(ϕ1) in Ω , which yields

⎧⎨
⎩

v≤ c2ϕ1 in Ω if s < 1,
v≤ c2ϕ1(1+ | logϕ1|)1/(1+s) in Ω if s = 1,

v≤ c2ϕ
2/(1+s)
1 in Ω if s > 1.

(10.71)

If s = 1 and q > 2, we fix 0 < θ < 1 such that qθ ≥ 2. Let us set

k =

⎧⎨
⎩

1, if s < 1,
θ , if s = 1,

2/(s+ 1), if s > 1.

Then qk ≥ 2 and by (10.71) we get v ≤ c3ϕk
1 in Ω , for some c3 > 0. Using this

inequality in the first equation of (10.3) we deduce Δu−αu+ cϕ−qk
1 up +ρ(x)≤ 0

in Ω , where c = c−q
3 . This means that u is a supersolution of the problem

⎧⎨
⎩
Δz−αz+ cϕ−qk

1 zp +ρ(x) = 0 in Ω ,
z > 0 in Ω ,
z = 0 on ∂Ω .

(10.72)

Note that w ∈ C2(Ω ) defined as the unique solution of (10.11) is a subsolution of

(10.72). By the standard maximum principle it is easy to get u ≥ w in Ω . Hence,

the problem (10.72) has classical solutions, but this contradicts Proposition 10.3 (i),

since qk ≥ 2. Therefore, the system (10.3) has no solutions. The proof of Theorem

10.15 is now complete. �
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10.4.2 Existence

Theorem 10.16 Assume that −∞ < p < 0, q,r,s satisfy (10.5) and qσ < 2. Then,

the system (10.3) has classical solutions. Moreover, if q < p+ 1 and s < r+ 1 any

classical solution (u,v) of (10.3) satisfies u,v ∈C2(Ω)∩C1(Ω ).

Proof. For all 0 < ε < ε0 let Ωε be defined as in (10.40). For m1 < 1 < M1 and

m2 < 1 < M2 we set

Bε =

⎧⎪⎪⎨
⎪⎪⎩(u,v) ∈C(Ωε)×C(Ωε) :

m1ϕ1 ≤ u≤M1ϕν1 in Ωε ,

m2Γs,r(ϕ1)≤ v≤M2ϕτ1 in Ωε ,

u = ε, v = Γs,r(ε) on ∂Ωε ,

⎫⎪⎪⎬
⎪⎪⎭ ,

where

ν =

⎧⎪⎨
⎪⎩

1, if qσ < 1+ p
1/2, if qσ = 1+ p

2− qσ
1− p

, if qσ > 1+ p
and τ =

⎧⎪⎨
⎪⎩

1, if s < 1+ rν
1/2, if s = 1+ rν

2+ rν
1+ s

, if s > 1+ rν
. (10.73)

In order to prove that Bε is not empty, we first remark that ν ≤ 1. Therefore, we

only need to check that

Γs,r(t)≤ c0tτ for all 0 < t ≤ 1, (10.74)

for some fixed c0 > 0. To this aim we analyze the cases s < 1+ r, s = 1+ r and

s > 1+ r.

If s < 1+ r, since τ ≤ 1 we have Γs,r(t) = t ≤ tτ for all 0 < t ≤ 1.

If s > 1+r, from ν ≤ 1 we have s > 1+rν which implies τ = 2+rν
1+s ≤ 2+r

1+s . Hence

Γs,r(t) = t(2+r)/(1+s) ≤ t(2+rν)/(1+s) = tτ for all 0 < t ≤ 1.

Finally, if s = 1+ r then s≥ 1+ rν which implies τ = 1/2 or τ = 2+rν
1+s . In both

cases we have τ < 1. Then

Γs,r(t) = t(1+ | lnt|)1/(1+s) ≤ c0tτ for all 0 < t ≤ 1,

and for some fixed c0 > 0.
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Remark 25 Since tθ (1+ | logt|)1/(s+1) → 0 as t → 0, for all θ > 0, we could re-

place the value 1/2 in the definition of ν and τ by any number θ ∈ (0,1) in the case

qσ = p+1 and s = 1+ rν respectively.

Therefore, for small 0 < m1,m2 < 1 and for large values of M1,M2 > 1 the set

Bε is not empty.

As in the previous section, for all (u,v)∈Bε let us denote by (Tu,T v) the unique

solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ(Tu)−α(Tu)+
(Tu)p

vq +ρ(x) = 0, Tu > 0 in Ωε ,

Δ(T v)−β (Tv)+
ur

(T v)s = 0, Tv > 0 in Ωε ,

Tu = ε, T v = Γs,r(ε) on ∂Ωε .

(10.75)

In this way we have defined a mapping

T : Bε →C(Ωε)×C(Ωε), T (u,v) = (Tu,T v).

Now, we proceed as in the proof of Theorem 10.4. The main point is to show that

there exist 0 < m1,m2 < 1 and M1,M2 > 1 which are independent of ε such that

T (Bε )⊆Bε . This allows us to employ the Schauder’s fixed point theorem.

Following the proof of Lemma 10.5 we get the existence of m1,m2 ∈ (0,1) which

are independent of ε and such that

Tu≥ m1ϕ1, T v≥ m2Γs,r(ϕ1) in Ωε .

Since Γs,r(t) ≥ tσ for all 0 < t ≤ 1, the definition of Bε yields v ≥ m2ϕσ1 in Ωε .
Furthermore, the first equation in (10.75) produces

Δ(Tu)−α(Tu)+m−q
2 ϕ−qσ

1 (Tu)p +ρ(x)≥ 0 in Ωε .

Let ζ ∈C2(Ω)∩C(Ω ) be the unique solution of (10.52). Since p < 0 and qσ < 2,

we shall make use of Proposition 10.3 (ii) instead of Proposition 10.2 as we did in

the proof of Theorem 10.4. Therefore, there exist c1,c2 > 0 such that

c1Γ−p,−qσ(ϕ1)≤ ζ ≤ c2Γ−p,−qσ(ϕ1) in Ω . (10.76)

Note that Γ−p,−qσ(t)≥ t for all 0 < t ≤ 1. Hence, by (10.7) and (10.76) we get



366 10 Pattern Formation and the Gierer–Meinhardt Model in Molecular Biology

ζ ≥ c1ϕ1 ≥Cc1d(x) in Ω .

Let us fix A > 1 such that ACc1 > 1. Since p < 0 we find

Δ(Aζ )−α(Aζ )+m−q
2 ϕ−qσ

1 (Aζ )p +ρ(x)≤ 0 in Ωε ,

Aζ ≥ ε = Tu on ∂Ωε .

In view of Corollary 1.3 we derive Aζ ≥ Tu in Ωε and by (10.76) it follows that

Tu≤ Ac2Γ−p,−qσ(ϕ1) in Ωε .

Note that Γ−p,−qσ(t) ≤ c̃tν for all 0 < t ≤ 1 and for some fixed constant c̃ > 0.

Therefore, we can find M1 > 1 sufficiently large such that Tu ≤M1ϕν1 in Ωε .
Using the estimate u ≤ M1ϕν1 in Ωε , from the second equation in (10.75) we

deduce

Δ(T v)−β (Tv)+Mr
1ϕrν

1 (T v)−s ≥ 0 in Ωε .

Since ν ≤ 1, we can easily prove that Γs,r(t)≤ c0Γs,rν(t), for all 0 < t ≤ 1 and for

some positive constant c0. This implies that

T v = Γs,r(ε) ≤ c0Γs,rν(ε) on ∂Ωε .

Next, similar arguments to those in the proof of Lemma 10.5 yield T v≤ cΓs,rν(ϕ1)

in Ωε . It remains to notice that Γs,rν(t) ≤ c̄tτ for all 0 < t ≤ 1 and for some

c̄ > 0. Hence, T v ≤ M2ϕτ1 in Ωε for some M2 > 1 independent of ε . Therefore

T (Bε )⊆Bε . From now on, we proceed exactly in the same way as in the proof of

Theorem 10.4.

Assume next that q < p+ 1 and s < r + 1. Then, by (10.6) and (10.73) we get

σ = ν = τ = 1. With the same arguments as in the proof of Theorem 10.4 we get

m1d(x) ≤ u,v ≤ m2d(x) in Ω , for some m1,m2 > 0 and for all solutions (u,v) of

(10.3). Then we use the same approach as in Corollary 10.7 in order to get that u,v∈
C2(Ω)∩C1,γ(Ω), for some 0 < γ < 1. This finishes the proof of Theorem 10.16. �

Remark 26 The above approach can be employed to extend the study of system

(10.3) to the following class of exponents:

0≤ p < 1, 0 < q < p+ 1, r > 0, −1 < s≤ 0.
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In this sense, we need the smooth variant of Proposition 10.3 concerning the sublin-

ear case −1 < s≤ 0. Taking into account the fact that r > 0, if −1 < s≤ 0 then the

problem (10.22) has a unique solution v ∈C2(Ω ). One can show that system (10.3)

has classical solutions and any solution (u,v) of (10.3) satisfies

c1d(x)≤ u,v≤ c2d(x) in Ω ,

for some c1,c2 > 0. Furthermore, with the same idea as in the proof of Corollary

10.7 we get

(i) if p≥ q then u,v ∈C2(Ω);

(ii) if −1 < p− q < 0 then u ∈C2(Ω)∩C1,1+p−q(Ω) and v ∈C2(Ω ).



Appendix A
Caffarelli–Kohn–Nirenberg Inequality

Inequality is the cause of all local
movements.

Leonardo da Vinci (1452–1519)

The Hardy–Sobolev inequality states that for any given domainΩ ⊂R
N , N ≥ 3

and any u ∈C∞0 (Ω),

K2
∫
Ω

u2

|x|2 dx≤
∫
Ω
|∇u|2dx , (A.1)

where K = (N− 2)/2. Though the constant K2 is optimal, in the sense that

K2 = inf
u∈C∞0 (Ω)\{0}

∫
Ω |∇u|2dx∫
Ω u2/|x|2dx

,

inequality in relation (A.1) is never achieved. This fact has led to the improvement

of the Hardy–Sobolev inequality in various ways. For instance, Brezis and Vázquez

[31] showed that if Ω is bounded then for some γ > 0,

γ
(∫

Ω
|u|pdx

)2/p

+K2
∫
Ω

u2

|x|2 dx≤
∫
Ω
|∇u|2dx , (A.2)

with 1 ≤ p < 2N/(N− 2). One of the consequences of (A.2) is that the operator

−Δ − μ/|x|2 is coercive, in the sense that

inf
‖u‖L2(Ω)=1

∫
Ω

(
|∇u|2− μ u2

|x|2
)
> 0,

whenever μ ≤ K2. For other improvements on the Hardy–Sobolev inequality we

refer to Adimurthi, Chaudhuri and Ramaswamy [1], Brezis and Marcus [28], Davies

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9, c© Springer-Verlag Berlin Heidelberg 2012
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[58], Dávila and Dupaigne [61], Filippas, Maz’ya and Tertikas [74], Rădulescu,

Smets and Willem [170].

The Caffarelli–Kohn–Nirenberg inequality generalizes the Hardy–Sobolev in-

equality and was first obtained in 1984 (see [35]). We provide here a direct proof of

this basic inequality.

Theorem A.1 Let N ≥ 1 and a,b and p be such that

(i) if N ≥ 3 : −∞< a <
N− 2

2
, a≤ b≤ a+ 1 and p =

2N
N− 2+ 2(b− a)

,

(ii) if N = 2 : −∞< a < 0 , a < b≤ a+ 1 and p =
2

b−a
,

(iii) if N = 1 : −∞< a <−1
2

, a+
1
2
< b≤ a+ 1 and p =

2
−1+ 2(b− a)

.

Then, there exists a positive constant Ca,b =C(a,b)> 0 such that

(∫
RN

|u|p
|x|bp dx

)1/p

≤Ca,b

(∫
RN

|∇u|2
|x|2a dx

)1/2

, (A.3)

for any u ∈C∞0 (R
N).

Let us remark that inequality (A.3) contains as particular cases the classical

Sobolev inequality (if a = b = 0) and the Hardy inequality (if a = 0 and b = 1);

we refer to [28, 58, 170] for further details.

Proof. We shall consider here the case N ≥ 3; the cases N = 2 and N = 1 are

similar. We divide the proof into three steps.

Step 1: b = a+1. Let

F(x) =
1

2b−N
x

|x|−2b
.

By the divergence theorem we have

∫
RN

|u|2
|x|−2b dx =−

∫
RN
|u|2divFdx

= 2
∫
RN
|u|F ·∇|u|dx

≤ α2
∫
RN
|u|2 ‖F‖

2

|x|2a dx+α−2
∫
RN

|∇u|2
|x|2a dx.

(A.4)

On the other hand,
‖F‖2

|x|2a =
1

(n− 2− 2a)2 |x|−2b,
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so from (A.4) we obtain(
1− α2

(n− 2− 2a)2

)∫
RN

|u|2
|x|2b dx≤ α−2

∫
RN

|∇u|2
|x|2a dx.

This implies

∫
RN

|u|2
|x|2b dx≤ (N− 2− 2a)2

α2(N− 2− 2a)2−α4

∫
RN

|∇u|2
|x|2a dx

≤ 4
α2(N− 2− 2a)2

∫
RN

|∇u|2
|x|2a dx.

Step 2: b = a. By the Sobolev inequality we have

(∫
RN

|u|p
|x|ap dx

)1/p

≤CN,p

(∫
RN
∇
(

u
|x|a

)
dx

)1/2

. (A.5)

Also a direct computation and Step 1 yields

∫
RN
∇
(

u
|x|a

)
dx =

∫
RN

|∇u|2
|x|2a dx+ a2

∫
RN

|u|2
|x|2a+2 −2a

∫
RN

u
|x|2a+2 x ·∇udx

≤Ca

∫
RN

|∇u|2
|x|2a − 2a

∫
RN

u
|x|2a+2 x ·∇udx.

(A.6)

We next estimate the second integral in the right-hand side of (A.6). We have

−2a
∫
RN

u
|x|2a+2 x ·∇udx≤ 2|a|

∫
RN

u
|x|2a+2 x ·∇udx

≤ |a|
(∫

RN

u2

|x|2a+2 dx+
∫
RN

|∇u|2
|x|2a dx

)

≤Ca

∫
RN

|∇u|2
|x|2a dx.

(A.7)

Now, the inequality follows from (A.5) to (A.7).

Step 3: a < b < a+ 1. We obtain the Caffarelli–Kohn–Nirenberg inequality by in-

terpolation. Let p = 2(1−θ )+2∗θ , where 2∗ = 2N/(N−2) which implies

b = a+ 1− Nθ
N− 2+ 2θ

.

From the Hölder inequality and the two previous steps we obtain
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∫
RN

|u|p
|x|bp dx =

∫
RN

|u|2(1−θ)+2∗θ

|x|2(1−θ)(a+1)+2∗θa
dx

≤
(∫

RN

|u|2
|x|2a+2 dx

)1−θ (∫
RN

|u|2∗
|x|2a dx

)θ

≤Ca,b

∫
RN

|∇u|2
|x|2a dx.

This finishes the proof. �

The best embedding constant appearing in (A.3) is given by

S(a,b) = inf
u∈D\{0}

(∫
RN

|∇w|2
|x|−2a dx

)1/2

(∫
RN

|w|p
|x|−bp dx

)1/p
, (A.8)

where D is the completion of C∞0 (R
N) with respect to the inner product

(u,v) =
∫
RN
|x|−2a∇u ·∇vdx.

Remark A.1. (see [36]). If one of the following conditions holds

(i) N ≥ 2 and a < b < a+ 1.

(ii) N = 1 and a+ 1
2 < b < a+ 1, then the infimum in (A.8) is always achieved.

The extremal functions for (6.3) are ground state solutions of the singular Euler

equation

−div(|x|−2a∇u) = |x|−bp |u|p−2u in R
N .

This equation has been recently studied (see [36,201]) in connection with a complete

understanding of the best constants, the qualitative properties of extremal functions,

the existence (or nonexistence) of minimizers and their symmetry.



Appendix B
Estimates for the Green Function Associated
to the Biharmonic Operator

We are what we repeatedly do.
Excellence then, is not an act, but a
habit.

Aristotle (384 BC–322 BC)

Higher order differential operators have been studied starting with the contri-

butions of Jacob Bernoulli [17], who tried to study the nodal line patterns of vi-

brating plates. He modeled this phenomenon by means of the fourth order operator
∂ 4

∂x4 +
∂ 4

∂y4 . However, Bernoulli’s model was not accepted for reasons of lack of ro-

tationally symmetry. It seems that the first use of the biharmonic operator Δ2 is

due to Lagrange about 1811, who corrected a manuscript by Sophie Germain on

the modeling of elastic plates. We refer to the recent book by Gazzola, Grunau and

Sweers [83] for an excellent overview of results in the theory of higher order elliptic

equations.

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain whose boundary ∂Ω is of class C16

if N = 2 and of class C12 if N ≥ 3. Let also δ (x) = dist(x,∂Ω).

We denote by G(·, ·) the Green function associated with the biharmonic operator

Δ2 subject to Dirichlet boundary conditions, that is, for all y ∈Ω , G(·,y) satisfies in

the distributional sense:{
Δ2G(·,y) = δy(·) in Ω ,

G(·,y) = ∂νG(·,y) = 0 on ∂Ω .

The study of the Green function for the biharmonic equation goes back to Boggio

[20] in 1901. He proved that the Green function is positive in any ball of Rn. Boggio

[21] and Hadamard [108] conjectured that this fact should be true at least in any

M. Ghergu and V. Rǎdulescu, Nonlinear PDEs, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-22664-9, c© Springer-Verlag Berlin Heidelberg 2012
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smooth convex domain of Rn. In fact, Hadamard [109] already knew in 1908 that

this conjecture fails in annuli with small inner radius.

Starting in the late 1940s, various counterexamples have been constructed that

disprove the Boggio–Hadamard conjecture. For instance, if a domain in R
2 has a

right-angle, then the associated Green function fails to be everywhere positive (see

Coffman and Duffin [52]). A similar result holds for thin ellipses: Garabedian [81]

found that in an ellipse in R
2 with the ratio of the half axes � 2, the Green function

for the biharmonic operator changes sign (for an elementary proof, see also Shapiro

and Tegmark [179]). In turn, if the ellipse is close to a ball in the plane, Grunau

and Sweers [103] proved that the Green function is positive. Recently, Grunau and

Sweers [104–106] and Grunau and Robert [101] provided interesting characteriza-

tions of the regions where the Green function is negative. They also obtained that if

a domain is sufficiently close to a unit ball in a suitable C4,γ -sense, then the bihar-

monic Green function under Dirichlet boundary condition is positive.

Recall first that the biharmonic Green function

G :Ω ×Ω \ {(z,z) : z ∈Ω}→ (0,∞)

is continuous. Also, by the estimates in [102, Theorem 1] we have

lim
(x,y)→(z,z)

G(x,y) = +∞, for all z ∈Ω .

Hence G :Ω ×Ω → (0,∞] is continuous (in the extended sense).

We recall here some useful estimates regarding the biharmonic Green function

presented in Dall’Acqua and Sweers [55] (see also Krasovskiı̆ [122]).

Proposition B.1. (see [55]) Let k be an N−dimensional multi-index. Then, there

exists a positive constant c depending on Ω and k such that for any x,y ∈ Ω we

have

(i) For |k| ≥ 2 :

(i1) if N > 4−|k| then

|Dk
xG(x,y)| ≤ c|x− y|4−N−|k|min

{
1,
δ (y)
|x− y|

}2

,

(i2) if N = 4−|k| then
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|Dk
xG(x,y)| ≤ c log

(
2+

δ (y)
|x− y|

)
min

{
1,
δ (y)
|x− y|

}2

,

(i3) if N < 4−|k| then

|Dk
xG(x,y)| ≤ cδ (y)4−N−|k|min

{
1,
δ (y)
|x− y|

}N+|k|−2

.

(ii) For |k|< 2 :

(ii1) if N > 4−|k| then

|Dk
xG(x,y)| ≤ c|x− y|4−N−|k|min

{
1,
δ (x)
|x− y|

}2−|k|
min

{
1,
δ (y)
|x− y|

}2

,

(ii2) if N = 4−|k| then

|Dk
xG(x,y)| ≤ c log

(
2+

δ (y)
|x− y|

)
min

{
1,
δ (x)
|x− y|

}2−|k|
min

{
1,
δ (y)
|x− y|

}2

,

(ii3) if 2(2−|k|)≤ N < 4−|k| then

|Dk
xG(x,y)| ≤ cδ (y)4−N−|k|min

{
1,
δ (x)
|x− y|

}2−|k|
min

{
1,
δ (y)
|x− y|

}N+|k|−2

,

(ii4) if N < 2(2−|k|) then

|Dk
xG(x,y)| ≤ cδ 2−|k|−N/2(x)δ 2−N/2(y)min

{
1,
δ (x)
|x− y|

}N/2

min

{
1,
δ (y)
|x− y|

}N/2

.
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a nonvariational quasilinear elliptic system, J. Differential Equations 166 (2000), 455–477.

50. Ph. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigen-
value problem, Ann. della Scola Norm. Sup. di Pisa 14 (1987), 97–121.

51. Ph. Clément and G. Sweers, Getting a solution between sub and supersolutions without
monotone iteration, Rend. Istit. Mat. Univ. Trieste 19 (1987), 189–194.

52. C.V. Coffman and R.J. Duffin, On the structure of biharmonic functions satisfying the
clamped condition on a right angle, Adv. Appl. Math. 1 (1950), 373–389.

53. M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Commun. Partial
Diff. Equations 14 (1989), 1315–1327.

54. M.G. Crandall, P.H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular non-
linearity, Commun. Partial Diff. Equations 2 (1977), 193–222.

55. A. Dall’Acqua and G. Sweers, Estimates for Green function and Poisson kernels of higher
order Dirichlet boundary value problems, J. Differential Equations 205 (2004), 466–487.

56. R. Dalmasso, Solutions d’équations elliptiques semi-linéaires singulières, Ann. Mat. Pura
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94. M. Ghergu and V. Rădulescu, A singular Gierer–Meinhardt system with different source
terms, Proceedings of the Royal Society of Edinburgh: Section A (Mathematics) 138A (2008),
1215–1234.
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111. L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer Verlag,
Berlin, 1983.

112. H. Jiang, Global existence of solutions of an activator-inhibitor system, Discrete Contin. Dyn.
Syst. 14 (2006), 737–751.

113. H. Kang, Dynamics of local map of a discrete Brusselator model: eventually trapping regions
and strange attractos, Discrete Contin. Dyn. Syst. 20 (2008), 939–959.

114. J.P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math. 59 (1978), 1–23.
115. J.B. Keller, On solutions of Δu = f (u), Comm. Pure Appl. Math. 10 (1957), 503–510.
116. E.H. Kim, A class of singular Gierer–Meinhardt systems of elliptic boundary value problems,

Nonlinear Anal. 59 (2004), 305–318.
117. E.H. Kim, Singular Gierer–Meinhardt systems of elliptic boundary value problems, J. Math.

Anal. Appl. 308 (2005), 1–10.
118. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, Academic Press, New York, 1980.
119. S. Kishenassamy, Recent progress in boundary blow up, in Elliptic and Parabolic Problems:

A Special Tribute to the Work of Haim Brezis (C. Bandle et al., eds.), Progress in Nonlinear
Differential Equations and Their Applications, vol. 63, Birkhäuser, 2005, pp. 289–301.
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143. M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general
nonlinear elliptic equations, J. Evol. Equations 3 (2003), 637–652.
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160. A. Poretta and L. Véron, Symmetry of large solutions of nonlinear elliptic equations in a ball,

J. Funct. Anal. 236 (2006), 581–591.
161. I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems II,

J. Chem. Phys. 48 (1968), 1665–1700.
162. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice

Hall, Englewood Cliffs NJ, 1967.
163. P. Pucci and J. Serrin, Remarks on the first eigenspace for polyharmonic operators, Atti Sem.

Mat. Fis. Univ. Modena 36 (1988), 107–117; and Proc. 1986–87 Focused Research Program
on Spectral Theory and Boundary Value Problems, Argonne National Laboratory, Report
ANL-87-26, 3 (1989), 135–145.

164. P. Pucci and J. Serrin, A note on the strong maximum principle for elliptic differential in-
equalities, J. Math. Pures Appl. 79 (2000), 57–71.

165. P. Pucci, J. Serrin, and H. Zou, A strong maximum principle and a compact support principle
for singular elliptic inequalities, J. Math. Pures Appl. 78 (1999), 769–789.

166. P. Quittner and Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap
in weighted Lebesgue spaces, Arch. Ration. Mech. Anal. 174 (2004), 49–81.

167. P. Quittner, Blow-up for semilinear parabolic equations with a gradient term, Math. Meth.
Appl. Sci. 14 (1991), 413–417.

168. P. Rabinowitz, Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ.
Math. J. 23 (1974), 729–745.

169. H. Rademacher, Einige besondere Probleme der partiellen Differentialgleichungen, in Die
Differential und Integralgleichungen der Mechanik und Physik I, 2nd edn, (P. Frank und R.
von Mises, eds.), Rosenberg, New York, 1943, pp. 838–845.
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