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Preface

To think freely is great, but to think rightly is greater.
Thomas Thorild (1759–1808), engraved in golden letters to the Grand

Auditorium, Uppsala University

There may be no Nobel in mathematics, but that need not stop many mathe-
maticians winning the Nobel Prize for Economics1. Indeed, many of the winners
of this prize either were mathematicians or had conducted notable research using
mathematical models. For instance, Leonid Kantorovich and Tjalling Koop-
mans received the Nobel Prize in Economic Sciences “for their contributions
to the theory of optimum allocation of resources”. Both Kantorovich and Koop-
mans acknowledged that George B. Dantzig deserved to share their Nobel Prize
for linear programming. Economists who conducted research in nonlinear pro-
gramming also have won the Nobel prize, notably Ragnar Frisch (1969). The
1994 Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred No-
bel was awarded to John Forbes Nash Jr.,2 John Harsanyi, and Reinhard Selten
“for their pioneering analysis of equilibria in the theory of non-cooperative
games”. Many such examples can be provided but we refer only to Lloyd Shap-
ley who won the Nobel Prize for Economic Sciences in 2012 “for the theory of
stable allocations and the practice of market design”. Lloyd Shapley described
himself in an Associated Press interview: “I consider myself a mathematician
and the award is for economics. I never, never in my life took a course in eco-
nomics.”

This monograph is intended to fill a gap in an interdisciplinary field at the
interplay between applied mathematics, optimization, equilibria, and economic
mathematics. Our analysis deeply relies on concrete models in the real world.
Models play crucial roles in applied mathematics and economics, from identi-
fying nonstandard behavior of mathematical models in economy to forecasting
how economics will evolve. Yet major changes are afoot in equilibrium theory,
triggered by global economic problems and the higher and higher impact of big
data sets.

This volume is an attempt to study in a rigorous manner qualitative problems
arising in applied sciences. More precisely, this monograph looks at modeling in
these fields through three lenses. The first is that of Nash equilibrium and man-
agement, which are fundamental issues in experimental economics. The second
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xvi Preface

is through the variational analysis of equilibrium problems, which has been
challenged by the events of the macro-economy. The third looks at the opti-
mality and stability of the models of economic analysis at the interface with
powerful and efficient mathematical theories.

This monograph is a systematic exposition of the authors’ research on gen-
eral equilibrium models arising in optimization, economics, and applied sci-
ences. It is intended to serve both as a graduate text on aspects of general
equilibrium theory and as an introduction, for economists and mathematicians
working in mathematical economics, to current research in a frontier area of
general equilibrium theory. This book presents a systematic approach to prob-
lems in economic equilibrium based on fixed-point arguments and rigorous
variational analysis methods. It describes the highest-level research on the clas-
sical theme, fixed points and economic equilibria, in the theory of mathematical
economics, and also presents basic results in this area, especially in the gen-
eral equilibrium theory and noncooperative game theory. Convexity theory and
topology have been the central tools for the rigorous axiomatic treatment of eco-
nomic theory since the 1950s. In this book, the notion of convexity is used to
describe ideas within a mixture of alternative choices, a moderate view among
extremes, and especially to ensure the existence of equilibrium depending on
such stable actions as a fixed point for a mathematical model of society.

In this monograph we aim to show how a special mathematical method
(a tool for thinking) can be utilized for constructing or developing part of an
economic theory. The arguments also contain distinguishable developments of
the main theme in the homology theory for general topological spaces, in the
model theory and mathematical logic, and in the methodology and philosophy
of social sciences.

Many of the theorems contained in this book are technical extensions of
fixed-point arguments, variational analysis methods, and tools for economic
equilibrium results. The main concern of this volume is not only to show abun-
dant ways to apply such extensions, but also to list the minimal logical, analytic,
or algebraic requirements for the construction of a solid economic equilibrium
theory. Accordingly, we use in this monograph many highly abstract settings
(e.g., fixed-point arguments based on algebraic settings, actions without conti-
nuity conditions or convexity assumptions, or spaces without linear structures)
while basing our arguments on topics that are quite usual. Among others, the
concept of convex combination, approximate and iterative methods, and ar-
guments based on mathematical logic form the distinguishing features of this
book’s mathematical arguments.

A central role in this monograph is played by the study of some fundamen-
tal aspects related to the Nash equilibrium. This concept started to develop from
the early insights of Émile Borel3 and John von Neumann.4 A couple of decades
later, at the beginning of the 1950s, those insights were developed and gener-
alized by John F. Nash Jr. His name, quite appropriately, became attached to
the equilibrium state characterized by the condition that all possible unilateral
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actions of any actor in that state lead to states that are no better for the devia-
tor than the original one. The fundamental result of Nash was that all games—
(with constant-sum or nonconstant sum) with a finite number of players each
endowed with a finite set of strategies and any kind of goal function (egoistic,
altruistic, egalitarian) have an equilibrium in pure or mixed (probabilistic) strate-
gies. In game theory, a Nash equilibrium is an array of strategies, one for each
player, such that no player can obtain a higher payoff by switching to a different
strategy while the strategies of all other players are held fixed. As pointed out
in [161], “if Chrysler, Ford, and GM choose production levels for pickup trucks,
a commodity whose market price depends on aggregate production, an equilib-
rium is an array of production levels, one for each firm, such that none can raise
its profits by making a different choice”. As pointed out in [1, p. 495], “in game
theory, the single most important tool has proven to be Nash equilibrium”.

This volume can serve as a graduate-level textbook on mathematical eco-
nomics as well as an advanced monograph for students and researchers who are
concerned about rigorous mathematical treatment in the social sciences.

Our vision throughout this volume is closely inspired by the following
prophetic words of John F. Nash Jr., in an interview given in Oslo on May 18,
2015, the day before the Abel Prize ceremony:

“I had achieved my proof of the equilibrium theorem for game theory using
the Brouwer fixed-point theorem, while von Neumann and Morgenstern used
other things in their book. But when I got to von Neumann, and I was at the
blackboard, he asked: “Did you use the fixed-point theorem?” “Yes,” I said.
“I used Brouwer’s fixed-point theorem.”

I had already, for some time, realized that there was a proof version using
Kakutani’s fixed-point theorem, which is convenient in applications in eco-
nomics since the mapping is not required to be quite continuous. It has certain
continuity properties, so-called generalized continuity properties, and there is a
fixed-point theorem in that case as well. I did not realize that Kakutani proved
that after being inspired by von Neumann, who was using a fixed-point theo-
rem approach to an economic problem with interacting parties in an economy
(however, he was not using it in game theory)”.

Gábor Kassay and Vicenţiu D. Rădulescu
Cluj-Napoca and Craiova

May 11, 2018

NOTES
1. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel was established

in 1968 by the Bank of Sweden, and it was first awarded in 1969, more than 60 years after
the distribution of the first Nobel Prizes. Although not technically a Nobel Prize, the Prize in
Economic Sciences is identified with the award; its winners are announced with the Nobel Prize
recipients, and it is presented at the Nobel Prize Award Ceremony. It is conferred by the Royal
Swedish Academy of Sciences in Stockholm.
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2. John Forbes Nash Jr. (1928-2015) was an American mathematician who made fundamental con-
tributions to game theory, differential geometry, and the study of partial differential equations. In
1978 he was awarded the John von Neumann Prize for his discovery of the Nash Equilibria. His
other influential work in mathematics included the Nash-Moser inverse function theorem, the
Nash-De Giorgi theorem (a solution to David Hilbert’s 19th problem), and the Nash embedding
theorems. In 1999 he received a Leroy P. Steele Prize from the American Mathematical Soci-
ety and in 2015 he was one of the two recipients of the Abel Prize, the other one being Louis
Nirenberg. On May 23, 2015, on their way back home after spending one week in Oslo on the
occasion of the Abel prize ceremony, John and Alicia Nash were killed in a taxi accident on the
New Jersey Turnpike.

3. Émile Borel (1871-1956) was a French mathematician. Borel is known for his founding work in
the areas of measure theory and probability. In 1922, he founded Paris Institute of Statistics, the
oldest French school for statistics.

4. John von Neumann (1903-1957) was a Hungarian-American mathematician, physicist, computer
scientist, and polymath. Von Neumann was generally regarded as the foremost mathematician of
his time and said to be “the last representative of the great mathematicians”. Economist Paul
Samuelson judged John von Neumann “a genius (if that 18th century word still has a mean-
ing)—a man so smart he saw through himself.” With his pivotal work on quantum theory, the
atomic bomb, and the computer, von Neumann likely exerted a greater influence on the modern
world than any other mathematician of the 20th century.
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Mathematics is the most beautiful and most powerful creation of the human
spirit.

Stefan Banach (1892–1945)

Chapter points
• Some basic topological notions are introduced, as continuity and semicontinuity for

single and set-valued mappings.
• Some basic algebraic notions are introduced, as convexity, convexly

quasi-convexity (which generalizes both the convexity of set-valued mappings and
the quasi-convexity of real single-valued mappings), and concavely quasi-convexity
(which generalizes both the concavity of set-valued mappings and the
quasi-convexity of real single-valued mappings).

• We provide a proof for Brouwer’s fixed point theorem by Sperner’s and KKM
lemmata.

1.1 ELEMENTS OF FUNCTIONAL ANALYSIS

Let R = ]−∞,+∞[ denote the set of real numbers and R = [−∞,+∞] =
R∪{−∞,+∞}. We will also use the following notation: R+ = [0,+∞[, R∗+ =
]0,+∞[, R− = −R+ and R

∗− = −R
∗+.

Equilibrium Problems and Applications. https://doi.org/10.1016/B978-0-12-811029-4.00009-2
Copyright © 2019 Elsevier Inc. All rights reserved. 1
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We assume that the set R is endowed with the topology extended from the
usual topology of R, and with the usual operations involving +∞ and −∞. For
a subset A of a Hausdorff topological space X, we denote by clA, the closure
of A and by intA, the interior of A.

A subset K of a topological space is called compact if every open cover of K

includes a finite subcover. That is, every family of open sets {Vi : i ∈ I } satis-
fying K ⊂ ∪i∈I Vi admits a finite subfamily Vi1, ..., Vin such that K ⊂ ∪n

k=1Vik .
A topological space X is called compact space if X is a compact set. A fam-
ily of subsets has the finite intersection property if every finite subfamily has a
nonempty intersection.

Let us recall the following characterization of compact spaces.

Proposition 1.1. A topological space is compact if and only if every family of
closed subsets with the finite intersection property has a nonempty intersection.

A subset L of a real vector space X is called linear subspace if αL+βL ⊂ L

for all α,β ∈R. The subset M of X is called affine if αM + (1 − α)M ⊂ M for
all α ∈R. The linear hull of the set S ⊂ X is defined by

lin(S) := ∩{L : S ⊂ L and L a linear subspace}

= ∪∞
k=1

{
k∑

i=1

αiS : αi ∈R

}
,

while its affine hull by

aff (S) := ∩{M : S ⊂ M and M an affine set}

= ∪∞
k=1

{
k∑

i=1

αiS : αi ∈R and
k∑

i=1

αi = 1

}
.

For each nonempty affine set M there exists a unique linear subspace LM satis-
fying M = LM + x for any given x ∈ M (cf. [152]).

A subset K of a vector space is called cone if αK ⊂ K , for all α ≥ 0. The
conical hull of a subset S of a vector space is given by

cone(S) := ∩{K : S ⊂ K and K a cone}

= ∪∞
k=1

{
k∑

i=1

αiS : αi ≥ 0

}
. (1.1)

By a set-valued mapping F : X ⇒ Y , we mean a mapping F from a set X to
the collection of nonempty subsets of a set Y . A mapping f : X → Y and the set-
valued mapping F : X ⇒ Y defined by F (x) := {f (x)} for every x ∈ X, will
be identified and both will be called a single-valued mapping. That is, a single-
valued mapping is a “classical” mapping or a set-valued mapping with singleton
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values. By a real set-valued mapping, we mean a set-valued mapping with val-
ues in R. A real single-valued mapping is a single-valued mapping with values
in R. When R is used instead of R, we talk about extended real single-valued or
extended real set-valued mappings.

For a subset S of a real vector space, convS will denote the convex hull of S.
If X denotes a real normed vector space, we denote by X∗ the dual space

of X and by 〈·, ·〉 the duality pairing between X∗ and X. The normal cone of
C ⊂ X at x ∈ C is defined by

NC(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0, ∀y ∈ C}.

1.1.1 Continuity of Functions

Let X and Y be Hausdorff topological spaces. A function f is said to be contin-
uous at x0 ∈ X if for every open subset V of Y , f −1 (V ) = {x ∈ X : f (x) ∈ V }
is a neighborhood of x0. The function f : X → Y is continuous on a subset S

of X if it is continuous at every point of S.

1.1.2 Semicontinuity of Extended Real-Valued Functions

In the investigation about solving equilibrium problems, the notions of semicon-
tinuity and hemicontinuity on a subset play an important role. Various results on
the existence of solutions of equilibrium problems have been obtained without
the semicontinuity and the hemicontinuity of the bifunction on the whole do-
main, but just on the set of coerciveness.

Let X be a Hausdorff topological space. An extended real-valued function
f : X → R is said to be lower semicontinuous at x0 ∈ X if for every ε > 0, there
exists an open neighborhood U of x0 such that

f (x) ≥ f (x0) − ε ∀x ∈ U.

A function f : X → R is said to be upper semicontinuous at x0 if −f is
lower semicontinuous at x0.

We have considered extended real-valued functions in the above definitions
because such functions are more general and convenient in our study. As pointed
out by Rockafellar and Wets [155], considering such definitions for extended
real-valued functions is also convenient for many purposes of the variational
analysis.

A function f : X → R is said to be lower (resp., upper) semicontinuous on
a subset S of X if it is lower (resp., upper) semicontinuous at every point of S.
Obviously, if f is lower (resp., upper) semicontinuous on a subset S of X, then
the restriction f|S : S → R of f on S is lower (resp., upper) semicontinuous
on S. The converse does not hold true in general.

Proposition 1.2. Let X be Hausdorff topological space, f : X → R a function
and let S be a subset of X. If the restriction f|U of f on an open subset U
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containing S is upper (resp., lower) semicontinuous on S, then any extension
of f|U to the whole space X is upper (resp., lower) semicontinuous on S.

Proposition 1.3. Let X be a Hausdorff topological space, f : X →R a function
and S a subset of X. Then,

1. The following conditions are equivalent
(a) f is lower semicontinuous on S;
(b) for every a ∈R,

cl ({x ∈ X | f (x) ≤ a}) ∩ S = {x ∈ S | f (x) ≤ a} ;
(c) for every a ∈R,

int ({x ∈ X | f (x) > a}) ∩ S = {x ∈ S | f (x) > a} ;
In particular, if f is lower semicontinuous on S, then the trace on S of any
lower level set of f is closed in S and the trace on S of any strict upper level
set of f is open in S.

2. The following conditions are equivalent
(a) f is upper semicontinuous on S;
(b) for every a ∈R,

cl ({x ∈ X | f (x) ≥ a}) ∩ S = {x ∈ S | f (x) ≥ a} ;
(c) for every a ∈R,

int ({x ∈ X | f (x) < a}) ∩ S = {x ∈ S | f (x) < a} .

In particular, if f is upper semicontinuous on S, then the trace on S of any
upper level set of f is closed in S and the trace on S of any strict lower level
set of f is open in S.

If X is a metric space (or more generally, a Fréchet-Urysohn space), then f

is upper (resp., lower) semicontinuous at x ∈ X if and only if for every sequence
(xn)n in X converging to x, we have

f (x) ≥ lim sup
n→+∞

f (xn) (resp., f (x) ≤ lim inf
n→+∞f (xn)),

where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk) and lim inf
n→+∞f (xn) = sup

n
inf
k≥n

f (xk).

1.1.3 Hemicontinuity of Extended Real-Valued Functions

Let X be a normed vector space. An extended real-valued function f : X → R

is said to be hemicontinuous at x0 ∈ X if the real-valued function φ : R → R

defined by φ(ε) = f (x0 + εh) is continuous at the origin for every h ∈ X.
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A hemicontinuous function at x0 needs not be continuous at x0. For example,
the function f :R2 →R defined by

f (x1, x2) =

⎧⎪⎨
⎪⎩

x2(x
2
1 + x2

2)

x1
if x1 �= 0

0 if x1 = 0

is hemicontinuous and Gâteaux differentiable at x = (x1, x2) = (0,0), but not
continuous.

1.2 KKM LEMMA AND THE BROUWER’S FIXED POINT
THEOREM

The equivalent statements of Knaster,1 Kuratowski,2 and Mazurkiewicz3 (KKM
lemma) and Brouwer’s4 fixed point theorem represent two of the most important
existence principles in mathematics. They are also equivalent to numerous, ap-
parently completely different, cornerstone theorems of nonlinear analysis (see,
for instance, [174], Chapter 77). In the sequel we provide a proof of the KKM
lemma by using Sperner’s5 lemma a combinatorial analogue of Brouwer’s fixed
point theorem, which is equivalent to it. Then, Brouwer’s fixed point theorem
will be deduced by KKM lemma (see [175]).

1.2.1 The Sperner’s Lemma

Let X be a real vector space. By an N -simplex with N ≥ 1 we understand a set
S = conv{u0, ..., uN }, where the vectors u0, ..., uN ∈ X are affine independent,
i.e., the vectors u1 −u0, ..., uN −u0 are linear independent. By a k-face of S we
understand the convex hull of k + 1 distinct vertices of S , where k = 0,1, ...,N .

By a triangulation of S we mean a finite collection S1, ...,SJ of N -simplices
Sj such that:

(i) S = ∪J
j=1Sj ;

(ii) if j �= k, then Sj ∩ Sk = ∅ or Sj ∩ Sk is a common k-face, where k =
0, ...,N − 1.

A standard example of triangulation of S is the so-called barycentric sub-
division described as follows. The vector b := 1

N+1

∑N
j=0 uj is called the

barycenter of S . The barycentric subdivision of the 1-simplex S = conv{u0, u1}
is the collection of the following two simplices: S0 = conv{b,u0} and S1 =
conv{b,u1}, where b is the barycenter of S . By induction, the barycentric sub-
division of an N -simplex with barycenter b is the collection of all N -simplices
conv{b, v1, ..., vN−1}, where v1, ..., vN−1 are vertices of any N − 1-simplex ob-
tained by a barycentric subdivision of an N − 1-face of S .
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Let one of the numbers 0,1, ...,N be associated with each vertex v of the
simplices Sj introduced above, according to the following rule: if

v ∈ conv{ui0, ..., uik }, k = 0, ...,N, (1.2)

then compulsorily one of the numbers i0, ..., ik should be associated with v. Sj is
called a Sperner simplex if and only if all of its vertices carry different numbers,
i.e., the vertices of S carry the numbers 0, ...,N .

Lemma 1.1. (E. Sperner [163]) For every triangulation satisfying the rule (1.2),
the number of Sperner simplices is odd.

Proof. First, let N = 1. Then, each Sj is a 1-simplex (namely, a segment).
A 0-face (vertex) of Sj is called distinguished if and only if it carries the num-
ber 0. We have exactly the following two possibilities:

(i) Sj has precisely one distinguished (N − 1)-face (namely, Sj is a Sperner
simplex).

(ii) Sj has precisely two or no distinguished (N − 1)-faces (namely, Sj is not
a Sperner simplex).

But since the distinguished 0-faces occur twice in the interior and once on the
boundary, the total number of distinguished 0-faces is odd. Hence, the number
of Sperner simplices is odd.

Secondly, let N = 2. Then, Sj is a 2-simplex. A 1-face (segment) of Sj is
called distinguished if and only if it carries the numbers 0,1. Then, conditions
(i) and (ii) from above are satisfied for N = 2. The distinguished 1-faces occur
twice in the interior. By (1.2), the distinguished 1-faces on the boundary are
subsets of conv{u0, u1}. It follows from the first step that the number of distin-
guished faces on conv{u0, u1} is odd. Thus, the total number of distinguished
1-faces is odd, and hence the number of Sperner 1-simplices is also odd.

Lastly, we use induction. Let N ≥ 3. Suppose that the lemma is true for
N − 1. Then it is also true for N . This follows as above. In this connection,
an (N − 1)-face of Sj is called distinguished if and only if its vertices carry the
numbers 0,1, ...,N − 1.

1.2.2 KKM Lemma

Now we can prove the following result.

Lemma 1.2. (B. Knaster, C. Kuratowski, and S. Mazurkiewicz [109]) Let
S = conv{u0, ..., uN } be an N -simplex in a finite dimensional normed space X,
where N = 0,1, .... Suppose that we are given closed sets C0, ...,CN in X such
that

conv{ui0, ..., uik } ⊆ ∪k
m=0Cim, (1.3)

for all possible systems of indices {i0, ..., ik} and all k = 0, ...,N . Then
∩N

j=0Cj �= ∅.
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Proof. For N = 0, S consists of a single point, and the statement is trivial. Now,
let N ≥ 1.

First of all, consider a triangulation S1, ...,SJ of S . Let v be any vertex
of Sj , j = 1, ..., J , where

v ∈ conv{ui0, ..., uik } for some k = 0, ...,N. (1.4)

By (1.3), there is a set Ck such that v ∈ Ck .
We associate the number k with the vertex k. It follows from Lemma 1.1 that

there is a Sperner simplex Sj whose vertices carry the numbers 0, ...,N . Hence,
the vertices v0, ..., vN of Sj satisfy the condition vk ∈ Ck for all k = 0, ...,N .

Now, consider a sequence of triangulation of the simplex S such that the
diameters of the simplices of the triangulation go to zero. For example, one can
choose a sequence of barycentric subdivisions of S .

Following the reasoning above, there are points:

v
(n)
k ∈ Ck for all k = 0, ...,N and n = 1,2, ..., (1.5)

such that

lim
n→∞ diam conv{v(n)

0 , ..., v
(n)
N } = 0. (1.6)

Since the simplex S is compact, there exists a subsequence, again denoted
by (v

(n)
k ), such that v

(n)
1 → v as n → ∞ and v ∈ S .

By (1.6), v
(n)
k → v as n → ∞ for all k = 0, ...,N .

Since the set Ck is closed, this implies that v ∈ Ck , for all k = 0, ...,N .

1.2.3 Brouwer’s Fixed Point Theorem

A fixed point of a function f : X → X is a point x ∈ X satisfying f (x) = x. One
of the most famous fixed point theorems for continuous functions was proven
by Brouwer and it has been used across numerous fields of mathematics. This
property is stated in the following theorem.

Theorem 1.1. Every continuous function f from a nonempty convex compact
subset C of a finite dimensional normed space X to C itself has a fixed point.

Proof. Let us observe first that every nonempty convex compact subset C ⊂ X

is homeomorphic to some N -simplex S in X with N = 0,1, ... (see, for instance,
Zeidler [175], Section 1.13, Proposition 9). Thus, it is enough to prove that every
continuous function f : S → S has a fixed point, where S is an N -simplex, with
N = 0,1, ....

For N = 0, the statement is trivial and for N = 1, the proof is provided by
the following simple argument. Let f : [a, b] → [a, b] be a continuous func-
tion and set g(x) := f (x) − x, for all x ∈ [a, b]. Since f (a), f (b) ∈ [a, b], we
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get that f (a) ≥ a and f (b) ≤ b. Hence g(a) ≥ 0 and g(b) ≤ 0, then apply the
intermediate-value theorem to conclude that the continuous real function g has
a zero, say u ∈ [a, b], i.e., g(u) = 0. Hence f (u) = u.

Now, let N = 2. Then, S = conv{u0, u1, u2}, i.e., S is a triangle. Each point
u in S has the representation

u = α0(u)u0 + α1(u)u1 + α2(u)u2, (1.7)

where

0 ≤ α0, α1, α2 ≤ 1, and α0 + α1 + α2 = 1. (1.8)

With u − u0 = α1(u)(u1 − u0) + α2(u)(u2 − u0) and α0(u) = 1 − α1(u) −
α2(u), it follows from the linear independence of u1 − u0, u2 − u0, that the
barycentric coordinates α0(u), α1(u) and α2(u) of the point u are uniquely deter-
mined by u and depend continuously on u, by [175], Section 1.12, Proposition 5.
We set

Cj := {u ∈ S : αj (f (u)) ≤ αj (u)}
for j = 0,1,2.

Since αj (·) and f are continuous on S , the set Cj is closed. Furthermore,
the crucial condition (1.3) of Lemma 1.2 is satisfied, i.e.,

conv{ui0, ..., uik } ⊆ ∪k
m=0Cim, k = 0,1,2. (1.9)

In fact, if this is not true, then there exists a point u ∈ conv{ui0, ..., uik } such
that u /∈ ∪k

m=0Cim , i.e.,

αim(f (u)) > αim(u), for all m = 0, ..., k and some k = 0,1,2. (1.10)

This is a contradiction to (1.8).
Moreover, if we renumber the vertices, if necessary, condition (1.10) means

that:

αj (f (u)) > αj (u) for all j = 0, ..., k and some k = 0,1,2. (1.11)

In addition, since u ∈ S and f (u) ∈ S , it follows from (1.8) that

α0(u) + α1(u) + α2(u) = 1, α0(f (u)) + α1(f (u)) + α2(f (u)) = 1. (1.12)

For k = 2, relation (1.11) is impossible, by (1.12). If k = 1 or k = 0, then
u ∈ conv{u0, u1} or u ∈ conv{u0} and hence α2(u) = 0 or α1(u) = α2(u) = 0,
respectively. Again, (1.11) contradicts (1.12).

Lemma 1.2 tells us now that there is a point v ∈ S such that v ∈ Cj for all
j = 0,1,2. This implies αj (f (v)) ≤ αj (v) for all j = 0,1,2.
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According to (1.12) with u = v, we get αj (f (v)) = αj (v) for j = 0,1,2,
and hence f (v) = v. Thus, v is the desired fixed point of f in the case where
N = 2.

If N ≥ 3, then use the same argument as for N = 2 above.

1.3 ELEMENTS OF SET-VALUED ANALYSIS

1.3.1 Semicontinuity of Set-Valued Mappings

We denote by F : X ⇒ Y a set-valued mapping from X to Y , where X and Y

are topological spaces. The graph of F is the set

grph (F ) = {(x, y) ∈ X × Y | y ∈ F (x)} .

For a subset B of Y , we define

F− (B) = {x ∈ X | F (x) ∩ B �= ∅}
the lower inverse set of B by F . We also define

F+ (B) = {x ∈ X | F (x) ⊂ B}
the upper inverse set of B by F . The upper inverse set of B by F is called
sometimes the core of B. It is easily seen that for every subset B of Y , we have

F+ (B) = X \ F− (Y \ B) .

This characterization provides an important relation between lower and upper
inverse sets.

A set-valued mapping F : X ⇒ Y is said to be upper semicontinuous at a
point x0 ∈ X if it is continuous at x0 ∈ X as a function from X to the set of
subsets of Y endowed with the upper Vietoris topology. That is, F is upper semi-
continuous at x0 ∈ X if whenever V is an open subset of Y such that F (x0) ⊂ V ,
the upper inverse set F+ (V ) of V by F is a neighborhood of x0.

For a set-valued mapping F : X ⇒ Y with closed values, F is upper semi-
continuous at x0 ∈ X if for all xn ∈ X, y0 ∈ Y , and yn ∈ Y with limn→∞ xn = x0
and limn→∞ yn = y0, it follows that y0 ∈ F(x0).

By analogy, a set-valued mapping F : X ⇒ Y is said to be lower semi-
continuous at a point x0 ∈ X if whenever V is an open subset of Y such that
F (x0) ∩ V �= ∅, the lower inverse set F− (V ) of V by F is a neighborhood
of x0. It turns out that F is lower semicontinuous at x0 ∈ X if and only if F is
continuous at x0 ∈ X as a function from X to the set of subsets of Y endowed
with the lower Vietoris topology.

Equivalently, F : X ⇒ Y is lower semicontinuous at x0 ∈ X if and only if for
all xn ∈ X with xn → x0 and for every y0 ∈ F(x0), there is a subsequence (xnk

)

of (xn) and there exists yk ∈ F(xnk
) such that yk → y0.
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Within the literature we also can find the term “upper/lower hemicontinuos”
for the above concepts.

A set-valued mapping F : X ⇒ Y is said to be continuous at a point x0 ∈ X

if it is lower and upper semicontinuous at x0 ∈ X.
The set-valued mapping F is said to be lower semicontinuous on X if it is

lower semicontinuous at every point of X. The continuity and upper semiconti-
nuity on the space X are defined in the same manner. Clearly, F is lower (resp.,
upper) semicontinuous on X if and only if the lower (resp., upper) inverse set of
any open subset V of Y is open.

We say that a set-valued mapping F : X ⇒ Y is lower semicontinuous (resp.,
upper semicontinuous, resp., continuous) on a subset S of X if it is lower semi-
continuous (resp., upper semicontinuous, resp., continuous) at every point of S.

The following result shows how easy is to construct lower (resp., upper)
semicontinuous set-valued mappings on a subset without being lower semicon-
tinuous on the whole space. It is easy to prove.

Proposition 1.4. Let X and Y be two topological spaces, F : X ⇒ Y a set-
valued mapping and let S be a subset of X. If the restriction F|U : U ⇒ Y of F

on an open subset U containing S is lower (resp., upper) semicontinuous, then
any extension of F|U to the whole space X is lower (resp., upper) semicontinu-
ous on S.

For a subset S of X, we denote respectively by cl (S) and int (S), the closure
and the interior of S with respect to X.

The following lemma provides us with a characterization of lower and upper
semicontinuity of set-valued mappings on a subset.

Proposition 1.5. Let X and Y be two topological spaces, F : X ⇒ Y a set-
valued mapping and let S be a subset of X. Then, the following statements hold.

1. The following conditions are equivalent
(a) F is lower semicontinuous on S;
(b) for every open subset V of Y , we have

F− (V ) ∩ S = int
(
F− (V )

) ∩ S;
(c) for every closed subset B of Y , we have

F+ (B) ∩ S = cl
(
F+ (B)

) ∩ S.

In particular, if F is lower semicontinuous on S, then F− (V ) ∩ S is open
in S for every open subset V of Y , and F+ (B) ∩ S is closed in S for every
closed subset B of Y .

2. The following conditions are equivalent
(a) F is upper semicontinuous on S;
(b) for every open subset V of Y , we have

F+ (V ) ∩ S = int
(
F+ (V )

) ∩ S;
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(c) for every closed subset B of Y , we have

F− (B) ∩ S = cl
(
F− (B)

) ∩ S.

In particular, if F is upper semicontinuous on S, then F+ (V ) ∩ S is open
in S for every open subset V of Y , and F− (B) ∩ S is closed in S for every
closed subset B of Y .

Proof. Since the second statement is similar to the first one, we state only the
case of a lower semicontinuous set-valued mapping.

Assume first that F is lower semicontinuous on S and let V be an open
subset of Y . Then, for every x ∈ F− (V ) ∩ S, F− (V ) is a neighborhood of x

which implies that x ∈ int
(
F− (V )

)
. Thus, (1a) =⇒ (1b).

To prove (1b) =⇒ (1c), let B be a closed subset of Y and put V = Y \ B

which is open. By the properties of lower and upper inverse sets, we have

cl
(
F+ (B)

) ∩ S = (
X \ (

int
(
X \ F+ (B)

))) ∩ S

= (
X \ (

int
(
F− (V )

))) ∩ S

= S \ (
int

(
F− (V )

) ∩ S
)

= S \ (
F− (V ) ∩ S

)
= (

X \ (
F− (V )

)) ∩ S

= F+ (B) ∩ S.

To prove (1c)=⇒ (1a), let x ∈ S and V be an open subset of Y such that
F (x) ∩ V �= ∅. It follows that x ∈ F− (V ) and then, x /∈ F+ (B) where B =
Y \ V . Since F+ (B) ∩ S = cl

(
F+ (B)

) ∩ S, it follows that x /∈ cl
(
F+ (B)

)
which implies that x ∈ int

(
X \ F+ (B)

) = int
(
F− (V )

)
. Therefore F− (V ) is a

neighborhood of x.

It is worthwhile noticing that based on the notion of lower and upper limit
of nets of subsets in the sense of Kuratowski-Painlevé convergence, the lower
and upper semicontinuity of set-valued mappings can be also characterized by
means of nets. Although, these characterizations are important in many studies,
we will not follow this approach in our proofs, but make use of the techniques
developed in Proposition 1.5, which are based only on lower and upper inverse
sets.

1.3.2 Selections of Set-Valued Mappings

Let X and Y be topological spaces and assume that F : X ⇒ Y is a set-valued
mapping. The lower section of F at y ∈ Y is the lower inverse set of the singleton
{y} by F , namely

F−(y) = {x ∈ X| y ∈ F(x)}.
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Notice that a set-valued mapping with open graph has open lower sections
and, in turn, if it has open lower sections then it is lower semicontinuous.

A fixed point of set-valued mapping F : X ⇒ X is a point x ∈ X satisfying
x ∈ F(x). The set of fixed points of F is denoted by Fix (F ).

The following result is known in the literature as the Kakutani6 fixed point
theorem and it generalizes the Brouwer fixed point theorem in a straightforward
way. This result has found wide applicability in economic theory, in the theory
of games and in competitive equilibrium.

Theorem 1.2. For any given positive integer n, let X be a nonempty, closed,
bounded and convex subset of Rn. If F is a convex-valued self-correspondence
on X that has a closed graph, then F has a fixed point, that is, there exists x ∈ X

such that x ∈ F(x).

The requirement of the closed graph property in the statement of Kaku-
tani’s fixed point theorem can be replaced with upper semicontinuity when F

is closed-valued.
A selection of a set-valued mapping F : X ⇒ Y is a function f : X → Y such

that f (x) ∈ F(x) for all x ∈ X. The axiom of choice guarantees that set-valued
mappings with nonempty values always admit selections, but they may have no
additional useful properties. Michael [126] proved a series of theorems on the
existence of continuous selections that assume the condition of lower semicon-
tinuity of set-valued mappings. One of these results is stated in the following
theorem.

Theorem 1.3. Every lower semicontinuous set-valued mapping F from a metric
space to R

n with nonempty convex values admits a continuous selection.

Collecting the Brouwer fixed point theorem and the Michael selection the-
orem, we deduce the following fixed point result for lower semicontinuous
set-valued mappings.

Corollary 1.1. Every lower semicontinuous set-valued mapping F from a
nonempty convex compact subset C ⊂R

n to C itself with nonempty convex val-
ues has a fixed point.

Notice that, unlike the famous Kakutani fixed point theorem in which the
closedness of grph (F ) is required, in Corollary 1.1 the lower semicontinuity of
the set-valued map is needed. No relation exists between the two results as the
following example shows.

Example 1.1. The set-valued mapping F : [0,3]⇒ [0,3] defined by

F(x) :=

⎧⎪⎨
⎪⎩

{1} if 0 ≤ x ≤ 1

(1,2) if 1 < x < 2

{2} if 2 ≤ x ≤ 3
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is lower semicontinuous and the nonemptiness of Fix (F ) is guaranteed by
Corollary 1.1. Notice that Fix (F ) = [1,2]. Nevertheless the Kakutani fixed
point theorem does not apply since grph (F ) is not closed.

On the converse, the set-valued mapping F : [0,3] ⇒ [0,3] defined by

F(x) :=

⎧⎪⎨
⎪⎩

{1} if 0 ≤ x < 1

[1,2] if 1 ≤ x ≤ 2

{2} if 2 < x ≤ 3

has closed graph and the nonemptiness of Fix (F ) is guaranteed by the Kaku-
tani fixed point theorem. Again, we have Fix (F ) = [1,2]. Since F is not lower
semicontinuous, Corollary 1.1 cannot be applied.

1.3.3 Elements of Convex Analysis

The notions of convexity and concavity of set-valued mappings have been con-
sidered in the literature as a generalization of convexity and concavity of real
single-valued mappings. However, these notions are not limited to real set-
valued mappings and so, they are not really adapted and very general. Applied
to real single-valued mappings, they are in fact too stronger than the convexity
and concavity and produce a sort of “linearity on line segments”.

We will use the following notions of convexity of functions and set-valued
mappings defined on real topological Hausdorff vector spaces.

Let X be a real topological Hausdorff vector space and D a (non necessarily
convex) subset of X.

1. A function f : D −→ R is said to be
(a) convex on D if for every finite subset {x1, . . . , xn} ⊂ D and

{λ1, . . . , λn} ⊂R+ such that
∑n

i=1 λi = 1 and
∑n

i=1 λixi ∈ D, then

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif (xi) ;

(b) concave on D if −f is convex on D.
2. A set-valued mapping F : D ⇒R is said to be

(a) convex on D if for every finite subset {x1, . . . , xn} ⊂ D and
{λ1, . . . , λn} ⊂R+ such that

∑n
i=1 λi = 1 and

∑n
i=1 λixi ∈ D, then

F

(
n∑

i=1

λixi

)
⊃

n∑
i=1

λiF (xi)

where the sum denotes here the usual Minkowski sum of sets;
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(b) concave on D if instead of the last inclusion, the following holds

F

(
n∑

i=1

λixi

)
⊂

n∑
i=1

λiF (xi) .

Note that the notion of convex set-valued mappings on the whole space X

has been already considered in the literature. One can easily verify that a set-
valued mapping F : X ⇒R is convex on X if and only if its graph is convex.

We say that a function f : D → R is quasi-convex on D if for every fi-
nite subset {x1, . . . , xn} ⊂ D and {λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1 and∑n

i=1 λixi ∈ D, then

f

(
n∑

i=1

λixi

)
≤ max

i=1,...,n
f (xi) .

In what follows, let C be a convex subset of X. We first introduce the
notion of convexly quasi-convexity for real set-valued mappings which general-
izes both the convexity of set-valued mappings and the quasi-convexity of real
single-valued mappings.

A set-valued mapping F : C ⇒ R is said to be convexly quasi-convex on C

if whenever {x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂ R+ such that
∑n

i=1 λi = 1,
then for every {z1, . . . , zn} with zi ∈ F (xi) for every i = 1, . . . , n, there exists
z ∈ F

(∑n
i=1 λixi

)
such that

z ≤ max {zi : i = 1, . . . , n} .

For λ ∈ R, we set [F ≤ λ] := {x ∈ C : F (x) ∩ ]−∞, λ] �= ∅}.
Proposition 1.6. Let C be a nonempty and convex subset of a real topological
Hausdorff vector space. A set-valued mapping F : C ⇒ R is convexly quasi-
convex on C if and only if the set [F ≤ λ] is convex, for every λ ∈R.

Proof. Let λ ∈ R. Let {x1, . . . , xn} ⊂ [F ≤ λ] and {λ1, . . . , λn} ⊂ R+ be such
that

∑n
i=1 λi = 1. For every i = 1, . . . , n, choose zi ∈ F (xi) ∩ ]−∞, λ]. Since

F is convexly quasi-convex, let z ∈ F
(∑n

i=1 λixi

)
be such that

z ≤ max {zi : i = 1, . . . , n} .

Then z ≤ λ, and therefore
∑n

i=1 λixi ∈ [F ≤ λ].
Conversely, let {x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂ R+ be such that∑n

i=1 λi = 1. Take {z1, . . . , zn} with zi ∈ F (xi), for every i = 1, . . . , n. Put
λ = max {zi : i = 1, . . . , n} ∈ R. We have xi ∈ [F ≤ λ], for every i = 1, . . . , n.
By convexity of [F ≤ λ], it follows that

∑n
i=1 λixi ∈ [F ≤ λ] which means

that there exists z ∈ F
(∑n

i=1 λixi

)
such that z ≤ λ. We conclude that z ≤

max {zi : i = 1, . . . , n}.
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Now, we introduce the notion of concavely quasi-convexity for real set-
valued mappings which generalizes both the concavity of set-valued mappings
and the quasi-convexity of real single-valued mappings.

A set-valued mapping F : C ⇒ R will be said concavely quasi-convex on
C if whenever {x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1,

then for every z ∈ F
(∑n

i=1 λixi

)
, there exist {z1, . . . , zn} with zi ∈ F (xi) for

every i = 1, . . . , n such that

z ≤ max {zi : i = 1, . . . , n} .

For λ ∈R, we set [F ⊆ λ] := {x ∈ C : F (x) ⊂ ]−∞, λ]}.
Proposition 1.7. Let C be a nonempty and convex subset of a real topologi-
cal Hausdorff vector space. If a set-valued mapping F : C ⇒ R is concavely
quasi-convex on C, then the set [F ⊆ λ] is convex, for every λ ∈R.

Proof. Let λ ∈ R. Let {x1, . . . , xn} ⊂ [F ⊆ λ] and {λ1, . . . , λn} ⊂ R+ be such
that

∑n
i=1 λi = 1. Take z ∈ F

(∑n
i=1 λixi

)
. Since F is concavely quasi-convex,

let zi ∈ F (xi) for every i = 1, . . . , n be such that

z ≤ max {zi : i = 1, . . . , n} .

Since max {zi : i = 1, . . . , n} ≤ λ and z is arbitrary in F
(∑n

i=1 λixi

)
, then∑n

i=1 λixi ∈ [F ⊆ λ].

Note that, if f is a real single-valued mapping, then
[
f ≤ λ

] = [
f ⊆ λ

]
, for

every λ ∈R. We have the following result.

Proposition 1.8. Let C be a nonempty and convex subset of a real topologi-
cal Hausdorff vector space. For a real single-valued mapping f : C → R, the
following conditions are equivalent

1. f is quasi-convex on C,
2. f is convexly quasi-convex on C,
3. f is concavely quasi-convex on C.

Example 1.2. Consider a quasi-convex function f : R → R which is not con-
vex, and let F : R⇒ R be the set-valued mapping defined by F (x) := {f (x)},
for every x ∈ R. As mentioned before, f is identified to F in our purpose. By
Proposition 1.8, F is convexly quasi-convex and concavely quasi-convex single-
valued mapping, but it is neither convex nor concave in the sense of set-valued
mapping.

We introduce in what follows a suitable notion of denseness. Let X be a
real topological Hausdorff vector space. For x, y ∈ X, we denote the closed line
segment in X with the endpoints x and y by[

x, y
] = {λx + (1 − λ)y | λ ∈ [0,1]} .
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Let V be a convex subset of X. A subset U of V is said to be self-segment-dense
set in V if

1. V ⊂ cl (U);
2. for every x, y ∈ U ,

[
x, y

] ⊂ cl
([

x, y
] ∩ U

)
.

The importance of the notion of self-segment-dense set has been highlighted
in [115] and especially for dimensions greater than one. The following result
(see [115, Lemma 3.1]) has been also obtained and it is important in the sequel.
It is valid in the settings of Hausdorff locally convex topological vector spaces
since the origin has a local base of convex, balanced, and absorbent sets.

Lemma 1.3. Let X be a Hausdorff locally convex topological vector space, V a
convex set of X and let U ⊂ V a self-segment-dense set in V . Then, for all finite
subset {x1, . . . , xn} ⊂ U , we have

cl (conv {x1, . . . xn} ∩ U) = conv {x1, . . . xn} .
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start with mathematics.
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Chapter points
• The chapter is devoted to an overview of the equilibrium problem and some of its

versions.
• There are discussed several classes of inequality and equilibrium problems and their

relationship.
• The content of this chapter is at the interplay between equilibria, optimization, and

nonlinear analysis.

2.1 THE EQUILIBRIUM PROBLEM AND ITS VARIANTS

In 1972, Ky Fan1 [74] established the existence of solutions for an inequality
which, along the years, has shown to be a cornerstone result of nonlinear analy-
sis. Let us reproduce this result in its dual form:
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Theorem 2.1. Let X be a Hausdorff topological vector space and K a nonempty
compact convex subset of X. Suppose that f : K ×K →R satisfies the following
conditions:

1. f (x, x) ≥ 0 for all x ∈ K;
2. For each x ∈ K , f (x, .) is quasi-convex;
3. For each y ∈ K , f (., y) is upper semicontinuous.

Then there exists x∗ ∈ K such that f (x∗, y) ≥ 0 ∀y ∈ K .

The problem itself was called minimax inequality by Ky Fan, but nowa-
days it is widely known within the literature as equilibrium problem. It plays a
very important role in many fields, such as variational inequalities, game theory,
mathematical economics, optimization theory, and fixed point theory. Although
most of the authors claim that the term “equilibrium problem” was first coined
by Blum and Oettli [42] in 1994, in fact it appeared two years earlier in the pa-
per of Muu and Oettli [133], where three standard examples of (EP) have been
considered: the optimization problems, the variational inequalities, and the fixed
point problems. Further particular cases like saddle point (minimax) problems,
Nash equilibria problems, convex differentiable optimization, and complemen-
tarity problems have been studied in the aforementioned article [42].

We formulate the (scalar) equilibrium problem (abbreviated (EP)), in a more
general way, as follows. Let A and B be two nonempty sets and f : A×B → R

a given function. The problem consists on finding an element ā ∈ A such that

f (ā, b) ≥ 0, ∀b ∈ B. (2.1)

The element ā satisfying (2.1) is called equilibrium point of f on A × B.
(EP) has been extensively studied along the years (see, e.g., [12,22,82,92,93,

95,101] and the references therein).
Recently, the study of equilibrium problems has been extended from scalar

to the vector case (see, for instance, [83] for a collection of articles focusing
in this direction). To formulate this problem, let Y be a real topological vector
space and C be a proper convex cone in Y with intC �= ∅, where intC denotes the
topological interior of C. For a vector-valued function f : A×B → Y , the weak
vector equilibrium problem (abbreviated (WVEP)) (see, for example, [83]) is to
find ā ∈ A such that

f (ā, b) �∈ −intC for all b ∈ B, (2.2)

and the strong vector equilibrium problem (abbreviated (SVEP)) (see, for exam-
ple, [14,40]) is to find ā ∈ A such that

f (ā, b) �∈ −C \ {0} for all b ∈ B. (2.3)

To obtain a more general problem which contains (WVEP) and/or (SVEP) as
special cases, some authors considered set-valued maps (bifunctions) instead of
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(single-valued) vector bifunctions. Let F : A×B ⇒ Y . It is clear that in this way
there are four possibilities to define a set-valued equilibrium problem (some au-
thors also called generalized vector equilibrium problem, see, for instance, [15]
and the references therein). Namely, the two weak versions are: find ā ∈ A such
that

F(ā, b) ⊂ Y \ (−intC) for all b ∈ B, (2.4)

and

F(ā, b) ∩ (Y \ (−intC)) �= ∅ for all b ∈ B, (2.5)

while the two strong versions can be written as: find ā ∈ A such that

F(ā, b) ⊂ Y \ (−C \ {0}) for all b ∈ B, (2.6)

and

F(ā, b) ∩ (Y \ (−C \ {0})) �= ∅ for all b ∈ B. (2.7)

It is obvious that the above four variants of the set-valued equilibrium prob-
lems are related: namely, any solution of (2.4) is also a solution of (2.5), while
any solution of (2.6) is also a solution of (2.7). Furthermore, the strong versions
imply the corresponding weak versions: any solution of (2.6) is also a solution
of (2.4), while any solution of (2.7) is also a solution of (2.5). Note that if F

is single-valued, (2.4) and (2.5) collapse into (WVEP), while (2.6) and (2.7)
collapse into (SVEP).

2.2 SOME IMPORTANT SPECIAL CASES OF EQUILIBRIUM
PROBLEMS

In this section we focus on the most important particular cases of the equilibrium
problem.

2.2.1 The Convex Minimization Problem

We start with a simple, but very important particular case of (EP). Let X be a
topological vector space and h : X →R∪{+∞} be a convex, lower semicontin-
uous and proper function. The convex minimization problem (CMP) is defined
as:

find x̄ ∈ X such that h(x̄) ≤ h(y) for all y ∈ X. (2.8)

If we take A = B := {x ∈ X : h(x) < +∞} and f : A × A → R, f (x, y) :=
h(y) − h(x) for all x, y ∈ A, then x̄ is a solution of (CMP) if and only if x̄ is a
solution of (EP).
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2.2.2 The Fixed Point Problem for Set-Valued Maps

Assume that X is a Hilbert space with inner product 〈·, ·〉, and let T : X ⇒ X

be an upper semicontinuous set-valued mapping such that T (x) is a nonempty,
convex, weakly compact subset of X for each x ∈ X. The fixed point problem
(FPP) is defined as:

find x̄ ∈ X such that x̄ ∈ T (x̄). (2.9)

If we take f : X × X → R, f (x, y) := maxu∈T (x)〈x − u,y − x〉 for all
x, y ∈ X, then x̄ is a solution of (FPP) if and only if x̄ is a solution of (EP).

Indeed, observe first that f is well defined, since for every x, y ∈ X the
function u �→ 〈x − u,y − x〉 is affine and continuous, hence weakly upper
semicontinuous. Thus, the maximum exists on the weakly compact set T (x)

according to Weierstrass theorem. If x̄ is a solution of (EP), denoting by ū the
corresponding maximum point, we have that 〈x̄ − ū, y − x̄〉 ≥ 0 for all y ∈ X.
Since X is the whole space, in particular x̄ is an interior point of X, a stan-
dard argument shows that x̄ = ū, i.e., x̄ ∈ T (x̄). Conversely, if x̄ is a solution of
(FPP), then for each y ∈ X, 0 = 〈x̄ − x̄, y − x̄〉 ≤ maxu∈T (x̄)〈x̄ − u,y − x̄〉, i.e.,
x̄ is a solution of (EP).

2.2.3 The Complementarity Problem

Let X be a topological vector space, K ⊆ X a closed convex cone and K∗ :=
{x ∈ X∗ : 〈x, y〉 ≥ 0 for all y ∈ K} its dual cone, where X∗ is the topological
dual space of X with 〈·, ·〉 the duality pairing. Let T : K → X∗ be an operator.
The complementarity problem (CP) is defined as:

find x̄ ∈ K such that T (x̄) ∈ K∗, 〈T (x̄), x̄〉 = 0. (2.10)

If we take f : K × K → R, f (x, y) := 〈T (x), y − x〉 for all x, y ∈ K , then x̄ is
a solution of (CP) if and only if x̄ is a solution of (EP).

Indeed, suppose that x̄ ∈ K is a solution of (EP). By taking first y =
2x̄ ∈ K , then y = 0 ∈ K , we obtain that 〈T (x̄), x̄〉 = 0. On the other hand,
0 ≤ 〈T (x̄), y − x̄〉 = 〈T (x̄), y〉, for all y ∈ K , hence T (x̄) ∈ K∗, thus x̄ is a
solution of (CP). The reverse implication is trivial.

2.2.4 Nash Equilibrium of Noncooperative Games

Consider n-players called 1,2, ..., n and assume that the set of pure strategies
(also called actions) of player i is given by some nonempty set Xi for i =
1,2, ..., n. Let X := X1 × X2 × ... × Xn and consider the functions hi : X → R,
i = 1,2, ..., n called the payoff functions of players 1,2, ..., n, respectively. The
n-person noncooperative game consists on the following:

(i) player 1 chooses an element x1 ∈ X1, player 2 chooses an element x2 ∈ X2,
..., player n chooses an element xn ∈ Xn, each independently on the others;
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(ii) player 1 gains the amount h1(x1, x2, ..., xn), player 2 gains the amount
h2(x1, x2, ..., xn), ..., player n gains the amount hn(x1, x2, ..., xn).

The n-tuple (x̄1, x̄2, ..., x̄n) ∈ X is called Nash equilibrium point of
h1, h2, ..., hn on X if for all i = 1,2, ..., n

hi(x̄1, ..., x̄i−1, x̄i , x̄i+1, ..., x̄n) ≥ hi(x̄1, ..., x̄i−1, xi, x̄i+1, ..., x̄n), ∀xi ∈ Xi.

(2.11)

In this way it is clear that x̄i ∈ Xi is the optimal action (pure strategy) for
player i (i = 1,2, ..., n) if and only if (x̄1, x̄2, ..., x̄n) is a Nash equilibrium point
of h1, h2, ..., hn. Let us see how can we relate the problem of finding a Nash
equilibrium point to (EP).

Define f : X × X → R as follows: for arbitrary x = (x1, ..., xn) and y =
(y1, ..., yn) in X, let

f (x, y) :=
n∑

i=1

[hi(x1, ...xi−1, xi, xi+1, ..., xn)−hi(x1, ...xi−1, yi, xi+1, ..., xn)].

Then it is easy to see that x̄ = (x̄1, ..., x̄n) is an equilibrium point of f if and
only if it is a Nash equilibrium point for the functions h1, ..., hn. Indeed, if
x̄ = (x̄1, ..., x̄n) is an equilibrium point, then for arbitrarily fixed j ∈ {1, ..., n}
and yj ∈ Xj by substituting the element y = (x̄1, ..., x̄j−1, yj , x̄j+1, ..., x̄n) into
the relation (2.1), we obtain

hj (x̄1, ..., x̄j−1, x̄j , x̄j+1, ..., x̄n) ≥ hj (x̄1, ..., x̄j−1, yj , x̄j+1, ..., x̄n),

i.e., x̄ is a Nash equilibrium point of h1, ..., hn.
The reverse implication follows immediately by summing up the inequali-

ties (2.11) for i = 1, ..., n.

2.2.5 The Saddle Point/Minimax Problem of Noncooperative
Games

In this subsection we focus on another particular case of (EP), namely the sad-
dle point problem related to a bifunction. We emphasize two domains where the
saddle point (minimax) problem has a crucial role: two person zero sum nonco-
operative games and duality in optimization. Both are important in many applied
fields of mathematics, we mention here only economics and engineering. The
first is a special case of n-person noncooperative games discussed within the
previous subsection. As it turns out, the optimal strategies of both players are
related to the concept of saddle point of a given bifunction. Therefore, we start
with defining this notion.

Let X, Y be two nonempty sets and h : X × Y → R be a given bifunction.
The pair (x̄, ȳ) ∈ X × Y is called a saddle point of h on the set X × Y if

h(x, ȳ) ≤ h(x̄, ȳ) ≤ h(x̄, y), ∀(x, y) ∈ X × Y. (2.12)
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The next proposition provides a characterization of saddle points in terms of
minmax and maxmin of h.

Suppose that for each x ∈ X there exists miny∈Y h(x, y), and for each y ∈ Y

there exists maxx∈X h(x, y). Then we have the following result.

Proposition 2.1. f admits a saddle point on X × Y if and only if there exist
maxx∈X miny∈Y f (x, y) and miny∈Y maxx∈X f (x, y) and they are equal.

Proof. Suppose first that h admits a saddle point (x̄, ȳ) ∈ X × Y . Then by rela-
tion (2.12) one obtains

min
y∈Y

h(x, y) ≤ h(x, ȳ) ≤ h(x̄, ȳ) = min
y∈Y

h(x̄, y), ∀x ∈ X

and

max
x∈X

h(x, y) ≥ h(x̄, y) ≥ h(x̄, ȳ) = max
x∈X

h(x, ȳ), ∀y ∈ Y.

Therefore,

min
y∈Y

h(x̄, y) = max
x∈X

min
y∈Y

h(x, y)

and

max
x∈X

h(x, ȳ) = min
y∈Y

max
x∈X

h(x, y),

and both equal to h(x̄, ȳ). For the reverse implication take x̄ ∈ X such that

min
y∈Y

h(x̄, y) = max
x∈X

min
y∈Y

h(x, y)

and ȳ ∈ Y such that

max
x∈X

h(x, ȳ) = min
y∈Y

max
x∈X

h(x, y).

Then by our assumption we obtain

min
y∈Y

h(x̄, y) = max
x∈X

h(x, ȳ),

therefore, in the obvious relations

min
y∈Y

h(x̄, y) ≤ h(x̄, ȳ) ≤ max
x∈X

h(x, ȳ)

one obtains equality in both sides. This completes the proof.

Remark 2.1. Observe that, for arbitrary nonempty sets X, Y and function
h : X × Y → R, the inequality

sup
x∈X

inf
y∈Y

h(x, y) ≤ inf
y∈Y

sup
x∈X

h(x, y)
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always holds. Therefore,

max
x∈X

min
y∈Y

h(x, y) ≤ min
y∈Y

max
x∈X

h(x, y)

holds either, provided these two values exist.

One of the main issues in minimax theory is to find sufficient and/or neces-
sary conditions for the sets X, Y and function h, which guarantee the reverse
inequality. Such results are called minimax theorems.

As stressed at the beginning of this subsection, minimax theorems or, in
particular, results on existence of a saddle point, are important in many applied
fields of mathematics. One of them is the noncooperative game theory which
will be discussed below. For more details, see [98].

(a) Two-Player Zero-Sum Games

To introduce a static two-player zero-sum (noncooperative) game and its
relation to a minimax theorem we consider two players called 1 and 2 and as-
sume that the set of pure strategies (also called actions) of player 1 is given
by some nonempty set X, while the set of pure strategies of player 2 is given
by a nonempty set Y . If player 1 chooses the pure strategy x ∈ X and player 2
chooses the pure strategy y ∈ Y , then player 2 has to pay player 1 an amount
h(x, y) with h : X × Y → R a given function. This function is called the pay-
off function of player 1. Since the gain of player 1 is the loss of player 2 (this
is a so-called zero-sum game) the payoff function of player 2 is −h. Clearly
player 1 likes to gain as much profit as possible. However, at the moment he
does not know how to achieve this and so he first decides to compute a lower
bound on his profit. He argues as follows: if he decides to choose action x ∈ X,
then it follows that his profit is at least infy∈Y h(x, y), irrespective of the action
of player 2. Therefore a lower bound on the profit for player 1 is given by

r∗ := supx∈X infy∈Y h(x, y). (2.13)

Similarly player 2 likes to minimize his losses but since he does not know how to
achieve this he also decides to compute first an upper bound on his losses. To do
so, player 2 argues as follows. If he decides to choose action y ∈ Y , it follows
that he loses at most supx∈X h(x, y) and this is independent of the action of
player 1. Therefore an upper bound on his losses is given by

r∗ := infy∈Y supx∈X h(x, y). (2.14)

Since the profit of player 1 is at least r∗ and the losses of player 2 is at most
r∗ and the losses of player 2 are the profits of player 1, it follows directly that
r∗ ≤ r∗. In general r∗ < r∗, but under some properties on the pure strategy sets
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and payoff function one can show that r∗ = r∗. If this equality holds and in
relations (2.13) and (2.14) the suprema and infima are attained, an optimal strat-
egy for both players is obvious. By the interpretation of r∗ for player 1 and the
interpretation of r∗ for player 2 and r∗ = r∗ := v both players will choose an
action which achieves the value v and so player 1 will choose that action x0 ∈ X

satisfying

infy∈Y h(x0, y) = maxx∈X infy∈Y h(x, y).

Moreover, player 2 will choose that strategy y0 ∈ Y satisfying

supx∈X h(x, y0) = miny∈Y supx∈X h(x, y).

Another field, where the concept of saddle point plays an important role, is
the so-called duality in optimization.

(b) Duality in Optimization

Let X be a nonempty subset of Rn, F : Rn → R and G : Rn → R
m be given

functions. For K a nonempty convex cone of Rm, define the following optimiza-
tion problem

v(P ) := inf{F(x) : G(x) ∈ −K, x ∈ X}. (2.15)

This (general) problem has many important particular cases.

The optimization problem with inequality and equality constraints. Let X := R
n,

K := R
p
+ × {0Rm−p }, where 1 ≤ p < m, and 0Rm−p denotes the origin of the

space Rm−p. Then problem (2.15) reduces to the classical optimization problem
with inequality and equality constraints

inf{F(x) : Gi(x) ≤ 0, i = 1,2, ..., p, Gj (x) = 0, j = p + 1, ...,m}.
The linear programming problem. Let

X := R
n+, K := {0Rm}, F (x) := cT x, G(x) := Ax − b,

where A is a matrix with m rows and n columns (with all entries real numbers),
c ∈ R

n and b ∈ R
m are given elements. Then (2.15) reduces to the following

linear programming problem

inf{cT x : Ax = b, x ≥ 0}.
The conical programming problem. Let K ⊆ R

n be a nonempty convex cone,
let X := b + L ⊆ R

n, where L is a linear subspace of Rn, and let F(x) := cT x,
G(x) := x. Then we obtain the so-called conical programming problem

inf{cT x : x ∈ b + L, x ∈ −K}.
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Denote by F the feasible set of problem (2.15), i.e., the set
{x ∈ X : G(x) ∈ −K}. The problem

v(R) := inf{FR(x) : x ∈FR}
is called a relaxation of the initial problem (2.15), if F ⊆FR and FR(x) ≤ F(x)

for each x ∈ F . It is obvious that v(R) ≤ v(P ). Next we show a natural way to
construct a relaxation of problem (2.15). Let λ ∈R

m, and consider the problem

inf{F(x) + λT G(x) : x ∈ X}.
Clearly F ⊆ X and F(x) + λT G(x) ≤ F(x) for each x ∈ F if and only if
λT G(x) ≤ 0 for each x ∈ F . Let K∗ := {y ∈ R

m : yT x ≥ 0, ∀x ∈ K} be the
dual cone of K . Now it is clear that λ ∈ K∗ implies λT G(x) ≤ 0, for each
x ∈ F . Define the (Lagrangian) function L : X × K∗ → R by L(x,λ) :=
F(x) + λT G(x) and consider the problem

θ(λ) := inf{L(x,λ) : x ∈ X}. (2.16)

Clearly θ(λ) ≤ v(P ) for each λ ∈ K∗, and therefore we also have

sup
λ∈K∗

θ(λ) ≤ v(P ),

hence

sup
λ∈K∗

inf
x∈X

L(x,λ) ≤ inf
x∈F

F(x). (2.17)

By this relation it follows that the optimal objective value v(D) of the dual
problem

v(D) := sup{θ(λ) : λ ∈ K∗}
approximates from below the optimal objective value v(P ) of the primal prob-
lem (2.15). Both from theoretical and practical point of view, an important issue
is to establish sufficient conditions in order to have equality between the optimal
objective values of the primal and dual problems. In this respect, observe that
for each x ∈ F one has

sup
λ∈K∗

L(x,λ) = sup
λ∈K∗

(F (x) + λT G(x)) = F(x).

Therefore,

inf
x∈F

F(x) = inf
x∈F

sup
λ∈K∗

L(x,λ) = inf
x∈X

sup
λ∈K∗

L(x,λ).

Indeed, if x ∈ X \F , then G(x) /∈ −K . By the bipolar theorem ([152]) we have
K = K∗∗, hence it follows that there exists λ∗ ∈ K∗ such that λ∗T G(x) > 0.
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Since tλ∗ ∈ K for each t > 0, then

sup
λ∈K∗

L(x,λ) = ∞, ∀x ∈ X \F .

Combining the latter with relation (2.17) and taking into account that the
“supinf” is always less or equal then the “infsup”, one obtains

v(D) = sup
λ∈K∗

inf
x∈X

L(x,λ) ≤ inf
x∈X

sup
λ∈K∗

L(x,λ) = v(P ).

Hence we obtain that v(D) = v(P ), if a saddle point (x̄, λ̄) of the Lagrangian
L exists. This situation is called perfect duality. In this case x̄ is the optimal
solution of the primal, while λ̄ is the optimal solution of the dual problem.

2.2.6 Variational Inequalities

Let E be a real topological vector space and E∗ be the dual space of E. Let
K ⊆ E be a nonempty convex set and T : K → E∗ a given operator. As before,
if x ∈ E and x∗ ∈ E∗, the duality pairing between these two elements will be
denoted by 〈x, x∗〉. If A = B := K and f (x, y) := 〈T (x), y − x〉, for each
x, y ∈ K , then each solution of the equilibrium problem (EP) is a solution of the
variational inequality

〈T (x), y − x〉 ≥ 0, ∀y ∈ K, (2.18)

and vice versa.
Variational inequalities have shown to be important mathematical models

in the study of many real problems, in particular in network equilibrium mod-
els ranging from spatial price equilibrium problems and imperfect competitive
oligopolistic market equilibrium problems to general financial or traffic equilib-
rium problems.

An important particular case of the variational inequality (2.18) is the fol-
lowing. Let E := H be a real Hilbert space with inner product 〈 , 〉. It is well
known that in this case the dual space E∗ can be identified with H . Consider
the bilinear and continuous function a : H × H → R, the linear and continuous
function L : H → R, and formulate the problem: find an element x̄ ∈ K ⊆ H

such that

a(x̄, y − x̄) ≥ L(y − x̄), ∀y ∈ K. (2.19)

By the hypothesis, for each x ∈ H the function a(x, .) : H → R is linear and
continuous. Therefore, by the Riesz representation theorem in Hilbert spaces
(see, for instance, [157]) there exists a unique element A(x) ∈ H such that
a(x, y) = 〈A(x), y〉 for each y ∈ H . It is easy to see that A : H → H is a
linear and continuous operator. Moreover, since L is also linear and continu-
ous, again by the Riesz theorem, there exists a unique element l ∈ H such that
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L(x) = 〈l, x〉 for each x ∈ H . Now for T (x) := A(x) − l, problem (2.18) re-
duces to (2.19).

In optimization theory, those variational inequalities in which the operator
T is a gradient map (i.e., the gradient of a certain differentiable function), are
of special interest since their solutions are (in some cases) the minimum points
of the function itself. Suppose that X ⊆ R

n is an open set, K ⊆ X is a convex
set and the function F : X → R is differentiable on X. Then each minimum
point of F on the set K is a solution of the variational inequality (2.18), with
T := ∇F . Indeed, let x̄ ∈ K be a minimum point of F on K , and y ∈ K be an
arbitrary element. Then we have

F(x̄) ≤ F(λy + (1 − λ)x̄), ∀λ ∈ [0,1].

Therefore,

1

λ
(F (x̄ + λ(y − x̄)) − F(x̄)) ≥ 0, ∀λ ∈ (0,1].

Now letting λ → 0 we obtain 〈∇F(x̄), y − x̄〉 ≥ 0, as claimed.
If we suppose further that F is a convex function on the convex set X, then

we obtain the reverse implication as well, i.e., each solution of the variational
inequality (2.18), with T := ∇F , is a minimum point of F on the set K . Indeed,
let x̄ ∈ K be a solution of (2.18) and y ∈ K be an arbitrary element. Then by
convexity

Ff (x̄ + λ(y − x̄)) ≤ (1 − λ)F (x̄) + λF(y), ∀λ ∈ [0,1],

which yields

1

λ
(F (x̄ + λ(y − x̄)) − F(x̄)) ≤ F(y) − F(x̄), ∀λ ∈ (0,1].

By letting λ → 0 one obtains from the latter that

〈∇F(x̄), y − x̄〉 ≤ F(y) − F(x̄),

which yields the desired implication.

2.2.7 Vector Minimization Problem

Let C ⊂ R
m be a closed convex cone, such that both C and its dual cone C∗

have nonempty interior. Consider the partial order in R
m given by

x � y if and only if y − x ∈ C,

x ≺ y if and only if y − x ∈ int(C).
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Let F : S → R
m be a function, with S a nonempty set. The weak vector

minimization problem (WVMP) is defined as:

Find x̄ ∈ S such that F(x) �≺ F(x̄) for all x ∈ S. (2.20)

If we take f : S × S → R, f (x, y) := max||z||=1, z∈C∗〈z,F (y) − F(x)〉, then x̄

is a solution of (WVMP) if and only if x̄ is a solution of (EP) (cf. Iusem and
Sosa [95]).

As observed, within all particular cases discussed above the sets A and B

involved in the definition of (EP) are equal. In the next subsection we deal with
a famous problem, particular case of (EP) as well, where these sets are not equal.

2.2.8 The Kirszbraun Problem

Let m and n be two positive integers and consider two systems of closed balls
in R

n: (Bi) and (B ′
i ), i ∈ {1,2, ...,m}. Denote by r(Bi) and d(Bi,Bj ) the ra-

dius of Bi and the distance between the centers of Bi and Bj , respectively. The
following result is known in the literature as Kirszbraun’s theorem (see [108]).

Theorem 2.2. Suppose that

(i) ∩m
i=1Bi �= ∅;

(ii) r(Bi) = r(B ′
i ), for all i ∈ {1,2, ...,m};

(iii) d(B ′
i , B ′

j ) ≤ d(Bi, Bj ), for all i, j ∈ {1,2, ...,m}.
Then ∩m

i=1B
′
i �= ∅.

To relate this result to (EP), let A := R
n, B := {(xi, yi) : i ∈ {1,2, ...,m}} ⊆

R
n ×R

n such that

‖yi − yj‖ ≤ ‖xi − xj‖, ∀i, j ∈ {1,2, ...,m}. (2.21)

Choose an arbitrary element x ∈R
n and put

f (y, bi) := ‖x − xi‖2 − ‖y − yi‖2 (2.22)

for each y ∈ R
n and bi = (xi, yi) ∈ B. Then y ∈ R

n is a solution of (EP) if and
only if

‖y − yi‖ ≤ ‖x − xi‖, ∀i ∈ {1,2, ...,m}. (2.23)

It is easy to see by Theorem 2.2, that the equilibrium problem given by the
function f defined in (2.22) has a solution. Indeed, let x ∈ R

n be fixed and
put ri := ‖x − xi‖ for i := 1,2, ...m. Take Bi the closed ball centered at xi

with radius ri and B ′
i the closed ball centered at yi with radius ri . Obviously,

by (2.21), the assumptions of Theorem 2.2 are satisfied, hence there exists an
element y ∈R

n which satisfies (2.23).
Observe that, by compactness (i.e., the closed balls in R

n are compact sets),
Theorem 2.2 of Kirszbraun remains valid for an arbitrary family of balls. More
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precisely, instead of the finite set {1,2, ...,m}, one can take an arbitrary set I of
indices. Using this observation, it is easy to derive the following result concern-
ing the extensibility of an arbitrary nonexpansive function to the whole space.
Let D ⊆R

n, D �=R
n and f : D →R

n a given nonexpansive function, i.e.,

‖f (x) − f (y)‖ ≤ ‖x − y‖, ∀x, y ∈ D.

Then there exists a nonexpansive function f̄ :Rn → R
n such that f̄ (x) = f (x),

for each x ∈ D. Indeed, let z ∈ R
n \ D and take for each x ∈ D the number

rx := ‖z − x‖. Let Bx be the closed ball centered at x with radius rx , and let B ′
x

be the closed ball centered at f (x) with radius rx . Then we obtain that the set
∩x∈DB ′

x is nonempty. Now for f̄ (z) ∈ ∩x∈DB ′
x , the conclusion follows.

2.3 EQUILIBRIA AND INEQUALITY PROBLEMS WITH
VARIATIONAL STRUCTURE

As mentioned in the previous sections, the equilibrium problem in the sense of
Blum and Oettli [42] or inequality of Ky Fan-type, has been considered as an
important and general framework for describing, in a common formulation, var-
ious problems arising in different areas of mathematics, including optimization
problems, mathematical economic problems, and Nash equilibrium problems.
Historically, this formulation has been first used as a pure mathematical object
in the work by Ky Fan [74] on minimax inequality problems, which has been
followed for a long time by several studies on equilibrium problems consid-
ered under different headings. It is worth mentioning that one of the interests
of this common formulation, called simply the equilibrium problem, is that
many techniques developed for a particular case may be extended, with suit-
able adaptations, to the equilibrium problem, and then they can be applied to
other particular cases.

Although the equilibrium problem subsumes several kinds of problems,
there are many models described by variational inequalities involving con-
straints that depend on the solution itself. In this direction, there are the quasi-
variational inequalities considered early in the literature in connection with
stochastic impulse control problems, where the constraint set is subject to mod-
ifications.

In the spirit to describe in a more again general framework most of prob-
lems arising in nonlinear analysis, it has been considered and adopted recently
in the literature the notion of quasi-equilibrium problem, which appears as an
equilibrium problem in which the constraint set is subject to modifications. The
quasi-equilibrium problem is a unified formulation which encompasses many
relevant problems such as quasi-variational inequalities, mixed quasi-variational
like inequalities, and all the special cases of the equilibrium problem. The first
existence results have been established and applied to different optimization
problems including Nash equilibrium problems under constraints and quasi-
variational inequalities for monotone operators.
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Many problems related to the term “equilibrium” and arising from differ-
ent areas of sciences can be mathematically modeled as special cases of the
unified formulation called the equilibrium problem. Also, the equilibrium prob-
lem subsumes many mathematical special cases which are in relation with the
term equilibrium such as Nash equilibrium problems and economic equilibrium
problems. Then, one can naturally guess that this is the reason for which the
term equilibrium problem has been chosen to name this unified formulation. It
is now well-known that the last decades have witnessed an exceptional growth
in theoretical advances on the equilibrium problem and its applications in con-
crete cases. Maybe, the simplicity of this formulation is the principal reason
which has allowed all these advancements. We point out that the equilibrium
problem has never been introduced in order to deal directly with other prob-
lems which are not described by the old existing concepts. If we assume that a
problem is directly modeled as an equilibrium problem by using an inequality
involving a bifunction, then nothing can impose that this inequality is a vari-
ational inequality. Unfortunately, this is not the task for which the concept of
the equilibrium problem has been introduced, but to describe various existing
concepts in a common way in order to deeply study them altogether.

At the interplay between mathematics and economics, broad applications
include:

– optimization problems in relationship with equilibrium phenomena;
– static (or equilibrium) analysis in which the economic unit or economic sys-

tem is modeled as not changing;
– dynamic analysis, which traces changes in an economic system over time.

2.3.1 Quasi-Hemivariational Inequalities

Let C be a nonempty, closed, and convex subset of a real Banach space E and
let � : C × C −→ R be a bifunction satisfying �(x,x) = 0, for every x ∈ C.
Such a bifunction � is called an equilibrium bifunction.

Recall (see also relation (2.1)) that an equilibrium problem in the sense of
Blum and Oettli [42] is a problem of the following form:

find x∗ ∈ C such that �
(
x∗, y

) ≥ 0 ∀y ∈ C, (EP)

where its set of solutions is denoted by SEP (C,�).
Equilibrium problems also encompass quasi-hemivariational inequalities.

Let E be a real Banach space which is continuously embedded in Lp (�;Rn),
for some 1 < p < +∞ and n ≥ 1, where � is a bounded domain in R

m, m ≥ 1.
Then a quasi-hemivariational inequality is a problem of the form:

find u ∈ E and z ∈ A(u) such that

〈z, v〉 + h(u)J 0 (iu; iv) − 〈Fu,v〉 ≥ 0 ∀v ∈ E ,



An Overview on Equilibrium Problems Chapter | 2 31

where i is the canonical injection of E into Lp (�;Rn), A : E ⇒ E∗ is
a nonlinear multi-valued mapping, F : E → E∗ is a nonlinear operator,
J : Lp (�;Rn) → R is a locally Lipschitz functional and h : E → R is a given
nonnegative functional. We denote by E∗ the dual space of E and by 〈 ·, 〉 the
duality pairing between E∗ and E.

Consider the following quasi-hemivariational inequality:

find u ∈ C and z ∈ A(u) such that

〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉 ≥ 0 ∀v ∈ C, (QHVI)

where its set of solutions is denoted by SQHVI (C,A). Note that in the spe-
cial case when C is the whole space E, the above two formulations of quasi-
hemivariational inequalities are one and the same. A detailed analysis of quasi-
hemivariational inequality problems will be developed in Chapter 10.

Studies about inequality problems captured special attention in the last
decades where one of the most recent and general type of inequalities is the
hemivariational inequalities introduced by P.D. Panagiotopoulos [137,138] as
a variational formulation for several classes of mechanical problems with non-
smooth and nonconvex energy super-potentials. The theory of hemivariational
inequalities has produced an abundance of important results both in pure and
applied mathematics as well as in other domains such as mechanics and en-
gineering sciences as it allowed mathematical formulations for new classes of
interesting problems.

When h is equal to zero in the quasi-hemivariational inequality (QHVI)
corresponding to convex super-potentials, we obtain the standard case of vari-
ational inequalities. The setting corresponding to h equal to 1 describes the
hemivariational inequalities. These inequality problems appear as a general-
ization of variational inequalities, but they are much more general than these
ones, in the sense that they are not equivalent to minimum problems but give
rise to substationarity problems. The general case when h is nonconstant corre-
sponds to quasi-hemivariational inequalities, which are studied in relationship
with relevant models in mechanics and engineering.

2.3.2 Browder Variational Inclusions

Starting with Felix Browder’s2 pioneering contributions to variational inclu-
sions [45], many authors have been interested in inclusions involving set-valued
mappings. In recent years, the notion of “set-valued equilibrium problem” has
been employed in [113,115] in connection with the so-called equilibrium prob-
lem or inequality of Ky Fan-type (see [42,74,133]), which has produced an
abundance of results in various areas of mathematics.

Let C be a nonempty subset of a (suitable) Hausdorff topological space and
� : C × C ⇒ R a set-valued mapping. A set-valued equilibrium problem is a
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problem of the form

find x∗ ∈ C such that �
(
x∗, y

) ⊂R+ ∀y ∈ C. (SVEP)

It is worth to consider the following weaker set-valued equilibrium problem

find x∗ ∈ C such that �
(
x∗, y

) ∩R+ �= ∅ ∀y ∈ C. (SVEP(W))

In connections with these problems, we recall that the “equilibrium problem”
is a problem of the form

find x∗ ∈ C such that ϕ
(
x∗, y

) ≥ 0 ∀y ∈ C (EP)

where ϕ : C × C → R is a bifunction.
Several problems arising in nonlinear analysis, such as variational inequality

problems, optimization problems, inverse optimization problems, mathematical
programming, complementarity problems, fixed point problems, and Nash equi-
librium problems, are special cases of equilibrium problems. A central interest
in the study of equilibrium problems is that they unify many problems in a com-
mon formulation.

Browder variational inclusions appear in the literature as a generalization of
Browder-Hartman-Stampacchia variational inequalities. These inequality prob-
lems are presented as a weak type of multi-valued variational inequalities, since
they involve set-valued mappings in their definition. Browder variational in-
clusions have many applications, incsluding applications to the surjectivity of
set-valued mappings and to nonlinear elliptic boundary value problems. In re-
cent studies, Browder variational inclusions have been reformulated by means
of set-valued equilibrium problems and different results have been carried out.

Although set-valued equilibrium problems have already been considered in
the literature, many authors have focused on the applications to Browder vari-
ational inclusions, or to other areas such as fixed point theory and economic
equilibrium theory. When these results are applied to single-valued equilibrium
problems, their assumptions become simple conditions of continuity and con-
vexity. On the other hand, single-valued equilibrium problems have known in
last decades several important and deep advancements.

A detailed analysis of Browder variational inclusions will be developed in
Chapter 10.

2.3.3 Quasi-Variational Inequalities

The theory of quasi-variational inequalities has emerged as one of the most ef-
ficient fields of pure and applied nonlinear analysis. These inequality problems
not only subsume the theories of variational inequalities and nonlinear partial
differential inequations, but they provide a unified framework for studying gen-
eral boundary value problems with complicated structure and involving possibly
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unilateral, boundary conditions. This field has developed on the basis of re-
fined analytic tools in order to investigate a wide range of problems that arise
in applied fields such as mechanics, economics, finance, optimization, optimal
control, etc.

Let X and Y be reflexive Banach spaces such that X is compactly embed-
ded into Y . Let L : D(L) ⊆ X → X∗ be a linear, maximal monotone operator.
Let A : X ⇒ X∗ and B : Y ⇒ Y ∗ be multi-valued maps, let K be a nonempty,
closed, and convex subset of K , let � : X → R ∪ {+∞} be a proper functional
(that is, � �≡ +∞), and let C : K ⇒ K be a multi-valued map such that for any
z ∈ K , C(z) is a nonempty, closed, and convex subset of K , and let f ∈ X∗.

We formulate the following quasi-variational inequality: find x ∈ C(x) ∩
D(L) ∩ D(�) such that for some a ∈ A(x) and b ∈ B(ix), we have for all
z ∈ C(x) ∩ D(L)

〈L(x) + a − f, z − x〉X + 〈b, iz − ix〉Y + �(z) − �(x) ≥ 0. (2.24)

This statement incorporates both elliptic and evolutionary inequality prob-
lems. For instance, if the map A is single-valued with D(A) = X, φ = 0, B = 0,
and L = 0, then problem (2.24) reduces to the following quasi-variational in-
equality introduced by A. Bensoussan and J.-L. Lions [29]: find x ∈ C(x) such
that

〈A(x) − f, z − x〉 ≥ 0 for all z ∈ C(x).

Additionally, if C(x) = K for every x ∈ K , then problem (2.24) recovers the
standard statement of variational inequality: find x ∈ K such that

〈A(x) − f, z − x〉 ≥ 0 for all z ∈ K.

The statement of the quasi-variational inequality (2.24) covers evolutionary
inequality problems due to the presence of the possibly unbounded operator L

whose prototype is the time derivative L(x) = x′, with X = Lp(0, T ,V ), with
1 < p < +∞, T > 0, and a reflexive Banach space V .

NOTES
1. Ky Fan (1914–2010) was a student of Maurice Fréchet and was also influenced by John von

Neumann and Hermann Weyl. His work in fixed point theory, in addition to influencing nonlinear
functional analysis, has found wide application in mathematical economics and game theory,
potential theory, calculus of variations, and differential equations. In 1999, Fan and his wife
donated one million US dollars to the American Mathematical Society, to set up the Ky and
Yu-Fen Fan Endowment.

2. Felix Browder (1927–2016) was an American mathematician with pioneering contributions in
nonlinear functional analysis. He received the National Medal of Science in 1999. He also served
as president of the American Mathematical Society from 1999 to 2000.
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The object of pure physics is the unfolding of the laws of the intelligible
world; the object of pure mathematics that of unfolding the laws of human
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Chapter points
• The two basic methods serving to show existence results for the equilibrium

problems, KKM (fixed point) method and separation (Hahn-Banach) method are
discussed.

• The equivalence of several fixed point results starting from Brouwer’s theorem,
including KKM and Schauder’s fixed point theorem, is shown.

• The equivalence chain of several minimax results to the finite dimensional
separation theorem is proved.

3.1 KKM THEORY AND RELATED BACKGROUND

Regarding the KKM method, we have seen in Chapter 1 how Brouwer’s fixed
point theorem (Theorem 1.1) can be proven by the KKM lemma (Lemma 1.2).
An extension of the Brouwer’s fixed point theorem to general (infinite dimen-
sional) normed spaces has been provided by J. Schauder1 and of KKM lemma
for (infinite dimensional) Hausdorff topological vector spaces by Ky Fan.2 In
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this section we show that all these results form an equivalent chain, including
the first result on existence of (EP), known in the literature as Ky Fan’s minimax
inequality theorem, by reasoning as follows: we reproduce a general intersection
theorem of KKM type whose proof is based on Brouwer’s fixed point theorem
(Theorem 3.1 below)3 containing, in particular, Ky Fan’s intersection theorem
(Theorem 3.2 below). The latter serves to prove Ky Fan’s minimax inequality
theorem (Theorem 3.3 below), from which one can easily deduce the Schauder’s
fixed point theorem (Theorem 3.5 below). Then, as mentioned, we arrive back
to Brouwer’s fixed point theorem, the latter being a finite dimensional version
of Schauder’s fixed point theorem.

3.1.1 KKM and Generalized KKM Mappings

Let E and E′ be two real Hausdorff topological vector spaces and X a subset
of E. A set-valued mapping F : X ⇒ E is said to be a KKM mapping if for
every finite subset {x1, . . . , xn} of X, we have

conv {x1, . . . xn} ⊂
n⋃

i=1

F (xi) .

A slightly more general concept was introduced by Kassay and Kolum-
bán [100] and, independently by Chang and Zhang [55]:

Definition 3.1. The mapping F : X → 2E′
is called generalized KKM mapping,

if for any finite set {x1, ..., xn} ⊂ X, there exists a finite set {y1, ..., yn} ⊂ E′,
such that for any subset {yi1, ..., yik } ⊂ {y1, ..., yn}, we have

conv{yi1, ..., yik } ⊂ ∪k
j=1F(xij ). (3.1)

It is clear that every KKM mapping is a generalized KKM mapping too. The
converse of this implication is not true, as the following example shows.

Example 3.1. ([55]) Let E = E′ := R, X := [−2,2] and F : X → 2E be defined
by

F(x) := [−(1 + x2/5), 1 + x2/5].
Since ∪x∈XF(x) = [−9/5,9/5], we have

x /∈ F(x), ∀x ∈ [−2,−9/5) ∪ (9/5,1].
This shows that F is not a KKM mapping. On the other hand, for any finite
subset {x1, ..., xn} ⊂ X, take {y1, ..., yn} ⊂ [−1,1]. Then for any {yi1, ..., yik } ⊂
{y1, ..., yn} we have

conv{yi1, ..., yik } ⊂ [−1,1] = ∩x∈XF(x) ⊂ ∪k
j=1F(xij ),

i.e., F is a generalized KKM mapping.
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The importance of the concept of generalized KKM mapping consists on the
following. While KKM property of a mapping is only a sufficient, but not a nec-
essary condition for nonemptiness of the intersection, i.e., ∩x∈XF(x) 	= ∅, the
generalized KKM property will also be necessary (under some basic assump-
tions) for the latter. This will be clarified in the next subsection.

3.1.2 Intersection Theorems of KKM and Ky Fan Type

We start with the most general statement with respect to intersections.

Theorem 3.1. (See [100,55]) Suppose that E is a real Hausdorff topological
vector space, X ⊂ E is nonempty, and F : X → 2E is a mapping such that
for each x ∈ X the set F(x) is finitely closed (i.e., for every finite dimensional
subspace L of E, F(x) ∩ L is closed in the Euclidean topology in L). Then F

is a generalized KKM mapping if and only if the family {F(x) : x ∈ I } has the
finite intersection property, i.e., for every finite subset I ⊂ X the intersection of
the subfamily {F(x) : x ∈ I } is nonempty.

Proof. Suppose first that for arbitrary finite set I = {x1, ..., xn} ⊂ X one has

∩n
i=1F(xi) 	= ∅.

Take x∗ ∈ ∩n
i=1F(xi) and put yi := x∗, for each i ∈ {1, ..., n}. Then for every

{yi1, ..., yik } ⊂ {y1, ..., yn} we have

conv{yi1, ..., yik } = {x∗} ⊂ ∩n
i=1F(xi) ⊂ ∩k

j=1F(xij ).

This implies that F is a generalized KKM mapping.
To show the reverse implication, let F : X → 2E be a generalized KKM

mapping. Supposing the contrary, there exists some finite set {x1, ..., xn} ⊂ X

such that ∩n
i=1F(xi) = ∅. By the assumption, there exists a set {y1, ..., yn} ⊂ E

such that for any {yi1, ..., yik } ⊂ {y1, ..., yn}, relation (3.1) holds. In particular,
we have

conv{y1, ..., yn} ⊂ ∪n
i=1F(xi).

Let S := conv{y1, ..., yn} and L := span{y1, ..., yn}. Since for each x ∈ X, F(x)

is finitely closed, then the sets F(xi) ∩ L are closed. Let d be the Euclidean
metric on L. It is easy to verify that

d(x, F (xi) ∩ L) > 0 if and only if x /∈ F(xi) ∩ L. (3.2)

Define now the function g : S → R by

g(c) :=
n∑

i=1

d(c, F (xi) ∩ L), c ∈ S.
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It follows by (3.2) and ∩n
i=1F(xi) = ∅ that for each c ∈ S, g(c) > 0. Let

h(c) :=
n∑

i=1

1

g(c)
d(c, F (xi) ∩ L)yi.

Then h is a continuous function from S to S. By the Brouwer’s fixed point
theorem (Theorem 1.1), there exists an element c∗ ∈ S such that

c∗ = h(c∗) =
n∑

i=1

1

g(c∗)
d(c∗, F (xi) ∩ L)yi. (3.3)

Denote

I := {i ∈ {1, ..., n} : d(c∗, F (xi) ∩ L) > 0}. (3.4)

Then for each i ∈ I , c∗ /∈ F(xi) ∩ L. Since c∗ ∈ L, then c∗ /∈ F(xi) for each
i ∈ I , or, in other words,

c∗ /∈ ∪i∈IF (xi). (3.5)

By (3.3) and (3.4) we have

c∗ =
n∑

i=1

1

g(c∗)
d(c∗, F (xi) ∩ L)yi ∈ conv{yi : i ∈ I }.

Since F is a generalized KKM mapping, this leads to

c∗ ∈ ∪i∈IF (xi),

which contradicts (3.5). This completes the proof.

Let us observe that by Theorem 3.1 one can easily deduce KKM lemma
(Lemma 1.2) already discussed in Chapter 1 and proved by Sperner’s lemma,
recalled below.

Lemma 3.1. (KKM lemma, see Lemma 1.2 in Chapter 1) Let S=conv{u0,...,uN }
be an N -simplex in a finite dimensional normed space, where N = 0,1, .... Sup-
pose that we are given closed sets C0, ...,CN in X such that

conv{ui0, ..., uik } ⊆ ∪k
m=0Cim, (3.6)

for all possible systems of indices {i0, ..., ik} and all k = 0, ...,N . Then
∩N

j=0Cj 	= ∅.

Proof. Let X =: {u0, ..., uN } and F given by F(uk) = Ck for all k = 0, ...,N .
Then clearly F is a KKM mapping and the result follows by Theorem 3.1.
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Remark 3.1. It can be seen from the proof above that in KKM lemma the
assumption of S to be a simplex is not essential, i.e., the lemma is valid for any
finite set S.

The next result, known in the literature as Ky Fan’s intersection theorem, is
an immediate consequence of Lemma 3.1.

Theorem 3.2. (Ky Fan, 1961 [73]) Let E be a real Hausdorff topological vec-
tor space, X ⊂ E and for each x ∈ X, let F(x) be a closed subset of E, such
that

(i) there exists x̄ ∈ X, such that the set F(x̄) is compact;
(ii) F is a KKM mapping.

Then

∩x∈XF(x) 	= ∅.

Proof. Consider the family G(x) := F(x̄) ∩ F(x) (x ∈ X) in the compact
space F(x̄). Clearly, ∩x∈XG(x) = ∩x∈XF(x), hence it is enough to check that
∩x∈XG(x) 	= ∅. Using the characterization of compact spaces (Proposition 1.1),
the latter amounts to show that the family {G(x) : x ∈ X} has the finite in-
tersection property, or, equivalently, the family {F(x) : x ∈ X} has the finite
intersection property. So let {x0, ..., xN } ⊂ X and let Y be the finite dimensional
subspace of X spanned by {x0, ..., xN }. Taking into account Remark 3.1 the
sets Ci := F(xi) ∩ conv{x0, ..., xN } (i = 0, ...,N ) satisfy the assumptions of
Lemma 3.1. Hence,

∅ 	= ∩N
i=0Ci ⊂ ∩N

i=0F(xi).

3.1.3 The Rudiment for Solving Equilibrium Problems. Fixed
Point Theorems

By means of Ky Fan’s lemma (Theorem 3.2) one can prove the following ex-
istence result for (EP), also due to Ky Fan. This is known in the literature as
Ky Fan’s minimax inequality theorem. As far as we know, it is the first result
concerning (EP).

Theorem 3.3. (Ky Fan, 1972 [74]) Let A be a nonempty, convex, compact
subset of a real Hausdorff topological vector space and let f : A × A → R,
such that

∀b ∈ A, f (·, b) : A → R is upper semicontinuous, (3.7)

∀a ∈ A, f (a, ·) : A →R is quasi-convex (3.8)

and

∀a ∈ A, f (a, a) ≥ 0. (3.9)
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Then there exists ā ∈ A such that f (ā, b) ≥ 0 for all b ∈ A, i.e., the equilib-
rium problem (EP) defined by f admits a solution.

Proof. For each b ∈ A, consider the set F(b) := {a ∈ A : f (a, b) ≥ 0}. By (3.7),
these sets are closed, and since A is compact, they are compact too. It is easy to
see that the conclusion of the theorem is equivalent to

∩b∈AF(b) 	= ∅. (3.10)

In order to prove relation (3.10), let b1, b2, ..., bn ∈ A. We show that

conv{bi : i ∈ {1,2, ..., n}} ⊂ ∪n
i=1F(bi). (3.11)

Indeed, suppose by contradiction that there exist λ1, λ2, ..., λn ≥ 0,∑n
j=1 λj = 1, such that

n∑
j=1

λjbj /∈ ∪n
j=1F(bj ).

By definition, the latter means

f (

n∑
j=1

λjbj , bi) < 0, ∀i ∈ {1,2, ..., n}.

By (3.8) (quasi-convexity), one obtains

f (

n∑
j=1

λjbj ,

n∑
j=1

λjbj ) < 0,

which contradicts (3.9). This shows that (3.11) holds. Now applying Theo-
rem 3.2, we obtain (3.10), which completes the proof.

In order to deduce Schauder’s fixed point theorem, we first need the follow-
ing result.

Theorem 3.4. Let E be a normed space, X ⊂ E be a compact convex set and
g,h : X → E be continuous functions such that

‖x − g(x)‖ ≥ ‖x − h(x)‖, ∀x ∈ X. (3.12)

Then there exists an element x̄ ∈ X, such that

‖y − g(x̄)‖ ≥ ‖x̄ − h(x̄)‖, ∀y ∈ X.
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Proof. Let f : X × X → R defined by f (x, y) := ‖y − g(x)‖ − ‖x − h(x)‖.
It is clear that this function satisfies the hypothesis of Theorem 3.3, thus there
exists an element x̄ ∈ X such that

‖x̄ − h(x̄)‖ ≤ ‖y − g(x̄)‖, ∀y ∈ X. (3.13)

This completes the proof.

Observe, in case g(X) ⊂ X, we can put y := g(x̄) in (3.13); in this way
we obtain that x̄ is a fixed point of f . Now it is immediate the well-known
Schauder’s fixed point theorem:

Theorem 3.5. (J. Schauder, 1930 [158]) Let X be a convex compact subset of
a real normed space and h : X → X a continuous function. Then h has a fixed
point.

3.2 SEPARATION AND RELATED RESULTS

As mentioned at the beginning of this chapter, another tool for proving exis-
tence results for the equilibrium problem (EP) is the separation of convex sets
by hyperplanes. There are different kinds of separation, all of them represent
the geometric form of the celebrated Hahn-Banach theorem. In what follows we
use only separations in finite dimensional spaces, they may appear also in dif-
ferent forms as strong separation, or proper separation, for instance. We show
that using a proper separation theorem in finite dimensional spaces allows us
to prove existence results for (EP) in rather general framework (for instance, in
topological vector spaces, or, even more, in just topological spaces).

We have seen in Chapter 2 that the minimax (saddle point) problem is a
particular case of (EP). In this section we also show that known minimax re-
sults, some of them being cornerstones of noncooperative game theory, form
an equivalent chain together with the strong separation theorem in finite dimen-
sional spaces.

3.2.1 Finite Dimensional Separation of Convex Sets

Consider the following optimization problem, known as the problem of best
approximation:

ϑ(y) := inf{‖x − y‖2 : x ∈ C}, (P(y))

where C ⊂R
n is a nonempty convex set and y ∈ R

n.

Lemma 3.2. If C is closed, then (P (y)) has a unique solution, called the metric
projection of y to C, denoted by PCy.

Proof. Let f (x) = ‖x − y‖ and r > 0 such that D := B(y, r) ∩ C 	= ∅, where
B(y, r) = {x ∈ R

n : ‖x − y‖ ≤ r}. Since D is compact and f is continuous
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on D, f admits a minimum point on D which clearly is a minimum point on C,
too. Hence (P (y)) has a solution. For the uniqueness, suppose by contradiction
that x1 	= x2 are optimal solutions of (P (y)). We use the Parallelogram Law:

‖z1 + z2‖2 + ‖z1 − z2‖2 = 2‖z1‖2 + 2‖z2‖2, ∀z1, z2 ∈ R
n, (3.14)

with zi = xi − y (i = 1,2). Since C is convex, 1
2 (x1 + x2) ∈ C and thus:

∥∥∥∥1

2
(x1 + x2) − y

∥∥∥∥
2

<
1

2
‖x1 − y‖2 + 1

2
‖x2 − y‖2 = ϑ(y),

a contradiction.

A useful characterization of the metric projection is provided by the next
result.

Lemma 3.3. For every y ∈ R
n and C ⊂ R

n nonempty closed convex set, one
has

z = PCy ⇔ z ∈ C and (z − y)T (x − z) ≥ 0, for all x ∈ C.

Furthermore, for all x ∈ C:

‖x − PCy‖2 + ‖PCy − y‖2 ≤ ‖x − y‖2.

Proof. To show the only if implication we observe that

0 ≤ (z − y)T (x − z) = −‖z − y‖2 + (z − y)T (x − y),

therefore, by the Cauchy-Schwartz inequality

0 ≤ (z − y)T (x − z) ≤ −‖z − y‖2 + ‖z − y‖‖x − y‖, (3.15)

for all x ∈ C.

Case 1. If y ∈ C, then taking x = y in (3.15), we obtain that 0 ≤ −‖z − y‖2,
hence ‖z − y‖2 = 0. Since y ∈ C, it follows that z = y = PCy.

Case 2. If y /∈ C, then ‖z − y‖ > 0, hence by (3.15) ‖z − y‖ ≤ ‖x − y‖, for all
x ∈ C. Therefore z is an optimal solution of (P (y)) and by uniqueness we get
that z = PCy.

To verify the if implication, it follows for z = PCy that z ∈ C, and since C is
convex this shows

‖z − y‖2 ≤ ‖αx + (1 − α)z − y‖2 = ‖z − y + α(x − z)‖2, (3.16)
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for all x ∈ C and 0 < α < 1. Rewriting relation (3.16) we obtain for every
0 < α < 1 that

2(z − y)T (x − z) + α‖x − z‖2 ≥ 0, (3.17)

and letting α → 0, the desired inequality follows. To show the triangle inequal-
ity, we observe using ‖z1‖2 − ‖z2‖2 = 〈z1 − z2, z1 + z2〉, for every z1, z2 that

‖x − pC(y)‖2 − ‖x − y‖2 = 〈y − pC(y),2x − y − pC(y)〉. (3.18)

The last term equals −‖y − pC(y)‖2 + 2〈y − pC(y), x − pC(y)〉 and applying
now the first part yields the desired inequality.

An immediate consequence of the lemma above is the strong separation the-
orem (in finite dimensional spaces).

Theorem 3.6. If C ⊂ R
n is a nonempty convex set and y /∈ cl(C), then there

exists a nonzero vector y0 ∈ R
n and ε > 0 such that yT

0 x ≥ yT
0 y + ε, for all

x ∈ cl(C). In particular, the vector y0 := pcl(C)(y) − y satisfies the inequality.

Proof. By Lemma 3.3 we obtain for every x ∈ cl(C) and the nonzero vector
y0 := Pcl(C)(y) − y that yT

0 x ≥ yT
0 pcl(C)(y). This shows

yT
0 x ≥ ‖y0‖2 + yT

0 y (3.19)

and since y0 	= 0, the desired result follows.

Remark 3.2. The nonzero vector y0 ∈ cl(C) − y is called the normal vector of
the separating hyperplane

H(a, a) := {x ∈ R
n : aT x = a},

with a = y0 and a = yT
0 y + ε

2 . Since y0 	= 0, we may take as a normal vector of
the hyperplane the vector y0‖y0‖−1, and this vector has norm 1 and belongs to
cone(cl(C) − y).

The separation of Theorem 3.6 is called a strong separation between the
set C and the vector y. One can also introduce strong separation between two
convex sets.

The sets C1,C2 ⊂ R
n are called strongly separated if there exist some

y0 ∈ R
n such that

inf
x∈C1

yT
0 x > sup

x∈C2

yT
0 x.

An immediate consequence of Theorem 3.6 is given by the next result.

Theorem 3.7. Consider the convex sets C1,C2 ⊂ R
n such that C1 is compact,

C2 is closed and C1 ∩ C2 = ∅. Then they can be strongly separated.
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Proof. The set C := C1 − C2 is closed and 0 /∈ C. The result follows by Theo-
rem 3.6.

The strong separation provided by Theorem 3.6 can be used to prove a
“weaker” separation result valid under a weaker condition on the point y. To
do this, let us first recall the concept of relative interior point.

Let E := {x ∈ R
n : ‖x‖ < 1} be the unit open ball. The vector x ∈ R

n is a
relative interior point of the set S ⊂R

n if x ∈ aff (S) and there exists ε > 0 such
that

(x + εE) ∩ aff (S) ⊂ S.

The relative interior of S is denoted by ri(S) and is given by

ri(S) := {x ∈R
n : x is a relative interior point of S}.

In order to prove the following separation theorem, we need the next two
lemmas. For their proofs, see Frenk and Kassay [77].

Lemma 3.4. If C ⊂R
n is a nonempty convex set, then

cl(ri(C)) = cl(C) and ri(C) = ri(cl(C)).

Lemma 3.5. For every nonempty set S ⊂R
n and x0 ∈ aff (S) one has

aff (S) = x0 + lin(S − x0).

Theorem 3.8. If C ⊂ R
n is a nonempty convex set and y /∈ ri(C), then there

exists some nonzero vector y0 belonging to the unique linear subspace Laff (C)

such that yT
0 x ≥ yT

0 y, for all x ∈ C. Moreover, for the vector y0 there exists
some x0 ∈ C such that yT

0 x0 > yT
0 y.

Proof. Consider for every n ∈ N the set (y + n−1E) ∩ aff (cl(C)), where E :=
{x ∈ R

n : ‖x‖ < 1}. By Lemma 3.4 it follows that y /∈ ri(cl(C)) and so there
exists some vector yn such that

yn /∈ cl(C) and yn ∈ (y + n−1E) ∩ aff (cl(C)). (3.20)

The set cl(C) is a closed convex set and by relation (3.20) and Theorem 3.6
one can find some vector y∗

n ∈ R
n such that

‖y∗
n‖ = 1, y∗

n ∈ cone(cl(C) − yn) ⊂ Laff (C) and y∗
n
T
x ≥ y∗

n
T
yn, (3.21)

for every x ∈ cl(C).
Since ‖y∗

n‖ = 1, it follows that {y∗
n : n ∈N} admits a convergent subsequence

{y∗
n : n ∈ N0} with

lim
n∈N0→∞y∗

n = y0. (3.22)
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This implies by relations (3.20), (3.21) and (3.22) that

yT
0 x = lim

n∈N0→∞y∗
n
T
x ≥ lim

n∈N0→∞y∗
n
T
yn = yT

0 y, (3.23)

for all x ∈ cl(C) and

y0 ∈ Laff (C) and ‖y0‖ = 1. (3.24)

Suppose now that there does not exist some x0 ∈ C, satisfying yT
0 x0 > yT

0 y.
By relation (3.23) this implies that

yT
0 (x − y) = 0,

for every x ∈ C. Since y ∈ cl(C) ⊂ aff (C), using Lemma 3.5 we obtain

yT
0 z = 0

for every z ∈ Laff (C). Since by relation (3.24) the vector y0 ∈ Laff (C), we obtain
that ‖y0‖2 = 0, contradicting ‖y0‖ = 1. Hence it must follow that there exists
some x0 ∈ C such that yT

0 x0 > yT
0 y.

The separation of Theorem 3.8 is called a proper separation between the
set C and the vector y. One can also introduce proper separation between two
convex sets.

The sets C1,C2 ⊂ R
n are called properly separated if there exist some

y0 ∈ R
n such that

inf
x∈C1

yT
0 x ≥ sup

x∈C2

yT
0 x

and

yT
0 x1 > yT

0 x2,

where x1 ∈ C1 and x2 ∈ C2.
An immediate consequence of Theorem 3.8 is given by the next result.

Theorem 3.9. If the convex sets C1,C2 ⊂ R
n satisfy ri(C1) ∩ ri(C2) = ∅, then

they can be properly separated.

Proof. We have the following relation:

ri(αS1 + βS2) = αri(S1) + βri(S2),

where α,β ∈ R and Si ⊂ R
n, i = 1,2 are convex sets. According to this, we

obtain for α = 1 and β = −1 that

ri(C1 − C2) = ri(C1) − ri(C2).
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Then ri(C1) ∩ ri(C2) = ∅ if and only if

0 /∈ ri(C1) − ri(C2).

By Theorem 3.8 applying for y = 0 and the convex set C1 − C2, the result
follows.

3.2.2 Results Based on Separation

As announced at the beginning of this section, we present now some existence
results on (EP) which uses separation tools in their proofs.

The result below is a particular case of a theorem due to Kassay and Kolum-
bán ([101]).

Theorem 3.10. Let A be a nonempty, compact, convex subset of a certain topo-
logical vector space, let B be a nonempty convex subset of a certain vector
space, and let f : A × B →R be a given function.

Suppose that the following assertions are satisfied:

(i) f is upper semicontinuous and concave in its first variable;
(ii) f is convex in its second variable;

(iii) supa∈A f (a, b) ≥ 0, for all b ∈ B.

Then the equilibrium problem (EP) has a solution.

Remark 3.3. Condition (iii) in the previous theorem is satisfied if, for instance,
B ⊆ A and f (a, a) ≥ 0 for each a ∈ B. This condition arises naturally in most
of the particular cases presented above.

A similar, but more general existence result for the problem (EP) has been
established by Kassay and Kolumbán also in [101], where instead of the con-
vexity (concavity) assumptions on the function f , certain kind of generalized
convexity (concavity) assumptions are supposed.

Theorem 3.11. Let A be a compact topological space, let B be a nonempty set,
and let f : A × B → R be a given function such that

(i) for each b ∈ B, the function ϕ : A → R is usc;
(ii) for each a1, ..., am ∈ A, b1, ..., bk ∈ B, λ1, ..., λm ≥ 0 with

∑m
i=1 λi = 1,

the inequality

min
1≤j≤k

m∑
i=1

λif (ai, bj ) ≤ sup
a∈A

min
1≤j≤k

f (a, bj )

holds;
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(iii) For each b1, ..., bk ∈ B, μ1, ...,μk ≥ 0 with
∑k

j=1 μj = 1, one has

sup
a∈A

k∑
j=1

μjf (a, bj ) ≥ 0.

Then the equilibrium problem (EP) admits a solution.

Proof. Suppose by contradiction that (EP) has no solution, i.e., for each a ∈ A

there exists b ∈ B such that f (a, b) < 0, or equivalently, for each a ∈ A there
exists b ∈ B and c > 0 such that f (a, b) + c < 0. Denote by Ub,c the set
{a ∈ A : f (a, b) + c < 0} where b ∈ B and c > 0. By (i) and our assumption,
the family of these sets is an open covering of the compact set A. Therefore,
one can select a finite subfamily which covers the same set A, i.e., there exist
b1, ..., bk ∈ B and c1, ..., ck > 0 such that

A = ∪k
j=1Ubj ,cj

. (3.25)

Let c := min{c1, ..., ck} > 0 and define the vector-valued function
H : A → R

k by

H(a) := (f (a, b1) + c, ..., f (a, bk) + c).

We show that

convH(A) ∩ int(Rk+) = ∅, (3.26)

where, as before, convH(A) denotes the convex hull of the set H(A) and
int(Rk+) denotes the interior of the positive orthant Rk+. Indeed, supposing the
contrary, there exist a1, ..., am ∈ A and λ1, ..., λm ≥ 0 with

∑m
i=1 λi = 1, such

that
m∑

i=1

λiH(ai) ∈ int(Rk+)

or, equivalently,

m∑
i=1

λi(f (ai, bj ) + c) > 0, ∀j ∈ {1, ..., k}. (3.27)

By (ii), (3.27) implies

sup
a∈A

min
1≤j≤k

f (a, bj ) > −c. (3.28)

Now using (3.25), for each a ∈ A there exists j ∈ {1, ..., k} such that
f (a, bj ) + cj < 0. Thus, for each a ∈ A we have

min
1≤j≤k

f (a, bj ) < −c,
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which contradicts (3.28). This shows that relation (3.26) is true. By the
proper separation theorem in finite dimensional spaces (Theorem 3.8), the
sets convH(A) and int(Rk+) can be separated by a hyperplane, i.e., there exist
μ1, ...,μk ≥ 0 such that

∑k
j=1 μj = 1 and

k∑
j=1

μj (f (a, bj ) + c) ≤ 0, ∀a ∈ A,

or, equivalently

k∑
j=1

μjf (a, bj ) ≤ −c, ∀a ∈ A. (3.29)

Observe, the latter relation contradicts assumption (iii) of the theorem. Thus
the proof is complete.

3.2.3 Equivalent Chain of Minimax Theorems Based on
Separation Tools

In this subsection we review known minimax results, some of them being the
cornerstones of noncooperative game theory and show that these results are easy
consequences of the first minimax result for a two person zero sum game with
finite strategy sets published by von Neumann4 in 1928 (see [168]).

According to [79], several well known minimax theorems form an equivalent
chain and this chain includes the strong separation result in finite dimensional
spaces between two disjoint closed convex sets of which one is compact (The-
orem 3.7). The authors in [78] reduced the number of results in this equivalent
chain and gave more transparent and simpler proofs. These results will be pre-
sented in the sequel.

Let X and Y be nonempty sets and f : X × Y → R a given function. Recall
that a minimax result is a theorem which asserts that

maxx∈X miny∈Y f (x, y) = miny∈Y maxx∈X f (x, y). (3.30)

In case min and/or max are not attained the min and/or max in the above expres-
sions are replaced by inf and/or sup. The first minimax result was proved in a
famous paper by von Neumann (cf. [168]) in 1928 for X and Y unit simplices
in finite dimensional vector spaces and f affine in both variables. In this paper
it was also shown why such a result is of importance in game theory. The mini-
max results needed in noncooperative game theory assumed that the sets X and
Y represented sets of probability measures with finite support and the function f

was taken to be affine in both variables. Later on, the condition on the function
f was weakened and more general sets X and Y were considered. These results
turned out to be useful also in optimization theory and were derived by means of
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short or long proofs using a version of the Hahn Banach theorem in either finite
or infinite dimensional vector spaces. With the famous minimax result in game
theory proved by von Neumann in 1928 (cf. [168]) as a starting point, we will
show in this subsection that several of these so-called generalizations published
in the literature can be derived from each other using only elementary obser-
vations. Before introducing this chain of equivalent minimax results we need
the following notation. Let F(X) denote the set of probability measures on X

with finite support. That is, if εx represents the one-point probability measure
concentrated on X, this means by definition that λ ∈ F(X) if and only if there
exists some finite set {x1, ..., xn} ⊆ X and a sequence λi , 1 ≤ i ≤ n satisfying

λ =
∑n

i=1
λiεxi

,
∑n

i=1
λi = 1 and λi > 0,1 ≤ i ≤ n. (3.31)

If the set X is given by {x1, ..., xn} then it is clear that

F(X) = {λ : λ =
∑n

i=1
λiεxi

,
∑n

i=1
λi = 1, λi ≥ 0,1 ≤ i ≤ n}. (3.32)

Moreover, the set F2(X) ⊆ F(X) denotes the set of two-point probability mea-
sures on X. This means that λ belongs to F2(X) if and only if

λ = λ1εx1 + (1 − λ1)εx2 (3.33)

with xi , 1 ≤ i ≤ 2 different elements of X and 0 < λ1 < 1 arbitrarily chosen.
Finally, for each 0 < α < 1 the set F2,α(X) represents the set of two point prob-
ability measures with λ1 = α in relation (3.33). Also on the set Y similar spaces
of probability measures with finite support are introduced. Within game theory
any element of F(X), respectively F(Y ) represents a so-called mixed strategy
of player 1, respectively player 2 and to measure the payoff using those mixed
strategies one needs to extend the so-called payoff function f to the Cartesian
product of the sets F(X) and F(Y ). The extension fe : F(X) × F(Y ) → R is
defined by the expectation

fe(λ,μ) :=
∑n

i=1

∑m

j=1
λiμjf (xi, yj ) (3.34)

with λ as in relation (3.31) and μ = ∑m
j=1 μjεyj

. To start in a chronological
order we first mention the famous bilinear minimax result in game theory for
finite sets X and Y due to von Neumann and published in 1928 (cf. [168]).

Theorem 3.12. If X and Y are finite sets then it follows that

maxλ∈F(X) minμ∈F(Y ) fe(λ,μ) = minμ∈F(Y ) maxλ∈F(X) fe(λ,μ).

A generalization of Theorem 3.12 due to Wald [170] and published in 1945
is given by the next result. This result plays a fundamental role in the theory of
statistical decision functions (cf. [171]). While in case of Theorem 3.12 the ac-
tion sets of players 1 and 2 are finite, this condition is relaxed in Wald’s theorem
claiming that only one set should be finite.
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Theorem 3.13. If X is an arbitrary nonempty set and Y is a finite set then it
follows that

supλ∈F(X) minμ∈F(Y ) fe(λ,μ) = minμ∈F(Y ) supλ∈F(X) fe(λ,μ).

In order to prove Wald’s theorem by von Neumann’s theorem, we first need
the following elementary lemma. For its proof, see, for instance, [79]. For every
set Y let 〈Y 〉 be the set of all finite subsets of Y .

Lemma 3.6. If the set X is compact and the function h : X × Y → R is upper
semicontinuous on X for every y ∈ Y then maxx∈X infy∈Y h(x, y) is well defined
and

maxx∈X infy∈Y h(x, y) = infY0∈〈Y 〉 maxx∈X miny∈Y0 h(x, y).

Since for every μ ∈F(Y ) and J ⊆ X it is easy to see that

supλ∈F(J ) fe(λ,μ) = supx∈J fe(εx,μ) (3.35)

we are now ready to derive Wald’s minimax result from von Neumann’s mini-
max result. Observe Wald (cf. [170]) uses in his paper von Neumann’s minimax
result and the Lebesgue dominated convergence theorem to derive his result.

Theorem 3.14. von Neumann’s minimax result ⇒ Wald’s minimax result.

Proof. If α := supλ∈F(X) minμ∈F(Y ) fe(λ,μ) then clearly

α = supJ∈〈X〉 maxλ∈F(J ) minμ∈F(Y ) fe(λ,μ). (3.36)

Since the set Y is finite we may apply von Neumann’s minimax result in rela-
tion (3.36) and this implies in combination with relation (3.35) that

α = supJ∈〈X〉 minμ∈F(Y ) maxλ∈F(J ) fe(λ,μ) (3.37)

= supJ∈〈X〉 minμ∈F(Y ) maxx∈J fe(εx,μ)

= − infJ∈〈X〉 maxμ∈F(Y ) minx∈J −fe(εx,μ).

The finiteness of the set Y also implies that the set F(Y ) is compact and the
function μ → fe(εx,μ) is continuous on F(Y ) for every x ∈ X. This shows in
relation (3.37) that we may apply Lemma 3.6 with the set X replaced by F(Y ),
Y by X and h(x, y) by −fe(εx,μ) and so it follows that

α = minμ∈F(Y ) supx∈X fe(εx,μ). (3.38)

Finally by relation (3.35) with J replaced by X the desired result follows from
relation (3.38).

Next we will reformulate Theorem 3.11 of Kassay and Kolumbán ([101])
given in the previous subsection. Let us denote by 〈Y 〉 the set of all finite subsets
of Y .
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Definition 3.2. The function f : X × Y → R is called weakly concavelike on
X if for every I belonging to 〈Y 〉 it follows that

supλ∈F(X) miny∈I fe(λ, εy) ≤ supx∈X miny∈I f (x, y).

Since εx belongs to F(X) it is easy to see that f is weakly concavelike on
X if and only if for every I ∈ 〈Y 〉 it follows that

supλ∈F(X) miny∈I fe(λ, εy) = supx∈X miny∈I f (x, y)

and this equality also has an obvious interpretation within game theory. The
main result of Kassay and Kolumbán is given by the following theorem
(cf. [101]).

Theorem 3.15. If X is a compact subset of a topological space and the function
f : X ×Y →R is weakly concavelike on X and upper semicontinuous on X for
every y ∈ Y then it follows that

infμ∈F(Y ) maxx∈X fe(εx,μ) = maxx∈X infy∈Y fe(x, y).

At first sight this result might not be recognized as a minimax result. How-
ever, it is easy to verify for every x ∈ X that

infy∈Y f (x, y) = infμ∈F(Y ) fe(εx,μ). (3.39)

By relation (3.39) an equivalent formulation of Theorem 3.15 is now given by

infμ∈F(Y ) maxx∈X fe(εx,μ) = maxx∈X infμ∈F(Y ) fe(εx,μ)

and so the result of Kassay and Kolumbán is actually a minimax result.
We now give an elementary proof for Theorem 3.15 using Wald’s minimax

theorem.

Proof. Denote α:= infμ∈F(Y )maxx∈Xfe(εx,μ), β:=maxx∈Xinfμ∈F(Y )fe(εx,μ)

and suppose by contradiction that α > β. (The inequality β ≤ α always holds.)
Let γ so that α > γ > β. Then by relation (3.39) and Lemma 3.6 we have

γ > β = maxx∈X infy∈Y f (x, y) = infY0∈〈Y 〉 maxx∈X miny∈Y0 f (x, y).

Therefore, there exists a finite subset Y0 ∈ 〈Y 〉 such that maxx∈X miny∈Y0 f (x,

y) < γ and this implies by weak concavelikeness that

supλ∈F(X) miny∈Y0 fe(λ, εy) < γ. (3.40)

Similarly to relation (3.39), it is easy to see that for every λ ∈ F(X) and
every μ ∈F(Y ) the relations

infμ∈F(Y0) fe(λ,μ) = miny∈Y0 fe(λ, εy)
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and

supλ∈F(X) fe(λ,μ) = maxx∈X fe(εx,μ)

hold, and these together with (3.40) and Wald’s theorem imply

α > γ > supλ∈F(X) infμ∈F(Y0) fe(λ,μ) = infμ∈F(Y0) supλ∈F(X) fe(λ,μ)

≥ infμ∈F(Y ) supλ∈F(X) fe(λ,μ) = infμ∈F(Y ) maxx∈X fe(εx,μ) = α,

a contradiction. This completes the proof.

In 1952 Kneser (cf. [110]) proved in a two page note a very general minimax
result useful in game theory. Its proof is ingenious and very elementary and
uses only some simple computations and the well-known result that any upper
semicontinuous function attains its maximum on a compact set.

Theorem 3.16. (Kneser, 1952) If X is a nonempty convex, compact subset of a
topological vector space and Y is a nonempty convex subset of a vector space
and the function f : X × Y → R is affine in both variables and upper semicon-
tinuous on X for every y ∈ Y then it follows that

maxx∈X infy∈Y f (x, y) = infy∈Y maxx∈X f (x, y). (3.41)

One year later, in 1953, generalizing the proof and result of Kneser, Ky Fan
(cf. [72]) published his celebrated minimax result. To show his result Ky Fan
introduced the following class of functions which we call Ky Fan convex (Ky
Fan concave) functions.

Definition 3.3. The function f : X × Y → R is called Ky Fan concave on X if
for every λ ∈F2(X) there exists some x0 ∈ X satisfying

fe(λ, εy) ≤ f (x0, y)

for every y ∈ Y . The function f : X × Y → R is called Ky Fan convex on Y if
for every μ ∈F2(Y ) there exists some y0 ∈ Y satisfying

fe(εx,μ) ≥ f (x, y0)

for every x ∈ X. Finally, the function f : X × Y → R is called Ky Fan concave-
convex on X × Y if f is Ky Fan concave on X and Ky Fan convex on Y .

By induction it is easy to show that one can replace in the above definition
F2(X) and F2(Y ) by F(X) and F(Y ). Although rather technical, the above con-
cept has a clear interpretation in game theory. It means that the payoff function
f has the property that any arbitrary mixed strategy is dominated by a pure strat-
egy. Eliminating the linear structure in Kneser’s proof Ky Fan (cf. [72]) showed
the following result.
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Theorem 3.17. (Ky Fan, 1953) If X is a compact subset of a topological space
and the function f : X ×Y → R is Ky Fan concave-convex on X ×Y and upper
semicontinuous on X for every y ∈ Y then it follows that

maxx∈X infy∈Y f (x, y) = infy∈Y maxx∈X f (x, y).

In what follows we show that Ky Fan’s minimax theorem can easily be
proved by Kassay-Kolumbán’s result. Indeed, it is easy to see that every Ky
Fan concave function on X is also weakly concavelike on X. By Theorem 3.15
and relation (3.39) it follows that

maxx∈X infy∈Y f (x, y) = infμ∈F(Y ) maxx∈X fe(εx,μ). (3.42)

Also, since f is Ky Fan convex on Y , for every μ ∈F(Y ) there exists y0 ∈ Y

such that fe(εx,μ) ≥ f (x, y0) for every x ∈ X. Thus,

maxx∈X fe(εx,μ) ≥ maxx∈X f (x, y0) ≥ infy∈Y maxx∈X f (x, y)

implying that

infμ∈F(Y ) maxx∈X fe(εx,μ) ≥ infy∈Y maxx∈X f (x, y)

and this, together with (3.42) leads to

maxx∈X infy∈Y f (x, y) ≥ infy∈Y maxx∈X f (x, y).

Since the reverse inequality always holds, we have equality in the last rela-
tion and the proof is complete.

We show now that the well-known strong separation result in convex analysis
(see Theorem 3.7) can easily be proved by Kneser’s minimax theorem. Next we
recall Theorem 3.7 with a slight change in notations.

Theorem 3.18. If X ⊆R
n is a closed convex set and Y ⊆R

n a compact convex
set and the intersection of X and Y is empty then there exists some s0 ∈ R

n

satisfying

sup{s�
0 x : x ∈ X} < inf{s�

0 y : y ∈ Y }.
Proof. Since X ⊆ R

n is a closed convex set and Y ⊆ R
n is a compact convex

set we obtain that H := X − Y is a closed convex set. It is now easy to see
that the strong separation result as given in Theorem 3.18 holds if and only if
there exists some s0 ∈R

n satisfying σH (s0) := sup{s�
0 x : x ∈ H } < 0. To verify

this we assume by contradiction that σH (s) ≥ 0 for every s ∈ R
n. This clearly

implies σH (s) ≥ 0 for every s belonging to the compact Euclidean unit ball E

and applying Kneser’s minimax result we obtain

suph∈H infs∈E s�h = infs∈E suph∈H s�h ≥ 0. (3.43)
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Since by assumption the intersection of X and Y is nonempty we obtain that
0 does not belong to H := X − Y and this implies using H is closed that
infh∈H ‖h‖ > 0. By this observation we obtain for every h ∈ H that −h‖h‖−1

belongs to E and so for every h ∈ H it follows that infs∈E s�h ≤ −‖h‖. This
implies that

suph∈H infs∈E s�h ≤ suph∈H −‖h‖ = − infh∈H ‖h‖ < 0

and we obtain a contradiction with relation (3.43). Hence there must exist some
s0 ∈ R

n satisfying σH (s0) < 0 and we are done.

Let 
n be the unit simplex in R
n. Observe that without loss of generality

one may suppose that the vector s0 in Theorem 3.18 belongs to 
n. An easy
consequence of Theorem 3.18 is the following result.

Lemma 3.7. If C ⊆R
n is a convex compact set, then it follows that

infu∈C maxα∈
n α�u = maxα∈
n infu∈C α�u.

Proof. It is obvious that

infu∈C maxα∈
n α�u ≥ maxα∈
n infu∈C α�u. (3.44)

To show that we actually have an equality in relation (3.44) we assume by con-
tradiction that

infu∈C maxα∈
n α�u > maxα∈
n infu∈C α�u := γ. (3.45)

Let e be the vector (1, ....,1) in R
n and introduce the mapping H : C → R

n

given by H(u) := u − βe with β satisfying

infu∈C maxα∈
n α�u > β > γ. (3.46)

If we assume that H(C) ∩R
n− is nonempty there exists some u0 ∈ C satisfying

u0 − βe ≤ 0. This implies maxα∈
n α�u0 ≤ β and we obtain a contradiction
with relation (3.46). Therefore H(C) ∩R

n− is empty. Since H(C) is convex and
compact and R

n− is closed and convex, we may apply Theorem 3.18. Hence one
can find some α0 ∈ 
n satisfying α�

0 u − β ≥ 0 for every u ∈ C and using also
the definition of γ listed in relation (3.45) this implies that

γ ≥ infu∈C α�
0 u ≥ β.

Hence we obtain a contradiction with relation (3.46) and the desired result is
proved.

Finally we show that von Neumann’s minimax theorem (Theorem 3.12) is
an easy consequence of Lemma 3.7. In this way we close the equivalent chain
of results considered in this note.
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Proof of von Neumann’s theorem by Lemma 3.7. Denote m := card(X) and
n := card(Y ). Introduce the mapping L : F(Y ) →R

m given by

L(μ) := (fe(εx,μ))x∈X.

It is easy to see that the range L(F(Y )) ⊆R
m is a convex compact set. Applying

now Lemma 3.7 yields

infμ∈F(Y ) maxλ∈F(X) fe(λ,μ) = infu∈L(F(Y )) maxα∈
n α�u

= maxα∈
n infu∈L(F(Y )) α
�u

= maxλ∈F(X) infμ∈F(Y ) fe(λ,μ),

which completes the proof.

NOTES
1. Juliusz Pawel Schauder (1899–1943) was a Polish mathematician, known for his work in func-

tional analysis, partial differential equations, and mathematical physics.
2. Ky Fan (1914–2010) was an American mathematician and Emeritus Professor of Mathematics

at the University of California, Santa Barbara.
3. Theorem 3.1 was first published by Kassay and Kolumbán in 1990 [100] and one year later,

independently by Chang and Zhang [55].
4. John von Neumann (1903–1957) was a Hungarian-American mathematician, physicist, computer

scientist, and polymath. He made major contributions to a number of fields, including mathe-
matics (foundations of mathematics, functional analysis, ergodic theory, representation theory,
operator algebras, geometry, topology, and numerical analysis), physics (quantum mechanics,
hydrodynamics, and quantum statistical mechanics), economics (game theory), computing (Von
Neumann architecture, linear programming, self-replicating machines, stochastic computing),
and statistics.

Von Neumann was generally regarded as the foremost mathematician of his time and said to be
“the last representative of the great mathematicians”. He was a pioneer of the application of oper-
ator theory to quantum mechanics in the development of functional analysis, and a key figure in
the development of game theory and the concepts of cellular automata, the universal constructor,
and the digital computer. He published over 150 papers in his life: about 60 in pure mathemat-
ics, 20 in physics, and 60 in applied mathematics, the remainder being on special mathematical
subjects or nonmathematical ones. His last work, an unfinished manuscript written while in the
hospital, was later published in book form as The Computer and the Brain.
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Chapter points
• The results of this chapter are related to the existence of solutions for different kinds

of vector and set-valued equilibrium problems.
• A special attention is given to the case when the equilibrium problem contains the

sum of two bifunctions.
• The content of this chapter is based on recent results of the authors.
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In Chapter 2 we already defined the weak and the strong vector equilibrium
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nonempty sets, Y be a real topological vector space and C a proper convex cone
of it with intC �= ∅. For the vector-valued function f : A × B → Y , the weak
vector equilibrium problem (abbreviated (WVEP)) is to find ā ∈ A such that

f (ā, b) �∈ −intC for all b ∈ B, (4.1)

while the strong vector equilibrium problem (abbreviated (SVEP)) is to find
ā ∈ A such that

f (ā, b) �∈ −C \ {0} for all b ∈ B. (4.2)

In the next two subsections we discuss existence results together with some
applications of these problems. We start with (SVEP).

4.1.1 The Strong Vector Equilibrium Problem

We begin with a general existence result on (SVEP) which has been established
in [40] and can be seen as an extension of Theorem 3.11 presented in Chapter 3.
Let us state our framework and recall some necessary concepts.

Given the topological vector space Y , consider the following partial order
relation induced on Y by a convex pointed cone C ⊂ Y with intC �= ∅:

y1 ≤C y2 if and only if y2 − y1 ∈ C.

We recall that a cone is pointed if C ∩ (−C) = {0}. The (positive) dual of the
cone C is the set

C∗ = {y∗ ∈ Y ∗ | y∗(c) ≥ 0, for all c ∈ C},

while the quasi-interior of the cone C∗ is the set

C� = {y∗ ∈ C∗|y∗(c) > 0, for all c ∈ C \ {0}}.

A nonempty convex subset V of C is called a base of C if

C = {λv : λ ≥ 0, v ∈ V } and 0 /∈ clV.

If C is a nontrivial convex pointed cone of a Hausdorff locally convex space Y ,
then C� �= ∅ if and only if C has a base.

The proof of the next result follows the idea of Theorem 3.11 adapted for the
vector case. Instead of the finite dimensional separation theorem, we shall use
its infinite dimensional counterpart: two nonempty disjoint convex subsets of a
topological vector space can be separated by a closed hyperplane provided one
of them has an interior point (see, for instance, [3]).
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Let A and B be two nonempty sets, Y be a real topological vector space,
C a proper convex cone of it and f : A × B → Y .

Theorem 4.1. Suppose that f satisfies the following assumptions:

(i) if the system {Ub | b ∈ B} covers A, then it contains a finite subcover,
where

Ub = {a ∈ A | f (a, b) ∈ −C\{0}};
(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with λ1 + ... + λm = 1,

b1, . . . , bn ∈ B there exists u∗ ∈ C� such that

min
1≤j≤n

m∑
i=1

λiu
∗(f (ai, bj )

)≤ sup
a∈A

min
1≤j≤n

u∗(f (a, bj )
);

(iii) for each b1, . . . , bn ∈ B, z∗
1, . . . , z

∗
n ∈ C∗ not all zero, it holds

sup
a∈A

n∑
j=1

z∗
j

(
f (a, bj )

)
> 0.

Then, the strong vector equilibrium problem (SVEP) admits a solution.

Proof. Suppose by contradiction that (SVEP) admits no solution, i.e., for each
a ∈ A there exists b(a) ∈ B such that

f (a, b(a)) ∈ −C \ {0}.
Since the family {Ub(a)}a∈A, where

Ub(a) := {a′ ∈ A | f (a′, b(a)) ∈ −C \ {0}}, (4.3)

covers the set A, then assumption (i) guarantees that there exist b1, . . . , bn ∈ B

such that

A ⊂
n⋃

j=1

Ubj
. (4.4)

We define the vector-valued function F : A → Yn by

F(a) := (f (a, b1), . . . , f (a, bn)
)
,

and we have

convF(A) ∩ (C \ {0})n = ∅, (4.5)

where convF(A) denotes the convex hull of the set F(A). To prove it, sup-
pose by contradiction there exist a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with
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λ1 + ... + λm = 1 such that

m∑
i=1

λiF (ai) ∈ (C \ {0})n.

This is equivalent to

m∑
i=1

λif (ai, bj ) ∈ C \ {0} for each j ∈ {1, . . . , n}. (4.6)

Let u∗ ∈ C� be a functional for which assumption (ii) holds. Applying u∗ to the
above relation and taking the minimum over all j ∈ {1, . . . , n}, we get

min
1≤j≤n

m∑
i=1

λiu
∗(f (ai, bj )

)
> 0. (4.7)

Thus, assumption (ii) and (4.7) imply

sup
a∈A

min
1≤j≤n

u∗(f (a, bj )
)
> 0. (4.8)

Relation (4.4) guarantees that for each a ∈ A there exists j0 = j0(a) ∈ {1, . . . , n}
such that a ∈ Ubj0

, i.e., f (a, bj0) ∈ −C \ {0} for each a ∈ A. Applying u∗ ∈ C�,
we get

u∗(f (a, bj0)
)
< 0 for all a ∈ A.

Taking the minimum over j ∈ {1, . . . , n} and then the supremum over a ∈ A in
the previous relation, we obtain

sup
a∈A

min
1≤j≤n

u∗(f (a, bj )
)≤ 0, (4.9)

which is a contradiction to (4.8). Hence, condition (4.5) holds.
Therefore, the separation theorem implies that there exists a nonzero func-

tional z∗ ∈ (Y n)∗ such that

z∗(u) ≤ 0, for all u ∈ convF(A) (4.10)

and

z∗(k) ≥ 0, for allk ∈ (C \ {0})n. (4.11)

Using the representation z∗ = (z∗
1, ..., z

∗
n), we deduce z∗

j ∈ C∗ for all
j ∈ {1, . . . , n} by a standard argument.

By (4.10) we have z∗(F (a)) ≤ 0 for all a ∈ A, or equivalently,

n∑
j=1

z∗
j (f (a, bj )) ≤ 0.
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Since the above inequality holds for each a ∈ A we obtain

sup
a∈A

n∑
j=1

z∗
j

(
f (a, bj )

)≤ 0,

which is a contradiction to assumption (iii).

Next we show that some continuity and generalized convexity properties
of the bifunction f will guarantee the assumptions of Theorem 4.1. The next
two continuity type concepts are generalizations of the upper semicontinuity of
real-valued functions. (See [118] for other generalizations.)

Definition 4.1. A vector-valued function F : A → Z is said to be

(i) (see [118]) C-upper semicontinuous on A (C-usc in short) if for each x ∈ A

and any c ∈ intC, there exists an open neighborhood U ⊂ A of x such that
F(u) ∈ F(x) + c − intC for all u ∈ U ;

(ii) (see [40]) properly C-upper semicontinuous on A (properly C-usc in short)
if for each x ∈ A and any c ∈ C \ {0}, there exists an open neighborhood
U ⊂ A of x such that F(u) ∈ F(x) + c − C \ {0} for all u ∈ U .

The function F is called (properly) C-lower semicontinuous if −F is (properly)
C-upper semicontinuous.

The next characterizations of upper semicontinuity has been given by
T. Tanaka [166].

Lemma 4.1. The following three statements are equivalent:

(i) F is C-upper semicontinuous on X;
(ii) for any x ∈ X, for any k ∈ intC, there exists a neighborhood U ⊂ X of x

such that F(u) ∈ F(x) + k − intC for all u ∈ U ;
(iii) for any a ∈ Y , the set {x ∈ X : F(x) − a ∈ −intC} is open.

Below we give a characterization of proper C-upper semicontinuity.

Proposition 4.1. Let F : A → Z. The following properties are equivalent:

(i) F is properly C-upper semicontinuous on A;
(ii) the set F−1(z − C\{0}) is open in A for each z ∈ Z.

Proof. Let z ∈ Z. If F−1(z − C\{0}) = ∅, then (ii) holds. Assume that there ex-
ists x0 ∈ F−1(z − C \ {0}). Thus, we have c := z − F(x0) ∈ C \ {0}. By the
definition of properly C-usc, there exists an open neighborhood U of x0 such
that it holds

F(x) ∈ F(x0) + c − C \ {0} = z − C \ {0}
for all x ∈ U . So, F−1(z − C \ {0}) is an open subset of the space A.
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For the reverse implication let x0 ∈ A and c ∈ C \ {0}. Since x0 ∈
F−1(F (x0) + c − C \ {0}), which is an open set by condition (ii), there ex-
ists an open neighborhood U of x0 such that

x ∈ F−1(F (x0) + c − C \ {0}) for all x ∈ U,

and therefore F is properly C-usc at x0. Since x0 was arbitrarily taken, we de-
duce that F is properly C-usc on A.

It is clear that every properly C-upper semicontinuous function is C-upper
semicontinuous, but not vice versa. This can be easily seen if we take into ac-
count the characterization above. For example, set A = Z and consider any cone
C ⊂ Z such that C \ {0} is not an open set; then the identity function is not prop-
erly C-usc.

The next proposition provides sufficient conditions for assumption (i) of
Theorem 4.1.

Proposition 4.2. Suppose that A is a compact topological space and the func-
tion f (·, b) : A → Z is properly C-usc on A for each b ∈ B. Then, the assump-
tion (i) of Theorem 4.1 is satisfied.

Proof. Let Ub := {a ∈ A | f (a, b) ∈ −C \ {0}}, for any b ∈ B. In what follows
we show that the family of these sets is an open covering of A.

Take a0 ∈ Ub and consider c′ := −f (a0, b) ∈ C \ {0}. Since the function
f (·, b) is properly C-usc at a0 ∈ A, there exists a neighborhood U ⊂ A of a0
such that

f (u, b) ∈ f (a0, b) + c′ − C \ {0}
= f (a0, b) − f (a0, b) − C \ {0}
= −C \ {0}

for all u ∈ U . Hence, we get f (u, b) ∈ −C \ {0} for all u ∈ U , which implies
that Ub is an open set. Therefore, assumption (i) of Theorem 4.1 follows from
the compactness of A.

Next we need the following definition (see [40]).

Definition 4.2. A bifunction f : A × B → Z is said to be

(i) C-subconcavelike in its first variable if for all l ∈ intC, x1, x2 ∈ A,
t ∈ [0,1] there exists x ∈ A such that

f (x, y) ≥C tf (x1, y) + (1 − t)f (x2, y) − l for all y ∈ B;
(ii) C-subconvexlike in its second variable if for all l ∈ intC, y1, y2 ∈ B and

t ∈ [0,1], there exists y ∈ B such that

f (x, y) ≤C tf (x, y1) + (1 − t)f (x, y2) + l for all x ∈ A.
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(iii) C-subconcavelike-subconvexlike on A×B if it is C-subconcavelike in its
first variable and C-subconvexlike in its second variable.

Proposition 4.2 and the C-subconcavelikeness of a bifunction allow to
achieve the following existence result as a corollary of Theorem 4.1.

Corollary 4.1. Suppose A is a compact topological space, C a closed convex
cone with a nonempty interior such that C� �= ∅ and the bifunction f satisfies
the conditions:

(i) f (·, b) is properly C-usc for all b ∈ B and f is C-subconcavelike in its
first variable;

(ii) for each b1, . . . , bn ∈ B, z∗
1, . . . , z

∗
n ∈ C∗ not all zero it holds

sup
a∈A

n∑
j=1

z∗
j

(
f (a, bj )

)
> 0.

Then, the vector equilibrium problem (SVEP) admits a solution.

Proof. It is enough to show that the C-subconcavelikeness of the function f

in its first variable implies condition (ii) of Theorem 4.1. Take a1, . . . , am ∈ A,
b1, . . . , bn ∈ B, λ1, . . . , λm ≥ 0 with λ1 + ... + λm = 1 and u∗ ∈ C�.

Thanks to the C-subconcavelikeness of f in its first variable, for each
l ∈ intC there exists ā ∈ A such that

m∑
i=1

λif (ai, bj ) ≤C f (ā, bj ) + l for each j ∈ {1, . . . , n}. (4.12)

Applying u∗ to (4.12), we obtain

m∑
i=1

λiu
∗f (ai, bj ) ≤ u∗(f (ā, bj )

)+ u∗(l) for each j ∈ {1, . . . , n}, (4.13)

and taking the minimum over j we get

min
1≤j≤n

m∑
i=1

λiu
∗(f (ai, bj )

)≤ min
1≤j≤n

u∗(f (ā, bj )
)+ u∗(l)

≤ sup
a∈A

min
1≤j≤n

u∗(f (a, bj )
)+ u∗(l).

Since this inequality holds for each l ∈ intC, we obtain the assumption (ii) of
Theorem 4.1 just taking l → 0.

In the special case Z =R and C =R+, Corollary 4.1 collapses to the follow-
ing result. (In this case for C-subconcavelike we simply write subconcavelike.)
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Corollary 4.2. Suppose A is a compact topological space and the bifunction f

satisfies the conditions:

(i) f (·, b) is usc for all b ∈ B and subconcavelike in its first variable;
(ii) for each b1, . . . , bn ∈ B, μ1, . . . ,μn ≥ 0 it holds

sup
a∈A

n∑
j=1

μjf (a, bj ) > 0.

Then, the scalar equilibrium problem (EP) admits a solution.

The next result follows from Theorem 4.1 via the above corollary.

Theorem 4.2. Let A be a nonempty compact subset of a metrizable topolog-
ical vector space E, C a closed convex cone with a nonempty interior and
e∗ ∈ C�. Suppose that f : A × B → Z is C-subconcavelike-subconvexlike and
the function a �→ e∗(f (a, b)) is upper semicontinuous on A for each fixed b ∈ B.
Furthermore assume that

sup
a∈A

e∗(f (a, b)) ≥ 0, ∀b ∈ B.

Then, the strong vector equilibrium problem (SVEP) admits a solution.

Proof. We prove the theorem in two steps.

Step 1. Let τ ∈ C \ {0} and define the function ψ : A × B → Z by ψ(a, b) =
f (a, b) + τ for all a ∈ A and b ∈ B. For the given e∗ ∈ C� we consider the
real-valued function e∗ ◦ ψ : A × B → R, which is defined as (e∗ ◦ ψ)(a, b) =
e∗(ψ(a, b)) for all a ∈ A and b ∈ B. We show that this function satisfies the
assumptions of Corollary 4.2. Given any ε > 0, there exists l ∈ intC such that
e∗(l) = ε. Since f is C-subconcavelike in its first variable, for each a1, a2 ∈ A

and t ∈ [0,1] there exists ā ∈ A such that

ψ(ā, b) ≥C tψ(a1, b) + (1 − t)ψ(a2, b) − l for all b ∈ B.

Applying e∗ to this inequality we obtain

e∗(ψ(ā, b)) ≥ te∗(ψ(a1, b)) + (1 − t)e∗(ψ(a2, b)) − ε for all b ∈ B.

Thus, the function e∗ ◦ ψ is subconcavelike in its first variable.
Take b1, . . . , bn ∈ B, μ1, . . . ,μn ≥ 0 with μ1 + · · · + μn = 1. Since f is

C-subconvexlike in its second variable, we have that for each l′ ∈ intC there
exists an element b̄ ∈ B such that

ψ(a, b̄) ≤C

n∑
j=1

μjψ(a, bj ) + l′ for all a ∈ A. (4.14)
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Applying the nonzero functional e∗ to relation (4.14) we get

e∗(ψ(a, b̄)) ≤
n∑

j=1

μje
∗(ψ(a, bj )) + e∗(l′) for all a ∈ A. (4.15)

By the assumptions and inequality (4.15), we deduce that

e∗(τ ) ≤ sup
a∈A

e∗(f (a, b̄)) + e∗(τ ) ≤ sup
a∈A

n∑
j=1

μje
∗(ψ(a, bj )) + e∗(l′).

Taking the limit as l′ → 0, we obtain

0 < e∗(τ ) ≤ sup
a∈A

n∑
j=1

μje
∗(ψ(a, bj )).

Hence, the assumptions of Corollary 4.2 are satisfied. Therefore, there exists a
solution ã ∈ A of (EP), i.e.,

e∗(f (ã, b)) + e∗(τ ) ≥ 0 for all b ∈ B.

Step 2. Applying Step 1 with e∗/n, we get that for all n ∈N there exists a point
ãn ∈ A such that

e∗(f (ãn, b)) + 1

n
e∗(τ ) ≥ 0 for all b ∈ B and n ∈ N. (4.16)

In this way we achieve a sequence {ãn} of points of the compact set A. Since
E is metrizable, compactness guarantees sequential compactness: thus, there
exists a convergent subsequence of {ãn} (also denoted by {ãn} for the sake of
simplicity), i.e., there is ã ∈ A such that ãn → ã when n → ∞. We show that ã

solves (SVEP).
Since a �→ e∗(f (a, b)) is upper semicontinuous on A for any point b ∈ B,

we have that it is upper semicontinuous at ã, i.e., for any ε > 0 there exists
n0 ∈N such that

e∗(f (ãn, b)) < e∗(f (ã, b)) + ε for all n ≥ n0.

Thanks to condition (4.16), we deduce

0 ≤ e∗(f (ãn, b)) + (1/n)e∗(τ ) < e∗(f (ã, b)) + (1/n)e∗(τ ) + ε

for all n ≥ n0. Taking n → ∞, we have

0 ≤ e∗(f (ã, b)) + ε.
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Since this inequality holds for any ε, we conclude that

0 ≤ e∗(f (ã, b)).

Since this inequality holds for any b ∈ B, then ã is a solution of (SVEP).

When E is a normed space, according to Eberlein-Smulian theorem (see, for
instance, [3]) weak compactness is equivalent to weak sequential compactness:
therefore, the following stronger result can be achieved for the case of normed
spaces, just arguing as in the previous proof.

Theorem 4.3. Let A be a nonempty weakly compact subset of a normed
space E, C a closed convex cone with a nonempty interior and e∗ ∈ C�. Sup-
pose that f : A × B → Z is C-subconcavelike-subconvexlike and the function
a �→ e∗(f (a, b)) is weakly upper semicontinuous on A for each fixed b ∈ B. Fur-
thermore assume supa∈A e∗(f (a, b)) ≥ 0 for all b ∈ B. Then, the strong vector
equilibrium problem (SVEP) admits a solution.

Theorem 4.3 allows to get the following slight generalization of Theorem 3.2
of [84], in which convexlikeness is replaced by the weaker subconvexlikeness.

Corollary 4.3. Let A be a nonempty weakly compact subset of a normed
space E, C a closed convex cone with a nonempty interior and e∗ ∈ C�.
Suppose f : A × A → Z is C-subconcavelike-subconvexlike and the function
a �→ e∗(f (a, b)) is weakly upper semicontinuous on A for each fixed b ∈ A.
Furthermore assume f (a, a) ∈ C for all a ∈ A. Then, the strong vector equilib-
rium problem (SVEP) admits a solution.

Proof. The thesis follows immediately from Theorem 4.3, just taking A = B

and noticing that f (a, a) ∈ C for all a ∈ A implies

sup
a∈A

e∗(f (a, b)) ≥ e∗(f (b, b)) ≥ 0 for all b ∈ A.

Theorem 4.3 extends Theorem 3.2 of [84] also in two other ways: two dif-
ferent sets A and B are considered and the equilibrium condition f (a, a) ∈ C is
replaced by a weaker assumption involving appropriate suprema over A.

4.1.2 The Weak Vector Equilibrium Problems

In this subsection we provide existence results of (WVEP). Unless otherwise
specified, we keep the notations used in the previous subsection. Recall the fol-
lowing well-known property, which is easy to prove.

Lemma 4.2. If z∗ ∈ C∗ is a nonzero functional, then z∗(z) > 0 for all z ∈ intC.

The proof of the next result follows the line given in Theorem 4.1.
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Theorem 4.4. Let A be a compact set and let f : A×B → Z be a function such
that

(i) for each ȳ ∈ B, the function f (·, ȳ) : A → Z is C-usc on A;

(ii) for each x̄1, . . . , x̄m ∈ A, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1, ȳ1, . . . , ȳn ∈ B

there exists u∗ ∈ C∗ \ {0} such that

min
1≤j≤n

m∑
i=1

λiu
∗(f (x̄i , ȳj )

)≤ sup
x̄∈A

min
1≤j≤n

u∗(f (x̄, ȳj )
);

(iii) for each ȳ1, . . . , ȳn ∈ B, z∗
1, . . . , z

∗
n ∈ C∗ not all zero one has

sup
x̄∈A

n∑
j=1

z∗
j

(
f (x̄, ȳj )

)≥ 0.

Then the equilibrium problem (WVEP) admits a solution.

Proof. Suppose by contradiction that (WVEP) has no solution, i.e., for each
x̄ ∈ A there exists ȳ ∈ B with the property f (x̄, ȳ) ∈ −intC. This means that
for each x̄ ∈ A there exists ȳ ∈ B and k ∈ intC such that

f (x̄, ȳ) + k ∈ −intC.

Consider the sets

Uȳ,k := {x̄ ∈ A | f (x̄, ȳ) + k ∈ −intC},
where ȳ ∈ B and k ∈ intC. In what follows we show that the family of these
sets forms an open covering of the compact set A.

Let x̄0 ∈ Uȳ,k and k ∈ intC. Since x̄0 ∈ Uȳ,k we have that

f (x̄0, ȳ) + k ∈ −intC that is, −f (x̄0, ȳ) − k ∈ intC.

Denote k′ := −f (x̄0, b)− k, so k′ ∈ intC. Since the function f (·, ȳ) is C-usc
at x̄0 ∈ A, we obtain for k′ that there exists a neighborhood Ux̄0 ⊂ E of x̄0 such
that

f (u, ȳ) ∈ f (x̄0, ȳ) + k′ − intC

= f (x̄0, ȳ) − f (x̄0, ȳ) − k − intC

= −k − intC, for all u ∈ Ux̄0 .

Hence we have that f (u, ȳ) + k ∈ −intC for all u ∈ Ux̄0 , which means that
Uȳ,k is an open set.
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Since the family {Uȳ,k} is an open covering of the compact set A, we
can select a finite subfamily which covers the same set A, i.e., there exist
ȳ1, . . . , ȳn ∈ B and k1, . . . , kn ∈ intC such that

A ⊂
n⋃

j=1

Uȳj ,kj
. (4.17)

For these k1, . . . , kn ∈ intC, we have that there exist V1, . . . , Vn balanced
neighborhoods of the origin of Z such that kj + Vj ⊂ C for all j ∈ {1, . . . , n}.

Define V := V1 ∩ · · · ∩ Vn, thus V is a balanced neighborhood of the origin
of the space Z. Let k0 ∈ V ∩ intC, so we have −k0 ∈ V . Hence,

kj − k0 ∈ kj + V ⊂ kj + Vj ⊂ C, for all j ∈ {1, . . . , n},

which gives

kj − k0 ∈ C, for all j ∈ {1, . . . , n}. (4.18)

Now define the vector-valued function F : A → Zn by

F(x̄) := (f (x̄, ȳ1) + k0, . . . , f (x̄, ȳn) + k0
)
.

Assert that

convF(A) ∩ (intC)n = ∅, (4.19)

where convF(A) denotes the convex hull of the set F(A). Supposing the con-

trary, there exist x̄1, . . . , x̄m ∈ A and λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1 such that

m∑
i=1

λiF (x̄i) ∈ (intC)n, or equivalently,

m∑
i=1

λi[f (x̄i , ȳj ) + k0] ∈ intC, for each j ∈ {1, . . . , n}, which gives

m∑
i=1

λif (x̄i , ȳj ) + k0 ∈ intC, for each j ∈ {1, . . . , n}. (4.20)

Let u∗ ∈ C∗ be a nonzero functional for which (ii) holds. Applying u∗ to the
relation above and taking into account Lemma 4.2 we obtain that

m∑
i=1

λiu
∗(f (x̄i , ȳj )

)+ u∗(k0) > 0.
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Passing to the minimum over j we have

min
1≤j≤n

m∑
i=1

λiu
∗(f (x̄i , ȳj )

)
> −u∗(k0), (4.21)

thus, assumption (ii) and relation (4.21) imply that

sup
a∈A

min
1≤j≤n

u∗(f (a, bj )
)
> −u∗(k0). (4.22)

For each x̄ ∈ A, by relation (4.17) we have that there exists j0 ∈ {1, . . . , n}
such that a ∈ Ubj0 ,kj0

, i.e., f (a, bj0) + kj0 ∈ −intC. This, together with (4.18)
imply that

f (a, bj0) + k0 ∈ −kj0 + k0 − intC ⊂ −intC.

By Lemma 4.2 and using the fact that u∗ ∈ C∗ we obtain that

u∗(f (x̄, ȳj0)
)+ u∗(k0) < 0.

Thus for each a ∈ A

min
1≤j≤n

u∗(f (a, bj )
)
< −u∗(k0),

and passing to supremum over a we get a contradiction.
By the separation theorem of convex sets, we have that there exists

z∗ ∈ (Zn)∗ a nonzero functional such that

z∗(u) ≤ 0, for all u ∈ convF(A) and (4.23)

z∗(c) ≥ 0, for all c ∈ (intC)n. (4.24)

Using the representation z∗ = (z∗
1, ..., z

∗
n), by a standard argument we deduce

that z∗
j ∈ C∗ for all j ∈ {1, . . . , n}.

In particular, by (4.23), we have z∗(u) ≤ 0 for all u ∈ F(A). This means that
for any x̄ ∈ A, z∗(F (x̄)) ≤ 0, or equivalently,

n∑
j=1

z∗
j

(
f (x̄, ȳj ) + k0

)≤ 0.

Taking into account the linearity of z∗
j ∈ C∗ for all j ∈ {1, . . . , n}, Lemma 4.2

and the fact that not all z∗
j are zero we obtain

n∑
j=1

z∗
j

(
f (x̄, ȳj )

)≤ −
n∑

j=1

z∗
j (k0) < 0.
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Passing to supremum over x̄ ∈ A in the upper relation we deduce that

sup
x̄∈A

n∑
j=1

z∗
j

(
f (x̄, ȳj )

)
< 0,

which is a contradiction to assumption (iii). This completes the proof.

It is easy to check by induction that the concept of C-subconcavelikeness
given in Definition 4.2 can be characterized as follows.

Proposition 4.3. The function f : A × B → Z is C-subconcavelike in its first
variable if and only if for each l ∈ intC, a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1 there exists ā ∈ A such that

f (ā, b) ≥C

m∑
i=1

λif (ai, b) − l, for all b ∈ B.

Using Proposition 4.3 we obtain by Theorem 4.4 the following result.

Corollary 4.4. Let A be a compact set and let f : A × B → Z be a function
such that

(i) f is C-usc and C-subconcavelike in its first variable;
(ii) for each y1, . . . , yn ∈ B, z∗

1, . . . , z
∗
n ∈ C∗ not all zero one has

sup
x∈A

n∑
j=1

z∗
j

(
f (x, yj )

)≥ 0.

Then the equilibrium problem (WVEP) admits a solution.

Proof. It is enough to show that assumption (ii) of Theorem 4.4 is satisfied. Let
us prove that the C-subconcavelikeness of the function f implies assumption (ii)
of the above theorem.

Fix x1, . . . , xm ∈ A, y1, . . . , yn ∈ B, λ1, . . . , λm ≥ 0 with
m∑

i=1

λi = 1, and

u∗ ∈ C∗\{0}.
By the C-subconcavelikeness of f in its first variable, for each l ∈ intC there

exists ā ∈ A such that

m∑
i=1

λif (xi, yj ) ≤C f (ā, yj ) + l, for each j ∈ {1, . . . , n}. (4.25)
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Applying u∗, relation (4.25) becomes

m∑
i=1

λiu
∗f (xi, yj ) ≤ u∗(f (x̄, yj )

)+ u∗(l), for each j ∈ {1, . . . , n}, (4.26)

which, by passing to minimum over j yields

min
1≤j≤n

m∑
i=1

λiu
∗(f (xi, yj )

)≤ min
1≤j≤n

u∗(f (x̄, yj )
)+ u∗(l)

≤ sup
x∈A

min
1≤j≤n

u∗(f (x, yj )
)+ u∗(l).

Since this relation holds for each l ∈ intC we obtain assumption (ii) of The-
orem 4.4. Hence (WVEP) admits a solution.

4.2 EXISTENCE OF SOLUTIONS OF SET-VALUED
EQUILIBRIUM PROBLEMS

In this section, we obtain different results on the existence of solutions of set-
valued equilibrium problems generalizing in a common way several old ones
for both single-valued and set-valued equilibrium problems.

Set-valued equilibrium problems have been recently investigated in [6] under
mild conditions of continuity, and also under the notion of self-segment-dense
subset first introduced in [114]. We focus in this section only on continuity and
convexity. We are aware of the rich development in last years of the field of
equilibrium problems, which has taken different directions and involved several
tools such as vector equilibrium problems.

We first present the strong and weak set-valued equilibrium problems. Next,
we obtain three main results on the existence of solutions of strong and weak
set-valued equilibrium problems, which generalize those for set-valued and
single-valued equilibrium problems. Applications include Browder variational
inclusions in the realm of real normed vector spaces. Results on the existence of
solutions of Browder variational inclusions involving set-valued operators, with
bounded in norm values and satisfying a condition related to the existence of a
maximum rather than the weak* compactness, are presented. Results involving
demicontinuous set-valued operators are also given.

4.2.1 The Strong and Weak Set-Valued Equilibrium Problem

Let C be a nonempty subset of a real topological Hausdorff vector space and
� : C × C ⇒ R be a set-valued mapping called a set-valued bifunction. Recall
from Chapter 2 that the strong set-valued equilibrium problem is a problem of
the form

find x∗ ∈ C such that �
(
x∗, y

)⊂R+ ∀y ∈ C. (Ssvep)



72 Equilibrium Problems and Applications

The weak set-valued equilibrium problem is a problem of the form

find x∗ ∈ C such that �
(
x∗, y

)∩R+ �= ∅ ∀y ∈ C. (Wsvep)

In the special case where � is a single-valued mapping, the strong and the
weak set-valued equilibrium problems are the same, and coincide with what is
often called, an equilibrium problem in the sense of Blum, Muu, and Oettli or
inequality of Ky Fan-type, due to their contribution to the field.

Example 4.1. Let C be a nonempty, closed, and convex subset of a real normed
vector space X. Endowed with the weak topology, X is a real topological Haus-
dorff vector space. Let F : C ⇒ X∗ be a set-valued operator. The problem

find x0 ∈ C such that
{〈x∗

0 , y − x0〉 : x∗
0 ∈ F(x0)

}⊂ R+ for all y ∈ C

is an example of a strong set-valued equilibrium problem in the real topological
Hausdorff vector space X. The problem

find x0 ∈ C such that
{〈x∗

0 , y − x0〉 : x∗
0 ∈ F(x0)

}∩R+ �= ∅ for all y ∈ C

is an example of a weak set-valued equilibrium problem in the real topological
Hausdorff vector space X.

In practice, examples are often taken in the settings of real normed vector
spaces which are special cases of real topological Hausdorff vector spaces. The
following example is an application of the strong set-valued equilibrium prob-
lems to fixed point theory.

Example 4.2. Let C be a nonempty, closed, and convex subset of a real normed
vector space X and F : C ⇒ X∗ be a set-valued operator. Solving the strong
set-valued equilibrium problem

find x0 ∈ C such that

dist (y,F (x0)) − dist (x0,F (x0))[0,+∞[⊂ R+ for all y ∈ C

provides us with a tool to obtain a version of Kakutani fixed point theorem on
the existence of fixed points of F .

The following example is an application of the weak set-valued equilibrium
problems to economic equilibrium theory.

Example 4.3. Consider the simplex

Mn :=
{

x := (x1, . . . , xn) ∈R
n+ :

n∑
i=1

xi = 1

}

and a set-valued mapping C : Mn ⇒ R
n. According to Debreu-Gale-Nikaïdo

theorem, under some conditions and if the Walras law holds which states that
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for every (x, y) in the graph of C we have 〈y, x〉 ≥ 0, then there exists x0 ∈ Mn

such that

C (x0) ∩R
n+ �= ∅.

For every x ∈ Mn and y ∈ R
n, we set

σ (C (x) , y) := sup
z∈C(x)

〈z, y〉,

and we finally define the set-valued mapping � : Mn × Mn ⇒R by

�(x,y) := ]−∞, σ (C (x) , y)
]
.

Solving the weak set-valued equilibrium problem

find x∗ ∈ C such that �
(
x∗, y

)∩R+ �= ∅ ∀y ∈ C,

provides us with a tool to obtain a version of Debreu-Gale-Nikaïdo-type theorem
on the existence of x0 ∈ Mn such that

C (x0) ∩R
n+ �= ∅.

This result is a Debreu-Gale-Nikaïdo-type theorem, which extends the famous
classical result in economic equilibrium theory by weakening the conditions
on the collective Walras law. It has been obtained in [115, Theorem 5.1] un-
der the weakened condition of assuming that the Walras law holds only on a
self-segment-dense subset D of Mn.

4.2.2 Concepts of Continuity

The notions of convexity (concavity) and convexly quasi-convexity (concavely
quasi-convexity) of set-valued mappings have been introduced in Chapter 1.
Now we deal with continuity concepts of set-valued mappings. Lower and upper
semicontinuity (defined also in Chapter 1) are the most known among them.
However, these concepts applied to single-valued mappings, they produce the
continuity, which is too strong in many applications.

As for convexity and concavity, the notions of lower and upper semicontinu-
ity of set-valued mappings are not limited to extended real set-valued mappings
and therefore, they may be too stronger than the lower and upper semicontinuity
of extended real single-valued mappings. Here, we develop weaker notions of
lower and upper semicontinuity for extended real set-valued mappings, which
generalize both those for set-valued mappings and extended real single-valued
mappings.

Let X be a Hausdorff topological space and F : X ⇒ R an extended real
set-valued mapping. We first derive two definitions from lower semicontinuity
of set-valued mappings.
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We say that F is l-lower semicontinuous at x ∈ X if for every λ ∈ R such
that F (x) ∩ ]λ,+∞] �= ∅, there exists an open neighborhood U of x such that
F
(
x′)∩ ]λ,+∞] �= ∅, for every x′ ∈ U .
We observe that the notion of l-lower semicontinuous generalizes both lower

semicontinuity of extended real single-valued mappings and that of lower semi-
continuity of set-valued mappings.

We say that F is l-lower semicontinuous on a subset S of X if F is l-lower
semicontinuous at every point of S.

Proposition 4.4. Let X be a Hausdorff topological space, S a subset of X, and
F : X ⇒R a set-valued mapping. Then, F is l-lower semicontinuous on S if and
only if for every λ ∈R, we have

F+ ([−∞, λ]) ∩ S = cl
(
F+ ([−∞, λ])

)∩ S.

Proof. Assume that F is l-lower semicontinuous on S and let λ ∈ R. Let
x ∈ cl

(
F+ ([−∞, λ])

) ∩ S. If x /∈ F+ ([−∞, λ]), then F (x) ∩ ]λ,+∞] �= ∅.
Since x ∈ S, then there exists an open neighborhood U of x such that F

(
x′) ∩

]λ,+∞[ �= ∅, for every x′ ∈ U . It follows that U ∩ F+ ([−∞, λ]) = ∅, which
contradicts the fact that x ∈ cl

(
F+ ([−∞, λ])

)
.

Conversely, let x ∈ S and λ ∈ R be such that F (x) ∩ ]λ,+∞] �= ∅.
Then x /∈ F+ ([−∞, λ]) and therefore, x /∈ cl

(
F+ ([−∞, λ])

)
. Put U = X \

cl
(
F+ ([−∞, λ])

)
, which is an open neighborhood of x. For every x′ ∈ U , we

have x′ /∈ cl
(
F+ ([−∞, λ])

)
and then, x′ /∈ F+ ([−∞, λ]). We conclude that

F
(
x′)∩ ]λ,+∞] �= ∅, for every x′ ∈ U .

Example 4.4. Consider the extended real set-valued mapping F : R⇒ R de-
fined by

F (x) :=
⎧⎨
⎩

[0,+∞] , if x = 0,[
1
|x| ,+∞

]
, otherwise.

Clearly, F is l-lower semicontinuous on R. However, F is not lower semicontin-
uous at 0. Indeed, take V = ]a, b[, a, b ∈R+ and a < b. We have F (0)∩V �= ∅,
but any open neighborhood of 0 contains a small enough point x such that
1
|x| > b.

We say that F is l-upper semicontinuous at x ∈ X, if for every λ ∈ R such
that F (x) ∩ [−∞, λ[ �= ∅, there exists an open neighborhood U of x such that
F
(
x′)∩ [−∞, λ[ �= ∅, for every x′ ∈ U .
Clearly, the notion of l-upper semicontinuous generalizes both upper semi-

continuity of extended real single-valued mappings and lower semicontinuity of
set-valued mappings. Also, an extended real set-valued mapping F is l-lower
semicontinuous at x ∈ X if and only if −F is l-upper semicontinuous at x.

We say that F is l-upper semicontinuous on a subset S of X if F is l-upper
semicontinuous at every point of S.
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By a similar proof to that of Proposition 4.4, we obtain the following result
for l-upper semicontinuous set-valued mappings.

Proposition 4.5. Let X be a Hausdorff topological space, S a subset of X, and
F : X ⇒ R a set-valued mapping. Then, F is l-upper semicontinuous on S if
and only if for every λ ∈R, we have

F+ ([λ,+∞]) ∩ S = cl
(
F+ ([λ,+∞])

)∩ S.

Example 4.5. Consider the extended real set-valued mapping F : R ⇒ R de-
fined by

F (x) :=
⎧⎨
⎩

[−∞,0] , if x = 0,[
∞,− 1

|x|
]
, otherwise.

Clearly F is l-upper semicontinuous on R, but it is not lower semicontinuous
at 0.

Now, we derive two other definitions from upper semicontinuity of set-
valued mappings.

We say that F is u-lower semicontinuous at x ∈ X if for every λ ∈R such that
F (x) ⊂ ]λ,+∞], there exists an open neighborhood U of x such that F

(
x ′)⊂

]λ,+∞], for every x′ ∈ U .
We observe that the notion of u-lower semicontinuous generalizes both lower

semicontinuity of extended real single-valued mappings and that of upper semi-
continuity of set-valued mappings.

We say that F is u-lower semicontinuous on a subset S of X if F is u-lower
semicontinuous at every point of S.

Proposition 4.6. Let X be a Hausdorff topological space, S a subset of X, and
F : X ⇒ R a set-valued mapping. Then, F is u-lower semicontinuous on S if
and only if for every λ ∈R, we have

F− ([−∞, λ]) ∩ S = cl
(
F− ([−∞, λ])

)∩ S.

Proof. Assume that F is u-lower semicontinuous on S and let λ ∈ R. Let
x ∈ cl

(
F− ([−∞, λ])

)∩ S. If x /∈ F− ([−∞, λ]), then F (x) ⊂ ]λ,+∞]. Since
x ∈ S, then there exists an open neighborhood U of x such that F

(
x ′) ⊂

]λ,+∞[, for every x′ ∈ U . It follows that U ∩ F− ([−∞, λ]) = ∅, which con-
tradicts the fact that x ∈ cl

(
F− ([−∞, λ])

)
.

Conversely, let x ∈ S and λ ∈ R be such that F (x) ⊂ ]λ,+∞]. Then x /∈
F− ([−∞, λ]) and therefore, x /∈ cl

(
F− ([−∞, λ])

)
. Put U = X \

cl
(
F− ([−∞, λ])

)
, which is an open neighborhood of x. For every x′ ∈ U ,

we have x′ /∈ cl
(
F− ([−∞, λ])

)
and then, x ′ /∈ F− ([−∞, λ]). We conclude

that F
(
x′)⊂ ]λ,+∞], for every x′ ∈ U .
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Example 4.6. Consider the extended real set-valued mapping F : R⇒ R de-
fined by

F (x) :=
⎧⎨
⎩

{0} , if x = 0,[
1
|x| ,+∞

]
, otherwise.

Clearly, F is u-lower semicontinuous on R. However, F is not upper semicontin-
uous at 0. Indeed, take V = ]a, b[, a ∈ R− and b ∈ R+. We have F (0) ⊂ V , but
any open neighborhood of 0 contains a small enough point x such that 1

|x| > b.

We say that F is u-upper semicontinuous at x ∈ X if for every λ ∈ R such
that F (x) ⊂ [−∞, λ[, there exists an open neighborhood U of x such that
F
(
x′)⊂ [−∞, λ[, for every x′ ∈ U .
Clearly, the notion of u-upper semicontinuous generalizes both upper semi-

continuity of extended real single-valued mappings and upper semicontinuity of
set-valued mappings. Also, an extended real set-valued mapping F is u-lower
semicontinuous at x ∈ X if and only if −F is u-upper semicontinuous at x.

We say that F is u-upper semicontinuous on a subset S of X if F is u-upper
semicontinuous at every point of S.

By a similar proof to that of Proposition 4.6, we obtain the following result
for u-upper semicontinuous set-valued mappings.

Proposition 4.7. Let X be a Hausdorff topological space, S a subset of X, and
F : X ⇒ R a set-valued mapping. Then, F is u-upper semicontinuous on S if
and only if for every λ ∈ R, we have

F− ([λ,+∞]) ∩ S = cl
(
F− ([λ,+∞])

)∩ S.

Example 4.7. Consider the extended real set-valued mapping F : R⇒ R de-
fined by

F (x) :=
⎧⎨
⎩

{0} , if x = 0,[
−∞,− 1

|x|
]
, otherwise.

Clearly, F is u-upper semicontinuous on R, but it is not upper semicontinuous
at 0.

As a summary, we have the following characterizations for extended real
single-valued mappings.

Proposition 4.8. Let X be a Hausdorff topological space and x0 ∈ X. For an
extended real single-valued mapping f : X → R, the following conditions are
equivalent:

1. f is lower semicontinuous at x0,
2. f is l-lower semicontinuous at x0,
3. f is u-lower semicontinuous at x0.
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Proposition 4.9. Let X be a Hausdorff topological space and x0 ∈ X. For an
extended real single-valued mapping f : X → R, the following conditions are
equivalent:

1. f is upper semicontinuous at x0,
2. f is l-upper semicontinuous at x0,
3. f is u-upper semicontinuous at x0.

4.2.3 Strong and Weak Set-Valued Equilibrium Problems:
Existence of Solutions

In what follows, we deal with the existence of solutions of both strong set-valued
equilibrium problems and weak set-valued equilibrium problems.

We first recall for convenience the notion of KKM mapping (given in Chap-
ter 3) and the intersection lemma due to Ky Fan [73], (Theorem 3.2) which
generalizes the Tychonoff fixed point theorem.

Let X be a real topological Hausdorff vector space and M a subset of X.
A set-valued mapping F : M ⇒ X is said to be a KKM mapping if for every
finite subset {x1, . . . , xn} of M , we have

conv {x1, . . . xn} ⊂
n⋃

i=1

F (xi) .

By Ky Fan’s lemma [73], if

1. F is a KKM mapping,
2. F (x) is closed for every x ∈ M , and
3. there exists x0 ∈ M such that F (x0) is compact,

then
⋂

x∈M F (x) �= ∅.
We define the following set-valued mappings �+,�++ : C ⇒ C by

�+ (y) := {x ∈ C : �(x,y) ∩R+ �= ∅} for all y ∈ C,

and

�++ (y) := {x ∈ C : �(x,y) ⊂R+} for all y ∈ C.

We remark that �++ (y) ⊂ �+ (y), for every y ∈ C and

1. x0 ∈ C is a solution of the set-valued equilibrium problem (Wsvep) if and
only if x0 ∈⋂y∈C �+ (y),

2. x0 ∈ C is a solution of the set-valued equilibrium problem (Ssvep) if and
only if x0 ∈⋂y∈C �++ (y).

Set

cl�+ (y) = cl
(
�+ (y)

)
and cl�++ (y) = cl

(
�++ (y)

)
,

the closure of �+ (y) and �++ (y) respectively, for every y ∈ C.
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Lemma 4.3. Let C be a nonempty and convex subset of a real topological vec-
tor space. Let � : C × C ⇒ R be a set-valued mapping, and assume that the
following conditions hold:

1. �(x,x) ⊂R+, for every x ∈ C;
2. � is convexly quasi-convex in its second variable on C.

Then the set-valued mappings cl�++ : C ⇒ C and cl�+ : C ⇒ C are KKM
mappings.

Proof. It suffices to prove that the set-valued mapping �++ : C ⇒ C is a
KKM mapping. Let {y1, . . . , yn} ⊂ C and {λ1, . . . , λn} ⊂ R+ be such that∑n

i=1 λi = 1. Put ỹ = ∑n
i=1 λiyi . By assumption (2), for {z1, . . . , zn} with

zi ∈ �(ỹ, yi) for every i = 1, . . . , n, there exists z ∈ �(ỹ, ỹ) such that

z ≤ max {zi : i = 1, . . . , n} .

We have z ≥ 0 since �(ỹ, ỹ) ⊂ R+ by assumption (1). It follows that there
exists i0 ∈ {1, . . . , n} such that �

(
ỹ, yi0

) ∩ R
∗− = ∅, which implies that

�
(
ỹ, yi0

)⊂R+. Otherwise, all the zi can be taken in R
∗−, and therefore z ∈ R

∗−,
which is impossible. We conclude that

n∑
i=1

λiyi = ỹ ∈ �++ (yi0

)⊂ n⋃
i=1

�++ (yi) ,

which proves that �++ is a KKM mapping.

The following result generalizes both [7, Theorem 3.1] obtained for set-
valued equilibrium problems when the self-segment-dense set D is equal to C,
and [8, Theorem 3.1] for single-valued equilibrium problems.

Theorem 4.5. Let C be a nonempty, closed, and convex subset of a real topo-
logical vector space. Let � : C × C ⇒R be a set-valued mapping, and assume
that the following conditions hold:

1. �(x,x) ⊂R+, for every x ∈ C;
2. � is convexly quasi-convex in its second variable on C;
3. there exist a compact set K of C and a point y0 ∈ K such that �(x,y0) ∩

R
∗− �= ∅, for every x ∈ C \ K;

4. � is l-upper semicontinuous in its first variable on K .

Then the set of solutions of the set-valued equilibrium problem (Ssvep) is a
nonempty and compact set.

Proof. Assumption (1) yields �++ (y) is nonempty, for every y ∈ C. We ob-
serve that cl�++ (y) is closed for every y ∈ C, and cl�++ (y0) is compact
since it lies in K by assumption (3).
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The set-valued mapping cl�++ : C ⇒ C is a KKM mapping by Lemma 4.3.
Then, by using Ky Fan lemma, we have

⋂
y∈C

cl�++ (y) �= ∅.

Since the subset �++ (y0) is contained in the compact K , then

⋂
y∈C

�++ (y) =
⋂
y∈C

(
�++ (y) ∩ K

)
,

and ⋂
y∈C

cl�++ (y) =
⋂
y∈C

(
cl�++ (y) ∩ K

)
.

We remark that for all y ∈ C, �++ (y) is the upper inverse set �+ ([0,+∞[ , y)

of [0,+∞[ by the set-valued mapping �(., y) which is l-upper semicontinu-
ous on K . Then, by Proposition 4.5, we have cl�++ (y) ∩ K = �++ (y) ∩ K .
Therefore⋂
y∈C

cl�++ (y) =
⋂
y∈C

(
cl�++ (y) ∩ K

)= ⋂
y∈C

(
�++ (y) ∩ K

)= ⋂
y∈C

�++ (y) .

It follows that the set of solutions of the strong set-valued equilibrium prob-
lem (Ssvep) is nonempty, and compact since it is closed and contained in the
compact set K .

Now, we turn to weak set-valued equilibrium problems. First, we obtain
the following result which also generalizes [8, Theorem 3.1] for single-valued
equilibrium problems by using u-upper semicontinuity which is derived from
upper semicontinuity of set-valued mappings rather than l-upper semicontinuity
in Theorem 4.5 which is derived from lower semicontinuity.

Theorem 4.6. Let C be a nonempty, closed, and convex subset of a real topo-
logical vector space. Let � : C × C ⇒R be a set-valued mapping, and assume
that the following conditions hold:

1. �(x,x) ⊂R+, for every x ∈ C;
2. � is convexly quasi-convex in its second variable on C;
3. there exist a compact set K of C and a point y0 ∈ K such that �(x,y0) ⊂

R
∗−, for every x ∈ C \ K;

4. � is u-upper semicontinuous in its first variable on K .

Then the set of solutions of the set-valued equilibrium problem (Wsvep) is a
nonempty and compact set.
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Proof. Assumption (1) yields that �+ (y) is nonempty, for every y ∈ C. We
observe that cl�+ (y) is closed for every y ∈ C, and cl�+ (y0) is compact since
it lies in K , by assumption (3).

The set-valued mapping cl�+ : C ⇒ C is a KKM mapping by Lemma 4.3.
Then, by the Ky Fan lemma, we have⋂

y∈C

cl�+ (y) �= ∅.

Since the subset �+ (y0) is contained in the compact K , then⋂
y∈C

�+ (y) =
⋂
y∈C

(
�+ (y) ∩ K

)
,

and ⋂
y∈C

cl�+ (y) =
⋂
y∈C

(
cl�+ (y) ∩ K

)
.

We remark that for all y ∈ C, �+ (y) is the lower inverse set �− ([0,+∞[ , y)

of [0,+∞[ by the set-valued mapping �(., y) which is u-upper semicontinuous
on K . Then, by Proposition 4.7, we have cl�+ (y)∩K = �+ (y)∩K . Therefore⋂

y∈C

cl�+ (y) =
⋂
y∈C

(
cl�+ (y) ∩ K

)= ⋂
y∈C

(
�+ (y) ∩ K

)= ⋂
y∈C

�+ (y) .

It follows that the set of solutions of the set-valued equilibrium problem (Wsvep)
is nonempty and compact, since it is closed and contained in the compact set K .

In many applications, the set-valued � is concave in its second variable. We
give here the following result for concavely quasi-convex set-valued mappings.

Lemma 4.4. Let C be a nonempty convex subset of a real topological vector
space. Let � : C × C ⇒ R be a set-valued mapping, and assume that the fol-
lowing conditions hold:

1. �(x,x) ∩R+ �= ∅, for every x ∈ C;
2. � is concavely quasi-convex in its second variable on C.

Then, the set-valued mapping cl�+ : C ⇒ C is a KKM mapping.

Proof. Let {y1, . . . , yn} ⊂ C and {λ1, . . . , λn} ⊂ R+ be such that
∑n

i=1 λi = 1.
Put ỹ =∑n

i=1 λiyi . By assumption (2), for z ∈ �(ỹ, ỹ), there exist {z1, . . . , zn}
with zi ∈ �(ỹ, yi) for every i = 1, . . . , n, such that

z ≤ max {zi : i = 1, . . . , n} .

It follows that there exists i0 ∈ {1, . . . , n} such that �
(
ỹ, yi0

) ∩ R+ �= ∅. Oth-
erwise, all the zi are in R

∗−, and therefore z ∈ R
∗−. Since z ∈ �(ỹ, ỹ), then
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�(ỹ, ỹ) ⊂ R
∗−, which yields a contradiction since �(ỹ, ỹ) ∩ R+ �= ∅ by as-

sumption (1). We conclude that

n∑
i=1

λiyi = ỹ ∈ �+ (yi0

)⊂ n⋃
i=1

�+ (yi) ,

which proves that cl�+ is a KKM mapping.

The following result generalizes both [7, Theorem 3.2] obtained for set-
valued equilibrium problems when the self-segment-dense set D is equal to C,
and [7, Theorem 3.1] for single-valued equilibrium problems. Here, we remark
that the conclusion is the same as in Theorem 4.6 for convexly quasi-convex
set-valued mappings, but with weaker first condition.

Theorem 4.7. Let C be a nonempty, closed, and convex subset of a real topo-
logical vector space. Let � : C × C ⇒R be a set-valued mapping, and assume
that the following conditions hold:

1. �(x,x) ∩R+ �= ∅, for every x ∈ C;
2. � is concavely quasi-convex in its second variable on C;
3. there exist a compact set K of C and a point y0 ∈ K such that �(x,y0) ⊂

R
∗−, for every x ∈ C \ K;

4. � is u-upper semicontinuous in its first variable on K .

Then, the set of solutions of the set-valued equilibrium problem (Wsvep) is a
nonempty and compact set.

Proof. By using Lemma 4.4 instead of Lemma 4.3, the proof follows step by
step that of Theorem 4.6.

4.2.4 Application to Browder Variational Inclusions

Browder variational inclusions appear as a generalization of Browder-Hartman-
Stampacchia variational inequalities and have many applications, including ap-
plications to nonlinear elliptic boundary value problems and the surjectivity of
set-valued mappings.

Let C be a nonempty, closed, and convex subset of a real normed vector
space X. A set-valued operator F : C ⇒ X∗ is said to be coercive on C if there
exists y0 ∈ C such that

lim‖x‖→+∞
x∈C

infx∗∈F(x)〈x∗, x − y0〉
‖x‖ = +∞.

We observe that if F is coercive on C, then there exists R > 0 such that
y0 ∈ KR and 〈x∗, y0 − x〉 ⊂ R

∗−, for every x ∈ C \ KR and every x∗ ∈ F (x),
where KR = {x ∈ C : ‖x‖ ≤ R}. Clearly, KR is weakly compact whenever X is
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reflexive. The set KR (which may not be unique) is called a set of coerciveness.
In what follows, we will need a compact set of coerciveness. Unfortunately,
closed balls in X are not compact except if X is finite dimensional space.

In the sequel, for x ∈ X and a subset A of X∗, we set

〈A,x〉 = {〈x∗, x〉 : x∗ ∈ A
}
.

Problems of the form: “find x ∈ C such that 〈A,x〉 ⊂ R+ or 〈A,x〉 ∩ R+ �= ∅”
are called Browder variational inclusions.

We note that the condition of either X is a Banach space or the set-valued
operator F has convex values on the set of coerciveness is required.

In the next result, we do not need the weak* compactness of the values of
the set-valued operator. We say that a subset S of X∗ attains its pairwise up-
per bounds on a subset A if for every z ∈ A, the set {〈x∗, z〉 : x∗ ∈ S} has a
maximum in R. We observe that if a subset S of X∗ is weak* compact, then
the set {〈x∗, z〉 : x∗ ∈ S} is compact, and therefore it attains its minimum and a
maximum, for every z ∈ X.

By using our notions of semicontinuity and convexity of real set-valued map-
pings, we obtain the following existence result. Here, Theorem 4.7 will be used
because the constructed real set-valued bifunction in the proof is concave in its
second variable.

Theorem 4.8. Let X be a real normed vector space, C a nonempty, closed, and
convex subset of X. Suppose that F : C ⇒ X∗ has the following conditions:

1. there exist a compact subset K of C and y0 ∈ K such that 〈F (x) , y0 −x〉 ⊂
R

∗−, for every x ∈ C \ K;
2. F is upper semicontinuous on K;
3. for every x ∈ K , F (x) is norm bounded and attains its pairwise upper

bounds on C − x.

Then there exists x ∈ K such that 〈F (x) , y − x〉 ∩R+ �= ∅, for every y ∈ C.

Proof. Define the set-valued mapping � : C × C ⇒R by

�(x,y) := 〈F (x) , y − x〉.
We show that hypotheses of Theorem 4.7 are satisfied. We remark that �

is concave in its second variable, and then it is concavely quasi-convex in its
second variable. Except the last condition, all the other conditions hold easily
from our assumptions.

To prove that � is u-upper semicontinuous in its first variable on K , fix
y ∈ C, and let x ∈ K and λ ∈ R be such that �(x,y) ⊂ ]−∞, λ[. It follows that
〈F (x) , y − x〉 ⊂ ]−∞, λ[. Set λx := max (〈F (x) , y − x〉) < λ, δ := λ−λx

2 and

δ1 := min

{
δ

3 (‖x‖ + 1)
,

δ

3 (‖y‖ + 1)

}
,
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where ‖.‖ denotes the norm of X. Set O := ⋃
x∗∈F(x) BX∗ (x∗, δ1), where

BX∗ (x∗, δ1) = {z ∈ X∗ : ‖z − x∗‖∗ < δ1}, and ‖.‖∗ denotes the norm of X∗. We
observe that F (x) is contained in the open set O, and by the upper semiconti-
nuity of F on K , let η > 0 be such that F (w) ⊂ O for every w ∈ BX (x,η)∩C,
where BX (x,η) = {w ∈ X : ‖w − x‖ < η}. Since F (x) is norm bounded, put
‖F (x)‖∗ := sup {‖x∗‖∗ : x∗ ∈ F (x)} which is in R. Finally, we set

η1 := min

{
δ

3 (‖F (x)‖∗ + 1)
, η,1

}
,

and U = BX (x,η1) ∩ C which is an open subset of C containing x.
We show that �(z, y) ⊂ ]−∞, λ[, for every z ∈ U . To do this, let z ∈ U and

z∗ ∈ F (z). Let x∗
0 ∈ F (x) be such that z∗ ∈ BX∗

(
x∗

0 , δ1
)
. We have∣∣〈z∗, y − z〉 − 〈x∗

0 , y − x〉∣∣= ∣∣〈x∗
0 − z∗, z〉 + 〈x∗

0 , x − z〉 − 〈x∗
0 − z∗, y〉∣∣

≤ ‖x∗
0 − z∗‖∗‖z‖ + ‖x∗

0‖∗‖x − z‖ + ‖x∗
0 − z∗‖∗‖y‖

<
δ (‖x‖ + η1)

3 (‖x‖ + 1)
+ δ‖x∗

0‖∗
3 (‖F (x)‖∗ + 1)

+ δ‖y‖
3 (‖y‖ + 1)

<
δ

3
+ δ

3
+ δ

3
= δ.

It follows that 〈z∗, y − z〉 < 〈x∗
0 , y − x〉 + δ ≤ λx + δ = λ+λx

2 < λ. Since z is
arbitrary in U and z∗ is arbitrary in F (z), then �(z, y) ⊂ ]−∞, λ[, for every
z ∈ U . This means that � is u-upper semicontinuous in its first variable on K .

Next, we obtain the following results on the existence of solutions of Brow-
der variational inclusions under assumptions of demicontinuity.

Recall that an open half-space in a real Hausdorff topological vector space
E is a subset of the form

{u ∈ E : ϕ (u) < r}
for some continuous linear functional ϕ on E, not identically zero, and for some
real number r .

Let X be a Hausdorff topological space and E a real Hausdorff topological
vector space. Recall that a set-valued operator F : X ⇒ E is said to be upper
demicontinuous at x ∈ X if for every open half-space H containing F (x), there
exists a neighborhood U of x such that F

(
x′) ⊂ H for all x′ ∈ U . Next, F is

said to be upper demicontinuous on X if it is upper demicontinuous at every
point of X. We say that F is upper demicontinuous on a subset S of X if it is
upper demicontinuous at every point of S.

Proposition 4.10. Let X be a real normed vector space, C be a nonempty,
closed, and convex subset of X, and S ⊂ C. Suppose that F : C ⇒ X∗ has the
following conditions:
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1. F is upper semicontinuous on S to X∗ endowed with the weak* topology;
2. F has weak* compact values on S.

Then F is upper demicontinuous on S to X∗ endowed with the weak* topology.

Proof. Let x ∈ K and consider an open half-space H in X∗ of the form

{
u ∈ X∗ : ϕ (u) < r

}
such that F (x) ⊂ H , where ϕ is a weak* continuous linear functional on X∗,
not identically zero, and r ∈ R. Then, ϕ (F (x)) is compact and ϕ (F (x)) ⊂
]−∞, r[. Set rx := max (ϕ (F (x))) < r , δ := r−rx

2 and δ1 := δ
‖ϕ‖ . Note that

‖ϕ‖ ∈R
∗ since ϕ is also continuous with respect to the strong topology, and not

identically zero. Finally, put O :=⋃x∗∈F(x) BX∗ (x∗, δ1), where BX∗ (x∗, δ1) =
{z ∈ X∗ : ‖z − x∗‖∗ < δ1}, and ‖.‖∗ denotes the norm of X∗. We observe that
F (x) is contained in the open set O, and by the upper semicontinuity of F

on K , let U be an open subset of C such that F (z) ⊂ O, for every z ∈ U .
We show that F (z) ⊂ H , for every z ∈ U . To do this, let z ∈ U and

z∗ ∈ F (z). Let x∗
0 ∈ F (x) be such that z∗ ∈ BX∗

(
x∗

0 , δ1
)
. We have

∣∣ϕ (z∗)− ϕ
(
x∗

0

)∣∣≤ ‖ϕ‖‖z∗ − x∗
0‖ < ‖ϕ‖δ1 = ‖ϕ‖ δ

‖ϕ‖ = δ.

It follows that ϕ (z∗) < ϕ
(
x∗

0

)+ δ ≤ rx + δ = r+rx
2 < r . Since z is arbitrary in

U and z∗ is arbitrary in F (z), then F (z) ⊂ H , for every z ∈ U . This means that
F is upper demicontinuous on K .

Now, by using the notion of demicontinuous set-valued operators, we ob-
tain the following result on the existence of solutions of Browder variational
inclusions.

Theorem 4.9. Let X be a real normed vector space, C a nonempty, closed, and
convex subset of X. Suppose that F : C ⇒ X∗ has the following conditions:

1. there exist a compact subset K of C and y0 ∈ C such that 〈F (x) , y − x〉 ⊂
R

∗−, for every x ∈ C \ K;
2. F is upper demicontinuous on K to X∗ endowed with the weak* topology.

Then, there exists x ∈ K such that 〈F (x) , y − x〉 ∩R+ �= ∅, for every y ∈ C.

Proof. Define the set-valued mapping � : C × C ⇒R by

�(x,y) := 〈F (x) , y − x〉.

It remains to prove that � is u-upper semicontinuous in its first variable on K .
Fix y ∈ C, and let x ∈ K and λ ∈ R be such that �(x,y) ⊂ ]−∞, λ[. That is,
〈F (x) , y − x〉 ⊂ ]−∞, λ[. Consider ϕ defined on X∗ by ϕ (u) := 〈u,y − x〉,
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for very u ∈ X∗. Then ϕ is not identically zero linear functional on X∗ and it is
weak* continuous. It follows that F (x) is in the open half-space

H = {u ∈ X∗ : ϕ (u) < λ
}

in X∗. Since F is upper demicontinuous on K , let U be an open neighborhood
of x such that F

(
x′)⊂ H , for every x′ ∈ U . It follows that �

(
x′, y

)⊂ ]−∞, λ[
for every x′ ∈ U , which proves that � is u-upper semicontinuous in its first
variable on K .

4.3 EQUILIBRIUM PROBLEMS GIVEN BY THE SUM OF TWO
FUNCTIONS

An interesting special case of the equilibrium problem is, where the bifunction
is given in the form f (x, y) = g(x, y) + h(x, y) with g,h : A × A → R. It
was investigated already in [42], where the authors obtained existence results
by imposing their assumptions separately on g and h. As stressed in [42], if
g = 0, the result becomes a variant of Ky Fan’s theorem [74], whereas for h = 0
it becomes a variant of the Browder-Minty theorem for variational inequalities
(see, for instance, [45]).

4.3.1 The Vector-Valued Case

In this subsection we present the results obtained by Kassay and Miholca
in [103] related to weak vector equilibrium problems, in the special case when
the (vector-valued) bifunction is given by the sum of two other bifunctions.

Let X be a real topological vector space and A ⊂ X. Consider another real
topological vector space Y , partially ordered by a proper convex cone C ⊂ Y

with nonempty interior. Let g,h : A×A → Y and consider the problem of find-
ing an element x ∈ A, such that:

g(x, y) + h(x, y) /∈ −intC for all y ∈ A. (SWVEP)

Throughout this section, if not otherwise stated, A,B ⊂ X are nonempty
convex sets (B being typically a compact subset of A, but not always). Let us
first recall the following concept. If B ⊂ A, then coreAB, the core of B relative
to A, is defined through

a ∈ coreAB ⇐⇒ (a ∈ B and B ∩ (a, y] �= ∅ for all y ∈ A\B),

where (a, y] = {λa + (1 − λ)y : λ ∈ [0,1)}. Note that coreAA = A.
The following simple property will be useful in the sequel.

Lemma 4.5. For all x, y ∈ Y we have:

x ∈ C, y /∈ −intC ⇒ x + y /∈ −intC.
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The convexity concept for scalar functions has been extended in a natural
way for vector-valued functions, according to the partial order introduced by
the cone C.

Definition 4.3. A function F : X → Y is called C-convex, iff for each x, y ∈ A

and λ ∈ [0,1],
λF(x) + (1 − λ)F (y) − F(λx + (1 − λ)y) ∈ C.

F is said to be C-concave iff −F is C-convex.

Next we present some monotonicity conditions for vector-valued bifunc-
tions. In order to do this, let us first recall several specific monotonicity concepts
for scalar bifunctions considered within the literature in the recent years. Most
of these notions were inspired by similar (generalized) monotonicity concepts
defined for operators acting from a topological vector space to its dual space.

Definition 4.4. The bifunction f : A × A → R is said to be

(i) monotone iff f (x, y) + f (y, x) ≤ 0 for all x, y ∈ A;
(ii) properly quasi-monotone iff for arbitrary integer n ≥ 1, all x1, · · · , xn ∈ A

and all λ1, · · · , λn ≥ 0 such that
∑n

i=1 λi = 1 it holds that

min
1≤i≤n

f (xi,

n∑
j=1

λjxj ) ≤ 0.

Proper quasi-monotonicity was introduced by Zhou and Chen in [176] un-
der the name of 0-diagonal quasi-concavity. Aiming to obtain existence results
for (scalar) equilibrium problems, the authors of [93] introduced the following
(slightly stronger) variant of proper quasi-monotonicity (called by themselves
property P4”):

Definition 4.5. (cf. [93]) A bifunction f : A × A → R is said to be essentially
quasi-monotone iff for arbitrary integer n ≥ 1, for every x1, · · · , xn ∈ A and
λ1, · · · , λn ≥ 0 such that

∑n
i=1 λi = 1, it holds that

n∑
i=1

λif (xi,

n∑
j=1

λjxj ) ≤ 0.

The concept of essential quasi-monotonicity has been extended to vector-
valued bifunctions in [103] as follows:

Definition 4.6. A bifunction f : A × A → Y is said to be C-essentially quasi-
monotone iff for arbitrary integer n ≥ 1, for all x1, ...xn ∈ A and all λ1, ...λn ≥ 0
such that

∑n
i=1 λi = 1 it holds that

n∑
i=1

λif (xi,

n∑
j=1

λjxj ) /∈ intC.
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The next simple property provides sufficient conditions for C-essential
quasi-monotonicity.

Proposition 4.11. Suppose that f : A × A → Y is C-monotone and C-convex
in the second argument. Then f is C-essentially quasi-monotone.

Proof. Take x1, ...xn ∈ A and λ1, ...λn ≥ 0 such that
∑n

i=1 λi = 1 and set z :=∑n
j=1 λjxj . Then

n∑
i=1

λif (xi, z) ≤C

n∑
i=1

n∑
j=1

λiλjf (xi, xj )

= 1

2

n∑
i,j=1

λiλj (f (xi, xj ) + f (xj , xi)) ≤C 0.

The next example shows that a C-essentially quasi-monotone bifunction is
not necessarily C-monotone, even if it is C-convex in the second argument.

Example 4.8. Let f : [0,1] × [0,1] → R
2 given by f = (f1, f2), where

f1(x, y) = |x − y|, f2(x, y) = 0 for every x, y ∈ [0,1]. It is easy to see that
f is R

2+-essentially quasi-monotone, R2+-convex in the second argument, but
not R2+-monotone, since f (1,0) + f (0,1) = (2,0) /∈ −R

2+.

To start, let us first prove the following three lemmas. All of them serve
as tools for the proofs of the main results. Moreover, the first one can also be
seen as an existence result for a special vector equilibrium problem, therefore it
seems interesting on its own.

Lemma 4.6. Suppose that B is a compact subset of X, let g : B × B → Y and
h : B × B → Y be given bifunctions satisfying:

(i) g is C-essentially quasi-monotone and C-lower semicontinuous in the sec-
ond argument;

(ii) h is C-upper semicontinuous in the first argument and C-convex in the
second argument; h(x, x) ∈ C for all x ∈ B.

Then there exists x ∈ B such that

h(x, y) − g(y, x) /∈ −intC,

for all y ∈ B.

Proof. Let, for each fixed y ∈ B,

S(y) := {x ∈ B : h(x, y) − g(y, x) /∈ −intC}. (4.27)

Let us show that ∩y∈BS(y) �= ∅. Indeed, let {y1, y2, ..., yn} ⊂ B and set I :=
{1,2, ..., n}. Take arbitrary z ∈ conv{yi : i ∈ I }. Then z =∑i∈I λiyi with λi ≥ 0
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and
∑

i∈I λi = 1. Assume, by contradiction, that

h(z, yi) − g(yi, z) ∈ −intC,

for all i ∈ I . From this we have∑
i∈I

λih(z, yi) −
∑
i∈I

λig(yi, z) ∈ −intC. (4.28)

Since g is C-essentially quasi-monotone it follows that∑
i∈I

λig(yi,
∑
i∈I

λiyi) /∈ intC. (4.29)

On the other hand, since h(x, x) ∈ C for all x ∈ B, and h is C-convex in the
second argument, ∑

i∈I

λih(z, yi) ∈ C. (4.30)

Therefore, by Lemma 4.5, (4.29) and (4.30) it follows that∑
i∈I

λih(z, yi) −
∑
i∈I

λig(yi, z) /∈ −intC, (4.31)

which contradicts (4.28). Hence we obtain

conv{yi : i ∈ I } ⊂ ∪
i∈I

S(yi).

Now, since h is C-upper semicontinuous in the first argument, and g is
C-lower semicontinuous in the second argument, it follows that the function
F defined by F(x) = h(x, y) − g(y, x) is C-upper semicontinuous. By Lem-
ma 4.1 (iii), the sets S(y) are closed for every y ∈ B, and since B is compact,
they are compact too. Hence, by the KKM theorem (Chapter 3, Theorem 3.2),
∩y∈BS(y) �= ∅. Therefore, there exists at least one x ∈ B such that

h(x, y) − g(y, x) /∈ −intC,

for all y ∈ B.

The next lemma makes the connection between the special equilibrium prob-
lem considered in Lemma 4.6 and the equilibrium problem we are interested in.

Lemma 4.7. Let g : B × B → Y and h : B × B → Y be given bifunctions
satisfying:

(i) g is C-convex in the second argument, g(x, x) ∈ C for all x ∈ B, and for
all x, y ∈ B the function t ∈ [0,1] → g(ty + (1 − t)x, y) is C-upper semi-
continuous at 0;

(ii) h is C-convex in the second argument; h(x, x) = 0 for all x ∈ B.
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If there exists x ∈ B such that h(x, y) − g(y, x) /∈ −intC for all y ∈ B, then
h(x, y) + g(x, y) /∈ −intC for all y ∈ B.

Proof. Let y ∈ B be arbitrary and let xλ := λy + (1 − λ)x, 0 < λ ≤ 1. Then
xλ ∈ B. By the hypothesis we obtain

(1 − λ)h(x, xλ) − (1 − λ)g(xλ, x) /∈ −intC. (4.32)

Since g is C-convex in the second argument and g(x, x) ∈ C for all x ∈ B, then
for all 0 < λ ≤ 1,

λg(xλ, y) + (1 − λ)g(xλ, x) ∈ C. (4.33)

By Lemma 4.5, (4.32) and (4.33) we have

(1 − λ)h(x, xλ) + λg(xλ, y) /∈ −intC. (4.34)

Since h is C-convex in the second argument and h(x, x) = 0 for all x ∈ B, then

λh(x, y) + (1 − λ)h(x, x) − h(x, xλ) = λh(x, y) − h(x, xλ) ∈ C.

Thus

(1 − λ)λh(x, y) − (1 − λ)h(x, xλ) ∈ C. (4.35)

From (4.34) and (4.35) and using Lemma 4.5, we have

(1 − λ)λh(x, y) + λg(xλ, y) /∈ −intC.

Dividing the last relation by λ > 0 we obtain

(1 − λ)h(x, y) + g(xλ, y) /∈ −intC, (4.36)

for all 0 < λ ≤ 1. We will prove that (4.36) implies

h(x, y) + g(x, y) /∈ −intC.

Suppose by contradiction that

h(x, y) + g(x, y) ∈ −intC.

Hence there exists k ∈ intC such that

h(x, y) + g(x, y) + k ∈ −intC. (4.37)

Since the set k
2 − intC is open and 0 ∈ k

2 − intC, there exists μ > 0 such that

−λh(x, y) ∈ k

2
− intC, (4.38)
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for all 0 ≤ λ ≤ μ. Since for all x, y ∈ B the function t ∈ [0,1] →
g(ty + (1 − t)x, y) is C-upper semicontinuous at 0, it follows that there ex-
ists δ > 0 such that

g(xλ, y) ∈ g(x, y) + k

2
− intC, (4.39)

for all 0 ≤ λ ≤ δ. Let us take η = min{μ,δ}. By (4.37), (4.38), and (4.39) we
obtain that

g(xλ, y) + (1 − λ)h(x, y) ∈ −intC,

for all 0 ≤ λ ≤ η, which contradicts (4.36). Therefore,

h(x, y) + g(x, y) /∈ −intC.

Finally, the technical result below serves for exploiting the coercivity condi-
tion we are going to assume in Theorem 5.5 below (assumption (iii)).

Lemma 4.8. Let B ⊂ A. Assume that F : A → Y is C-convex, x0 ∈ coreAB,
F(x0) ∈ −C, and F(y) /∈ −intC for all y ∈ B. Then F(y) /∈ −intC for all
y ∈ A.

Proof. Assume that there exists a y ∈ A such that f (y) ∈ −intC and set for each
λ ∈ [0,1] xλ := λy + (1 − λ)x0. By C-convexity

F(xλ) ≤C λF(y)+(1−λ)F (x0) ∈ −intC−C ⊂ −intC, ∀λ ∈ (0,1]. (4.40)

On the other hand, since x0 ∈ coreAB, there exists a sufficiently small λ > 0 for
which xλ ∈ B, and this contradicts (4.40).

Remark 4.1. As the next example shows, the assumption F(x0) ∈ −C within
Lemma 4.8 cannot be weakened to F(x0) /∈ intC.

Example 4.9. Let X = A := R, B := [−1,1], Y := R
2, C := R

2+, F(x) =
(x + 1, x − 1), and x0 = 0. Then F is obviously R

2+-convex (furthermore,
both components are affine functions), x0 ∈ coreAB, F(x0) = (1,−1) /∈ intC
and F(y) /∈ −intC for each y ∈ B. However, for instance, for y = −2 we get
F(−2) = (−1,−3) ∈ −intC.

Now we are in a position to state our main result. Note that the assumption of
compactness upon the domain in Lemma 4.6 was essential for its proof. How-
ever, this condition appears rather demanding when dealing with equilibrium
problems since it cannot be guaranteed in many applications. To overcome this
difficulty, it is common to assume different kinds of coercivity conditions. We
take over the coercivity condition originated in the scalar case from [42].
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Theorem 4.10. Suppose that g : A × A → Y and h : A × A → Y satisfy:

(i) g is C-essentially quasi-monotone, C-convex and C-lower semicontinu-
ous in the second argument; g(x, x) ∈ C ∩ (−C) for all x ∈ A, and for all
x, y ∈ A the function t ∈ [0,1] → g(ty + (1 − t)x, y) is C-upper semi-
continuous at 0;

(ii) h is C-upper semicontinuous in the first argument and C-convex in the
second argument; h(x, x) = 0 for all x ∈ A;

(iii) There exists a nonempty compact convex subset C of A such that for every
x ∈ C \ coreAC there exists an a ∈ coreAC such that

g(x, a) + h(x, a) ∈ −C.

Then there exists x ∈ C such that

g(x, y) + h(x, y) /∈ −intC,

for all y ∈ A.

Proof. By Lemma 4.6, it follows that there exists at least one x ∈ C such that

h(x, y) − g(y, x) /∈ −intC,

for all y ∈ C. By Lemma 4.7, we obtain that

h(x, y) + g(x, y) /∈ −intC,

for all y ∈ C. Set F(·) = h(x, ·) + g(x, ·). It is obvious that F is C-convex and

F(y) /∈ −intC,

for all y ∈ C. If x ∈ coreAC, then set x0 := x. If x ∈ C\coreAC, then set x0 := a,
where a is as in assumption (iii). In both cases x0 ∈ coreAC, and F(x0) ∈ −C.
Hence, by Lemma 4.8, it follows that

F(y) /∈ −intC,

for all y ∈ A. Thus, there exists x ∈ C such that

g(x, y) + h(x, y) /∈ −intC,

for all y ∈ A.

The next result due to Kazmi [105] is a particular case of Theorem 4.10.
X and Y are the same as before, A ⊂ X is a nonempty closed convex set and
C ⊂ Y is a proper pointed closed convex cone with nonempty interior.

Corollary 4.5. ([105], Theorem 7) Suppose that g : A × A → Y and
h : A × A → Y satisfy:
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(i) g is C-monotone, C-convex, and continuous in the second argument;
g(x, x) = 0 for all x ∈ A, and for all x, y ∈ A the function t ∈ [0,1] →
g(ty + (1 − t)x, y) is continuous at 0;

(ii) h is continuous in the first argument and C-convex in the second argu-
ment; h(x, x) = 0 for all x ∈ A;

(iii) There exists a nonempty compact convex subset C of A such that for every
x ∈ C \ coreAC there exists an a ∈ coreAC such that

g(x, a) + h(x, a) ∈ −C.

Then there exists x ∈ C such that

g(x, y) + h(x, y) /∈ −intC,

for all y ∈ A.

Proof. The continuity assumptions obviously imply C-lower (upper) semi-
continuity, while the essential quasi-monotonicity of g follows by Proposi-
tion 4.11.

Remark 4.2. Theorem 4.10 improves from several points of view the above
result of Kazmi. With respect to the monotonicity, notice that the bifunction f

defined in Example 4.8 satisfies all requirements demanded upon g in item (i)
of Theorem 4.10, but since it is not R2+-monotone, it doesn’t satisfy item (i)
of Corollary 4.5. Another improvement, related to the continuity assumptions,
can be identified within the next example, obtained by a slight modification of
Example 9.27 in [25].

Example 4.10. Let A := {(x, y) ∈R
2 : x > 0} ∪ {(0,0)} and consider the func-

tion F : A →R given by

F(x, y) =
{

y2

x
, x > 0

0, x = 0.

It is obvious that F is convex and lower semicontinuous, but not continuous
at (0,0). Indeed, take any sequence {xn}n∈N with xn > 0 and xn → 0 whenever
n → ∞. Then F(x2

n, xn) = 1 for each n, but F(0,0) = 0, i.e., F is not contin-
uous at (0,0). Now let Y := R and C := [0,∞), and consider the bifunction
g : A × A → R given by g(a, b) := F(b) − F(a), where a = (x, y), b =
(u, v) ∈ A. Then g satisfies all assumptions of Theorem 4.10 (i), but not item (i)
of Corollary 4.5, due to the lack of continuity.

Thanks to the improvements made for Theorem 7 of Kazmi [105], the next
result of Blum and Oettli [42] becomes a particular case of Theorem 4.10.

Corollary 4.6. ([42], Theorem 1) Let X be a real topological vector space,
A ⊂ X a nonempty closed convex set, g : A × A → R and h : A × A → R

satisfying:
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(i) g is monotone (Definition 4.4 (i)), convex, and lower semicontinuous in
the second argument; g(x, x) = 0 for all x ∈ A, and for all x, y ∈ A the
function t ∈ [0,1] → g(ty + (1 − t)x, y) is upper semicontinuous at 0;

(ii) h is upper semicontinuous in the first argument and convex in the second
argument; h(x, x) = 0 for all x ∈ A;

(iii) There exists a nonempty compact convex subset C of A such that for every
x ∈ C \ coreAC there exists an a ∈ coreAC such that

g(x, a) + h(x, a) ≤ 0.

Then there exists x ∈ C such that

g(x, y) + h(x, y) ≥ 0,

for all y ∈ A.

Proof. Set Y := R and C := [0,∞) and apply Theorem 4.10.

Next we prove a corollary of Theorem 4.10 in which no monotonicity as-
sumptions are made on the bifunction g; the lack of this requirement is sub-
stituted by assuming C-concavity of g in its first argument. In this way, the
algebraic conditions upon g become symmetric. Apparently, this provides us a
new result even in the particular case of scalar functions (i.e., where Y := R and
C := [0,∞)).

Corollary 4.7. Suppose that g : A × A → Y and h : A × A → Y satisfy:

(i) g is C-concave in the first argument, C-convex and C-lower semicontin-
uous in the second argument; g(x, x) ∈ C ∩ (−C) for all x ∈ A, and for
all x, y ∈ A the function t ∈ [0,1] → g(ty + (1 − t)x, y) is C-upper semi-
continuous at 0;

(ii) h is C-upper semicontinuous in the first argument and C-convex in the
second argument; h(x, x) = 0 for all x ∈ A;

(iii) There exists a nonempty compact convex subset C of A such that for every
x ∈ C \ coreAC there exists an a ∈ coreAC such that

g(x, a) + h(x, a) ∈ −C.

Then there exists x ∈ C such that

g(x, y) + h(x, y) /∈ −intC,

for all y ∈ A.

Proof. Let n ≥ 1, x1, ..., xn ∈ A, λ1, ..., λn ≥ 0 with
∑n

i=1 λi = 1 be arbitrary
and set z :=∑n

i=1 λixi . Then by concavity of g with respect to its first variable,
we have

n∑
i=1

λig(xi, z) − g(

n∑
i=1

λixi, z) ∈ −C.
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Since

g(

n∑
i=1

λixi, z) = g(z, z) ∈ −C,

it follows by summing up these relations that

n∑
i=1

λig(xi, z) ∈ −C,

implying that
n∑

i=1

λig(xi, z) /∈ intC,

which means that g is C-essentially quasi-monotone, and such the statement
follows by Theorem 4.10.

Let us remark that the assumptions of Corollary 4.7 do not imply the mono-
tonicity of g even in the simplest case when X = Y = R and C = R+. The next
example shows an instance when all assumptions of Corollary 4.7 hold, but g is
not monotone.

Example 4.11. Let F : R → R be a convex and lower bounded function and
consider the numbers a and b such that 0 < b < a < 2b. Set

g(x, y) = ax(y − x) + b(y − x)2, h(x, y) = F(y) − F(x) and

f (x, y) = g(x, y) + h(x, y).

It is obvious that g(x, x) = 0 and the function g is concave in the first, convex
in the second argument; moreover, it is (globally) continuous. The concavity
of g follows by b < a. The same properties are valid for h. Moreover, the lower
boundedness of F assures that lim|x|→+∞[F(x) + (a − b)x2] = +∞, and from
this we conclude that lim|x|→+∞ f (x,0) = −∞, showing that the coercivity
assumption (iii) of Corollary 4.7 holds with a = 0. Thus, all hypotheses of this
corollary hold. On the other hand, g is not monotone, since

g(x, y) + g(y, x) = (2b − a)(y − x)2 > 0, ∀x �= y.

We conclude that Corollary 4.7 can be applied for the bifunctions given in
Example 4.11, but it is not the case either for Corollary 4.5, or Corollary 4.6.

In what follows we provide several sufficient conditions for the coercivity
required in assumption (iii) of Theorem 4.10 (or Corollary 4.7) when X is a
reflexive Banach space endowed with the weak topology. It is well-known that
in this setting every closed, convex, and bounded set (in particular closed balls)
is (weakly) compact. Hence, all conditions which we formulate below are vac-
uously satisfied when the (closed and convex) set A ⊂ X is bounded. Thus, in
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the sequel we shall suppose that A is closed, convex and unbounded. Let a ∈ A

be a fixed element, g,h : A × A → Y be given bifunctions. Let us start with the
following:

(C) there exists ρ > 0 such that for all x ∈ A : ‖x − a‖ = ρ one has g(x, a) +
h(x, a) ∈ −C.

Proposition 4.12. Under condition (C), assumption (iii) in Theorem 4.10 is
satisfied.

Proof. Let B := {x ∈ A : ‖x − a‖ ≤ ρ}. Then B is weakly compact and
a ∈ coreAB. Moreover, x ∈ B \ coreAB iff ‖x − a‖ = ρ. Thus g(x, a) +
h(x, a) ∈ −C, hence (iii) is fulfilled.

Next we give mild sufficient conditions separately on g and h for (C). Con-
sider the following assumptions.

(G) (upper boundedness of g(·, a) on a closed ball): there exist M ∈ Y and
r > 0 such that

M − g(x, a) ∈ C, whenever x ∈ A, ‖x − a‖ ≤ r,

and

(H) there exists an element u ∈ −intC such that for all t > 0 there is an R > 0
satisfying

∀x ∈ A : ‖x − a‖ ≥ R : tu‖x − a‖ − h(x, a) ∈ C.

Remark 4.3. (H) is obviously fulfilled when Y := R, C := [0,∞) and

h(x, a)

‖x − a‖ → −∞ whenever ‖x − a‖ → ∞, x ∈ A.

(Condition (c) in [42].) Indeed, take u = −1 and arbitrary t > 0. Since

h(x, a)

‖x − a‖ → −∞ whenever ‖x − a‖ → ∞,

we can find R > 0 such that for all x ∈ A:

‖x − a‖ ≥ R,
h(x, a)

‖x − a‖ ≤ −t,

proving the assertion.

Next we need the following technical lemma concerning the function g.

Lemma 4.9. Suppose that g satisfies (G) and g(·, a) is C-concave with
g(a, a) ∈ C. Then
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M

r
− g(x, a)

‖x − a‖ ∈ C, ∀x ∈ A, ‖x − a‖ ≥ r,

where the vector M and the number r are defined in (G).

Proof. Let x ∈ A such that ‖x − a‖ ≥ r . Set

y := r

‖x − a‖x +
(

1 − r

‖x − a‖
)

a.

Since A is convex, it follows that y ∈ A and ‖y − a‖ = r . Therefore,

M − g(y, a) ∈ C. (4.41)

Since g(·, a) is C-concave,

g(y, a) − r

‖x − a‖g(x, a) −
(

1 − r

‖x − a‖
)

g(a, a) ∈ C. (4.42)

Summing up (4.41) and (4.42) we obtain that

M − r

‖x − a‖g(x, a) −
(

1 − r

‖x − a‖
)

g(a, a) ∈ C.

This implies by (
1 − r

‖x − a‖
)

g(a, a) ∈ C

that

M − r

‖x − a‖g(x, a) ∈ C,

which proves the assertion.

Now we are able to provide sufficient conditions, separately on g and on h,
for the coercivity assumption (iii) in Theorem 4.10.

Proposition 4.13. Assume that

(i) g satisfies (G) and g(·, a) is C-concave with g(a, a) ∈ C;
(ii) h satisfies (H).

Then condition (iii) of Theorem 4.10 is fulfilled.

Proof. Let v := M/r , with M and r provided by (G) and take u ∈ −intC given
by (H). It is easy to see that there exists a sufficiently large t > 0 such that

v + tu ∈ −intC. (4.43)
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Take R > 0 according to (H) and let x ∈ A such that ‖x − a‖ ≥ max{R, r}. By
Lemma 4.9

v − g(x, a)

‖x − a‖ ∈ C,

which, together with (4.43) implies that

g(x, a)

‖x − a‖ + tu ∈ −intC. (4.44)

On the other hand, by (H),

tu − h(x, a)

‖x − a‖ ∈ C,

which, together with (4.44) implies that

g(x, a)

‖x − a‖ + h(x, a)

‖x − a‖ ∈ −intC.

This implies that g(x, a) + h(x, a) ∈ −intC, i.e., condition (C) is satisfied.
Hence, the statement follows by Proposition 4.12.

The next result, of Weierstrass type, might have some interest on its
own: gives sufficient conditions for lower (upper) boundedness of a C-lower
(C-upper) semicontinuous function.

Lemma 4.10. Let C be a compact subset of X and F : C → Y .

(i) if F is C-lower semicontinuous on C, then it is lower bounded, i.e., there
exists a vector m ∈ Y such that F(x) − m ∈ intC for all x ∈ C;

(ii) if F is C-upper semicontinuous on C, then it is upper bounded, i.e., there
exists a vector M ∈ Y such that M − F(x) ∈ intC for all x ∈ C.

Proof. It is enough to prove item (i), (ii) follows by a similar argument. Suppos-
ing the contrary, for each v ∈ Y there exists xv ∈ C such that F(xv) − v /∈ intC.
Consider for each v ∈ Y the level sets

Lv := {x ∈ C : F(x) − v /∈ intC}.
By Lemma 4.1 item (iii), it follows that the nonempty set Lv is closed for every
v ∈ Y . Since C is compact, Lv is compact too. Let v ∈ −intC be arbitrary. Then

u ∈ Y with u − v ∈ C ⇒ Lv ⊂ Lu. (4.45)

Indeed, let x ∈ Lv , i.e., F(x) − v /∈ intC. By Lemma 4.5, it follows that
u − F(x) /∈ −intC, i.e., x ∈ Lu.

Now take for every n ∈ N a vector xn ∈ C such that xn ∈ Lnv . By compact-
ness, there exists a subsequence {xnk

} of {xn} converging to the element x ∈ C.



98 Equilibrium Problems and Applications

Let us show that x ∈ Ltv for every t > 0. To do this, take any k ∈ N such that
nk > t . Then by (4.45),

xnk
∈ Lnkv ⊂ Ltv.

Since Ltv is a compact set, it follows that x ∈ Ltv , i.e.,

F(x) − tv /∈ intC. (4.46)

On the other hand, since v ∈ −intC, there exists a sufficiently large τ > 0 such
that

F(x) − τv ∈ intC,

contradicting (4.46).

Summarizing, we have the following existence result in reflexive Banach
spaces. The basic assumptions upon the set A, the space Y , and the cone C

remain the same.

Theorem 4.11. Suppose that X is a reflexive Banach space. Let g : A×A → Y

and h : A × A → Y satisfying the following properties:

(i) g is C-concave and weakly C-upper semicontinuous in the first argument;
C-convex and weakly C-lower semicontinuous in the second argument;
g(x, x) ∈ C ∩ (−C) for all x ∈ A;

(ii) h is weakly C-upper semicontinuous in the first argument; C-convex in the
second argument; h(x, x) = 0, for all x ∈ A and (H) holds.

Then there exists x ∈ A such that

g(x, y) + h(x, y) /∈ −intC, ∀y ∈ A.

Proof. We shall verify the assumptions of Corollary 4.7 in the reflexive Banach
space setting, endowed with the weak topology. Conditions (i) and (ii) are triv-
ially satisfied, thus we only have to verify (iii). To do this, we shall make use
of Proposition 4.13. Let us prove that g satisfies condition (G). Take any a ∈ A

and a sufficiently large r > 0 such that the set C := {x ∈ A : ‖x − a‖ ≤ r} is
nonempty. This set is also weakly compact and g(·, a) being weakly C-upper
semicontinuous, by Lemma 4.10 (ii) there exists a vector M ∈ Y such that
M − g(x, a) ∈ intC for all x ∈ C, i.e., (G) holds. This completes the proof.

In the scalar case, i.e., when Y := R and C := [0,∞], we obtain a simplified
form of Theorem 4.11.

Corollary 4.8. Let g : A × A →R and h : A × A → R satisfying the following
properties:

(i) g is concave and upper semicontinuous in the first argument, convex and
lower semicontinuous in the second argument, and g(x, x) = 0 for all
x ∈ A;
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(ii) h is weakly upper semicontinuous in the first argument, convex in the sec-
ond argument, h(x, x) = 0 for all x ∈ A, and

h(x, a)

‖x − a‖ → −∞ whenever ‖x − a‖ → ∞, x ∈ A.

Then there exists x ∈ A such that

g(x, y) + h(x, y) ≥ 0, ∀y ∈ A. (4.47)

Proof. Since X is reflexive, each concave and upper semicontinuous function is
weakly upper semicontinuous, and similarly, each convex and lower semicon-
tinuous function is weakly lower semicontinuous. By Remark 4.3, condition (H)
holds. Thus, the assertion follows by Theorem 4.11.

Example 4.12. Let X be a reflexive Banach space and suppose that F : X →
R ∪ {+∞} is a proper, convex and lower semicontinuous function with domF

unbounded. It is well-known from convex analysis that F has a global minimum
point whenever it satisfies the following coercivity condition

lim‖x‖→+∞
F(x)

‖x‖ → +∞.

This fact can be easily reobtain by Corollary 4.8. Indeed, take g ≡ 0, A := domF

and h(x, y) := F(y) − F(x). Since F is convex and lower semicontinuous, it is
weakly lower semicontinuous as well, thus h is weakly upper semicontinuous
in the first argument. Therefore, assumption (ii) of Corollary 4.8 is satisfied. It
is obvious that the solution x ∈ A of (4.47) is a global minimum point of F .

4.3.2 The Set-Valued Case

In order to unify and extend some results on vector and set-valued equilibrium
problems when the considered bifunction appears as a sum of two other bifunc-
tions, Kassay, Miholca, and Vinh [104] introduce the vector quasi-equilibrium
problem for the sum of two set-valued mappings (for short, VQEP) as follows:
let X, Y be real topological vector spaces, K a nonempty convex subset of X,
C a proper convex cone in Y with intC �= ∅. For A : K ⇒ K a set-valued map-
ping with nonempty values and G,H : K × K ⇒ Y set-valued bifunctions with
nonempty values,

(VQEP) find x̄ ∈ A(x̄) such that

G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC) for all y ∈ A(x̄).

In this subsection we present some results from [104]. We start with recalling
the necessary definitions.



100 Equilibrium Problems and Applications

Let X be a topological space and Y a nonempty set. The mapping T : X ⇒ Y

is said to have open lower sections if the inverse mapping T −1 defined by

T −1(y) = {x ∈ X : y ∈ T (x)}
is open-valued, i.e., for all y ∈ Y , T −1(y) is open in X.

Definition 4.7. Let X be a topological space and Y a topological vector space.
A mapping T : X ⇒ Y is called a Browder-Fan mapping iff the following con-
ditions are satisfied:

1. for each x ∈ X, T (x) is nonempty and convex;
2. T has open lower sections.

Recall the following technical result.

Lemma 4.11. (Yannelis and Prabhakar [173]) Let X, Y be topological vector
spaces and T : X ⇒ Y be a set-valued mapping with open lower sections. De-
fine the set-valued mapping convT : X ⇒ Y by convT (x) = conv(T (x)) for all
x ∈ X. Then convT has also open lower sections.

The following result is known as the Browder-Fan fixed point theorem.

Lemma 4.12. ([173], Theorem 3.3) Let K be a nonempty compact convex sub-
set of a topological vector space and T : K ⇒ K a Browder-Fan mapping. Then
T admits a fixed point.

In the results below, Browder-Fan mappings having closed fixed point set
play a special role. Below we give such an example. Denote by F(T ) the set of
fixed points of the mapping T .

Example 4.13. Let X = R, K = [0,1]. Let T : [0,1] ⇒ [0,1] be a mapping
defined by

T (x) =
[

1

2
,1

]
for all x ∈ K .

Then T (x) is nonempty convex subset of K and

T −1(y) =
{

∅ if y ∈ [0, 1
2 ),

K if y ∈ [ 1
2 ,1]

is open in K . Therefore, T is a Browder-Fan mapping. Moreover, the set
F(T ) = [ 1

2 ,1
]

is closed in K .

Next, recall an important result concerning the existence of maximal ele-
ments.

Lemma 4.13. ([173], Theorem 5.1) Let K be a nonempty compact convex sub-
set of a topological vector space and F :⇒ K a set-valued mapping satisfying
the following conditions:
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1. For all x ∈ K , x �∈ F(x) and F(x) is convex;
2. F has open lower sections.

Then there exists x̄ ∈ K such that F(x̄) = ∅.

We now recall some concepts of generalized convexity of set-valued map-
pings.

Definition 4.8. Let K be a nonempty convex subset of a vector space X, C a
proper convex cone of a vector space Y and F : K ⇒ Y a set-valued mapping
with nonempty values.

1. F is said to be upper C-convex iff for any pair x, y ∈ K , α ∈ [0,1], we have

αF(x) + (1 − α)F (y) ⊂ F(αx + (1 − α)y) + C. (4.48)

2. F is said to be lower C-convex iff for any pair x, y ∈ K , α ∈ [0,1], we have

F(αx + (1 − α)y) ⊂ αF(x) + (1 − α)F (y) − C. (4.49)

Note that in case of single-valued functions, where ⊂ reduces to ∈, the
concepts given by (4.48) and (4.49) become the same: both reduce to the well-
known C-convexity for vector functions (see Definition 4.3). However, these
concepts are different in case of set-valued functions. We illustrate this by the
following example.

Example 4.14. Let X = Y =R, K = [0,1] and C := R+ = [0,+∞).

1. Let F : [0,1]⇒R be a mapping defined by

F(x) =
{

[0, x], x �= 1
2

[0,1], x = 1
2 .

Since the right-hand side of (4.48) is always [0,+∞), it is clear that this
mapping satisfies (4.48). On the other hand, by taking x = 1

5 , y = 4
5 and

α = 1
2 in (4.49), one obtains [0,1] for the left and (−∞, 1

2 ] for the right-
hand side, hence, (4.49) is false.

2. Let F : [0,1]⇒R given by

F(x) =
{

[0, x], x �= 1
2

[ 1
4 , 1

2 ], x = 1
2 .

It is easy to see that for any x, y,α ∈ [0,1] one has F(αx + (1 − α)y) ⊂
[0, αx + (1 − α)y]. Moreover, αF(x) + (1 − α)F (y) − C = (−∞, αx +
(1 − α)y] and such, (4.49) holds. On the other hand, for x = 1

5 , y = 4
5

and α = 1
2 , we obtain that αF(x) + (1 − α)F (y) = [0, 1

2 ], while F(αx +
(1 − α)y) + C = F( 1

2 ) + C = [ 1
4 ,+∞), hence (4.48) doesn’t hold.



102 Equilibrium Problems and Applications

Now, we recall the following characterizations of semicontinuity properties
of set-valued mappings (see Chapter 1). Let F : X ⇒ Y be a set-valued mapping
between two topological spaces X and Y . The domain of F is defined to be the
set domF = {x ∈ X : F(x) �= ∅}.

The mapping F is upper semicontinuous (shortly, usc) at x0 ∈ domF if for
any open set V of Y with F(x0) ⊂ V , there exists a neighborhood U of x0 such
that F(x) ⊂ V for all x ∈ U .

The mapping F is lower semicontinuous (shortly, lsc) at x0 ∈ domF if for
any open set V of Y with F(x0) ∩ V �= ∅, there exists a neighborhood U of x0
such that F(x) ∩ V �= ∅ for all x ∈ U .

The mapping F is continuous at x0 ∈ domF if it is both usc and lsc at x0. The
mapping F is continuous (resp., usc, lsc) if domF = X and if F is continuous
(resp., usc, lsc) at each point x ∈ X.

If Y is a partially ordered topological vector space, then the above definitions
of the semicontinuity can be weakened. More precisely, we have the following
definitions.

Definition 4.9. Let X be a topological space, Y a topological vector space with
a proper convex cone C. Let F : X ⇒ Y . We say that

1. F is C-upper semicontinuous (shortly, C-usc) at x0 ∈ domF iff for any open
set V of Y with F(x0) ⊂ V there exists a neighborhood U of x0 such that

F(x) ⊂ V + C for each x ∈ domF ∩ U.

2. F is C-lower semicontinuous (shortly, C-lsc) at x0 ∈ domF iff for any open
set V of Y with F(x0) ∩ V �= ∅ there exists a neighborhood U of x0 such
that

F(x) ∩ [V + C] �= ∅ for each x ∈ domF ∩ U.

3. F is C-usc (resp., C-lsc) iff domF = X and F is C-usc (resp., C-lsc) at each
point of domF .

The next result will be useful in the sequel.

Lemma 4.14. ([80], Lemma 2) Let X and Y be real topological vector spaces
and K be a nonempty subset of X. Let C be a proper convex cone in Y

with intC �= ∅. If F : K ⇒ Y is C-lower semicontinuous on K , then the set
B = {x ∈ K : F(x) ⊂ Y \ intC} is closed in K .

The extension of monotonicity for set-valued bifunctions has been consid-
ered in a natural way.

Definition 4.10. Let X, Y be vector spaces, K a nonempty convex subset of X,
and C a proper convex cone in Y . A set-valued mapping F : K ×K ⇒ Y is said
to be C-monotone iff for any x, y ∈ K

F(x, y) + F(y, x) ⊂ −C.
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The concept of C-essential quasi-monotonicity (see Definition 4.6) can also
be extended in a natural way for set-valued bifunctions.

Definition 4.11. Let X be a vector space, Y a topological vector space, K a
nonempty convex subset of X, and C a proper convex cone in Y with intC �= ∅.
The bifunction F : K × K ⇒ Y with nonempty values is said to be gener-
alized C-essentially quasi-monotone iff for an arbitrary integer n ≥ 1, for all

x1, x2, ..., xn ∈ K and all λ1, λ2, ..., λn ≥ 0 such that
n∑

i=1
λi = 1 it holds that

n∑
i=1

λiF (xi,

n∑
j=1

λjxj ) ∩ intC = ∅.

The next two statements provide sufficient conditions for generalized
C-essential quasi-monotonicity.

Lemma 4.15. Let X, Y be topological vector spaces, K a nonempty convex
subset of X, C a proper convex cone in Y with intC �= ∅, and F : K × K ⇒ Y a
bifunction with nonempty values. Suppose that

1. F(x, x) ⊂ C for all x ∈ K;
2. F is C-monotone and upper C-convex in its second argument.

Then F is generalized C-essentially quasi-monotone.

Proof. Take x1, x2, ..., xn ∈ K and λ1, λ2, ..., λn ≥ 0 such that
n∑

i=1
λi = 1. Set

z :=
n∑

j=1
λjxj . Then by the assumptions, we have

n∑
i=1

λiF (xi, z) ⊂ −C −
n∑

i=1

λiF (z, xi) ⊂ −C − F(z, z) − C ⊂ −C.

Moreover, we have intC ∩ (−C) = ∅. Hence

n∑
i=1

λiF (xi, z) ∩ intC = ∅.

The proof is complete.

The following result is a generalization of Proposition 4.11.

Lemma 4.16. Let X, Y be topological vector spaces, K a nonempty convex sub-
set of X, and C be a proper convex cone in Y with intC �= ∅, F : K × K ⇒ Y

a bifunction with nonempty values. Suppose that F is C-monotone and lower
C-convex in its second argument. Then F is generalized C-essentially quasi-
monotone.



104 Equilibrium Problems and Applications

Proof. Take x1, x2, ..., xn ∈ K and λ1, λ2, ..., λn ≥ 0 such that
n∑

i=1
λi = 1. Set

z :=
n∑

j=1
λjxj . Then by the assumptions, we have

n∑
i=1

λiF (xi, z) ⊂
n∑

i,j=1

λiλjF (xi, xj ) − C

= 1

2

n∑
i,j=1

λiλj (F (xi, xj ) + F(xj , xi)) − C.

Hence
n∑

i=1

λiF (xi, z) ⊂ −C.

The proof is complete.

The following example shows that a generalized C-essentially quasi-
monotone bifunction is not necessary C-monotone, even if it is upper C-convex
in its second argument.

Example 4.15. Let X = R, K = [0,1], Y = R
2 and C = R

2+. Let F : [0,1] ×
[0,1]⇒R

2 given by

F(x, y) = [(0,0), (|x − y|,0)] for every x, y ∈ [0,1],
where [(0,0), (|x − y|,0)] denotes the line segment joining (0,0) and
(|x − y|,0). It is easy to see that F is generalized R

2+-essentially quasi-
monotone, upper R

2+-convex in its second argument, but not R2+-monotone,
since F(1,0) + F(0,1) = [(0,0), (2,0)] �⊂ −R

2+.

Finally, we need the following result.

Lemma 4.17. ([80], Lemma 6) Let X, Y be real topological vector spaces,
K and D nonempty convex subsets of X with D ⊂ K , C a proper convex cone
in Y with intC �= ∅, and F : K ⇒ Y a set-valued mapping with nonempty values.
Assume that

1. F : K ⇒ Y is upper C-convex;
2. x0 ∈ coreKD; F(x0) �⊂ Y \ (−C);
3. F(y) ⊂ Y \ (−intC) for all y ∈ D.

Then F(y) ⊂ Y \ (−intC) for all y ∈ K .

Next, using the result on the existence of maximal elements (Lemma 4.13),
we give some new existence theorems which improve, extend and unify the main
results of Blum and Oettli [42], Fu [80] and Kassay and Miholca [103].
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To start, we first need two lemmas, which serve as tools for the proof of the
main result.

Lemma 4.18. Let X, Y be real topological vector spaces and D a nonempty
compact convex subset of X. Let C be a proper convex cone in Y with intC �= ∅.
Let G,H : D × D ⇒ Y be set-valued mappings with nonempty values and
A : D ⇒ D a Browder-Fan mapping such that

F(A) = {x ∈ D : x ∈ A(x)}
is closed in D. Assume that

1. H(x,x) ⊂ C for all x ∈ D;
2. G is generalized C-essentially quasi-monotone;
3. G is C-lower semicontinuous in its second argument;
4. H is −C-lower semicontinuous in its first argument and upper C-convex in

its second argument.

Then there exists a point x̄ ∈ D such that

x̄ ∈ A(x̄) and G(y, x̄) − H(x̄, y) ⊂ Y \ intC, (4.50)

for all y ∈ A(x̄).

Proof. For x ∈ D, we define

P(x) = {y ∈ D : G(y,x) − H(x,y) �⊂ Y \ intC}.
Consider the set-valued mapping S from D to itself defined by

S(x) =
{

convP(x) ∩ A(x) if x ∈F(A),

A(x) if x ∈ D \F(A),

where the set-valued mapping convP : D ⇒ D is defined by
convP(x) = conv(P (x)). It is easy to see that for any x ∈ D, S(x) is convex
and

S−1(y) = [(convP)−1(y) ∩ A−1(y)] ∪ [A−1(y) ∩ (D \F(A))].

From the assumptions, for any y ∈ D, A−1(y) and D \F(A)) are open in D.
Moreover, we have

P −1(y) = {x ∈ D : G(y,x) − H(x,y) �⊂ Y \ intC}.
For any fixed y, since G(y,x) − H(x,y) is C-lower semicontinuous in x,

then by Lemma 4.14,

L = {x ∈ D : G(y,x) − H(x,y) ⊂ Y \ intC}
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is closed in D. Therefore

P −1(y) = D \ L

is open in D. Hence (convP)−1(y) is open in D by Lemma 4.11, so we have
S−1(y) is also open in D.

Further, we claim that for all x ∈ D, x �∈ S(x). Indeed, suppose to the
contrary that there exists a point z ∈ D such that z ∈ S(z). If z ∈ D \ F(A)

then z ∈ A(z) which is a contradiction. So z ∈ F(A) and we have z ∈ S(z) =
convP(z) ∩ A(z). We deduce that there exist {y1, y2, ..., yn} ⊂ P(z) such that
z =∑n

i=1 λiyi , λi ≥ 0,
∑n

i=1 λi = 1. By the definition of P we can see that

G(yi, z) − H(z, yi) �⊂ Y \ intC for all i = 1,2, ..., n.

Then, there exist ai ∈ G(yi, z), bi ∈ H(z, yi) such that ai − bi ∈ intC. Thus,
n∑

i=1

λi(ai − bi) ∈ intC. (4.51)

By the assumption (2), G is generalized C-essentially quasi-monotone,
therefore we have

n∑
i=1

λiG(yi, z) ∩ intC = ∅. (4.52)

Since H(x,y) is upper C-convex in y, we get
n∑

i=1

λiH(z, yi) ⊂ H(z, z) + C ⊂ C + C = C,

and therefore

−
n∑

i=1

λiH(z, yi) ⊂ −C. (4.53)

By (4.52), (4.53) it follows that
n∑

i=1

λi(ai − bi) �∈ intC, (4.54)

which contradicts (4.51). Applying Lemma 4.13, we conclude that there ex-
ists a point x̄ ∈ D with S(x̄) = ∅. If x̄ ∈ D \ F(A)), then S(x̄) = A(x̄) = ∅,
contradicting the fact that A has nonempty values. Therefore, x̄ ∈ F(A) and
convP(x̄)∩ A(x̄) = ∅. This clearly implies that P(x̄)∩ A(x̄) = ∅, hence, for all
y ∈ A(x̄) one has y /∈ P(x̄), i.e.,

x̄ ∈ A(x̄) and G(y, x̄) − H(x̄, y) ⊂ Y \ intC,

for all y ∈ A(x̄). Thus, the result holds and the proof is complete.
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Remark 4.4. Observe that Lemma 4.18 fails to hold if the closedness assump-
tion on the set F(A) is violated.

This remark is illustrated by the following example.

Example 4.16. Let X =R, D = [0,1], Y =R
2 and C =R

2+.

1. Let G : D × D ⇒R
2 given by G(x,y) = {(|x − y|,0)} for every x, y ∈ D.

By Example 1 in [103], F is upper R2+-convex in its second argument, gen-
eralized R

2+-essentially quasi-monotone but not C-monotone.
2. Let H : D × D ⇒R

2 given by H(x,y) = {(0, x − y)} for every x, y ∈ D.
3. Let A : D ⇒ D be the mapping defined by

A(x) =

⎧⎪⎨
⎪⎩

0 if x = 1,

[0,1] if x ∈ (0,1),

1 if x = 0.

Then A(x) is a nonempty convex subset of D and A−1(y) is open in D

for all x, y ∈ D. Therefore, A is a Browder-Fan mapping. Moreover, the set
F(A) = (0,1) is open in D.

It is easy to see that each of conditions (1), (2), (3), (4) of Lemma 4.18 is
satisfied. However, (4.50) has no solution. Indeed, if x̄ is a solution of (4.50)
then x̄ ∈ (0,1) and

G(y, x̄) − H(x̄, y) ⊂ Y \ intC,

⇐⇒(|x̄ − y|, y − x̄) �∈ intC,

for all y ∈ A(x̄) = [0,1], which is impossible.

The next lemma makes the connection between the special equilibrium prob-
lem considered in Lemma 4.18 and the equilibrium problem we are interested
in.

Lemma 4.19. Let X, Y be real topological vector spaces and D a nonempty
closed convex subset of X. Let C be a proper convex cone in Y with intC �= ∅.
Let G,H : D × D ⇒ Y be set-valued mappings with nonempty values and
A : D ⇒ D a set-valued mapping with nonempty convex values. Assume that

1. G(x,x) ⊂ C and 0 ∈ H(x,x) for all x ∈ D;
2. for all x, y ∈ D, the mapping g : [0,1] ⇒ Y defined by

g(t) := G(ty + (1 − t)x, y)

is −C-lower semicontinuous at t = 0;
3. G, H are upper C-convex in their second argument.
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If there exists a point x̄ ∈ D such that

x̄ ∈ A(x̄) and G(y, x̄) − H(x̄, y) ⊂ Y \ intC for all y ∈ A(x̄)

then

x̄ ∈ A(x̄) and G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC) for all y ∈ A(x̄).

Proof. Let x̄ ∈ D be such that

x̄ ∈ A(x̄) and G(y, x̄) − H(x̄, y) ⊂ Y \ intC for all y ∈ A(x̄).

We set xt := ty+(1− t)x̄, t ∈ [0,1]. It is clear that xt ∈ A(x̄) for all t ∈ [0,1]
and therefore, we have

x̄ ∈ A(x̄) and G(xt , x̄) − H(x̄, xt ) ⊂ Y \ intC. (4.55)

By the assumption (1) and the upper C-convexity of G(x, .) and H(x, .), we
have

tG(xt , y) + (1 − t)G(xt , x̄) ⊂ G(xt , xt ) + C ⊂ C + C = C, (4.56)

tH(x̄, y) ⊂ tH(x̄, y) + (1 − t)H(x̄, x̄) ⊂ H(x̄, xt ) + C. (4.57)

By (4.56) and (4.57), we obtain

tG(xt , y) + t (1 − t)H(x̄, y) ⊂ −(1 − t)G(xt , x̄) + (1 − t)H(x̄, xt ) + C.

(4.58)

We claim that

G(xt , y) + (1 − t)H(x̄, y) ⊂ Y \ (−intC) ∀t ∈ (0,1]. (4.59)

Indeed, if (4.59) is false, then there exist some t ∈ (0,1] and some
a ∈ G(xt , y), b ∈ H(x̄, y) such that

a + (1 − t)b ∈ −intC. (4.60)

By (4.58), there exist z ∈ G(xt , x̄), w ∈ H(x̄, xt ) and c̄ ∈ C such that

t[a + (1 − t)b] = −(1 − t)(z − w) + c̄.

By (4.60), we have

(1 − t)(z − w) = −t[a + (1 − t)b] + c̄ ∈ intC + c̄ ⊂ intC.

Hence, z − w ∈ intC, which contradicts (4.55). Let h(t) = G(xt , y) +
(1 − t)H(x̄, y), t ∈ [0,1]. Suppose that h(0) �⊂ Y \ (−intC), then there is a
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point v ∈ h(0) such that v ∈ −intC. By the assumption (2), h(t) is −C-lsc at
t = 0, then there is a δ ∈ (0,1) such that for all t ∈ [0, δ], h(t) ∩ (−intC − C) =
h(t)∩(−intC) �= ∅. This contradicts (4.59). Thus we obtain h(0) ⊂ Y \(−intC),
that is,

G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC) ∀y ∈ A(x̄).

This completes the proof of the lemma.

We are now in a position to prove our main result.

Theorem 4.12. Let X, Y be real topological vector spaces, K a nonempty
closed convex subset of X, and D a nonempty compact convex subset of K .
Let C be a proper convex cone in Y with intC �= ∅. Let G,H : K × K ⇒ Y

be set-valued bifunctions with nonempty values and A : D ⇒ K a Browder-Fan
mapping such that B(x) := A(x) ∩ D �= ∅ for all x ∈ D and

F(A) = {x ∈ D : x ∈ A(x)}
is closed in D. Assume that

1. G(x,x) ⊂ C, G(x,x) ∩ (−C) �= ∅ and 0 ∈ H(x,x) ⊂ C for all x ∈ K;
2. G is generalized C-essentially quasi-monotone;
3. For all x, y ∈ K , the mapping g : [0,1] ⇒ Y defined by

g(t) := G(ty + (1 − t)x, y)

is −C-lower semicontinuous at t = 0;
4. G is upper C-convex and C-lower semicontinuous in its second argument;
5. H is −C-lower semicontinuous in its first argument and upper C-convex in

its second argument;
6. Suppose that for any x ∈ B(x) \ coreA(x)B(x), one can find a point a ∈

coreA(x)B(x) such that

G(x,a) + H(x,a) �⊂ Y \ (−C).

Then there exists a point x̄ ∈ B(x̄) such that

G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC),

for all y ∈ A(x̄).

Proof. The set-valued mapping B : D ⇒ D satisfies B−1(y) = A−1(y) for all
y ∈ D and F(B) = F(A). Therefore, B is also a Browder-Fan mapping and
its fixed point set is nonempty and closed in D. By Lemma 4.18, there exists
x̄ ∈ B(x̄) such that

G(y, x̄) − H(x̄, y) ⊂ Y \ intC,
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for all y ∈ B(x̄). Applying Lemma 4.19, we get

x̄ ∈ B(x̄) and G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC), (4.61)

for all y ∈ B(x̄). Further, we define the set-valued mapping � : K ⇒ Y by

�(y) = G(x̄, y) + H(x̄, y), y ∈ K.

Assumptions (4) and (5) show that � is upper C-convex and it follows
from (4.61) that

�(y) ⊂ Y \ (−intC) for all y ∈ B(x̄).

If x̄ ∈ coreA(x̄)B(x̄) then we set x0 = x̄, otherwise, since x̄ ∈ B(x̄) we set
x0 = a, where a is from the assumption (6). Then we always have �(x0) �⊂
Y \ (−C). Using Lemma 4.17 with B(x̄) instead of D and A(x̄) instead of K

(observe that A(x̄) is nonempty and convex, B(x̄) ⊂ A(x̄) is nonempty), we
conclude that

�(y) ⊂ Y \ (−intC) for all y ∈ A(x̄).

It follows that

G(x̄, y) + H(x̄, y) ⊂ Y \ (−intC) for all y ∈ A(x̄).

This completes the proof.

4.4 EXISTENCE OF SOLUTIONS OF QUASI-EQUILIBRIUM
PROBLEMS

This section deals with quasi-equilibrium problems in the setting of real Ba-
nach spaces. By a fixed point theory approach, we obtain existence results under
mild conditions of continuity improving some old existing results in this area.
By a selection theory approach, we make use of the Michael selection theo-
rem to overcome the separability of the Banach spaces and generalize some
results obtained recently in the literature. Finally, we deal with the existence
of approximate solutions for quasi-equilibrium problems and by arguments
mixing both selection theory and fixed point theory, we obtain some results
for quasi-equilibrium problems involving sub-lower semicontinuous set-valued
mappings.

Although the equilibrium problem subsumes several kinds of problems,
there are many problems described by variational inequalities involving con-
straints that depend on the solution itself. In this direction, we refer to quasi-
variational inequalities, considered early in the literature in connection with
stochastic impulse control problems, where the constraint set is subject to mod-
ifications. For more recent existence results for quasi-variational inequalities
with applications to Nash equilibria of generalized games, we refer to [60,81].
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In the spirit to describe in a more again general framework most of prob-
lems arising in nonlinear analysis, it has been considered and adopted recently
in the literature the notion of quasi-equilibrium problem, which appears as an
equilibrium problem in which the constraint set is subject to modifications. The
quasi-equilibrium problem is a unified formulation which encompasses many
relevant problems such as quasi-variational inequalities, mixed quasi-variational
like inequalities and all the special cases of the equilibrium problem. See also
the seminal paper [130], where this formulation has been first used as a pure
mathematical object. The first existence results have been established and ap-
plied to different optimization problems including Nash equilibrium problems
under constraints and quasi-variational inequalities for monotone operators.

Many problems related to the term equilibrium and arising from different
areas of sciences can be mathematically modeled as special cases of the uni-
fied formulation called the equilibrium problem. Also, the equilibrium problem
subsumes many mathematical special cases which are in relation to the term
equilibrium such as Nash equilibrium problems and economic equilibrium prob-
lems. Then one can naturally guess that this is the reason for which the term
equilibrium problem has been chosen to name this unified formulation. The last
decades have witnessed an exceptional growth in theoretical advances on the
equilibrium problem and its applications in concrete cases. Maybe, the sim-
plicity of this formulation is the principal reason which has allowed all these
advancements. We point out that the equilibrium problem has never been intro-
duced in order to deal directly with other problems which are not described by
the old existing concepts. Furthermore, if we assume that a problem is directly
modeled as an equilibrium problem by using an inequality involving a bifunc-
tion, then nothing can impose that this inequality is a variational inequality.
Unfortunately, this is not the task for which the concept of the equilibrium prob-
lem has been introduced, but to describe various existing concepts in a common
way in order to deeply study them altogether.

Let us point out that there are some other unified mathematical formula-
tions encompassing different special cases of the equilibrium problem which
have been also considered in the literature. We especially think about the gen-
eral conditions considered in [124] as a structure giving rise to what is called
there “equilibrium problems of a certain type.” These general conditions express
what is called “the common laws,” and it is shown that many equilibrium prob-
lems arising from different areas of sciences fulfill the common laws. Similar
to the equilibrium problem considered in this paper, the equilibrium problems
of this above type subsumes many problems of nonlinear analysis as particular
cases. This is an important different point of view, which has also allowed to ob-
tain different results on concrete cases, and especially on the traffic equilibrium
problem.

In this section, we deal with existence of solutions and approximate solu-
tions of the quasi-equilibrium problem. After presenting the necessary back-
ground, we first develop an approach based on fixed point theory to solve
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quasi-equilibrium problems under mild conditions of semicontinuity and hemi-
continuity. In this approach, we are interested in solving the equilibrium prob-
lem defined on the images of a given set-valued mapping. Then we seek a fixed
point to a related set-valued mapping defined in the sequel and called “the se-
lection set-valued mapping.” An example of a bifunction and an application
to variational inequalities have been also given in order to highlight our tech-
niques developed in this section. Next, we follow a selection theory approach
and make use of the Michael selection theorem for paracompact Hausdorff
topological spaces. We obtain existence results in the settings of real Banach
spaces instead of separable real Banach spaces considered recently in the liter-
ature with the Michael selection theorem version for perfectly normal spaces,
which is more restrictive in our purpose. The final part of this section is devoted
to the existence of approximate solutions of the quasi-equilibrium problem. For
this purpose, we develop a connection between the involved set-valued mapping
and the bifunction. We also make use of the notion of sub-lower semicontinuous
set-valued mappings, introduced in relationship with the notion of approximate
continuous selection, to carry out existence of approximate solutions of the
quasi-equilibrium problem. This approach combines arguments and techniques
from fixed point theory and selection theory and has been already considered
for lower semicontinuous set-valued mappings.

We first recall the equilibrium problem and notations we are going to con-
sider in this section. Let C be a nonempty subset of a Hausdorff topological
space E and � : C × C −→ R be a bifunction, called equilibrium bifunction
iff �(x,x) = 0, for every x ∈ C. We recall that the equilibrium problem is a
problem of the form

find x∗ ∈ C such that �
(
x∗, y

)≥ 0 for all y ∈ C, (EP)

where the set C is called the constraint set.
A quasi-equilibrium problem is a problem of the form:

find x∗ ∈ A
(
x∗) such that �

(
x∗, y

)≥ 0 for all y ∈ A
(
x∗) , (QEP)

where A : C ⇒ C is a set-valued mapping on C. In order words, a quasi-
equilibrium problem is an equilibrium problem in which the constraint set is
subject to modifications depending on the considered point.

If X is a real topological Hausdorff vector space, then there is the notion of
hemicontinuity for real-valued functions defined on X which is the semicontinu-
ity on line segments. A function f : X −→R is said to be lower hemicontinuous
at x iff for every ε > 0 and every z ∈ X, there exists tz ∈ [0,1] such that

f (tz + (1 − t) x) ≥ f (x) − ε for all t ∈ [0, tz
]
.

The function f is said to be upper hemicontinuous at x iff −f is lower hemi-
continuous at x. It is said to be hemicontinuous at x iff it is lower and upper
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hemicontinuous at x. A function f is said to be lower (resp., upper) hemicon-
tinuous on a subset S of X iff it is lower (resp., upper) hemicontinuous at every
point of S. It is said to be hemicontinuous on S iff it is lower and upper hemi-
continuous on S.

We now recall some notions of convexity for real-valued functions defined
on a real topological Hausdorff vector space X. A function f : X −→ R is said
to be

1. quasi-convex on X iff, for every x1, x2 ∈ X,

f (λx1 + (1 − λ)x2) ≤ max {f (x1) , f (x2)} for all λ ∈ [0,1] ;

2. semistrictly quasi-convex on X iff, for every x1, x2 ∈ C such that f (x1) �=
f (x2), we have

f (λx1 + (1 − λ)x2) < max {f (x1) , f (x2)} for all λ ∈ ]0,1[ ;

3. explicitly quasi-convex on X iff it is quasi-convex and semistrictly quasi-
convex.

Note that there is not any inclusion relationship between the class of
semistrictly quasi-convex functions and that of quasi-convex functions. How-
ever, if f is a lower semicontinuous and semistrictly quasi-convex function,
then f is explicitly quasi-convex; see [112].

There are several notions relative to monotonicity of bifunctions that play an
important role in the results related to existence of solutions of equilibrium prob-
lem. Recall that a bifunction � : X × X −→ R is said to be pseudo-monotone
on X iff

�(x,y) ≥ 0 =⇒ �(y,x) ≤ 0, for all x, y ∈ X.

Clearly, if � is pseudo-monotone on C, then for every x ∈ C, �(x,x) = 0 if
and only if �(x,x) ≥ 0.

The graph of a set-valued mapping F : X ⇒ Y is the set

grph (F ) := {(x, y) ∈ X × Y : y ∈ F (x)} .

If X = Y , we denote by fix (F ) the fixed points set of F . That is,

fix (F ) := {x ∈ X : x ∈ F (x)} .

For a set-valued mapping F : X ⇒ Y and B ⊂ Y , the set-valued mapping
F ∩ B is defined by (F ∩ B) (x) = F (x) ∩ B, for every x ∈ X.

Recall that a single-valued mapping f : X → Y is said to be a selection of a
set-valued mapping F : X ⇒ Y iff f (x) ∈ F (x), for every x ∈ X.
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4.4.1 A Fixed Point Theory Approach

In what follows, we deal with the existence of solutions of quasi-equilibrium
problems by following a fixed point theory approach.

The following result is the real topological Hausdorff vector space version
of some generalizations of the Ky Fan minimax inequality theorem recently
obtained in [6,11].

Theorem 4.13. Let C be a nonempty, closed, and convex subset of a real topo-
logical Hausdorff vector space E. Let � : C × C −→ R be a bifunction and
suppose the following assumptions hold:

1. �(x,x) ≥ 0, for every x ∈ C;
2. � is quasi-convex in its second variable on C;
3. there exist a compact subset K of C and y0 ∈ K such that

�(x,y0) < 0 for all x ∈ C \ K;
4. � is upper semicontinuous in its first variable on K .

Then the equilibrium problem (EP) has a solution.

In the presence of pseudo-monotonicity and explicit quasi-convexity, the up-
per semicontinuity of the bifunction f in its first variable can be weakened to
upper hemicontinuity.

Theorem 4.14. Let C be a nonempty, closed, and convex subset of a real topo-
logical Hausdorff vector space E. Let � : C × C −→ R be an equilibrium
bifunction and suppose the following assumptions hold:

1. � is pseudo-monotone on C;
2. � is explicitly quasi-convex in its second variable on C;
3. there exists a compact subset K of C and y0 ∈ K such that

�(x,y0) < 0 for all x ∈ C \ K;
4. � is upper hemicontinuous in its first variable on K;
5. � is lower semicontinuous in its second variable on K .

Then the equilibrium problem (EP) has a solution.

Although the fundamental role of the equilibrium problem is to unify differ-
ent abstract and practice problems in a common way in order to study them, we
provide here the following example of an equilibrium bifunction defined on a
real Banach space. This example is constructed to emphasize the importance of
Theorem 4.13, where the involved bifunction is not upper semicontinuous in its
first variable on the whole space. Note that the compact set K used here, and in
Theorem 4.13 and Theorem 4.14, is called in the literature the set of coercive-
ness.
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Example 4.17. Let (E,‖.‖) be a real Banach space and take K a compact subset
of X such that 0 ∈ K ⊂ B (0,1). Define � : E × E ⇒R by

�(x,y) =

⎧⎪⎨
⎪⎩

‖y‖2 − ‖x‖2

2
if ‖x‖ = 2,

‖y‖2 − ‖x‖2 otherwise.

All hypotheses of Theorem 4.13 are satisfied with y0 = 0. To show that � is not
upper semicontinuous in its first variable on the whole space E, let y ∈ E be
such that ‖y‖ > 2. Let (xn)n be a sequence in E converging to x ∈ E such that
‖x‖ = 2 and ‖xn‖ �= 2, for every n. Then

lim sup
n→+∞

�(xn, y) = ‖y‖2 − 4 >
‖y‖2 − 4

2
= �(2, y) .

It follows that φ is not upper semicontinuous in its first variable at any x ∈ E

such that ‖x‖ = 2.

Now, we give an application of our techniques on equilibrium problems de-
veloped above and especially Theorem 4.14, to the special case of nonlinear
variational inequalities. In this example, the operator L is not necessarily hemi-
continuous on the whole space.

Consider the special case of a nonlinear variational inequality of the form

find x∗ ∈ C such that 〈Lx∗, y − x∗〉 ≥ 0 for all y ∈ C, (VI)

where C is a nonempty convex subset of a real Banach space (E,‖.‖), E∗ the
dual of E, L : C → E∗ is an operator and 〈 , 〉 denotes the duality pairing be-
tween E∗ and E.

We observe that x∗ ∈ C is a solution of the variational inequality prob-
lem (VI) if and only if x∗ is a solution of the equilibrium problem (EP) with
the bifunction �L : C × C → R defined by

�L (x, y) = 〈Lx,y − x〉.

The bifunction �L is linear and continuous in its second variable on C en-
dowed with the weak topology. However, the upper semicontinuity of �L in
its first variable is too strong in many applications since L can be chosen only
hemicontinuous in the following sense. The operator L is said to be hemicon-
tinuous at a point x ∈ C iff the restriction of L on any segment containing x

and contained in C is continuous at x. We will say that L is hemicontinuous
on a subset S of C iff it is hemicontinuous at every point of S. Clearly, �L is
hemicontinuous in its first variable on a subset S contained in C whenever L is
hemicontinuous on S.
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We recall that the operator L is said to be pseudo-monotone on C iff when-
ever x, y ∈ C, we have

〈Lx,y − x〉 ≥ 0 =⇒ 〈Ly,y − x〉 ≤ 0,

which is equivalent to the pseudo-monotonicity of the bifunction �L.
Finally, a notion of coerciveness for operators exists in the literature, which

generalizes that for bilinear forms on Hilbert spaces. The operator L is said to
be coercive on C iff there exists y0 ∈ C such that

lim‖x‖→+∞
x∈C

〈Lx,x − y0〉
‖x‖ = +∞.

We observe that if L is coercive on C, then there exists R > 0 such that
y0 ∈ B (0,R) and

〈Lx,y0 − x〉 < 0 for all x ∈ C \ B (0,R)

where B (0,R) = {x ∈ E : ‖x‖ ≤ R} is the closed ball around 0 with radius R.
We denote KR = B (0,R) and call (y0,KR) an adapted couple of coerciveness
of L (which may not be unique).

Proposition 4.14. Let E be a real reflexive Banach space, C a nonempty, closed,
and convex subset of E, and L : C → E∗ an operator. Assume that

1. L is pseudo-monotone on C;
2. L is coercive on C and let (y0,KR) be an adapted couple of coerciveness

of L;
3. L is hemicontinuous on KR .

Then the variational inequality problem (VI) has a solution.

Proof. Consider the space E endowed with the weak topology and take �L the
bifunction defined above. Since KR is weakly compact, then the result holds by
applying Theorem 4.14.

Now, we continue developing our techniques on equilibrium problems and
we are interested in the Minty lemma for equilibrium problems which deals
in particular with properties such as compactness and convexity of the sets of
solutions of equilibrium problems. We will see in particular that the set of solu-
tions in Proposition 4.14 is nonempty, weakly compact and convex since KR is
weakly compact and convex.

In the sequel, for y ∈ C, we define the following sets:

�+ (y) = {x ∈ C : �(x,y) ≥ 0} and �− (y) = {x ∈ C : �(y,x) ≤ 0} .

Then x∗ ∈ C is a solution of the equilibrium problem (EP) if and only if

x∗ ∈
⋂
y∈C

�+ (y) .
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Under assumptions of Theorem 4.14, we obtain that the set of solutions
Sol (�,C) of the equilibrium problem (EP) is nonempty and

Sol (�,C) =
⋂
y∈C

�+ (y) ⊂
⋂
y∈C

cl
(
�+ (y)

)⊂ K

and there exists equality under assumptions of Theorem 4.13. We remark that
the set

⋂
y∈C cl

(
�+ (y)

)
is nonempty and compact. Also, by the pseudo-

monotonicity of � on C, we have

�+ (y) ⊂ �− (y) for all y ∈ C,

and by the explicit quasi-convexity of � in its second variable on C and the
hemicontinuity in the first variable on K , we prove that⋂

y∈C

�− (y) ∩ K ⊂
⋂
y∈C

�+ (y) .

The quasi-convexity of � in its second variable on C yields that the set �− (y)

is convex, for every y ∈ C.
The next result is the Minty lemma for the equilibrium problem (EP).

Theorem 4.15. Suppose the assumptions of Theorem 4.13 or Theorem 4.14
hold. Then the set of solutions Sol (�,C) of the equilibrium problem (EP) is a
nonempty set. If in addition,

1. K is convex;
2. � is pseudo-monotone on C;
3. � is semistrictly quasi-convex in its second variable on C,

then, Sol (�,C) is nonempty, compact and convex.

Proof. It follows from the above remarks that

Sol (�,C) =
⎛
⎝⋂

y∈C

�− (y)

⎞
⎠∩ K.

This completes the proof.

Now, we are in a position to formulate our existence results for the quasi-
equilibrium problem (QEP).

We first observe that a point x∗ ∈ C is a solution of the quasi-equilibrium
problem (QEP) if and only if x∗ is a fixed point of the set-valued mapping
S : C ⇒ C defined by

S (x) = {z ∈ A(x) : �(z, y) ≥ 0 for all y ∈ A(z)}
and called in the literature, the selection set-valued mapping.
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Theorem 4.16. Let C be a nonempty subset of a real Banach space E, and
A : C ⇒ C a set-valued mapping with nonempty, closed, and convex values. Let
� : C ×C −→R be a bifunction and suppose that for every x ∈ C, there exist a
nonempty compact and convex subset Kx of A(x) and yx ∈ Kx such that �|A(x)

satisfies all the conditions in Theorem 4.15 with Kx the set of coerciveness. Then
the selection set-valued mapping S has nonempty, compact, and convex values.

Proof. It suffices to apply Theorem 4.15 to �|A(x), for every x ∈ C.

Now, we formulate an existence result for quasi-equilibrium problems by
applying the Kakutani fixed point theorem.

Theorem 4.17. Under the assumptions of Theorem 4.16, we suppose further
that there exists a nonempty, closed, and convex subset C0 of C such that

1. S (C0) is a relatively compact subset of C0;
2. grph

(
S|C0

)
is closed in C0 × C0.

Then the quasi-equilibrium problem (QEP) has a solution.

Proof. Set K = conv (cl (S (C0))) the closed convex hull of S (C0). Then K is
a nonempty, compact and convex subset of C0, S (K) ⊂ K , grph

(
S|K
)

is closed
in K × K and S|K has nonempty, closed, and convex values. It follows that S|K
is a Kakutani mapping, that is, S|K is upper semicontinuous and has nonempty,
compact and convex values. Thus, by the Kakutani fixed point theorem, S|K has
a fixed point x∗ ∈ K which is a solution to the quasi-equilibrium problem (QEP).

We note that the conditions in Theorem 4.17 involve the selection set-valued
mapping itself which is not in the initial data of the quasi-equilibrium prob-
lem (QEP). Now, we provide assumptions only on the involved data of the
quasi-equilibrium problem (QEP) such that the conditions in Theorem 4.17 are
satisfied.

Theorem 4.18. Suppose that the assumptions of Theorem 4.16 hold and assume
further that for C0 := conv

(⋃
x∈C Kx

)
the following conditions hold:

1. C0 is a compact subset of C;
2. (A ∩ C0)|C0

is upper semicontinuous;
3. �|C0 is upper semicontinuous on C0 × C0;
4. for every converging sequence (xn)n in C0 to x and for every y ∈ A(x),

there exists a sequence (yn)n converging to y and such that yn ∈ A(xn)∩C0,
for every n.

Then the equilibrium problem (QEP) has a solution.

Proof. The set C0 is nonempty compact and convex subset of C. Since for every
x ∈ C, S (x) ⊂ Kx , then, S (C0) is contained in C0. In order to apply Theo-
rem 4.17, it remains to prove that grph

(
S|C0

)
is closed in C0 × C0. For this
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purpose, take a sequence (xn, zn)n in C0 × C0 converging in C0 × C0 to (x, z)

such that zn ∈ S (xn), for every n. We prove that z ∈ S (x). We have zn ∈ A(xn)

for every n, and

�(zn, y) ≥ 0 for all y ∈ A(xn) .

Since A has closed values, then, by the upper semicontinuity of (A ∩ C0)|C0
, we

have z ∈ A(x). Now, let y ∈ A(x) and let (yn)n be a converging sequence in C0

to y such that yn ∈ A(xn) ∩ C0, for every n. Then by the upper semicontinuity
of �|C0 , we have

�(z, y) ≥ lim sup
n→+∞

�(zn, yn) ≥ 0.

As y is arbitrary in A(x), we conclude that z ∈ S (x), which completes the
proof.

4.4.2 A Selection Theory Approach

We are now concerned with the existence of solutions of quasi-equilibrium prob-
lems by following a selection theory approach. This direction has already been
considered in [60] in the settings of finite dimensional spaces and developed
in [51] for separable Banach spaces.

One of the most known and important result in the selection theory area
is the Michael selection theorem which states that every lower semicontinuous
set-valued mapping from a paracompact Hausdorff topological space X to the
nonempty, closed, and convex subsets of a Banach space has a continuous se-
lection. Motivated by the problem of extending continuous functions defined on
closed subsets, Michael obtained in his pioneering paper [126] characterizations
of various kinds of topological properties such as paracompactness, normality,
collectionwise normality, and perfect normality by means of existence of con-
tinuous selections of lower semicontinuous set-valued mappings with values in
Banach spaces. Every metric space is both paracompact and perfectly normal,
and both these two properties are stronger than collectionwise normality.

In our study, the quasi-equilibrium problem (QEP) is considered in a real
Banach space, and instead of the Michael selection theorem for perfectly nor-
mal spaces considered in the above mentioned papers, we use here the Michael
selection theorem for paracompact Hausdorff topological spaces which is also
the more suitable theorem in many analysis studies. The perfectly normal ver-
sion is more restrictive since it requires separable Banach spaces and imposes
that the involved set-valued mapping must have values in the family of convex
subsets containing the inside points of their closures.

Beside the existence of continuous selections of lower semicontinuous set-
valued mappings, there is the notion of selectionable set-valued mappings which
will be important in our purpose. This notion is also interesting since it will pre-
vent us to repeat the proof of some known facts in the selection theory.
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Let X and Y be two Hausdorff topological spaces. A set-valued mapping
F : X ⇒ Y is said to be locally selectionable at a point x0 ∈ X iff for every
y0 ∈ F (x0) there exist an open neighborhood Ux0 of x0 and a continuous func-
tion fx0 : Ux0 → Y such that fx0 (x0) = y0 and

fx0 (x) ∈ F (x) for all x ∈ Ux0 .

The set-valued mapping F is said to be locally selectionable on X, iff it is locally
selectionable at every point of X.

We point out that very locally selectionable set-valued mapping on a para-
compact Hausdorff topological space with nonempty convex values in a topo-
logical Hausdorff vector space has a continuous selection; see [21, Proposi-
tion 10.2].

Theorem 4.19. Let C be a nonempty subset of a real Banach space E,
A : C ⇒ C a set-valued mapping, and � : C × C −→ R a bifunction. Sup-
pose further that there exist a nonempty, closed, and convex subset C0 of C and
a compact subset K of C0 such that the following conditions hold:

1. A|C0 is lower semicontinuous on C0 and has nonempty, closed, and convex
values in K;

2. fix
(
A|C0

)
is nonempty closed subset, and �(x,x) = 0, for every

x ∈ fix
(
A|C0

)
;

3. the restriction of � on fix
(
A|C0

)×C is quasi-convex in its second variable;
4. the restriction of � on fix

(
A|C0

)× C is upper semicontinuous.

Then the equilibrium problem (QEP) has a solution.

Proof. Define the set-valued mapping F : fix
(
A|C0

)
⇒ C by

F (x) := {y ∈ C : �(x,y) < 0} .

We observe that F has convex values, and by the upper semicontinuity of the
restriction of � on fix

(
A|C0

)× C, the graph of F is open in fix
(
A|C0

)× C.
Now, consider the set-valued mapping G = K ∩ F : fix

(
A|C0

)
⇒ C defined

by

G(x) := A(x) ∩ F (x) .

The restriction of A on fix
(
A|C0

)
being a lower semicontinuous set-valued

mapping from the paracompact Hausdorff topological space fix
(
A|C0

)
to the

real Banach space E with nonempty, closed, and convex values, then, by the
Michael selection theorem, for every x0 ∈ fix

(
A|C0

)
and for every y0 ∈ A(x0),

there exists a continuous selection fx0 of A|fix(A|C0 ) such that fx0 (x0) = y0;
see [21, Corollary 11.1]. This means that A|fix(A|C0 ) is locally selectionable set-

valued mapping at every point of fix
(
A|C0

)
. Since F has an open graph in

fix
(
A|C0

)× C, it follows by [21, Proposition 10.4] that if x0 ∈ fix
(
A|C0

)
such

that G(x0) �= ∅, then G is locally selectionable set-valued mapping at x0.
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We claim that there exists x0 ∈ fix
(
A|C0

)
such that G(x0) = ∅ which

proves that x0 is a solution of the quasi-equilibrium problem (QEP). Assume
by contradiction that G(x0) �= ∅, for every x ∈ fix

(
A|C0

)
. It follows that G is

locally selectionable set-valued mapping with nonempty convex values from
the paracompact Hausdorff topological space fix

(
A|C0

)
to the real Banach

space E. Then G has a continuous selection g. Define the set-valued mapping
H : C0 ⇒ E by

H (x) :=
{

{g (x)} iff x ∈ fix
(
A|C0

)
,

A (x) iff x /∈ fix
(
A|C0

)
.

The set-valued mapping H is lower semicontinuous on C0. Indeed, let x0 ∈ C0
and V be an open subset of E such that H (x0) ∩ V �= ∅. If x0 /∈ fix

(
A|C0

)
, by

the lower semicontinuity of A, let U be an open neighborhood of x0 such that

U ∩ fix
(
A|C0

)= ∅ and A(x) ∩ V �= ∅ for all x ∈ U.

Then H (x) ∩ V �= ∅, for every x ∈ U . Otherwise, suppose that x0 ∈ fix
(
A|C0

)
.

Then by continuity of g on fix
(
A|C0

)
, let U1 be an open neighborhood of x0 in

C0 such that

g (x) ∈ V for all x ∈ U1 ∩ fix
(
A|C0

)
.

On the other hand, by lower semicontinuity of A on C0, let U2 be an open
neighborhood of x0 in C0 such that

A(x) ∩ V �= ∅ for all x ∈ U2.

Clearly, H (x) ∩ V �= ∅, for every x ∈ U1 ∩ U2. Hence, H is lower semicon-
tinuous at x0. Now, by applying the Michael selection theorem, the set-valued
mapping H has a continuous selection f . Since H (C0) ⊂ A(C0) ⊂ K , then
f : C0 → C0 is a compact mapping. By the Schauder fixed point theorem, it
follows that f has a fixed point, hence there exists x ∈ C0 such that x = f (x) ∈
A(x). Therefore, x ∈ fix

(
A|C0

)
which implies that x ∈ G(x) ⊂ F (x). Then

�(x,x) < 0 which yields a contradiction and completes the proof.

Remark 4.5. We point out that the condition of the restriction of � on
fix
(
A|C0

) × C being quasi-convex in its second variable can be replaced by
the weaker condition: The set

F (x) := {y ∈ C : �(x,y) < 0}
is convex, for every x ∈ fix

(
A|C0

)
.

We now give conditions on the initial data for which the conditions in The-
orem 4.19 are satisfied. By a similar statement involving the Michael selection
theorem and the Schauder fixed point theorem, as in the proof of the theorem
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above, we give here the following sufficient conditions under which the fixed
points set of the set-valued mapping A is nonempty and closed. Note that every
set-valued mapping with closed graph has closed values. The converse is true
under additional conditions such as the upper semicontinuity.

Proposition 4.15. Let C be a nonempty subset of a real Banach space E and
A : C ⇒ C a set-valued mapping. Suppose further that there exist a nonempty,
closed, and convex subset C0 of C and a compact subset K of C0 such that the
following conditions hold:

1. A|C0 : C0 ⇒ C is lower semicontinuous;
2. A|C0 : C0 ⇒ C has nonempty, closed, and convex values in K;
3. the graph of A|C0 is closed in C0 × C.

Then fix
(
A|C0

)
is nonempty, closed, and compact set.

4.4.3 Approximate Solutions of Quasi-Equilibrium Problems

Like approximate selections, approximate solutions are well-known and impor-
tant tools, which have already been used in quasi-variational inequality studies
and in many other areas of nonlinear analysis.

In the sequel, for ε > 0 and a set-valued mapping F : X ⇒ Y , we denote by
Fε : X ⇒ Y the set-valued mapping defined by

Fε (x) := B (F (x) , ε) .

For ε > 0, we call in what follows an ε-solution of the quasi-equilibrium
problem (QEP), any xε ∈ cl (fix (Aε ∩ C)) such that

�(xε, y) ≥ 0 for all y ∈ Aε (xε) ∩ C,

where the closure is taken with respect to the subset C. An approximate so-
lution of the quasi-equilibrium problem (QEP) is any ε-solution of the quasi-
equilibrium problem (QEP), for any ε > 0.

We remark that the set-valued mapping Aε has open values. Then the tech-
niques developed previously fail to be applied to Aε .

Now, we present the notion of sub-lower semicontinuity in the realm of topo-
logical vector spaces. This notion is weaker than that of lower semicontinuity
and fits very well with the notion of approximate continuous selections. How-
ever, the notion of sub-lower semicontinuity seems to be more adapted to our
purpose.

Let X be a Hausdorff topological space and Y be a normed vector space.
A set-valued mapping F : X ⇒ Y is said to be sub-lower semicontinuous at
x ∈ X iff for every ε > 0, there exist zx ∈ F (x) and a neighborhood Ux of x

such that

zx ∈ Fε

(
x′) for all x′ ∈ Ux.
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The set-valued mapping F is said to be sub-lower semicontinuous on X iff it is
sub-lower semicontinuous at every point of X.

The following result provides a localization of the continuous selection of a
sub-lower semicontinuous set-valued mapping.

Lemma 4.20. Let X be a paracompact Hausdorff topological space, Y be a
normed vector space, S be a convex subset of Y , F : X ⇒ Y be a set-valued
mapping, and ε > 0. Suppose that for every x ∈ X, there exist zx ∈ F (x) and
an open neighborhood Ux of x such that

zx ∈ Fε

(
x′)∩ S for all x′ ∈ Ux.

Then there exists a continuous selection f : X → S of Fε .

Proof. For every x ∈ X, let Ux be an open neighborhood of x and zx ∈ F (x)

such that zx ∈ Fε

(
x′)∩ S, for every x′ ∈ Ux . Let (Oi)i∈I be an open refinement

of the open cover (Ux)x∈X of the paracompact Hausdorff topological space X

and let (pi)i∈I be a partition of unity subordinated to (Oi)i∈I . For every i ∈ I ,
take xi ∈ X such that Oi ⊂ Uxi

and define the function f : X → Y by

f (x) =
∑
i∈I

pi (x) zxi

which is continuous since it is locally a finite sum of continuous functions. For
every i ∈ I such that pi (x) �= 0, we have x ∈ Uxi

and then, zxi
∈ Fε (x). By the

convexity of F (x), Fε (x) is also convex, and then, f (x) ∈ Fε (x). Also, since
S is convex and zxi

∈ S for every i ∈ I , then f (x) ∈ S, for every x ∈ X.

An adaptation of the proof of the above lemma to our purpose yields the
following important tool for the existence of approximate solutions of quasi-
equilibrium problems. This result is presented for sub-lower semicontinuous
and can be compared to [81, Lemma 2.1] and [51, Theorem 2.3].

Lemma 4.21. Let X be a paracompact Hausdorff topological space, Y a
normed vector space, S a convex subset of Y , F : X ⇒ Y a set-valued map-
ping with nonempty convex values in S, � : X ×S → R a bifunction, ε > 0, and
α ∈R. We define

B�,α (x) = {y ∈ S : � (x,y) < α}
and suppose that for every x ∈ X, the following conditions hold:

1. the set Fε (x) ∩ B�,α (x) is nonempty and convex;
2. there exist zx ∈ F (x) and an open neighborhood Ux of x such that

zx ∈ Fε

(
x′)∩ B�,α

(
x′) for all x′ ∈ Ux.

Then there exists a continuous selection fε : X → S of Fε such that
� (x,fε (x)) < α, for every x ∈ X.
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Proof. For every x ∈ X, let zx ∈ F (x) and take Ux defined by condition (2).
By proceeding as in Lemma 4.20, the convexity of Fε (x) ∩ B�,α (x) for ev-
ery x ∈ X, yields a continuous selection fε : X → S of the set-valued mapping
Hε : X ⇒ Y defined by

Hε (x) = Fε (x) ∩ B�,α (x) .

Thus, fε (x) ∈ Fε (x) and � (x,fε (x)) < α, for every x ∈ X.

Remark 4.6. While the convexity of B�,α (x) in the above lemma requires
conditions only on � and it is satisfied if � is quasi-convex in its second variable
on X, the other conditions seem to be more complicated and require connections
between � and F .

We give in what follows the following result, which provides sufficient con-
ditions involving � and F in order to satisfy condition (1) and condition (2) of
the above lemma.

Proposition 4.16. Let X be a paracompact Hausdorff topological space, Y a
normed vector space, S a convex subset of Y , F : X ⇒ Y a set-valued mapping
with nonempty convex values in S, � : X × S → R a bifunction, ε > 0, and
α ∈ R.

1. If � is quasi-convex in its second variable on X, then for every x ∈ X,
B�,α (x) is convex.

2. If inf
y∈Fε(x)

� (x, y) < α for some x ∈ X, then Fε (x) ∩ B�,α (x) �= ∅.

3. If one of the following two conditions holds:
(a) F is lower semicontinuous on X, � is upper semicontinuous in its first

variable on X and F (x) ∩ B�,α (x) �= ∅, for every x ∈ X;
(b) F is sub-lower semicontinuous on X, � is upper semicontinuous in its

first variable on X and F (x) ⊂ B�,α (x), for every x ∈ X,
then condition (2) of Lemma 4.21 is satisfied.

Proof. We verify only the last condition, the other conditions being obvious or
already discussed. Let x ∈ X.

In the case where condition (3a) is satisfied, the set-valued mapping F is
lower semicontinuous. Let zx ∈ F (x) ∩ B�,α (x) and by lower semicontinuity
of F , let U1

x be an open neighborhood of x such that F
(
x′)∩ B (zx, ε) �= ∅, for

every x′ ∈ U1
x . By upper semicontinuity of � in its first variable, let U2

x be an
open neighborhood of x such that zx ∈ B�,α

(
x′), for every x′ ∈ U2

x . Clearly, for
every x′ ∈ Ux = U1

x ∩ U2
x , zx ∈ Fε

(
x′)∩ B�,α

(
x′).

In the case where condition (3b) is satisfied, the set-valued mapping F is
sub-lower semicontinuous. Let zx ∈ F (x) and Ux

1 be as in the definition of sub-
lower semicontinuity. Since zx ∈ B�,α (x), we choose, by upper semicontinuity
of � in its first variable, an open neighborhood U2

x of x such that zx ∈ B�,α

(
x′),

for every x′ ∈ U2
x . As above, the result comes by taking Ux = U1

x ∩ U2
x .
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In [51], the nonemptiness of the fixed points set of Aε , which is crucial for
the existence of approximate solutions of the quasi-equilibrium problem (QEP),
has been obtained by applying the Fan-Browder fixed point theorem since the
lower semicontinuity of A implies that the set-valued mapping Aε has open
fibers. This fact can be showed as follows. For every y ∈ C, we have

A−1
ε (y) = {x ∈ C : y ∈ B (A(x) , ε)}

= {x ∈ C : A(x) ∩ B (y, ε) �= ∅}
= A−1 (B (y, ε)) .

We remark that this fact has been used only to prove existence of fixed points
of Aε . The existence of a fixed point of any selection of Aε will suffice to over-
come the strong condition of the openness of the fibers of Aε .

Now, we present an existence result of approximate solutions of the quasi-
equilibrium problem (QEP) in the case of sub-lower semicontinuous set-valued
mappings.

Theorem 4.20. Let C be a nonempty, closed, and convex subset of a real Banach
space E, A : C ⇒ C a set-valued mapping, and � : C × C → R a bifunction.
Suppose further that the following conditions hold:

1. A is sub-lower semicontinuous on C;
2. there exists a compact subset K of C such that A has nonempty convex

values in K .

Then for every ε > 0, the set-valued mapping Aε : C ⇒ C has a nonempty fixed
points set.

If in addition,

1. � is quasi-convex in its second variable;
2. � is upper semicontinuous in its first variable on C;
3. there exists ε0 > 0 such that �(x,x) ≥ 0, for every x ∈ B (A(x) , ε0) ∩ C;
4. for every 0 < ε < ε0,

(a) the function defined on cl (fix (Aε ∩ C)) by

x �→ inf
y∈Aε(x)∩C

�(x, y)

attains its supremum γε on cl (fix (Aε ∩ C)) and this supremum is finite;
(b) A(x) ⊂ B

�,γε+ 1
n
(x), for every x ∈ C and n ∈N

∗.

Then for every 0 < ε < ε0, the quasi-equilibrium problem (QEP) has an
ε-solution.

Proof. Let ε > 0. The set-valued mapping Aε has a nonempty fixed points set.
Indeed, put K0 = conv (K) which is a nonempty compact and convex subset
of C, and A(C) ⊂ K0. The set-valued mapping A : C ⇒ E being sub-lower
semicontinuous and has nonempty convex values in the convex subset K0, then,
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by Lemma 4.20, let fε : C → K0 be a continuous selection of Aε . By the
Schauder fixed point theorem, fε has a fixed point x∗

ε which is necessarily
in K0. Thus, cl (fix (Aε ∩ C)) is nonempty. Note that cl (fix (Aε ∩ C)) is con-
tained in K0 and then, it is compact.

Now, for 0 < ε < ε0, let xε ∈ cl (fix (Aε ∩ C)) such that

sup
x∈cl(fix(Aε∩C))

inf
y∈Aε(x)∩C

�(x, y) = inf
y∈Aε(xε)∩C

�(xε, y) = γε.

Put αε,n = γε + 1
n

, for n ∈ N
∗.

By taking X = S = K0 and Y = E, it results by Lemma 4.21 applied to A

and � that there exists a continuous selection fε : K0 → K0 of Aε such that

�(x,fε (x)) < αε,n for all x ∈ K0.

Again by the Schauder fixed point theorem, let xε ∈ K0 be a fixed point of fε .
It follows that xε = fε (xε) ∈ Aε (xε) ∩ K0 ⊂ B (A(xε) , ε0) ∩ C. It results that

0 ≤ �(xε, xε) = �(xε, fε (xε)) < αε,n = γε + 1

n
.

By letting n go to +∞, we obtain that inf
y∈Aε(xε)∩C

�(xε, y) = γε ≥ 0. It follows

that we have xε ∈ cl (fix (Aε ∩ C)) and

�(xε, y) ≥ 0 for all y ∈ Aε (xε) ∩ C,

which states that the quasi-equilibrium problem (QEP) has an ε-solution and
completes the proof.

Remark 4.7. We point out that the function x �→ infy∈Aε(x)∩C �(x, y) defined
on the set cl (fix (Aε ∩ C)) is supposed to have a finite supremum. It is well
known that the Berge maximum theorem is an important tool usually used to
deal with such properties when the set-valued A is lower semicontinuous. Un-
fortunately, and even if A is lower semicontinuous and the above function is
proper, nothing can guarantee that its supremum is finite if no additional condi-
tions on � and on the values of A are assumed.

Conclusions

The equilibrium problem, and by consequent, the quasi-equilibrium problem
studied in this section have been introduced mainly to describe in a unified way
various problems arising in nonlinear analysis and in mathematics in general.
The family of problems that can be expressed as an equilibrium problem is
growing as far as the other related areas are being developed. Recently, it has
been proved that quasi-hemivariational inequalities, which constitute an impor-
tant variational formulation for several classes of mechanical problems, can be
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also expressed as an equilibrium problem. On the other hand, one of the interests
of such a unified formulation is that many techniques and methods developed for
solving a special case may be adapted, with suitable modification, to the other
special cases. Motivated by these facts, it has been proved in some recent works
that the techniques on weakening semicontinuity and hemicontinuity to the set
of coerciveness developed to the equilibrium problem can be applied to various
special cases such as quasi-hemivariational inequalities and can be used with
other techniques such as the Ekeland variational principle. These techniques
have been also highlighted here by an example and an application to nonlinear
variational inequalities.

In this direction, we have been concerned here with the quasi-equilibrium
problem, which constitutes a relevant mathematical formulation including the
equilibrium problem and other concepts such as quasi-variational inequalities.
We remark that in the approach based on fixed point theory developed in this
section, our techniques on weakening semicontinuity and hemicontinuity are
applied easily and directly to the quasi-equilibrium problem. And because of
our conviction of always looking for optimal conditions when dealing with such
problems, we have also considered the approach based on selection theory. In
such a way, we have been able to obtain results improving some recent proper-
ties in the literature. We have been also interested in approximate solutions of the
quasi-equilibrium problem and highlighted the necessary background for their
existence by using the notion of sub-lower semicontinuous set-valued mappings.
This study is motivated by the importance of approximate solutions in general
in many areas of mathematics, but also by some recent works on approximate
solutions of the quasi-equilibrium problem and its special cases.

The techniques developed in the two approaches based on fixed point theory
and on selection theory, as well as those developed for approximate solutions,
are given under general settings. In such a way, they can be easily applied to
several particular cases.

Finally, we point out that this subject is under perpetual advancement, and it
may be also interesting to look for weakened conditions on convexity when
dealing with existence of solutions and approximate solutions of the quasi-
equilibrium problem. The convergence of the sequence of approximate solutions
of the quasi-equilibrium problem is also a challenge which has to be considered
in the future.
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issue when defining the concept of well-posedness is to require stability un-
der small perturbations. Roughly speaking, this means that if for some point
the value of the function is “close” to its minimal/maximal value (suppos-
ing its existence), the point itself should be “close” to the minimizer/maxi-
mizer. This requirement leads to the first notion of well-posedness provided by
Tykhonov [167] in 1966.

Since this concept has shown to be very useful in optimization, similar no-
tions have been defined for other related problems of interest, like saddle point
problems and variational inequalities. As already mentioned, these problems
constitute outstanding particular cases of the (scalar and vector) equilibrium
problems. Therefore, the following question arises naturally: how can be as-
signed a proper definition of well-posedness to (EP) (and (SVEP), respectively –
introduced within the last chapters), which extend the above (existing) concepts?
Answer to this question has been provided, among others, by Bianchi, Kassay,
and Pini [34] and [33], where different kinds of well-posedness both for scalar
and vector equilibrium problems have been given and the relationship between
them has been explored.

In this chapter we collect some concepts and results from [34] and [33] con-
cerning well-posedness for scalar and the strong vector equilibrium problems.
Section 5.1 provides a short background concerning well-posedness for the three
relevant particular cases of (EP) (optimization, saddle point problems and vari-
ational inequalities). The scalar equilibrium problem is explored in section 5.2.
We define in subsection 5.2.1 a concept of well-posedness for (EP) arising in
a natural way from Tykhonov well-posedness for optimization problems. We
call this concept Topt-well-posedness and we show that both concepts of well-
posedness, i.e., for optimization and saddle point problems can be obtained as
its particular cases.

5.1 WELL-POSEDNESS IN OPTIMIZATION AND VARIATIONAL
INEQUALITIES

At the beginning, well-posedness was considered in connection with opti-
mization problems. Let us recall the first concept which was introduced by
A.N. Tykhonov in [167] (see also [68]). Let D be a metric space. For a sub-
set A ⊂ D we shall denote by diam(A) ∈ [0,+∞] the diameter of the set A,
i.e., sup{d(a, b) : a, b ∈ A}.

For a scalar optimization problem

minh(a), a ∈ D (5.1)

where h : D → R, a sequence {an}n ⊆ D is said to be minimizing when h(an) →
infD h as n → ∞.

Definition 5.1. The optimization problem (5.1) is called Tykhonov well-posed
if
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(i) there exists a unique solution ā ∈ D of (5.1);
(ii) every minimizing sequence converges to ā.

In case of maximization problems, the definition of Tykhonov well-
posedness is modified using maximizing sequences in a straightforward way.
Roughly speaking, the above concept means that points with values close to the
value of the problem must be close to the (unique) solution. This property might
be very useful when constructing algorithms aimed at solving the problem of
interest.

Corresponding notions of well-posedness have been defined for other two
particular cases of (EP), namely saddle point problems and variational inequal-
ities. Let us first recall the saddle point problem. Given two metric spaces
X and Y , and F : X × Y → R, the saddle point problem is to find a couple
(x̄, ȳ) ∈ X × Y such that

F(x, ȳ) ≤ F(x̄, ȳ) ≤ F(x̄, y), ∀x ∈ X,y ∈ Y.

By defining the bifunction ω : X × Y → R given by

ω(x, y) = sup
x

F (x, y) − inf
y

F (x, y),

the saddle point problem can be reduced to the following optimization problem:

minω(x, y) = min(sup
x

F (x, y) − inf
y

F (x, y)).

Since ω(x, y) ≥ 0 for every (x, y) ∈ X × Y , this is equivalent to find (x̄, ȳ) ∈
X × Y such that ω(x̄, ȳ) = 0.

In this way, the following definition follows naturally.

Definition 5.2. (see [52]) The saddle point problem is Tykhonov well-posed if

(i) there exists a unique saddle point (x̄, ȳ) ∈ X × Y ;
(ii) every sequence (xn, yn) minimizing for ω converges to (x̄, ȳ).

In case of variational inequalities the idea is similar. Suppose D is a Banach
space. Under the assumptions of convexity and Gâteaux differentiability of the
objective function h of (5.1), it was proved in [68] that Tykhonov well-posedness
is equivalent to the condition

diam({a ∈ D : 〈∇h(a), b − a〉 ≥ −ε‖a − b‖,∀b ∈ D}) → 0, ε ↓ 0.

This equivalence leads naturally to the definition of well-posedness for a general
variational inequality: find a ∈ D such that

〈A(a), b − a〉 ≥ 0 ∀b ∈ D, (5.2)

where the map A : D → D∗ is not necessarily a gradient map.



132 Equilibrium Problems and Applications

Definition 5.3. (see [68]) The variational inequality (5.2) is called well-posed
if there exists at least one solution, and

diam({a ∈ D : 〈A(a), b − a〉 ≥ −ε‖a − b‖,∀b ∈ D}) → 0, ε ↓ 0.

As stressed before, optimization, saddle point, and variational inequality
problems constitute relevant particular cases of (EP). This fact leads naturally to
the questions of assigning a proper definition of well-posedness to (EP), which
extends the above concepts. It is also interesting to see which results can be
achieved, and how can they be related to the earlier results concerning the men-
tioned particular cases. This will be the topic of the next sections.

5.2 WELL-POSED SCALAR EQUILIBRIUM PROBLEMS

Starting from Definitions 5.1 (Tykhonov well-posedness for optimization prob-
lems) and 5.3 (well-posedness for variational inequalities) we provide in this
section natural extensions of well-posedness to a scalar equilibrium problem.
Although the latter is a unified representation for both problems (i.e., optimiza-
tion and variational inequality), the concepts we obtain are different. Further-
more, as shown below, there is no relationship between the two concepts in
general (in the sense that no one implies the other). However, under additional
assumptions, well-posedness coming from variational inequalities implies the
one coming from optimization.

5.2.1 Well-Posedness for the Equilibrium Problems Coming
From Optimization

Unless otherwise stated, in what follows (D,d) is a complete metric space and
f : D ×D →R a given function such that f (a, a) = 0 for every a ∈ D. In order
to start our analysis, we consider a well-known minimax formulation of (EP).
This needs to consider the gap function g : D → [−∞,+∞) defined by

g(a) = inf
b∈D

f (a, b). (5.3)

Particular properties of the function g are the nonpositivity on the set D, and
the fact that g(a∗) = 0 if and only if a∗ is a solution of (EP). Therefore, the
following result holds:

Lemma 5.1. The equilibrium problem has solutions if and only if

max
a∈D

g(a) = 0.

By the previous formulation of (EP) and Definition 5.1 one can provide a
natural definition of Tykhonov well-posedness for equilibrium problems via the
function g.
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Definition 5.4. (cf. [34]) The equilibrium problem (EP) is Topt-well-posed if

(i) there exists a unique solution ā ∈ D of (EP);
(ii) for every sequence {an} ⊂ D such that g(an) → 0, one has an → ā.

The sequence {an} in (ii) is still called maximizing for g.
The definition given above entails, as particular cases, the notions of well-

posedness for optimization and saddle point problems, as proved in the follow-
ing proposition.

Proposition 5.1. (cf. [34])

(i) If f (a, b) = h(b)−h(a), then (EP) is Topt-well-posed (in the sense of Def-
inition 5.4) if and only if minb∈D h(b) is Tykhonov well-posed (in the sense
of Definition 5.1).

(ii) If F : X × Y → R, D = X × Y , a = (x, y) and b = (u, v), define
f : D × D → R as f (a, b) = F(x, v) − F(u,y). Then (EP) is Topt-well-
posed if and only if the saddle point problem engendered by F is well-posed
(in the sense of Definition 5.2).

Next we give an example of (EP) that is Topt-well-posed.

Example 5.1. Let f : R × R → R given by f (a, b) = −|b − a|a2e−a . The
equilibrium problem associated is well-posed; indeed:

(i) f (ā, b) ≥ 0 for every b ∈ R if and only if ā = 0;

(ii) g(a) = infb∈R f (a, b) = − supb∈R |b − a|a2e−a =
{

0, a = 0

−∞, a �= 0

Take an such that g(an) → 0; from (ii), this means that an = 0 for n large
enough.

In what follows we investigate and characterize Topt-well-posedness from
another point of view, involving the notion of some approximate solutions
of (EP). To do this, let ε > 0 be given and let us introduce the set

ε − argmin(EP) = {a ∈ D : f (a, b) ≥ −ε, ∀b ∈ D}.
The family of sets {ε − argmin(EP)}ε is ascending, i.e., if ε1 < ε2, then

ε1 − argmin(EP) ⊆ ε2 − argmin(EP).

Moreover, the set of solutions of (EP) is the intersection of the sets
{ε − argmin(EP) : ε > 0}.

The next result generalizes Theorem I.11 in [68] on one hand and provides
an alternative characterization for Topt-well-posedness, on the other hand.

Theorem 5.1. (cf. [34]) If (EP) is Topt-well-posed, then

diam(ε − argmin(EP)) → 0, ε ↓ 0. (5.4)
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Moreover, the converse is true if a �→ f (a, b) is upper semicontinuous for every
b ∈ D, and ε − argmin(EP) is nonempty for every ε > 0.

Proof. By contradiction, assume that

diam(ε − argmin(EP)) � 0.

Then there exist α > 0 and εn ↓ 0 such that

diam(εn − argmin(EP)) ≥ 2α, ∀n ∈ N.

Take an, a
′
n ∈ D such that an, a

′
n ∈ εn − argmin(EP), and d(an, a

′
n) ≥ α, for

every n ∈ N. From the inequalities

f (an, b) ≥ −εn, f (a′
n, b) ≥ −εn, ∀n ∈ N, ∀b ∈ D,

we get that, for every n ∈ N,

inf
b∈D

f (an, b) ≥ −εn, inf
b∈D

f (a′
n, b) ≥ −εn,

i.e.,

0 ≥ g(an) ≥ −εn, 0 ≥ g(a′
n) ≥ −εn.

The inequalities above imply that g(an) → 0 and g(a′
n) → 0 if n → ∞, and, by

the assumptions, both sequences {an} and {a′
n} converge to the unique solution

ā of (EP), a contradiction.
Conversely, let us first show that every maximizing sequence is convergent,

or, equivalently, is a Cauchy sequence. Let {an} be a maximizing sequence. By
contradiction, assume that there exist {ank

} and {amk
}, both subsequences of

{an}, such that d(ank
, amk

) > α, for some α > 0 and for every k ∈N. From (5.4),
we can take ε such that

diam(ε − argmin(EP)) < α.

Since both {ank
} and {amk

} are maximizing sequences, there exists kε ∈ N such
that for k ≥ kε we have that

ank
, amk

∈ ε − argmin(EP),

therefore d(ank
, amk

) < α, a contradiction. This shows that {an} is convergent.
Take any maximizing sequence {an}, denote by ā its limit, and fix any b ∈ D.
Then, by upper semicontinuity,

f (ā, b) ≥ lim sup
n→∞

f (an, b) ≥ lim sup
n→∞

g(an) = 0.

Since b ∈ D was arbitrary, we conclude that ā is a solution of (EP). The unique-
ness follows immediately from (5.4).
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For the sake of completeness we report the proof of the following proposition
that is the scalar version of Proposition 6.3 in Chapter 6, and that entails the
nonemptiness of ε − argmin(EP). We recall that the function f : D × D → R

satisfies the “triangular inequality” (TI) if

f (a, b) ≤ f (a, c) + f (c, b),

for all a, b, c ∈ D.

Proposition 5.2. Suppose that the function f satisfies (TI). If there exists b̂ ∈ D

such that the function a �→ f (a, b̂) is upper bounded, then ε − argmin(EP) �= ∅
for every ε > 0.

Proof. By the upper boundedness a �→ f (a, b̂), for every ε > 0 there exists
a0 ∈ D such that

f (a0, b̂) − f (a, b̂) + ε > 0, ∀a ∈ D.

This inequality, together with (TI), gives

−ε < f (a0, b̂) − f (a, b̂) ≤ f (a0, a), ∀a ∈ D,

i.e., a0 ∈ ε − argmin(EP).

In the sequel we need the following concept. The function c : [0,+∞) →
[0,+∞) is said to be forcing provided it is increasing, c(0) = 0, and t > 0
implies c(t) > 0 (see, for instance, [119]).

Definition 5.5. A function f : D × D → R is said to be forcing pseudo-
monotone if there exists a forcing function c such that

f (a, b) ≥ 0 =⇒ f (b, a) ≤ −c(d(a, b)),∀a, b ∈ D.

The next result provides sufficient conditions for Topt-well-posedness
(see [34]).

Proposition 5.3. Assume that f is a forcing pseudo-monotone function and that
(EP) has at least one solution. Then (EP) is Topt-well-posed.

Proof. The uniqueness of the solution follows easily from the assumption of
forcing pseudo-monotonicity. Denote by ā the solution of (EP). Let {an} be a
maximizing sequence for g. We have

g(an) ≤ f (an, ā) ≤ −c(d(an, ā)) ≤ 0.

Since g(an) ↑ 0, we conclude that d(an, ā) → 0, thereby showing that an → ā.
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5.2.2 Well-Posedness for the Equilibrium Problems Coming
From Variational Inequalities

In Definition 5.3 we provided the concept of well-posedness for a (gen-
eral) variational inequality, where the key role has been played by the set of
ε-approximate solutions, i.e., the set {a ∈ D : 〈A(a), b − a〉 ≥ −ε‖a − b‖,
∀b ∈ D}. Inspired by this, we can define an alternative notion of well-posedness
for (EP) originates from the framework of variational inequalities. To do this,
let us consider the set of ε-approximate equilibrium points given by

E(ε) = {a ∈ D : f (a, b) ≥ −εd(a, b),∀b ∈ D},
and introduce the following

Definition 5.6. The equilibrium problem (EP) is Tvi-well-posed if

(i) there exists at least one solution ā ∈ D of (EP);
(ii) diam(E(ε)) → 0, ε ↓ 0.

Observe that condition (ii) trivially implies the uniqueness of the solution.
In the following, we give sufficient conditions for Tvi-well-posedness.

Theorem 5.2. Assume that f is forcing pseudo-monotone and that the solution
set of (EP) is nonempty. If at least one of the following conditions holds:

(i) the forcing function c is coercive, that is, limt→∞ c(t)
t

= +∞, or
(ii) D is a Banach space and f is concave in its first variable,

then (EP) is Tvi-well-posed.

Proof. Let ā be any solution. Suppose that assumption (i) holds. We first
show that E(ε) is bounded for any ε > 0. Indeed, fix ε > 0 arbitrarily and
take any a ∈ E(ε); this implies that f (a, ā) ≥ −εd(a, ā). Since ā is a solu-
tion, we know that f (ā, a) ≥ 0, and, from the forcing pseudo-monotonicity,
f (a, ā) ≤ −c(d(a, ā)). Therefore, for every a ∈ E(ε),

−εd(a, ā) ≤ −c(d(a, ā)),

which implies for every a ∈ E(ε) \ {ā} that

c(d(a, ā))

d(a, ā)
≤ ε. (5.5)

This, together with the coercivity of c shows that E(ε) is bounded.
Now let us show that diam(E(ε)) → 0. Supposing the contrary, there exists

α > 0, εn ↓ 0 and an ∈ E(εn) such that d(an, ā) ≥ α. Therefore, since c is a
forcing function, by (5.5) we obtain

0 < c(α) ≤ c(d(an, ā)) ≤ εnd(an, ā) ≤ εndiam(E(εn)) ≤ εndiam(E(R)),
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where R > 0 is an upper bound of the sequence {εn}n∈N. Since E(R) is bounded,
this relation leads to a contradiction if we let n → ∞, thus proving the assertion.

Suppose now that (ii) holds, and set d(a, b) = ||a − b||. By contradiction, if
diam(E(ε)) � 0 as ε ↓ 0, then (as in the first part) there exists α > 0, εn ↓ 0 and
an ∈ E(εn) such that ||an − ā|| ≥ α. Let

M := sup{f (a, ā), a ∈ D, ||a − ā|| ≥ α}. (5.6)

From the forcing pseudo-monotonicity of f , we easily get that M < 0. Indeed,
since ā is a solution, we obtain for every a ∈ D with ||a − ā|| ≥ α that

f (a, ā) ≤ −c(||a − ā||) ≤ −c(α)

showing that M ≤ −c(α) < 0. Since an ∈ E(εn), f (an, ā) ≥ −εn||an − ā||, for
every n. Taking into account the assumption of concavity of f (·, b) and (5.6),
the following chain of inequalities holds:

−εnα ≤ α

||an − ā||f (an, ā)

= α

||an − ā||f (an, ā) +
(

1 − α

||an − ā||
)

f (ā, ā)

≤ f

(
α

||an − ā||an + (1 − α

||an − ā|| )ā, ā

)
≤ M.

This is a contradiction, since M < 0 and εn ↓ 0.

The next result gives alternative sufficient conditions for Tvi-well-posedness.

Theorem 5.3. Assume that f is upper semicontinuous in its first variable and
E(ε) is compact for some ε > 0. If (EP) has a unique solution, then

diam(E(ε)) → 0, ε ↓ 0.

Proof. Let ā be the solution of (EP). By contradiction, suppose that
diam(E(ε)) � 0 if ε ↓ 0. Then, there exists α > 0, εn ↓ 0 and an ∈ E(εn)

such that d(an, ā) ≥ α. From the assumptions, there exists n0 ∈ N such that
E(εn) is compact for every n ≥ n0. Since an ∈ E(εn) ⊆ E(εn0), taking, if
necessary, a subsequence, we get that an → a∗ �= ā, as d(ā, a∗) ≥ α. Let us
show that a∗ is a solution of (EP), a contradiction. Indeed, fix b ∈ D; from
f (an, b) ≥ −εnd(an, b) and the boundedness of {an}, there exists Mb > 0 such
that

f (an, b) ≥ −εnMb, ∀n ≥ n0.

In particular,

lim supf (an, b) ≥ 0.

From the upper semicontinuity of f (·, b) we get that a∗ is a solution.



138 Equilibrium Problems and Applications

In case D is a finite dimensional space, a similar proof as before provides
the following statement:

Corollary 5.1. Let D = R
n. Assume that f is upper semicontinuous in its first

variable and E(ε) bounded for some ε > 0. If (EP) has a unique solution, then

diam(E(ε)) → 0, ε ↓ 0.

5.2.3 Relationship Between the Two Kinds of Well-Posedness

Once we introduced two kinds of well-posedness for (EP), it is natural to ask
whether and under which conditions there is a relationship between these no-
tions. It is not difficult to check that, in general, the two concepts are different,
in the sense that there is no relationship between them. To see this, let us
first observe that the problem given in Example 5.1 is Topt-well-posed but not
Tvi-well-posed, since E(ε) is unbounded for every ε > 0. On the other hand, the
following example provides an (EP) that is Tvi-well-posed but not Topt-well-
posed.

Example 5.2. Let f : R×R→R given by

f (a, b) :=
⎧⎨
⎩− |a|b2

(a2+1)(b2+1)
, if a �= b,

0, if a = b.

It is clear that the only solution of (EP) is ā = 0. Also,

g(a) = inf
b∈Rf (a, b) = inf

b∈R\{a}−
|a|b2

(a2 + 1)(b2 + 1)

= − sup
b∈R\{a}

|a|b2

(a2 + 1)(b2 + 1)
= − |a|

a2 + 1
.

Take the sequence an = n. Since limn→+∞ g(n) = 0, we have that (EP) is not
Topt-well-posed. On the other hand, it is easy to see that

E(ε) = {a ∈ R : f (a, b) ≥ −ε|b − a|, ∀b ∈R} = {0}
for every ε > 0. Indeed, fix ε > 0. Then 0 ∈ E(ε) is trivial, and suppose that for
some a �= 0 one has a ∈ E(ε). The latter implies that

− |a|b2

(a2 + 1)(b2 + 1)
≥ −ε|b − a|, ∀b ∈ R \ {a}.

Letting b → a in this relation, we obtain

0 > − |a|3
(a2 + 1)2

≥ 0,

a contradiction. Thus, diam(E(ε)) = 0 and such, this (EP) is Tvi-well-posed.
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Despite on the negative fact underlined above, it is desirable to find a rela-
tionship between the two well-posedness notions. To this end, we should find
a link between the sets ε − argmin(EP) and E(ε). The next result provides an
inclusion that turns out to be useful for our aim. An analogous property holds
for optimization problems (see [68], Ch. 2, Sec. 4). First of all, we need the fol-
lowing lemma, that was proved in Theorem 2 in [32] in the vector-valued case.
We say that f satisfies the triangle inequality (TI), if

f (a, b) ≤ f (a, c) + f (b, c), ∀a, b, c ∈ D.

Lemma 5.2. Let a0 ∈ ε − argmin(EP). Assume that f satisfies condition (TI)
and it is lower bounded and lower semicontinuous with respect to its second
variable. Let λ > 0. Then there exists ā ∈ D such that

(i) f (ā, a0) ≥ 0;
(ii) d(ā, a0) ≤ λ;

(iii) f (ā, a) + (ε/λ)d(ā, a) > 0, ∀a �= ā.

In the sequel, for every A ⊆ D, we denote by εA the set

εA = {a′ ∈ D : d(a′,A) ≤ ε},
where

d(a′,A) = inf{d(a′, a) : a ∈ A}.
Theorem 5.4. Assume that f satisfies condition (TI) and is lower bounded and
lower semicontinuous with respect to its second variable. Then for every ε > 0
one has

ε2 − argmin(EP) ⊆ εE(ε).

Proof. Let a ∈ ε2 − argmin(EP). From Lemma 5.2, taking λ = ε, there exists
ā ∈ D such that f (ā, b) ≥ −εd(ā, b), for every b ∈ D, i.e., ā ∈ E(ε). From (ii)
in Lemma 5.2, d(ā, a) ≤ ε. In particular, d(E(ε), a) ≤ ε. Since a is arbitrary in
ε2 − argmin(EP), the proof is complete.

Combining Theorem 5.1, Proposition 5.2, and Theorem 5.4, a first relation
between Topt-well-posedness and Tvi-well-posedness can be derived.

Corollary 5.2. Assume that f satisfies the following assumptions:

(i) (TI) holds;
(ii) f is lower bounded and lower semicontinuous with respect to its second

variable;
(iii) f is upper semicontinuous with respect to its first variable;
(iv) there exists b̂ such that f (·, b̂) is upper bounded.

Then

Tvi-well-posedness =⇒ Topt-well-posedness.
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5.2.4 Hadamard Well-Posedness

In this subsection we investigate the question whether a unified approach can
be given the two (different) well-posedness concepts introduced in the previous
subsections. To this aim we deal with a parametric form of an equilibrium prob-
lem and a related well-posedness, which it turns to be a common extension of
both Topt- and Tvi-well-posedness. Let f : D × D ×U → R, where U ⊂ E, and
D, E are metric spaces. For a given p ∈ U consider the following equilibrium
problem (EP)p: find ā ∈ D such that

f (ā, b,p) ≥ 0, ∀b ∈ D.

Denote by F(p) the solutions of (EP)p.
Assuming existence and uniqueness of the solution of (EP)p0 , with p0 ∈ U ,

we are interested in the investigation of continuous dependence of the solutions
with respect to the data of the problem, i.e., the so-called Hadamard well-
posedness.

Definition 5.7. (see, for a comparison, [172]) (EP)p is said to be Hadamard
well-posed at p0 ∈ U if

(i) F(p0) = {ā},
(ii) for any pn → p0, and any an ∈ F(pn), {an} converges to ā.

If E = [0,+∞) and f0 : D × D → R with f0(a, a) = 0 for every a ∈ D,
consider the following expressions for the function f :

(i) f (a, b,p) = f0(a, b) + p,
(ii) f (a, b,p) = f0(a, b) + p d(a, b).

In the first case, F(p) = p − argmin(EP), while in the second one,
F(p) = E(p), where (EP) is defined by f0. This observation suggests that
within the above framework Hadamard well-posedness reduces to Topt-well-
posedness in case (i), and to Tvi-well-posedness in case (ii), if we take p0 = 0.
Indeed, assume that the representation (i) holds and suppose that (EP)p is
Hadamard well-posed at 0. Let {an} be a sequence in D such that

g0(an) = inf
b∈D

f0(an, b) → 0.

Choose pn = −g0(an) + 1/n > 0 (n ≥ 1). Clearly pn → 0. Since by the triv-
ial inequality g0(an) ≥ −pn for every n ≥ 1 we obtain that an ∈ F(pn), thus
an → ā, the unique solution of (EP). Hence (EP) is Topt-well-posed.

Before proving the assertion concerning Tvi-well-posedness, let us ob-
serve that the Hadamard well-posedness (in the general case) implies that
diam(F (p)) → 0 as p → p0. Indeed, assume, by contradiction, that
diam(F (pn)) ≥ 2α > 0 for a suitable sequence pn → p0. Consider two se-
quences {an} and {bn} in F(pn) such that d(an, bn) ≥ α. From the Hadamard
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well-posedness and the triangular inequality, we get

α ≤ d(an, bn) ≤ d(an, ā) + d(bn, ā) → 0 n → ∞,

a contradiction.
Now supposing that the representation (ii) holds, we obtain by the Hadamard

well-posedness that diamE(p) → 0 as p → 0, therefore (EP) is Tvi-well-posed.
Returning to problem (EP)p, it is interesting to remark that, in general,

diam(F (p)) → 0 as p → p0 does not imply that this problem is Hadamard
well-posed, as the following example shows:

Example 5.3. Let D = E := R, U := [0,1] ⊂ R and h : D × U → R given by

h(a,p) =

⎧⎪⎨
⎪⎩

(a − 1)2 if p = 0,

0 if p �= 0 and 0 < a < p,

1 if p �= 0 and a ≤ 0 or a ≥ p.

Define the function f : D × D × U → R by f (a, b,p) := h(b,p) − h(a,p).
Then (for p0 := 0), we get F(0) = {1} and F(p) = (0,p) for p > 0. It is clear
that the associated (EP)p is not Hadamard well-posed.

It is not surprising that the equilibrium problem in the example above fails
to be Hadamard well-posed, since h(·,p) and h(·,0) have no relationships at
all; indeed, in this case, the set F(p) (p > 0) is far from F(0) = {1}. To give
positive results of Hadamard well-posedness, a reasonable approach requires
some continuity assumptions on the function f .

Proposition 5.4. Assume that D is compact and F(p0) = {ā}. If f (·, b, ·) is
upper semicontinuous at (a,p0) for every a, b ∈ D, then (EP)p is Hadamard
well-posed at p0.

Proof. By contradiction, assume that there exists {pn} such that pn�0 and
an ∈ F(pn) such that d(an, ā) > α > 0 for some subsequence. Since D is
compact, without loss of generality, we can suppose that an → a∗. By upper
semicontinuity, a∗ is in F(p0). Since a∗ �= ā we get a contradiction.

By means of the representations given after Definition 5.7, the above re-
sult provides the following sufficient condition for both Topt- and Tvi-well-
posedness (compare also with Theorem 5.1 and Theorem 5.3).

Corollary 5.3. Let D be a compact subset of a complete metric space, and
let f0 : D × D → R with f0(a, a) = 0 for every a ∈ D, such that f0(·, b) is
upper semicontinuous for every b ∈ D. If the (EP) associated to f0 has a unique
solution, then this problem is both Topt- and Tvi-well-posed.

Proof. Let E = [0,+∞) and define the function f : D × D × E → R accord-
ing to (i) or (ii) described after Definition 5.7. In both cases f (·, b, ·) is upper
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semicontinuous at (a,0) for every a, b ∈ D. Then, by Proposition 5.4, (EP)p is
Hadamard well-posed at p0 = 0 and taking into account the observations after
Definition 5.7 it follows that the (EP) associated to f0 is both Topt- and Tvi-well-
posed.

5.3 WELL-POSED VECTOR EQUILIBRIUM PROBLEMS

In the previous section we dealt with two specific well-posedness notions con-
cerning scalar equilibrium problems (EP). This idea will be exploited to in-
troduce suitable well-posedness concepts for the (strong) vector equilibrium
problem (SVEP). Let us first fix our framework and recall the problem to be
tackled.

Let X and Y be topological vector spaces with countable local bases, and K

be a closed convex cone in Y with nonempty interior. Given f : D × D → Y ,
with D ⊆ X and f (x, x) = 0, for all x ∈ D, we recall that the strong vector
equilibrium problem, denoted by (SVEP), consists in finding an element x ∈ D

such that

f (x, y) /∈ −K0, ∀y ∈ D, (SVEP)

where K0 denotes the set K0 = K \ {0}. We denote by S the solution set and we
will suppose in the sequel that S is nonempty.

It is well known that vector equilibrium problems are natural extensions
of several problems of practical interest like vector optimization and vector
variational inequality problems. Several authors introduced and studied differ-
ent well-posedness concepts regarding vector optimization problems and vec-
tor variational inequalities (see, for instance, [26], [127], [128], [59] and the
references therein). Our purpose is to assign reasonable definitions of well-
posedness to (SVEP) that recover some previous existing concepts given in [26],
[127], [128]. To this aim, in the next sections we present two kinds of well-
posedness related to (SVEP), both inspired from the corresponding notions de-
fined for vector optimization problems. The idea for the first originates from the
papers of Miglierina and Molho [127], and Miglierina, Molho, and Rocca [128]
respectively, which will be called M-well-posedness, and for the other from the
paper of Bednarczuk [26], called therefore B-well-posedness.

5.3.1 M-Well-Posedness of Vector Equilibrium Problems

In this subsection we will discuss the first notion of well-posedness assigned to
(SVEP). Recall that the scalar equilibrium problem (EP) is a particular instance
of (SVEP) with Y =R and K = [0,+∞). According to Lemma 5.1 (EP) admits
solutions if and only if maxa∈D g(a) = 0, where g : D → [−∞,+∞) is the gap
function defined in (5.3).
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We start our analysis following a similar approach as in Section 5.2. To this
aim, we introduce the set-valued map φ : D → 2Y given by

φ(x) = min
K

(f (x,D)) (5.7)

(see also [16]), where for any A ⊆ Y , the (possibly empty) set of minimal ele-
ments is defined as follows:

min
K

(A) = {a′ ∈ A : (A − a′) ∩ (−K0) = ∅}.

The map φ generalizes the definition of the function g; in particular, the solu-
tions can be characterized in terms of φ since x ∈ S if and only if 0 ∈ φ(x).
Through the map φ, we can define maximizing sequences and approximate
solutions, that, as it is well-known, are key concepts in the investigation of well-
posedness.

In the next proposition some properties of φ are pointed out; in particular,
assuming that the solution set is nonempty, we obtain that dom(φ) �= ∅.

Proposition 5.5. The map φ satisfies the relations:

(i) φ(x) ∩ K0 = ∅, for all x ∈ D;
(ii) x ∈ S ⇐⇒ 0 ∈ φ(x);

(iii) x ∈ S ⇐⇒ φ(x) ∩ K �= ∅.

Proof. (i) Assume that for some x′ ∈ D, φ(x′) ∩ K0 �= ∅. Then there ex-
ists y′ ∈ K0 such that y′ ∈ minK f (x′,D), that is equivalent to say that
(f (x′,D)−y′)∩ (−K0) = ∅. Since 0 ∈ f (x′,D), we get that −y′ ∩ (−K0) = ∅,
a contradiction.

(ii) indeed, taking into account that 0 ∈ f (x,D) for every x ∈ D,

x ∈ S ⇐⇒ f (x, y) /∈ (−K0),∀y ∈ D ⇐⇒ f (x,D) ∩ (−K) = {0};
this is equivalent to say that 0 ∈ minK f (x,D) = φ(x).

(iii) trivial, by (i) and (ii).

The first notion of well-posedness associated to (SVEP) generalizes the def-
inition of Topt-well-posedness for (EP) discussed in Section 5.2. Therefore, the
idea leading to this concept goes through the property related to maximizing
sequences.

In the sequel, we shall denote by VX(0) a neighborhood base of the origin in
the topological vector space X. The same notation will be used for other spaces.

Definition 5.8. A sequence {xn} ⊂ D is said to be a maximizing sequence for φ

if for every VY ∈ VY (0), there exists n0 ∈N such that

φ(xn) ∩ VY �= ∅, ∀n ≥ n0.
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Definition 5.8 is related to Definition 4.1 in [127] in case of vector optimiza-
tion, where An is a singleton. Indeed, the following proposition holds:

Proposition 5.6. If f (x, y) = F(y)−F(x), then {xn} is maximizing if and only
if

F(xn)
H
⇀ min

K
F(D),

i.e., {xn} is a minimizing sequence for the vector optimization problem, accord-
ing to [127].

Proof. Since Y is a topological vector space, we can always choose a base of
radial, balanced neighborhoods VY (0) of 0 (see [3]). In particular, if z ∈ VY ,
then −z ∈ VY .

=⇒ Fix VY ; from Definition 5.8, there exists n0 ∈ N such that, for n ≥ n0,

φ(xn) ∩ VY = (min
K

F(D) − F(xn)) ∩ VY �= ∅,

that is, there exists y ∈ minK F(D) such that F(xn) ∈ y + VY , if n ≥ n0.
⇐= Take an arbitrary VY ; for n ≥ n0, F(xn) ∈ minK F(D) + VY , that is

there exists y ∈ minK F(D) such that y − F(xn) ∈ VY , thereby proving that
φ(xn) ∩ VY �= ∅.

The next definition reproduces, in the vector setting, the classical notion of
Tykhonov well-posedness given in metric spaces (see, for instance, [128], Defi-
nition 3.7), and it generalizes the definition of Topt-well-posedness given in [34].

Concluding this subsection, we are now in the position to introduce the
first notion of well-posedness for vector equilibrium problems, the so-called M-
well-posedness, which later will be explored and compared with another related
concept.

Definition 5.9. We say that the vector equilibrium problem (SVEP) is M-well-
posed if

(i) there exists at least one solution, i.e., S �= ∅;
(ii) for every maximizing sequence, and for every VX ∈ VX(0), there exists n0

such that xn ∈ S + VX, for every n ≥ n0.

5.3.2 B-Well-Posedness of Vector Equilibrium Problems

Another notion of well-posedness can be given in terms of regularity of a suit-
able approximate solution map. This approach, proposed by Ewa Bednarczuk
in [26] for vector optimization problems, has been already exploited by several
authors (see, for instance, [127], [128], and the references therein).

In [34] the authors introduced and compared different notions of approx-
imate solutions in the scalar case. One of these is given via the notion of
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ε − argmin(EP) points, i.e., the set of points x ∈ D such that f (x, y) ≥ −ε,
for every y ∈ D.

In the sequel, we extend the definition of ε−argmin(EP) to the vector-valued
case.

Definition 5.10. (see [33]) Given ε ∈ K , the set

S(ε) = {x ∈ D : φ(x) ∩ (K − ε) �= ∅}
is called the ε-approximate solution set of (SVEP).

Notice that S(0) = S, by (iii) in Proposition 5.5.

Remark 5.1. The definition above is also related to the notion of ε-minimal
solutions

Q(ε) = ∪y∈minK F(D){x ∈ D : F(x) ∈ y + ε − K},
introduced in [26] (see also [127]). Indeed, in case of vector optimization prob-
lems, where f (x, y) = F(y) − F(x), one trivially shows that S(ε) = Q(ε): for
every x ∈ D, φ(x) = minK F(D) − F(x), and

x ∈ S(ε) ⇐⇒ ∃y ∈ min
K

F(D) : y − F(x) ∈ K − ε

⇐⇒ ∃y ∈ min
K

F(D) : F(x) ∈ y + ε − K

⇐⇒ x ∈ ∪y∈minK F(D){x′ ∈ D : F(x′) ∈ y + ε − K}
⇐⇒ x ∈ Q(ε).

Now we introduce the second concept of well-posedness for vector equilib-
rium problems. The next definition assumes some continuity of the map S(·),
namely its upper Hausdorff continuity. Let us recall that a map T : Z → 2W ,
with Z, W topological spaces, is said to be upper semicontinuous at z0 if for
every neighborhood U of T (z0), there exists a neighborhood V of z0 such that

T (z) ⊆ U, ∀z ∈ V

(see [23]). In case W is also a vector space, the notion above can be weak-
ened by requiring that the arbitrary neighborhood of T (z0) is of the form
T (z0) + VW , where VW ∈ VW(0). In this case we say that the map is upper
Hausdorff continuous.

Definition 5.11. We say that the vector equilibrium problem (SVEP) is B-well-
posed if

(i) there exists at least one solution, i.e., S �= ∅;
(ii) the map S(·) : K → 2X is upper Hausdorff continuous at ε = 0, i.e., for

every VX ∈ VX(0) there exists VY ∈ VY (0) such that S(ε) ⊂ S + VX for
every ε ∈ VY ∩ K .
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We would like to point out that the stronger assumption of upper semicon-
tinuity of S(·) appears to be too restrictive, because, in this case, well-behaving
problems would not be B-well-posed (see Example 3.1 in [127]).

5.3.3 Relationship Between M- and B-Well-Posedness

This subsection is devoted to the comparison between the two concepts of well-
posedness introduced above for vector equilibrium problems.

It turns out that B-well-posedness always implies M-well-posedness, but the
converse is not true in general. However, we find a suitable condition under
which the converse also holds.

The next proposition extends a similar result in [127].

Proposition 5.7. Any B-well-posed vector equilibrium problem is M-well-
posed.

Proof. By contradiction, suppose that there exists a maximizing sequence {x∗
n}

and a neighborhood V ∗
X ∈ VX(0) such that

x∗
n /∈ S + V ∗

X for infinitely many n’-s. (5.8)

Let εn ∈ ´
K such that εn → 0. Then, for every n ∈ N, there exists Vn ∈ VY (0)

such that Vn ⊆ K − εn. Since {x∗
n} is maximizing, for every n ∈ N there exists

mn ∈ N such that, if m ≥ mn,

φ(x∗
m) ∩ Vn �= ∅;

in particular, φ(x∗
m) ∩ (K − εn) �= ∅, i.e., x∗

m ∈ S(εn), for all m ≥ mn. From the
B-well-posedness assumption, there exists n∗ ∈N such that, for n ≥ n∗,

S(εn) ⊆ S + V ∗
X,

a contradiction.

The converse does not hold, even in the particular case of vector optimiza-
tion, unless some assumptions are added. Indeed, in [127], an example is pro-
vided showing that M-well-posedness does not imply B-well-posedness.

Here we reproduce an example given in [33] for those vector equilibrium
problems, that cannot be reduced to an optimization problem. This also shows
that B-well-posedness is stronger than M-well-posedness.

Example 5.4. Let K = R
2+ and f : [0,+∞) × [0,+∞) → R

2 be given by the
following rule:

• For x = 0 put f (x, y) = (0,0), ∀y ≥ 0.
• For x > 0 let

f (x, y) =
{

(y − x,0), 0 ≤ y < 2x

(x,− 4x

y2 ), y ≥ 2x.
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Obviously f (x, x) = (0,0) for every x ≥ 0. It is easy to check that the solu-
tion set of the associated vector (SVEP) is S = {0}. Let us first show that (SVEP)
is M-well-posed. To do this, we shall evaluate the set-valued mapping φ. We
have

φ(x) =
{{(0,0)}, x = 0

{(−x,0), (x,− 1
x
)}, x > 0.

Let {xn} be an arbitrary maximizing sequence. Then, by definition, we have
that {xn} → 0 as n → +∞, which shows that our (SVEP) is M-well-posed.

Now let us prove that (SVEP) is not B-well-posed. Take for this the neigh-
borhood V ∗

X of 0 such that V ∗
X ∪ D = [0,1/2), and the sequences εn = (0, 1

n
),

xn = n for every n ≥ 1. Then obviously xn ∈ S(εn), but xn /∈ S + V ∗
X = V ∗

X for
every n ≥ 1, showing that (SVEP) is not B-well-posed.

Now let us give a sufficient condition that enables us to prove the converse
implication.

Proposition 5.8. Assume that the vector equilibrium problem is M-well-posed
and for every neighborhood of the origin VY there exists a neighborhood of the
origin ṼY such that

φ(D \ cl(S)) ∩ (K + ṼY ) ⊆ VY . (5.9)

Then, the problem is B-well-posed.

Proof. Suppose, by contradiction, that there exist a neighborhood V ∗
X of the

origin, a sequence {εn} ⊂ K , εn → 0 and xn ∈ S(εn) such that

xn /∈ S + V ∗
X, ∀n ∈N;

besides, this implies that xn /∈ cl(S). If {xn} is a maximizing sequence, the con-
tradiction is trivial by M-well-posedness. Otherwise, there exist a neighborhood
V ∗

Y of the origin of Y and a subsequence {xnk
} of {xn} such that

φ(xnk
) ∩ V ∗

Y = ∅, ∀k ∈N.

Since xnk
∈ S(εnk

), we know that

φ(xnk
) ∩ (K − εnk

) �= ∅.

Let Ṽ ∗
Y be the neighborhood related to V ∗

Y in (5.9). Then, for k large enough,
−εnk

∈ Ṽ ∗
Y . Take ynk

∈ φ(xnk
)∩ (K − εnk

). We have that ynk
∈ K + Ṽ ∗

Y , which,
together with (5.9), leads to the contradiction ynk

∈ V ∗
Y . This completes the

proof.
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5.3.4 Convexity and Well-Posedness

It is well known that both the assumptions of convexity and monotonicity to-
gether with their generalizations are strictly related to many results concerning
equilibrium problems. In this section we discuss the role of these conditions in
order to single out classes of well-posed vector equilibrium problems.

The following result provides a sufficient condition for M-well-posedness
in the framework of concave vector functions. Let us recall that a function
h : D ⊆ X → Y , with D convex is said to be K-concave if

λh(x) + (1 − λ)h(y) ∈ h(λx + (1 − λ)y) − K,

for every x, y ∈ D, and for every λ ∈ [0,1].
Theorem 5.5. Let X be finite dimensional (X =R

n), D ⊆ X be a closed convex
set, and f : D × D → Y such that

(i) the solution set S of (SVEP) is nonempty and bounded;
(ii) the map φ : D → 2Y is upper Hausdorff continuous with closed values;
(iii) f (x, z) �= 0 whenever x ∈ S and z ∈ D \ S;
(iv) f is continuous and K-concave with respect to its first variable;
(v) for every maximizing sequence {xn} ⊂ D and every z ∈ D, the sequence

{f (xn, z)} is bounded in Y .

Then the problem (SVEP) is M-well-posed.

Proof. Suppose by contradiction that there exist a maximizing sequence {xn}
and ε > 0 such that

xn /∈ S + εB, (5.10)

for infinitely many n’s, where B denotes the unit open ball in X. Since every
subsequence of a maximizing sequence is still maximizing, we may assume for
simplicity that relation (5.10) holds for every n. Let us distinguish the following
two situations:

1. The sequence {xn} is bounded, hence it has a convergent subsequence
{xnk

} with limit x∗ ∈ D. Assume that x∗ /∈ S, that is 0 /∈ φ(x∗). The set φ(x∗)
is closed, nonempty, and does not contain 0; in particular, there exists VY such
that (

φ(x∗) + VY

) ∩ VY = ∅. (5.11)

Since {xn} is maximizing, one can choose a sequence yn ∈ φ(xn) with yn → 0.
By the upper Hausdorff continuity of φ at x∗, we have that, definitely,

φ(xn) ⊂ φ(x∗) + VY ,

but this contradicts (5.11).
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2. The sequence {xn} is unbounded. Since S is bounded, we obtain that
S + εB is bounded, thus the set cl(S + εB) is compact. Consider the com-
pact set Q = bd(S + εB) = cl(S + εB) \ ´ (S + εB). For any x ∈ S we have
x + εB ⊆ S + εB, therefore S ⊆ ´

(S + εB), showing that S ∩ Q = ∅. By
the hypothesis, {xn} admits a subsequence (denoted for convenience also by
{xn}) converging in norm to +∞. Let us suppose (without loss of generality)
that xn /∈ cl(S + εB) for every n. Fix an arbitrary x̄ ∈ S and for any n, let
x′
n = λnx̄ + (1 − λn)xn ∈ Q where

λn := sup{λ ∈ [0,1] : λx̄ + (1 − λ)xn /∈ S + εB}.
It is easy to check that λn → 1. Indeed, if not, there exists some δ < 1 such that
λn ≤ δ for infinitely many n’s. Thus we may write

(1 − λn)xn = x′
n − λnx̄,

from which

‖xn‖ ≤ 1

1 − λn

‖x′
n‖ + λn

1 − λn

‖x̄‖ ≤ 1

1 − δ
(‖x′

n‖ + ‖x̄‖),

for infinitely many n’s. But this contradicts the fact that ‖xn‖ → +∞.
The set Q being compact, we can extract from the sequence

{λnx̄ + (1 − λn)xn} a subsequence {λnk
x̄ + (1 − λnk

)xnk
} converging to x′ ∈ Q.

Then by concavity we obtain for every z ∈ D and every k ∈ N:

λnk
f (x̄, z) + (1 − λnk

)f (xnk
, z) ∈ f (λnk

x̄ + (1 − λnk
)xnk

, z) − K. (5.12)

Taking the limit of this relation, by the continuity of f and (v) we obtain

f (x̄, z) ∈ f (x′, z) − K ∀z ∈ D.

Taking z = x′, we get

f (x̄, x′) ∈ −K.

Since x̄ ∈ S, from (iii) the latter implies that x′ ∈ S which contradicts x′ ∈ Q.

A sufficient condition for M-well-posedness of the vector equilibrium prob-
lem can be given more directly in terms of properties of the function f , replacing
the assumption (ii) in Theorem 5.5 with a kind of pseudo-monotonicity of f ,
that reduces to the usual pseudo-monotonicity in the scalar case. Working with
this condition ((ii) in Theorem 5.6 below) might have advantages and disad-
vantages as well. Among its disadvantages we mention that in case of vector
optimization and a pointed cone, it leads to the uniqueness of the minimum.
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However, beside the fact that it is more explicit than condition (ii) of Theo-
rem 5.5, one may observe that it is weaker than the concept of strict pseudo-
monotonicity used in [27], and such, it does not imply that the set S should be a
singleton (as strict pseudo-monotonicity does).

Theorem 5.6. Let X be finite dimensional (X =R
n), D ⊆ X be a closed convex

set, and f : D × D → Y such that

(i) the solution set S of (SVEP) is nonempty and bounded;
(ii) for every x, z ∈ D such that f (x, z) /∈ K we have f (z, x) ∈ −K;
(iii) f (x, z) �= 0 whenever x ∈ S and z ∈ D \ S;
(iv) f is continuous and K-concave with respect to its first variable;
(v) For every maximizing sequence {xn} ⊂ D and every z ∈ D, the sequence

{f (xn, z)} is bounded in Y .

Then the problem (SVEP) is M-well-posed.

Proof. The proof goes as in Theorem 5.5, with a change only in the part 1
(case of bounded sequence): indeed, arguing as in Theorem 5.5, since {xnk

} is
maximizing, one can choose a sequence ynk

∈ φ(xnk
), with ynk

→ 0. By the
definition of φ we obtain

[f (xnk
,D) − ynk

] ∩ (−K) = {0},
or, in other words,

f (xnk
, z) − ynk

/∈ −K0, ∀z ∈ D.

Let x̄ ∈ S be arbitrary. Put z = x̄. By taking the limit in the last relation we
obtain by the continuity of f that

f (x∗, x̄) /∈ −int(K).

This implies by (ii) that f (x̄, x∗) ∈ −K , and since x̄ ∈ S we obtain f (x̄, x∗) = 0.
This contradicts (iii) since by (5.10) x∗ /∈ S.
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Chapter points
• Ekeland’s variational principle is established for scalar and vector equilibrium

problems.
• The variational principle is extended to finite and countable systems of equilibrium

problems.
• Existence of solutions for different kinds of equilibrium problems are obtained via

approximate solutions provided by the Ekeland’s variational principle.
• Results on regularity properties of the diagonal subdifferential operator associated to

an equilibrium problem are obtained.

6.1 THE EKELAND’S VARIATIONAL PRINCIPLE FOR THE
EQUILIBRIUM PROBLEMS

The Ekeland’s variational principle (see, Appendix A) has been widely used
in nonlinear analysis since it entails the existence of approximate solutions
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of a minimization problem for lower semicontinuous functions on a complete
metric space. Since minimization problems are particular cases of equilibrium
problems, one is interested in extending Ekeland’s theorem to the setting of an
equilibrium problem. By providing approximate solutions, it opens the possi-
bility to obtain new existence results for (EP) in the nonconvex setting. In the
next two subsections we deal with Ekeland’s principle for equilibrium prob-
lems: we discuss the scalar case in Subsection 6.1.1, while the vector case in
Subsection 6.1.2.

6.1.1 The Scalar Case

In what follows we find a suitable set of conditions on the functions that do not
involve convexity and lead to an Ekeland’s variational principle for equilibrium
and system of equilibrium problems. Via the existence of approximate solutions,
we are able to show the existence of equilibria on general closed sets. The re-
sults developed in this subsection have been obtained by Bianchi, Kassay, and
Pini [31] in a finite dimensional setting.

Theorem 6.1. Let A be a closed set of a real Banach space and f : A×A → R.
Assume that the following conditions are satisfied:

(a) f (x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f (t, t) = 0, for every t ∈ A;
(c) f (z, x) ≤ f (z, y) + f (y, x), for every x, y, z ∈ A.

Then, for every ε > 0 and for every x0 ∈ A, there exists x̄ ∈ A such that{
f (x0, x̄) + ε‖x0 − x̄‖ ≤ 0

f (x̄, x) + ε‖x̄ − x‖ > 0, ∀x ∈ A, x �= x̄.
(6.1)

Proof. Without loss of generality, we can restrict the proof to the case ε = 1.
Denote by F(x) the set

F(x) := {y ∈ A : f (x, y) + ‖y − x‖ ≤ 0}.
By (a), F(x) is closed, for every x ∈ A; by (b), x ∈ F(x), hence F(x) is
nonempty for every x ∈ A. Assume y ∈ F(x), i.e., f (x, y) + ‖y − x‖ ≤ 0, and
let z ∈ F(y) (i.e., f (y, z) + ‖y − z‖ ≤ 0). Adding both sides of the inequalities,
we get, by (c),

0 ≥ f (x, y) + ‖y − x‖ + f (y, z) + ‖y − z‖ ≥ f (x, z) + ‖z − x‖,
that is, z ∈ F(x). Therefore y ∈ F(x) implies F(y) ⊆F(x).

Define

v(x) := inf
z∈F(x)

f (x, z).
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For every z ∈F(x),

‖x − z‖ ≤ −f (x, z) ≤ sup
z∈F(x)

(−f (x, z)) = − inf
z∈F(x)

f (x, z) = −v(x)

that is,

‖x − z‖ ≤ −v(x), ∀z ∈F(x).

In particular, if x1, x2 ∈ F(x),

‖x1 − x2‖ ≤ ‖x − x1‖ + ‖x − x2‖ ≤ −v(x) − v(x) = −2v(x),

implying that

diam(F(x)) ≤ −2v(x), ∀x ∈ A.

Fix x0 ∈ A; x1 ∈F(x0) exists such that

f (x0, x1) ≤ v(x0) + 2−1.

Denote by x2 any point in F(x1) such that

f (x1, x2) ≤ v(x1) + 2−2.

Proceeding in this way, we define a sequence {xn} of points of A such that
xn+1 ∈ F(xn) and

f (xn, xn+1) ≤ v(xn) + 2−(n+1).

Notice that

v(xn+1) = inf
y∈F(xn+1)

f (xn+1, y) ≥ inf
y∈F(xn)

f (xn+1, y)

≥ inf
y∈F(xn)

(f (xn, y) − f (xn, xn+1))( inf
y∈F(xn)

f (xn, y)) − f (xn, xn+1)

= v(xn) − f (xn, xn+1).

Therefore,

v(xn+1) ≥ v(xn) − f (xn, xn+1),

and

−v(xn) ≤ −f (xn, xn+1) + 2−(n+1) ≤ (v(xn+1) − v(xn)) + 2−(n+1),

that entails

0 ≤ v(xn+1) + 2−(n+1).

It follows that

diam(F(xn)) ≤ −2v(xn) ≤ 2 · 2−n → 0, n → ∞.
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The sets {F(xn)} being closed and F(xn+1) ⊆F(xn), we have that

⋂
n

F(xn) = {x̄}.

Since x̄ ∈F(x0), then

f (x0, x̄) + ‖x̄ − x0‖ ≤ 0.

Moreover, x̄ belongs to all F(xn), and, since F(x̄) ⊆F(xn), for every n, we get
that

F(x̄) = {x̄}.
It follows that x /∈F(x̄) whenever x �= x̄, implying that

f (x̄, x) + ‖x − x̄‖ > 0.

This completes the proof.

Remark 6.1. It is easy to see that any function f (x, y) = g(y) − g(x) trivially
satisfies (c) (actually with equality). One might wonder whether a bifunction f

satisfying all the assumptions of Theorem 6.1 should be of the form g(y)−g(x),
and such reducing the result above to the classical Ekeland’s principle. It is not
the case, as the example below shows: let the function f : R2 → R be defined
by

f (x, y) =
{

e−‖x−y‖ + 1 + g(y) − g(x) x �= y

0 x = y
,

where g is a lower bounded and lower semicontinuous function. Then all the
assumptions of Theorem 6.1 are satisfied, but clearly f cannot be represented
in the above mentioned form.

Next we shall extend the result above for a system of equilibrium prob-
lems. Let m be a positive integer, and I = {1,2, ...,m}. Consider the functions
fi : A × Ai → R, i ∈ I where A = ∏

i∈I Ai , and Ai ⊆ Xi is a closed subset of
the real Banach space Xi . By a system of equilibrium problems we understand
the problem of finding x̄ = (x̄1, ..., x̄m) ∈ A such that

fi(x̄, yi) ≥ 0 ∀i ∈ I, ∀yi ∈ Ai. (SEP)

An element of the set Ai = ∏
j �=i Ai will be represented by xi ; therefore,

x ∈ A can be written as x = (xi, xi) ∈ Ai × Ai . If x ∈ ∏
Xi , the symbol |||x|||

will denote the Tchebiseff norm of x, i.e., |||x||| = maxi ||xi ||i and we shall
consider the Banach space

∏
Xi endowed with this norm.
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Theorem 6.2. Assume that

(a) fi(x, ·) : Ai → R is lower bounded and lower semicontinuous for every
i ∈ I ;

(b) fi(x, xi) = 0 for every i ∈ I and every x = (x1, ..., xm) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi),

and for every i ∈ I .

Then for every ε > 0 and for every x0 = (x0
1 , ..., x0

m) ∈ A there exists
x̄ = (x̄1, ..., x̄m) ∈ A such that for each i ∈ I one has

fi(x
0, x̄i ) + ε‖x0

i − x̄i‖i ≤ 0 (6.2)

and

fi(x̄, xi) + ε‖x̄i − xi‖i > 0, ∀xi ∈ Di, xi �= x̄i . (6.3)

Proof. As before, we restrict the proof to the case ε = 1. Let i ∈ I be arbitrarily
fixed. Denote for every x ∈ A

Fi (x) := {yi ∈ Ai : fi(x, yi) + ‖xi − yi‖i ≤ 0}.
These sets are closed and nonempty (for every x = (x1, ..., xm) ∈ A we have
xi ∈Fi (x)). Define for each x ∈ A

vi(x) := inf
zi∈Fi (x)

fi(x, zi).

In a similar way as in the proof of Theorem 6.1 one can show that
diam(Fi (x)) ≤ −2vi(x) for every x ∈ A and i ∈ I .

Fix now x0 ∈ A and select for each i ∈ I an element x1
i ∈ Fi (x

0) such that

fi(x
0, x1

i ) ≤ vi(x
0) + 2−1.

Put x1 := (x1
1 , ..., x1

m) ∈ A and select for each i ∈ I an element x2
i ∈Fi (x

1) such
that

fi(x
1, x2

i ) ≤ vi(x
1) + 2−2.

Put x2 := (x2
1 , ..., x2

m) ∈ A. Continuing this process we define a sequence {xn}
in A such that xn+1

i ∈Fi (x
n) for each i ∈ I and n ∈ N and

fi(x
n, xn+1

i ) ≤ vi(x
n) + 2−(n+1).

Using a same argument as in the proof of Theorem 6.1 one can show that

diam(Fi (x
n)) ≤ −2vi(x

n) ≤ 2 · 2−n → 0, n → ∞,

for each i ∈ I .
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Now define for each x ∈ A the sets

F(x) := F1(x) × ... ×Fm(x) ⊆ A.

The sets F(x) are closed and using (c) it is immediate to check that for each
y ∈F(x) it follows thatF(y) ⊆F(x). Therefore, we also have F(xn+1) ⊆F(xn)

for each n = 0,1, .... On the other hand, for each y, z ∈F(xn) we have

|||y − z||| = max
i∈I

‖yi − zi‖i ≤ max
i∈I

diamFi (x
n)) → 0,

thus, diam(F(xn)) → 0 as n → ∞. In conclusion we have

∩∞
n=0F(xn) = {x̄}, x̄ ∈ A.

Since x̄ ∈F(x0), i.e., x̄i ∈ Fi (x
0) (i ∈ I ) we obtain

fi(x
0, x̄i) + ‖x0

i − x̄i‖i ≤ 0, ∀i ∈ I,

and so, (6.2) holds. Moreover, x̄ ∈ F(xn) implies F(x̄) ⊆ F(xn) for all
n = 0,1, ..., therefore,

F(x̄) = {x̄}
implying

Fi (x̄) = {x̄i} ∀i ∈ I.

Now for every xi ∈ Ai with xi �= x̄i we have by the previous relation that
xi /∈ Fi (x̄) and so

fi(x̄, xi) + ‖x̄i − xi‖i > 0.

Thus (6.3) holds too, and this completes the proof.

As shown by the literature, the existence results of equilibrium problems
usually require some convexity (or generalized convexity) assumptions on at
least one of the variables of the function involved. Next, using Theorems 6.1
and 6.2, we show the nonemptiness of the solution set of (EP) and (SEP),
without any convexity requirement. To this purpose, we recall the definition of
approximate equilibrium point, for both cases (see [97] and [31]). We start our
analysis with (EP).

Definition 6.1. Given f : A × A → R, and ε > 0, x̄ ∈ A is said to be an
ε-equilibrium point of f if

f (x̄, y) ≥ −ε‖x̄ − y‖, ∀y ∈ A. (6.4)

The ε-equilibrium point is strict, if in (6.1) the inequality is strict for all y �= x̄.
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Notice that the second relation of (6.1) gives the existence of a strict
ε-equilibrium point, for every ε > 0. Moreover, by (b) and (c) of Theorem 6.1 it
follows by the first relation of (6.1) that

f (x̄, x0) ≥ ε‖x̄ − x0‖,
“localizing”, in a certain sense, the position of the x̄.

Theorem 6.1 leads to a set of conditions that are sufficient for the nonempti-
ness of the solution set of (EP).

Proposition 6.1. Let A be a compact (not necessarily convex) subset of a real
Banach space, and f : A × A → R be a function satisfying the assumptions:

(a) f (x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f (t, t) = 0, for every t ∈ A;
(c) f (z, x) ≤ f (z, y) + f (y, x), for every x, y, z ∈ A;
(d) f (·, y) is upper semicontinuous, for every y ∈ A.

Then, the set of solutions of (EP) is nonempty.

Proof. For each n ∈ N, let xn ∈ A a 1/n-equilibrium point (such point exists by
Theorem 6.1), i.e.,

f (xn, y) ≥ −1

n
‖xn − y‖, ∀y ∈ A.

Since A is compact, we can choose a subsequence {xnk
} of {xn} such that

xnk
→ x̄ as n → ∞. Then, by (d),

f (x̄, y) ≥ lim sup
k→∞

(
f (xnk

, y) + 1

nk

‖xnk
− y‖

)
, ∀y ∈ A,

thereby proving that x̄ is a solution of (EP).

Let us now consider the following definition of ε-equilibrium point for sys-
tems of equilibrium problems. As before, the index set I consists on the finite
set {1,2, ...,m}.
Definition 6.2. Let Ai , i ∈ I be subsets of certain real Banach spaces and put
A = ∏

i∈I Ai . Given fi : A × Ai → R, i ∈ I and ε > 0, the point x̄ ∈ A is said
to be an ε-equilibrium point of {f1, f2, ..., fm} if

fi(x̄, yi) ≥ −ε‖x̄i − yi‖i , ∀yi ∈ Ai, ∀i ∈ I.

The following result is an extension of Proposition 6.1, and it can be proved
in a similar way.

Proposition 6.2. Assume that, for every i ∈ I , Ai is compact and
fi : A × Ai → R is a function satisfying the assumptions:
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(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai .

Then, the set of solutions of (SEP) is nonempty.

The study of the existence of solutions of the equilibrium problems on
unbounded domains usually involves the same sufficient assumptions as for
bounded domains together with a coercivity condition. Bianchi and Pini [38]
found coercivity conditions as weak as possible, exploiting the generalized
monotonicity properties of the function f defining the equilibrium problem.

Let A be a closed subset of the Euclidean space X and f : A × A → R be a
given function.

Consider the following coercivity condition (see [38]):

∃r > 0 : ∀x ∈ A \ Kr, ∃y ∈ A, ‖y‖ < ‖x‖ : f (x, y) ≤ 0, (6.5)

where Kr := {x ∈ A : ‖x‖ ≤ r}.
We now show that within the framework of Proposition 6.1 condition (6.5)

guarantees the existence of solutions of (EP) without supposing compactness
of A.

Theorem 6.3. Suppose that

(a) f (x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f (t, t) = 0, for every t ∈ A;
(c) f (z, x) ≤ f (z, y) + f (y, x), for every x, y, z ∈ A;
(d) f (·, y) is upper semicontinuous, for every y ∈ A.

If (6.5) holds, then (EP) admits a solution.

Proof. We may suppose without loss of generality that Kr is nonempty. For
each x ∈ A consider the nonempty set

S(x) := {y ∈ A : ‖y‖ ≤ ‖x‖ : f (x, y) ≤ 0}.
Observe that for every x, y ∈ A, y ∈ S(x) implies S(y) ⊆ S(x). Indeed, for
z ∈ S(y) we have ‖z‖ ≤ ‖y‖ ≤ ‖x‖ and by (c) f (x, z) ≤ f (x, y) + f (y, z) ≤ 0.
On the other hand, since X is an Euclidean space, K‖x‖ is compact, hence by
(a) we obtain that S(x) ⊆ K‖x‖ is a compact set for every x ∈ A. Furthermore,
by Proposition 6.1, there exists an element xr ∈ Kr such that

f (xr , y) ≥ 0, ∀y ∈ Kr. (6.6)

Suppose that there exists x ∈ A with f (xr , x) < 0 and put

a := min
y∈S(x)

‖y‖
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(the minimum is taken since S(x) is nonempty, compact and the norm is contin-
uous). We distinguish two cases.

Case 1: a ≤ r . Let y0 ∈ S(x) such that ‖y0‖ = a ≤ r . Then we have
f (x, y0) ≤ 0. Since f (xr , x) < 0, it follows by (c) that

f (xr , y0) ≤ f (xr , x) + f (x, y0) < 0,

contradicting (6.6).

Case 2: a > r . Let again y0 ∈ S(x) such that ‖y0‖ = a > r . Then, by (6.5) we
can choose an element y1 ∈ A with ‖y1‖ < ‖y0‖ = a such that f (y0, y1) ≤ 0.
Thus, y1 ∈ S(y0) ⊆ S(x) contradicting

‖y1‖ < a = min
y∈S(x)

‖y‖.

Therefore, there is no x ∈ A such that f (xr , x) < 0, i.e., xr is a solution of (EP)
(on A). This completes the proof.

Next we consider (SEP) for noncompact setting. Let us consider the follow-
ing coercivity condition:

∃r > 0 : ∀x ∈ A such that ‖xi‖i > r for some i ∈ I,

∃yi ∈ Ai, ‖yi‖i < ‖xi‖i and fi(x, yi) ≤ 0. (6.7)

We conclude this subsection with the following result which guarantees the
existence of solutions for (SEP).

Theorem 6.4. Suppose that, for every i ∈ I ,

(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai .

If (6.7) holds, then (SEP) admits a solution.

Proof. For each x ∈ AD and every i ∈ I consider the set

Si(x) := {yi ∈ Ai, ‖yi‖i ≤ ‖xi‖i , fi(x, yi) ≤ 0}.
Observe that, by (c), for every x and y = (yi, yi) ∈ A, yi ∈ Si(x) implies
Si(y) ⊆ Si(x). On the other hand, since the set {yi ∈ Ai : ‖yi‖i ≤ r} = Ki(r)

is a compact subset of Ai , by (a) we obtain that Si(x) is a nonempty compact
set for every x ∈ A. Furthermore, by Proposition 6.2, there exists an element
xr ∈ ∏

i Ki(r) (observe, we may suppose that Ki(r) �= ∅ for all i ∈ I ) such that

fi(xr , yi) ≥ 0, ∀yi ∈ Ki(r), ∀i ∈ I. (6.8)
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Suppose that xr is not a solution of (SEP). In this case, there exists j ∈ I and
zj ∈ Aj with fj (xr , zj ) < 0. Let zj ∈ Aj be arbitrary and put z = (zj , zj ) ∈ A.
Define

aj := min
yj ∈Sj (z)

‖yj‖j .

We distinguish two cases.

Case 1: aj ≤ r . Let ȳj (z) ∈ Sj (z) such that ‖ȳj (z)‖j = aj ≤ r . Then we have
fj (z, ȳj (z)) ≤ 0. Since fj (xr , zj ) < 0, it follows by (c) that

fj (xr , ȳj (z)) ≤ f (xr , zj ) + f (z, ȳj (z)) < 0,

contradicting (6.8).

Case 2: aj > r . Let again ȳj (z) ∈ Sj (z) such that ‖ȳj (z)‖j = aj > r . Let
ȳj ∈ Aj be arbitrary and put ȳ(z) = (ȳj , ȳj (z)) ∈ A. Then, by (6.7) we
can choose an element yj ∈ Aj with ‖yj‖j < ‖ȳj (z)‖j = aj such that
fj (ȳ(z), yj ) ≤ 0. Clearly, yj ∈ Sj (ȳ(z)) ⊆ Sj (z), a contradiction since ȳj (z)

has minimal norm in Sj (z). This completes the proof.

6.1.2 The Vector Case

The aim of this subsection is to provide a vector version of Ekeland’s theorem
related to equilibrium problems. We deal with bifunctions defined on complete
metric spaces and with values in locally convex spaces ordered by closed con-
vex cones. To prove this principle, a weak notion of continuity of a vector-valued
function is considered, and some of its properties are presented. Via the vector
Ekeland’s principle, existence results for vector equilibria are proved in both
compact and noncompact domains. The results developed in this subsection
have been obtained by Bianchi, Kassay, and Pini [32].

Let f : X → Y , where (X,d) is a complete metric space and (Y,K) is a
locally convex space ordered by the nontrivial closed convex cone K as follows:

x ≤K y ⇐⇒ y − x ∈ K.

In the vector-valued case there are several possible extensions of the notion of
lower semicontinuity for scalar functions.

Let us recall the following definitions given by Borwein, Penot, and Théra
in [43]. The vector-valued function f is said to be lower semicontinuous at
x0 ∈ X if for each neighborhood V of f (x0) there exists a neighborhood U of x0
such that f (U) ⊂ V + K .

The concept of quasi lower semicontinuity weakens the definition given
above. The function f is said to be quasi lower semicontinuous (cf. [76]) at
x0 ∈ X if for each b ∈ Y such that b /∈ f (x0) + K there exists a neighborhood U
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of x0 in X such that b /∈ f (x) + K , for each x ∈ U . A function f is quasi lower
semicontinuous on X if it is quasi lower semicontinuous at each point of X.

For the sake of completeness we recall the following result (see, for in-
stance, [76]):

Lemma 6.1. The function f is quasi lower semicontinuous on X if and
only if its lower level sets are closed, i.e., for every b ∈ Y , L(f,b) =
{x ∈ X, f (x) ∈ b − K} is closed.

In general, the quasi lower semicontinuity is not preserved by summation
without any additional requirements (see [76], Remark 23). However, it can be
proved that if f,g : X → R

n are quasi lower semicontinuous and lower bounded
(i.e., f (x) ∈ b + K , for some b), then f + g is still quasi lower semicontinu-
ous. One can wonder whether the sum of a quasi lower semicontinuous function
f and a lower semicontinuous function g is still a quasi lower semicontinuous
function. A positive answer is given in [76], Lemma 24, where the additional as-
sumption of monotone bounds property (MBP) is required on the space (Y,K).
Actually, if Y has not the MBP, the answer is negative, even in case of a contin-
uous function g as the following example shows.

Example 6.1. Let Y := R
2 and K := {(x,0) : x ≥ 0}. Then (Y,K) has no MBP,

see [76]. Let f,g : R → R
2 defined by f (t) := (0,0) if t = 0 and (−1,−t)

otherwise, and g(t) := (0, t) for all t . The function f is quasi lower semicon-
tinuous, while g is continuous, but the sum f + g is clearly not quasi lower
semicontinuous at t = 0: take, for instance, b := (− 1

2 ,0).

Taking into account the remarks above, it is interesting to single out classes
of functions that can be added to quasi lower semicontinuous functions without
destroying this property. In this direction, the next result provides a positive
answer on one hand, and will be useful for our purposes on the other hand.

Lemma 6.2. If f : X → Y is quasi lower semicontinuous, g : X → R is lower
semicontinuous, and e ∈ K , then the function f + ge : X → Y is quasi lower
semicontinuous.

Proof. If e = 0Y there is nothing to prove. Assume e �= 0Y , and fix x̄ ∈ X.
Suppose ū := b − g(x̄)e − f (x̄) /∈ K . Then the complementary set KC of K

being open, is a neighborhood of ū, or, in other words, the set KC − ū is a
neighborhood of the origin of Y . As any neighborhood of the origin is an ab-
sorbing set (see, for instance, W. Rudin [157], p. 24), there exists ε > 0 such
that εe ∈ KC − ū, that is

b − g(x̄)e − f (x̄) + εe /∈ K.

Since f is quasi lower semicontinuous, there exists a neighborhood U of x̄ such
that

b − g(x̄)e − f (x) + εe /∈ K, ∀x ∈ U .
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By the lower semicontinuity of g, there exists a neighborhood V of x̄ such that

g(x̄) − ε < g(x), ∀x ∈ V .

This implies that for all x ∈ V there exists a suitable kx ∈ K such that
g(x̄)e − εe − g(x)e = −kx . Therefore, for every x ∈ U ∩ V , we have

b + kx − g(x)e − f (x) /∈ K,

implying that b − g(x)e − f (x) /∈ K .

Denote by K∗ the dual cone of the cone K in the topological dual space Y ∗
(see Section 2.2 in Chapter 2). Let us fix a point e ∈ K \ (−K), and consider a
functional e∗ ∈ K∗ such that e∗(e) = 1. The following result provides a vector-
valued version of the Ekeland’s principle related to the equilibrium problem.

Theorem 6.5. Let (X,d) be a complete metric space. Assume that the function
f : X × X → Y satisfies the following assumptions:

(i) f (t, t) = 0Y for all t ∈ X;
(ii) y → e∗(f (x, y)) is lower bounded for all x ∈ X;
(iii) f (z, y) + f (y, x) ∈ f (z, x) + K for any x, y, z ∈ X;
(iv) y → f (x, y) is quasi lower semicontinuous for all x ∈ X.

Then for every ε > 0 and for every x0 ∈ X there exists x̄ ∈ X such that

(a) f (x0, x̄) + εd(x0, x̄)e ∈ −K;
(b) f (x̄, x) + εd(x̄, x)e /∈ −K , ∀x ∈ X with x �= x̄.

Proof. Without loss of generality, we can restrict the proof to the case ε = 1.
For each x ∈ X consider the set

F(x) = {y ∈ X, f (x, y) + d(x, y)e ∈ −K}.
By (i) and (iv) F(x) is nonempty and closed for every x ∈ X (see Lemma 6.1
and 6.2). Assume y ∈ F(x), i.e.,

f (x, y) + d(x, y)e ∈ −K,

and let z ∈ F(y), i.e.,

f (y, z) + d(y, z)e ∈ −K.

Adding both sides of the inclusions above, and taking into account that −K is a
convex cone, we get

f (x, y) + f (y, z) + (d(x, y) + d(y, z))e ∈ −K.

By (iii) and by the triangle inequality of the distance, we easily get that z ∈ F(x),
therefore y ∈ F(x) implies F(y) ⊆ F(x).
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Let us define the real-valued function v(x) = infz∈F(x) e
∗(f (x, z)). If

z ∈ F(x), then d(x, z)e = −f (x, z) − k, for a suitable k ∈ K . Evaluating e∗ of
both sides, we obtain that d(x, z) ≤ −e∗(f (x, z)). Arguing as in Theorem 6.1,
we get the following chain of inequalities:

d(x, z) ≤ −e∗(f (x, z))

≤ − inf
z∈F(x)

e∗(f (x, z))

= −v(x);
in particular, for every x1, x2 ∈ F(x),

d(x1, x2) ≤ d(x1, x) + d(x, x2) ≤ −2v(x),

showing that diam(F (x)) ≤ −2v(x).
Starting from x0 ∈ X, a sequence {xn} of points of X can be defined such that

xn+1 ∈ F(xn) and e∗(f (xn, xn+1)) ≤ v(xn) + 2−(n+1). Notice that, from (iii), it
follows that e∗(f (z, y)) + e∗(f (y, x)) ≥ e∗(f (z, x)); in particular,

v(xn+1) ≥ inf
y∈F(xn)

e∗(f (xn+1, y)

≥ ( inf
y∈F(xn)

e∗(f (xn, y))) − e∗(f (xn, xn+1))

= v(xn) − e∗(f (xn, xn+1)).

Therefore, like in Theorem 6.1, we obtain that

−v(xn) ≤ −e∗(f (xn, xn+1)) + 2−(n+1) ≤ v(xn+1) − v(xn) + 2−(n+1),

that entails

diam(F (xn)) ≤ −2v(xn) ≤ 2 · 2−n.

This implies that

diam(F (xn)) → 0, n → ∞.

Since the sets F(xn) are closed and F(xn+1) ⊆ F(xn), we obtain from this
that the intersection of the sets F(xn) is a singleton {x̄} and F(x̄) = {x̄}. Since
x̄ ∈ F(x0), we get (a). Moreover, if x �= x̄ then x /∈ F(x̄), and we get (b). This
concludes the proof.

Remark 6.2. Let us point out that condition (ii) of Theorem 6.5 is clearly
weaker than the assumption of lower boundedness of f (x, ·). Indeed, if a func-
tion g : X → Y is lower bounded, then there exists b ∈ Y such that for every
x ∈ X, g(x) ∈ b + K . In particular, e∗(g(x)) ≥ e∗(b), that is e∗(g) is lower
bounded. On the other hand, let us consider the function g :R →R

2 defined by
g(t) = (−t, t). If R2 is ordered by the cone R2+, then it is easy to see that g is not
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lower bounded. But if we take e∗ = (1,1), the real-valued function e∗(g(t)) = 0
is constant, therefore is obviously (lower) bounded.

By Theorem 6.5 one can easily deduce the following variant of Ekeland’s
principle for vector equilibrium problems.

Theorem 6.6. Suppose that the assumptions of Theorem 6.5 hold. Let ε > 0 and
λ > 0 be given and let x0 ∈ X such that

f (x0, y) + εe /∈ −K, ∀y ∈ X. (6.9)

Then there exists x̄ ∈ X such that:

(a’) f (x̄, x0) ∈ K;
(b’) d(x̄, x0) ≤ λ;
(c’) f (x̄, x) + (ε/λ)d(x̄, x)e /∈ −K , ∀x ∈ X,x �= x̄.

Proof. Let x̄ ∈ X be the element provided by Theorem 6.5 with ε/λ instead
of ε. Then we obtain (c’) by property (b) of Theorem 6.5. Also, by property (a)
we have

f (x0, x̄) + ε

λ
d(x0, x̄)e ∈ −K. (6.10)

By assumption (i) and (iii) it follows that f (x, y) + f (y, x) ∈ K; in par-
ticular, f (x0, x̄) = −f (x̄, x0) + k0 (k0 ∈ K) and this, together with (6.10) im-
plies (a’). Moreover, condition (a) of Theorem 6.5 gives

f (x0, x̄) + ε

λ
d(x0, x̄)e = −k1, k1 ∈ K. (6.11)

Taking into account (6.9), from (6.11) we get

f (x0, x̄) + εe = − ε

λ
d(x0, x̄)e + εe − k1

= − ε

λ
(d(x0, x̄) − λ)e − k1 /∈ −K;

(6.12)

this implies that d(x0, x̄) − λ ≤ 0, i.e., d(x0, x̄) ≤ λ. This completes the proof.

Remark 6.3. If we assume that the cone K is pointed (i.e., K ∩ (−K) = {0}),
then we can weaken condition (6.9) as follows:

f (x0, y) + εe /∈ −K \ {0}, ∀y ∈ X. (6.13)

Indeed, from (6.13), in (6.12) we can argue that

− ε

λ
(d(x0, x̄) − λ)e − k1 /∈ −K \ {0}.
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If d(x0, x̄) − λ > 0, then we get that the left-hand side is in −K , and so it must
be 0, but this contradicts the pointedness of K . Within this setting we could also
recover Theorem 8 in [75], where we put f (x, y) := g(y) − g(x).

In the following proposition we show that a suitable assumption on the func-
tion f , which seemingly is quite natural, guarantees the existence of an element
x0 ∈ X satisfying (6.9).

Proposition 6.3. Suppose that assumption (iii) of Theorem 6.5 holds and

(v) there exists an element ŷ ∈ X such that the function x �→ e∗(f (x, ŷ)) is
upper bounded.

Then there exists an element x0 ∈ X satisfying (6.9).

Proof. By (v) we have that supz∈X e∗(f (z, ŷ)) < ∞. Let ε > 0 be arbitrary and
consider an element x0 ∈ X such that

e∗(f (x0, ŷ)) > sup
z∈X

e∗(f (z, ŷ)) − ε.

This implies that

e∗(f (x0, ŷ)) − e∗(f (z, ŷ)) + ε > 0, ∀z ∈ X,

and this, together with (iii), gives that

e∗(f (x0, z)) + ε > 0, ∀z ∈ X. (6.14)

Let us show that the inequality above implies (6.9). Indeed, assume by contra-
diction that there exists ȳ and k0 ∈ K such that

f (x0, ȳ) = −εe − k0.

Applying e∗ to both sides, we get

e∗(f (x0, ȳ)) = −ε − e∗(k0) ≤ −ε,

that contradicts (6.14).

One might wonder whether the results of Theorem 6.5 can be obtained by a
direct application of Theorem 2.1 in [31] (the scalar Ekeland’s principle) to the
real function e∗(f ). Next we show that this is not the case. In the same time we
compare the assumptions of Theorem 6.5 and Theorem 2.1 in [31].

Let us consider the following assumptions:

(i∗) e∗(f (t, t)) = 0;
(ii∗) y → e∗(f (x, y)) is lower bounded for every x ∈ X;

(iii∗) e∗(f (z, x)) ≤ e∗(f (z, y)) + e∗(f (y, x));
(iv∗) y → e∗(f (x, y)) is lower semicontinuous for every x ∈ X.
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From Theorem 2.1 in [31] they imply that for every ε > 0 and for every
x0 ∈ X there exists x̄ ∈ X such that

(a∗) e∗(f (x0, x̄)) + εd(x0, x̄) ≤ 0;
(b∗) e∗(f (x̄, x)) + εd(x̄, x) > 0 for every x �= x̄.

Notice that (i∗) is trivially weaker than (i) in Theorem 6.5. To show that (iii∗)
is weaker than the corresponding (iii), let us provide an example. Consider the
function f :R2 → R defined by

f (x, y) =
{

e|x−y| + 1 + g(x) − g(y) x �= y

0 x = y
,

where g is any real-valued function. Assume that Y = R
2 and K = R

2+. Take
v = (−1,2) and e∗ = (1,1), and define F : R2 → R

2 as F(x, y) = f (x, y)v.
The function e∗(F ) = f satisfies (iii∗) (see [31], Remark 2.1). On the other
hand, F does not satisfy (iii), since

F(x, y) + F(y, z) − F(x, z) ∈ K ⇐⇒ (f (x, y) + f (y, z) − f (x, z))v ∈ K,

and the second inclusion in never satisfied unless f (x, y) + f (y, z) −
f (x, z) = 0.

Condition (iv∗) is not comparable with (iv). Indeed, take, for instance, the
function f : [0,1] × [0,1] → R

2, defined as f (x, y) = F(y) − F(x), where

F(t) =
{

(−1,1/|t |) t �= 0

(0,0) t = 0.

The function F is quasi lower semicontinuous if the cone K is the Paretian cone;
the same is true for the function f (x, ·), for every x ∈ [0,1]. Take e∗ = (1,0).
Then e∗(f (0, y)) = −1 if y �= 0, while e∗(f (0,0)) = 0. Therefore the function
e∗(f (x, ·)) is no longer lower semicontinuous.

The converse can be easily showed. Indeed, let us consider the space Y =R
2

ordered by the Paretian cone, and the function f : R → R
2 defined as follows:

f (0) = (0,0), f (t) = (−1,0) if t �= 0. This function is not quasi lower semicon-
tinuous. Take e∗ = (0,1). The function e∗(f ) : R → R is constant, and equal
to 0. In particular, it is continuous.

It is noteworthy that (a∗) and (b∗) entail some interesting results for the
vector Ekeland’s principle applied to the function f . Since e∗ ∈ K∗, by triv-
ial thoughts we know that

e∗(k) ≤ 0 =⇒ k /∈ int(K), e∗(k) > 0 =⇒ k /∈ −K.

Therefore, (a∗) and (b∗) give

(a”) f (x0, x̄) + εd(x0, x̄)e /∈ int(K);
(b”) f (x̄, x) + εd(x̄, x)e /∈ −K , ∀x �= x̄.
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While condition (b”) coincides with the corresponding (b), condition (a”) is
clearly weaker than (a).

As in the subsection above, now we turn to show the nonemptiness of the
solution set of a (this time) weak vector equilibrium problem without any con-
vexity requirements on the set X and the function f , going through the existence
of approximate solutions. For this purpose we use Theorem 6.5.

Let (X,d) be a complete metric space, Y a locally convex space ordered by
the closed, convex cone K such that int(K) �= ∅, and let f : X × X → Y be a
given function. Recall that by a weak vector equilibrium problem (see Chap-
ter 4) we understand the problem of finding x̄ ∈ X such that

f (x̄, y) /∈ −int(K), ∀y ∈ X (WVEP)

A point x̄ satisfying (WVEP) is called a vector equilibrium point. At the same
time, we will consider a perturbation of (WVEP) in a fixed direction e. We define
an ε-weak vector equilibrium point in the direction e as a point x̄ε ∈ X such that

f (x̄ε, y) + εd(x̄ε, y)e /∈ −K, ∀y ∈ X, y �= x̄ε. (WVEPε)

First we deal with the case of a compact domain X.

Theorem 6.7. Let (X,d) be a compact complete metric space. Assume that the
function f : X × X → Y satisfies the following assumptions:

(i) f (t, t) = 0Y for all t ∈ X;
(ii) y → e∗(f (x, y)) is lower bounded for all x ∈ X;
(iii) f (z, y) + f (y, x) ∈ f (z, x) + K for any x, y, z ∈ X;
(iv) y → f (x, y) is quasi lower semicontinuous for all x ∈ X;
(v) f (·, y) is upper semicontinuous for every y ∈ X, i.e., for every x0 ∈ X and

every neighborhood V of f (x0, y) there exists a neighborhood U of x0
such that f (x, y) ∈ V − K for all x ∈ U .

Then, the set of solutions of (WVEP) is nonempty.

Proof. Taking ε = 1/n, from Theorem 6.5 (b) we find a sequence {xn} where
xn is a 1/n-weak vector equilibrium point in the direction e, i.e.,

f (xn, y) + 1

n
d(xn, y)e /∈ −K, ∀y �= xn.

By the compactness of X, we can assume that {xn} (or a suitable subsequence)
converges to x̄ ∈ X. Suppose that f (x̄, ȳ) ∈ −int(K) for a suitable ȳ ∈ X. Take
a neighborhood V of f (x̄, ȳ) such that V ⊂ −int(K). By assumption (v) there
exists a number N such that f (xn, ȳ) ∈ V − K , for n ≥ N . Moreover, if n is big
enough, 1

n
d(xn, ȳ)e + V ⊆ −int(K), thereby

f (xn, ȳ) + 1

n
d(xn, ȳ)e ∈ V − K + 1

n
d(xn, ȳ)e ⊆ −int(K),

a contradiction.
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Remark 6.4. We can obtain an existence result for (WVEP) through a scalar-
ization approach, under assumptions that are comparable with those of Theo-
rem 6.7. Indeed, let us consider the assumptions (i∗)–(iv∗), and the following

(v∗) e∗(f (·, y)) upper semicontinuous for every y ∈ X.

Notice that (v) of Theorem 6.7 implies (v∗) (see, for instance, [30]). By
Proposition 3.2 in [31] we get that there exists x̄ ∈ X such that

e∗(f (x̄, y)) ≥ 0, ∀y ∈ X.

This implies, in particular, that x̄ is a solution of (WVEP).

In order to obtain an existence result for (WVEP) in noncompact setting we
need to restrict our analysis from a general complete metric space. In the sequel
we suppose that the following three assumptions are satisfied:

(A1) The complete metric space (X,d) admits a topology τ (possibly differ-
ent from the initial topology induced by d) such that the closed balls are
compact with respect to τ ;

(A2) For every y ∈ X, the distance x → d(x, y) is lower semicontinuous with
respect to τ ;

(A3) For every x ∈ X, the level set L(x) := {y ∈ X : f (x, y) ∈ −K} is closed
with respect to τ .

Due to symmetry, it is obvious that (A2) implies: for every x ∈ X, the dis-
tance y → d(x, y) is lower semicontinuous with respect to τ .

Condition (A1) turns out to be a binding condition on the space X if both
the metric d and the topology τ are induced by a norm; as a matter of fact,
in this case X must be finite dimensional. However, these three conditions are
enough general to cover other important cases, as, for instance, infinite dimen-
sional normed spaces.

Example 6.2. Let X be a real reflexive Banach space (the metric d is induced
by the norm of X). Then (A1) and (A2) are satisfied if τ is the weak topol-
ogy on X. Indeed, by the Alaoglu’s Theorem (see [3], Theorem 6.25) every
closed, bounded and convex subset of X (such as closed balls) is weakly com-
pact. Moreover, the norm being convex and continuous, it is also weakly lower
semicontinuous (see [3], Theorem 6.26). Finally, if

(i) y → f (x, y) is quasi lower semicontinuous (with respect to the norm
topology of X) for all x ∈ X;

(ii) for every x ∈ X the set L(x) is convex,

then (A3) is also satisfied. Indeed, by (i) L(x) is closed (with respect to the
norm) by Lemma 6.1, and, by (ii), is convex. Therefore, it is also weakly closed.
It is well known that condition (ii) is satisfied in particular if the function y →
f (x, y) is quasi-convex for every x ∈ X (see, for instance, [30]).

In what follows we always assume that (A1)–(A3) hold. If not stated other-
wise, all topological conditions (such as compactness, boundedness, (quasi)
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lower/upper semicontinuity, etc.) will be considered with respect to the met-
ric d .

The study of the existence of solutions of the equilibrium problems on
noncompact domains usually involves the same sufficient assumptions as for
compact domains together with a coercivity condition (see [38]). Let us con-
sider the following coercivity condition that extends a similar one in [38], but
is here adapted to a metric space and to a vector-valued function. Fix a point
x0 ∈ X. The condition requires that there exists a compact set C ⊆ X such that

∀x ∈ X \ C, ∃y ∈ X, d(y, x0) < d(x, x0) : f (x, y) ∈ −K. (C1(x0))

We now show that within the framework of Theorem 6.7, condition (C1(x0))

guarantees the existence of solutions of (WVEP) without supposing compact-
ness of X.

Theorem 6.8. Assume that the function f : X × X → Y satisfies the following
assumptions:

(i) f (t, t) = 0Y for all t ∈ X;
(ii) y → e∗(f (x, y)) is lower bounded for all x ∈ X;
(iii) f (z, y) + f (y, x) ∈ f (z, x) + K for any x, y, z ∈ X;
(iv) y → f (x, y) is quasi lower semicontinuous ∀x ∈ X;
(v) f (·, y) is upper semicontinuous for every y ∈ X;

(vi) f satisfies condition (C1(x0)) for a suitable x0 ∈ X.

Then, the set of solutions of (WVEP) is nonempty.

Proof. For each x ∈ X consider the nonempty set

S(x) := {y ∈ X : d(y, x0) ≤ d(x, x0) : f (x, y) ∈ −K}.

Observe that for every x, y ∈ X, y ∈ S(x) implies S(y) ⊆ S(x). Indeed, for
z ∈ S(y) we have d(z, x0) ≤ d(y, x0) ≤ d(x, x0) and, by (iii), f (x, z) ∈ −K . On
the other hand, since the closed ball {y ∈ X : d(y, x0) ≤ d(x, x0)} is τ -compact
by (A1), we obtain by (A3) that S(x) is a τ -compact set for every x ∈ X. Fur-
thermore, by Theorem 6.7, there exists an element xC ∈ C such that

f (xC, y) /∈ −int(K), ∀y ∈ C. (6.15)

By contradiction, suppose that there exists x̄ ∈ X with f (xC, x̄) ∈ −int(K)

and put

a := min
y∈S(x̄)

d(y, x0)

(the minimum is achieved since S(x) is nonempty, τ -compact and the distance
is τ -lower semicontinuous by (A2)).
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We first show that S(x̄) ∩ C = ∅. Indeed, let y ∈ S(x̄) ∩ C. Then
f (x̄, y) ∈ −K . Since f (xC, x̄) ∈ −int(K), it follows by (iii) that

f (xC, x̄) + f (x̄, y) ∈ f (xC, y) + K,

so that f (xC, y) ∈ −int(K), contradicting (6.15) since y ∈ C.
Now choose an element y0 ∈ S(x̄) such that d(y0, x0) = a. Since y0 /∈ C,

by (C1(x0)) we can choose an element y1 ∈ X with d(y1, x0) < d(y0, x0) = a

such that f (y0, y1) ∈ −K . Thus, y1 ∈ S(y0) ⊆ S(x̄) contradicting

d(y1, x0) < a = min
y∈S(x̄)

d(y, x0).

Therefore, there is no x ∈ X such that f (xC, x) ∈ −int(K), i.e., xC is a solution
of (WVEP) (on X). This completes the proof.

6.1.3 The Case of Countable Systems

We are concerned in what follows with a version of Ekeland’s variational prin-
ciple for countable systems of equilibrium problems defined on complete metric
spaces. This result is applied to establish the existence of solutions for noncon-
vex countable systems of equilibrium problems. The results developed in this
subsection have been obtained by Alleche and Rădulescu [5].

Consider the following equilibrium problem:

f
(
x∗, y

) ≥ 0 for all y ∈ A, (EP)

where A is a given set and f : A × A −→ R is a bifunction. Then f is an
equilibrium bifunction if f (x, x) = 0 for every x ∈ E.

We start with the following preliminary result, which guarantees the exis-
tence of solutions to equilibrium problems in the weakly compact case.

Proposition 6.4. Let A be a nonempty weakly compact subset of a real Ba-
nach space E and f : A × A → R be a bifunction. Assume that the following
conditions hold:

1. f (x, x) = 0, for every x ∈ A;
2. f (z, x) ≤ f (z, y) + f (y, x), for every x, y, z ∈ A;
3. f is lower bounded and lower semicontinuous in its second variable;
4. f is weakly sequentially upper semicontinuous in its first variable.

Then the equilibrium problem (EP) has a solution.

Proof. By the Ekeland variational principle for equilibrium problems (see The-
orem A.3 in Appendix A), for every n ∈ N

∗, there exists xn ∈ A a 1
n

-solution of
the equilibrium problem (EP). Therefore

f (xn, y) ≥ −1

n
‖xn − y‖ ∀y ∈ A.
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Since A is weakly compact, the sequence (xn)n has a weakly converging subse-
quence

(
xnk

)
k

to some x∗ ∈ A. Since f is weakly sequentially upper semicon-
tinuous in its first variable on A, we have for all y ∈ A

f
(
x∗, y

) ≥ lim sup
k→+∞

f
(
xnk

, y
) ≥ lim sup

k→+∞

(
− 1

nk

‖xnk
− y‖

)
= 0.

This means that x∗ is a solution to the equilibrium problem (EP).

The following result guarantees the existence of solutions to equilibrium
problems in the nonweakly compact case. Instead of the Euclidean space R

n,
this generalization makes more clear in the setting of infinite dimensional
spaces, the conditions imposed on both A and the subset of coerciveness. This
generalization is also obtained under weakened conditions of semicontinuity of
the bifunction involved.

Theorem 6.9. Let A be a nonempty weakly closed subset of a real reflexive
Banach space E and f : A×A → R be a bifunction, and suppose the following
conditions hold:

1. f (x, x) = 0, for every x ∈ A;
2. f (z, x) ≤ f (z, y) + f (y, x), for every x, y, z ∈ A;
3. there exists a nonempty weakly compact subset K of A such that

∀x ∈ A \ K, ∃y ∈ A, ‖y‖ < ‖x‖, f (x, y) ≤ 0;
4. f is weakly sequentially lower semicontinuous in its second variable on K;
5. the restriction of f on K × K is lower bounded in its second variable;
6. the restriction of f on K × K is weakly sequentially upper semicontinuous

in its first variable.

Then the equilibrium problem (EP) has a solution.

Proof. For every x ∈ A, define the subset

L(x) = {y ∈ A | ‖y‖ ≤ ‖x‖, f (x, y) ≤ 0} ,

and put S (x)) = clA (L(x)), where the closure is taken with respect to the weak
topology of A. We have the following properties:

1. The subset S (x) is nonempty, for every x ∈ A. This holds easily from the
fact that x ∈ L(x).

2. The subset S (x) is weakly compact, for every x ∈ A. Indeed, for every
x ∈ A, the subset L(x) is contained in the weakly compact subset K‖x‖
and then, S (x) is weakly compact.

3. For every x, y ∈ A, if y ∈ S (x), then S (y) ⊂ S (x). Indeed, since L(y) is
bounded, then for every z ∈ S (y), there exists a sequence (zn)n in L(y)

weakly converging to z. It follows that ‖zn‖ ≤ ‖y‖ ≤ ‖x‖ and f (x, zn) ≤
f (x, y) + f (y, zn) ≤ 0, for every n. It follows that the sequence (zn)n lies
in L(x) and then, z ∈ S (x).
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On the other hand, the restriction of f on K × K satisfies all the conditions
of Proposition 6.4 and therefore, there exists x∗ ∈ K such that

f
(
x∗, y

) ≥ 0 for all y ∈ K.

Suppose that x∗ is not a solution of the equilibrium problem (EP) and let
x ∈ A such that f (x∗, x) < 0. Since S (x) is nonempty weakly compact subset,
then the norm, which is weakly lower semicontinuous, attains its lower bound
on S (x). Let yx ∈ S (x) be such that

‖yx‖ = min
y∈S(x)

‖y‖

and since L(x) is bounded, let (yn)n be a weakly converging sequence in L(x)

to yx .
We distinguish the following two cases.

Case 1. Assume that yx ∈ K . Since f (x∗, x) < 0, choose ε > 0 such that
f (x∗, x) ≤ −ε. Since f (x, yn) ≤ 0, for every n, then

f
(
x∗, yn

) ≤ f
(
x∗, x

) + f (x, yn) ≤ −ε.

The bifunction f being weakly sequentially lower semicontinuous in its second
variable on K , we obtain

f
(
x∗, yx

) ≤ lim inf
n→+∞f

(
x∗, yn

) ≤ −ε < 0

which yields a contradiction.

Case 2. Assume that yx /∈ K . Then, there exists y1 ∈ A, ‖y1‖ < ‖yx‖ and
f (yx, y1) ≤ 0. Thus,

y1 ∈ S (yx) ⊂ S (x) and ‖y1‖ < ‖yx‖ = min
y∈S(x)

‖y‖

which is impossible.
The proof is complete.

Inspired by the study of systems of variational inequalities, countable and
noncountable systems of equilibrium problems have been introduced and in-
vestigated in the literature, see, for instance, [57]. Instead of finite systems of
equilibrium problems as studied in [31] by means of the Ekeland variational
principle, we now consider countable systems of equilibrium problems, which
are usually defined in the following manner.

Let I be a countable index set which could be identified sometimes to the
set {i | i ∈N}. By a system of equilibrium problems we understand the problem
of finding x∗ = (

x∗
i

)
i∈I

∈ A such that

fi

(
x∗, yi

) ≥ 0 for all i ∈ I and all yi ∈ Ai, (SEP)

where fi : A × Ai → R, A = ∏
i∈I

Ai with Ai some given set.
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In the sequel, we suppose that Ai is a closed subset of a metric space (Xi, di),
for every i ∈ I . An element of the set Ai = ∏

j∈I
j �=i

Aj will be represented by xi ;

therefore, x ∈ A can be written as x = (
xi, xi

) ∈ Ai ×Ai . The space X = ∏
i∈I

Xi

will be endowed by the product topology. Without loss of generality, we may
assume that di is bounded by 1, for every i ∈ I . The distance d on X defined by

d (x, y) =
∑
i∈I

1

2i
di (xi, yi) for every x = (xi)i∈I , y = (yi)i∈I ∈ X

is a complete metric compatible with the topology of X. Thus, the space (X,d)

is a complete metric space.
The following result is the Ekeland variational principle for countable sys-

tems of equilibrium problems defined on complete metric spaces. It generalizes
Theorem A.3 stated for finite systems of equilibrium problems under the setting
of the Euclidean space R

n.

Theorem 6.10. Let Ai be a nonempty closed subset of a complete metric space
(Xi, di), for every i ∈ I , and assume that the following conditions hold:

1. fi (x, xi) = 0, for every i ∈ I and every x = (
xi, xi

) ∈ A;
2. fi (z, xi) ≤ fi (z, yi)+fi (y, xi), for every i ∈ I , every xi, yi ∈ Ai , and every

y, z ∈ A such that y = (
yi, yi

)
;

3. fi is lower bounded and lower semicontinuous in its second variable, for
every i ∈ I .

Then, for every ε > 0 and for every x0 = (
x0
i

)
i∈I

∈ A, there exists x∗ =(
x∗
i

)
i∈I

∈ A such that for each i ∈ I , we have

{
fi

(
x0, x∗

i

) + εdi

(
x0
i , x∗

i

) ≤ 0,

fi (x
∗, xi) + εdi

(
x∗
i − xi

)
> 0, ∀xi ∈ Ai, xi �= x∗

i .

Proof. By replacing f by 1
ε
f , we may assume without loss of generality that

ε = 1. Let i ∈ I be arbitrary fixed, and for every x = (xi)i∈I ∈ A, we set

Fi (x) = {yi ∈ Ai | fi (x, yi) + di (xi, yi) ≤ 0} .

Clearly, these subsets are closed and nonempty since xi ∈ Fi (x), for every i ∈ I .
In addition, if yi ∈ Fi (x), for some x ∈ A, yi ∈ Ai and i ∈ I , then Fi (y) ⊂
Fi (x), for every y = (

yi, yi

) ∈ A. Indeed, suppose these conditions hold and let
z = (zi)i∈I ∈ Fi (y). Then, we have

fi (x, yi) + di (xi, yi) ≤ 0 and fi (y, zi) + di (yi, zi) ≤ 0.
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It follows by addition that

fi (x, zi) + di (xi, zi) ≤ fi (x, yi) + fi (y, zi) + di (xi, yi) + di (yi, zi) ≤ 0

and then, z ∈ Fi (x).
For every x ∈ A, define now

vi (x) = inf
zi∈Fi(x)

fi (x, zi)

which is finite since fi is lower bounded in its second variable, for every i ∈ I .
For every zi ∈ Fi (x), we have

d (xi, zi) ≤ −fi (x, zi) ≤ − inf
zi∈Fi(x)

fi (x, zi) = −vi (x) .

It follows that δ (Fi (x)) ≤ −2vi (x), for every i ∈ I and every x ∈ A, where
δ (S) stands for the diameter of the set S.

Fix now x0 = (
x0
i

)
i∈I

∈ A and choose for each i ∈ I an element x1
i ∈ Fi

(
x0

)
such that

fi

(
x0, x1

i

)
≤ vi

(
x0

)
+ 2−1.

Put x1 = (
x1
i

)
i∈I

∈ A and for each i ∈ I an element x2
i ∈ Fi

(
x0

)
such that

fi

(
x1, x2

i

)
≤ vi

(
x1

)
+ 2−2.

Put x2 = (
x2
i

)
i∈I

∈ A. Proceeding by induction, we construct a sequence (xn)n

in A such that xn+1
i ∈ Fi (x

n) and

fi

(
xn, xn+1

i

)
≤ vi

(
xn

) + 2−(n+1), for every i ∈ I and every n ∈ N.

Note that

vi

(
xn+1

)
= inf

zi∈Fi

(
xn+1

)fi

(
xn+1, zi

)

≥ inf
zi∈Fi(x

n)
fi

(
xn+1, zi

)
≥ inf

zi∈Fi(x
n)

(
fi

(
xn, zi

) − fi

(
xn, xn+1

i

))
= inf

zi∈Fi(x
n)

fi

(
xn, zi

) − fi

(
xn, xn+1

i

)
= vi

(
xn

) − fi

(
xn, xn+1

i

)
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which yields

vi

(
xn+1

)
≥ vi

(
xn

) − fi

(
xn, xn+1

i

)
≥ vi

(
xn

) −
(
vi

(
xn

) + 2−(n+1)
)

.

It follows that vi

(
xn+1

) ≥ −2−(n+1) and then,

δ
(
Fi

(
xn

)) ≤ −2vi

(
xn

) ≤ 2 × 2−n.

The sequence (Fi (x
n))n being a decreasing sequence of closed subsets of the

complete metric space (Ei, di) with diameter tending to zero, then for every
i ∈ I , there exists x∗

i ∈ Ai such that

⋂
n∈N

δ
(
Fi

(
xn

)) = {
x∗
i

}
.

Put x∗ = (
x∗
i

)
i∈I

∈ A. For every i ∈ I , since x∗
i ∈ Fi

(
x0

)
, then

fi

(
x0, x∗

i

)
+ di

(
x0
i , x∗

i

)
≤ 0.

On the other hand, since x∗
i ∈ Fi (x

n), then Fi (x
∗) ⊂ Fi (x

n), for every n and
then Fi (x

∗) = {
x∗
i

}
, for every i ∈ I .

Now, if xi ∈ Ai is such that xi �= x∗
i , then xi /∈ Fi (x

∗). It follows that

fi

(
x∗, xi

) + di

(
x∗
i , xi

)
> 0

which completes the proof.

When Xi is replaced by a real Banach space Ei , for every i ∈ I , we denote by
‖.‖i the norm of Ei and by di its associate distance. As before, we may assume
without loss of generality that each di is a bounded metric on Ei , for every
i ∈ I . The distance d defined on E = ∏

i∈I

Ei as above makes E a real complete

metric topological vector space. Note that the distance d cannot be induced by
a norm since I is infinite. In this case weak sequential compactness and weak
compactness need not coincide on E.

In the sequel, E will be endowed with the product of the weak topologies
of Ei denoted by σ .

The following result guarantees the existence of solutions to countable sys-
tems of equilibrium problems in the weakly compact case. It is also a general-
ization of Proposition 6.4.

Proposition 6.5. Let Ai be a nonempty weakly closed subset of a real Banach
space Ei and fi : A×Ai → R, for every i ∈ I . Assume the following conditions
hold:
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1. fi (x, xi) = 0, for every i ∈ I and every x = (
xi, xi

) ∈ A;
2. fi (z, xi) ≤ fi (z, yi)+fi (y, xi), for every i ∈ I , every xi, yi ∈ Ai , and every

y, z ∈ A such that y = (
yi, yi

)
;

3. fi is lower bounded and lower semicontinuous in its second variable, for
every i ∈ I ;

4. fi is sequentially upper semicontinuous in its first variable with respect to
the topology σ , for every i ∈ I ;

5. A is sequentially compact subset of E with respect to the topology σ .

Then, the system of equilibrium problems (SEP) has a solution.

Proof. By Theorem 6.10, for every n ∈N
∗, let xn = (

xn
i

)
i∈I

∈ A be a 1
n

-solution
of the system of equilibrium problems (SEP). Therefore

fi

(
xn, yi

) ≥ −1

n
‖xn

i − yi‖i ∀yi ∈ Ai.

Since A is sequentially compact subset of E with respect to the topol-
ogy σ , then the sequence (xn)n has a converging subsequence (xnk )k to some
x∗ = (

x∗
i

)
i∈I

∈ A with respect to the topology σ . It follows that the subsequence(
x

nk

i

)
k

is weakly converging to x∗
i ∈ Ai , for every i ∈ I . Since fi is sequentially

upper semicontinuous in its first variable on A with respect to the topology σ ,
for every i ∈ I , we have

fi

(
x∗, yi

) ≥ lim sup
k→+∞

fi

(
xnk , yi

)
≥ lim sup

k→+∞

(
− 1

nk

‖xnk

i − yi‖
)

= 0 ∀i ∈ I, ∀yi ∈ A.

This means that x∗ is a solution to the system of equilibrium problems (SEP).

The following result establishes a sufficient condition for the existence of so-
lutions to countable systems of equilibrium problems in the nonweakly compact
case.

Theorem 6.11. Let Ai be a nonempty weakly closed subset of a real reflexive
Banach space Ei and fi : A × Ai → R, for every i ∈ I . Assume that the follow-
ing conditions hold:

1. fi (x, xi) = 0, for every i ∈ I and every x = (
xi, xi

) ∈ A;
2. fi (z, xi) ≤ fi (z, yi)+fi (y, xi), for every i ∈ I , every xi, yi ∈ Ai , and every

y, z ∈ A such that y = (
yi, yi

)
;

3. there exists a nonempty closed subset Ki of Ai for every i ∈ I , such that

for every x =
(
xi, xj

)
∈ A with xj /∈ Kj , for some j ∈ I,

there exists yj ∈ Aj such that ‖yj‖ < ‖xj‖ and fj

(
x, yj

) ≤ 0;
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4. fi is weakly sequentially lower semicontinuous in its second variable on Ki ,
for every i ∈ I ;

5. the restriction of fi on

(∏
i∈I

Ki

)
× Ki is lower bounded in its second vari-

able, for every i ∈ I ;

6. the restriction of fi on

(∏
i∈I

Ki

)
×Ki is sequentially upper semicontinuous

in its first variable with respect to the topology σ , for every i ∈ I ;
7. The subset

∏
i∈I

Ki is sequentially compact subset of E with respect to the

topology σ .

Then, the system of equilibrium problems (SEP) has a solution.

Proof. For every x = (
xi, xi

) ∈ A and every i ∈ I , define the subset

Li (x) = {yi ∈ Ai | ‖yi‖ ≤ ‖xi‖, fi (x, yi) ≤ 0} ,

and put Si (x)) = clAi (Li (x)), where the closure is taken with respect to the
weak topology of Ai . By the same argument as in the proof of Theorem 6.9, we
have the following properties:

1. The subset Si (x) is nonempty, for every x ∈ A and every i ∈ I .
2. The subset Si (x)) is weakly compact, for every x ∈ A and every i ∈ I .
3. For every i ∈ I and every x = (

xi, xi

)
, y = (

yi, yi

) ∈ A, if yi ∈ Si (x), then
Si (y) ⊂ Si (x).

On the other hand, the restrictions of fi on

(∏
i∈I

Ki

)
× Ki , for every i ∈ I

respectively, satisfy all the conditions of Proposition 6.5 and therefore, there
exists x∗ = (

x∗
1 , . . . , x∗

m

) ∈ ∏
i∈I

Ki such that

fi

(
x∗, yi

) ≥ 0 for all i ∈ I and all yi ∈ Ki.

Suppose that x∗ is not a solution of the equilibrium problem (SEP) and let
xj ∈ Aj be such that fj

(
x∗, xj

)
< 0, for some j ∈ I . Let xj ∈ Aj be arbitrary

and put x = (
xj , xj

) ∈ A. Since Sj (x) is nonempty weakly compact subset,
then the norm attains its lower bound on Sj (x). Let y (x)j ∈ Sj (x) be such that

‖y (x)j‖ = min
yj ∈Sj (x)

‖yj‖

and since Lj (x) is bounded, let (yn)n be a weakly converging sequence in
Lj (x) to y (x)j .

We distinguish the following two distinct situations.

Case 1. Assume that y (x)j ∈ Kj . Since fj

(
x∗, xj

)
< 0, choose ε > 0 such that

fj

(
x∗, xj

) ≤ −ε. Since fj (x, yn) ≤ 0, for every n, then

fj

(
x∗, yn

) ≤ fj

(
x∗, xj

) + fj (x, yn) ≤ −ε.
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The bifunction fj being weakly sequentially lower semicontinuous in its second
variable on Kj , we obtain

fj

(
x∗, y (x)j

) ≤ lim inf
n→+∞fj

(
x∗, yn

) ≤ −ε < 0

which yields a contradiction.

Case 2. Assume that y (x)j /∈ Kj . Let yj ∈ Aj be arbitrary and put yx =(
yj , y (x)j

) ∈ A. Then, there exists yj ∈ Aj , ‖yj‖ < ‖y (x)j ‖ and
fj

(
yx, yj

) ≤ 0. Thus,

yj ∈ Sj (yx) ⊂ Sj (x) and ‖yj‖ < ‖y (x)j ‖ = min
yj ∈Sj (x)

‖yj‖

which is impossible.
The proof is complete.

6.2 METRIC REGULARITY, LINEAR OPENNESS AND AUBIN
PROPERTY

The aim of this section is to study some regularity properties of the so-called
diagonal subdifferential operator associated to the equilibrium problem. Eke-
land’s variational principle will play an important role in proving these prop-
erties. The regularity of the diagonal subdifferential operator will provide sen-
sitivity results on parametric equilibrium problems, which will be discussed in
the next chapter.

Let E1, E2 be metric spaces, and T : E1 ⇒ E2 be a set-valued mapping.
Recall that in Chapter 1 we denoted by gph(T ) the graph of T defined as

gph(T ) := {(x, y) ∈ E1 × E2 : y ∈ T (x)}.
Consider the inverse mapping T −1 : E2 ⇒ E1 defined by T −1(y) :=

{x ∈ E1 : y ∈ T (x)}. Note that T −1(y) corresponds to the lower inverse of
the singleton B := {y} as defined in Chapter 1. The open ball centered at x̄ with
radius r , will be denoted by B(x̄, r) and its closure with B̄(x̄, r). For any subsets
A, B of a metric space E consider the excess functional

e(A,B) := sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

d(a, b),

under the convention e(∅,B) := 0, and e(A,∅) := +∞, for A �= ∅.
In the following we recall some notions related to metric regularity of map-

pings (see, for instance, [67] and [90]). The set-valued mapping T

(i) is globally metrically regular if there exists a positive k such that, for all
x ∈ E1, y ∈ E2

d(x,T −1(y)) ≤ kd(y,T (x)); (6.16)



Variational Principles and Variational Analysis for (EP) Chapter | 6 179

(ii) is metrically regular around (x̄, y) ∈ gph(T ) if there is a positive constant
k along with a neighborhood U of x̄ and a neighborhood V of y such
that (6.16) holds for all x ∈ U and y ∈ V ;

(iii) satisfies the Aubin property around (x̄, y) if there exist a positive k, and
neighborhoods U of x̄ and V of y such that

e(T (x) ∩ V, T (x′)) ≤ kd(x, x′), ∀x, x′ ∈ U .

Furthermore, we recall also some of the at-point properties: the set-valued map-
ping T is said to be

(iv) metrically subregular at (x̄, y) ∈ gph(T ) if there is a positive constant k

along with a neighborhood U of x̄ such that

d(x,T −1(y)) ≤ kd(y,T (x)), ∀x ∈ U; (6.17)

(v) strongly metrically subregular at (x̄, y) ∈ gph(T ) if there is a positive con-
stant k along with a neighborhood U of x̄ such that

d(x, x̄) ≤ kd(y,T (x)), ∀x ∈ U; (6.18)

(vi) calm at (x̄, y) ∈ gph(T ) if there exist a positive k, and neighborhoods
U = U(x̄), V = V(y) such that

e(T (x) ∩ V, T (x̄)) ≤ kd(x, x̄), ∀x ∈ U .

Note that the global metric regularity of T is equivalent to the openness at linear
rate k, i.e., for every (x, y) ∈ gph(T ),

B(y, r) ⊆ T (B(x, kr)), ∀r > 0.

In addition, the metric subregularity of T at (x̄, y) is equivalent to the calmness
of T −1 at (y, x̄) (see, for instance, Proposition 2.7 in [18]); in particular, if T is
strongly metrically subregular at (x̄, y), then T −1(y) ∩ U = {x̄}.

The results of this section have been established by Bianchi, Kassay, and
Pini in [37].

6.2.1 The Diagonal Subdifferential Operator Associated to an
Equilibrium Bifunction

In the sequel we will denote by X a Banach space with X∗ its dual space,
and by K a nonempty, closed, and convex subset of X. Given a bifunction
f : K × K → R such that f (x, x) = 0 for all x ∈ K , let us denote by
Af : X ⇒ X∗ the following operator (see, for instance, [87]):

Af (x) :=
{

{x∗ ∈ X∗ : f (x, y) ≥ 〈x∗, y − x〉,∀y ∈ K}, x ∈ K

∅, x ∈ X \ K.
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Let us consider the bifunction f̂ : K × X → R ∪ {+∞} obtained by extending
in a standard way the bifunction f as follows:

f̂ (x, y) :=
{

f (x, y) y ∈ K

+∞ y /∈ K.
(6.19)

Thus, Af (x) = ∂f̂ (x, ·)(x), where ∂ denotes the subdifferential operator usu-
ally considered in the convex analysis setting. For this reason, by abuse of
language, we refer to the set-valued map Af as a diagonal subdifferential oper-
ator of f . In particular, Af has closed and convex values.

Observe that the equilibrium problem (EP) and the operator Af are strongly
related: x̄ ∈ K is a solution of (EP) if and only if 0 ∈ Af (x̄).

The bifunction f is said to be cyclically monotone if

n∑
i=1

f (xi, xi+1) ≤ 0, ∀n ∈ N, ∀x1, . . . , xn, xn+1 ∈ K, xn+1 = x1.

In particular, any cyclically monotone bifunction is monotone, i.e.,
f (x, y) + f (y, x) ≤ 0, for all x, y ∈ K .

Recall that f satisfies the triangle inequality on K × K if

f (x, y) ≤ f (x, z) + f (z, y), ∀x, y, z ∈ K. (6.20)

6.2.2 Metric Regularity of the Diagonal Subdifferential Operator

The results of this subsection deal with the metric regularity of Af around a
point of its graph. Let us first recall a well-known result concerning the subdif-
ferential of the sum of two convex functions.

Lemma 6.3. (Moreau-Rockafellar) Let f,g : X → R ∪ {+∞} be two proper,
lower semicontinuous and convex functions such that int domf ∩ domg �= ∅.
Then, for all x ∈ X, ∂(f + g)(x) = ∂f (x) + ∂g(x).

Let f : K × K → R be a bifunction such that (x̄, x̄∗) ∈ gph(Af ), and con-
sider the following two properties:

(a) Af is metrically regular around (x̄, x̄∗), with neighborhoods U = B(x̄, r)

and V = B(x̄∗, r ′), and k > 0;
(b) there exist c > 0 and U ′ = B(x̄, ρ), V ′ = B(x̄∗, ρ′) such that

(Af )−1(x∗) �= ∅ for all x∗ ∈ V ′, and

inf
x̃∈(Af )−1(x∗)

(f (x̃, x) − 〈x∗, x − x̃〉) ≥ c · d2(x, (Af )−1(x∗)), (6.21)

for every x ∈ U ′ ∩ K , x∗ ∈ V ′.
We start with the following results, which provide the link between proper-

ties (a) and (b):
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Theorem 6.12. Let f satisfy (a), and the following conditions:

(i) f (x, ·) is convex and lsc, for every x ∈ K;
(ii) f satisfies the triangle inequality (6.20).

Then f satisfies (b) with c < 1/4k, and ρ = r/2, and ρ ′ = min{r ′, r/2k}.
Conversely, if f satisfies (b), and is α-monotone, for some α > −c, i.e.,

f (x, y) + f (y, x) ≤ −α‖x − y‖2, ∀x, y ∈ K,

then (a) holds, with k = 1
c+α

, and r = ρ, r ′ = ρ′.

Proof. (a) implies (b): Note that, under the assumption of metric regular-
ity at (x, x∗), it follows that (AF )−1(x∗) �= ∅ for every x∗ ∈ V . In order to
prove (6.21), we argue by contradiction.

Suppose that there exists z ∈ U ′ ∩ K and z∗ ∈ V ′ and z̃ ∈ (AF )−1(z∗) such
that

F(z̃, z) + 〈z∗, z̃ − z〉 < cd2(z, (AF )−1(z∗)). (6.22)

Observe that z̃ is a global minimizer of the lsc convex function

h(·) := F̂ (z̃, ·) + 〈z∗, z̃ − ·〉.
Indeed, h(z̃) = 0, and

z∗ ∈ AF (z̃) ⇔ h(x) ≥ 0, ∀x ∈ X.

Since, from (6.22), h(z)<cd2(z,(AF )−1(z∗)), we get that d2(z,(AF )−1(z∗))>0.
By applying The Ekeland’s Variational Principle (Theorem A.1 in Ap-

pendix A) to the function h with

ε := c d2(z, (AF )−1(z∗)) > 0, λ := 1

2
d(z, (AF )−1(z∗)) > 0,

we get the existence of u ∈ K with ‖u − z‖ ≤ 1
2d(z, (AF )−1(z∗)) such that

h(x) ≥ h(u) − 2c d(z, (AF )−1(z∗))‖x − u‖, ∀x ∈ X.

Hence, u is a global minimizer of the convex function

h(·) + 2c d(z, (AF )−1(z∗))‖ · −u‖
= F̂ (z̃, ·) + 〈z∗, z̃ − ·〉 + 2c d(z, (AF )−1(z∗))‖ · −u‖;

thus,

0 ∈ ∂
(
F̂ (z̃, ·) + 〈z∗, z̃ − ·〉 + 2c d(z, (AF )−1(z∗))‖ · −u‖

)
(u).
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Since dom F̂ (z̃, ·)=K , and dom
(〈z∗, z̃ − ·〉+2c d(z, (AF )−1(z∗))‖ · −u‖)=X,

by Lemma 6.3,

0 ∈ ∂F̂ (z̃, ·)(u) − z∗ + 2c d(z, (AF )−1(z∗))B̄(0,1). (6.23)

Observe that

∂F̂ (z̃, ·)(u) ⊂ AF (u). (6.24)

Indeed, fix any u∗ ∈ ∂F̂ (z̃, ·)(u). Then F̂ (z̃, y) − F̂ (z̃, u) ≥ 〈u∗, y − u〉, for all
y ∈ X; in particular, F(z̃, y) − F(z̃, u) ≥ 〈u∗, y − u〉 holds for every y ∈ K . By
the triangle inequality (6.20) we have

F(u,y) ≥ F(z̃, y) − F(z̃, u),

which means that F(u,y) ≥ 〈u∗, y − u〉, i.e., u∗ ∈ AF (u).
Therefore, from (6.23), there exists an element x∗ ∈ AF (u) with

‖x∗ − z∗‖ ≤ 2c d(z, (AF )−1(z∗)).

Additionally, since

d(z, (AF )−1(z∗)) ≤ ‖z − u‖ + d(u, (AF )−1(z∗))

≤ 1

2
d(z, (AF )−1(z∗)) + d(u, (AF )−1(z∗)),

one has

0 < d(z, (AF )−1(z∗)) ≤ 2d(u, (AF )−1(z∗));
hence,

d(z∗,AF (u)) ≤ ‖x∗ − z∗‖ ≤ 4c d(u, (AF )−1(z∗)). (6.25)

Note that

‖u − x‖ ≤ ‖u − z‖ + ‖z − x‖
≤ 1

2
d(z, (AF )−1(z∗)) + r

2

≤ 1

2
(‖z − x‖ + d(x, (AF )−1(z∗))) + r

2
(6.26)

<
3r

4
+ k

2
d(z∗,AF (x))

≤ r.

Hence, u ∈ B(x̄, r), and we obtain, by (6.25):

d(z∗,AF (u)) ≤ 4c d(u, (AF )−1(z∗)) ≤ 4ck d(z∗,AF (u)) < d(z∗,AF (u)),

a contradiction.
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(b) implies (a): Without loss of generality, we will assume α < 0, since
α′-monotonicity implies α-monotonicity, for every α′ > α. Take any x ∈ U and
x∗ ∈ V .

If either d(x, (AF )−1(x∗)) = 0 or AF (x) = ∅, there is nothing to prove.
Hence suppose that (x, x∗) ∈ (U ∩K)×V such that d(x, (AF )−1(x∗)) = τ > 0.
Fix any ε > 0, and take xε ∈ (AF )−1(x∗) such that

‖x − xε‖ < τ + ε.

From the assumptions, (6.21) implies that

F(xε, x) ≥ 〈x∗, x −xε〉+c ·d2(x, (AF )−1(x∗)) = 〈x∗, x −xε〉+c · τ 2. (6.27)

Let z∗ ∈ AF (x); then,

F(x, xε) ≥ 〈z∗, xε − x〉. (6.28)

Adding (6.27) and (6.28), from (ii) we get

c · τ 2 + 〈x∗ − z∗, x − xε〉 ≤ F(xε, x) + F(x, xε) ≤ −α‖x − xε‖2,

implying that

c · τ 2 ≤ 〈z∗ − x∗, x − xε〉 − α‖x − xε‖2 < ‖z∗ − x∗‖ · (τ + ε) − α(τ + ε)2.

Taking the infimum with respect to z∗ ∈ AF (x), and letting ε → 0, we have that

(c + α)τ ≤ d(x∗,AF (x)).

This implies that (a) holds if k = 1
c+α

.

The next example shows that the triangle inequality is an essential assump-
tion in Theorem 6.12. Indeed, let K = [−1,1] ⊂ R and consider
f : [−1,1] × [−1,1] → R given by f (x, y) = x(y − x). Then it is easy to
show that

Af (x) :=

⎧⎪⎨
⎪⎩

(−∞,−1], x = −1

x, x ∈ (−1,1)

[1,+∞), x = 1.

Also,

(Af )−1(y) :=

⎧⎪⎨
⎪⎩

−1, y ∈ (−∞,−1]
y, y ∈ (−1,1)

1, y ∈ [1,+∞).

Now take x̄ = 0. Then x̄∗ = Af (0) = 0 and Af is metrically regular around
(0,0) with U = V = B(0,1) and k = 1. It is obvious that f satisfies the as-
sumption (i) in Theorem 6.12, but not (ii) (the triangle inequality). Indeed, by
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taking x = 0, y = 1, z = −1 in (6.20) one obtains 0 ≤ −2, a contradiction. Now
let us show that there is no c > 0 such that (b) is satisfied. An easy calculation
shows that ρ = ρ ′ = 1/2, hence one obtains U ′ = V ′ = B(0,1/2). Thus, x̃ = x∗
in (b) and the left-hand side of this relation vanishes, while for the right-hand
side we obtain c|x − x∗|2. This clearly shows that (b) cannot be satisfied for all
x, x∗ ∈ (−1/2,1/2).

6.2.3 Metric Subregularity of the Diagonal Subdifferential
Operator

The results of this subsection relate the (strong) metric subregularity of Af with
the behavior of the bifunction f .

Let f : K × K → R be a bifunction such that (x̄, x̄∗) ∈ gph(Af ). Let us
consider the following two properties:

(a’) Af is metrically subregular at (x̄, x̄∗), with neighborhood U = B(x̄, r),
and k > 0;

(b’) there exists U ′ = B(x̄, ρ) and c > 0 such that

f (x̄, x) ≥ 〈x̄∗, x − x̄〉 + c d2(x, (Af )−1(x̄∗)) ∀x ∈ U ′ ∩ K.

Theorem 6.13. Let f satisfy (a’), and

(i) f (x̄, ·) is convex and lower semicontinuous;
(ii) f satisfies the triangle inequality (6.20) with x = x̄.

Then, (b’) holds with c < 1/4k, and ρ = 2r
3 .

Conversely, if f satisfies (b’), and is cyclically monotone, then (a’) holds,
with k = 1

c
, and r = ρ.

Proof. (a’) implies (b’): We can follow the same line of the proof of Theo-
rem 6.12, by taking z̃ = x̄, z∗ = x̄∗, and noting that (6.26) becomes

‖u − x̄‖ ≤ ‖u − z‖ + ‖z − x̄‖ ≤ 1

2
d(z, (Af )−1(x̄∗)) + ‖z − x̄‖

≤ 3

2
‖z − x̄‖ < r.

(b’) implies (a’): Fix x ∈ U . If Af (x) = ∅ there is nothing to show. Other-
wise, take any x∗ ∈ Af (x). Fix ε > 0, and denote by xε a point in (Af )−1(x̄∗)
such that

‖x − xε‖ ≤ d(x, (Af )−1(x̄∗)) + ε. (6.29)

By the definition of diagonal subdifferential we have that

f (x, xε) ≥ 〈x∗, xε − x〉, f (xε, x̄) ≥ 〈x̄∗, x̄ − xε〉.
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From the inequality (6.29), (b’) and the cyclic monotonicity, we have that

‖x∗ − x̄∗‖(d(x, (Af )−1(x̄∗)) + ε)

≥ ‖x∗ − x̄∗‖ · ‖x − xε‖
≥ 〈x∗, x − xε〉 − 〈x̄∗, x − x̄〉 − 〈x̄∗, x̄ − xε〉
≥ −f (x, xε) − 〈x̄∗, x − x̄〉 − f (xε, x̄)

≥ −f (x, xε) − f (xε, x̄) − f (x̄, x) + c d2(x, (Af )−1(x̄∗))
≥ c d2(x, (Af )−1(x̄∗)).

By taking ε → 0, we get

c d2(x, (Af )−1(x̄∗)) ≤ ‖x∗ − x̄∗‖d(x, (Af )−1(x̄∗)).

If d(x, (Af )−1(x̄∗)) = 0, there is nothing to prove. Otherwise, we have

d(x, (Af )−1(x̄∗)) ≤ 1

c
‖x∗ − x̄∗‖, ∀x∗ ∈ Af (x).

The assertion follows by taking the infimum with respect to x∗ ∈ Af (x).

In the following result we present two characterizations of the strong metric
subregularity of the map Af .

Let us take (x̄, x̄∗) ∈ gph(Af ), and let us consider the following properties:

(a”) Af is strongly metrically subregular at (x̄, x̄∗) with neighborhood
U = B(x̄, r), and k > 0;

(b”) there exists U ′ = B(x̄, ρ), and c > 0, such that

f (x̄, x) ≥ 〈x̄∗, x − x̄〉 + c‖x − x̄‖2, ∀x ∈ U ′ ∩ K;

(c”) there exists a neighborhood U ′′ = B(x̄, τ ), along with a positive constant
β such that

〈x∗ − x̄∗, x − x̄〉 ≥ β‖x − x̄‖2, ∀(x, x∗) ∈ gph(Af ), x ∈ U ′′.

Then the next theorem holds:

Theorem 6.14. Let f : K ×K →R, and (x̄, x̄∗) ∈ gph(Af ). If f satisfies (a”),
and the following conditions

(i) f (x̄, ·) is convex and lower semicontinuous;
(ii) f satisfies the triangle inequality (6.20) for x = x̄,

then (b”) holds, with c = 1/4k and ρ = r/3.
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If (b”) holds, and f satisfies the condition

f (x, x̄) + f (x̄, x) ≤ −α‖x − x̄‖2, x ∈ U ′ ∩ K, (6.30)

for some α > −c, then f satisfies (c”) with β = α + c and τ = ρ.
(c”) always implies (a”) with r = τ , and k = 1/β.

Proof. (a”) ⇒ (b”): Af is, in particular, metrically subregular at (x̄, x̄∗) and
Theorem 6.13 implies inequality (b’) in B(x̄,2r/3) and c < 1/4k. Note that
(a”) and (b’) both hold in B(x̄,2r/3) ∩ K . If (Af )−1(x̄∗) = {x̄}, it triv-
ially follows, with ρ = 2r/3, and c < 1/4k. Otherwise, take z ∈ (Af )−1(x̄∗),
z �= x̄. In particular, z ∈ K . By the assumption of strong metric subregularity,
z /∈ B(x̄,2r/3) ∩ K (see the comments after (vi) in the Preliminaries), and
‖x − z‖ ≥ ‖x − x̄‖ for any x ∈ B(x̄, r/3) ∩ K . Thus, d(x, (Af )−1(x̄∗)) =
‖x − x̄‖ for any x ∈ B(x̄, r/3) ∩ K , and (b”) holds for the neighborhood
U ′ = B(x̄, r/3) ∩ K , and c < 1/4k.

(b”) ⇒ (c”): Take (x, x∗) ∈ gph(Af ), x ∈ U ′ ∩ K , then

f (x, x̄) ≥ 〈x∗, x̄ − x〉
f (x̄, x) ≥ 〈x̄∗, x − x̄〉 + c‖x − x̄‖2.

Thus, from (6.30),

〈x∗, x − x̄〉−〈x̄∗, x − x̄〉 ≥ −f (x, x̄)−f (x̄, x)+c‖x − x̄‖2 ≥ (c+α)‖x − x̄‖2,

and thus (c”) holds with U ′′ = U ′ and β = c + α.
(c”) ⇒ (a”): For every (x, x∗) ∈ gph(Af ), x ∈ U ′′ \ {x̄},

‖x∗ − x̄∗‖‖x − x̄‖ ≥ 〈x∗ − x̄∗, x − x̄〉 ≥ β‖x − x̄‖2.

Therefore, ‖x − x̄‖ ≤ 1
β
‖x∗ − x̄∗‖, for every x∗ ∈ Af (x), then

‖x − x̄‖ ≤ 1

β
d(x̄∗,Af (x)), ∀x ∈ U ′′,

hence (a”) holds for k = 1/β and U = U ′′.
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We shall apply the results of Chapter 6 to obtain sensitivity results concerning
parametric equilibrium problems.

Let P be a metric space and K be a nonempty set. Given a parametric bifunc-
tion F : K × K × P → R, we consider the set-valued map S : P ⇒ K defined
by

S(p) := {x ∈ K : F(x, y,p) ≥ 0, ∀y ∈ K},

i.e., for any p ∈ P , S(p) represents the solution set of the parametric equilib-
rium problem: find x̄ ∈ K such that F(x̄, y,p) ≥ 0, ∀y ∈ K .

Given an initial value of the parameter, say p̄, and a corresponding solution
x̄ ∈ K , i.e., x̄ ∈ S(p̄), it is important from both theoretical and numerical points
of view to find out information on the set S(p) for p close to p̄. In other words
we are interested to know the behavior of the solution set S(p) when p lies in a
neighborhood of p̄. This is related to the calmness of the solution map at (p̄, x̄)

as we will see in the sequel. Moreover, information about the distance between
S(p) and S(p′) when p and p′ are arbitrary parameters in a neighborhood of p̄

are also interesting to obtain, and this is related to the Aubin property of the
mapping S around (p̄, x̄), which will be discussed also in this chapter. Nowa-
days the relationship between the Aubin property and metric regularity of a map
on one hand, and calmness and metric subregularity on the other hand, are well
known facts (see, for instance, [67] and the references therein).

Our aim is to provide both global and local stability results related to the
solution map of a parametric equilibrium problem; in particular, sufficient con-
ditions for Hölder continuity, as well as for Aubin property, and calmness of the
solution map are provided. These results are obtained by means of regularity
properties of the diagonal subdifferential operator associated to the equilibrium
bifunction, discussed in Chapter 6.

The results of this chapter have been obtained by Bianchi, Kassay, and
Pini [37], and Alleche and Rădulescu [9].

7.1 PRELIMINARIES ON GENERALIZED EQUATIONS

In the sequel we will denote by X a Banach space, with X∗ its dual space, and
by K a nonempty, closed, and convex subset of X. Given a set of parameters P ,
in what follows we will consider a parametric bifunction F : K × K × P → R,
satisfying the conditions:

A.1 F(x, x,p) = 0, for every x ∈ K , p ∈ P ;
A.2 F(x, ·,p) is convex and lower semicontinuous, for every x ∈ K , p ∈ P .

As in Chapter 6, we will denote by F̂ the standard extension of F to
K × X × P (see (6.19)).
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For every p ∈ P , let us denote by AF
p : X ⇒ X∗ the diagonal subdifferential

operator for the marginal bifunction F(·, ·,p), i.e.,

AF
p (x) :=

{
{x∗ ∈ X∗ : F(x, y,p) ≥ 〈x∗, y − x〉, ∀y ∈ K}, x ∈ K

∅, x ∈ X \ K.

Then the problem (EPp,K) can be equivalently formulated in terms of an
inclusion involving the operator AF

p as follows: x̄ is a solution of (EPp,K) if

and only if 0 ∈ AF
p (x̄), namely, x̄ ∈ (AF

p )−1(0). Our aim is to provide regularity
result for the solution map like Hölder continuity, calmness, and Aubin property.
To this purpose, we briefly recall some basic facts about parametric generalized
equations.

Let X, P be metric spaces, and Y be a linear metric space. For any set-valued
map H : X ×P ⇒ Y , we denote by S : P ⇒ X the solution map of the inclusion
0 ∈ H(x,p), i.e.,

S(p) := {x ∈ X : 0 ∈ H(x,p)} = (H(·,p))−1(0).

In the following, we will assume that the solution map is defined on the whole P .
In order to deal with a set-valued map H depending on more than one

variable, we give the partial notions of metric regularity, Aubin property, and
calmness (see, for instance, [69]). Recall from Chapter 6 that, for any subsets A,
B of a metric space, the excess functional is defined as

e(A,B) := sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

d(a, b),

under the convention e(∅,B) := 0, and e(A,∅) := +∞, for A �= ∅.

Definition 7.1. Let H : X × P ⇒ Y , and consider (x̄, p̄,0) ∈ gph(H). Denote
by U , V , W , neighborhoods of x̄, p̄, 0, respectively, and by Hp the marginal
map such that Hp(x) = H(x,p), for every x ∈ X and p ∈ P .

(i) H is said to be metrically regular with respect to x, uniformly with respect
to p, around (x̄, p̄,0) if there exist k > 0 and U , V , W such that

d(x,H−1
p (y)) ≤ kd(y,Hp(x)), ∀(x,p, y) ∈ U × V ×W; (7.1)

(ii) H is said to have the Aubin property with respect to x, uniformly with
respect to p, around (x̄, p̄,0) if there exist k > 0 and U , V , W such that

e(Hp(x) ∩W,Hp(x′)) ≤ kd(x, x′), ∀x, x′ ∈ U , p ∈ V; (7.2)

(iii) H is said to be calm with respect to x, uniformly with respect to p, at
(x̄, p̄,0) if there exist k > 0 and U , V , W such that

e(Hp(x) ∩W,Hp(x̄)) ≤ kd(x, x̄), ∀x ∈ U , p ∈ V . (7.3)



190 Equilibrium Problems and Applications

Similar definitions can be given with respect to p, uniformly with respect
to x, by considering the marginal map Hx . Likewise the metric regularity of a
map at a point (x̄, y) is equivalent to the Aubin property of the inverse map at
(y, x̄), similar results can be proved for the partial notions given above.

In the next propositions we recall some sufficient conditions on H entailing
suitable sensitivity properties of the solution map.

Proposition 7.1. ([36]) Suppose that the set-valued map H : X × P ⇒ Y satis-
fies the following conditions:

(i) there exists k, γ > 0 such that e(H(x,p),H(x,p′)) ≤ kd
γ

P (p,p′), for ev-
ery x ∈ X, for every p,p′ ∈ P ;

(ii) H(·,p) is globally metrically regular with constant k′, uniformly with re-
spect to p ∈ P .

Then e(S(p),S(p′)) ≤ kk′dγ

P (p,p′), for all p,p′ ∈ P .

Proposition 7.2. ([69]) Let H : X × P ⇒ Y , and consider (x̄, p̄,0) ∈ gph(H).
Suppose that the following conditions are satisfied:

(i) H has the Aubin property with respect to p, uniformly with respect to x,
around (x̄, p̄,0), with constant k′;

(ii) H is metrically regular with respect to x, uniformly with respect to p,
around (x̄, p̄,0), with constant k.

Then S has the Aubin property around (p̄, x̄) with constant kk′.

A pointwise version of the propositions above can be proved (see, for in-
stance, Th. 3.1 in [18]):

Proposition 7.3. Let p̄ ∈ P and x̄ ∈ X be fixed such that x̄ ∈ S(p̄). Suppose that
U(p̄), U(x̄) and V are neighborhoods of p̄, x̄ and 0 in P , X, and Y respectively,
satisfying

(i) H(x, ·) is calm with respect to p uniformly with respect to x at (x̄, p̄,0),
with constant k, and neighborhoods U(p̄), V , for all x ∈ U(x̄);

(ii) H(·, p̄) is metrically subregular at (x̄,0) with constant k′, and neighbor-
hood U(x̄).

Then the map S : P ⇒ X is calm at (p̄, x̄) with constant kk′, and neighborhoods
U(p̄) and U(x̄), i.e.,

e(S(p) ∩ U(x̄), S(p̄)) ≤ kk′dP (p, p̄), ∀p ∈ U(p̄). (7.4)

7.2 HÖLDER CONTINUITY OF THE SOLUTION MAP

In this section we find out conditions on F in order to apply Proposition 7.1 to
the set-valued map H , where H(x,p) = AF

p (x). We focus, first, on condition (i).

Proposition 7.4. Consider F : K ×K ×P → R satisfying assumptions A.1–A.2
and, in addition,
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A.3 There exist positive k, γ such that

|F(x, y,p)−F(x, y,p′)| ≤ kdγ (p,p′)‖x −y‖, ∀x, y ∈ K, p,p′ ∈ P.

Then e(AF
p (x),AF

p′(x)) ≤ kdγ (p,p′), for every x ∈ K , p,p′ ∈ P .

Proof. If AF
p (x) = ∅ there is nothing to prove. Otherwise, let x∗ ∈ AF

p (x); then,
from the assumptions,

F(x, y,p′) ≥ F(x, y,p) − kdγ (p,p′)‖x − y‖
≥ 〈x∗, y − x〉 − kdγ (p,p′)‖x − y‖;

in particular,

F(x, y,p′) + kdγ (p,p′)‖x − y‖ ≥ 〈x∗, y − x〉, ∀y ∈ K,

i.e., x∗ ∈ ∂(F̂ (x, ·,p′) + kdγ (p,p′)‖x − ·‖)(x). From Lemma 6.3, we get that
x∗ ∈ AF

p′(x) + B(0, kdγ (p,p′)), i.e., e(AF
p (x),AF

p′(x)) ≤ kdγ (p,p′).

A particular case where the assumptions of Proposition 7.4 are satisfied is
provided by

F(x, y,p) := h(x, y) + 〈g(p), y − x〉,
where h(x, x) = 0, h(x, ·) is convex and lower semicontinuous for every x ∈ K ,
and g : P → X∗ is Hölder continuous of order γ and constant k.

In the next example we provide a class of parametric bifunctions satisfying
assumption (i) in Proposition 7.1:

Example 7.1. Take F : Rn ×R
n ×R

m → R, such that F ∈ C2 and

∣∣∣∣ ∂2

∂pi∂yj

F (x, ·, ·)(x,p)

∣∣∣∣ ≤ k, ∀i = 1, . . . ,m, j = 1, . . . , n,

for every x ∈R
n, p ∈ R

m. In this case, AF
p (x) = {∇F(x, ·,p)(x)}, and

‖∇F(x, ·,p)(x) − ∇F(x, ·,p′)(x)‖

≤ nm sup
i,j

∣∣∣∣ ∂2

∂pi∂yj

F (x, ·, ·)(x,p)

∣∣∣∣ · ‖p − p′‖ ≤ k‖p − p′‖.

Conditions leading to (ii) in Proposition 7.1 can be provided via suitable
monotonicity assumptions on the diagonal subdifferential operator AF . Let us
first state the following result (for a similar result of local type, see [129],
Lemma 3.3). In the rest of this subsection we suppose that the Banach space
X is reflexive.



192 Equilibrium Problems and Applications

Lemma 7.1. Let T : X ⇒ X∗ be a maximal monotone operator satisfying for
some positive α the monotonicity condition:

〈v − v′, x − x′〉 ≥ α‖x − x′‖2, ∀x, x′ ∈ dom(T ),∀v ∈ T (x), v′ ∈ T (x′).
(7.5)

Then T is surjective, and globally metrically regular with constant 1/α.

Proof. Under the assumptions, the operator T is weakly coercive (i.e.,
infx∗∈T (x) ‖x∗‖ → +∞ as ‖x‖ → +∞), therefore it is surjective (see Theo-
rem 2.17 in [89]). T is also trivially one-to-one, that is, T (x) ∩ T (x′) = ∅ if
x �= x′. This entails that T −1 is defined and single-valued on the whole X∗.

Let us now show that T is globally metrically regular with constant 1/α. Let
(x0, v0) ∈ gph(T ) and r be a positive real number. Take any v ∈ B(v0, r); then,
by the one-to-one property of T , there exists a unique x ∈ X such that v ∈ T (x).
By (7.5) we argue that

‖v − v0‖ ≥ α‖x − x0‖.
In particular, x ∈ B(x0, r/α), thereby proving that T is open at linear rate 1/α.
Since this is equivalent to the global metric regularity, the proof is complete.

Taking into account the previous results, we can prove the mentioned Hölder
continuity of the solution map:

Theorem 7.1. Let F : K × K × P → R be a parametric bifunction satisfying
conditions A.1–A.3. Suppose, in addition, that

A.4 AF
p is maximal monotone for every p ∈ P , and satisfies (7.5), for some

positive α, uniformly with respect to p ∈ P .

Then the solution map S is single-valued and Hölder continuous with constant
k/α, i.e.,

‖S(p) − S(p′)‖ ≤ k

α
d

γ

P (p,p′), ∀p,p′ ∈ P.

Proof. Fix any p ∈ P . Then, by Lemma 7.1, the mapping H(·,p) = AF
p is glob-

ally metrically regular with constant 1/α, uniformly, with respect to p ∈ P .
Moreover, by Proposition 7.4, e(AF

p (x),AF
p′(x)) ≤ kd

γ

P (p,p′), for every x ∈ X,
and every p,p′ ∈ P . Then the assertion follows by Proposition 7.1, by noting
that, from the assumption A.4, one gets the single-valuedness of the solution
map.

Remark 7.1. In Anh-Khanh-Tam [13], Theorem 3.3, the authors provided con-
ditions on F entailing the Hölder continuity of the solution of the equilibrium
problem with respect to the parameter. In the example below, that will be given
without parameters for simplicity, we show that Theorem 3.3 in [13] does not
include our Theorem 7.1.
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Let X =R, K = [0,+∞) and consider the bifunction F : K ×K → R given
by

F(x, y) :=
⎧⎨
⎩y2 − x2, y > x

2

− 3x2

4 , 0 ≤ y ≤ x
2 .

We show that all the requirements needed in our case are satisfied, but con-
ditions (i)–(ii) of Theorem 3.3 in [13] fail. A.1 is trivial. Observe that F(x, ·)
is convex and lower semicontinuous for every x ∈ K , i.e., A.2 holds. For A.4
observe that, for every x ∈ K ,

∂F̂ (x, ·)(x) =
{

2x, x > 0

{t ∈R : t ≤ 0}, x = 0,

which means that AF
p is maximal monotone and α-strongly monotone with

α = 2.
On the other hand, let x = 2, and observe that F(2, ·) is not h.β-strongly

convexlike for every h,β > 0 (see Definition 2.2 in [65]). Indeed, taking y1 = 1
4 ,

y2 = 3
4 and t = 1

2 , there is no z ∈ K such that

F(2, z) ≤ 1

2
F(2, y1) + 1

2
F(2, y2) − h

4

1

2β
= −3 − h

4

1

2β
< −3,

as −3 is the minimal value of F(2, ·) on K . Thus, assumption (i) in The-
orem 3.3 [13] does not hold. Moreover, F is not even monotone; in fact,
F(1,3) + F(3,1) > 0, which shows that assumption (ii) in Theorem 3.3 [13]
does not hold either.

In the next result, which also asserts the Hölder continuity of the solution
map, all the assumptions will be given directly on F .

Corollary 7.1. Let F : K × K × P → R be a parametric bifunction satisfying
conditions A.1–A.3. Suppose, in addition, that

A.4’ F(·, ·,p) is α-monotone, uniformly with respect to p ∈ P , for some posi-
tive α (see Theorem 6.12);

A.5 F(·, y,p) is upper hemicontinuous on K (i.e., upper semicontinuous on
line segments in K), for every y ∈ K , p ∈ P .

Then the solution map S is single-valued and Hölder continuous with con-
stant k/α, i.e.,

‖S(p) − S(p′)‖ ≤ k

α
d

γ

P (p,p′), ∀p,p′ ∈ P.

Proof. Fix any p ∈ P . By Proposition 3.1 in [87], the map AF
p = H(·,p) is

maximal monotone. It is sufficient to prove that A.4’ implies that AF
p satis-
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fies (7.5). Indeed, take (x, v) and (x′, v′) in gph(AF
p ). We have that

F(x, x′,p) ≥ 〈v, x′ − x〉, F (x′, x,p) ≥ 〈v′, x − x′〉
and, by adding up both left and right-hand side, the α-strong monotonicity of AF

p

follows.

Remark 7.2. As observed by one of the referees, variants providing Lipschitz
continuity of the solution map can be achieved as follows. If instead of A3 we
suppose the condition:

A.3’

sup
x �=y∈K

|F(x, y,p) − F(x, y,p′)|
‖y − x‖ is finite on P × P,

then we can equip the set P with the metric

ρ(p,p′) = sup
x �=y∈K

|F(x, y,p) − F(x, y,p′)|
‖y − x‖ .

Without loss of generality one may assume that F(·, ·,p) �= F(·, ·,p′) for
p �= p′ because otherwise one could replace P by the equivalence classes with
respect to the relation p ∼ p′ ⇔ F(·, ·,p) = F(·, ·,p′). Then, using the same
arguments as in Proposition 7.4, the bound

e(AF
p (x),AF

p′(x) ≤ ρ(p,p′)

follows. This gives alternative results, similar to Theorem 7.1 and Corollary 7.1,
concerning the Lipschitz continuity of the solution map.

7.3 CALMNESS AND AUBIN PROPERTY OF THE SOLUTION
MAP

In the next two propositions we provide conditions on F in order to apply Propo-
sitions 7.2 and 7.1 to the set-valued map H , where H(x,p) = AF

p (x).

Proposition 7.5. Let F : K × K × P → R be a parametric bifunction. Take
p̄ ∈ P and x̄ ∈ K such that x̄ ∈ S(p̄); set U = B(x̄, r)∩K , and denote by W(p̄)

a neighborhood of p̄. Suppose that the bifunction F satisfies assumption A.1,
and the following additional conditions:

A.2’ F(x, ·, p̄) is convex and lower semicontinuous for every x ∈ U ;
A.3’ there exists a positive k such that

|F(x, y,p) − F(x, y, p̄)| ≤ kd(p, p̄)‖x − y‖,
∀x ∈ U , y ∈ K,p ∈ W(p̄);
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A.6 F(x̄, x, p̄) ≥ c d2(x, S(p̄)), for every x ∈ U and for some positive c;
A.7 F(·, ·, p̄) is cyclically monotone.

Then the solution map S : P ⇒ X is calm at (p̄, x̄).

Proof. From assumptions A.1, A.2’ and A.3’, following the same steps as in
Proposition 7.4 we can argue that the operator (x,p) �→ AF

p (x) is calm with
respect to p, uniformly with respect to x at (x̄, p̄,0). Furthermore, from The-
orem 6.13, we get that AF

p̄ is metrically subregular at (x̄,0), with constant
k = 1/c. The assertion follows from Proposition 7.3.

Remark 7.3. Note that, if F(x̄, ·, p̄) is strongly convex, then (b”) holds with
x̄∗ = 0; in this case, since S(p̄) ∩ U = {x̄} (A.2), A.6 can be simplified as fol-
lows:

A.6’ F(x̄, x, p̄) ≥ c ‖x − x̄‖2.

Proposition 7.6. Let F : K × K × P → R be a parametric bifunction. Take
p̄ ∈ P and x̄ ∈ K such that x̄ ∈ S(p̄); set U = B(x̄, r) ∩ K , and denote by
W , V neighborhoods of p̄, 0, respectively. Suppose that F satisfies assump-
tions A.1–A.2, and the following additional conditions:

A.3” there exists a positive k such that

|F(x, y,p) − F(x, y,p′)| ≤ kd(p,p′)‖x − y‖,
∀x ∈ U , y ∈ K,p,p′ ∈ W;

A.6” (AF
p )−1(x∗) �= ∅, for all x∗ ∈ V , and there exists c > 0 such that

inf
x̃∈(AF

p )−1(x̂)
(F (x̃, x,p) − 〈x∗, x − x̃〉) ≥ c d2(x, (AF

p )−1(x∗)),

∀x ∈ U , x∗ ∈ V,p ∈ W;
A.8 F(·, ·,p) is α-monotone, uniformly with respect to p ∈ W , for some

α > −c.

Then the solution map S : P ⇒ X has the Aubin property around (p̄, x̄).

Proof. From assumptions A.1–A.2 and A.3”, following the same steps as in
Proposition 7.4 we get that (x,p) �→ AF

p (x) is Aubin with respect to p, uni-
formly with respect to x around (x̄, p̄,0). Furthermore, from A.6”, arguing as
in second part of Theorem 6.12, we can show that (x,p) �→ AF

p (x) is metrically
regular with respect to x, uniformly with respect to p, around (x̄, p̄,0). The
assertion follows from Proposition 7.2.

7.4 APPLICATIONS TO SENSITIVITY OF PARAMETRIC
EQUILIBRIUM PROBLEMS AND VARIATIONAL SYSTEMS

Studies about the inverse of the sum of set-valued mappings have drawn in last
years the attention of many authors and constitute today an important and active
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research field. A basic motivation of such studies is related to the existence
of solutions of variational inclusions. Recall that a variational inclusion (or a
generalized equation) is a problem of the form

find x ∈ X such that y ∈ A(x) , (VI)

where A is a set-valued mapping acting between two Banach spaces X and Y ,
and y ∈ Y is a given point. In many cases, the point y could be of the form
f (x) where f is a single-valued function from X to Y or of the form f (p,x)

with p a parameter leading to an important class of variational inclusions called
parameterized generalized equations.

This problem serves as a general framework for describing in a unified
manner various problems arising in nonlinear analysis and in other areas in
mathematics including optimization problems and variational inequality prob-
lems.

In the simple case of a single-valued mapping A, problem (VI) reduces to
a simply functional equation, and it is then related to the surjectivity of the
involved single-valued mapping. From the same point of view, in the case of set-
valued mappings, the problem is also related to the surjectivity of the involved
set-valued mapping in the analogue sense. The pioneering work in this direc-
tion is the Banach1 open mapping theorem which guarantees that a continuous
mapping acting between Banach spaces is open if and only if it is surjective.

Among various advancements in this area, there are also the famous work
by Lyusternik [121] for nonlinear Fréchet differentiable functions and that of
Graves [85] for nonlinear operators acting between Banach spaces. It should
be emphasized that no differentiability assumption is made in the theorem of
Graves. Also, many investigations about the solution mappings by means of
classical differentiability or by the concepts of generalized differentiation have
been carried out and several results for variational inclusions have been ob-
tained. This direction has given rise to the rich theory of implicit functions for
parameterized generalized equations.

Another point of view having roots in the Milyutin’s covering mapping the-
orem which, in turn, goes back to the theorem of Graves, is what is known in
the literature under the name of the openness with linear rate or the covering
property, see [64]. This approach makes use of a constant like that appearing
in the Banach open mapping theorem for studying the regularity properties of
the inverse of set-valued mappings and it has produced many results with ap-
plications to different kinds of variational inclusions in the infinite dimensional
settings. We also refer to the notion of locally covering maps and its applications
to studying the distance to the set of coincidence points of set-valued mappings.
Many deep and important results are obtained and applied to different areas of
mathematics, including stability and continuous dependence, system of differ-
ential inclusions, implicit function theorems, functional equations, and existence
of double fixed points.
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In this section, we investigate the necessary conditions to deal with the Lip-
schitzian property of the inverse of the sum of two set-valued mappings. As the
inverse of the inverse of a set-valued mapping is the set-valued mapping itself,
and since the inverse of a Lipschitzian set-valued mapping need not be Lip-
schitzian, we wonder why always consider set-valued Lipschitzian mappings
if we want to obtain that the inverse of their sum is Lipschitzian. This leads
to say that nothing can prevent a set-valued non-Lipschitzian mapping to have
an inverse set-valued mapping which is Lipschitzian. However, going back to
the Banach open mapping theorem, we understand that this question has roots
in the fact that the inverse of a surjective linear and continuous mapping act-
ing between Banach spaces has some regularity properties, and by linearity, the
mapping itself is Lipschitzian. Of course, the situation is different when deal-
ing with set-valued mappings. Motivated by this question, we investigate here
the property of being set-valued pseudo-Lipschitzian in order to study the Lips-
chitzian property of the inverse of the sum of two set-valued mappings.

Our analysis is structured as follows. We first provide the necessary back-
ground to deal with set-valued mappings in the settings of metric spaces,
and introduce some notions defined from the properties of set-valued pseudo-
Lipschitzian mappings. Next, we obtain results on the behavior of fixed points
sets of set-valued pseudo-contraction mappings. We make use of our results
on the behavior of fixed point sets of set-valued pseudo-contraction mappings
to deal with the inverse of the sum of set-valued non necessarily Lipschitzian
mappings. Under weakened conditions of the Lipschitzian property but with ad-
ditional conditions on the existence of fixed points, we obtain that the inverse of
the sum of two set-valued mappings is Lipschitzian. Finally, we make use of the
proximal convergence to develop techniques and obtain results on the sensitivity
analysis of variational inclusions.

7.4.1 Pompeiu-Hausdorff Metric and Pseudo-Lipschitz
Set-Valued Mappings

Let (X,d) be a metric space. Given x ∈ X and r > 0, we denote by B (x, r)

(resp., B (x, r)) the open (resp., closed) ball around x with radius r .
Let A be a nonempty subset of X. The distance from a point x ∈ X is de-

fined by d (x,A) := infy∈A d (x, y), and, as usual, d(x,∅) = +∞. The open ball
around A with radius r is denoted by B (A, r) := ⋃

u∈A B (u, r).
For two subsets A and B of X, the excess of A over B (with respect to d) is

denoted by e (A,B) and is defined by e (A,B) := supx∈A d (x,B). In particular,
we adopt the conventions e (∅,B) := 0 and e (A,∅) := +∞ if A �= ∅.

The distance between A and B (with respect to d) is denoted by Haus (A,B)

and is defined by

Haus (A,B) := max {e (A,B) , e (B,A)} .
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Restricted to the closed subsets, Haus is an (extended real-valued) metric called
the Pompeiu-Hausdorff metric.2,3

Let (X,dX) and (Y, dY ) be two metric spaces. In the sequel, a set-valued
mapping T from X to Y will be denoted by T : X ⇒ Y . The domain of T is
the set dom (T ) := {x ∈ X | T (x) �= ∅}, and its graph is given by grph (T ) :=
{(x, y) ∈ X × Y | y ∈ T (x)}. If the graph of T is closed, then T has closed val-
ues. The converse holds under additional conditions, in particular if T is upper
semicontinuous.

Recall that a set-valued mapping T : X ⇒ Y is said to be upper semicontinu-
ous at a point x0 ∈ X if for every open subset V of Y such that T (x0) ⊂ V , there
exists an open neighborhood U of x0 such that T (x) ⊂ V , for every x ∈ U . The
set-valued mapping T is said to be upper semicontinuous if it is upper semicon-
tinuous at every point of X.

For a subset A of X, we denote by T (A) := ∪x∈AT (x), the image of A

by T . For a subset B of Y , the inverse image of B by T is T −1 (B) :=
{x ∈ X | B ∩ T (x) �= ∅}, while T −1 (y) stands for T −1 ({y}), if y ∈ Y . A set-
valued mapping T : X ⇒ Y is upper semicontinuous if and only if T −1 (B) is
closed, for every closed subset B of Y .

In the sequel, the fixed points set of a set-valued mapping T : X ⇒ X will be
denoted by Fix (T ), that is, Fix (T ) := {x ∈ X | x ∈ T (x)}.

The Lipschitz continuity (with respect to the Pompeiu-Hausdorff metric) is
one of the most popular properties of set-valued mappings. A set-valued map-
ping T : X ⇒ Y is said to be L-Lipschitzian on M ⊂ dom (T ) if it has closed
values on M and there exists L ≥ 0 such that

Haus (T (x1) , T (x2)) ≤ LdX (x1, x2) ∀x1, x2 ∈ M.

If X = Y and L ∈ [0,1), then T is called L-contraction on M .
To deal with the properties of the inverse of the sum of two set-valued map-

pings, it has been proved in [35, Lemma 2] the following result for set-valued
Lipschitzian mappings. If T : X ⇒ Y is L-Lipschitzian on M , then for every
two nonempty subsets A and B of M ,

e (T (A) ,T (B)) ≤ Le (A,B) .

This property being not adapted to our techniques, we develop here some
analogue properties related to pseudo-Lipschitzian set-valued mappings.

Recall that a set-valued mapping T : X ⇒ Y is said to be pseudo-
Lipschitzian around (x, y) ∈ grph (T ) if there exist a constant L ≥ 0 and neigh-
borhoods Mx ⊂ dom (T ) of x and My of y such that

e
(
T (x1) ∩ My,T (x2)

) ≤ LdX (x1, x2) ∀x1, x2 ∈ Mx.

The notion of being pseudo-Lipschitzian around (x, y) is called the Aubin
property when Mx and My are closed balls around x and y, respectively. It is
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well-known that the Aubin property of the set-valued mapping T turns out to be
equivalent to the metric regularity of the set-valued mapping T −1.

We extend the above definition to any two nonempty subsets Mx ⊂ dom (T )

and My ⊂ Y , and we say that T is L-pseudo-Lipschitzian on Mx with respect
to My . When X = Y , Mx = My = M and L ∈ [0,1), the set-valued mapping T

is called L-pseudo-contraction with respect to M .
Let M ⊂ dom (T ) and N be two nonempty subsets of X, and S a nonempty

subset of Y . We say that T is fully L-pseudo-Lipschitzian on M for N with
respect to S if for any two nonempty subsets A and B of M , we have

e (T (A) ∩ S,T (B)) ≤ Le (A ∩ N,B) .

It follows immediately from the definition that any set-valued fully L-
pseudo-Lipschitzian on M for N with respect to S is L-pseudo-Lipschitzian
on M with respect to S. It is also fully L-pseudo-Lipschitzian on M for N ′ with
respect to S, for any subset N ′ containing N .

Conversely, any set-valued L-Lipschitzian mapping T : X ⇒ Y on a subset
M is fully L-pseudo-Lipschitzian on M for N with respect to any subset of Y ,
for any subset N of X containing M .

More generally, we have the following result for set-valued pseudo-
Lipschitzian mappings which can be compared to [35, Lemma 2].

Proposition 7.7. Let T : X ⇒ Y be a set-valued L-pseudo-Lipschitzian on M

with respect to S. Then, for any nonempty subsets A and B of M , we have

e (T (A) ∩ S,T (B)) ≤ Le (A,B) .

In particular, T is fully L-pseudo-Lipschitzian on M for N with respect to S, for
any subset N containing M .

Proof. Let A and B be nonempty and contained in M . To avoid any confusion,
put A′ = {x ∈ A | T (x) ∩ S �= ∅}. Then,

e (T (A) ∩ S,T (B)) = sup
u∈T (A)∩S

dY (u,T (B))

= sup
x1∈A′

sup
u∈T (x1)∩S

inf
x2∈B

dY (u,T (x2))

≤ sup
x1∈A′

inf
x2∈B

sup
u∈T (x1)∩S

dY (u,T (x2))

= sup
x1∈A′

inf
x2∈B

e (T (x1) ∩ S,T (x2))

≤ L sup
x1∈A′

inf
x2∈B

dX (x1, x2)

≤ L sup
x1∈A

dX (x1,B) = Le (A,B) .
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Since e (A,B) = e (A ∩ N,B) whenever N contains M , then the set-valued
mapping T is fully L-pseudo-Lipschitzian on M for N with respect to S.

Although the notion of being fully pseudo-Lipschitzian seems to fit very
well with the other existing notions such as those of being Lipschitzian and
pseudo-Lipschitzian, it may be interesting to look for conditions involving it for
a subset N which does not necessarily contain M .

Proposition 7.8. Let T : X ⇒ Y be a set-valued L-pseudo-Lipschitzian on M

with respect to S, and let N be a subset of X such that T (x) ∩ S = ∅, whenever
x ∈ M \ N . Then, T is fully L-pseudo-Lipschitzian on M for N with respect
to S.

Proof. Let A and B be nonempty and contained in M . We remark that T (A) ∩
S = T (A ∩ N) ∩ S. The proof then follows step by step that of Proposition 7.7.

The following example provides us with a set-valued non-Lipschitzian map-
ping which is fully pseudo-Lipschitzian mapping, where M is not contained
in N . We can also choose N in such a way that neither M is contained in N nor
N is contained in M .

Example 7.2. Let T : R2 ⇒R
2 be the set-valued mapping defined by

T ((x, y)) =
{{2x} × ([0,2 |x|] ∪ [3,+∞[) if ‖ (x, y)‖ < 1,

{2x} × ]
0, x2

]
if ‖ (x, y)‖ ≥ 1.

Let M = S = B ((0,0) ,1) and N =
{
(x, y) ∈ M | |x| < 1

2

}
. In this example,

we have N ⊂ M . Clearly, the set-valued mapping T is not Lipschitzian on R
2.

However, T is 2
√

2-pseudo-Lipschitzian on M with respect to S. We remark
that for any x ∈ M \ N , T (x) ∩ S = ∅. Then, we conclude by Proposition 7.8
that T is fully 2

√
2-pseudo-Lipschitzian on M for N with respect to S.

If we take N ′ = N ∪N1 where N1 \M �= ∅, then T is still fully 2
√

2-pseudo-
Lipschitzian on M for N ′ with respect to S. In this case, neither M is contained
in N ′ nor N ′ is contained in M .

Finally, recall that if (Y, d) is a linear metric space, the distance d is said to
be shift-invariant metric if

d
(
y + z, y′ + z

) = d
(
y, y′) for all y, y′, z ∈ X.

Let A and B be two subsets of a linear metric space (Y, d) with shift-
invariant metric d , and a, b, b′ ∈ Y . It is shown in [35] that

e (A + a,B + a) ≤ e (A,B) and e
(
A + b,A + b′) ≤ d

(
b, b′) .
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7.4.2 Fixed Points Sets of Set-Valued Pseudo-Contraction
Mappings

Existence of fixed points is a subject which is not limited to set-valued con-
traction or pseudo-contraction mappings, and in this spirit, we do not make
use here of classical conditions assuring existence of fixed points for set-valued
mappings. More precisely, we assume that the fixed points sets of the involved
set-valued mappings are nonempty and linked in such a way that a result on the
behaviors of their fixed points sets is derived. Furthermore, instead of conditions
on the distance between the images of the set-valued mappings as considered in
some recent papers, we impose conditions only on those for the fixed points.

We do not follow here classical procedures usually employed when deal-
ing with the behaviors of fixed points sets of set-valued mappings. Instead, we
make use of the following more precise version of the lemma on existence of
fixed points of set-valued pseudo-contraction mappings, which is also called the
Dontchev-Hager fixed point theorem; see [28]. This version is enhanced in the
sense that not only the completeness is assumed only on the closed ball, but
more particularly, only the values of the restriction of the set-valued mapping
on the closed ball are assumed to be nonempty and closed. The proof follows,
step by step, the arguments used in [66], which are based on techniques hav-
ing roots in the Banach contraction principle. A proof using arguments based
on a weak variant of the Ekeland variational principle has also been carried out
in [28].

Lemma 7.2. Let (X,d) be a metric space. Let x̄ ∈ X and α > 0 be such that
B (x̄,α) is a complete metric subspace. Let λ ∈ [0,1) and T : X ⇒ X be a
set-valued mapping with nonempty closed values on B (x̄,α) such that

1. d (x̄, T (x̄)) < (1 − λ)α and
2. e

(
T (x) ∩ B (x̄,α) , T

(
x′)) ≤ λd

(
x, x′) ∀x, x′ ∈ B (x̄,α).

Then, T has a fixed point in B (x̄,α).

Now, we derive the following result on the behavior of fixed points sets of
set-valued mappings. It is worthwhile noticing that one of the general results
obtained in this direction is [19, Theorem 4.1]. However, our conditions seem
to be somewhat different. In any case, and at the current stage of advancement,
it is not easy to see if it is possible to derive our result from it, see Remark 7.4
below for explanation.

Theorem 7.2. Let (X,d) be a metric space. Let x0 ∈ X and r > 0 be such that
B (x0, r) is a complete metric subspace. Let λ ∈ (0,1) and 0 < β < (1 − λ) r

and let T ,S : X ⇒ X be two set-valued mappings such that

1. T is λ-pseudo-contraction with respect to B (x0, r) and has nonempty
closed values on B (x0, r);

2. S has nonempty fixed points set and for every x ∈ Fix (S),

d (x, x0) < β and d (x,T (x)) < λβ.
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Then, T has a nonempty fixed points set and

e(Fix (S) ,Fix (T )) ≤ 1

1 − λ
sup

x∈B(x0,r)

e (S (x) , T (x)) .

Proof. Fix ε > 0 and put

α = min

{
1

1 − λ
sup

x∈B(x0,r)

e (S (x) , T (x)) + ε,
λβ

1 − λ

}
.

Let x̄ ∈ Fix (S) be an arbitrary element.

Claim 1: We prove that B (x̄,α) ⊂ B (x0, r). To do this, let x ∈ B (x̄,α). Then,
from assumption (2), we have

d (x, x0) ≤ d (x, x̄) + d (x̄, x0)

< α + β ≤ 1

1 − λ
λβ + β < λr + (1 − λ) r = r.

Claim 2: We have d (x̄, T (x̄)) < (1 − λ)α. Indeed, since x̄ ∈ Fix (S), then by
assumption (2), d (x̄, T (x̄)) < λβ. Also,

d (x̄, T (x̄)) ≤ e (S (x̄) , T (x̄)) ≤ sup
x∈B(x0,r)

e (S (x) , T (x)) ,

and, since d (x̄, T (x̄)) is finite, then

d (x̄, T (x̄)) < sup
x∈B(x0,r)

e (S (x) , T (x)) + (1 − λ) ε.

Thus, d (x̄, T (x̄)) < (1 − λ)α.
It results by Claim 1 and assumption (1) that T has nonempty closed values

on B (x̄,α) and for every x, x′ ∈ B (x̄,α),

e
(
T (x) ∩ B (x̄,α) , T

(
x′)) ≤ e

(
T (x) ∩ B (x0, r) , T

(
x′)) ≤ λd

(
x, x′) .

Now, all hypotheses of Lemma 7.2 are satisfied for T on B (x̄,α) and then,
T has a fixed point x∗ ∈ B (x̄,α). It follows that

d (x,Fix (T )) ≤ d
(
x, x∗) ≤ α ≤ 1

1 − λ
sup

x∈B(x0,r)

e (S (x) , T (x)) + ε.

This inequality being valid for any x ∈ Fix (S), we obtain

e (Fix (S) ,Fix (T )) ≤ 1

1 − λ
sup

x∈B(x0,r)

e (S (x) , T (x)) + ε.

Letting ε go to zero, we complete the proof.
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Remark 7.4. In [19, Theorem 4.1], the authors consider the set of coincidence
points of two set-valued mappings 	 and 
 which is exactly the fixed points
set of 	 whenever 
 is the embedding set-valued mapping EmbX of X de-
fined by EmbX (x) = {x}, for every x ∈ X. Then, according to our notations, we
take 	 = T , 	̃ = S and 
 = 
̃ = EmbX. In our assumptions, T is λ-pseudo-
contraction with respect to B (x0, r) which is weaker than the property of being
pseudo-Lipschitzian with Lipschitz constant λ considered in [19]. But to over-
come this fact, we know that it is pseudo-Lipschitzian with Lipschitz constant
λ + ε, for every ε > 0. According to the notations of [19], we take x∗

0 = y∗
0 any

point in Fix (S) which plays the role of x0 and y0 in [19], respectively. But we
can not take our x0 because d (x0, T (x0)) is not known under our assumptions.
Also, we take R1 = R2 = R̃ = λr , β = λ + ε and α = 1. As a conclusion, for
any r1 > 0 and r2 > 0 verifying condition (3.11) of [19, p. 821], we obtain

e
(
Fix (S) ∩ B

(
x∗

0 , r1
)
,Fix (T )

) ≤ 1

1 − λ − ε
sup

x∈B
(
x∗

0 ,r1
) e (S (x) , T (x)) .

It is not clear how to choose, for every ε > 0, r1 (which depends on ε) in such
a way that Fix (S) ⊂ B

(
x∗

0 , r1
) ⊂ B (x0, r), since the upper bound in the sec-

ond term of the inequality is taken on B
(
x∗

0 , r1
)
. Furthermore, neither X nor

the graph of T are assumed to be complete in Theorem 7.2. This condition is
required in [19, Theorem 4.1].

Now, we derive the following useful property.

Corollary 7.2. Let (X,d) be a metric space. Let x0 ∈ X and r > 0 be such that
B (x0, r) is a complete metric subspace. Let λ ∈ (0,1) and 0 < β < (1 − λ) r

and let T ,S : X ⇒ X be two set-valued mappings such that

1. S and T are λ-pseudo-contractions with respect to B (x0, r) and have
nonempty closed values on B (x0, r);

2. S has nonempty fixed points set and for every x ∈ Fix (S),

d (x, x0) < β and d (x,T (x)) < λβ;
3. T has nonempty fixed points set and for every x ∈ Fix (T ),

d (x, x0) < β and d (x,S (x)) < λβ.

Then,

Haus (Fix (S) ,Fix (T )) ≤ 1

1 − λ
sup

x∈B(x0,r)

Haus (S (x) , T (x)) .

Remark 7.5. It is worthwhile emphasizing the importance of the above re-
sult which allows to replace the excess by the Pompeiu-Hausdorff metric in
the conclusion of Theorem 7.2. Even if all the fixed points sets of the involved
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set-valued mappings are in B (x0, r), there does not seem to be any result in the
literature dealing with set-valued pseudo-contraction mappings which provides
such a conclusion; see, for comparison, the recent generalization given in [2] of
Lim’s lemma.

In the following example, we give two set-valued mappings satisfying the
conditions of Theorem 7.2 with respect to each other. Though some conditions
are relaxed, this example provides us a situation where the Pompeiu-Hausdorff
metric can be used in the conclusion of Theorem 7.2.

Example 7.3. According to Theorem 7.2, let X = R
2, x0 = (0,0), r = 1 and

λ = 1√
2
.

Let T :R2 ⇒R
2 be the set-valued mapping defined by

T ((x, y)) =
⎧⎨
⎩

{
x
2

} ×
([

0,
|x|
2

]
∪ [3,+∞[

)
if ‖ (x, y)‖ < 1,

{2x} × ]
0, x2

]
if ‖ (x, y)‖ ≥ 1.

Thus, T has nonempty closed values on B (x0, r) and the images of points
of B (x0, r) are not necessarily included in B (x0, r). And since, for every
(x1, y1) and (x2, y2) in B (x0, r), we have

e (T ((x1, y1)) ∩ B (x0, r) , T ((x2, y2))) ≤ 1√
2

|x1 − x2| ,

then, T is λ-pseudo-contraction with respect to B (x0, r). We note that T is not
Lipschitzian on R

2 and Fix (T ) = {(0,0)}.
Now, take any α ∈

]
0,2

√
λ
5

(
1 − √

λ
)[

and define S : R2 ⇒R
2 by

S ((x, y)) =
⎧⎨
⎩

{
x+α

2

} ×
([

0,
|x|
2

]
∪ [3,+∞[

)
if ‖ (x, y)‖ < 1,

{2x} × ]
0, x3

]
if ‖ (x, y)‖ ≥ 1.

The set-valued mapping S has nonempty closed values on B (x0, r) and the
images of points of B (x0, r) are not necessarily included in B (x0, r). Also,
it is λ-pseudo-contraction with respect to B (x0, r) and Fix (S) = {α} × [

0, α
2

]
.

Finally, S is not Lipschitz on R
2.

We set β =
(

1 − √
λ
)

< (1 − λ) r and we verify the other conditions of

Theorem 7.2.

1. For the unique fixed point (0,0) of T , we have

d ((0,0) , S ((0,0))) = α

2

≤
√

λ

5

(
1 − √

λ
)

< λ
(

1 − √
λ
)

= λβ.
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2. For any (α, γ ) ∈ Fix (S), we have

d ((α, γ ) , (0,0)) ≤
√

α2 + α2

4
=

√
5

2
α = √

λ
(

1 − √
λ
)

< β

and

d ((α, γ ) , T ((α, γ ))) ≤ d
(
(α, γ ) ,

(α

2
,
α

2

))
=

√
α2

4
+

(
γ − α

2

)2

≤ α√
2

<
√

2

√
λ

5

(
1 − √

λ
)

< λ
(

1 − √
λ
)

= λβ.

Proposition 7.9. Under assumptions of Theorem 7.2, we have

e(Fix (S) ∩ B,Fix (T )) ≤ 1

1 − λ
sup

x∈B(x0,r)

e (S (x) ∩ B,T (x)) ,

for every subset B of X such that B ∩ Fix (S) �= ∅.

Proof. It suffices to replace S in Theorem 7.2 by the set-valued mapping S ∩ B

defined on X by (S ∩ B) (x) = S (x) ∩ B.

7.4.3 Inverse of the Sum of Two Set-Valued Mappings

As in Theorem 7.2 of the last section, the two set-valued mappings involved
in the following results, will be connected between them by some additional
conditions related to the existence of fixed points. We formulate this connection
in the following definition which can be compared to the notion of sum-stable
maps used in [69, Definition 4.2].

Let F,G : X ⇒ Y be two set-valued mappings, x0 ∈ X, y0 ∈ Y , B ⊂ Y ,
α > 0 and β > 0. We say that F is (α,β)-compatible with respect to G on B for
x0 and y0 if the following conditions hold:

(FP1) for every y ∈ B, there exists xy ∈ X such that
(
y − G

(
xy

)) ∩(
F

(
xy

) − y0
) �= ∅;

(FP2) if x is such that (y − G(x)) ∩ (F (x) − y0) �= ∅ for some y ∈ B, then
dX (x, x0) < β and dX

(
x,F−1

(
y′ + y0 − G(x)

))
< αβ, for every y′ ∈ B

with y′ �= y.

Example 7.4. Set X = Y = R
2 and x0 = y0 = (0,0) ∈ R

2. Choose λ = 1√
2
,

β =
(

1 − √
λ
)

and δ = 2
√

λ
5

(
1 − √

λ
)

. Put B = B (y0, δ) and define, for every

z ∈ B, the set-valued mapping Tz : R2 ⇒R
2 by

Tz ((x, y)) =
⎧⎨
⎩

{
x+‖z‖

2

}
×

([
0,

|x|
2

]
∪ [3,+∞[

)
if ‖ (x, y)‖ < 1,

{2x} × ]
0, x3

]
if ‖ (x, y)‖ ≥ 1.
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As in Example 7.3, the set-valued mapping Tz is not Lipschitzian but
λ-pseudo-contraction with respect to B (x0,1), has nonempty closed values on

B (x0,1) and Fix (Tz) = {‖z‖} ×
[
0,

‖z‖
2

]
, for every z ∈ B.

For z ∈ B and (α, γ ) ∈ Fix (Tz), we have

d ((α, γ ) , x0) < β and d
(
(α, γ ) , Tz′ ((α, γ ))

)
< λβ,

for every z′ ∈ B such that z �= z′.
Now, if F and G are two set-valued mappings defined on R

2 to R
2 in such a

way that for any z ∈ B and (x, y) ∈R
2, we have

Tz ((x, y)) = F−1 (y − G((x, y))) ,

then F is (λ,β)-compatible with respect to G on B for x0 and y0

We now formulate the following inverse set-valued mapping result for the
sum of two set-valued mappings similar to [35, Theorem 3], where the condition
of being Lipschitzian is replaced by some local conditions such as the condition
of being pseudo-Lipschitzian.

From now on, the metric of the linear metric space Y will be always assumed
to be shift-invariant and (−1)-homogeneous. A metric dY on a linear space Y is
called α-homogeneous, α ∈ R, if dY (αx,αy) = |α|dY (x, y), for every x, y ∈ Y .
Every metric associated to a norm is α-homogeneous, for every α ∈R. Thus, the
metric dY is (−1)-homogeneous if dY (−x,−y) = dY (x, y), for every x, y ∈ Y .

Theorem 7.3. Let (X,dX) be a metric space, (Y, dY ) be a linear metric space,
r > 0, x0 ∈ X, and y0 ∈ Y be such that B (x0, r) is a complete metric subspace.
Let F,G : X ⇒ Y be two set-valued mappings satisfying the following assump-
tions

1. G has nonempty closed values on B (x0, r), G(x0) is a bounded set with
diameter d0, and there exist α > 0, δ > 0 and a nonempty subset N of Y

such that G(B (x0, r)) ⊂ B (G(x0) , αr), and G is α-pseudo-Lipschitzian
on B (x0, r) with respect to B (G(x0) , δ) + y0 − N ;

2. B (x0, r) ⊂ dom (F ), B (y0, δ + αr + d0) ⊂ F(B (x0, r)), F is upper semi-
continuous, and there exists K > 0 such that αK < 1 and F−1 is
fully K-pseudo-Lipschitzian on B (y0, δ + αr + d0) for N with respect to
B (x0, r);

3. there exists β > 0 such that β < (1 − αK) r , and F is (α,β)-compatible
with respect to G on B (G(x0) , δ) for x0 and y0.

Then, (F + G)−1 is K
1−αK

-Lipschitzian on B (G(x0) + y0, δ).

Proof. Let y ∈ B (G(x0) , δ) be fixed, and consider the set-valued mapping
Ty : X ⇒ X defined by

Ty (x) := F−1 (y + y0 − G(x)) = {t ∈ X | ∃z ∈ G(x) , y + y0 − z ∈ F (t)} .
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Clearly, Fix
(
Ty

) = (F + G)−1 (y + y0), and it follows by condition (3) that
there exist xy ∈ X, yG ∈ G

(
xy

)
, and yF ∈ F

(
xy

)
such that

y − yG = yF − y0.

Therefore, y = yF + yG − y0 ∈ (F + G)
(
xy

) − y0, hence xy ∈
(F + G)−1 (y + y0). This proves in particular that

B (G(x0) + y0, δ) ⊂ dom (F + G)−1 .

To verify hypotheses of Theorem 7.2 to any couple of set-valued mappings
Ty with y ∈ B (G(x0) , δ), we state first the following fact:

y + y0 − G(x) ⊂ B (y0, δ + αr + d0) ∀x ∈ B (x0, r) .

Indeed, let x ∈ B (x0, r) and z ∈ G(x). Since dY is a shift-invariant metric, it
suffices to verify that dY (y, z) < δ + d0 + αr . Let yx0 ∈ G(x0) be such that
dY

(
y, yx0

)
< δ and put ε = δ − dY

(
y, yx0

)
> 0. Let uε,z ∈ G(x0) be such that

dY

(
uε,z, z

)
< αr + ε

2 . Then, we obtain

dY (y, z) ≤ dY

(
y, yx0

) + dY

(
yx0, uε,z

) + dY

(
uε,z, z

)
< dY

(
y, yx0

) + d0 + αr + ε

2

= δ − ε + d0 + αr + ε

2
< δ + d0 + αr.

The set-valued mapping Ty has nonempty closed values on B (x0, r). Indeed,
let x ∈ B (x0, r). For every z ∈ G(x), y +y0 −z ∈ B (y0, δ + αr + d0), and then
F−1 (y + y0 − z) �= ∅. Thus, Ty (x) �= ∅, for every x ∈ B (x0, r). Moreover, by
the upper semicontinuity of F and since y + y0 −G(x) is closed, then Ty (x) =
F−1 (y + y0 − G(x)) is closed, for every x ∈ B (x0, r).

The set-valued mapping Ty is αK-pseudo-contraction with respect to
B (x0, r). Indeed, for x1, x2 ∈ B (x0, r), we know from above that y + y0 −
G(x1) and y + y0 − G(x2) are contained in B (y0, δ + αr + d0). Then,

dX

(
Ty (x1) ∩ B (x0, r) , Ty (x2)

)
= e

(
F−1 (y + y0 − G(x1)) ∩ B (x0, r) ,F−1 (y + y0 − G(x2))

)
≤ Ke ((y + y0 − G(x1)) ∩ N,y + y0 − G(x2)) .

Since dY is shift-invariant and (−1)-homogeneous, then

Ke ((y + y0 − G(x1)) ∩ N,y + y0 − G(x2))

= Ke ((G(x1)) ∩ (y + y0 − N) ,G(x2)) ≤ αKdX (x1, x2) .
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To verify the condition (2) of Theorem 7.2, take y, y′ ∈ B (G(x0) , δ), y �= y′
and suppose x ∈ Fix

(
Ty

)
. Then, by condition (3), dX (x, x0) < β and

dX

(
x,F−1 (

y′ + y0 − G(x)
))

< αβ.

It follows that dX (x, x0) < β and dX

(
x,Ty (x)

)
< αβ which are required.

It remains now to verify that the set-valued mapping (F + G)−1 is K
1−αK

-
Lipschitzian on B (G(x0) + y0, δ). Notice that Fix

(
Ty

) ⊂ B (x0, r), for all
y ∈ B (G(x0) , δ).

For z, z′ ∈ B (G(x0) + y0, δ), let z = y + y0 and z′ = y′ + y0 with
y, y′ ∈ (G(x0) , δ). We have

e
(
(F + G)−1 (z) , (F + G)−1 (

z′)) = e
(
Fix

(
Ty

)
,Fix

(
Ty′

))
and

e
(
Fix

(
Ty

)
,Fix

(
Ty′

)) = e
(
Fix

(
Ty

) ∩ B (x0, r) ,Fix
(
Ty′

))
≤ 1

1 − αK
sup

x∈B(x0,r)

e
(
Ty (x) ∩ B (x0, r) , Ty′ (x)

)
.

On the other hand, for every x ∈ B (x0, r), we have

e
(
Ty (x) ∩ B (x0, r) , Ty′ (x)

)
= e

(
F−1 (y + y0 − G(x)) ∩ B (x0, r) ,F−1 (

y′ + y0 − G(x)
))

≤ Ke
(
(y + y0 − G(x)) ∩ N,y′ + y0 − G(x)

)
≤ Ke

(
y + y0 − G(x) , y′ + y0 − G(x)

) ≤ KdY

(
y, y′) .

We conclude that

e
(
(F + G)−1 (z) , (F + G)−1 (

z′)) ≤ K

1 − αK
dY

(
y, y′) = K

1 − αK
dY

(
z, z′)

which, by interchanging z and z′, completes the proof.

Remark 7.6. We remark that in condition (1) of the above theorem, the condi-
tion of G being α-pseudo-Lipschitzian on B (x0, r) with respect to

B (G(x0) , δ) + y0 − B (y0, δ + αr + d0)

can be replaced by the weaker condition of G being α-pseudo-Lipschitzian
on B (x0, r) with respect to y + y0 − B (y0, δ + αr + d0), for every
y ∈ B (G(x0) , δ).
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Now, we obtain a result similar to the classical result due to Graves on the
inverse of continuous functions acting between Banach spaces. We first state the
following property.

Theorem 7.4. Suppose that hypotheses of Theorem 7.3 are satisfied such that

B (y0, δ + αr + d0) ⊂ F(B (x0, r)),

F−1 is fully K-pseudo-Lipschitzian on B (y0, δ + αr + d0) for N with respect to
B (x0, r), and B (G(x0) , δ) is replaced by

⋃
u∈G(x0)

B (u, δ) in the correspond-

ing conditions. Then the set-valued mapping (F + G)−1 is K
1−αK

-Lipschitzian

on
⋃

u∈G(x0)
B (u + y0, δ).

Proof. The proof follows step by step the proof of Theorem 7.3 where instead of
taking y ∈ B (G(x0) , δ), we take y ∈ ⋃

u∈G(x0)
B (u, δ). The unique fact which

merits to be established is that for every y ∈ ⋃
u∈G(x0)

B (u, δ),

y + y0 − G(x) ⊂ B (y0, δ + αr + d0) ∀x ∈ B (x0, r) .

Let y ∈ ⋃
u∈G(x0)

B (u, δ) and take uy ∈ G(x0) such that y ∈ B
(
uy, δ

)
. Let

x ∈ B (x0, r) and z ∈ G(x). Since dY is a shift-invariant metric, it suf-
fices to verify that dY (y, z) ≤ δ + d0 + αr . Since dX

(
y,uy

) ≤ δ, let (�n)n
be an increasing sequence of positive numbers such that lim

n→+∞�n = 1 and

εn = δ − �ndX

(
y,uy

)
> 0, for every n. Now, for every n, let yn,z ∈ G(x0) be

such that dY

(
yn,z, z

)
< αr + εn

2 . Then, we obtain

dY (y, z) ≤ dY

(
y,uy

) + dY

(
uy, yn,z

) + dY

(
yn,z, z

)
< dY

(
y,uy

) + d0 + αr + εn

2
,

and since lim
n→+∞ εn = δ − dY

(
y,uy

)
, we have

dY (y, z) ≤ dY

(
y,uy

) + d0 + αr + δ − dY

(
y,uy

)
2

= δ + dY

(
y,uy

)
2

+ d0 + αr ≤ δ + d0 + αr

which completes the proof.

Remark 7.7. Theorem 7.3 and Theorem 7.4 provide us with the conclusion
that the set-valued mapping (F + G)−1 is Lipschitzian. In [19, Lemma 4.3], the
authors obtain that the inverse of the considered set-valued mapping is pseudo-
Lipschitzian, which is a property weaker than that of being Lipschitzian. It
should be emphasized that this result has been used to derive sufficient con-
ditions for the existence of double fixed points of set-valued mappings which,
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in particular, has applications to the problem of regularity of the composition of
set-valued mappings, see [91].

Recall that the Banach open mapping theorem guarantees that a linear con-
tinuous mapping A from a Banach space X to a Banach space Y is surjective
if and only if it is an open mapping. In particular, if A is surjective linear and
continuous, then there exists K > 0 such that

BY (0,1) ⊂ A(BX (0,K)) .

Corollary 7.3. Let (X,‖.‖X) and (Y,‖.‖Y ) be two Banach spaces. Denote by
A : X → Y a surjective, linear, and continuous mapping and let K be the con-
stant arising from the Banach open mapping theorem. Let r > 0 and x0 ∈ X. Let
g : X → Y be a single-valued mapping and suppose that the following condi-
tions are satisfied:

1. there exist α > 0 and a subset N of Y containing A(x0) such that αK < 1,
g (B (x0, r)) ⊂ B (g (x0) , αr), and g is α-pseudo-Lipschitzian on B (x0, r)

with respect to B
(
g (x0) , 1−αK

K
r
)

+ A(x0) − N ;

2. A−1 is fully K-pseudo-Lipschitzian on B
(
A(x0) , 1−αK

K
r + αr

)
for N with

respect to the set B (x0, r);
3. there exists β > 0 such that β < (1 − αK) r , and A is (α,β)-compatible

with respect to g on B
(
g (x0) , 1−αK

K
r
)

for x0 and y0.

Then, (A + G)−1 is K
1−αK

-Lipschitzian on B
(
A(x0) + g (x0) , 1−αK

K
r
)

.

Proof. Let F = A and G = g. From the Banach open mapping theorem,

B
(
A(x0) ,

r

K

)
⊂ A

(
B (x0, r)

) = F
(
B (x0, r)

)
.

We complete the proof by applying Theorem 7.4 with δ = 1−αK
K

r , y0 = A(x0)

and d0 = 0.

We now give some remarks about the conditions on the mapping A that have
been involved in the proof of Corollary 7.3. The continuity of A implies, by
the Banach open mapping theorem, the openness of A. However, the linearity
of A is not used in the proof. Instead of that, we need that A−1 is fully pseudo-
Lipschitzian.

On the other hand, the openness of A can be involved without the linear-
ity of A. In the literature and especially, in Convex Analysis without linearity,
generalizations of some implicit function theorems and other questions of Opti-
mization have been obtained without linearity, see [136]. See also [156] where a
notion denoted by PL weaker than that of the linearity has been recently defined
and a generalization of the Banach open mapping theorem has been derived. It
is shown in particular, that every surjective continuous mapping acting between
Banach spaces and satisfying the conditions of the notion PL is open.
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7.4.4 Sensitivity Analysis of Variational Inclusions

In what follows, based on proximal convergence, we make use of the results de-
veloped previously and develop techniques related to the existence of solutions
of variational inclusions.

Let (P, dP ) be a metric space which is called the set of parameters, and let
A : P × X ⇒ Y be a set-valued mapping, where (X,dX) is metric space and
(Y, dY ) a linear metric space. For a fixed value of the parameter p ∈ P , we
consider the parameterized generalized equation:

find x ∈ dom (A (p, .)) such that 0 ∈ A(p,x) , (PGE)

where its set of solutions is denoted by SA (p) which defines a set-valued map-
ping.

The regularity properties of the solution mapping p �→ SA (p) are related to
the theory of implicit functions and its applications for variational inclusions.

We define a measure of the sensitivity of the solutions with respect to small
changes in the problem’s data in order to apply it to the problem of existence of
solutions of variational inclusions. For any p0 ∈ P , we define the full condition
number of A at p0 with respect to a subset W of X as the extended real-valued
number by

c∗
f (A | p0,W) = lim sup

Z,Z′→{p0}
Z �=Z′,Z �=∅

e
(
SA (Z) ∩ W,SA

(
Z′))

e (Z,Z′)
,

where the convergence is taken in the sense of the upper proximal convergence.
A net

(
Zγ

)
γ

is upper proximal convergent to Z if lim
γ

e
(
Zγ ,Z

) = 0. Therefore

c∗
f (A | p0,W)

= inf
ε>0

sup

{
e
(
SA (Z) ∩ W,SA

(
Z′))

e (Z,Z′)
| Z,Z′ ⊂ B (p0, ε) ,Z �= Z′,Z �= ∅

}
.

The extended real number K (A, δ|p0,W) is defined by

K (A, δ | p0,W)

= sup

{
e
(
SA (Z) ∩ W,SA

(
Z′))

e (Z,Z′)
| Z,Z′ ⊂ B (p0, δ) ,Z �= Z′,Z �= ∅

}
.

Then the function δ �→ K (A, δ | p0,W) is decreasing and for every p0 ∈ P ,
we have lim

δ→0
K (A, δ | p0,W) = c∗ (A | p0,W).

Proposition 7.10. If K (A, δ | p0,W) < +∞, then one of the following alter-
natives holds:
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1. there exists a neighborhood V (p0) of p0 such that SA (p) = ∅, for every
p ∈ U (p0);

2. there exists a neighborhood V (p0) of p0 such that SA (p) �= ∅, for every
p ∈ U (p0).

In particular, if 0 < K (A, δ | p0,W) < +∞, then there exists a neighborhood
V (p0) of p0 such that the solutions set of the parameterized generalized equa-
tion (PGE) is nonempty, for every p ∈ V (p0).

In the sequel we focus on the special case where P = Y . We study the pa-
rameterized generalized equation associated to A : Y ×X ⇒ Y defined by using
a set-valued mapping F : X ⇒ Y as follows:

A(p,x) =
{

F (x) − p if x ∈ B (x0, r) ,

∅ otherwise.

We remark that SA (Z) = F−1 (Z), for every subset Z of P and it results that in
this framework, the full condition number given above takes the more explicit
form

c∗
f (A | p0,W) = lim sup

Z,Z′→{p0}
Z �=Z′,Z �=∅

e
(
F−1 (Z) ∩ W,F−1

(
Z′))

e (Z,Z′)
.

In this setting, we will write c∗
f (F | p0,W) and K (F, δ | p0,B (x0, r)) instead

of c∗
f (A | p0,W) and K (A, δ | p0,B (x0, r)), respectively.
Now, we obtain the following result on the existence of solutions of param-

eterized generalized equations.

Theorem 7.5. Let r > 0, x0 ∈ X, and p0 ∈ Y be such that B (x0, r) is a complete
metric subspace. Let G : X ⇒ Y be a set-valued mapping. Suppose that

0 < c∗ (F | p0,B (x0, r)) < +∞
and choose δ such that K

(
F, δ | p0,B (x0, r)

)
< +∞. Suppose further that the

following conditions are satisfied

1. G has nonempty closed values on B (x0, r), G(x0) is a bounded set with
diameter d0 < δ, and there exist a subset N containing B

(
p0, δ

)
and

0 < α < min

{
δ − d0

r
,

1

K
(
F, δ | p0,B (x0, r)

)
}

such that G(B (x0, r)) ⊂ B (G(x0) , αr), and G is α-pseudo-Lipschitzian
on B (x0, r) with respect to B

(
G(x0) , δ − αr − d0

) + p0 − N ;
2. B (x0, r) ⊂ dom (F ), B

(
p0, δ

) ⊂ F (B (x0, r)) and F is upper semicontin-
uous;
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3. there exists β > 0 such that β <
(
1 − αK

(
F, δ | p0,B (x0, r)

))
r , and F

is (α,β)-compatible with respect to G on B
(
G(x0) , δ − αr − d0

)
for x0

and p0.

Then, c∗ (F + G | p0 + y,B (x0, r)) ≤ K
(
F,δ|p0,B(x0,r)

)
1−αK

(
F,δ|p0,B(x0,r)

) < +∞, for every

y ∈ G(x0).

Proof. Put δ = δ − αr − d0 > 0. We have αK
(
F, δ | p0,B (x0, r)

)
< 1. Also,

for every subset Z, Z′ of B
(
p0, δ

)
, we have

e
(
F−1 (Z) ∩ B (x0, r) ,F−1 (

Z′)) ≤ K
(
F, δ | p0,B (x0, r)

)
e
(
Z,Z′)

and then, F−1 is fully K
(
F, δ | p0,B (x0, r)

)
-pseudo-Lipschitzian on B

(
p0, δ

)
for N with respect to B (x0, r).

By Theorem 7.3, it follows that the set-valued mapping (F + G)−1 is
K

(
F,δ|p0,B(x0,r)

)
1−αK

(
F,δ|p0,B(x0,r)

) -Lipschitzian on B (G(x0) + p0, δ). Then, for every

y ∈ G(x0), we have

c∗ (F + G | y + p0,B (x0, r))

= lim sup
Z,Z′→{y+p0}

Z �=Z′,Z �=∅

e
(
(F + G)−1 (Z) ∩ B (x0, r) , (F + G)−1 (

Z′))
e (Z,Z′)

≤ sup
Z,Z′⊂B(y+p0,δ),

Z �=Z′,Z �=∅

e
(
(F + G)−1 (Z) , (F + G)−1 (

Z′))
e (Z,Z′)

≤ K
(
F, δ | p0,B (x0, r)

)
1 − αK

(
F, δ | p0,B (x0, r)

) < +∞,

which completes the proof.

NOTES
1. Stefan Banach (1892–1945), Polish mathematician and one of the world’s most important and

influential 20th-century mathematicians. He founded modern functional analysis and helped de-
velop the theory of topological vector spaces. Banach was a member of the Lwów School of
Mathematics. His major work was the 1932 book, Théorie des Opérations Linéaires, the first
monograph on the general theory of functional analysis. Banach himself introduced the concept
of complete normed linear spaces, which are now known as Banach spaces. He also proved sev-
eral fundamental theorems in the field, and his applications of theory inspired much of the work
in functional analysis for the next few decades.

2. Dimitrie Pompeiu (1873–1954), Romanian mathematician. In 1905, he obtained a Ph.D. degree
in mathematics in Paris with a thesis written under the direction of Henri Poincaré. He is known
for a challenging conjecture in integral geometry, now widely known as the Pompeiu problem.
Pompeiu constructed a nonconstant, everywhere differentiable functions, with derivative vanish-
ing on a dense set. Such derivatives are now called Pompeiu derivatives.
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3. Felix Hausdorff (1868–1942), renowned German mathematician with pioneering contributions
in analysis. He introduced several fundamental concepts, such as Hausdorff spaces, Hausdorff di-
mension, Hausdorff metric, Hausdorff density, Hausdorff maximal principle, Hausdorff measure,
Hausdorff moment problem, or Hausdorff paradox.



Chapter 8

Applications to Nash
Equilibrium

Contents
8.1 Introduction 215
8.2 Nash Equilibrium for Perov

Contractions 220
8.2.1 Application: Oscillations

of Two Pendulums 224
8.3 Nash Equilibrium for Systems of

Variational Inequalities 229
8.3.1 Application to

Periodic Solutions of
Second-Order Systems 235

8.4 Nash Equilibrium of
Nonvariational Systems 240

8.4.1 A Localization Critical
Point Theorem 241

8.4.2 Localization of
Nash-Type Equilibria of
Nonvariational Systems 245

8.5 Applications to Periodic Problems 250

8.5.1 Case of a Single Equation 250

8.5.2 Case of a Variational
System 253

8.5.3 Case of a Nonvariational
System 254

Look up at the stars and not down at your feet.
Stephen Hawking (1942–2018)

Chapter points
• The result of this approach is to produce a rigorous mathematical analysis for

models at the interplay between Nash equilibria and mathematical physics.
• The arguments combine refined analytic tools, variational analysis, fixed point

theory, and iterative methods.
• Applications include periodic problems with variational or nonvariational structure

as well as problems driven by singular operators.

8.1 INTRODUCTION

Many problems describing models in the real world can be reduced to fixed
point problems of the type

u = N (u) ,

where N is a nonlinear operator.
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In many cases, the problem has a variational structure, namely it is equivalent
to finding the critical points of the associated “energy” functional E, that is
E′(u) = 0. Thus, the fixed points of the operator N appear as critical points of
the functional E. The critical points could be minima, maxima or saddle points,
conferring to the fixed points a variational property. Thus, it makes sense to ask
whether a fixed point of N is a minimum, or a maximum or a saddle point of E.
Problems of this type become more interesting in the case of a system{

u = N1 (u, v)

v = N2 (u, v) ,
(8.1)

which does not have a variational form, but each of its component equations has
a variational structure. More precisely, there exist functionals E1 and E2 such
that the system (8.1) is equivalent to{

E11 (u, v) = 0

E22 (u, v) = 0,

where E11 (u, v) is the partial derivative of E1 with respect to u, and E22 (u, v)

is the partial derivative of E2 with respect to v.
A nontrivial problem is to see how the fixed points (u, v) of the operator

N = (N1,N2) are connected to the variational properties of the two functionals.
One possible situation, which fits to physical principles, is that a fixed point
(u∗, v∗) of N is a Nash-type equilibrium of the functionals E1, E2, that is,

E1
(
u∗, v∗) = min

u
E1

(
u,v∗)

E2
(
u∗, v∗) = min

v
E2

(
u∗, v

)
.

(Note that the relations above correspond to a symmetric form of (2.11) in
Chapter 2, for the particular case of n = 2, in the sense that “min” is taken
instead of “max”.)

In the next section, we will focus on this problem in relationship with the
Nash equilibrium for Perov contractions. An iterative scheme for finding a
Nash-type equilibrium is introduced and its convergence is studied. The result
is illustrated with an application to periodic solutions for a second-order differ-
ential system, which describes the oscillations of two pendulums.

We first establish a minimum property for classical contractions in the ab-
stract setting of Hilbert space. We start with the case of contractions on the
whole space.

Theorem 8.1. Let X be a Hilbert space and N : X → X be a contraction with
the unique fixed point u∗. Assume that there exists a C1-functional E bounded
from below such that

E′ (u) = u − N (u) for all u ∈ X. (8.2)
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Then u∗ minimizes the functional E, that is,

E
(
u∗) = inf

X
E.

Proof. By the Bishop-Phelps theorem (Theorem A.4 in Appendix A), there is a
sequence (un) with

E (un) → inf
X

E and E′ (un) → 0. (8.3)

Let vn := E′ (un) = un − N (un). We have vn → 0 and

∣∣un+p − un

∣∣ ≤ ∣∣N (
un+p

) − N (un)
∣∣ + ∣∣vn+p − vn

∣∣
≤ a

∣∣un+p − un

∣∣ + ∣∣vn+p − vn

∣∣ .
Here, a ∈ [0,1) is the contraction constant of N . Hence

∣∣un+p − un

∣∣ ≤ 1

1 − a

∣∣vn+p − vn

∣∣ .
Since (vn) is a convergent sequence, this implies that (un) is Cauchy, too. It
follows that un → u for some u. Now relation (8.3) yields

E (u) = inf
X

E and E′ (u) = 0.

Relation E′ (u) = 0 shows that u is a fixed point of N , and since N has a unique
fixed point, u = u∗.

An analogue result holds for contractions on a ball BR = {u ∈ X : |u| ≤ R}
of the Hilbert space X.

Theorem 8.2. Let X be a Hilbert space and N : BR → X be a contraction
satisfying the Leray-Schauder condition

u �= λN (u) for |u| = R and λ ∈ (0,1) . (8.4)

Let u∗ denote the unique fixed point of N (guaranteed by the nonlinear alter-
native). Assume that there exists a C1-functional E bounded from below on BR

such that

E′ (u) = u − N (u) for all u ∈ BR.

Then u∗ minimizes the functional E on BR , that is,

E
(
u∗) = inf

BR

E.
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Proof. As a consequence of Schechter’s critical point theorem in a ball (Theo-
rem A.5 in Appendix A), there is a sequence (un) of elements from BR , with

E (un) → inf
BR

E and

either E′ (un) → 0, or

E′ (un) −
(
E′ (un) , un

)
R2

un → 0, |un| = R,
(
E′ (un) , un

) ≤ 0.

In the first case, when E′ (un) → 0, we repeat the argument developed in the
proof of Theorem 8.1.

In the second case, since
(
E′ (un) , un

) = R2 − (N (un) ,un) and N is
bounded as a contraction, we may pass to a subsequence in order to assume
the convergence

μn := −
(
E′ (un) , un

)
R2

→ μ ≥ 0.

Furthermore, if vn := E′ (un) + μnun, then

(1 + μ)un = vn + N (un) + zn

with zn = (μ − μn)un. Therefore zn → 0. Next, we observe that

(1 + μ)
∣∣un+p − un

∣∣ ≤ ∣∣vn+p − vn

∣∣ + a
∣∣un+p − un

∣∣ + ∣∣zn+p − zn

∣∣
and so ∣∣un+p − un

∣∣ ≤ 1

1 + μ − a

(∣∣vn+p − vn

∣∣ + ∣∣zn+p − zn

∣∣) .

This implies that (un) is Cauchy. Let u be its limit. Then

E (u) = inf
BR

E and E′ (u) + μu = 0,

where |u| = R and μ ≥ 0. We claim that the case μ > 0 is not possible. In-
deed, if we assume that μ > 0, then from u − N (u) + μu = 0 we would have
u = 1

1+μ
N (u) which has been excluded by the Leray-Schauder condition (8.4).

Hence μ = 0, E′ (u) = 0, that is, u = N (u). Again the uniqueness of the fixed
point guarantees u = u∗.

We recall that a sequence (un) with (E (un)) converging and E′ (un) → 0 is
called a Palais-Smale sequence, while the property of a functional of existing a
convergent subsequence for each Palais-Smale sequence, is named the Palais-
Smale condition. Thus, Theorem 8.1 asserts that if E′ is represented by (8.2),
then E satisfies even more than the Palais-Smale condition, in the sense that
the Palais-Smale sequences are entirely (not only some of their subsequences)
convergent.
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We point out that if in Theorem 8.2, the operator N is assumed to be more
general condensing, then the minimizing sequence (un) has a subsequence
converging to the absolute minimum of E on BR . Indeed, if (un) satisfies
E′ (un) → 0, then using a measure α of noncompactness with respect to whom
N is condensing, we find

α ({un}) = α
({

E′ (un) + N (un)
})

(8.5)

≤ α
({

E′ (un)
}) + α ({N (un)})

= α ({N (un)}) .

If {un} is not relatively compact, that is, α ({un}) > 0, then by the condensing
property, α ({N (un)}) < α ({un}), which in view of (8.5) yields the contradic-
tion α ({un}) < α ({un}). Hence {un} is relatively compact, as desired.

If we focus on critical points of a functional E, and not on the fixed points
of an operator N , then we can state the following more general result.

Theorem 8.3. Let X be a Banach space with norm |.| and E be a C1-functional
bounded from below with E′ strongly monotone, that is(

E′ (u) − E′ (v) , u − v
) ≥ a |u − v|2 for all u,v ∈ X,

and some a > 0. Then there exists u∗ ∈ X with

E
(
u∗) = inf

X
E and E′ (

u∗) = 0.

Proof. As in the proof of Theorem 8.1, let (un) be such that

E (un) → inf
X

E and E′ (un) → 0.

Denote vn := E′ (un). We have vn → 0 in X′, and

a
∣∣un+p − un

∣∣2 ≤ (
E′ (

un+p

) − E′ (un) , un+p − un

)
= (

vn+p − vn,un+p − un

) ≤ ∣∣vn+p − vn

∣∣ ∣∣un+p − un

∣∣ .
It follows that ∣∣un+p − un

∣∣ ≤ 1

a

∣∣vn+p − vn

∣∣
and the assertion follows as above.

Similarly, we have the following generalization of Theorem 8.2.

Theorem 8.4. Let X be a Hilbert space and E be a C1 functional such that E′
is strongly monotone on BR and

E′ (u) + μu �= 0 for |u| = R and μ > 0.
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Then there exists u∗ with

E
(
u∗) = inf

BR

E and E′ (
u∗) = 0.

Proof. With the notations from the proof of Theorem 8.2, we have

a
∣∣un+p − un

∣∣2

≤ (
E′ (

un+p

) − E′ (un) , un+p − un

)
= (

vn+p − vn,un+p − un

) − μ
(
un+p − un,un+p − un

)
+ (

μ − μn+p

) (
un+p,un+p − un

) − (μ − μn)
(
un,un+p − un

)
.

Hence

(a + μ)
∣∣un+p − un

∣∣ ≤ ∣∣vn+p − vn

∣∣ + R
(∣∣μ − μn+p

∣∣ + |μ − μn|
)
,

which implies that (un) is a Cauchy sequence.

8.2 NASH EQUILIBRIUM FOR PEROV CONTRACTIONS

Let (Xi, | . |i ), i = 1,2, be Hilbert spaces identified to their dual spaces and let
X = X1 × X2. Consider the system{

u = N1 (u, v)

v = N2 (u, v)

where (u, v) ∈ X. Assume that each equation of the system has a variational
form, that is, there exist continuous functionals E1,E2 : X → R such that
E1 (., v) is Fréchet differentiable for every v ∈ X2, E2 (u, .) is Fréchet differ-
entiable for every u ∈ X1, and

E11 (u, v) = u − N1 (u, v) (8.6)

E22 (u, v) = v − N2 (u, v) .

As in the previous section, E11 (., v), E22 (u, .) denote the Fréchet derivatives of
E1 (., v) and E2 (u, .), respectively.

We say that the operator N : X → X, N (u,v) = (N1 (u, v) ,N2 (u, v)) is
a Perov contraction if there exists a matrix M = [

mij

] ∈ M2,2 (R+) such that
Mn tends to the zero matrix 0, and the following matricial Lipschitz condition
is satisfied [

|N1 (u, v) − N1 (u, v)|1
|N2 (u, v) − N2 (u, v)|2

]
≤ M

[
|u − u|1
|v − v|2

]
(8.7)

for every u,u ∈ X1 and v, v ∈ X2.
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Notice that the property Mn → 0 is equivalent to ρ (M) < 1, where ρ (M)

is the spectral radius of matrix M , and also to the fact that I − M is non-
singular and all the elements of the matrix (I − M)−1 are nonnegative (see
Precup [143], [144]).

Theorem 8.5. Assume that the above conditions are satisfied. In addition, we
assume that E1 (., v) and E2 (u, .) are bounded from below for every u ∈ X1,
v ∈ X2, and that there exist positive numbers R and a such that one of the
following conditions holds:

either E1 (u, v) ≥ inf
X1

E1 (., v) + a for |u|1 ≥ R and all v ∈ X2,

or E2 (u, v) ≥ inf
X2

E2 (u, .) + a for |v|2 ≥ R and all u ∈ X1.
(8.8)

Then the unique fixed point (u∗, v∗) of N (guaranteed by Perov’s fixed point
theorem) is a Nash-type equilibrium of the pair of functionals (E1,E2), that is,

E1
(
u∗, v∗) = inf

X1
E1

(
., v∗)

E2
(
u∗, v∗) = inf

X2
E2

(
u∗, .

)
.

Proof. Assume that relation (8.8) holds for E2. We shall construct recursively
two sequences (un), (vn), based on the Bishop-Phelps theorem. Let v0 be any
element of X2. At any step n (n ≥ 1) we may find a un ∈ X1 and a vn ∈ X2 such
that

E1 (un, vn−1) ≤ inf
X1

E1 (., vn−1) + 1

n
, |E11 (un, vn−1)|1 ≤ 1

n
(8.9)

and

E2 (un, vn) ≤ inf
X2

E2 (un, .) + 1

n
, |E22 (un, vn)|2 ≤ 1

n
. (8.10)

For 1
n

< a, from (8.8) and (8.10) we have |vn|2 < R. Hence the sequence (vn) is
bounded. Let αn := E11 (un, vn−1) and βn := E22 (un, vn). Clearly αn, βn → 0.
Also

un − N1 (un, vn−1) = αn

vn − N2 (un, vn) = βn.

It follows that∣∣un+p − un

∣∣
1 ≤ ∣∣N1

(
un+p, vn+p−1

) − N1 (un, vn−1)
∣∣
1 + ∣∣αn+p − αn

∣∣
1

≤ m11
∣∣un+p − un

∣∣
1 + m12

∣∣vn+p−1 − vn−1
∣∣
2 + ∣∣αn+p − αn

∣∣
1
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≤ m11
∣∣un+p − un

∣∣
1 + m12

∣∣vn+p − vn

∣∣
2 + ∣∣αn+p − αn

∣∣
1

+ m12
(∣∣vn+p−1 − vn−1

∣∣
2 − ∣∣vn+p − vn

∣∣
2

)
.

Denote an,p = ∣∣un+p − un

∣∣
1, bn,p = ∣∣vn+p − vn

∣∣
2, cn,p = ∣∣αn+p − αn

∣∣
1,

dn,p = ∣∣βn+p − βn

∣∣
2. Then

an,p ≤ m11an,p + m12bn,p + cn,p + m12
(
bn−1,p − bn,p

)
. (8.11)

Similarly, we deduce that

bn,p ≤ m21an,p + m22bn,p + dn,p.

Hence

[
an,p

bn,p

]
≤ M

[
an,p

bn,p

]
+

[
cn,p + m12

(
bn−1,p − bn,p

)
dn,p

]
.

Consequently, since I −M is invertible and its inverse contains only nonnegative
elements, we may write

[
an,p

bn,p

]
≤ (I − M)−1

[
cn,p + m12

(
bn−1,p − bn,p

)
dn,p

]
.

Let (I − M)−1 = [
γij

]
. Then

an,p ≤ γ11
(
cn,p + m12

(
bn−1,p − bn,p

)) + γ12dn,p (8.12)

bn,p ≤ γ21
(
cn,p + m12

(
bn−1,p − bn,p

)) + γ22dn,p.

From the second inequality, we deduce that

bn,p ≤ γ21m12

1 + γ21m12
bn−1,p + γ21cn,p + γ22dn,p

1 + γ21m12
. (8.13)

We observe that
(
bn,p

)
is bounded uniformly with respect to p. Lemma 8.1

shows that bn,p → 0 uniformly for p ∈N, and hence (vn) is a Cauchy sequence.
Next, the first inequality in (8.12) implies that (un) is also Cauchy. Let u∗, v∗
be the limits of (un), (vn), respectively. The conclusion now follows if we pass
to the limit in (8.9) and (8.10).

In case that E1 satisfies (8.8), we interchange E1, E2 in the construction of
the two sequences, more exactly we obtain

E2 (un−1, vn) ≤ inf
X2

E2 (un−1, .) + 1

n
, |E22 (un−1, vn)|2 ≤ 1

n
(8.14)
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and

E1 (un, vn) ≤ inf
X1

E1 (., vn) + 1

n
, |E11 (un, vn)|1 ≤ 1

n
. (8.15)

This completes the proof.

The following elementary result is frequently used to argue the convergence
of the iterative schemas.

Lemma 8.1. Let
(
xn,p

)
,
(
yn,p

)
be two sequences of real numbers depending on

a parameter p, such that(
xn,p

)
is bounded uniformly with respect to p,

and

0 ≤ xn,p ≤ λxn−1,p + yn,p for all n,p and some λ ∈ [0,1). (8.16)

If yn,p → 0 uniformly with respect to p, then xn,p → 0 uniformly with respect
to p too.

Proof. Let ε > 0 be any number. Since yn,p → 0 uniformly with respect to p,
there exists n1 (not depending on p) such that yn,p ≤ ε for all n ≥ n1. From
xn,p ≤ λxn−1,p + ε (n ≥ n1), we deduce that

xn,p ≤ λn−n1xn1 + ε
(
λ + λ2 + ... + λn−n1

)
≤ λn−n1c + ε

λ

1 − λ
,

where c is a bound for xn,p. This yields xn,p → 0, uniformly in p.

Remark 8.1. If instead of condition (8.8) we assume that there exist convergent
subsequences

(
unj

)
,
(
vnj

)
of the sequences (un), (vn) given by (8.9) and (8.10),

then the conclusion of Theorem 8.5 remains true. To prove this, we first show
that the sequence

(
bnj −1,1

)
defined by bnj −1,1 = ∣∣vnj

− vnj −1
∣∣
2

is bounded.
Indeed, from (8.13), we obtain that

bnj −1,1 ≤ λbnj −2,1 + (1 − λ)2 (j ≥ j1) .

This yields

bnj −1,1 ≤ λnj −nj−1bnj−1−1,1 + 1 − λ (j ≥ j2) ,

whence

bnj −1,1 − 1 ≤ λ
(
bnj−1−1,1 − 1

)
(j ≥ j2) . (8.17)

Denote zj = bnj −1,1. Notice that the case zj > 1 for all j ≥ j2 is not possi-
ble. Since otherwise 0 ≤ zj − 1 ≤ λj−j2

(
zj2 − 1

)
, whence zj → 1. However,

by (8.16), this would imply the contradiction 1 ≤ 1 − λ. Therefore, there exists
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j3 ≥ j2 with zj3 ≤ 1. Then (8.17) implies that zj ≤ 1 for all j ≥ j3, hence
(
zj

)
is bounded, as claimed.

Next, from Lemma 8.1, applied for p = 1 and xj,1 := bnj −1,1, we find that
bnj −1,1 → 0 as j → ∞. Hence the sequence

(
vnj −1

)
is convergent to the limit

v∗ of
(
vnj

)
. The conclusion follows if we let j → ∞ in (8.9), (8.10) with n = nj .

An analogue result holds for Perov contractions on the Cartesian product
BR1 × BR2 of two balls of X1 and X2.

Theorem 8.6. Let N : BR1 × BR2 → X, N = (N1,N2) be a Perov generalized
contraction, that is, relation (8.7) is satisfied for u,u ∈ BR1 and v, v ∈ BR2 .
Assume that for every λ ∈ (0,1),

u �= λN1 (u, v) if |u|1 = R1, v ∈ BR2,

v �= λN2 (u, v) if |v|2 = R2, u ∈ BR1 .

In addition, we assume that the representation (8.6) holds on BR1 ×BR2 for two
continuous functionals E1,E2 : X → R such that E1 (., v) is Fréchet differen-
tiable for every v ∈ X2, E2 (u, .) is Fréchet differentiable for every u ∈ X1, and
that E1 (., v), E2 (u, .) are bounded from below on BR1 and BR2 respectively,
for every u ∈ BR1 , v ∈ BR2 . Then the unique fixed point (u∗, v∗) ∈ BR1 × BR2

of N (guaranteed by the nonlinear alternative for Perov contractions, see Pre-
cup [143]) is a Nash-type equilibrium in BR1 × BR2 of the pair of functionals
(E1,E2), that is,

E1
(
u∗, v∗) = inf

BR1

E1
(
., v∗)

E2
(
u∗, v∗) = inf

BR2

E2
(
u∗, .

)
.

The proof combines arguments from the proofs of Theorems 8.2 and 8.5.

8.2.1 Application: Oscillations of Two Pendulums

Consider the following periodic problem

u′′ (t) = ∇xF (t, u (t) , v (t)) a.e. on (0, T )

v′′ (t) = ∇yG(t, u (t) , v (t)) a.e. on (0, T )

u (0) − u (T ) = u′ (0) − u′ (T ) = 0

v (0) − v (T ) = v′ (0) − v′ (T ) = 0,

(8.18)

where F,G : (0, T ) ×R
k1 ×R

k2 → R.
All functions of the type H : (0, T ) × R

n → R
m, H = H (t, x) (n,m ≥ 1),

including F,G,∇xF , and ∇yG, will be assumed to be L1-Carathéodory, namely
H (., x) is measurable for each x ∈ R

n, H (t, .) is continuous for a.e. t ∈ (0, T ),
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and such that for each R > 0, there exists bR ∈ L1 (0, T ;R+) with |H (t, x)| ≤
bR (t) for a.e. t ∈ (0, T ) and all x ∈R

n, |x| ≤ R.
In our case, the system does not have a variational structure, but it splits into

two subsystems having each one a variational form.
A pair (u, v) ∈ H 1

p

(
0, T ;Rk1

) × H 1
p

(
0, T ;Rk2

)
is a solution of prob-

lem (8.18) if and only if

E11 (u, v) = 0, E22 (u, v) = 0,

where E1,E2 : H 1
p

(
0, T ;Rk1

) × H 1
p

(
0, T ;Rk2

) → R,

E1 (u, v) =
ˆ T

0

(
1

2

∣∣u′∣∣2 + F (t, u (t) , v (t))

)
dt

E2 (u, v) =
ˆ T

0

(
1

2

∣∣v′∣∣2 + G(t,u (t) , v (t))

)
dt.

(8.19)

Here, H 1
p(0, T ;Rk) is the space of functions of the form

u(t) =
ˆ t

0
v(s)ds + c,

with u(0) = u(T ), c ∈ R
k , and v ∈ L2

(
0, T ;Rk

)
.

We define a scalar product in H 1
p

(
0, T ;Rki

)
(i = 1,2) by

(u, v)i =
ˆ T

0

[(
u′ (t) , v′ (t)

) + m2
i (u (t) , v (t))

]
dt,

where mi �= 0. The corresponding norm is

|u|i =
(ˆ T

0

(∣∣u′ (t)
∣∣2 + m2

i |u (t)|2
)

dt

)1/2

.

We identify the dual
(
H 1

p

(
0, T ;Rki

))′
to H 1

p

(
0, T ;Rki

)
via the mapping Ji

defined by (
H 1

p

(
0, T ;Rki

))′ � h �→ Jih = u,

the unique weak solution of the problem

−u′′ + m2
i u = h a.e. on (0, T )

u (0) − u (T ) = u′ (0) − u′ (T ) = 0.

Then

E11 (u, v) = u − J1

(
m2

1u − ∇xF (., u, v)
)

,



226 Equilibrium Problems and Applications

E22 (u, v) = v − J2

(
m2

2v − ∇yG(., u, v)
)

.

Hence

N1 (u, v) = J1

(
m2

1u − ∇xF (., u, v)
)

, N2 (u, v) = J2

(
m2

2v − ∇yG(., u, v)
)

.

In what follows, we use the obvious inequality

|u|L2 ≤ 1

mi

|u|i
(
u ∈ H 1

p

(
0, T ;Rki

))
(8.20)

and the estimation of the norm of Ji , as linear operator from L2
(
0, T ;Rki

)
to

H 1
p

(
0, T ;Rki

)
. To obtain this, we start with the definition of the operator Ji ,

which gives

|Jih|2i = (Jih, Jih)i = (h, Jih)L2 ≤ |h|L2 |Jih|L2 ≤ 1

mi

|h|L2 |Jih|i .

Hence

|Jih|i ≤ 1

mi

|h|L2

(
h ∈ L2

(
0, T ;Rki

))
. (8.21)

We say that a function H : (0, T ) ×R
k → R is of coercive type if the func-

tional E : H 1
p

(
0, T ;Rk

) →R,

E (u) =
ˆ T

0

(
1

2

∣∣u′ (t)
∣∣2 + H (t,u (t))

)
dt (8.22)

is coercive, that is, E (u) → +∞ as |u| → ∞. Here we have denoted

|u| =
(ˆ T

0

(∣∣u′ (t)
∣∣2 + |u (t)|2

)
dt

)1/2

.

Lemma 8.2. Assume that for some γ ∈R \ {0}, ∇ (
H − γ 2 |x|2)

is bounded by
an L1-function for all x ∈ R

k and the average of H (t, x) − γ 2 |x|2 with respect
to t is bounded from below, more exactly:∣∣∣∇ (

H (t, x) − γ 2 |x|2
)∣∣∣ ≤ a (t)

for a.e. t ∈ (0, T ), all x ∈ R
k , some a ∈ L1 (0, T ;R+), and

ˆ T

0
H (t, x) dt − T γ 2 |x|2 ≥ C > −∞

for all x ∈R
k and some constant C. Then the functional (8.22) is coercive.
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Proof. Denote Hγ (t, x) = H (t, x) − γ 2 |x|2. For u ∈ H 1
p

(
0, T ;Rk

)
, we have

u = u + û where u = ´ T

0 u (t) dt and û = u − u. Then

E (u) =
ˆ T

0

(
1

2

∣∣u′ (t)
∣∣2 + γ 2 |u (t)|2

)
dt +

ˆ T

0
Hγ (t, u) dt

+
ˆ T

0

[
Hγ (t, u (t)) − Hγ (t, u)

]
dt

≥ min
{

1,2γ 2
}

|u|2 + C +
ˆ T

0

ˆ 1

0

(∇Hγ (t, u + sû (t)) , û (t)
)
dsdt

≥ min
{

1,2γ 2
}

|u|2 + C − |a|L1 |̂u|∞ .

Since |̂u|∞ ≤ c |̂u| ≤ c |u|, we deduce that

E (u) ≥ min
{

1,2γ 2
}

|u|2 + C − c |a|L1 |u| → ∞ as |u| → ∞.

The proof is now complete.

Notice that if H is of coercive type, then the functional (8.22) is bounded
from below. Indeed, the coercivity property implies that there exists a positive
number R such that E (u) ≥ 0 if |u| > R. Since the injection of H 1

p

(
0, T ;Rk

)
into C

(
0, T ;Rk

)
is continuous, there exists c > 0 such that |u|∞ ≤ c |u|

for every u ∈ H 1
p

(
0, T ;Rk

)
. Then, for |u| ≤ R, |u|∞ ≤ cR and since H is

L1-Carathéodory, H (t,u (t)) ≥ −b (t) for a.e. t ∈ (0, T ). As a result, for |u| ≤
R, one has E (u) ≥ −|b|L1 . Hence E (u) ≥ −|b|L1 for all u ∈ H 1

p

(
0, T ;Rk

)
as

we claimed.
Our hypotheses are as follows:

(H1) for each R > 0, there exist σ1, σ2 ∈ L1 (0, T ;R+) and γ �= 0 such that

F (t, x, y) ≥ γ 2 |x|2 − σ1 (t) |x| − σ2 (t)

for a.e. t ∈ (0, T ), all x ∈ R
k1 and y ∈ R

k2 with |y| ≤ R;
(H2) there exist g,g1 : (0, T ) ×R

k2 →R of coercive type with

g (t, y) ≤ G(t, x, y) ≤ g1 (t, y) (8.23)

for all x ∈R
k1, y ∈R

k2 , and a.e. t ∈ (0, T );
(H3) there exist mij ∈R+ (i, j = 1,2) with∣∣∣m2

1 (x − x) − ∇x (F (t, x, y) − F (t, x, y))

∣∣∣ ≤ m11 |x − x| + m12 |y − y|∣∣∣m2
2 (y − y) − ∇y (G(t, x, y) − G(t, x, y))

∣∣∣ ≤ m21 |x − x| + m22 |y − y|
(8.24)
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for all x, x ∈ R
k1 , y, y ∈ R

k2 and a.e. t ∈ (0, T ), such that the spectral
radius of the matrix

M =
⎡
⎣ m11

m2
1

m12
m1m2

m21
m1m2

m22
m2

2

⎤
⎦ (8.25)

is strictly less than one.

Theorem 8.7. Under hypotheses (H1)–(H3), problem (8.18) has a unique solu-
tion

(u, v) ∈ H 1
p

(
0,1;Rk1

)
× H 1

p

(
0,1;Rk2

)
,

which is a Nash-type equilibrium of the pair of energy functionals (E1,E2)

given by (8.19).

Proof. From (H1) we have that E1 (., v) is bounded from below for each
v ∈ H 1

p

(
0,1;Rk2

)
. Indeed, if R = |v|∞, then

E1 (u, v) ≥
ˆ T

0

(
1

2

∣∣u′ (t)
∣∣2 + γ 2 |u (t)|2 − σ1 (t) |u (t)| − σ2 (t)

)
dt

≥ C1 |u|21 − C2 |u|1 − C3

whence the desired conclusion.
Next, using the first inequality in (8.23), we have

E2 (u, v) ≥ φ (v) :=
ˆ T

0

(
1

2

∣∣v′ (t)
∣∣2 + g (t, v (t))

)
dt.

Since g is of coercive type, φ is bounded from below. Thus, E2 (u, .) is bounded
from below even uniformly with respect to u.

Furthermore, if we denote

φ1 (v) =
ˆ T

0

(
1

2

∣∣v′ (t)
∣∣2 + g1 (t, v (t))

)
dt,

we fix any number a > 0, we use (8.23) and the coercivity of φ, then we may
find a number R > 0 such that

infE2 (u, .) + a ≤ infφ1 + a ≤ φ (v)

for |v|2 ≥ R. Since E2 (u, v) ≥ φ (v), this shows that condition (8.8) is satisfied
by E2.
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Finally, using (8.20), (8.21) and (8.24) we obtain

|N1 (u, v) − N1 (u, v)|1 =
∣∣∣J1

(
m2

1 (u − u) − ∇x (F (., u, v) − F (., u, v))
)∣∣∣

1

≤ 1

m1

∣∣∣m2
1 (u − u) − ∇x (F (., u, v) − F (., u, v))

∣∣∣
L2

≤ m11

m1
|u − u|L2 + m12

m1
|v − v|L2

≤ m11

m2
1

|u − u|1 + m12

m1m2
|v − v|2 .

A similar inequality holds for N2 and so condition (8.7) is satisfied with the
matrix M given by (8.25). Therefore all the hypotheses of Theorem 8.5 are
fulfilled.

Example 8.1. Consider the system of two scalar equations

u′′ = 2γ 2
1 u + a (t) sinu (t) + b (t) cosu (t) cosv (t) + c (t)

v′′ = 2γ 2
2 v + A(t) sinu (t) cosv (t) + B (t) cosv (t) ,

(8.26)

where γ1, γ2 �= 0 and a, b,A,B ∈ L∞ (0, T ), c ∈ L1 (0, T ). In this case,

F (t, x, y) = γ 2
1 x2 − a (t) cosx + b (t) sinx cosy + c (t) x

G(t, x, y) = γ 2
2 y2 + A(t) sinx siny + B (t) siny

and we let mi = γi

√
2 (i = 1,2). If the spectral radius of the matrix

M =
⎡
⎢⎣

1
2γ 2

1
(|a|∞ + |b|∞)

|b|∞
2γ1γ2

|A|∞
2γ1γ2

1
2γ 2

2
(|A|∞ + |B|∞)

⎤
⎥⎦

is strictly less than one, then the system (8.26) has a unique T -periodic solution,
which is a Nash type equilibrium of the pair of energy functionals of the system.

8.3 NASH EQUILIBRIUM FOR SYSTEMS OF VARIATIONAL
INEQUALITIES

In this section, the solutions of some systems of variational inequalities are
obtained as Nash-type equilibria of the corresponding systems of Szulkin func-
tionals. This is achieved by an iterative scheme based on Ekeland’s variational
principle, whose convergence is proved via the vector technique involving
inverse-positive matrices. An application to periodic solutions for a system of
two second order ordinary differential equations with singular φ-Laplace opera-
tors is included. In this section we follow the results developed by Precup [146,
147].
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Consider the following system of variational inequalities: find (x, y) ∈
X × Y such that⎧⎨

⎩
〈
F ′

x (x, y) , u − x
〉 + ϕ (u) − ϕ (x) ≥ 0〈

G′
y (x, y) , v − y

〉
+ ψ (v) − ψ (y) ≥ 0

for all (u, v) ∈ X × Y, (8.27)

where X, Y are Banach spaces with norms |.|X , |.|Y and F ′
x , G′

y are the Fréchet
derivatives of F and G in the first and second variable, respectively.

We first assume that the following condition is fulfilled:

(H0) F,G : X × Y → R are of class C1 with respect to the first and the second
variable, respectively, and ϕ : X → (−∞,+∞], ψ : Y → (−∞,+∞] are
proper, lower semicontinuous and convex functionals.

Then a couple of elements (x, y) ∈ D (ϕ)×D (ψ) is a solution of the system
if x is a critical point in Szulkin’s sense of the functional F (., y) + ϕ and y is a
critical point in Szulkin’s sense of the functional G (x, .) + ψ . We are interested
in such a solution which is a Nash-type equilibrium of the pair of functionals
(E1,E2), where E1,E2 : X × Y → (−∞,+∞],

E1 := F + ϕ, E2 = G + ψ,

that is

E1 (x, y) = min
u∈X

E1 (u, y) , E2 (x, y) = min
v∈Y

E2 (x, v) .

From a physical point of view, a Nash-type equilibrium (x, y) for two inter-
connected mechanisms whose energies are E1, E2, is such that the motion of
each mechanism is conformed to the minimum energy principle by taking into
account the motion of the other.

To obtain such a solution of the system (8.27), an iterative scheme is in-
troduced, a Palais-Smale type condition is defined, and the convergence of the
iterative procedure is proved via a vector technique based on inverse-positive
matrices. In such a way, the abstract part of this section represents a vectoriza-
tion of the direct variational principle for Szulkin-type functionals [165].

The main abstract result of this section is illustrated with an application to the
study of the periodic problem for a system of equations involving the singular
φ-Laplace operator: ⎧⎨

⎩
(
φ1

(
x′))′ = ∇xF1 (t, x, y)(

φ2
(
y′))′ = ∇yF2 (t, x, y) .

(8.28)

We point out that this system is composed by two equations having a varia-
tional form each, but without a variational structure in its whole. Another feature
of the analysis we will develop is that we work in the Lebesgue space L2 instead
of the standard space of continuous functions.
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A function H : (0, T ) × R
n → R

m, H = H (t, x) (n,m ≥ 1) is said to be
L1-Carathéodory, if it satisfies the Carathéodory conditions, that is, H (., x) is
measurable for each x ∈ R

n and H (t, .) is continuous for a.e. t ∈ (0, T ); and
for each r > 0, there is br ∈ L1 (0, T ;R+) such that |H (t, x)| ≤ br (t) for a.e.
t ∈ (0, T ) and all x ∈ Br (Rn).

The function H is said to be (p, q)-Carathéodory (1 ≤ p,q < ∞) if it satis-
fies the Carathéodory conditions and |H (t, x)| ≤ a |x|p/q + b (t) for all x ∈R

n,
a.e. t ∈ (0, T ) and some a ∈R+, b ∈ Lq (0, T ;R+).

The superposition operator x �→ H (., x (.)) is well-defined and continu-
ous from C ([0, T ] ;Rn) to L1 (0, T ;Rm), provided that H is L1-Carathéodory.
The superposition operator is from Lp (0, T ;Rn) to Lq (0, T ;Rm) if H is
(p, q)-Carathéodory.

A square matrix of real numbers is said to be inverse-positive if it is nonsin-
gular and all the elements of its inverse are nonnegative. A class of such kind of
matrices is given by the matrices of the form I − A, where I is the unit matrix,
the elements of A are nonnegative, and the spectral radius of A is strictly less
than one. However, there are matrices A with not all elements nonnegative and
spectral radius bigger than one, such that I − A is inverse-positive. An exam-

ple is the matrix A =
[

−2 a

0 −1

]
, where a > 0. Also note that a matrix of

the form

[
a −b

−c d

]
, with a, b, c, d ≥ 0 is inverse-positive if and only if its

determinant is positive, that is, ad − bc > 0.
Let us now assume the following hypothesis.

(H1) The functionals E1 (., y) and E2 (x, .) are bounded from below for every
x ∈ D (ϕ) and y ∈ D (ψ).

Theorem 8.8. Assume that conditions (H0), (H1) hold. Then for every
y0 ∈ D (ψ), there exist sequences (xn) and (yn) such that xn ∈ D (ϕ),
yn ∈ D (ψ),

E1 (xn, yn−1) ≤ inf
X

E1 (., yn−1) + 1

n
, (8.29)

〈
F ′

x (xn, yn−1) , u − xn

〉 + ϕ (u) − ϕ (xn) ≥ −1

n
|u − xn|X ,

for every u ∈ D (ϕ) ,

(8.30)

E2 (xn, yn) ≤ inf
Y

E2 (xn, .) + 1

n
, (8.31)〈

G′
y (xn, yn) , v − yn

〉
+ ψ (v) − ψ (yn) ≥ −1

n
|v − yn|Y ,

for every v ∈ D (ψ) .

(8.32)

Proof. For n = 1, we first obtain x1 by applying Theorem A.6 to the functional
E1 (., y0). Then y1 is obtained similarly for the functional E2 (x1, .). Further-
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more, at any step n, we obtain xn and then yn by applying Theorem A.6 to
E1 (., yn−1) and E2 (xn, .), respectively.

We now require a stronger continuity property for F,G:

(H∗
0) Condition (H0) is satisfied and F , G, F ′

x , G′
y are continuous on X × Y .

We also define the following Palais-Smale compactness condition for the
pair of functionals (E1,E2).

(PS∗) If (xn)n≥1, (yn)n≥0 are any sequences such that the conditions
(8.29)–(8.32) are satisfied, then (xn), (yn) possess convergent subse-
quences

(
xnj

)
,
(
ynj

)
with the additional property

ynj
− ynj −1 → 0 as j → ∞. (8.33)

Theorem 8.9. Assume that the conditions (H∗
0) and (PS∗) are satisfied. Then

the system (8.27) has at least one solution which is a Nash-type equilibrium of
the pair of functionals (E1,E2).

Proof. By Theorem 8.8, if y0 is any fixed element of D (ψ), then there are se-
quences (xn)n≥1 and (yn)n≥0 satisfying the conditions (8.29)–(8.32). The (PS∗)
condition guarantees the existence of the convergent subsequences

(
xnj

)
,
(
ynj

)
with the additional property (8.33). Let x, y be the limits of the corresponding
subsequences. Then

xnj
→ x, ynj

→ y and ynj −1 → y as j → ∞.

The conclusion now follows from the inequalities (8.29)–(8.32) written for
n = nj , if we pass to the limit with j → ∞ by taking into account (H∗

0).

The next result gives us a sufficient condition for (PS∗) to hold, namely

(H2) There exist constants mij ∈ R+ (i, j = 1,2) with

m11m22 − m12m21 > 0, (8.34)

and exponents β,γ > 1 such that

〈
F ′

x (x, y) −F ′
x (u, v) , x − u

〉 ≥ m11 |x − u|βX − m12 |x − u|X |y − v|γ−1
Y〈

G′
y (x, y) − G′

y (u, v) , y − v
〉
≥ −m21 |x − u|β−1

X |y − v|Y + m22 |y − v|γY
for all x,u ∈ X; y, v ∈ Y .

Theorem 8.10. Assume that (H0), (H1), and (H2) hold. If (yn) is bounded, then
the sequences (xn), (yn) given by (8.30), (8.32) are convergent.
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Proof. From (8.30) we obtain〈
F ′

x

(
xn+p, yn+p−1

) −F ′
x (xn, yn−1) , xn − xn+p

〉
≥ −

(
1

n
+ 1

n + p

) ∣∣xn+p − xn

∣∣
X

.

Since 〈
F ′

x

(
xn+p, yn+p−1

) −F ′
x (xn, yn−1) , xn − xn+p

〉
≤ −m11

∣∣xn+p − xn

∣∣β
X

+ m12
∣∣xn+p − xn

∣∣
X

∣∣yn+p−1 − yn−1
∣∣γ−1
Y

we deduce

m11
∣∣xn+p − xn

∣∣β−1
X

− m12
∣∣yn+p−1 − yn−1

∣∣γ−1
Y

≤ 2

n
.

Similarly, from (8.32) we deduce that

−m21
∣∣xn+p − xn

∣∣β−1
X

+ m22
∣∣yn+p − yn

∣∣γ−1
Y

≤ 2

n
.

Denote an,p := ∣∣xn+p − xn

∣∣β−1
X

, bn,p := ∣∣yn+p − yn

∣∣γ−1
Y

. Then

m11an,p − m12bn,p ≤ m12
(
bn−1,p − bn,p

) + 2

n
, (8.35)

−m21an,p + m22bn,p ≤ 2

n
.

Therefore

M

[
an,p

bn,p

]
≤

[
m12

(
bn−1,p − bn,p

) + 2
n

2
n

]
, (8.36)

where

M =
[

m11 −m12

−m21 m22

]
.

From (8.34) it follows that the matrix M is inverse-positive. It follows that we
can multiply relation (8.36) by M−1 to obtain

[
an,p

bn,p

]
≤ M−1

[
m12

(
bn−1,p − bn,p

) + 2
n

2
n

]
.

If M−1 = [
dij

]
1≤i,j≤2, then

an,p ≤ d11

[
m12

(
bn−1,p − bn,p

) + 2

n

]
+ d12

2

n
, (8.37)
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bn,p ≤ d21

[
m12

(
bn−1,p − bn,p

) + 2

n

]
+ d22

2

n
.

The last inequality yields

bn,p ≤ d21m12

1 + d21m12
bn−1,p + d21 + d22

1 + d21m12

2

n
.

Thus, by Lemma 8.1, we deduce that bn,p → 0 in Y , uniformly with respect
to p, hence the sequence (yn) is Cauchy in Y . Now the first inequality of (8.37)
implies that the sequence (xn) is also Cauchy in X.

Remark 8.2. We notice that under the assumption (H2), the system (8.27) has
at most one solution. Indeed, if (x, y) and (x, y) are two solutions of (8.27),
then 〈

F ′
x (x, y) , x − x

〉 + ϕ (x) − ϕ (x) ≥ 0〈
F ′

x (x, y) , x − x
〉 + ϕ (y) − ϕ (y) ≥ 0

whence 〈
F ′

x (x, y) −F ′
x (x, y) , x − x

〉 ≥ 0.

It follows that

m11 |x − x|β−1
X − m12 |y − y|γ−1

Y ≤ 0.

Similarly we have

−m21 |x − x|β−1
X + m22 |y − y|γ−1

Y ≤ 0.

These two inequalities yield

M

⎡
⎣ |x − x|β−1

X

|y − y|γ−1
Y

⎤
⎦ ≤

[
0
0

]
,

whence ⎡
⎣ |x − x|β−1

X

|y − y|γ−1
Y

⎤
⎦ ≤ M−1

[
0
0

]
.

Consequently, |x − x|β−1
X = |y − y|γ−1

Y = 0. It follows that (x, y) = (x, y).

The next condition will guarantee the boundedness of the sequence (yn).

(H3) There exist a,R > 0 such that

E2 (x, y) ≥ inf
D(ψ)

E2 (x, .) + a for x ∈ D (ϕ) , y ∈ D (ψ) , |y|Y ≥ R.

(8.38)
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Theorem 8.11. If the conditions
(
H ∗

0

)
, (H1), (H2), and (H3) hold, then the

system (8.27) has a unique solution (x, y) which is a Nash-type equilibrium of
the pair of functionals (E1,E2).

Proof. For 1
n

< a, from (8.31) and (8.38), we have |yn|Y < R. Hence the se-
quence (yn) is bounded and the conclusion follows from Theorems 8.9, 8.10
and Remark 8.2.

8.3.1 Application to Periodic Solutions of Second-Order Systems

To illustrate the theory let us consider the periodic problem

(
φ1

(
x′))′ = ∇xF1 (t, x, y) (8.39)(

φ2
(
y′))′ = ∇yF2 (t, x, y)

x (0) − x (T ) = x ′ (0) − x′ (T ) = 0

y (0) − y (T ) = y′ (0) − y′ (T ) = 0

where F1,F2 : (0, T ) ×R
k1 ×R

k2 → R.
We look for solutions (x, y) with x ∈ C1

(
[0, T ] ,Rk1

)
, y ∈ C1

(
[0, T ] ,Rk2

)
,

such that
∣∣x′∣∣

L∞ < r1,
∣∣y′∣∣

L∞ < r2, φ1
(
x′) and φ2

(
y′) are differentiable a.e.,

and (8.39) is satisfied a.e. on (0, T ).
We shall assume that F1, F2 are (2,1)-Carathéodory and ∇xF1 and ∇yF2 are

(2,2)-Carathéodory functions. As concerns the functions φi , i = 1,2, we shall
assume the following condition:

(hφ) φi : Bri

(
R

ki
) → R

ki is a homeomorphism such that φi (0) = 0, φi = ∇�i

with �i : Bri

(
R

ki
) →R of class C1 on Bri

(
R

ki
)
, continuous and strictly

convex on Bri

(
R

ki
)

and with �i (0) = 0.

The typical example of such a homeomorphism is the following function
arising from special relativity, φ : Br

(
R

k
) → R

k ,

φ (z) = z√
r2 − |z|2

,

for which φ (z) = ∇�(z), �(z) = r −
√

r2 − |z|2.
Finding solutions of the system (8.39) it suffices to obtain pairs (x, y) of

functions such that x, y are critical points in Szulkin’s sense of the func-
tionals E1 (., y) and E2 (x, .), respectively, where E1,E2 : L2

(
0, T ;Rk1

) ×
L2

(
0, T ;Rk2

) → (−∞,+∞],

E1 =F + ϕ, E2 = G + ψ (8.40)

F (x, y) =
ˆ T

0
F1 (t, x (t) , y (t)) dt, G (x, y) =

ˆ T

0
F2 (t, x (t) , y (t)) dt,
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ϕ (x) =

⎧⎪⎨
⎪⎩
ˆ T

0
�1

(
x′ (t)

)
dt, if x ∈ K1

+∞, otherwise,

ψ (y) =

⎧⎪⎨
⎪⎩
ˆ T

0
�2

(
y′ (t)

)
dt, if y ∈ K2

+∞, otherwise,

and

Ki :=
{
z ∈ W 1,∞ (

0, T ;Rki

)
: z (0) = z (T ) and

∣∣z′∣∣∞ ≤ ri

}
(i = 1,2) .

Thus

D (ϕ) = K1 and D (ψ) = K2.

By straightforward computation we obtain that the functionals F , G, ϕ, and
ψ satisfy (H∗

0), where

X = L2
(

0, T ;Rk1
)

and Y = L2
(

0, T ;Rk2
)

.

In what follows, we denote by |.|X, |.|Y the L2-norms of L2
(
0, T ;Rk1

)
and

L2
(
0, T ;Rk2

)
, respectively.

In order to guarantee condition (H2) we require the following condition:

(hF ) There exist constants mij ∈R+ (i, j = 1,2), with

m11m22 − m12m21 > 0,

such that

〈∇xF1 (t, x, y) − ∇xF1 (t, u, v) , x − u〉
≥ m11 |x − u|2 − m12 |x − u| |y − v| ,〈∇yF2 (t, x, y) − ∇yF2 (t, u, v) , y − v

〉
≥ −m21 |x − u| |y − v| + m22 |y − v|2

(8.41)

for all x,u ∈ R
k1 ; y, v ∈ R

k2 .

Indeed, if x,u ∈ L2
(
0, T ;Rk1

)
and y, v ∈ L2

(
0, T ;Rk2

)
, then

〈
F ′

x (x, y) −F ′
x (u, v) , x − u

〉
=
ˆ T

0
〈∇xF1 (t, x (t) , y (t)) − ∇xF1 (t, u (t) , v (t)) , x (t) − u (t)〉dt
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≥ m11

ˆ T

0
|x (t) − u (t)|2 dt − m12

ˆ T

0
|x (t) − u (t)| |y (t) − v (t)|dt

≥ m11 |x − u|2X − m12 |x − u|X |y − v|Y .

Hence the first inequality in (H2) is fulfilled with β = γ = 2. The second in-
equality follows similarly.

In order to satisfy (H3) we assume the following coercivity condition on F2:

(hc) There exist L1-Carathéodory functions g,h : (0, T ) ×R
k2 → R such that

g (t, y) ≤ F2 (t, x, y) ≤ h(t, y) (8.42)

for a.e. t ∈ (0, T ), all x ∈ R
k1, y ∈ R

k2 , and

α (y) :=
ˆ T

0
g (t, y (t)) dt → ∞ as y ∈ K2, |y|Y → ∞. (8.43)

We first notice that α is bounded from below on K2. Indeed, from (8.43),
there exists R > 0 such that

α (y) ≥ 0 for all y ∈ K2 with |y|Y > R. (8.44)

On the other hand, if |y|Y ≤ R and t0 ∈ [0, T ] is such that |y (t0)| = |y|L∞ , from

|y (t)| ≥ |y (t0)| − |y (t) − y (t0)| = |y|L∞ −
∣∣∣∣
ˆ t

t0

y′ (s) ds

∣∣∣∣ ≥ |y|L∞ − T r2

we have

|y|L∞ ≤ |y (t)| + T r2 for all t ∈ [0, T ] ,

whence, by passing to the L2-norm, we deduce

|y|L∞ ≤ 1√
T

|y|Y + T r2 ≤ 1√
T

R + T r2 =: R1. (8.45)

Since g is L1-Carathéodory, there exists a function bR1 ∈ L1 (0, T ;R+) such
that |g (t, y)| ≤ bR1 (t) for a.e. t ∈ (0, T ) and y ∈ BR1

(
R

k2
)
. Then

α (y) ≥ − ∣∣bR1

∣∣
L1 for all y ∈ K2 with |y|Y ≤ R. (8.46)

Relations (8.44) and (8.46) show that α is bounded from below on K2 as
claimed. Next, let

β (y) :=
ˆ T

0
h(t, y (t)) dt.
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If we fix any number a > 0, we use (8.42) and the coercivity of α we may find
R > 0 such that

inf
D(ψ)

G (x, .) + a ≤ inf
D(ψ)

β + a ≤ α (y)

for all y ∈ D (ψ) with |y|Y ≥ R. Since G (x, y) ≥ α (y), this proves that condi-
tion (H2) is satisfied.

Finally, (H1) will be guaranteed by using the following condition:

(hb) For each R > 0, there exists σR,ηR ∈ L1 (0, T ;R+) and γR > 0 such that

F1 (t, x, y) ≥ γR |x|2 − σR (t) |x| − ηR (t)

for a.e. t ∈ (0, T ), all x ∈R
k1 and y ∈ BR

(
R

k2
)
.

To check (H1), let x ∈ K1, y ∈ K2. According to (8.45) we have

|y|L∞ ≤ 1√
T

|y|Y + T r2 =: R.

Then

F (x, y) ≥ γR |x|2X − |σR|L1 |x|L∞ − |ηR|L1 .

Furthermore, from the similar inequality to (8.45) for K1, we obtain

F (x, y) ≥ γR |x|2X − |σR|L1

(
1√
T

|x|X + T r1

)
− |ηR|L1 ,

where the right-hand side is bounded from below as a quadratic function. Thus,
both functionals F (., y), G (x, .) are bounded from below on K1 and K2, re-
spectively. On the other hand, the functionals ϕ and ψ are bounded from below
as follows from their definition and the continuity of �1, �2 on their compact
domains. Therefore condition (H1) is satisfied.

As a conclusion we have the following theorem.

Theorem 8.12. Under hypotheses (h)φ , (h)F , (h)c, and (h)b, the problem (8.39)
has a solution (x, y) which is a Nash-type equilibrium of the pair of energy
functionals (E1,E2) given by (8.40).

Example 8.2. Consider the coupled system of two scalar equations(
φ1

(
x′))′ = m2

1x + a1 (t) siny + b1 (t) cosx cosy + c1 (t)(
φ2

(
y′))′ = m2

2y + a2 (t) sinx + b2 (t) sinx cosy + c2 (t)
(8.47)

where φ1, φ2 satisfy (h)�; m1,m2 �= 0; a1, a2, b1, b2 ∈ L∞ (0, T ) and
c1, c2 ∈ L2 (0, T ). In this case,

F1 (t, x, y) = m2
1x

2/2 + a1 (t) x siny + b1 (t) sinx cosy + c1 (t) x
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F2 (t, x, y) = m2
2y

2/2 + a2 (t) y sinx + b2 (t) sinx siny + c2 (t) y.

If

m2
i > |bi |L∞ , i = 1,2

and(
m2

1 − |b1|L∞
) (

m2
2 − |b2|L∞

)
> (|a1|L∞ + |b1|L∞) (|a2|L∞ + |b2|L∞) ,

(8.48)

then the system (8.47) has a T -periodic solution, which is a Nash type equilib-
rium of the pair of corresponding energy functionals of the system. Indeed, we
have

〈∇xF1 (t, x, y) − ∇xF1 (t, u, v) , x − u〉
= m2

1 (x − u)2 + a1 (t) (siny − sinv) (x − u)

+ b1 (t) (cosx cosy − cosu cosv) (x − u)

≥ m2
1 (x − u)2 − |a1|L∞ |x − u| |y − v| − |b1|L∞ (x − u)2

− |b1|L∞ |x − u| |y − v|
≥

(
m2

1 − |b1|L∞
)

(x − u)2 − (|a1|L∞ + |b1|L∞) |x − u| |y − v| .

Hence the first inequality in (8.41) holds with

m11 = m2
1 − |b1|L∞ , m12 = |a1|L∞ + |b1|L∞ .

Similarly, the second inequality in (8.41) holds with

m21 = |a2|L∞ + |b2|L∞ , m22 = m2
2 − |b2|L∞ .

Thus, (8.48) is equivalent to (8.34). The condition (h)c also holds with

g (t, y) = m2
2y

2/2 − (|a2 (t)| + |c2 (t)|) |y| − |b2 (t)|
h(t, y) = m2

2y
2/2 + (|a2 (t)| + |c2 (t)|) |y| + |b2 (t)|

as follows using (8.45). Indeed

ˆ T

0
g (t, y (t)) dt ≥ m2

1

2
|y|2Y − (|a2|L1 + |c2|L1

) |y|L∞ − |b2|L1

≥ m2
1T

2
|y|2Y − (|a2|L1 + |c2|L1

) (
1√
T

|y|Y + T r2

)
− |b2|L1

for every y ∈ K2. This shows that α (y) → ∞ as y ∈ K2, |y|Y → ∞.
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8.4 NASH EQUILIBRIUM OF NONVARIATIONAL SYSTEMS

Many systems arising in mathematical modeling require positive solutions as
acceptable states of the investigated real processes. Mathematically, finding pos-
itive solutions means to work in the positive cone of the space of all possible
states. However, a cone is an unbounded set and, in many cases, nonlinear
problems have several positive solutions. That is why it is important to local-
ize solutions in bounded subsets of a cone. This problem becomes even more
interesting in the case of nonlinear systems that do not have a variational struc-
ture, but each of its component equations has, namely there exist real “energy”
functionals E1 and E2 such that the system is equivalent to the equations{

E11 (u, v) = 0

E22 (u, v) = 0.

We recall that E11 (u, v) is the partial derivative of E1 with respect to u, and
E22 (u, v) is the partial derivative of E2 with respect to v.

A problem of real interest is to see how the solutions (u, v) of this system
are connected with the variational properties of the functionals E1 and E2. One
possible situation, which fits to physical principles, is that a solution (u, v) is a
Nash-type equilibrium of the pair of functionals (E1,E2), that is,

E1 (u, v) = min
w

E1 (w,v)

E2 (u, v) = min
w

E2 (u,w) .

A result in this direction is given in Section 8.2 for the case when minw is
achieved, either on an entire Banach space and then, or on a ball. Nonsmooth
analogues of those results, in the abstract framework of Szulkin functionals,
have been developed in Section 8.3.

In this section, we are concerned with the localization of a Nash-type equi-
librium in the Cartesian product of two conical sets, more exactly if u ∈ K1 and
v ∈ K2, where Ki (i = 1,2) is a cone of a Hilbert space Xi with norm ‖·‖i , and

r1 ≤ l1 (u) , ‖u‖1 ≤ R1,

r2 ≤ l2 (v) , ‖v‖2 ≤ R2,

for some positive numbers ri and Ri , i = 1,2. The main feature in this section
is that li : Ki → R+ are two given functionals. Usually, li are the correspond-
ing norms, while here they are upper semicontinuous concave functionals. For
instance, in applications, such a functional l (u) can be infu. If in addition, due
to some embedding result, the norm ‖u‖ is comparable with supu in the sense
that supu ≤ c ‖u‖ for every nonnegative function u and some constant c > 0,
then the values of any nonnegative function u satisfying r ≤ l (u) and ‖u‖ ≤ R

belong to the interval [r, cR], which is very convenient for finding multiple so-
lutions located in disjoint annular conical sets.
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In the first part of this section we are concerned with the localization of a
critical point of minimum type in a convex conical set as above and we explain
how this result can be used in order to obtain finitely or infinitely many solutions.
The result can be seen as a variational analogue of some Krasnoselskii’s type
compression-expansion theorems from fixed point theory. Next, we obtain the
vector version of this result for gradient type systems. In particular, this result
allows to localize individually the components of a solution. The final part of
this section is devoted to the existence and localization of Nash-type equilibria
for nonvariational systems. An iterative algorithm is used and its convergence is
established assuming a local matricial contraction condition. The main abstract
result is illustrated with an application dealing with the periodic problem. The
results of this section are due to Precup [148].

8.4.1 A Localization Critical Point Theorem

Let X be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, which is
identified with its dual. Assume that K ⊂ X is a wedge, and let l : K → R+ be
a concave upper semicontinuous function with l (0) = 0. Let E ∈ C1 (X) be a
functional and let N : X → X be the operator N (u) := u − E′ (u).

For any positive numbers r and R we consider the conical set

KrR := {u ∈ K : r ≤ l (u) and ‖u‖ ≤ R} .

Then KrR is a convex set since l is concave, and it is closed since l is upper
semicontinuous.

Assume that KrR �= ∅ and

N (KrR) ⊂ K.

Lemma 8.3. Let the following conditions be satisfied:

m := inf
u∈KrR

E (u) > −∞; (8.49)

there exists ε > 0 such that E (u) ≥ m + ε for

all u ∈ KrR which simultaneously satisfy l (u) = r and ‖u‖ = R;
(8.50)

l (N (u)) ≥ r for every u ∈ KrR. (8.51)

Then there exists a sequence (un) ⊂ KrR such that

E (un) ≤ m + 1

n
(8.52)

and ∥∥E′ (un) + λnun

∥∥ ≤ 1

n
, (8.53)
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where

λn =
⎧⎨
⎩−

〈
E′(un),un

〉
R2 if ‖un‖ = R and

〈
E′ (un) , un

〉
< 0

0 otherwise.
(8.54)

Proof. By Ekeland’s variational principle, there exists a sequence (un) ⊂ KrR

such that

E (un) ≤ m + 1

n
, (8.55)

E (un) ≤ E (v) + 1

n
‖v − un‖ (8.56)

for all v ∈ KrR and n ≥ 1.
We distinguish the following distinct situations.

Case 1. There is a subsequence of (un) (also denoted by (un)) such that
r ≤ l (un) and ‖un‖ < R for every n. For a fixed but arbitrary n and t > 0,
consider the element

v = un − tE′ (un) .

Since v = (1 − t) un + tN (un) and both un and N (un) belong to K , we deduce
that v ∈ K for every t ∈ (0,1). Next, the concavity of l and relation (8.51) yield

l (v) ≥ (1 − t) l (un) + t l (N (un)) ≥ r

for all t ∈ (0,1). In addition, the continuity of the norm gives ‖v‖ ≤ R for every
t ∈ (0,1) small enough. It follows that v ∈ KrR for all sufficiently small t > 0.
Replacing v in (8.56) we obtain

E
(
un − tE′ (un)

) − E (un) ≥ − t

n

∥∥E′ (un)
∥∥ .

Dividing by t and letting t go to zero yields

− 〈
E′ (un) ,E′ (un)

〉 ≥ −1

n

∥∥E′ (un)
∥∥ .

Therefore ∥∥E′ (un)
∥∥ ≤ 1

n
.

Thus, in this case, relation (8.53) holds with λn = 0.

Case 2. There is a subsequence of (un) (also denoted by (un)) such that
‖un‖ = R for every n. Passing eventually to a new subsequence, in view
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of (8.50) and (8.55), we may assume that l (un) > r for every n. Two subcases
are possible:

(a) For a subsequence (still denoted by (un)), we have
〈
E′ (un) , un

〉
> 0 for

every n. Then for any fixed index n, the above choice of v in (8.56) is still
possible since

‖v‖2 = ∥∥un − tE′ (un)
∥∥2 = ‖un‖2 + t2

∥∥E′ (un)
∥∥2 − 2t

〈
E′ (un) , un

〉
= R2 + t2

∥∥E′ (un)
∥∥2 − 2t

〈
E′ (un) , un

〉 ≤ R2

for 0 < t ≤ 2
〈
E′ (un) , un

〉
/

∥∥E′ (un)
∥∥2.

(b) Assume that
〈
E′ (un) , un

〉 ≤ 0 for every n. Then for any fixed index n,
we use (8.56) with

v = un − t
(
E′ (un) + λnun + εun

)
,

where t, ε > 0 and λn = − 〈
E′ (un) , un

〉
/R2 ≥ 0. Since

v = (1 − t)
1 − t − tλn − tε

1 − t
un + tN (un) ,

we immediately see that v ∈ K for every t ∈ (0,1) small enough that
1 − t − tλn − tε > 0. Also,

〈
E′ (un) + λnun + εun, un

〉 = εR2 > 0,

and as in case (a), we find that ‖v‖ ≤ R for sufficiently small t > 0. On the other
hand, from l (un) > r , we have δl (un) = r for some number δ ∈ (0,1). Then,
for any ρ ∈ [δ,1], we have

l (ρun) = l (ρun + (1 − ρ)0) ≥ ρl (un) + (1 − ρ) l (0)

= ρl (un) ≥ δl (un) = r.

In particular, we may take ρ = (1 − t − tλn − tε) / (1 − t) which belongs to
[δ,1] for sufficiently small t . Consequently,

l (v) = l

(
(1 − t)

1 − t − tλn − tε

1 − t
un + tN (un)

)
= l ((1 − t) ρun + tN (un)) ≥ (1 − t) l (ρun) + t l (N (un)) ≥ r.

Therefore v ∈ KrR for every sufficiently small t > 0. Replacing v in (8.56) and
letting t → 0 yields

〈
E′ (un) ,−E′ (un) − λnun − εun

〉 ≥ −1

n

∥∥E′ (un) + λnun + εun

∥∥ .
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Finally, let ε tend to zero and use
〈
un,E

′ (un) + λnun

〉 = 0 to deduce

∥∥E′ (un) + λnun

∥∥ ≤ 1

n
,

which is relation (8.53).

Lemma 8.3 yields the following critical point theorem.

Theorem 8.13. Assume that hypotheses of Lemma 8.3 are satisfied. In addition,
assume that there is a number ν such that〈

E′ (u) ,u
〉 ≥ ν for every u ∈ KrR with ‖u‖ = R, (8.57)

E′ (u) + λu �= 0 for all u ∈ KrR with ‖u‖ = R and λ > 0, (8.58)

and a Palais-Smale type condition holds, more exactly, any sequence as in the
conclusion of Lemma 8.3 has a convergent subsequence. Then there exists u ∈
KrR such that

E (u) = m and E′ (u) = 0.

Proof. The sequence (λn) given by (8.54) is bounded as a consequence
of (8.57). Hence, passing eventually to a subsequence we may suppose that
(λn) converges to some number λ. Clearly λ ≥ 0. Next, using the Palais-Smale
type condition we may assume that the sequence (un) converges to some ele-
ment u ∈ KrR . Then letting n → ∞ in (8.52) and (8.53) gives E (u) = m and
E′ (u) + λu = 0. From (8.54) we have that the case λ > 0 is possible only
if ‖u‖ = R, which is excluded by assumption (8.58). Therefore λ = 0 and so
E′ (u) = 0.

If the functional l is continuous on KrR , then instead of hypothesis (8.51)
we can take the weaker boundary condition

l (N (u)) ≥ r for every u ∈ KrR with l (u) = r.

Let us now assume that there exists c > 0 such that

l (u) ≤ c ‖u‖ (8.59)

for all u ∈ K . Then from the assumption KrR �= ∅, we deduce that r ≤ cR.
Indeed, if u ∈ KrR , then r ≤ l (u) ≤ c ‖u‖ ≤ cR.

Also, if

r1 ≤ cR1, r2 ≤ cR2 and cR1 < r2,

then the sets Kr1R1 and Kr2R2 are disjoint. Indeed, if u ∈ Kr1R1 , then

r1 ≤ l (u) ≤ c ‖u‖ ≤ cR1 < r2.
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Hence l (u) < r2 which shows that u /∈ Kr2R2 . The same conclusion holds if

r1 ≤ cR1, r2 ≤ cR2 and r1 > cR2.

These remarks allow us to state the following multiplicity results.

Theorem 8.14. Assume that condition (8.59) holds.

(i) If there are finite or infinite sequences of numbers
(
rj

)
1≤j≤n

,
(
Rj

)
1≤j≤n

(for 1 ≤ n ≤ +∞) with rj ≤ cRj for 1 ≤ j ≤ n and cRj < rj+1 for
1 ≤ j < n, such that the assumptions of Theorem 8.13 are satisfied for
each of the sets Krj Rj

, then for every j , there exists uj ∈ Krj Rj
with

E
(
uj

) = inf
Krj Rj

E and E′ (
uj

) = 0. (8.60)

(ii) If there are infinite sequences of numbers
(
rj

)
j≥1,

(
Rj

)
j≥1 with

cRj+1 < rj ≤ cRj for all j , such that the assumptions of Theorem 8.13
hold for each of the sets Krj Rj

, then for every j , there exists uj ∈ Krj Rj

which satisfies (8.60).

8.4.2 Localization of Nash-Type Equilibria of Nonvariational
Systems

We first establish a vector version of the localization critical point theorem.
For this purpose, we consider two Hilbert spaces X1 and X2 with scalar prod-
ucts 〈., .〉i and norms ‖.‖i (i = 1, 2). Let Ki ⊂ Xi denote two wedges and
let li : Ki → R+ be upper semicontinuous functionals with li (0) = 0. We
assume that E is a C1-functional on the product space X1 × X2. We have
E′ (u, v) = (

E′
u (u, v) ,E′

v (u, v)
)
, for u ∈ X1, v ∈ X2, and we denote by N1,

N2 the operators

N1 (u, v) = u − E′
u (u, v) , N2 (u, v) = v − E′

v (u, v) . (8.61)

In what follows, we are interested to find a solution (u, v) of the system{
u = N1 (u, v)

v = N2 (u, v) ,
(8.62)

or equivalently, a critical point of E, that is,{
E′

u (u, v) = 0

E′
v (u, v) = 0,

which minimizes E in a set of the form KrR := (K1)r1R1
× (K2)r2R2

, where
r = (r1, r2), R = (R1,R2) and

(Ki)riRi
= {

w ∈ Ki : ri ≤ li (w) and ‖w‖i ≤ Ri

}
.
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Applying the Ekeland variational principle to the functional E and to the
closed subset KrR of X1 × X2 we obtain the following vector versions of
Lemma 8.3 and Theorem 8.13.

Lemma 8.4. Let the following conditions be satisfied:

m := inf
(u,v)∈KrR

E (u, v) > −∞;
there exists ε > 0 such that E (u,v) ≥ m + ε if

l1 (u) = r1 and ‖u‖1 = R1, or l2 (v) = r2 and ‖v‖2 = R2;
l1 (N1 (u, v)) ≥ r1 and l2 (N2 (u, v)) ≥ r2 for every (u, v) ∈ KrR.

Then there exists a minimizing sequence (un, vn) ⊂ KrR , i.e., E (un, vn) → m

as n → ∞, such that

E (un, vn) ≤ m + 1

n
,

∥∥E′
u (un, vn) + λnun

∥∥
1 ≤ 1

n
and

∥∥E′
v (un, vn) + μnvn

∥∥
2 ≤ 1

n
,

where

λn =

⎧⎪⎨
⎪⎩

−
〈
E′

u (un, vn) , un

〉
1

R2
1

if ‖un‖1 = R1 and
〈
E′

u (un, vn) , un

〉
1 < 0

0 otherwise,

μn =

⎧⎪⎨
⎪⎩

−
〈
E′

v (un, vn) , vn

〉
1

R2
2

if ‖vn‖2 = R2 and
〈
E′

v (un, vn) , vn

〉
2 < 0

0 otherwise.

Theorem 8.15. Assume that the assumptions of Lemma 8.4 are satisfied. In
addition, we assume that there exists a real number ν such that〈

E′
u (u, v) , u

〉
1 ≥ ν for every (u, v) ∈ KrR with ‖u‖1 = R1 ,〈

E′
v (u, v) , v

〉
2 ≥ ν for every (u, v) ∈ KrR with ‖v‖2 = R2 ,

E′
u (u, v) + λu �= 0 for all (u, v) ∈ KrR with ‖u‖1 = R1 and λ > 0,

E′
v (u, v) + λv �= 0 for all (u, v) ∈ KrR with ‖v‖2 = R2 and λ > 0,

and the Palais-Smale type condition holds. Then there exists (u, v) ∈ KrR such
that

E (u,v) = m and E′ (u, v) = 0.

Our main purpose in what follows is to deal with system (8.62) but without
assuming the existence of a functional E with property (8.61). Instead, we as-
sume that each equation of the system has a variational structure, that is, there
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are two C1 functionals Ei : X := X1 × X2 → R, such that

N1 (u, v) = u − E11 (u, v) , N2 (u, v) = v − E22 (u, v) ,

where by E11, E22 we mean the partial derivatives of E1, E2 with respect to u

and v, respectively.
We look for a point (u, v) in a set of the form KrR := (K1)r1R1

× (K2)r2R2
,

which solves problem (8.62) and is a Nash-type equilibrium in KrR of the pair
of functionals (E1,E2), more exactly

E1 (u, v) = min
w∈(K1)r1R1

E1 (w,v) ,

E2 (u, v) = min
w∈(K2)r2R2

E2 (u,w) .

We say that the operator N : X → X, N (u,v) = (N1 (u, v) ,N2 (u, v)) is
a Perov contraction on KrR if there exists a matrix M = [

mij

] ∈ M2,2 (R+)

such that Mn tends to the zero matrix as n → ∞, and the following matricial
Lipschitz condition is satisfied[

‖N1 (u, v) − N1 (u, v)‖1

‖N2 (u, v) − N2 (u, v)‖2

]
≤ M

[
‖u − u‖1

‖v − v‖2

]
(8.63)

for every u,u ∈ (K1)r1R1
and v, v ∈ (K2)r2R2

.
Notice that for a square matrix of nonnegative elements, the property

Mn → 0 is equivalent to ρ (M) < 1, where ρ (M) is the spectral radius of ma-
trix M , and also to the fact that I − M is nonsingular and all the elements of the
matrix (I − M)−1 are nonnegative (see [144]). In case of square matrices M of
order 2, the above property is characterized by the inequality

tr (M) < min {2, 1 + det (M)} .

We impose the following hypotheses:

(H1) For each v ∈ (K2)r2R2
, the functional E1 (., v) is bounded from below on

(K1)r1R1
;

for each u ∈ (K1)r1R1
, the functional E2 (u, .) is bounded from below on

(K2)r2R2
.

(H2) l1 (N1 (u, v)) ≥ r1 for every (u, v) ∈ KrR; N1 (u, v) �= (1 + λ)u for all
(u, v) ∈ KrR with ‖u‖1 = R1 and λ > 0;
l2 (N2 (u, v)) ≥ r2 for every (u, v) ∈ KrR; N2 (u, v) �= (1 + λ)v for all
(u, v) ∈ KrR with ‖v‖2 = R2 and λ > 0.

(H3) For each v ∈ (K2)r2R2
, there exists ε > 0 such that E1 (u, v) ≥

inf(K1)r1R1
E1 (., v) + ε whenever u simultaneously satisfies l1 (u) = r1

and ‖u‖1 = R1;
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for each u ∈ (K1)r1R1
, there exists ε > 0 such that E2 (u, v) ≥

inf(K2)r2R2
E2 (u, .) + ε whenever v simultaneously satisfies l2 (v) = r2

and ‖v‖2 = R2.
(H4) N is a Perov contraction on KrR .

Let us underline the local character of the contraction condition (H4). This
is essential for multiple Nash-type equilibria when (H4) is required to hold on
disjoint bounded sets of the type KrR but not on the entire K . Thus the ‘slope’
of N has to be ‘small’ on the sets KrR but can be unlimited large between these
sets, which makes possible to fulfill the boundary conditions (H2).

Theorem 8.16. Assume that conditions (H1)–(H4) hold. Then there exists a
solution (u, v) ∈ KrR of system (8.62) which is a Nash-type equilibrium on KrR

of the pair of functionals (E1,E2).

Proof. The main idea is to construct recursively two sequences (un), (vn), based
on Lemma 8.3. Let v0 be any element of (K2)r2R2

. At any step n (n ≥ 1) we may
find a un ∈ (K1)r1R1

and a vn ∈ (K2)r2R2
such that

E1 (un, vn−1) ≤ inf
(K1)r1R1

E1 (., vn−1) + 1

n
, ‖E11 (un, vn−1) + λnun‖1 ≤ 1

n

(8.64)

and

E2 (un, vn) ≤ inf
(K2)r2R2

E2 (un, .) + 1

n
, ‖E22 (un, vn) + μnvn‖2 ≤ 1

n
, (8.65)

where

λn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−〈E11 (un, vn−1) , un〉1

R2
1

if ‖un‖1 = R1

and 〈E11 (un, vn−1) , un〉1 < 0

0 otherwise,

and the expression of μn is analogous.
Condition (H4) guarantees that the operators Ni are bounded, so the bound-

edness of the sequences of real numbers (λn) and (μn). Therefore, passing to
subsequences, we may assume that the sequences (λn) and (μn) are convergent.

Let

αn := E11 (un, vn−1) + λnun and βn := E22 (un, vn) + μnvn.

We observe that αn,βn → 0. Also

(1 + λn)un − N1 (un, vn−1) = αn (8.66)

(1 + μn)vn − N2 (un, vn) = βn.
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Since λn > 0, the first equality if (8.66) written for n and n + p yields∥∥un+p − un

∥∥
1

≤ (1 + λn)
∥∥un+p − un

∥∥
1

= ∥∥(1 + λn)un+p − (1 + λn)un

∥∥
1

= ∥∥(
1 + λn+p

)
un+p − (1 + λn)un − (

λn+p − λn

)
un+p

∥∥
1

≤ ∥∥N1
(
un+p, vn+p−1

) − N1 (un, vn−1)
∥∥

1 + ∥∥αn+p − αn

∥∥
1

+ ∣∣λn+p − λn

∣∣ ∥∥un+p

∥∥
1 .

Furthermore, using
∥∥un+p

∥∥
1 ≤ R1 and relation (8.63) we deduce that

∥∥un+p − un

∥∥
1

≤ m11
∥∥un+p − un

∥∥
1 + m12

∥∥vn+p−1 − vn−1
∥∥

2 + ∥∥αn+p − αn

∥∥
1

+ R1
∣∣λn+p − λn

∣∣
= m11

∥∥un+p − un

∥∥
1 + m12

∥∥vn+p − vn

∥∥
2 + ∥∥αn+p − αn

∥∥
1

+ R1
∣∣λn+p − λn

∣∣ + m12
(∥∥vn+p−1 − vn−1

∥∥
2 − ∥∥vn+p − vn

∥∥
2

)
.

Denote

an,p = ∥∥un+p − un

∥∥
1 , bn,p = ∥∥vn+p − vn

∥∥
2 ,

cn,p = ∥∥αn+p − αn

∥∥
1 + R1

∣∣λn+p − λn

∣∣ ,
dn,p = ∥∥βn+p − βn

∥∥
2 + R2

∣∣μn+p − μn

∣∣ .
Clearly, cn,p → 0 and dn,p → 0 uniformly with respect to p. It follows that

an,p ≤ m11an,p + m12bn,p + cn,p + m12
(
bn−1,p − bn,p

)
. (8.67)

Similarly, from the second equality in (8.66), we find

bn,p ≤ m21an,p + m22bn,p + dn,p.

Hence

[
an,p

bn,p

]
≤ M

[
an,p

bn,p

]
+

[
cn,p + m12

(
bn−1,p − bn,p

)
dn,p

]
.

Consequently, since I −M is invertible and its inverse contains only nonnegative
elements, we may write

[
an,p

bn,p

]
≤ (I − M)−1

[
cn,p + m12

(
bn−1,p − bn,p

)
dn,p

]
.
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Let (I − M)−1 = [
γij

]
. Then

an,p ≤ γ11
(
cn,p + m12

(
bn−1,p − bn,p

)) + γ12dn,p (8.68)

bn,p ≤ γ21
(
cn,p + m12

(
bn−1,p − bn,p

)) + γ22dn,p.

From the second inequality, one has

bn,p ≤ γ21m12

1 + γ21m12
bn−1,p + γ21cn,p + γ22dn,p

1 + γ21m12
.

Clearly
(
bn,p

)
is bounded uniformly with respect to p. Next, we apply

Lemma 8.1. It follows that bn,p → 0 uniformly for p ∈ N, and hence (vn) is
a Cauchy sequence. Next, the first inequality in (8.68) implies that (un) is also
a Cauchy sequence. Let u∗, v∗ be the limits of the sequences (un), (vn), re-
spectively. The conclusion of Theorem 8.16 now follows if we pass to the limit
in (8.64), (8.65) and we use (H2).

8.5 APPLICATIONS TO PERIODIC PROBLEMS

8.5.1 Case of a Single Equation

Consider the following periodic problem:

−u′′ (t) + a2u (t) = f (u (t)) on (0, T ) (8.69)

u (0) − u (T ) = u′ (0) − u′ (T ) = 0

where a �= 0 and f :R→ R is a continuous function with f (R+) ⊂R+.
Let X := H 1

p (0, T ) be the space of functions of the form

u (t) =
ˆ t

0
v (s) ds + C,

with u (0) = u (T ), C ∈R and v ∈ L2 (0, T ), endowed with the inner product

〈u,v〉 =
ˆ T

0

(
u′v′ + a2uv

)
dt

and the corresponding norm

‖u‖ =
(ˆ T

0

(
u′2 + a2u2

)
dt

) 1
2

.

Let K be the positive cone of X, that is, K = {u ∈ H 1
p (0, T ) : u ≥ 0 on [0, T ]},

and let l : K → R+ be given by

l (u) = min
t∈[0,T ]

u (t) .
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The energy functional associated to the problem is E : H 1
p (0, T ) → R,

E (u) = 1

2
‖u‖2 −

ˆ T

0
F (u (t)) dt,

where

F (τ) =
ˆ τ

0
f (s) ds.

The identification of the dual
(
H 1

p (0, T )
)′

to the space H 1
p (0, T ) via the

mapping J :
(
H 1

p (0, T )
)′ → H 1

p (0, T ), J (v) = w, where w is the weak solu-

tion of the problem

−w′′ + a2w = v on (0, T ) ,

w (0) − w (T ) = w′ (0) − w′ (T ) = 0

yields to the representation

E′ (u) = u − N (u) ,

where

N (u) = J (f (u (·))) .

Note that the condition f (R+) ⊂R+ guarantees that N (K) ⊂ K .
Let c > 0 be the embedding constant of the inclusion H 1

p (0, T ) ⊂ C [0, T ],

that is, ‖u‖C[0,T ] ≤ c ‖u‖ for all u ∈ H 1
p (0, T ).

Note that for u ≡ 1, the above inequality gives 1 ≤ ac
√

T , whence
a2 ≥ 1/

(
c2T

)
. Also, if r and R are positive numbers and a

√
T r ≤ R, then

the set KrR is nonempty. Indeed, any constant λ ∈
[
r,R/

(
a
√

T
)]

belongs to

KrR , since l (λ) = λ ≥ r and ‖λ‖ =
(´ T

0 a2λ2ds
)1/2 = aλ

√
T ≤ R.

Theorem 8.17. Let r , R be positive constants such that a
√

T r ≤ R. Assume
that f is nondecreasing on the interval [r, cR] and that the following conditions
hold:

E (r) <
R2

2
− T F (cR) , (8.70)

and

f (r) ≥ a2r, f (cR) ≤ R

cT
. (8.71)

Then problem (8.69) has a positive solution u with r ≤ u (t) ≤ cR for all t ∈
[0, T ], which minimizes E in the set KrR .
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Proof. (i) Check of condition (8.49). Let u ∈ KrR . One has r ≤ u (t) ≤ cR for
all t ∈ [0, T ]. Then, since F is nondecreasing on R+,

E (u) ≥ −
ˆ T

0
F (u (s)) ds ≥ −T F (cR) > −∞.

(ii) Check of condition (8.50). Take any u with l (u) = r and ‖u‖ = R. Then

E (u) = R2

2
−
ˆ T

0
F (u (s)) ds ≥ R2

2
− T F (cR) .

Thus our claim holds in view of the strict inequality (8.70) and the obvious
inequality m ≤ E (r) (note that the constant function r belongs to KrR).

(iii) Check of condition (8.51). Let u ∈ KrR . Then

l (N (u)) = l (J (f (u))) ≥ l (J (f (r))) = f (r) l (J (1))

= f (r)

a2
≥ r,

in virtue of the first inequality in (8.71).
(iv) Check of condition (8.58). Assume that E′ (u) + λu = 0 for some

u ∈ KrR with ‖u‖ = R and λ > 0. Then

(1 + λ)
(
−u′′ + a2u

)
= f (u) ,

whence

R2 < (1 + λ)R2 = 〈f (u) ,u〉L2 ≤ Tf (cR) cR,

that is

R

cT
< f (cR) ,

which contradicts the second inequality in (8.71).
(v) Condition (8.57) being immediate and the required Palais-Smale type

condition being a consequence of the compact embedding of H 1
p (0, T ) into

C [0, T ], Theorem 8.13 yields the conclusion.

Example 8.3. For each λ > 0, the equation −u′′ +a2u = λ
√

u has a T -periodic
solution satisfying u (t) ≥ λ2/a4 for all t ∈ [0, T ].

Indeed, if we take r = λ2/a4, then the first condition from (8.71) is satis-
fied with equality. Next, we choose R large enough that (8.70) and the second
inequality (8.71) hold, that is,

E (r) <
R2

2
− λ

2

3
T (cR)

3
2 and λ

√
cR ≤ R

cT
.
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8.5.2 Case of a Variational System

We now consider the periodic problem for the following system:

−u′′ (t) + a2
1u (t) = f1 (u (t) , v (t)) on (0, T ) (8.72)

−v′′ (t) + a2
2v (t) = f2 (u (t) , v (t)) on (0, T )

in the case when f1, f2 are the partial derivatives of a function F :R2 → R with
respect to the first and the second variable, respectively. We assume that ai �= 0
and fi (R+ ×R+) ⊂R+, for i = 1,2.

Let X1 denote the space H 1
p (0, T ) endowed with the scalar product

〈u,v〉1 =
ˆ T

0

(
u′v′ + a2

1uv
)

ds

and the induced norm ‖.‖1. Assume that X2 is the same space endowed with
the analogue scalar product and norm 〈., .〉2, ‖.‖2. Also K1 = K2 is the cone of
nonnegative functions in H 1

p (0, T ), and l1 (w) = l2 (w) = mint∈[0,T ] w (t) for

w ∈ H 1
p (0, T ), w ≥ 0.

The system has a variational structure since its T -periodic solutions (u, v)

are the critical points of the energy functional on H 1
p (0, T ) × H 1

p (0, T ),

E (u,v) = 1

2

(
‖u‖2

1 + ‖v‖2
2

)
−
ˆ T

0
F (u (s) , v (s)) ds.

For i = 1,2, let ci > 0 be the embedding constant of the inclusion
Xi ⊂ C [0, T ], that is, ‖w‖C[0,T ] ≤ ci ‖w‖i for all w ∈ H 1

p (0, T ).

Theorem 8.18. Let ri , Ri be positive constants such that ai

√
T ri ≤ Ri

(i = 1,2). Assume that for i = 1,2, fi is nondecreasing in each of the vari-
ables on [r1, c1R1] × [r2, c2R2] and that the following conditions hold:

E (r1, r2) <
R2

i

2
− T F (c1R1, c2R2) ,

and

fi (r1, r2) ≥ a2
i ri , fi (c1R1, c2R2) ≤ Ri

ciT
.

Then system (8.72) has a T -solution (u, v) with r1 ≤ u (t) ≤ c1R1 and
r2 ≤ v (t) ≤ c2R2 for all t ∈ [0, T ], which minimizes E in the set KrR :=
(K1)r1R1

× (K2)r2R2
.

Example 8.4. The potential of the system

−u′′ + a2
1u = α1

√
u + γ v
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−v′′ + a2
2v = α2

√
v + γ u

is

F (u, v) = 2

3

(
α1u

3
2 + α2v

3
2

)
+ γ uv.

As for Example 8.3, we have the following result: for every numbers αi > 0,
i = 1,2, T > 0 and 0 ≤ γ < min

{
1/

(
2c2

i T
) : i = 1,2

}
, the system has a

T -periodic solution with u (t) ≥ α2
1/a4

1 and v (t) ≥ α2
2/a4

2 and all t ∈ [0, T ].
For the proof, take ri = α2

i /a
4
i (i = 1,2) and a sufficiently large R := R1 = R2.

8.5.3 Case of a Nonvariational System

We now consider the system (8.72) for two arbitrary continuous functions f1,
f2 and use the notations from the previous section. The energy functionals as-
sociated to the equations of the system are Ei : H 1

p (0, T ) × H 1
p (0, T ) → R,

E1 (u, v) = 1

2
‖u‖2

1 −
ˆ T

0
F1 (u (t) , v (t)) dt,

E2 (u, v) = 1

2
‖v‖2

2 −
ˆ T

0
F2 (u (t) , v (t)) dt,

where

F1 (τ1, τ2) =
ˆ τ1

0
f1 (s, τ2) ds, F2 (τ1, τ2) =

ˆ τ2

0
f2 (τ1, s) ds.

The identification of the dual
(
H 1

p (0, T )
)′

to the space H 1
p (0, T ) via the

mapping Ji :
(
H 1

p (0, T )
)′ → H 1

p (0, T ), Ji (v) = w, where w is the weak solu-

tion of the problem

−w′′ + a2
i w = v on (0, T ) ,

w (0) − w (T ) = w′ (0) − w′ (T ) = 0

yields to the representations

E11 (u, v) = u − N1 (u, v) , E22 (u, v) = v − N2 (u, v) ,

where E11, E22 stand for the partial derivatives of E1, E2 with respect to u

and v, respectively, and

Ni (u, v) = Ji (fi (u (·) , v (·))) .

Let r = (r1, r2) and R = (R1,R2) be such that

0 < ai

√
T ri ≤ Ri, i = 1,2.
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In what follows, we verify that the hypotheses of Theorem 8.16 are fulfilled.

Check of condition (H1): For every (u, v) ∈ KrR = (K1)r1R1
× (K2)r2R2

and
t ∈ [0, T ], we have

r1 ≤ u (t) ≤ ‖u‖C[0,T ] ≤ c1 ‖u‖1 ≤ c1R1,

and similarly r2 ≤ v (t) ≤ c2R2. It follows that

|fi (τ1, τ2)| ≤ ρi

for every τ1 ∈ [r1, c1R1], τ2 ∈ [r2, c2R2] and some ρi ∈ R+ (i = 1,2). Then

E1 (u, v) ≥ −
ˆ T

0

ˆ u(t)

0
|f1 (s, v (t))|dsdt ≥ −

ˆ T

0

ˆ c1R1

0
|f1 (s, v (t))|dsdt

≥ −c1R1Tρ1 > −∞,

and similarly E2 (u, v) ≥ −c2R2Tρ2 > −∞. Hence condition (H1) holds.
Next, we assume in addition that for i ∈ {1,2},

fi (τ1, τ2) is nonnegative and nondecreasing

in both variables τ1 and τ2 in [r1, c1R1] × [r2, c2R2] ,
(8.73)

fi (r1, r2) ≥ a2
i ri , (8.74)

fi (c1R1, c2R2) ≤ Ri/ (T ci) , (8.75)

and

Fi (c1R1, c2R2) − Fi (r1, r2) <
1

2T

(
R2

i − a2
i T r2

i

)
. (8.76)

Check of condition (H2): Let (u, v) ∈ KrR . Then from u (t) ≥ r1, v (t) ≥ r2 and
the monotonicity of f1, we have

fi (u (t) , v (t)) ≥ fi (r1, r2) .

This together with (8.74) implies

li (Ni (u, v)) ≥ li (Ji (fi (r1, r2))) = fi (r1, r2)

a2
i

≥ ri .

Thus, the first part of (H2) is verified. For the second part, assume that there
exists (u, v) ∈ KrR with ‖u‖1 = R1 and λ > 0 such that

N1 (u, v) = (1 + λ)u.

Then

(1 + λ)
(
−u′′ + a2

1u
)

= f1 (u, v) ,
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which gives

R2
1 < (1 + λ)R2

1 = (1 + λ)‖u‖2
1 = 〈f1 (u, v) , u〉L2

≤ Tf1 (c1R1, c2R2) c1R1,

whence

f1 (c1R1, c2R2) > R1/ (T c1) ,

which contradicts (8.75). An analogue reasoning applies if N2 (u, v) = (1 + λ)v

for some (u, v) ∈ KrR with ‖v‖2 = R2 and λ > 0. Therefore (H2) holds.

Check of condition (H3): The constant function r1 belongs to (K1)r1R1
and for

any v ∈ (K2)r2R2
, we have

E1 (r1, v) = 1

2
a2

1T r2
1 −

ˆ T

0
F1 (r1, v (t)) dt

≤ 1

2
a2

1T r2
1 − T F1 (r1, r2) .

Also, for any (u, v) ∈ KrR with l1 (u) = r1 and ‖u‖1 = R1, one has

E1 (u, v) = 1

2
R2

1 −
ˆ T

0
F1 (u (t) , v (t)) dt ≥ 1

2
R2

1 − T F1 (c1R1, c2R2) .

Therefore the first part of (H3) holds with

ε = 1

2
R2

1 − T F1 (c1R1, c2R2) −
(

1

2
a2

1T r2
1 − T F1 (r1, r2)

)

which is positive in view of assumption (8.76). The second part of (H3) can be
checked similarly.

Finally, to guarantee (H4) we need some Lipschitz conditions on f1 and f2.
We assume the existence of nonnegative constants σij , i, j = 1,2, such that

|fi (τ1, τ2) − fi (τ 1, τ 2)| ≤ σi1 |τ1 − τ 1| + σi2 |τ2 − τ 2| , i = 1,2, (8.77)

for τ1, τ 1 ∈ [r1, c1R1] and τ2, τ 2 ∈ [r2, c2R2] ,

and for the matrix M = [
σij /

(
aiaj

)]
1≤i,j≤2 one has

Mn → 0 as n → ∞. (8.78)

Check of condition (H4): Notice that for w ∈ L2 (0, T ), from

‖Ji (w)‖2
i = 〈w,Ji (w)〉L2 ≤ ‖w‖L2 ‖Ji (w)‖L2 ≤ 1

ai

‖w‖L2 ‖Ji (w)‖i ,
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one has

‖Ji (w)‖i ≤ 1

ai

‖w‖L2 , w ∈ L2 (0, T ) . (8.79)

Then using (8.79) and (8.77) we obtain

‖N1 (u, v) − N1 (u, v)‖1 = ‖J1 (f1 (u, v) − f1 (u, v))‖1

≤ 1

a1
‖f1 (u, v) − f1 (u, v)‖L2

≤ σ11

a1
‖u − u‖L2 + σ12

a1
‖v − v‖L2

≤ σ11

a2
1

‖u − u‖1 + σ12

a1a2
‖v − v‖2 .

Similarly,

‖N2 (u, v) − N2 (u, v)‖2 ≤ σ21

a2a1
‖u − u‖1 + σ22

a2
2

‖v − v‖2 .

Hence (8.63) holds with mij = σij /aiaj .
Therefore we have the following result.

Theorem 8.19. Under assumptions (8.73)–(8.76), (8.77) and (8.78), there ex-
ists a T -periodic solution (u, v) ∈ KrR of system (8.72) which is a Nash-type
equilibrium on KrR of the pair of energy functionals (E1,E2).

Let us underline the fact that all the assumptions on f1 and f2 in the above
theorem are given with respect to the bounded region [r1, c1R1] × [r2, c2R2].
This makes possible to apply Theorem 8.19 to several disjoint such regions ob-
taining this way multiple solutions of Nash-type.

Example 8.5. Consider the problem of positive T -periodic solutions for the
system

−u′′ + a2
1u = α1

√
u + γ1v (8.80)

−v′′ + a2
2v = α2

√
v + γ2u

where αi , γi are nonnegative coefficients with γi < a2
i (i = 1,2).

We try to localize a positive solution (u, v) with r ≤ u (t) and r ≤ v (t) for
all t ∈ [0, T ]. We apply the previous result with r1 = r2 =: r and R1 = R2 =: R.

(a) The positivity and monotonicity of f1 and f2 on R+ × R+ required
by (8.73) are obvious.

(b) Condition (8.74): We have

f1 (r, r) = α1
√

r + γ1r.
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Thus we need

α1
√

r + γ1r ≥ a2
1r.

Under the assumption γ1 < a2
1 this gives

r ≤
(

α1

a2
1 − γ1

)2

.

Similarly, for f2,

r ≤
(

α2

a2
2 − γ2

)2

.

(c) Condition (8.75): We have

f1 (c1R,c2R) = α1

√
c1R + γ1c2R.

Hence we need

α1

√
c1R + γ1c2R ≤ R

T c1
.

This implies γ1 < 1/ (T c1c2) and

R ≥ α2
1T 2c3

1

(1 − T γ1c1c2)
2
.

Similarly, γ2 < 1/ (T c1c2) and

R ≥ α2
2T 2c3

2

(1 − T γ2c1c2)
2
.

(d) Condition (8.76) for i = 1 reads as

2

3
α1 (c1R)

3
2 + γ1c1c2R

2 − F1 (r, r) <
1

2T

(
R2 − a2

1T r2
)

and holds for a sufficiently large R provided that

γ1 <
1

2T c1c2
.

Similarly,

γ2 <
1

2T c1c2
.
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(e) Condition (8.77): For τ1 ∈ [r, c1R] and τ2 ∈ [r, c2R], one has

∂f1 (τ1, τ2)

∂τ1
= α1

2
√

τ1
≤ α1

2
√

r
,

∂f2 (τ1, τ2)

∂τ2
≤ α2

2
√

r
.

In addition,
∂f1 (τ1, τ2)

∂τ2
= γ1,

∂f2 (τ1, τ2)

∂τ1
= γ2.

Hence (8.77) holds with

σii = αi

2
√

r
and σij = γi for i �= j (i, j = 1,2) . (8.81)

Consequently we have the following result.

Theorem 8.20. Assume that

γi < a2
i , γi <

1

2T c1c2
for i = 1,2,

and there exists r > 0 with

r ≤ min

⎧⎨
⎩

(
αi

a2
i − γi

)2

: i = 1,2

⎫⎬
⎭ ,

such that the matrix M = [
σij /

(
aiaj

)]
1≤i,j≤2 where σij are given by (8.81)

satisfies (8.78). Then (8.80) has a unique T -periodic solution (u, v) such that
u (t) ≥ r and v (t) ≥ r for every t ∈ [0, T ], which is a Nash-type equilibrium of
the pair of corresponding energy functionals.

Proof. The existence follows from Theorem 8.19 and the uniqueness is a con-
sequence of the Perov contraction property of the operator N .

In particular, if a1 = a2 =: a (when c1 = c2 =: c) and α1 = α2 =: α, the
assumptions of Theorem 8.20 reduce to the following ones:

γi <
1

2T c2
, r ≤ α2(

a2 − min {γ1, γ2}
)2

and

4
(
a4 − γ1γ2

)
r − 4αa2√r + α2 > 0

(the condition for M to satisfy (8.78)). We may choose

r = α2(
a2 − min {γ1, γ2}

)2

if

min {γ1, γ2} > 2
√

γ1γ2 − a2.
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Chapter points
• This chapter is dedicated to show some application of the equilibrium theory to

mathematical economics.
• Two models are considered: the Walrasian equilibrium model and the n-pole

economy.
• The chapter also discusses Pareto optima for n-person games, in the case when the

players are permitted to exchange information and to collaborate.

9.1 A DEBREU-GALE-NIKAÏDO THEOREM

The Debreu-Gale-Nikaïdo theorem, which can be proven by Ky Fan’s minimax
inequality (Theorem 3.3) is a potential tool to prove the existence of a market
equilibrium price. Specifically, we will use it to prove the existence of an equi-
librium price within the Walras equilibrium model (see Section 9.2 below).

To state the Debreu-Gale-Nikaïdo theorem we first need the following def-
inition. Let K be a compact topological space, Y be a real normed space and
ϕ : K ⇒ Y a given set-valued map. As before, we denote by Y ∗ the topological
dual space of Y . The norm of Y ∗ will be denoted by ‖ · ‖∗. For any fixed p ∈ Y ∗,
define the support function related to ϕ by

σ(ϕ(x),p) := sup
y∈ϕ(x)

〈p,y〉, for all x ∈ K. (9.1)

Equilibrium Problems and Applications. https://doi.org/10.1016/B978-0-12-811029-4.00017-1
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Definition 9.1. The set-valued map ϕ : K ⇒ Y is called upper hemicontinuous
at x0 ∈ K if for all p ∈ Y ∗ the support function x → σ(ϕ(x),p) is upper semi-
continuous at x0. The map ϕ is said to be upper hemicontinuous, if it is upper
hemicontinuous at every x0 ∈ K .

The next result provides a sufficient condition for upper hemicontinuity. If
x0 ∈ K we denote by V(x0) the collection of all neighborhoods of x0 and by B

the open unit ball in Y centered at the origin.

Lemma 9.1. If the mapping ϕ is upper semicontinuous (as a set-valued map-
ping), then it is also upper hemicontinuous.

Proof. Let x0 ∈ K be fixed. By the hypothesis ϕ is upper semicontinuous at x0,
that is (see Chapter 1), for each open set V ⊂ Y such that ϕ(x0) ⊂ V , there exists
N(x0) ∈ V(x0) with

ϕ(x) ⊂ V for all x ∈ N(x0). (9.2)

For every ε > 0 let V := ϕ(x0) + εB ⊂ Y , which is an open set. By (9.2) we
conclude that

∃ N(x0) ∈ V(x0) : ϕ(x) ⊂ ϕ(x0) + εB for all x ∈ N(x0). (9.3)

Fix arbitrary ε > 0 and p ∈ Y ∗. Then by (9.3)

σ(ϕ(x),p) ≤ σ(ϕ(x0),p) + σ(εB,p) for all x ∈ N(x0),

that is,

σ(ϕ(x),p) ≤ σ(ϕ(x0),p) + ε‖p‖∗ for all x ∈ N(x0).

Hence the mapping x �→ σ(ϕ(x),p) is upper semicontinuous at x0. Since x0

was arbitrary, it follows that x �→ σ(ϕ(x),p) is upper semicontinuous.

In what follows we consider the unit simplex

Mn :=
{

x ∈ R
n+ :

n∑
i=1

xi = 1

}
.

Theorem 9.1. (Debreu-Gale-Nikaïdo) Let C : Mn ⇒ R
n be a set-valued map

with nonempty compact values. Suppose that

(i) C is upper hemicontinuous;
(ii) ∀ x ∈ Mn : C(x) −R

n+ is a convex and closed set;
(iii) ∀ x ∈ Mn : σ(C(x), x) ≥ 0,

Then there exists x̄ ∈ Mn such that C(x̄) ∩R
n+ �= ∅.
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Proof. Consider the function

φ : Mn × Mn →R, φ(x, y) = σ(C(x), y).

It is easy to check that φ satisfies the assumptions of Ky Fan’s minimax
inequality theorem (Theorem 3.3). Indeed,

1. φ(x, x) ≥ 0, ∀ x ∈ Mn, by assumption (iii);
2. φ(·, y) : Mn →R is upper semicontinuous by assumption (i);
3. φ(x, ·) : Mn → R is convex for all x ∈ Mn, since y → σ(C(x), y) is con-

vex.

Since Mn is convex and compact, we may apply Theorem 3.3, and such there
exists x̄ ∈ Mn:

φ(x̄, y) ≥ 0, ∀ y ∈ Mn,

or, equivalently

σ(C(x̄), y) ≥ 0, ∀ y ∈ Mn. (9.4)

Taking into account the definition of σ , it can be seen immediately that the
latter implies

σ(C(x̄), y) ≥ 0, ∀ y ∈ R
n+.

We show that this condition is equivalent to

σ(C(x̄) −R
n+, y) ≥ 0, ∀ y ∈ R

n. (9.5)

Indeed, let S := C(x̄) − R
n+. Since σ(−R

n+, y) = 0 for y ∈ R
n+ and

σ(−R
n+, y) = +∞ for y /∈ R

n+, we obtain that

σ(S, y) = σ(C(x̄), y) + σ(−R
n+, y) ≥ 0, ∀ y ∈R

n.

Now S is a closed convex set by (ii). Suppose that 0 /∈ S. Then by the sepa-
ration theorem {0} and S can be strongly separated, that is,

∃ y ∈R
n : sup

z∈S

〈z, y〉 < inf
z∈{0}〈z, y〉 = 0,

which contradicts (9.5). In conclusion 0∈S=C(x̄)−R
n+, hence C(x̄)∩Rn+�=∅.

The proof is now complete.

9.2 APPLICATION TO WALRAS EQUILIBRIUM MODEL

Consider an economy with l types of elementary commodities each with a unit
of measurement. An elementary commodity is described besides its physical
properties also by other characteristics such as its location and/or the date when
it will be available and, in case of uncertainty, the event which will take place,
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etc. A set of commodities is a vector x ∈ R
l which describes the quantity xj of

each elementary commodity for j = 1, ..., l. Suppose that there are n consumers
and the set M ⊂R

l represents the available commodities.
Next, we present the so-called classical Walrasian model. The consumption

set for each of the n consumers will be denoted by Li ⊂ R
l . This is interpreted

as the set of commodities which the ith consumer needs. If x ∈ Li , then the j th
component xj represents the consumer’s demand for the elementary commod-
ity j if xj ≥ 0 and |xj | represents the supply of this elementary commodity if
xj < 0.

It is natural to ask whether the consumers can share an available commodity.
In order to examine this situation, the concept of allocation is needed. An allo-
cation is an element x ∈ (Rl )n consisting on n commodities xi ∈ Li such that
the value

∑n
i=1 xi is available. The set of all allocations is then defined as

K :=
{

x ∈
n∏

i=1

Li :
n∑

i=1

xi ∈ M

}
.

Assuming that the set K of allocations is nonempty, our aim is to describe
a mechanism which allows each consumer to choose its own allocation. The
mechanism does not require each consumer to know the set M of available
commodities and the choices of the other consumers, but only require each con-
sumer to know his own particular environment and to have access to common
information about the state of the economy. This common information will take
the form of a price (or price system). The price is regarded as a linear func-
tional p ∈ R

l∗ which associates to each commodity x ∈ R
l the value 〈p,x〉 ∈ R

expressed in monetary units. Suppose that the elementary commodity i is repre-
sented by the unit vector ej = (0, ...,0,1,0, ...,0) of the canonical basis of Rl ,
the components 〈p, ej 〉 of the price p represent the price of the commodity j .

We denote the price simplex by

Ml :=
⎧⎨
⎩p ∈ R

l∗+ :
l∑

j=1

pj = 1

⎫⎬
⎭ .

In the case of the Walrasian mechanism, each consumer is described by the
set-valued map Di : Ml × R⇒ Li which associates a subset of consumptions
Di(p, r) ⊂ Li to each price system p ∈R

l∗ and each income r ∈ R.
The support function σM of the set M of available commodities, already

discussed in Section 9.1 and given by

σM(p) := sup
y∈M

〈p,y〉, (9.6)
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is regarded as the collective-income function which is the maximum value of
the commodities available for each price p. An essential assumption is given by

∃ ri : Ml →R, i = 1, . . . , n :
n∑

i=1

ri(p) = σM(p), (9.7)

which means that the collective income is shared between the n consumers.
The income of each consumer is ri(P ) and he is thus led to choose a con-

sumption xi ∈ Di(p, ri(P )). This choice is decentralized; it depends only on
the price p and is independent of the choice of other consumers.

The following feasibility problem arises: is there any price p̄ such that the
sum of the consumptions

∑n
i=1 x̄i ∈ ∑n

i=1 Di(p̄, ri(p̄)) is available (belongs
to M) or such that the consumptions x̄i ∈ Di(p̄, ri(p̄)) form an allocation?

The next definition is of special importance for our purposes.

Definition 9.2. A price p̄ ∈ Ml is called a Walrasian equilibrium price if it is a
solution of the inclusion

0 ∈
n∑

i=1

Di(p̄, ri(p̄)) − M. (9.8)

The set-valued map E : Ml ⇒R
l given by

E(p) :=
n∑

i=1

Di(p, ri(p)) − M (9.9)

is called the excess-demand correspondence.

It is then obvious that the Walrasian equilibrium prices are the zeros of the
excess-demand correspondence.

The demand correspondences should satisfy the collective Walras law ex-
pressed as follows:

∀ p ∈ Ml, ∀ xi ∈ Di(p, ri) :
〈
p,

n∑
i=1

xi

〉
≤

n∑
i=1

ri(p), (9.10)

that is, the consumers cannot spend more than their total income.
A stronger, decentralized law, called Walras law is given below.
Every correspondence Di satisfies the condition

∀ p ∈ Ml, ∀ x ∈ Di(p, r) : 〈p,x〉 ≤ r. (9.11)

Now we are in the position to prove the main result of this section: the ex-
istence of a Walrasian equilibrium. The next theorem will be proved via the
Debreu-Gale-Nikaïdo theorem.
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Theorem 9.2. (see Theorem 10.1 in [20]) Suppose that the following assump-
tions are satisfied:

(i) the set M is convex and may be written as M = M0 − R
l+, where M0 is

compact;
(ii) the set-valued maps Di : Ml × R ⇒ Li are upper hemicontinuous with

convex, compact values and satisfy the collective Walras law;
(iii) the income functions ri are continuous.

Then there exists a Walrasian equilibrium.

Proof. Consider the set-valued map C : Ml ⇒R
l given by

C(p) := M0 −
n∑

i=1

Di(p, ri(p)). (9.12)

We shall apply for this C the Debreu-Gale-Nikaïdo theorem (Theorem 9.1).
To this aim let us verify that all assumptions of Theorem 9.1 are satisfied.
It is clear that C has nonempty and compact values, since the sets M0 and
Di(p, ri(p)) are compact by (i). It is also clear that C is upper hemicontinu-
ous.

By assumptions (i) and (ii), for all p ∈ Ml the set C(p) −R
l+ is convex and

closed.
Also, for every p ∈ Ml we have that

n∑
i=1

ri(p) = σ(M,p) = σ(M0 −R
l+,p)

= σ(M0,p) + σ(−R
l+,p) = σ(M0,p). (9.13)

By the collective Walras law (9.10)

−
n∑

i=1

ri(p) ≤
n∑

i=1

〈−p,xi〉, ∀ xi ∈ Di(p, ri(p)).

Passing to supremum over xi ∈ Di(p, ri(p)) we obtain

−
n∑

i=1

ri(p) ≤ sup
xi∈Di(p,ri (p))

n∑
i=1

〈−p,xi〉. (9.14)

Thus

σ(C(p),p) = σ(M0,p) + sup
xi∈Di(p,ri (p))

n∑
i=1

〈−p,xi〉
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(9.14)≥ σ(M0,p) −
n∑

i=1

ri(p)

(9.13)= σ(M0,p) − σ(M0,p) = 0.

Consequently we may apply the Debreu-Gale-Nikaïdo (Theorem 9.1) and
such

∃ p̄ ∈ Ml : C(p̄) ∩R
l+ �= ∅,

or, in other words

0 ∈ C(p̄) −R
l+ = M0 −

n∑
i=1

Di(p̄, ri(p̄)) −R
l+

= M −
n∑

i=1

Di(p̄, ri(p̄))

= −E(p̄).

Hence 0 ∈ −E(p̄), and therefore, p̄ is a Walrasian equilibrium price.

An important particular case is obtained when M := w − R
l+ is the set of

commodities less than the available commodity w ∈ R
l+.

Corollary 9.1. Suppose that assumptions (ii) and (iii) of Theorem 9.2 hold and

w =
n∑

i=1

wi

is allocated to the n consumers.
Then there exists a Walrasian equilibrium price p̄ and consumptions

x̄i ∈ Di(p̄, 〈p̄,wi〉) such that
∑n

i=1 x̄i ≤ ∑n
i=1 wi .

9.3 NASH EQUILIBRIA WITHIN n-POLE ECONOMY

In this section we illustrate the concept of a Nash equilibrium point defined
in Chapter 2, Subsection 2.2.4 with one of the easiest models in economy, the
so-called n-pole economy. In this economy we have n producers with n ≥ 2
which compete on the market, that is, they produce and sell the same product.
We consider the producers as players in an n-person game where the strategy
sets are given by Si = R+ (i = 1,2, ..., n). The strategy s ∈ R+ stands for the
production of s units of the product. It is reasonable to assume that the price of
the product on the market is determined by demand. More precisely, we assume
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that there is an affine relationship of the form:

p(s1, . . . , sn) = α − β

(
n∑

i=1

si

)
(9.15)

where α, β are positive constants. It is easy to see that once the total production
increases, the price decreases. Assume that the individual cost functions for each
producer are given by

ci(si) = γisi + δi, (9.16)

where γi , δi are fixed costs for i = 1, . . . , n. By these data we can easily calculate
the gain of each producer (player), which is

fi(s1, . . . , sn) = p(s1, . . . , sn)si − ci(si), i = 1, . . . , n. (9.17)

Using relations (9.15) and (9.16) the formula (9.17) can be evaluated as

fi(s1, . . . , sn) =
(

α − β

n∑
i=1

si

)
si − γisi − δi

= βsi

(
α − γi

β
−

n∑
i=1

si

)
− δi

= βsi

(
ui −

n∑
i=1

si

)
− δi, i = 1, . . . , n, (9.18)

where ui := α−γi

β
.

Let U = U1 × . . . × Un ⊆ ∏n
i=1 Si the common feasible strategy set, where

Ui = [0, ui], i = 1, . . . , n.
In what follows, for the sake of simplicity, we will suppose that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δi = 0, i = 1, . . . , n

γi = γ > 0, i = 1, . . . , n

β = 1

u1 = u2 = . . . = un = u.

Thus, the profit function (9.18) for s ∈ U is given by

fi(s) = si

(
u −

n∑
i=1

si

)
, i = 1, . . . , n.
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By summing up these relations with respect to i, we can easily determine the
maximal total profit, since

n∑
i=1

fi(s) = u

n∑
i=1

si −
(

n∑
i=1

si

)2

attains its maximum at
∑n

i=1 si = u
2 , and such, the maximal total profit will

be u2

4 .
Let us introduce the decision functions

gi : U1 × . . . × Ui−1 × Ui+1 × . . . × Un → Ui, i = 1, . . . , n, (9.19)

and examine the first player’s optimal decision function (rule). His decision
g1(s2, . . . , sn) depends on the other players decisions and must be taken in such
a way that

f1(g1(s2, . . . , sn), s2, . . . , sn) = max
s1∈[0,u]

f1(s).

Thus

f1(g1(s2, . . . , sn), s2, . . . , sn) = max
s1∈[0,u]

f1(s) = max
s1∈[0,u]

s1

(
u −

n∑
i=1

si

)

= max
s1∈[0,u]

(s1u − s2
1 − s1

n∑
i=2

si).

Since in s1 we have a polynomial function of degree 2, the maximum of f1 is
attained at s1 = (

u − ∑n
i=2 si

)
/2, therefore

g1(s2, . . . , sn) = u − ∑n
i=2 si

2
.

In a similar way we can determine the optimal decisions of the other players.

gk(s1, . . . , sk−1, sk+1, . . . , sn) =
u − ∑n

i=1
i �=k

si

2
, k = 1, . . . , n.

In what follows, let us calculate the Nash equilibrium point of this game. It
can be seen that s̄ = (s̄1, . . . , s̄n) is a Nash equilibrium point if and only if

⎧⎪⎪⎨
⎪⎪⎩

g1(s̄2, . . . , s̄n) = s̄1

...

gn(s̄1, . . . , s̄n−1) = s̄n.
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By using the decision functions the system above can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̄1 = u−∑n
i=2 si

2

...

s̄j =
u−∑n

i=1
i �=j

si

2

...

s̄n = u−∑n−1
i=1 si
2

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2s̄1 + s̄2 + . . . + s̄n = u

...

s̄1 + . . .2s̄j + . . . + s̄n = u

...

s̄1 + s̄2 + . . . + 2s̄n = u.

This system has a unique solution, namely

s̄ = (s̄1, . . . , s̄n) =
(

u

n + 1
, . . . ,

u

n + 1

)
,

which is the Nash equilibrium point of the game. This means that each player
has the same optimal strategy u

n+1 , and the same optimal gain

fi(s̄) = u

n + 1

(
u − nu

n + 1

)
= u2

(n + 1)2
, i = 1, . . . , n.

It is worth mentioning that in this case the sum of the gains nu2

(n+1)2 is less

than the maximal total gain u2

4 . This means that in case the players cooperate
and everyone agrees to choose the same u

2n
strategy, then

fi

( u

2n
, . . . ,

u

2n

)
= u

2n

(
u − u

2

)
= u2

4n
>

u2

(n + 1)2
,

as n ≥ 2 and in this way the total profit is maximal, since equals u2

4 .

9.4 PARETO OPTIMALITY FOR n-PERSON GAMES

Consider two players Alex and Bob and assume that they choose their strategies
using their loss functions fA and fB from A × B to R.

We say that a pair (x̄, ȳ) ∈ A×B is a noncooperative equilibrium if and only
if

fA(x̄, ȳ) = inf
x∈A

fA(x, ȳ) and fB(x̄, ȳ) = inf
y∈B

fB(x̄, y).

It follows that a noncooperative equilibrium is an alternative in which any
player optimizes his own criterion, assuming that his partner’s choice is fixed.
This corresponds to a situation with individual stability.
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If we assume that the players communicate, exchange information, and co-
operate then the notion of noncooperative equilibrium does not provide the only
reasonable scheme for solution of a game in strategic form. More precisely, it is
possible to find a strategy pair (x, y) ∈ A × B such that

fA(x, y) < fA(x̄, ȳ) and fB(x, y) < fB(x̄, ȳ).

In such a case, the players Alex and Bob have losses strictly less than in the
case of noncooperative equilibrium (x̄, ȳ). Thus, there is a lack of collective
stability, in the sense that the two players can each find better strategies for
themselves. The corresponding notion of Pareto optimum is associated to an al-
location for which there are no possible alternative allocations whose realization
would cause every player to gain.

Definition 9.3. We say that a strategy pair (x∗, y∗) ∈ A × B is Pareto1 optimal
(or Pareto-efficient) if there are no other strategy pairs (x, y) ∈ A × B such that
fA(x, y) < fA(x∗, y∗) and fB(x, y) < fB(x∗, y∗).

As in the cases of two-person games, the decision rules in the case of n

players are determined by loss functions. More precisely, the behavior of the kth
player (1 ≤ k ≤ n) is defined by a loss function f k : E → R, which evaluates
the loss f k(x) inflicted on the kth player by each multistrategy x. Accordingly,
we define the multiloss function f : E → R

n by

f (x) := (f 1(x), . . . , f n(x)) for all x ∈ E.

Definition 9.4. We say that a multistrategy x ∈ E is Pareto optimal if there are
no other multistrategies x ∈ E such that

f i(x) < f i(x) for all i = 1, ..., n. (9.20)

In the case of two-person games we have observed that there may be a num-
ber of Pareto optima. Thus, a natural problem that arises is to choose these
optima.

Let us attribute a weight λk ≥ 0 to the kth player. If the player accept this
weighting, they may agree to collaborate and to minimize the weighted function

fλ(x) :=
n∑

i=1

λif i(x) (9.21)

over the set E.
If the vector λ = (λ1, . . . , λn) is not zero, we observe that any multistrategy

x ∈ E which minimizes fλ(x) is a Pareto minimum. Indeed, arguing by contra-
diction, we find x satisfying inequalities (9.20). Multiplying these relations by
λi ≥ 0 and summing them, we obtain

fλ(x) < fλ(x),

which is a contradiction.
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If n players could be made to agree on a weighting λ, we would no longer
have a game problem proper, but a simple optimization problem. However, it is
interesting to know the conditions under which Pareto optimum may be obtained
by minimizing a function fλ associated with a weighting λ which is borne in
some way by this Pareto optimum. This question has a positive answer in the
following property, by applying convexity arguments.

Proposition 9.1. Suppose that the strategy sets Ei are convex and that the loss
functions f i : E → R are convex. Then any Pareto optimum x may be associated
with a nonzero weight λ ∈R

n such that x minimizes the function fλ over E.

Proof. We first observe that

f (E) + int(Rn+) is a convex set.

It follows that an element x ∈ E is a Pareto minimum if and only if

f (x) �∈ f (E) + int(Rn+).

By the separation theorem for convex sets, we deduce that there exists λ ∈ R
n,

λ �= 0, such that

〈λ,f (x)〉 = inf
x∈E

u∈int(Rn+)

(〈λ,f (x)〉 + 〈λ,u〉) .

It follows that λ is positive and that x minimizes the function x → fλ(x) =
〈λ,f (x)〉 over E.

We point out that a Pareto minimum also minimizes other functions.
For example, we introduce the virtual minimum α, which is defined by its

components

αi := inf
x∈E

f i(x).

We say that the game is bounded below if αi > −∞ for all i = 1, . . . , n. In
this case, we take βi < αi for all i and set β := (β1, ..., βn) ∈R

n.

Proposition 9.2. Suppose that the game is bounded below. Then an element
x ∈ E is a Pareto minimum if and only if there exists λ ∈ int(Rn+) such that x

minimizes the function gλ defined by

gλ(x) := max
i=i,...,n

1

λi
(f i(x) − βi) (9.22)

over E.
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Proof. (a) Assume that x ∈ E minimizes gλ on E and is not a Pareto mini-
mum. Then there exists x ∈ E satisfying inequalities (9.20). Subtracting βi , and
multiplying by 1

λi and taking the maximum of the two terms, we obtain the
contradiction gλ(x) < gλ(x).

(b) Let x be a Pareto minimum. We take

λi = f i(x) − βi > 0

such that gλ(x) = 1.
Let x ∈ E be such that gλ(x) < gλ(x). Then

max
i=1,...,n

(
f i(x) − βi

f i(x) − βi

)
< 1,

which implies inequalities (9.20).

We can also define conservative strategies for the players. We set

f i�(xi) := sup
xî∈Eî

f i(xi, xî).

Definition 9.5. We say that xi� ∈ Ei is a conservative strategy for the ith player
if

f i�(xi�) = inf
xi∈Ei

sup
xî∈Eî

f i(xi, xî )

and we say the number v
�
i defined by

v
�
i := inf

xi∈Ei
sup
xî∈Eî

f i(xi, xî )

is the conservative value of the game.

We point out that the conservative value v
�
i may be used as a threat, by re-

fusing to accept any multistrategy x such that

f i(x) > v
�
i

since by playing a conservative strategy xi� the loss f i(xi�, xi) is strictly less
than f i(x).

Suppose that

v
�
i > αi for all i = 1, ..., n.

This assumption says that the conservative value is strictly greater than the vir-
tual minimum.
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Consider the function g0 : E → R defined by

g0(x) = max
i=1,...,n

f i(x) − αi

v
�
i − αi

.

Taking βi = αi and λi = v
�
i − αi , Proposition 9.2 implies that

if x0 ∈ E minimizes g0 on E, then x0 is a Pareto minimum.

If d := minx∈E g0(x), it follows that x0 minimizes g0 on E if and only if

f i(xi
0) ≤ (1 − d)v

�
i + dαi for all i, ..., n.

This property suggests that such choices of Pareto optima should be viewed
as best compromise solutions.

Other methods of selection by optimization involve minimizing functions

x �→ s

(
f 1(x) − α1

v
�
1 − α1

, ...,
f n(x) − αn

v
�
n − αn

)
(9.23)

on E, where the function s satisfies the following increasing property

if ai > bi for all i, then s(a) > s(b).

We observe that x ∈ E that minimizes (9.23) is a Pareto minimum. We also
note that the function (9.23) remains invariant whenever the loss functions f i

are replaced by functions aif
i + bi , where ai > 0.

We say that by replacing the functions f i by the functions gi

gi(x) = f i(x) − αi

v
�
i − αi

,

then we have normalized the same game. For the normalized game the virtual
minimum is zero and the conservative value is 1.

In a general setting (not only concerning n-person games), a state of affairs
is Pareto-optimal if there is no alternative state that would make some people
better off without making anyone worse off. Alternatively, a state of affairs x

is said to be Pareto-inefficient (or suboptimal) if there is some state of affairs y

such that no one strictly prefers x to y and at least one person strictly prefers
y to x. We conclude that the concept of Pareto-optimality assumes that anyone
would prefer an option that is cheaper, more efficient, or more reliable or that
otherwise comparatively improves one’s condition.

In his most influential work Manuale d’economia politica (1906), Pareto
further developed his theory of pure economics and his analysis of ophelimity
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(power to give satisfaction). He laid the foundation of modern welfare eco-
nomics with his concept of Pareto optimum, stating that “the optimum allocation
of the resources of a society is not attained so long as it is possible to make at
least one individual better off in his own estimation while keeping others as well
off as before in their own estimation”.

NOTE
1. Vilfredo Pareto (1848–1923), Italian engineer and economist, who used the concept in his studies

of economic efficiency and income distribution. The concept has been applied in academic fields
such as economics, engineering, and the life sciences. He shared with Léon Walras the conviction
of the applicability of mathematics to the social sciences.
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Mathematics is the art of giving the same name to different things.
Henri Poincaré (1854–1912)

Chapter points

• The results of this chapter are at the interplay between set-valued equilibrium
problems, variational inclusions, and fixed point properties of multi-valued
mappings.

• The arguments combine abstract topological tools (hemicontinuity and
semicontinuity of bifunctions, lower and upper inverse sets) with Ky Fan’s lemma
and properties of KKM mappings.

• Includes extensions of several classical results in the framework of set-valued
analysis.

• The content of this chapter is based on recent original results obtained by Alleche
and Rădulescu [6], [7].

10.1 QUASI-HEMIVARIATIONAL INEQUALITIES

Let E be a real Banach space which is continuously embedded in Lp (�;Rn),
for some 1 < p < +∞ and n ≥ 1, where � is a bounded domain in R

m, m ≥ 1.
Let i be the canonical injection of E into Lp (�;Rn).
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In this section, we study the existence of solutions for the following quasi-
hemivariational inequality:

find u ∈ E and u∗ ∈ A(u) such that

〈u∗, v〉E + h(u)J 0 (iu; iv) ≥ 〈Fu,v〉E for all v ∈ E, (10.1)

where A : E ⇒ E∗ is a nonlinear set-valued mapping, F : E → E∗ is a nonlin-
ear operator, J : Lp (�;Rn) → R is a locally Lipschitz functional, J 0 denotes
the generalized derivative of J in the sense of Clarke and h : E → R is a given
nonnegative functional.

We point out that if h = 0 in problem (10.1) then we obtain the standard case
of variational inequalities, see Lions1 and Stampacchia2 [117] and Kinderlehrer
and Stampacchia [107]. The setting corresponding to h ≡ 1 in problem (10.1)
describes the hemivariational inequalities, which were introduced by Pana-
giotopoulos [137], [138]. These inequality problems appear as a generalization
of variational inequalities, but they are much more general than these ones, in
the sense that they are not equivalent to minimum problems but give rise to
substationarity problems. The general case when h is nonconstant corresponds
to quasi-hemivariational inequalities, which were first studied by Naniewicz
and Panagiotopoulos [134, Section 4.5], in relationship with relevant models
in mechanics and engineering. We also refer to the monographs by Motreanu
and Panagiotopoulos [132] and Motreanu and Rădulescu [131] for a thorough
variational and topological analysis of hemivariational inequalities.

The quasi-hemivariational inequality problem (10.1) has been studied in
Costea and Rădulescu [58]. The authors considered the following quasi-
hemivariational inequality:

find u ∈ C and u∗ ∈ A(u) such that

〈u∗, v − u〉E + h(u)J 0 (iu; iv − iu) ≥ 〈Fu,v − u〉E for all v ∈ C, (10.2)

where C is a nonempty, closed, and convex subset of E satisfying some ad-
ditional conditions. Several results on the existence of solutions of the quasi-
hemivariational inequality problem (10.2) have been obtained in two cases:
(i) when C is a nonempty, convex, and compact subset of E; (ii) when C is
a nonempty, convex, closed, and bounded (then weakly compact) subset of a
reflexive Banach space. Characterizations and applications for solving the quasi-
hemivariational inequality problem (10.1) are derived.

We observe that if C is a linear subspace and in particular, if C is the whole
space E, then the quasi-hemivariational inequality problem (10.2) is equivalent
to the following quasi-hemivariational inequality:

find u ∈ C and u∗ ∈ A(u) such that

〈u∗, v〉E + h(u)J 0 (iu; iv) ≥ 〈Fu,v〉E for all v ∈ C,

which is exactly the formulation of the quasi-hemivariational inequality prob-
lem (10.1) with E replaced by C.



Applications to Variational Inequalities and Related Topics Chapter | 10 279

In this section, we follow a direct approach by studying the existence of
solutions of the quasi-hemivariational inequality problem (10.2) when C is a
nonempty, closed, and convex subset of E. It follows that all the results obtained
can be then applied to the quasi-hemivariational inequality problem (10.1).

We first introduce some concepts of continuity of functions and set-valued
mappings and obtain some results and characterizations.

Next, we introduce a coercivity condition on a compact or weakly compact
subset and use the concept of continuity on a subset for solving the quasi-
hemivariational inequality problem (10.2) when C is a nonempty, closed, and
convex subset of E.

Finally, we obtain some results on the existence of solutions of equilib-
rium problems by using the concept of continuity on a subset of equilibrium
bifunctions in their first or second variable. Applications for solving quasi-
hemivariational inequalities are given.

10.1.1 Some Concepts of Continuity

Let (X,‖ · ‖X) be a Banach space.
A function φ : X → R is called locally Lipschitzian if for every u ∈ X, there

exists a neighborhood U of u and a constant Lu > 0 such that

|φ (w) − φ (v) | ≤ Lu‖w − v‖X for all u ∈ U, for all v ∈ U.

If φ : X → R is locally Lipschitzian near u ∈ X, then the generalized directional
derivative of φ at u in the direction of v ∈ X, denoted by φ0 (u, v), is defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λu) − φ (w)

λ
.

Suppose that φ : X →R is locally Lipschitz near u ∈ X. Then the following
properties hold:

1. the function v 
→ φ0 (u, v) is finite, positively homogeneous and subaddi-
tive;

2. the function (u, v) 
→ φ0 (u, v) is upper semicontinuous.

We refer to Clarke [56, Proposition 2.1.1] for proofs and related properties.
Before introducing some concepts of continuity, we recall some general re-

sults on convergence of sequences.
Let X be a Hausdorff topological space. Recall that a subset B of X is said

to be sequentially closed if whenever (xn)n is a sequence in B converging to x,
then x ∈ B. A space is called sequential if every sequentially closed subset is
closed. Every metric space and more generally, every Fréchet-Urysohn3 space
is a sequential space. A space X is called Fréchet-Urysohn space if whenever
x is in the closure of a subset B of X, there exists a sequence in B converging
to x.
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The weak topology of Banach spaces is not sequential in general. However,
bounded subsets of reflexive Banach spaces endowed with the weak topology
have the following property: if a point x is in the weak closure of a bounded
subset B of a reflexive Banach space, then there exists a sequence in B weakly
converging to x (see Denkowski, Migórski, and Papageorgiou [61, Proposi-
tion 3.6.23]). Thus, every bounded and weakly sequentially closed subset of
a reflexive Banach space is closed.

We say that a subset B has the Fréchet-Urysohn property if whenever x is in
the closure of B, there exists a sequence in B converging to x. Every subset of
a Fréchet-Urysohn space has the Fréchet-Urysohn property.

In the sequel, for a subset B of X, we denote by

Exp (B) = {
x ∈ X | ∃ (xn)n , xn ∈ B such that xn −→ x

}
,

the sequential explosion of B. Of course, Exp (B) is neither closed nor sequen-
tially closed in general.

Let x ∈ X. A function f : X →R is called

1. sequentially upper semicontinuous at x if for every sequence (xn)n in X

converging to x, we have

f (x) ≥ lim sup
n→+∞

f (xn) ,

where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk);

2. sequentially lower semicontinuous at x if −f is sequentially upper semi-
continuous at x, that is, for every sequence (xn)n of X converging to x, we
have

f (x) ≤ lim inf
n→+∞f (xn) ,

where lim inf
n→+∞f (xn) = sup

n
inf
k≥n

f (xk).

The function f is said to be sequentially upper (resp., sequentially lower)
semicontinuous on a subset S of X if it is sequentially upper (resp., sequentially
lower) semicontinuous at every point of S.

If sequences are replaced by generalized sequences (nets) in the above defi-
nition of sequentially upper (resp., sequentially lower) semicontinuous function,
we obtain the notion of upper (resp., lower) semicontinuous function.

The following result shows how easy is to construct sequentially upper
(resp., sequentially lower) semicontinuous functions on a subset which are
not sequentially upper (resp., sequentially lower) semicontinuous on the whole
space.

Proposition 10.1. Let f : X −→ R be a function and let S be a subset of X.
If the restriction f|U of f on an open subset U containing S is sequentially
upper (resp., sequentially lower) semicontinuous, then any extension of f|U to
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the space X is a sequentially upper (resp., sequentially lower) semicontinuous
function on S.

The following lemma provides us some properties of sequentially upper and
sequentially lower semicontinuous functions on a subset.

Proposition 10.2. Let f : X −→ R be a function, S a subset of X, and a ∈R.

1. If f is sequentially upper semicontinuous on S, then

Exp ({x ∈ X | f (x) ≥ a}) ∩ S = {x ∈ S | f (x) ≥ a} .

Moreover, the trace on S of upper level sets of f are sequentially closed
in S.

2. If f is sequentially lower semicontinuous at S with respect to C, then

Exp ({x ∈ X | f (x) ≤ a}) ∩ S = {x ∈ S | f (x) ≤ a} .

Moreover, the trace on S of lower level sets of f are sequentially closed
in S.

Proof. The second statement being similar to the first one, we prove only the
case of the sequential upper semicontinuity. Let

x∗ ∈ Exp ({x ∈ X | f (x) ≥ a}) ∩ S.

Let (xn)n be a sequence in Exp ({x ∈ X | f (x) ≥ a}) converging to x∗. Since
x∗ ∈ S, then by the sequential upper semicontinuity of f on S, we have

f
(
x∗)≥ lim sup

n→+∞
f (xn) ≥ a.

It follows that x∗ ∈ {x ∈ S | f (x) ≥ a}. The converse holds from the fact that

{x ∈ S | f (x) ≥ a} = {x ∈ X | f (x) ≥ a} ∩ S,

which is obvious as well as the sequential closeness in S of the trace on S of
upper level sets of f .

Next, we introduce a generalization of lower semicontinuity of set-valued
functions when the space X is a real topological Hausdorff vector space.

We say that a set-valued mapping T : X ⇒ Y is lower quasi-hemicontinuous
at x ∈ X, if whenever z ∈ X and (λn)n a sequence in ]0,1[ such that

lim
n→+∞λn = 0, there exists a sequence

(
z∗
n

)
n

converging to some element x∗

of T (x) such that z∗
n ∈ T (x + λn (z − x)), for every n.

The set-valued function T will be said lower quasi-hemicontinuous on a
subset S of X if T is lower quasi-hemicontinuous at every point of S.

The following result shows that the notion of quasi-hemicontinuity of set-
valued mappings is also a generalization of different other notions.
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Proposition 10.3. Let T : X ⇒ Y be a set-valued mapping and suppose that
one of the following assumptions holds:

1. T is lower semicontinuous at x ∈ X;
2. T has a continuous selection.

Then T is lower quasi-hemicontinuous at x.

Proof. The second statement is obvious. The first assertion follows from the
fact that T is lower semicontinuous at x ∈ X if and only if for every general-
ized sequence (xλ)λ∈� converging to x, and for every x∗ ∈ T (x), there exists a
generalized sequence

(
x∗
λ

)
λ∈�

converging to x∗ such that x∗
λ ∈ T (xλ), for every

λ ∈ �, see Papageorgiou and Kyritsi-Yiallourou [139, Proposition 6.1.4].

Although the notion of semicontinuity of set-valued mappings is important
for the existence of continuous selections (Michael’s selection theorem), it is
not essential. This means that under additional conditions, different continuous
set-valued mappings with respect to other hyperspace topology may have con-
tinuous selections and then, they are lower quasi-hemicontinuous.

As in Proposition 10.1, the following result shows how easy we construct
lower quasi-hemicontinuous set-valued mapping on a subset without being
lower quasi-hemicontinuous on the whole space.

Proposition 10.4. Let T : X ⇒ Y be a set-valued mapping and let S be a subset
of X. If the restriction T|U of T on an open and convex subset U containing S

is lower quasi-hemicontinuous, then any extension of T|U to the space X is a
lower quasi-hemicontinuous set-valued mapping on S.

A set-valued mapping T : E ⇒ 2E∗
is said to be relaxed α-monotone if there

exists a functional α : E →R such that for every u,v ∈ E, we have

〈v∗ − u∗, v − u〉 ≥ α (v − u) for all u∗ ∈ T (u) , all v∗ ∈ T (v) .

10.1.2 Existence Results for Quasi-Hemivariational Inequalities

For any v ∈ C, we define the following set:

�(v) =
{
u ∈ C | inf

v∗∈A(v)
〈v∗, v − u〉 + h(u)J 0 (iu; iv − iu)

− 〈Fu,v − u〉 ≥ α (v − u)

}
. (10.3)

The following result gives a sufficient condition for the existence of solutions
of quasi-hemivariational inequalities.

Theorem 10.1. Let C be a nonempty, closed, and convex subset of the real
Banach space E which is continuously imbedded in Lp (�;Rn). Suppose that
the following assumptions hold:
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1. there exists a compact subset K of C and v0 ∈ K such that the following
condition holds: for every u ∈ C \ K , there exists v∗ ∈ A(v0) such that

〈v∗, v0 − u〉 + h(u)J 0 (iu; iv0 − iu) − 〈Fu,v0 − u〉 − α (v0 − u) < 0;
2. α : E → R is a functional such that for every u ∈ C, lim

n→+∞
α(λnu)

λn
= 0

whenever (λn)n is a sequence in ]0,1[ such that lim
n→+∞λn = 0 and

lim sup
n→+∞

α (un) ≥ α (u) whenever (un)n is a sequence in C converging to u;

3. A is relaxed α-monotone and lower quasi-hemicontinuous on K with re-
spect to the weak* topology of E∗;

4. h is a nonnegative sequentially lower semicontinuous functional on K;
5. F is an operator such that for every v ∈ C, u 
→ 〈Fu,v − u〉 is sequentially

lower semicontinuous on K .

Then the quasi-hemivariational inequality problem (10.2) has at least one solu-
tion.

Proof. By using the relaxed α-monotonicity of A and the subadditivity of the
function v 
→ J 0 (iu; iv), we obtain that the set-valued mapping v 
→ �(v) is
a KKM mapping. To do this, let {v1, . . . , vn} ⊂ C and put u0 = ∑n

k=1 λkvk

where λk ∈ ]0,1[ for every k = 1, . . . n and
∑n

k=1 λk = 1. Assuming that
u0 /∈⋃n

k=1 �(vk), then for every k = 1, . . . n, we have

inf
v∗∈A(vk)

〈v∗, vk −u0〉+h(u0) J 0 (iu0; ivk − iu0)−〈Fu,vk −u0〉 < α (vk − u0) .

For every k = 1, . . . n, choose v∗
k ∈ A(vk) such that

〈v∗
k , vk − u0〉 + h(u0) J 0 (iu0; ivk − iu0) − 〈Fu,vk − u0〉 < α (vk − u0) .

Since A is relaxed α-monotone, then for every u∗
0 ∈ A(u0), we have

〈v∗
k , vk − u0〉 + h(u0) J 0 (iu0; ivk − iu0) − 〈Fu,vk − u0〉

< α (vk − u0)

≤ 〈v∗
k − u∗

0, vk − u0〉.
Therefore

〈u∗
0, vk − u0〉 + h(u0) J 0 (iu0; ivk − iu0) − 〈Fu,vk − u0〉 < 0

for all u∗
0 ∈ A(u0) .

Since the function v 
→ J 0 (iu; iv) is subadditive, then for any u∗
0 ∈ A(u0), we

have

0 = 〈u∗
0, u0 − u0〉 + h(u0) J 0 (iu0; iu0 − iu0) − 〈Fu,u0 − u0〉
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= 〈u∗
0,

n∑
k=1

λk (vk − u0)〉 + h(u0) J 0

(
iu0;

n∑
k=1

λk (ivk − iu0)

)

− 〈Fu,

n∑
k=1

λk (vk − u0)〉

≤
n∑

k=1

λk

(
〈u∗

0, vk − u0〉 + h(u0) J 0 (iu0; ivk − iu0) − 〈Fu,vk − u0〉
)

< 0.

This is a contradiction and then the set-valued mapping v 
→ �(v) is a KKM
mapping. Since �(v0) is contained in K which is compact, then by Ky Fan’s
lemma, we have ⋂

v∈C

�(v) �= ∅.

We now prove that for every v ∈ C, we have

�(v) ∩ K = �(v) ∩ K.

To do this, let v ∈ C and u ∈ �(v) ∩ K . Let (un)n be a sequence in �(v)

converging to u.
Let v∗ ∈ A(v) be arbitrary. We have for all n ≥ 1

α (v − un) ≤ 〈v∗, v − un〉 + h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉.

Since u ∈ K , then

α (v − u)

≤ lim sup
n→+∞

α (v − un)

≤ lim sup
n→+∞

(
〈v∗, v − un〉 + h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉

)
≤ 〈v∗, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉.

It follows that u ∈ �(v) ∩ K .
Now, by using the fact that �(v0) is contained in K , we conclude that

⋂
v∈C

�(v) =
⋂
v∈C

�(v) ,

and then, ⋂
v∈C

�(v) �= ∅.



Applications to Variational Inequalities and Related Topics Chapter | 10 285

Finally, let u0 ∈ ⋂
v∈C �(v). This means that u0 ∈ K and for every w ∈ C, we

have

inf
w∗∈A(w)

〈w∗,w − u〉 + h(u)J 0 (iu; iw − iu) − 〈Fu,w − u〉 ≥ α (w − u) .

Let v ∈ C be arbitrary and define wn = u0 + λn (v − u0) where (λn)n is a se-
quence in ]0,1[ such that lim

n→+∞λn = 0. By lower quasi-hemicontinuity of A

on K , let w∗
n ∈ A(wn) be such that w∗

n

w∗−→ u∗
0 ∈ A(u0). Since the function

v 
→ J 0 (iu; iv) is positively homogeneous, we obtain

〈w∗
n, v −u0〉+h(u0) J 0 (iu0; iv − iu0)−〈Fu0, v −u0〉 ≥ α (λn (v − u))

λn

.

Letting n go to +∞, we obtain that

〈u∗
0, v − u0〉 + h(u0) J 0 (iu0; iv − iu0) − 〈Fu0, v − u0〉 ≥ 0

which completes the proof.

The following result provides an additional existence property for quasi-
hemivariational inequalities.

Theorem 10.2. Let C be a nonempty, closed, and convex subset of the real
reflexive Banach space E which is compactly imbedded in Lp (�;Rn). Suppose
that the following hypotheses are fulfilled:

1. there exist a weakly compact subset K of C and v0 ∈ K such that the fol-
lowing condition holds: for every u ∈ C \ K , there exists v∗ ∈ A(v0) such
that

〈v∗, v0 − u〉 + h(u)J 0 (iu; iv0 − iu) − 〈Fu,v0 − u〉 − α (v0 − u) < 0;
2. α : E → R is a functional such that for every u ∈ C, lim

n→+∞
α(λnu)

λn
= 0

whenever (λn)n is a sequence in ]0,1[ such that lim
n→+∞λn = 0 and

lim sup
n→+∞

α (un) ≥ α (u) whenever (un)n is a sequence in C weakly converging

to u;
3. A is relaxed α-monotone and lower quasi-hemicontinuous on K with re-

spect to the weak* topology of E∗;
4. h is a nonnegative weakly sequentially lower semicontinuous functional

on K;
5. F is an operator such that for every v ∈ C, u 
→ 〈Fu,v − u〉 is weakly

sequentially lower semicontinuous on K .

Then the function v 
→ �(v) is a KKM mapping and

Exp (�(v)) ∩ K = �(v) ∩ K for all v ∈ C.
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If, in addition, �(v) has the Fréchet-Urysohn property, for every v ∈ C, then
the quasi-hemivariational inequality problem (10.2) has at least one solution.

Proof. By the same proof as in Theorem 10.1, we obtain that the set-valued
mapping v 
→ �(v) is a KKM mapping.

Now, let v ∈ C and u ∈ Exp (�(v)) ∩ K . Let (un)n be a sequence in
�(v) weakly converging to u. Since the compact embedding i is compact,
it maps weakly convergent sequences into strongly convergent sequences. Let
v∗ ∈ A(v) be arbitrary. We have

α (v − un) ≤ 〈v∗, v−un〉+h(un)J 0 (iun; iv − iun)−〈Fun, v−un〉 for all n.

Since u ∈ K , then

α (v − u)

≤ lim sup
n→+∞

α (v − un)

≤ lim sup
n→+∞

(
〈v∗, v − un〉 + h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉

)
≤ 〈v∗, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉.

Thus, u ∈ �(v) ∩ K .
Suppose now that �(v) has the Fréchet-Urysohn property, for every v ∈ C.

Then

Exp (�(v)) = �(v) for all v ∈ C

where the closure is taken with respect to the weak topology. Since the set-
valued mapping v 
→ �(v) is a KKM mapping and since �(v0) is contained in
K which is weakly compact, then by Ky Fan’s lemma, we have

⋂
v∈C

Exp (�(v)) �= ∅.

By the same arguments as in the proof of Theorem 10.1, we conclude that

⋂
v∈C

Exp (�(v)) =
⋂
v∈C

�(v) ,

and then, ⋂
v∈C

�(v) �= ∅.

With similar arguments as in the proof of Theorem 10.1, we conclude that
the quasi-hemivariational problem (10.2) has at least one solution.
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10.2 EQUILIBRIUM PROBLEMS VERSUS
QUASI-HEMIVARIATIONAL INEQUALITIES

Equilibrium problems are very general and they include as particular cases,
Nash equilibrium problems and convex minimization problems. Relevant appli-
cations in physics, optimization, and economics are described by models based
on equilibrium problems.

Let C be a nonempty, closed, and convex subset of a real topological Haus-
dorff vector space X. An equilibrium problem in the sense of Blum, Muu, and
Oettli [42,133] is a problem of the form:

find u ∈ C such that f (u, v) ≥ 0 for all v ∈ C, (10.4)

where f : C × C → R is a bifunction such that f (u,u) ≥ 0, for every u ∈ C.
Such a bifunction is called an equilibrium bifunction.

We present in this section some results about the existence of solutions of
equilibrium problems and apply these results for solving quasi-hemivariational
inequalities.

In the sequel, we define the following sets: for every v ∈ C, we put

f + (v) = {u ∈ C | f (u, v) ≥ 0}
and

f − (v) = {u ∈ C | f (v,u) ≤ 0} .

A function f : C → R is said to be

1. semistrictly quasi-convex on C if, for every u1, u2 ∈ C such that f (u1) �=
f (u2), we have

f (λu1 + (1 − λ)u2) < max {f (u1) , f (u2)} for all λ ∈ ]0,1[ ;
2. explicitly quasi-convex on C if it is quasi-convex and semistrictly quasi-

convex.

The following result extends the Ky Fan minimax inequality theorem for
sequentially upper semicontinuous bifunctions on their first variable on a subset
of a real Banach space.

Theorem 10.3. Let C be a nonempty, closed, and convex subset of the real
Banach space E. Let f : C×C −→ R be an equilibrium bifunction and suppose
that the following assumptions hold:

1. f is quasi-convex in its second variable on C;
2. there exists a compact subset K of C and v0 ∈ K such that

f (u, v0) < 0 for all u ∈ C \ K;
3. f is sequentially upper semicontinuous in its first variable on K .

Then the equilibrium problem (10.4) has a solution.
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Proof. Since f is an equilibrium bifunction, then f + (v) is nonempty and
closed, for every v ∈ C.

By quasi-convexity of f in its second variable, the mapping v 
→ f + (v) is
a KKM mapping and since f + (v0) is contained in the compact subset K , then
by Ky Fan’s lemma, we have ⋂

v∈C

f + (v) �= ∅.

On the other hand, we have⋂
v∈C

f + (v) =
⋂
y∈C

(
f + (v) ∩ K

)
.

Since

Exp
(
f + (v)

)= f + (v) for all v ∈ C,

then by Proposition 10.2, we have

f + (v) ∩ K = f + (v) ∩ K for all v ∈ C.

Thus, ⋂
v∈C

f + (v) =
⋂
v∈C

f + (v) �= ∅

which completes the proof.

The equilibrium problem (10.4) can be also solved when the bifunction f

is not upper semicontinuous on its first variable. In this case some additional
conditions are needed.

The bifunction f : C × C −→ R is said to be pseudo-monotone on C if

f (u, v) ≥ 0 =⇒ f (v,u) ≤ 0, for all u,v ∈ C.

The following result extends to the abstract setting of a real Banach space
E some results of Alleche [4], Bianchi and Schaible [39] on the existence of
solutions for pseudo-monotone equilibrium problems.

Theorem 10.4. Let C be a nonempty, closed, and convex subset of the real
Banach space E. Let f : C×C −→R be an equilibrium bifunction and suppose
that the following assumptions hold:

1. f is pseudo-monotone on C;
2. there exists a compact subset K of C and v0 ∈ K such that

f (u, v0) < 0 for all u ∈ C \ K;
3. f is upper hemicontinuous in its first variable on K;
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4. f is explicitly quasi-convex in its second variable on C;
5. f is sequentially lower semicontinuous in its second variable on K .

Then the equilibrium problem (10.4) has a solution.

Proof. By the same arguments as in the proof of Theorem 10.3, we obtain that

⋂
v∈C

(
f + (v) ∩ K

)
=

⋂
v∈C

f + (v) �= ∅.

Since f is sequentially lower semicontinuous in its second variable on K , then
by applying Proposition 10.2, we have

f − (v) ∩ K = f − (v) ∩ K for all v ∈ C.

From pseudo-monotonicity, we have f + (v) ⊂ f − (v), for every v ∈ C. It fol-
lows that ⋂

v∈C

(
f + (v) ∩ K

)
⊂

⋂
v∈C

(
f − (v) ∩ K

)
.

By using the hemicontinuity of f in its first variable on K and the explicit
quasi-convexity, we have⋂

v∈C

(
f − (v) ∩ K

)⊂
⋂
v∈C

f + (v) .

A combination of the above statements yields⋂
y∈C

f + (y) =
⋂
y∈C

f + (y).

This completes the proof.

Theorem 10.3 and Theorem 10.4 remain true if the real Banach space E is
replaced by a real topological Hausdorff vector space such that the subset C is
a Fréchet-Urysohn space.

Now we apply the above theorems to derive results on the existence of solu-
tion of quasi-hemivariational inequalities.

Define the equilibrium bifunction � : C × C →R by

� (u,v) = inf
v∗∈A(v)

〈v∗, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉.

Although we are aware of the intrinsic properties of the generalized direc-
tional derivative, we do not know if � satisfies any condition of continuity or
of convexity in its first or second variable. In other words, even under assump-
tions of Theorem 10.1 and Theorem 10.2, it is not clear whether � satisfies any
condition of Theorem 10.3 or Theorem 10.4.
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The following result provides us with a sufficient condition for solving the
quasi-hemivariational inequality problem (10.2). Note that the concept of re-
laxed α-monotonicity is no longer needed.

Theorem 10.5. Let C be a nonempty, closed, and convex subset of the real
Banach space E. Suppose that A is lower quasi-hemicontinuous on K with
respect to the weak* topology of E∗. If the equilibrium problem

find u ∈ C such that � (u,v) ≥ 0 for all v ∈ C

has a solution, then the quasi-hemivariational inequality problem (10.2) has a
solution.

Let us point out that by a classical method, we can also define an equilibrium
bifunction � : C × C → R as follows:

� (u,v) = sup
u∗∈A(u)

〈u∗, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉.

Clearly, any solution of the quasi-hemivariational inequality problem (10.2) is a
solution of the equilibrium problem

Find u ∈ C such that � (u,v) ≥ 0 for all v ∈ C. (10.5)

The converse does not hold easily as in Theorem 10.5 and it seems to need
additional conditions on the values of the set-valued mapping A.

10.3 BROWDER VARIATIONAL INCLUSIONS

Browder variational inclusions appear in the literature as a generalization of
Browder-Hartman-Stampacchia variational inequalities. These inequality prob-
lems are presented as a weak type of multi-valued variational inequalities, since
they involve set-valued mappings in their definition. Browder variational inclu-
sions have many applications, including applications to the surjectivity of set-
valued mappings and to nonlinear elliptic boundary value problems. Browder
variational inclusions can be reformulated by means of set-valued equilibrium
problems.

Although set-valued equilibrium problems have already been considered in
the literature, the authors have focused on the applications to Browder vari-
ational inclusions, or to other areas such as fixed point theory and economic
equilibrium theory. It should be mentioned here that the results obtained in these
papers on set-valued equilibrium problems are very general and need to be im-
proved. When these results are applied to single-valued equilibrium problems,
their assumptions become simple conditions of continuity and convexity. On
the other hand, single-valued equilibrium problems have known in last decades
several important and deep advancements.
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Let C be a nonempty subset of a Hausdorff topological space and
f : C × C ⇒R a set-valued mapping.

Following Alleche and Rădulescu [7], a set-valued equilibrium problem is a
problem of the form

find x∗ ∈ C such that f
(
x∗, y

)⊂R+ for all y ∈ C. (Ssvep)

We will also consider in this section the following weaker set-valued equi-
librium problem

find x∗ ∈ C such that f
(
x∗, y

)∩R+ �= ∅ for all y ∈ C. (Wsvep)

Recall that the equilibrium problem is a problem of the form

find x∗ ∈ C such that ϕ
(
x∗, y

)≥ 0 for all y ∈ C, (EP)

where ϕ : C × C →R is a bifunction.

10.3.1 Strong and Weak Set-Valued Equilibrium Problems

The compactness of the domain C in the existence of solutions of equilibrium
problems is a rather restrictive condition. We will consider here a condition
involving a set of coerciveness.

Theorem 10.6. Let X be a Hausdorff locally convex topological vector space,
C a nonempty, closed, and convex subset of X, and D ⊂ C a self-segment-dense
set in C. Let f : C × C ⇒ R be a set-valued mapping, and assume that the
following conditions hold:

1. for all x ∈ D, f (x, x) ⊂R+;
2. for all x ∈ D, y 
→ f (x, y) is convex on D;
3. for all x ∈ C, y 
→ f (x, y) is lower semicontinuous on C \ D;
4. there exist a compact set K of C and y0 ∈ D such that f (x, y0) ∩R

∗− �= ∅,
for all x ∈ C \ K;

5. for all y ∈ D, x 
→ f (x, y) is lower semicontinuous on K .

Then the set-valued equilibrium problem (Ssvep) has a solution.

Proof. We define the set-valued mapping f + : C ⇒ C by

f + (y) = {x ∈ C | f (x, y) ⊂R+} for all y ∈ C.

Clearly, x0 ∈ C is a solution of the set-valued equilibrium problem (Ssvep) if
and only if x0 ∈

⋂
y∈C

f + (y).

Assumption (1) yields f + (y) is nonempty, for every y ∈ D. Now, consider
the set-valued mapping cl

(
f +) : D ⇒R defined by

cl
(
f +) (y) = cl

(
f + (y)

)
for all y ∈ D.
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Clearly, cl
(
f +) (y) is closed for every y ∈ D, and cl

(
f +) (y0) is compact since

it lies in K by assumption (4).
We now prove that the set-valued mapping cl

(
f +) is a KKM mapping.

Let {y1, . . . , yn} ⊂ D be a finite subset and {λ1, . . . , λn} ⊂ R+ such that∑n
i=1 λi = 1. We first assume that

∑n
i=1 λiyi ∈ D. Then, by assumption (1)

and assumption (2), we have

n∑
i=1

λif

(
n∑

i=1

λiyi, yi

)
⊂ f

(
n∑

i=1

λiyi,

n∑
i=1

λiyi

)
⊂R+.

The convexity of R
∗− yields that there exists i0 ∈ {1, . . . , n} such that

f
(∑n

i=1 λiyi, yi0

)⊂R+, which implies that

n∑
i=1

λiyi ∈ f + (
yi0

)⊂
n⋃

i=1

f + (yi) .

Consequently, for every finite subset {y1, . . . , yn} ⊂ D and {λ1, . . . , λn} ⊂ R+
such that

∑n
i=1 λi = 1, we have

conv {y1, . . . yn} ∩ D ⊂
n⋃

i=1

f + (yi)

and then,

cl (conv {y1, . . . yn} ∩ D) ⊂ cl

(
n⋃

i=1

f + (yi)

)
=

n⋃
i=1

cl
(
f + (yi)

)
.

By applying Lemma 1.3, we obtain that

conv {y1, . . . yn} ⊂
n⋃

i=1

cl
(
f + (yi)

)

which proves that the set-valued mapping cl
(
f +) is a KKM mapping.

Next, by Ky Fan’s lemma, we have⋂
y∈D

cl
(
f + (y)

) �= ∅.

Since y0 ∈ D and cl
(
f + (y0)

)
is contained in K , then we have

⋂
y∈D

cl
(
f + (y)

)=
⎛
⎝⋂

y∈D

cl
(
f + (y)

)⎞⎠∩ K =
⋂
y∈D

(
cl
(
f + (y)

)∩ K
)
.



Applications to Variational Inequalities and Related Topics Chapter | 10 293

According to our notation, we remark that for every y ∈ D, f + (y) is the
upper inverse set f + (R+, y) of R+ by the set-valued mapping f (., y) which
is lower semicontinuous on K by assumption (5). Then, by applying Proposi-
tion 1.5, we obtain that for every y ∈ D,

cl
(
f + (y)

)∩ K = f + (y) ∩ K.

Since y0 ∈ D and f + (y0) is contained in K , then we have⋂
y∈D

(
cl
(
f + (y)

)∩ K
)=

⋂
y∈D

(
f + (y) ∩ K

)=
⋂
y∈D

f + (y) .

It follows that
⋂

y∈D f + (y) �= ∅, hence there exists x0 ∈ C such that
f (x0, y) ⊂R+, for every y ∈ D.

It remains now to extend the above statement to the whole C in order to
state that x0 is a solution of the set-valued equilibrium problem (Ssvep). Let
y ∈ C \D. Since D ⊂ f + (x0,R+) = {

y′ ∈ C | f (
x0, y

′)⊂R+
}

and D is dense
in C, then y ∈ cl

(
f + (x0,R+)

) ∩ (C \ D). According to Proposition 1.5 again,
assumption (3) yields that

cl
(
f + (x0,R+)

)∩ (C \ D) = f + (x0,R+) ∩ (C \ D) .

It follows that y ∈ f + (x0,R+) which means that f + (x0, y) ⊂ R+ and com-
pletes the proof.

Remark 10.1. We note that f is convex (resp., lower semicontinuous) if and
only if −f is convex (resp., lower semicontinuous). Therefore, if we replace f

by −f in the above theorem, we obtain the inclusion in R−.

We now give an example of a set-valued mapping verifying all the conditions
of Theorem 10.6 without being lower semicontinuous in its first variable on the
whole space.

Example 10.1. Let X = D = R, K = [−1,+1] and y0 = 0. Define the set-
valued mapping f :R×R⇒R by

f (x, y) =
⎧⎨
⎩
[

y2−x2

2 ,+∞
[

if x = 2,[
y2 − x2,+∞[

otherwise.

Then f is convex in its second variable and that f (x, x) = R+, for ev-
ery x ∈ X. Also, for every x /∈ K , we have f (x,0) = −x2 < 0 if x �= 2 and
f (x,0) = −2 < 0 if x = 2.

To show that f is lower semicontinuous in its first variable on K , fix
y ∈ R and let V be an open subset of R such that f (x, y) ∩ V �= ∅ where
x ∈ K . Then 2 − x ≥ 1 and furthermore f (x, y) = [

y2 − x2,+∞[
. Let
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z ∈ [
y2 − x2,+∞[ ∩ V and ε > 0 be such that ]z − ε, z + ε[ ⊂ V . Choose

0 < δ < 1 such that
∣∣x2 − x2

∣∣< ε whenever |x − x| < δ. Note that
∣∣x2 − x2

∣∣=∣∣(y2 − x2
)− (

y2 − x2)∣∣ and then, y2 − x2 < y2 − x2 + ε ≤ z + ε whenever
|x − x| < δ. Thus, f (x, y) ∩ V �= ∅, for every x ∈ ]x − δ, x + δ[.

Now, let us show that f is not lower semicontinuous in its first variable on
the whole space R. Take for example y = 3 and show that the set-valued map-
ping f (·,3) is not lower semicontinuous at the point 2. To do this, consider the

open interval V = ]2,3[, and since f (2,3) =
[

5
2 ,+∞

[
, then f (2,3) ∩ V �= ∅.

However, if U is an open neighborhood of 2, then
]
2,

√
5
[

∩ U �= ∅ and for

z ∈
]
2,

√
5
[

∩ U , we have f (z,3) = [
9 − z2,+∞[

. Since 9 − z2 > 4, then

f (z,3) ∩ V = ∅.

The weaker set-valued equilibrium problem (Wsvep) is also solvable under
the conditions of Theorem 10.6 since it is a particular case and a weaker ver-
sion of the set-valued equilibrium problem (Ssvep). However, we provide here
some other conditions involving concavity and upper semicontinuity to obtain
an existence result for the set-valued equilibrium problem (Wsvep).

Theorem 10.7. Let X be a Hausdorff locally convex topological vector space,
C a nonempty, closed, and convex subset of X, and D ⊂ C a self-segment-dense
set in C. Let f : C × C ⇒ R be a set-valued mapping, and assume that the
following conditions hold:

1. for all x ∈ D, f (x, x) ∩R+ �= ∅;
2. for all x ∈ D, y 
→ f (x, y) is concave on D;
3. for all x ∈ C, y 
→ f (x, y) is upper semicontinuous on C \ D;
4. there exist a compact set K of C and y0 ∈ D such that f (x, y0) ⊂ R

∗−,
for all x ∈ C \ K;

5. for all y ∈ D, x 
→ f (x, y) is upper semicontinuous on K .

Then the set-valued equilibrium problem (Wsvep) has a solution.

Proof. We define the following set-valued mapping f − : C ⇒ C by

f − (y) = {x ∈ C | f (x, y) ∩R+ �= ∅} for all y ∈ C.

We observe that x0 ∈ C is a solution of the set-valued equilibrium prob-
lem (Wsvep) if and only if x0 ∈

⋂
y∈C

f − (y).

Now, consider the set-valued mapping cl
(
f −) : D ⇒R defined by

cl
(
f −) (y) = cl

(
f − (y)

)
for all y ∈ D.

As above, f − (y) is nonempty for every y ∈ D. Also, cl
(
f −) (y) is closed

for every y ∈ D, and cl
(
f −) (y0) is compact since it lies in K .
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To prove that the set-valued mapping cl
(
f −) is a KKM mapping, let

{y1, . . . , yn} ⊂ D be a finite subset and {λ1, . . . , λn} ⊂R+ such that
∑n

i=1 λi = 1
and

∑n
i=1 λiyi ∈ D. Then, by assumptions (1) and (2), we obtain

n∑
i=1

λif

(
n∑

i=1

λiyi, yi

)
⊃ f

(
n∑

i=1

λiyi,

n∑
i=1

λiyi

)
∩R+ �= ∅.

The convexity of R
∗− yields that there exists i0 ∈ {1, . . . , n} such that

f
(∑n

i=1 λiyi, yi0

)∩R+ �= ∅ which implies that

n∑
i=1

λiyi ∈ f − (
yi0

)⊂
n⋃

i=1

f − (yi) .

Consequently, for every finite subset {y1, . . . , yn} ⊂ D and {λ1, . . . , λn} ⊂ R−
such that

∑n
i=1 λi = 1, we have

conv {y1, . . . yn} ∩ D ⊂
n⋃

i=1

f − (yi)

and then,

cl (conv {y1, . . . yn} ∩ D) ⊂ cl

(
n⋃

i=1

f − (yi)

)
=

n⋃
i=1

cl
(
f − (yi)

)
.

By applying Lemma 1.3, we have

conv {y1, . . . yn} ⊂
n⋃

i=1

cl
(
f − (yi)

)

which proves that the set-valued mapping cl
(
f −) is a KKM mapping.

By Ky Fan’s lemma, we obtain

⋂
y∈D

cl
(
f − (y)

) �= ∅,

and since y0 ∈ D and cl
(
f − (y0)

)⊂ K , then

⋂
y∈D

cl
(
f − (y)

)=
⋂
y∈D

(
cl
(
f − (y)

))∩ K =
⋂
y∈D

(
cl
(
f − (y)

)∩ K
)
.

According to our notation, we remark that for every y ∈ D, f − (y) is the
lower inverse set f − (R+, y) of R+ by the set-valued mapping f (., y) which



296 Equilibrium Problems and Applications

is upper semicontinuous on K by assumption (5). Then, by applying Proposi-
tion 1.5, we obtain that for every y ∈ D,

cl
(
f − (y)

)∩ K = f − (y) ∩ K.

Since y0 ∈ D and f − (y0) is contained in K , we have⋂
y∈D

(
cl
(
f − (y)

)∩ K
)=

⋂
y∈D

(
f − (y) ∩ K

)=
⋂
y∈D

f − (y) .

It follows that
⋂

y∈D f − (y) �= ∅, hence there exists x0 ∈ C such that
f (x0, y) ∩R+ �= ∅, for every y ∈ D.

It remains now to extend the above statement to the whole C in order to
state that x0 is a solution of the set-valued equilibrium problem (Wsvep). Let
y ∈ C \ D. Since D ⊂ f − (x0,R+) = {

y′ ∈ C | f (
x0, y

′)∩R+ �= ∅} and D is
dense in C, then y ∈ cl

(
f − (x0,R+)

) ∩ (C \ D). According to Proposition 1.5
again, assumption (3) yields that

cl
(
f − (x0,R+)

)∩ (C \ D) = f − (x0,R+) ∩ (C \ D) .

It follows that y ∈ f − (x0,R+) which means that f − (x0, y)∩R+ �= ∅ and com-
pletes the proof.

Once again, remark that any solution of the set-valued equilibrium prob-
lem (Ssvep) or the set-valued equilibrium problem (Wsvep) is a solution of
the classical equilibrium problem (EP), where f : C × C ⇒ R is defined by
f (x, y) = {ϕ (x, y)} and ϕ is a single-valued bifunction. However, when the
notions of convexity and concavity in the sense of set-valued mappings are ap-
plied to f , we obtain the linearity (on D) of the single-valued mapping ϕ which
is a strong condition for solving equilibrium problems. Also, lower and upper
semicontinuity in the sense of set-valued mappings applied to f turn out to be
the continuity of ϕ. In what follows, we provide conditions weaker than linearity
and continuity to obtain an existence result for the equilibrium problems (EP).

Theorem 10.8. Let X be a Hausdorff locally convex topological vector space,
C a nonempty, closed, and convex subset of X, and D ⊂ C a self-segment-dense
set in C. Let ϕ : C × C → R be a bifunction, and assume that the following
conditions hold:

1. for all x ∈ D, ϕ (x, x) ≥ 0;
2. for all x ∈ D, y 
→ ϕ (x, y) is convex on D;
3. for all x ∈ C, y 
→ ϕ (x, y) is lower semicontinuous on C \ D;
4. there exist a compact set K of C and y0 ∈ D such that ϕ (x, y0) < 0,

for all x ∈ C \ K;
5. for all y ∈ D, x 
→ ϕ (x, y) is lower semicontinuous on K .

Then the equilibrium problem (EP) has a solution.
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Proof. We proceed as above and define the following set-valued mapping
ϕ+ : C ⇒ C by

ϕ+ (y) = {x ∈ C | ϕ (x, y) ≥ 0} .

We observe that x0 ∈ C is a solution of the equilibrium problem (EP) if and
only if x0 ∈

⋂
y∈C

ϕ+ (y).

We also consider the set-valued mapping cl
(
ϕ+) : D ⇒R defined by

cl
(
ϕ+) (y) = cl

(
ϕ+ (y)

)
for all y ∈ D.

We have that ϕ+ (y) is nonempty, for every y ∈ D. Also, cl
(
ϕ+) (y) is closed

for every y ∈ D, and cl
(
ϕ+) (y0) is compact.

To prove that cl
(
ϕ+) is a KKM mapping, let {y1, . . . , yn} ⊂ D be a finite

subset and {λ1, . . . , λn} ⊂ R+ such that
∑n

i=1 λi = 1 and
∑n

i=1 λiyi ∈ D. We
have

max
i=1,...,n

ϕ

(
n∑

i=1

λiyi, yi

)
≥ ϕ

(
n∑

i=1

λiyi,

n∑
i=1

λiyi

)
≥ 0.

Then, there exists i0 ∈ {1, . . . , n} such that ϕ
(∑n

i=1 λiyi, yi0

)≥ 0 which implies
that

n∑
i=1

λiyi ∈ ϕ+ (
yi0

)⊂
n⋃

i=1

ϕ+ (yi) .

Consequently, for every finite subset {y1, . . . , yn} ⊂ D and {λ1, . . . , λn} ⊂ R−
such that

∑n
i=1 λi = 1, we have

conv {y1, . . . yn} ∩ D ⊂
n⋃

i=1

ϕ+ (yi)

and then,

cl (conv {y1, . . . yn} ∩ D) ⊂ cl

(
n⋃

i=1

ϕ+ (yi)

)
=

n⋃
i=1

cl
(
ϕ+ (yi)

)
.

By applying Lemma 1.3, we obtain that

conv {y1, . . . yn} ⊂
n⋃

i=1

cl
(
ϕ+ (yi)

)

which proves that the set-valued mapping cl
(
ϕ+) : D ⇒R is a KKM mapping.
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By applying Ky Fan’s lemma, we have⋂
y∈D

cl
(
ϕ+ (y)

) �= ∅.

Since y0 ∈ D and cl
(
ϕ+ (y0)

)⊂ K , then

⋂
y∈D

cl
(
ϕ+ (y)

)=
⋂
y∈D

(
cl
(
ϕ+ (y)

))∩ K =
⋂
y∈D

(
cl
(
ϕ+ (y)

)∩ K
)
.

By applying Proposition 1.3, assumption (5) yields that for every y ∈ D,

cl
(
ϕ+ (y)

)∩ K = ϕ+ (y) ∩ K

and then, ⋂
y∈D

(
cl
(
ϕ+ (y)

)∩ K
)=

⋂
y∈D

(
ϕ+ (y) ∩ K

)=
⋂
y∈D

ϕ+ (y) .

It follows that
⋂

y∈D ϕ+ (y) �= ∅ which means that there exists x0 ∈ C such
that ϕ (x0, y) ≥ 0, for every y ∈ D.

As above, by assumption (3), we can apply Proposition 1.3 to the set C \ K

and obtain that ϕ (x0, y) ≥ 0, for every y ∈ C. That is, x0 is a solution of the
equilibrium problem (EP).

We point out that the solutions sets of the equilibrium problems studied in
Theorems 10.6, 10.7 and 10.8 are always included in the set of coerciveness K .

10.3.2 Browder Variational Inclusions: Existence of Solutions

Browder variational inclusion problems have been considered in the literature as
a generalization of Browder-Hartman-Stampacchia variational inequality prob-
lems. These problems are also presented in the literature as a weak type of
multi-valued variational inequalities.

Let X be a real normed vector space X. For x ∈ X and a subset A of X∗, we
put 〈A,x〉 = {〈x∗, x〉 | x∗ ∈ A}.

The following result is related with Theorem 4.8.

Theorem 10.9. Let X be a real normed vector space, C a nonempty, closed, and
convex subset of X. Suppose that F : C ⇒ X∗ satisfies the following conditions:

1. there exist a compact subset K of C and y0 ∈ C such that 〈x∗, y − x〉 < 0,
for every x ∈ C \ K and every x∗ ∈ F (x);

2. F is upper semicontinuous on K;
3. F has weak* compact values on K .

Then there exists x0 ∈ K such that 〈F (x0) , y − x0 ∩R+ �= ∅, for every y ∈ C.
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Proof. Define the set-valued mapping f : C × C ⇒R by

f (x, y) = 〈F (x) , y − x〉.
We show that all the conditions of Theorem 10.7 are satisfied with D = C.
Condition (1) and condition (3) are obviously satisfied. Condition (4) holds

easily from our assumption on the subset K .
To prove condition (2), let x ∈ C, {y1, . . . , yn} ⊂ C a finite subset and

{λ1, . . . , λn} ⊂ R+ such that
∑n

i=1 λi = 1. Take x∗ ∈ F (x), and by linearity,
we have

〈x∗,

n∑
i=1

λiyi − x〉 =
n∑

i=1

λi〈x∗, yi − x〉 ∈
n∑

i=1

λi〈F (x) , yi − x〉

which implies that 〈F (x) ,
∑n

i=1 λiyi −x〉 ⊂∑n
i=1 λi〈F (x) , yi −x〉. It follows

that

f

(
x,

n∑
i=1

λiyi

)
⊂

n∑
i=1

λif (x, yi) .

To prove condition (5), fix y ∈ D, V an open subset of R and let
x ∈ f + (V , y) ∩ (C \ K) where f + (V , y) = {

x′ ∈ C | 〈F (
x′) , y − x′〉 ⊂ V

}
.

First, we claim that there exists δ > 0 such that

BR

(〈x∗, y − x〉, δ)⊂ V for all x∗ ∈ F (x)

where BR (〈x∗, y − x〉, δ) = {t ∈R | |t − 〈x∗, y − x〉| < δ}. Indeed, for every
x∗ ∈ F (x), let εx∗ > 0 be such that BR (〈x∗, y − x〉,2εx∗) ⊂ V and define

Ux∗ = {
z∗ ∈ X∗ | 〈z∗, y − x〉 ∈ BR

〈
x∗, y − x〉, εx∗

)}
.

The family {Ux∗ | x∗ ∈ F (x)} being a weak* open cover of F (x) which is
weak* compact, let

{
x∗

1 , . . . , x∗
n

}⊂ F (x) be such that F (x) ⊂⋃n
i=1 Ux∗

i
. Put

δ = min
i=1,...,n

εx∗
i
.

If t ∈ BR 〈x∗, y − x〉, δ) for some x∗ ∈ F (x), then x∗ ∈ Ux∗
i
, for some

i = 1, . . . , n. Since∣∣t − 〈x∗
i , y − x〉∣∣≤ ∣∣t − 〈x∗, y − x〉∣∣+ ∣∣〈x∗, y − x〉 − 〈x∗

i , y − x〉∣∣
< δ + εx∗

i
≤ 2εx∗

i
,

then, t ∈ BR

(
〈x∗

i , y − x〉,2εx∗
i

)
⊂ V .

Let

δ1 = min

{
δ

3 (‖x‖ + 1)
,

δ

3 (‖y‖ + 1)

}
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and O=⋃
x∗∈F(x) BX∗ (x∗, δ1), where BX∗ (x∗, δ1) = {z ∈ X∗ | ‖z − x∗‖∗<δ1},

and ‖ .‖ and ‖ .‖∗ denote respectively the norm of X and X∗. Clearly O is
an open set containing F (x), and by the upper semicontinuity of F on K , let
η > 0 be such that F (w) ⊂ O for every w ∈ BX (x,η) ∩ C, where BX (x,η) =
{w ∈ X | ‖w − x‖ < η}. Put

η1 = min

{
δ

3 (‖F (x)‖∗ + 1)
, η,1

}

where ‖F (x)‖∗ = max {‖x∗‖∗ | x∗ ∈ F (x)}. Put U = BX (x,η1) ∩ C which is
an open subset of C containing x.

We will show that f (z, y) ⊂ V , for every z ∈ U . To do this, let z ∈ U and
z∗ ∈ F (z). Let x∗

0 ∈ F (x) be such that F (z∗) ⊂ BX∗
(
x∗

0 , δ1
)
. We have∣∣〈z∗, y − z〉 − 〈x∗

0 , y − x〉∣∣= ∣∣〈x∗
0 − z∗, z〉 + 〈x∗

0 , x − z〉 − 〈x∗
0 − z∗, y〉∣∣

≤ ‖x∗
0 − z∗‖∗‖z‖ + ‖x∗

0‖∗‖x − z‖ + ‖x∗
0 − z∗‖∗‖y‖

<
δ (‖x‖ + η1)

3 (‖x‖ + 1)
+ δ‖x∗

0‖∗
3 (‖F (x)‖∗ + 1)

+ δ‖y‖
3 (‖y‖ + 1)

<
δ

3
+ δ

3
+ δ

3
= δ.

It follows that 〈z∗, y − z〉 ∈ BR

(〈x∗
0 , y − x〉, δ) ⊂ V . Since z is arbitrary in U

and z∗ is arbitrary in F (z), then f (z, y) ⊂ V , for every z ∈ U .
By Theorem 10.7, we conclude that there exists x0 ∈ C such that f (x0, y)∩

R+ �= ∅, for every y ∈ C.

When F is a single-valued mapping, we obtain a solution to the Browder-
Hartman-Stampacchia variational inequality problems, as stated in the following
property.

Corollary 10.1. Let X be a real normed vector space, C a nonempty, closed,
and convex subset of X. Suppose that f : C → X∗ has the following conditions

1. there exist a compact subset K of C and y0 ∈ C such that 〈f (x) , y−x〉 < 0,
for every x ∈ C \ K;

2. F is continuous on K .

Then there exists x0 ∈ K such that 〈f (x0) , y − x0〉 ≥ 0, for every y ∈ C.

10.3.3 Pseudo-Monotone Case

We are now concerned with set-valued equilibrium problems under condi-
tions of pseudo-monotonicity. Concepts such as strict quasi-convexity, hemi-
continuity and pseudo-monotonicity for extended real set-valued mappings are
introduced and applied to obtain results on the existence of solutions of set-
valued equilibrium problems generalizing those in the literature in the pseudo-
monotone case. Applications to Browder variational inclusions under weakened
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conditions are given. In particular, it is shown that the upper semicontinuity
from line segments of the involved pseudo-monotone set-valued operator is not
needed in the whole space when solving Browder variational inclusions. We
follow the results obtained by Alleche and Rădulescu [10].

Let C be a nonempty convex subset of a real topological Hausdorff vector
space. A set-valued mapping F : C ⇒ R is said to be convex on C if whenever
{x1, . . . , xn} ⊂ C and {λ1, . . . , λn} ⊂R+ such that

∑n
i=1 λi = 1, we have

n∑
i=1

λiF (xi) ⊂ F

(
n∑

i=1

λixi

)
,

where the sum denotes here the usual Minkowski sum of sets. The set-valued
mapping F : C ⇒ R is said to be concave on C if whenever {x1, . . . , xn} ⊂ C

and {λ1, . . . , λn} ⊂R+ such that
∑n

i=1 λi = 1, we have

F

(
n∑

i=1

λixi

)
⊂

n∑
i=1

λiF (xi) .

Let F : C ⇒ R be an extended real set-valued mapping. We say that
F is convexly quasi-convex on C if whenever {x1, . . . , xn} ⊂ C and
{λ1, . . . , λn} ⊂ R+ such that

∑n
i=1 λi = 1, then for every {z1, . . . , zn} with

zi ∈ F (xi) for every i = 1, . . . , n, there exists z ∈ F
(∑n

i=1 λixi

)
such that

z ≤ max {zi | i = 1, . . . , n} .

We observe that the convex quasi-convexity of extended real set-valued
mappings generalizes both the convexity of set-valued mappings and the quasi-
convexity of extended real single-valued mappings.

We have the following obvious characterization.

Proposition 10.5. Let C be a nonempty convex subset of a real topological
Hausdorff vector space. An extended real set-valued mapping F : C ⇒ R is
convexly quasi-convex on C if and only if the set [F ≤ λ] is convex, for every
λ ∈ R.

We say that F is concavely quasi-convex on C if whenever {x1, . . . , xn} ⊂ C

and {λ1, . . . , λn} ⊂R+ such that
∑n

i=1 λi = 1, then for every z ∈ F
(∑n

i=1 λixi

)
,

there exist {z1, . . . , zn} with zi ∈ F (xi) for every i = 1, . . . , n such that

z ≤ max {zi | i = 1, . . . , n} .

The concave quasi-convexity of extended real set-valued mappings gener-
alizes both the concavity of set-valued mappings and the quasi-convexity of
extended real single-valued mappings.

We have the following characterization.
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Proposition 10.6. Let C be a nonempty convex subset of a real topological
Hausdorff vector space. If an extended real set-valued mapping F : C ⇒ R is
concavely quasi-convex on C, then the set [F ⊆ λ] is convex, for every λ ∈R.

Now, we introduce the following notion of semistrict quasi-convexity of
extended real set-valued mappings. We say that F is semistrictly convexly quasi-
convex on C if whenever x1, x2 ∈ C such that F (x1) �= F (x2) and λ ∈ ]0,1[,
then for every z1 ∈ F (x1) and z2 ∈ F (x2), the following hold

1. there exists z ∈ F (λx1 + (1 − λ)x2) such that

z < max {z1, z2} ;
2. whenever z′ ∈ F (λx1 + (1 − λ)x2), we have

if z′ ≤ max {z1, z2} , then z′ < max {z1, z2} .

Every convex extended real set-valued mapping and every semistrictly quasi-
convex extended real single-valued mapping is semistrictly convexly quasi-
convex extended real set-valued mapping. We point out that there is not any
inclusion relationship between the class of semistrictly quasi-convex real single-
valued mappings and that of quasi-convex real single-valued mappings. It fol-
lows that there is not any inclusion relationship between the class of semistrictly
convexly quasi-convex extended real set-valued mappings and that of convexly
quasi-convex extended real set-valued mappings.

Example 10.2. Let C = [−1,1] and F : C ⇒R be the set-valued defined by

F (x) =

⎧⎪⎨
⎪⎩
[

1
2 ,1

]
if x �= 0,[

3
2 ,2

]
if x = 0.

The set-valued F is not convexly quasi-convex since for x1 = −1, x2 = 1 and
λ1 = λ2 = 1

2 , we have λ1x1 + λ2x2 = 0. Then clearly, for z1 ∈ F (x1) and
z2 ∈ F (x2), we have

z > max {z1, z2} ,

for every z ∈ F (λ1x1 + λ2x2). However, F is semistrictly convexly quasi-
convex. Indeed, take x1, x2 ∈ C, and in order to apply the definition, we must
assume (without loss of generality) that x1 = 0 and x2 �= 0. Then for λ ∈ ]0,1[,
we have

F (λx1 + (1 − λ)x2) = F ((1 − λ)x2) =
[

1

2
,1

]
and F (x1) =

[
3

2
,2

]
.

Clearly, for every z1 ∈ F (x1), z2 ∈ F (x2) and z ∈ F (λx1 + (1 − λ)x2), we
have z < max {z1, z2}.
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Remark 10.2. The notion of semistrictly convexly quasi-convex extended real
set-valued mapping will be used in Proposition 10.9 and Proposition 10.10 be-
low, where we need only condition (2). Condition (1) has been used in order
to make this notion a generalization of the notion of semistrictly quasi-convex
extended real single-valued mapping.

In the sequel, an extended real set-valued mappings will be said explicitly
convexly quasi-convex if it is both convexly quasi-convex and semistrictly con-
vexly quasi-convex.

In the literature, various concepts related to continuity on line segments of
single-valued and set-valued mappings defined on real topological Hausdorff
vector spaces have been introduced and used in different works. In what follows,
we introduce the notions of upper hemicontinuous and quasi-upper hemicon-
tinuous extended real set-valued mappings which generalize both the upper
hemicontinuity of extended real single-valued mapping and the lower semicon-
tinuity of set-valued mappings.

Let X be a real topological Hausdorff vector space. For x, y ∈ X, we set[
x, y

] = {λx + (1 − λ)y | λ ∈ [0,1]}, the line segment starting at x and ending
at y. We also set

]
x, y

[ = [
x, y

] \ {x, y}. We say that a set-valued mapping
F : X ⇒R is

1. upper hemicontinuous at a point x ∈ X if whenever x′ ∈ X, there exists a
sequence (tn)n in ]0,1[ converging to 0 such that for every z ∈ F (x), there
exists a sequence (zn)n with zn ∈ F

(
tnx

′ + (1 − tn) x
)

for every n, and such
that

z ≥ lim sup
n→+∞

zn,

where lim sup
n→+∞

zn = inf
n

sup
k≥n

zk;

2. quasi-upper hemicontinuous at a point x ∈ X if whenever x′ ∈ X there exist
a sequence (tn)n in ]0,1[ converging to 0, a point z ∈ F (x), and a sequence
(zn)n with zn ∈ F

(
tnx

′ + (1 − tn) x
)

for every n such that

z ≥ lim sup
n→+∞

zn.

The set-valued mapping F is said to be upper hemicontinuous (resp., quasi-
upper hemicontinuous) on X if it is upper hemicontinuous (resp., quasi-upper
hemicontinuous) at every point of X. It is said to be upper hemicontinuous
(resp., quasi-upper hemicontinuous) on a subset S ⊂ X, if it is upper hemicon-
tinuous (resp., quasi-upper hemicontinuous) at every point of S.

Remark 10.3. Note that when x �= x′ in the above definition, then we have
tnx

′ + (1 − tn) x ∈ ]
x′, x

[
, for every n.

Proposition 10.7. Let X be a real topological Hausdorff vector space, x ∈ X,
and F : X ⇒ R a set-valued mapping. Suppose that one of the following as-
sumptions holds:
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1. F is lower semicontinuous at x;
2. F has a selection which is upper hemicontinuous at x.

Then F is upper hemicontinuous at x.

Proof. The second statement is obvious. The first one comes from the fact that F
is lower semicontinuous at x ∈ X if and only if for every generalized sequence
(xλ)λ∈� converging to x, and for every z ∈ F (x), there exists a generalized
sequence (zλ)λ∈� converging to z such that zλ ∈ F (xλ), for every λ ∈ �.

Even if the existence of continuous selections is subject which is not lim-
ited to lower semicontinuous set-valued mapping, Michael’s selection theorem
remains the pioneering work in this direction which guarantees that every lower
semicontinuous set-valued mapping with nonempty, closed, and convex values
from a paracompact space to a Banach space has a continuous selection.

Proposition 10.8. Let X be a real topological Hausdorff vector space and
F : X ⇒ R a set-valued mapping. Suppose that for every x ∈ S and x′ ∈ X,
the restriction of F on

[
x′, x

]
has an upper hemicontinuous selection. Then F

is upper hemicontinuous on S.

Remark 10.4. We remark that in Proposition 10.8, we are interested in the re-
striction of F on the line segment

[
x′, x

]
which is a space that enjoys different

important properties. In comparison with Michael’s selection theorem, it should
be interesting to look for conditions on F in order to obtain such an upper hemi-
continuous selection without being necessarily continuous.

In many applications, upper hemicontinuous set-valued mappings is con-
structed from upper semicontinuous set-valued operators from line segments as
in the results of the last section of this paper. We construct here an upper hemi-
continuous set-valued mapping which is not lower semicontinuous.

Example 10.3. Let X = {
(x, y) ∈R

2 | y > 0
} ∪ {(0,0)} ⊂ R

2 and define the
set-valued mapping F : X ⇒R

2 by

F ((x, y)) =
⎧⎨
⎩
[

4x2

y
,+∞

[
×
[

x4

y2 ,+∞
[

if y > 0,

R
2 if y = 0.

The function f : X ⇒R
2 defined by

f ((x, y)) =
⎧⎨
⎩
(

4x2

y
, x4

y2

)
if y > 0,

(0,0) if y = 0,

is upper hemicontinuous selection of F which is not continuous. Indeed, the
hemicontinuity being obvious, we will just prove that f is not continuous at
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(0,0). We have

lim
x→0
x>0

f
((√

x, x
))= lim

x→0
x>0

(
4
√

x,1
)= (0,1) �= (0,0) = f ((0,0)) .

The set-valued mapping F is not lower semicontinuous at (0,0). Indeed,
let V = B ((0,0) ,1) be the open ball around (0,0) with radius 1. We have
F ((0,0)) ∩ V �= ∅, but for any open neighborhood U of (0,0), we can
choose a small enough a > 0 such that

(√
a, a

) ∈ U . Now, for every (x, y) ∈
F
((√

a, a
))

, we have x ≥ 4
√

a and y ≥ 1. Then
√

x2 + y2 ≥ 1. It follows that
(x, y) /∈ V , and then F

((√
a, a

))∩ V = ∅.

Next, we are concerned with the existence of solutions of both strong set-
valued equilibrium problems and weak set-valued equilibrium problems in the
pseudo-monotone case.

We now recall the notion of KKM mapping and the intersection lemma of
Ky Fan [73]. We refer to Chapter 4 for more details.

Let X be a real topological Hausdorff vector space and M a subset of X.
A set-valued mapping F : M ⇒ X is said to be a KKM mapping if for every
finite subset {x1, . . . , xn} of M , we have

conv {x1, . . . xn} ⊂
n⋃

i=1

F (xi) .

By Ky Fan’s lemma [73], assuming that

1. F is a KKM mapping,
2. F (x) is closed for every x ∈ M , and
3. there exists x0 ∈ M such that F (x0) is compact,

then
⋂

x∈M F (x) �= ∅.
We define the following set-valued mappings f +, f ++ : C ⇒ C by

f + (y) =
{
x ∈ C | f (x, y) ∩R+ �= ∅

}
for all y ∈ C,

and

f ++ (y) =
{
x ∈ C | f (x, y) ⊂R+

}
for all y ∈ C.

We remark that f ++ (y) ⊂ f + (y), for every y ∈ C. We also remark that

1. x0 ∈ C is a solution of the weak set-valued equilibrium problem (SVEP(W))
if and only if x0 ∈⋂

y∈C f + (y), and
2. x0 ∈ C is a solution of the strong set-valued equilibrium problem (Ssvep) if

and only if x0 ∈⋂
y∈C f ++ (y).
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Set

clf + (y) = cl
(
f + (y)

)
and clf ++ (y) = cl

(
f ++ (y)

)
,

the closure of f + (y) and f ++ (y), respectively, for every y ∈ C.

Lemma 10.1. Let C be a nonempty convex subset of a real topological vector
space. Let f : C × C ⇒ R ∪ {+∞} be a set-valued mapping, and assume that
the following conditions hold:

1. f (x, x) ⊂ R+, for every x ∈ C;
2. f is convexly quasi-convex in its second variable on C.

Then the set-valued mappings clf ++ : C ⇒ C and clf + : C ⇒ C are KKM
mappings.

Proof. It suffices to prove that the set-valued mapping f ++ : C ⇒ C is a
KKM mapping. Let {y1, . . . , yn} ⊂ C and {λ1, . . . , λn} ⊂ R+ be such that∑n

i=1 λi = 1. Set ỹ = ∑n
i=1 λiyi . By assumption (2), for {z1, . . . , zn} with

zi ∈ f (ỹ, yi) for every i = 1, . . . , n, there exists z ∈ f (ỹ, ỹ) such that

z ≤ max {zi | i = 1, . . . , n} .

We have z ≥ 0 since f (ỹ, ỹ) ⊂ R+ by assumption (1). It follows that there
exists i0 ∈ {1, . . . , n} such that f

(
ỹ, yi0

) ∩ R
∗− = ∅, which implies that

f
(
ỹ, yi0

)⊂ R+. Otherwise, all the zi can be taken in R
∗−, and therefore z ∈ R

∗−,
which is impossible. We conclude that

n∑
i=1

λiyi = ỹ ∈ f ++ (
yi0

)⊂
n⋃

i=1

f ++ (yi) ,

which proves that f ++ is a KKM mapping.

First, we deal with strong set-valued equilibrium problems. The following
result emphasizes the role of upper hemicontinuity when solving set-valued
equilibrium problems.

We define the following set-valued mapping f −− : C ⇒ C by

f −− (y) = {x ∈ C | f (y, x) ⊂ R−} for all y ∈ C,

and we set

clf −− (y) = cl
(
f −− (y)

)
,

the closure of f −− (y), for every y ∈ C.

Proposition 10.9. Let C be a nonempty convex subset of a real topological
vector space. Let f : C ×C ⇒R∪{+∞} be a set-valued mapping and suppose
the following assumptions hold:
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1. f (x, x) ⊂ R+, for every x ∈ C;
2. f is explicitly convexly quasi-convex in its second variable on C;
3. f is upper hemicontinuous in its first variable on a subset S of C.

Then ⋂
y∈C

(
f −− (y) ∩ S

)⊂
⋂
y∈C

f ++ (y) .

Proof. Without loss of generality, we may assume that

⋂
y∈C

(
f −− (y) ∩ S

) �= ∅.

Take x ∈ ⋂
y∈C

(
f −− (y) ∩ S

)
and let y ∈ C be an arbitrary point. By upper

hemicontinuity of f in its first variable on S, let (tn)n be a sequence in ]0,1[
converging to 0, and for z ∈ f (x, y), let (zn)n be a sequence with zn ∈ f (xn, y)

for every n, and such that

z ≥ lim sup
n→+∞

zn,

where xn = tny+(1 − tn) x. We have in particular that x ∈ f −− (xn) for every n.
Thus, f (xn, x) ⊂ R−, for every n. By convex quasi-convexity of f in its second
variable, for zn ∈ f (xn, y) and wn

x ∈ f (xn, x), there exists wn ∈ f (xn, xn) such
that

wn ≤ max
{
zn,w

n
x

}
.

We have wn ≥ 0 since f (xn, xn) ⊂ R+. We also have zn ≥ 0. Indeed, assume
that zn < 0. Then wn

x ≥ 0, otherwise wn < 0 which is impossible. This yields
that wn

x = 0 and then, zn < wn
x . Since zn and wn

x are arbitrary in f (xn, y) and
f (xn, x), respectively, then f (xn, y) �= f (xn, x). By semistrict convex quasi-
convexity of f in its second variable, we obtain wn < max

{
zn,w

n
x

} = wn
x = 0,

which is impossible. We conclude that

z ≥ lim sup
n→+∞

zn ≥ 0.

Since z is arbitrary in f (x, y), then x ∈ f ++ (y). Since y is arbitrary in C, then
x ∈⋂

y∈C f ++ (y), which completes the proof.

Next, we obtain a result on the existence of solutions of strong set-valued
equilibrium problems.

We say that a bifunction f : C × C ⇒ R ∪ {+∞} is strongly pseudo-
monotone on C if for every x, y ∈ C,

f (x, y) ⊂ R+ =⇒ f (y, x) ⊂ R−.
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Example 10.4. Define the set-valued mapping f : R×R⇒R by

f (x, y) =

⎧⎪⎨
⎪⎩
[
y2 − x2,+∞[

if |y| > |x| ,
{0} if |y| = |x| ,]−∞, y2 − x2

]
if |y| < |x| .

Clearly, f (x, x) = f (−x,−x) = f (x,−x) = f (−x, x) = {0}, for every
x ∈ R. If f (x, y) ⊂ R+, then necessarily, we have |y| ≥ |x|. It follows that
f (y, x) is either equal to {0} or to

]−∞, x2 − y2
]

which are included in R−. It
follows that f is strongly pseudo-monotone on R.

Theorem 10.10. Let C be a nonempty, closed, and convex subset of a real topo-
logical vector space. Let f : C × C ⇒R∪ {+∞} be a set-valued mapping, and
assume that the following conditions hold:

1. f (x, x) ⊂ R+, for every x ∈ C;
2. f is strongly pseudo-monotone on C;
3. f is explicitly convexly quasi-convex in its second variable on C;
4. there exist a compact set K of C and a point y0 ∈ K such that

f (x, y0) ∩R
∗− �= ∅, for every x ∈ C \ K;

5. f is l-lower semicontinuous in its second variable on K;
6. f is upper hemicontinuous in its first variable on K .

Then the set of solutions of the set-valued equilibrium problem (Ssvep) is
nonempty compact set. It is also convex whenever f is concavely quasi-convex
in its second variable on C and K is convex.

Proof. Assumption (1) yields f ++ (y) is nonempty, for every y ∈ C. We ob-
serve that clf ++ (y) is closed for every y ∈ C, and clf ++ (y0) is compact since
it lies in K by assumption (4). Also, the set-valued mapping clf ++ is a KKM
mapping by Lemma 10.1. By the Ky Fan lemma, we have⋂

y∈C

clf ++ (y) �= ∅.

Since the subset clf ++ (y0) is contained in the compact K , then⋂
y∈C

clf ++ (y) =
⋂
y∈C

(
clf ++ (y) ∩ K

)
.

By strong pseudo-monotonicity, we have f ++ (y) ⊂ f −− (y), for every
y ∈ X. We remark that for every y ∈ C, f −− (y) is the upper inverse set
f + (y, ]−∞,0]) of ]−∞,0] by the set-valued mapping f (y, .) which is l-lower
semicontinuous on K . It follows that clf −− (y) ∩ K = f −− (y) ∩ K . Hence⋂

y∈C

(
clf ++ (y) ∩ K

)⊂
⋂
y∈C

(
clf −− (y) ∩ K

)=
⋂
y∈C

(
f −− (y) ∩ K

)
.
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By Proposition 10.9, we have

⋂
y∈C

(
f −− (y) ∩ K

)⊂
⋂
y∈C

f ++ (y) .

This yields that ⋂
y∈C

clf ++ (y) =
⋂
y∈C

f ++ (y).

It follows that the set of solutions of the set-valued equilibrium prob-
lem (Ssvep) is the nonempty set

⋂
y∈C clf ++ (y) which is compact since it is

closed and contained in the compact set K .
By Proposition 10.6, the concave quasi-convexity of f in its second variable

on C yields that the set f −− (y) is convex, for every y ∈ C. Since we also have

⋂
y∈C

clf ++ (y) =
⎛
⎝⋂

y∈C

f −− (y)

⎞
⎠∩ K,

then the set of solutions of the set-valued equilibrium problem (Ssvep) is convex
whenever K is convex.

Now, we deal with weak set-valued equilibrium problems. The following re-
sult emphasizes the role of quasi-upper hemicontinuity when solving set-valued
equilibrium problems.

We define the following set-valued mapping f − : C ⇒ C by

f − (y) = {x ∈ C | f (y, x) ∩R− �= ∅} for all y ∈ C,

and we set

clf − (y) = cl
(
f − (y)

)
,

the closure of f − (y), for every y ∈ C.

Proposition 10.10. Let C be a nonempty convex subset of a real topological
vector space. Let f : C ×C ⇒R∪{+∞} be a set-valued mapping and suppose
the following assumptions hold:

1. f (x, x) ⊂R+, for every x ∈ C;
2. f is explicitly convexly quasi-convex in its second variable on C;
3. f is quasi-upper hemicontinuous in its first variable on a subset S of C.

Then ⋂
y∈C

(
f − (y) ∩ S

)⊂
⋂
y∈C

f + (y) .
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Proof. Pick x ∈ ⋂
y∈C

(
f − (y) ∩ S

)
and let y ∈ C be an arbitrary point. By

quasi-upper hemicontinuity of f in its first variable on S, let (tn)n be a se-
quence in ]0,1[ converging to 0, a point z ∈ f (x, y), and a sequence (zn)n with
zn ∈ f (xn, y) for every n, such that

z ≥ lim sup
n→+∞

zn,

where xn = tny + (1 − tn) x. By convex quasi-convexity of f in its second vari-
able, for zn ∈ f (xn, y) and wn

x ∈ f (xn, x) ∩ R−, there exists wn ∈ f (xn, xn)

such that

wn ≤ max
{
zn,w

n
x

}
.

By using the semistrict convex quasi-convexity of f in its second variable, we
obtain that zn ≥ 0, and we conclude that

z ≥ lim sup
n→+∞

zn ≥ 0,

which completes the proof.

Next, we obtain a result on the existence of solutions of weak set-valued
equilibrium problems.

We say that a bifunction f : C×C ⇒R∪{+∞} is weakly pseudo-monotone
on C if for every x, y ∈ C,

f (x, y) ∩R+ �= ∅ =⇒ f (y, x) ∩R− �= ∅.

Example 10.5. Define the set-valued mapping f : R×R⇒R by

f (x, y) =
{

[0,+∞[ if y ≥ x,]−∞, x − y
]

if y < x.

We remark that f (x, y) ∩ R− �= ∅, for every x, y ∈ R. Then, f is obvi-
ously weakly pseudo-monotone on R. However, f can not be strongly pseudo-
monotone on R since f (1,2) = [0,+∞[ ⊂ R+, but f (2,1) = ]−∞,1] �⊂ R−.

We note that for real single-valued mappings, the weak pseudo-monotonicity
coincides with the strong pseudo-monotonicity, and it is called, in this case, the
pseudo-monotonicity.

Theorem 10.11. Let C be a nonempty, closed, and convex subset of a real topo-
logical vector space. Let f : C × C ⇒R∪ {+∞} be a set-valued mapping, and
assume that the following conditions hold:

1. f (x, x) ⊂R+, for every x ∈ C;
2. f is weakly pseudo-monotone on C;
3. f is explicitly convexly quasi-convex in its second variable on C;
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4. there exist a compact set K of C and a point y0 ∈ K such that
f (x, y0) ⊂R

∗−, for every x ∈ C \ K;
5. f is u-lower semicontinuous in its second variable on K;
6. f is quasi-upper hemicontinuous in its first variable on K .

Then the set of solutions of the set-valued equilibrium problem (SVEP(W)) is
nonempty compact set. It is also convex whenever K is convex.

Proof. As in the proof of Theorem 10.10, clf + (y) is nonempty and closed for
every y ∈ C, clf + (y0) is compact and the set-valued mapping clf + is a KKM
mapping. By the Ky Fan lemma and since the subset clf + (y0) is contained in
the compact K , we have⋂

y∈C

(
clf + (y) ∩ K

)=
⋂
y∈C

clf + (y) �= ∅.

By weak pseudo-monotonicity, we have f + (y) ⊂ f − (y). Since f is u-
lower semicontinuity in its second variable on K , we have clf − (y) ∩ K =
f − (y) ∩ K , for every y ∈ X. It follows that⋂

y∈C

(
clf + (y) ∩ K

)⊂
⋂
y∈C

(
clf − (y) ∩ K

)=
⋂
y∈C

(
f − (y) ∩ K

)
.

By Proposition 10.10, we have⋂
y∈C

(
f − (y) ∩ K

)⊂
⋂
y∈C

f + (y) .

This yields that ⋂
y∈C

clf + (y) =
⋂
y∈C

f + (y).

We deduce that the set of solutions of the set-valued equilibrium prob-
lem (SVEP(W)) is the nonempty compact set

⋂
y∈C clf + (y). By Proposi-

tion 10.5, we have that the set f − (y) is convex, for every y ∈ C. Since we
also have

⋂
y∈C

clf + (y) =
⎛
⎝⋂

y∈C

f − (y)

⎞
⎠∩ K,

then the set of solutions of the set-valued equilibrium problem (SVEP(W)) is
convex whenever K is convex.

We illustrate the previous results with a class of Browder variational inclu-
sions involving pseudo-monotone set-valued operators. Browder variational in-
clusions, which generalize Browder-Hartman-Stampacchia variational inequal-
ities, have many applications to nonlinear elliptic boundary value problems and
the surjectivity of set-valued mappings.
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Let C be a nonempty, closed, and convex subset of a real normed vector
space X. A set-valued operator F : C ⇒ X∗ is said to be coercive on C if there
exists y0 ∈ C such that

lim‖x‖→+∞
x∈C

inf
x∗∈F(x)

〈x∗, x − y0〉 > 0,

or if the stronger condition

lim‖x‖→+∞
x∈C

infx∗∈F(x)〈x∗, x − y0〉
‖x‖ = +∞

is satisfied. It is not hard to see that under both the two notions of coercive-
ness of F , there exists R > 0 such that y0 ∈ KR and infx∗∈F(x)〈x∗, y0 − x〉 < 0,
for every x ∈ C \ KR , where KR = {x ∈ C | ‖x‖ ≤ R}. We observe that KR is
weakly compact whenever X is reflexive. The set KR is called a set of coercive-
ness, and the couple (y0,KR) may not be unique.

Recall that a set-valued operator F : C ⇒ E∗ is called pseudo-monotone on
C if for every x, y ∈ C

〈x∗, y − x〉 ≥ 0 =⇒ 〈y∗, x − y〉 ≤ 0 for all x∗ ∈ F (x) , for all y∗ ∈ F (y) .

In the sequel, for x ∈ X and a subset A of X∗, we set

〈A,x〉 = {〈x∗, x〉 | x∗ ∈ A
}
.

Problems of the form: “find x0 ∈ C such that 〈A,x0〉 ⊂ R+” or “find x0 ∈ C

such that 〈A,x0〉 ∩R+ �= ∅” are called Browder variational inclusions.
Let X and Y be two real Hausdorff topological vector spaces and C is a

nonempty convex subset of X. Recall that F : C ⇒ Y is said to be upper semi-
continuous from line segments in C at x ∈ C if for every x′ ∈ C, the restriction
of F on the line segment

[
x′, x

]
is upper semicontinuous at x. This means that

for every x′ ∈ C, there exists an open neighborhood U of x such that F (z) ⊂ V ,
for every z ∈ U ∩ [

x′, x
]
. We say that F is upper semicontinuous from line seg-

ments in C on a subset S of C if it is upper semicontinuous from line segments
in C at every point of S.

Theorem 10.12. Let C be a nonempty, closed, and convex subset of a real
Banach space X, and F : C ⇒ X∗ a set-valued operator. Suppose that the fol-
lowing conditions hold:

1. F is pseudo-monotone on C;
2. there exist a weakly compact subset K of C and y0 ∈ K such that

sup
z∗∈F(x)

〈z∗, y0 − x〉 < 0, for every x ∈ C \ K;

3. F upper semicontinuous from line segments in C on K to X∗ endowed with
the weak* topology;
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4. F has weak* compact values on C;
5. For every x ∈ K and x′ ∈ C, F

([
x′, x

])
is norm bounded.

Then there exists x0 ∈ K such that 〈F (x0), y − x0〉 ∩R+ �= ∅, for every y ∈ C.

Proof. First, we define the following extended real single-valued mapping
f : C × C ⇒R∪ {+∞} by

f (x, y) = sup
z∗∈F(x)

〈z∗, y − x〉,

which also, it can be seen as an extended real set-valued mapping. Now, we
verify for f and X endowed with the weak topology, the assumptions of Theo-
rem 10.10 or Theorem 10.11, where the five first conditions are the same in this
case.

We have f (x, x) = 0 ∈ R+, for every x ∈ C. For z ∈ C fixed, the function
z∗ 
→ 〈z∗, y − z〉 is weak* continuous on X∗ and therefore, by Weierstrass theo-
rem, it attains its maximum on weak* compact sets. Thus, for every x ∈ C, there
exists x∗ ∈ F (x) such that

f (x, y) = 〈x∗, y − x〉,
which provides easily that f is pseudo-monotone on C.

For every x ∈ C and x∗ ∈ F (x), the function y → 〈x∗, y − x〉 is linear and
weakly continuous. Then f being the superior envelope of a family of convex
and weakly lower semicontinuous functions, it is then convex and weakly lower
semicontinuous in its second variable on C.

It remains to prove that f is upper hemicontinuous in its first variable on K .
We note that the strong topology and the weak topology coincide on line seg-
ments of X. Let y ∈ C be fixed, x ∈ K and x′ ∈ C. Take a sequence (xn)n in[
x′, x

]
converging to x. Take x∗ ∈ F (x) such that f (x, y) = 〈x∗, y − x〉, and

x∗
n ∈ F (xn) such that f (xn, y) = 〈x∗

n, y − xn〉, for every n.
Suppose first that there exists a ∈ R such that f (xn, y) ≥ a, for every n.

We claim that the sequence
(
x∗
n

)
n

has a weak* cluster point x̃∗ ∈ F (x). Indeed,
suppose the contrary holds. Then the weak* compactness of F (x) yields the ex-
istence of a weak* open set V containing F (x) and n0 ∈ N such that x∗

n /∈ V , for
every n ≥ n0. The upper semicontinuity of F from line segments in C at x yields
the existence of an open neighborhood U of x such that F (z) ⊂ V , for every
z ∈ U ∩ [

x′, x
]
. Since (xn)n is converging to x, let n1 ∈ N be such that xn ∈ U ,

for every n ≥ n1. Then x∗
n ∈ F (xn) ⊂ V , for every n ≥ n1. A contradiction.

Let now
(
x∗
nλ

)
λ∈�

be a subnet of
(
x∗
n

)
n

converging to x̃∗ in the weak* topol-
ogy of X∗. The subnet

(
xnλ

)
λ∈�

also converges to x, and therefore, for ε > 0,
let λ0 ∈ � be such that for every λ ≥ λ0, we have

‖x − xnλ‖ ≤ ε

2
(‖F ([

x′, x
])‖ + 1

) ,
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where ‖F ([
x′, x

])‖ = sup
z∗∈F

([
x′,x

])‖z∗‖. Let also λ1 ∈ � be such that

‖x̃∗ − x∗
nλ

‖ ≤ ε

2 (‖y − x‖ + 1)
.

Let λ̃ ∈ � be such that λ̃ ≥ λ0 and λ̃ ≥ λ1. It results that for every λ ≥ λ̃, we
have∣∣〈x̃∗, y − x〉 − 〈x∗

nλ
, y − xnλ〉

∣∣= ∣∣〈x̃∗ − x∗
nλ

, y − x〉 + 〈x∗
nλ

, xnλ − x〉∣∣
≤ ‖x̃∗ − x∗

nλ
‖‖y − x‖ + ‖x∗

nλ
‖‖x − xnλ‖

≤ ε

2
+ ε

2
= ε.

We conclude that

f (x, y) ≥ 〈x̃∗, y − x〉 = lim
λ

〈x∗
nλ

, y − xnλ〉 = lim
λ

f (xλ, y) ≥ a.

Now, we claim that f (x, y) ≥ lim sup
n→+∞

f (xn, y). Suppose the contrary holds

and let λ > 0 be such that

f (x, y) + λ < lim sup
n→+∞

f (xn, y) .

Put a = f (x, y) + λ which is then in R (but this also holds from the fact that
F (x) is weak* compact). Now if a subsequence

(
xnk

)
k

of (xn)n is such that
f
(
xnk

, y
)≥ a for every k, then by the above statement, we obtain

f (x, y) ≥ a > f (x, y) ,

which is impossible. Then there exists n0 ∈N such that f (xn, y) < a, for every
n ≥ n0. It results that

lim sup
n≥n0

n→+∞
f (xn, y) ≤ a < lim sup

n→+∞
f (xn, y) ,

which yields a contradiction since lim sup
n≥n0

n→+∞
f (xn, y) = lim sup

n→+∞
f (xn, y). We con-

clude that f (x, y) ≥ lim sup
n→+∞

f (xn, y), which completes the proof.

Remark 10.5. We remark that in the proof of Theorem 10.12 above, if we
assume the mild condition of F has weak* compact values only on K instead of
all C, we can still prove that

f (x, y) ≥ a.
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Indeed, for δ > 0, let x∗
n ∈ F (xn) be such that 〈x∗

n, y − xn〉 > a − δ, for every n.
Using similar arguments, we state that the sequence

(
x∗
n

)
n

has a subnet
(
x∗
nλ

)
λ∈�

converging to some x̃∗ ∈ F (x) in the weak* topology of X∗. We also obtain that

f (x, y) ≥ 〈x̃∗, y − x〉 = lim
λ

〈x∗
nλ

, y − xnλ〉 ≥ a − δ.

By letting δ go to zero, we conclude that f (x, y) ≥ a.
We note that all the other statements of Theorem 10.12 remain true under

this mild condition except the pseudo-monotonicity of F . In this case, we can
assume the following condition:

sup
z∗∈F(x)

〈z∗, y − x〉 ≥ 0 =⇒ sup
z∗∈F(y)

〈z∗, x − y〉 ≤ 0 for all x, y ∈ C,

instead of the pseudo-monotonicity of F .

In order to make further discussion in this subject about the existence of
solutions of Browder variational inclusions, recall that an open half-space in a
real Hausdorff topological vector space E is a subset of the form

{u ∈ E | ϕ (u) < r}
for some continuous linear functional ϕ on E, not identically zero, and for some
real number r .

Let X be a Hausdorff topological space and E a real Hausdorff topological
vector space. A set-valued operator F : C ⇒ Y is said to be upper demicontin-
uous at x ∈ X if for every open half-space H containing F (x), there exists a
neighborhood U of x such that F (z) ⊂ H for every z ∈ U . It said to be upper
demicontinuous on X if it is upper demicontinuous at every point of X.

We say that a set-valued operator A : X ⇒ Y is upper demicontinuous from
line segments in X at x ∈ C if for every x ′ ∈ C and every open half-space H

containing F (x), there exists a neighborhood U of x such that F (z) ⊂ H for
every z ∈ U ∩[x′, x

]
. We say that F is upper demicontinuous from line segments

in X on a subset S of C if it is upper demicontinuous from line segments in X

at every point of S.

Proposition 10.11. Let X be a real normed vector space, C a nonempty con-
vex subset of X, and S ⊂ C. If F : C ⇒ X∗ is upper semicontinuous from line
segments in X on S to X∗ endowed with the weak* topology, then F is upper
demicontinuous from line segments in X on S to X∗ endowed with the weak*
topology.

Proof. Let x ∈ K and consider an open half-space H in X∗ of the form{
u ∈ X∗ | ϕ (u) < r

}
such that F (x) ⊂ H , where ϕ is a weak* continuous linear functional on X∗, not
identically zero, and r ∈R. Then ϕ (F (x)) ⊂ ]−∞, r[. Put O = ϕ−1 (]−∞, r[),
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which is a weak* open subset containing F (x). By the upper semicontinuity
of F from line segments in X on S to X∗ endowed with the weak* topology, for
every x′ ∈ C, there exists a neighborhood U of x such that F (z) ⊂ O, for every
z ∈ U ∩ [

x′, x
]
. That is, F (z) ⊂ H , for every z ∈ U ∩ [

x′, x
]
.

It is not clear at the stage of development whether upper semicontinuity from
line segments in C in Theorem 10.12 can be weakened to upper demicontinuity
or to upper demicontinuity from line segments in C.

10.4 FIXED POINT THEORY

In this section we are interested to obtain a version of the Kakutani, Schauder,
and Brouwer fixed point theorems. For this purpose, we develop some results
on the continuity of the distance function and the marginal function.

Recall that if X is a real normed vector space, x ∈ X, and A is a nonempty
subset of X, then

dist (x,A) = inf
z∈A

‖x − z‖
is called the distance between x and A, where ‖.‖ is the norm of X. Obvi-
ously, the (real-valued) distance function x 
→ dist (x,A) is nonexpansive, and
therefore continue. It is also convex whenever A is convex, see Aubin and
Frankowska [23].

The situation is more complicated when A depends on x as the image of x

by a set-valued mapping.
First, we establish the following result on the distance function generalizing

the second item in Papageorgiou and Kyritsi-Yiallourou [139, Theorem 6.1.15].

Proposition 10.12. Let X be a Hausdorff topological space, S a subset of X,
(Y, d) a metric space, and F : X ⇒ Y a set-valued mapping with nonempty
values. If F is upper semicontinuous on S, then for every y ∈ Y , the function
x 
→ dist (y,F (x)) is lower semicontinuous on S.

Proof. Fix y ∈ Y and let a ∈ R. By Proposition 1.3, we have to prove that

cl ({x ∈ X | dist (y,F (x)) ≤ a}) ∩ S = {x ∈ S | dist (y,F (x)) ≤ a} .

Let x ∈ cl ({x ∈ X | dist (y,F (x)) ≤ a}) ∩ S.
Take a net (xα)α∈� in the set {x ∈ X | dist (y,F (x)) ≤ a} converging to x.

Let ε > 0 be arbitrary, and put

V = {
y′ ∈ Y | dist

(
y′,F (x)

)
< ε

}
,

which is an open subset containing F (x). By the upper semicontinuity of F at x,
there exists α0 ∈ � such that F (xα) ⊂ V , for every α ≥ α0. For every α ≥ α0
and every z ∈ F (xα), we remark that

dist (y,F (x)) ≤ d (y, z) + dist (z,F (x)) < d (y, z) + ε
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and then, dist (y,F (x)) ≤ dist (y,F (xα)) + ε ≤ a + ε. Since ε > 0 is arbitrary,
then dist (y,F (x)) ≤ a.

In the sequel, we need to establish the following generalization of the Berge
maximum theorem which is useful in many applications, see Papageorgiou and
Kyritsi-Yiallourou [139, Theorem 6.1.18].

Let X and Y be Hausdorff topological spaces, F : X ⇒ Y a set-valued
mapping, and ψ : X × Y → R a function. The marginal (or value) extended
real-valued function g : X →R is defined by

g (x) = sup
y∈F(x)

ψ (x, y) .

Theorem 10.13. Let X and Y be two Hausdorff topological spaces, S a
nonempty subset of X, F : X ⇒ Y a set-valued mapping, and ψ : X × Y → R a
function.

1. If ψ is lower semicontinuous on S ×Y and F is lower semicontinuous on S,
then the marginal function g : X →R is lower semicontinuous on S.

2. If ψ is upper semicontinuous on S × Y and there exists an open subset
U containing S such that the function y 
→ ψ (x, y) is upper semicontin-
uous on Y for every x ∈ U , and F is upper semicontinuous on S and has
nonempty compact values on U , then the marginal function g : X → R is
upper semicontinuous on S.

Proof. Let a ∈R. By Proposition 1.3, we have to prove that

int ({x ∈ X | g (x) > a}) ∩ S = {x ∈ S | g (x) > a} .

Let x ∈ {x ∈ S | g (x) > a}. Then by the definition of the marginal function g, let
y ∈ F (x) such that ψ (x,y) > a. The function ψ being lower semicontinuous
on S ×Y , then by Proposition 1.3, let W1 ×V be an open neighborhood of (x, y)

such that

ψ (x, y) > a for all x ∈ W1, for all y ∈ V.

Since F is lower semicontinuous on S and x ∈ F− (V ) ∩ S, then by Proposi-
tion 1.5, let W2 be an open neighborhood of x such that W2 ⊂ F− (V ). Taking
W = W1 ∩W2, we have F (x)∩V �= ∅, for every x ∈ W . Fix yx ∈ F (x)∩V , for
every x ∈ W . Then ψ (x, yx) > a which implies that g (x) > a. It follows that
x ∈ W ⊂ {x ∈ X | g (x) > a}. This concludes the proof of the first statement of
the theorem.

Let a ∈ R. By Proposition 1.3, we have to prove that

cl ({x ∈ X | g (x) ≥ a}) ∩ S = {x ∈ S | g (x) ≥ a} .

Let x ∈ cl ({x ∈ X | g (x) ≥ a}) ∩ S and take a net (xα)α∈� in the set
{x ∈ X | g (x) ≥ a} converging to x. Since x ∈ S ⊂ U , we may assume with-
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out loss of generality that (xα)α∈� is in U . For every α ∈ �, the function
y 
→ ψ (xα, y) is upper semicontinuous on Y and therefore, by Weierstrass the-
orem, it attains its maximum on the compact set F (xα). Let yα ∈ F (xα) be such
that g (xα) = ψ (xα, yα), for every α ∈ �.

The net (yα)α∈� has a cluster point in F (x). Indeed, suppose the contrary
holds. Then the compactness of F (x) yields the existence of an open set V

containing F (x) and α0 ∈ � such that yα /∈ V , for every α ≥ α0. The up-
per semicontinuity of F at x yields the existence of an open neighborhood W

of x such that F (x) ⊂ V , for every x ∈ W . Since (xα)α∈� is converging to
x, let α1 ∈ � be such that xα ∈ W , for every α ≥ α1. Then yα ∈ V , for every
α ≥ max {α0, α1}. A contradiction.

Now, take y ∈ F (x) and (yα)α∈� a subnet of (yα)α∈� converging to y. The
subnet (xα, yα)α∈� converges to (x, y) ∈ S × Y and satisfies ψ (xα, yα) ≥ a, for
every α ∈ �. Since ψ is upper semicontinuous on S × Y , then, we conclude
by Proposition 1.3 that ψ (x,y) ≥ a. It follows that g (x) ≥ ψ (x,y) ≥ a which
completes the proof.

We formulate the following version of the Kakutani fixed point theorem.

Theorem 10.14. Let X be a real normed vector space, C a nonempty, closed,
and convex subset of X, and D ⊂ C a self-segment-dense set in C. Suppose that
F : C ⇒ X has the following conditions

1. F has nonempty convex values on C;
2. there exist a compact subset K of C and y0 ∈ D such that

dist (y0,F (x)) < dist (x,F (x)) , for every x ∈ C \ K;
3. F is continuous on K and has closed values on K;
4. F (x) ∩ K �= ∅, for every x ∈ K .

Then F has a fixed point.

Proof. We define the set-valued mapping f : C × C →R by

f (x, y) = dist (y,F (x)) − dist (x,F (x)) + [0,+∞[ .

Note that

f (x, y) = [
dist (y,F (x)) − dist (x,F (x)) ,+∞[

.

We are now going to verify the conditions of Theorem 10.6. Condi-
tion (1) is verified since f (x, x) = [0,+∞[ = R+. Also, the convexity
of y 
→ dist (y,F (x)) on C yields easily the convexity of f in its second vari-
able on C, for every x ∈ C. To verify condition (3), fix x ∈ C and y ∈ C,
and let V be an open subset of R such that f (x, y) ⊂ V . Let ε > 0 such
that

[
dist (y,F (x)) − dist (x,F (x)) − ε,+∞[ ⊂ V . By lower semicontinuity
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of y 
→ dist (y,F (x)) − dist (x,F (x)), let U be an open neighborhood of y

such that

dist
(
y ′,F (x)

)− dist (x,F (x)) ≥ dist (y,F (x)) − dist (x,F (x)) − ε

for all y ′ ∈ U.

This means that f
(
x, y′) ⊂ V , for every y′ ∈ U , and then in particular, condi-

tion (3) is satisfied.
Condition (4) is obvious. To verify condition (5), fix y ∈ C and let

V be an open subset of C. Put f + (V , y) = {x ∈ C | f (x, y) ⊂ V } and
let x ∈ f + (V , y) ∩ K . By Proposition 1.5, it suffices to show that
x ∈ int

(
f + (V , y)

) ∩ K . We have f (x, y) ⊂ V . As above, let ε > 0 such
that

[
dist (y,F (x)) − dist (x,F (x)) − ε,+∞[ ⊂ V . The function x 
→

dist(y,F (x))−dist (x,F (x)) is lower semicontinuous on K . Indeed, by Propo-
sition 10.12, the function x 
→ dist (y,F (x)) is lower semicontinuous on K .
Now, taking ψ : C × X → R defined by ψ (x, y) = −‖y − x‖, we have

g (x) = sup
y∈F(x)

ψ (x, y)

= sup
y∈F(x)

(−‖y − x‖) = − inf
y∈F(x)

(‖y − x‖) = −dist (x,F (x)) .

It follows by Theorem 10.13 that the function x 
→ −dist (x,F (x)) is lower
semicontinuous on K .

Let U be an open neighborhood of x such that

dist
(
y,F

(
x ′))− dist

(
x′,F

(
x′))≥ dist (y,F (x)) − dist (x,F (x)) − ε

for all x′ ∈ U.

This means that f
(
x′, y

)⊂ V , for every x′ ∈ U .
We conclude, by applying Theorem 10.6, that there exists x0 ∈ C such that

f (x0, y) ⊂ R+, for every y ∈ C. Then dist (y,F (x0)) − dist (x0,F (x0)) ≥ 0,
for every y ∈ C. Note that x0 ∈ K and by taking y ∈ F (x0) ∩ K , we have
dist (x0,F (x0)) ≤ 0 which provide necessarily that x0 ∈ F (x0).

In what follows, by applying Theorem 10.7, we derive the following version
of the Schauder fixed point theorem and, in particular, of the Brouwer fixed
point theorem.

Theorem 10.15. Let X be a real normed vector space, C a nonempty, closed,
and convex subset of X and D ⊂ C a self-segment-dense set in C. Suppose that
f : C → C has the following conditions
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1. there exist a compact subset K of C and y0 ∈ D such that

‖y0 − f (x)‖ < ‖x − f (x)‖, for every x ∈ C \ K;

2. f is continuous on K .

Then f has a fixed point.

Proof. Consider the bifunction f : C × C → R defined by

f (x, y) = ‖y − f (x)‖ − ‖x − f (x)‖ + ]−∞,0]

Note that

f (x, y) = ]−∞,‖y − f (x)‖ − ‖x − f (x)‖] .
We are now going to verify the conditions of Theorem 10.7. Condition (1) is

verified since f (x, x) = ]−∞,0] and then, 0 ∈ f (x, x) ∩R+, for every x ∈ C.
Also, the convexity of y 
→ ‖y − f (x)‖ on C yields easily the concavity of f

in its second variable on C, for every x ∈ C.
Now, fix x ∈ C and y ∈ C, and let V be an open subset of R such that

f (x, y) ⊂ V . Let ε > 0 such that

]−∞,‖y − f (x)‖ − ‖x − f (x)‖ + ε
]⊂ V.

By continuity of y 
→ ‖y − f (x)‖ − ‖x − f (x)‖, let U be an open neighbor-
hood of y such that

‖y ′ − f (x)‖ − ‖x − f (x)‖ ≤ ‖y − f (x)‖ − ‖x − f (x)‖ + ε for all y ′ ∈ U.

This means that f
(
x, y′) ⊂ V , for every y′ ∈ U , and then in particular, condi-

tion (3) is satisfied.
Condition (4) is obvious. To verify condition (5), fix y ∈ C and let

V be an open subset of C. Put f + (V , y) = {x ∈ C | f (x, y) ⊂ V } and
let x ∈ f + (V , y) ∩ K . By Proposition 1.5, it suffices to show that x ∈
int

(
f + (V , y)

) ∩ K . We have f (x, y) ⊂ V . As above, let ε > 0 such that]−∞,‖y − f (x)‖ − ‖x − f (x)‖ + ε
] ⊂ V and by continuity of x 
→

‖y − f (x)‖ − ‖x − f (x)‖, let U be an open neighborhood of x such that

‖y −f
(
x ′)‖−‖x′ −f

(
x′)‖ ≤ ‖y −f (x)‖−‖x −f (x)‖+ε for all x′ ∈ U.

This means that f
(
x′, y

)⊂ V , for every x′ ∈ U .
We conclude, by applying Theorem 10.7, that there exists x0 ∈ C such

that f (x0, y) ∩ R+ �= ∅, for every y ∈ C. Taking y = f (x0), we have]−∞,−‖x0 − f (x0)‖] ∩ R+ �= ∅ which provide necessarily that
‖x0 − f (x0)‖ ≤ 0 and then, f (x0) = x0.
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In our applications, we have focused our attention on weakening only semi-
continuity. We remark that in both Theorem 10.14 and Theorem 10.15, the
self-segment-dense set D does not play any role in the proofs and can be
replaced merely by C. We refer to László and Viorel [115] for some applica-
tions that involve the weakened condition of self-segment-dense subsets to a
generalized Debreu-Gale-Nikaido-type theorem and to a Nash equilibrium of
noncooperative games. Furthermore, by introducing a suitable set of coercive-
ness, it is possible to carry out similar applications with weakened conditions of
both semicontinuity and convexity.

NOTES
1. Jacques-Louis Lions (1928–2001) was a professor at the famous Collège de France from 1973

until his retirement in 1998. He made several important contributions to the qualitative theory of
nonlinear partial differential equations. He received the SIAM’s John von Neumann Lecture prize
(1986) and the Japan Prize for Applied Mathematics (1991). Jacques-Louis Lions was president
of the French Academy of Sciences from 1997 to 1999.

2. Guido Stampacchia (1922–1978) was an Italian mathematician, known for his work on the theory
of variational inequalities, the calculus of variations and the theory of elliptic partial differential
equations. The Stampacchia Medal, an international prize awarded every three years for contri-
butions to the calculus of variations, has been established in 2003.

3. Maurice Fréchet (1878–1973) was a French mathematician who made major contributions to
the topology of points sets and introduced the concept of metric space. Independently of Riesz,
he discovered the representation theorem in the space of Lebesgue square integrable functions.
Pavel Urysohn (1898–1924) was a Soviet mathematician who is best known for his contributions
in dimension theory, and for developing Urysohn’s metrization theorem and Urysohn’s lemma,
which are fundamental results in topology.
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• A subgradient extragradient method for solving equilibrium problems is discussed
together with some numerical results.

11.1 THE PROXIMAL POINT METHOD

The proximal point method was presented in [154] as a procedure for finding
zeroes of monotone operators in Hilbert spaces. This procedure can be seen as
a dynamic regularization of a (possibly ill-conditioned) original problem. The
interesting feature of the proximal iteration is that convergence is achieved with
bounded regularization parameters, which avoids the ill-conditioning of the it-
erations. The proximal point method has been an important tool for solving
variational inequalities, and we focus on its application for solving the equilib-
rium problem in reflexive Banach spaces.

The regularization methods for equilibrium problems given in [94] and [96]
involve powers of the norm. This poses the question of whether a more general
kind of regularization can be used, and still obtain similar convergence results.
Moreover, the use of a regularization function with a prescribed domain opens
the way for the development of a method which penalizes infeasibility of the
iterates. We address this question in the general setting of reflexive Banach
spaces. First, we consider a Bregman proximal regularization of the equilib-
rium problem, and analyze existence and uniqueness of solutions. Second, we
introduce a method based on Bregman regularizations, and establish conditions
under which: (i) the method is asymptotically convergent, and (ii) all its weak
accumulation points solve the original equilibrium problem.

The results of this section have been published in R. Burachik and G. Kas-
say [46].

11.1.1 Bregman Functions and Their Properties

The notion of Bregman function has its origin in [44] and this name was first
used by Censor and Lent in [54]. Bregman functions have been extensively used
for convex optimization algorithms in finite dimensional spaces. It has also been
used for defining “generalized” versions of the proximal point method for finite
dimensional spaces, for Hilbert spaces, and for Banach spaces. A useful tool for
comparing the Bregman distance with the distance induced by the norm of the
Banach space, leads to the notions of modulus of convexity and total convexity
of f (the latter introduced in [47]).

Throughout the section, if not otherwise specified, X is a reflexive Banach
space. Let ϕ : X → R ∪ {+∞} be a convex, proper and lower semicontinuous
function. Denote by D := dom (ϕ) its domain, and its interior by intD. Assume
from now on that intD �= ∅ and that ϕ is Gâteaux differentiable on intD. The
Bregman distance with respect to ϕ is the function Dϕ : D × intD →R defined
by:

Dϕ(z, x) := ϕ(z) − ϕ(x) − 〈∇ϕ(x), z − x〉, (11.1)
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where ∇ϕ(·) is the Gâteaux differential of ϕ defined in intD. The function
Dϕ(·, ·) is not a distance in the usual sense of the term (in general, it is not
symmetric and does not satisfy the triangular inequality). However, there is a
“three point property” which takes the place of this inequality in the proofs.

Proposition 11.1. Given x ∈ D, y, z ∈ intD, the following equality is straight-
forward

〈∇ϕ(y) − ∇ϕ(z), z − x〉 = Dϕ(x, y) − Dϕ(x, z) − Dϕ(z, y). (11.2)

In order to state our assumptions on the function ϕ, we need to recall the
concept of total convexity.

Recall that R+ denotes the set of nonnegative real numbers and
R++ := R+ \ {0}. Following [48], we define the modulus of convexity of ϕ,
νϕ : intD ×R+ → R+ by

νϕ(z, t) := inf{Dϕ(x, z) : ‖x − z‖ = t}. (11.3)

The function ϕ is said to be totally convex in intD if and only if νϕ(z, t) > 0 for
all z ∈ intD and t > 0. The result below, which will be useful in the sequel, has
been proved in [48].

Proposition 11.2. Let z ∈ intD. The function νϕ(z, ·) is strictly increasing on
R++, i.e., if 0 < α < β then νϕ(z,α) < νϕ(z,β).

In finite dimensional spaces total convexity is equivalent to strict convexity.
Totally convex functions are always strictly convex, but the reverse implication
does not hold in general if the space is infinite dimensional. For instance, in
lp there exist strictly convex functions which are not totally convex (see [48]).
Uniformly convex functions are totally convex (see [48]), but in the spaces Lp

and lp with 1 < p < 2 the function ϕ(x) = ‖x‖p
p is totally convex (see [48]),

while it is not uniformly convex. We will see later on that total convexity also
turns out to be a key property in our convergence analysis.

Now we are ready to state the following basic assumption on ϕ.

B1: The right level sets of Dϕ(y, ·):
Sy,α := {z ∈ intD : Dϕ(y, z) ≤ α}

are bounded for all α ≥ 0 and for all y ∈ D.
B2: (total convexity on bounded subsets) The function ϕ is totally convex on

bounded subsets, that is, for any bounded set C ⊂ intD, and any t ∈R++,
it holds that

inf
z∈C

νϕ(z, t) > 0 . (11.4)

B3: If {xk} ⊂ intD and {yk} ⊂ intD are bounded sequences such that
limk→∞ ‖xk − yk‖ = 0, then

lim
k→∞

(∇ϕ(xk) − ∇ϕ(yk)
)= 0.
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Condition B3 has been widely used in the literature (see, for instance, [50,
Theorem 4.7(a)]).

The lemma below was proved in [49, Lemma 2.1.2, page 67].

Lemma 11.1. Assume that Dϕ verifies B2. Suppose that {xk} ⊂ D and that the
sequence {yk} ⊂ intD is bounded. Assume that

lim
k→∞Dϕ(xk, yk) = 0.

Then (xk − yk) → 0 and hence {xk} is also bounded and all weak accumulation
points of {yk} and {xk} must coincide. If, additionally, {xk} ⊂ intD and Dϕ

verifies B3, then we have

lim
k→∞‖∇ϕ(xk) − ∇ϕ(yk)‖ = 0.

Next let us recall the concept of duality map.

Definition 11.1. Consider ϕ : X → R defined by

ϕ(x) = 1

2
‖x‖2.

The duality mapping J : X ⇒X∗ is the subdifferential ∂ϕ of ϕ.

The result below related to single-valuedness and continuity of the duality
map J can be found, e.g., in [24, Theorem 1.2].

Theorem 11.1. Let X be a Banach space. If the dual space X∗ is strictly con-
vex, then the normalized duality mapping J : X → X∗ is single-valued and
demicontinuous (i.e., continuous from the strong topology of X to the weak∗
topology of X∗). If X∗ is uniformly convex, then J is uniformly continuous on
every bounded subset of X.

The next proposition establishes the continuity properties of ∇ϕ and its proof
can be found in [142, Proposition 2.8, page 19].

Proposition 11.3. The map ∇ϕ : intD → X∗ is demicontinuous in intD. In
other words, it is continuous at any x ∈ intD from the strong topology of
X to the weak topology of X∗. In particular, if X∗ is strictly convex and
ϕ = (1/2)‖ · ‖2, then the duality mapping J = ∂ϕ : X → X∗ is demicontinu-
ous from X to X∗.

11.1.2 The Basic Hypotheses for the Equilibrium Problem

In what follows we assume the next three basic properties on the equilibrium
problem. Let X be a Banach space, K ⊂ X a closed and convex set, and
f : K × K → R a bifunction such that
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(P1) f (x, x) = 0 for all x ∈ K .
(P2) f (·, y) : K → R is upper hemicontinuous for all y ∈ K , i.e., for all

x, z ∈ K

lim sup
t↓0

f (tz + (1 − t)x, y) ≤ f (x, y).

(P3) f (x, ·) : K → R is convex and lower semicontinuous for all x ∈ K .

In order to analyze existence and uniqueness of equilibrium problems, we
shall consider the following additional assumptions on f .

(P4) f (x, y) + f (y, x) ≤ 0 for all x, y ∈ K .
(P4◦) There exists θ ≥ 0 such that f (x, y) + f (y, x) ≤ θ〈∇ϕ(x) − ∇ϕ(y),

x − y〉 for all x, y ∈ K .
(P4•) There exists θ ≥ 0 such that f (x, y) + f (y, x) ≤ θ‖x − y‖2 for all

x, y ∈ K .
(P5) For any sequence {xn} ⊂ K satisfying limn→∞‖xn‖ = +∞, there exists

u ∈ K and n0 ∈ N such that f (xn,u) ≤ 0 for all n ≥ n0.

Remark 11.1. Condition (P4◦) is weaker than the classical monotonicity con-
dition of f (see condition (P4)) since the right-hand side of condition (P4◦) is
nonnegative. If X∗ is strictly convex and ϕ = (1/2)‖ · ‖2, then condition (P4◦)
reduces to

f (x, y) + f (y, x) ≤ θ〈J (x) − J (y), x − y〉.
In particular, if X is a Hilbert space, then this condition reduces to the (gen-
eralized) monotonicity condition (P4•) in [96]. Indeed, for this particular case
J = I where I is the identity operator.

11.1.3 A Bregman Regularization for the Equilibrium Problem

Let K ⊂ X be a closed and convex set and let f : K × K → R be a bifunction
such that conditions (P1), (P2) and (P3) hold. Take ϕ verifying the following
assumption:

H 2: K ⊂ intD.

Fix γ > 0 and x̄ ∈ K ⊂ intD. The regularization of f will be defined as
f̃ : K × K →R given by

f̃ (x, y) = f (x, y) + γ 〈∇ϕ(x) − ∇ϕ(x̄), y − x〉. (11.5)

Consider a bifunction g : K × K → R. Define the resolvent operator induced
by the Bregman function ϕ as the set-valued map Resϕ

g : X ⇒ K given by

Resϕ
g (x) := {z ∈ K : g(z, y) + 〈∇ϕ(z) − ∇ϕ(x), y − z〉 ≥ 0, ∀y ∈ K}.

This definition and (11.5) imply that x̂ is a solution of EP(f̃ ,K) if and only if
x̂ ∈ Resϕ

1
γ

f
(x̄).
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The next result establishes basic properties of the regularized function f̃ .

Proposition 11.4. Take x̄ ∈ K and suppose that H2 holds and that f satisfies
conditions (P1)–(P3) and (P4◦) with θ < γ . Then f̃ satisfies conditions (P1),
(P2), (P3) and (P4). Moreover, if for every sequence {xn} ⊂ K such that
limn→∞ ‖xn‖ = ∞, we have

(P6) lim inf
n→∞

[
f (x̄, xn) + (γ − θ)〈∇ϕ(x̄) − ∇ϕ(xn), x̄ − xn〉]> 0,

then f̃ satisfies condition (P5).

Proof. It is clear that f̃ satisfies condition (P1). Since y �→ 〈∇ϕ(x) − ∇ϕ(x̄),

y − x〉 is convex and continuous, it follows that f̃ satisfies condition (P3). To
show that condition (P2) holds for f̃ , we will show that the map

x �→ 〈∇ϕ(x) − ∇ϕ(x̄), y − x〉
is continuous at every x ∈ K . To this end let {xn} ⊂ K be a sequence converging
strongly to x ∈ K . Then 〈∇ϕ(x̄), xn〉 → 〈∇ϕ(x̄), x〉, while 〈∇ϕ(xn), y −xn〉 →
〈∇ϕ(x), y−x〉 follows by Proposition 11.3. Thus 〈∇ϕ(xn)−∇ϕ(x̄), y −xn〉 →
〈∇ϕ(x) − ∇ϕ(x̄), y − x〉 and we are done. We claim now that f̃ satisfies condi-
tion (P4). Indeed, by condition (P4◦) we get that

f̃ (x, y) + f̃ (y, x) = f (x, y) + f (y, x) − γ 〈∇ϕ(y) − ∇ϕ(x), y − x〉
≤ (θ − γ )〈∇ϕ(y) − ∇ϕ(x), y − x〉 ≤ 0.

Next we show that f̃ satisfies condition (P5). We have by condition (P4◦)
and (11.5) that

f̃ (xn, x̄) = f (xn, x̄) + γ 〈∇ϕ(xn) − ∇ϕ(x̄), x̄ − xn〉
= f (xn, x̄) − γ 〈∇ϕ(x̄) − ∇ϕ(xn), x̄ − xn〉
≤ −f (x̄, xn) − (γ − θ)〈∇ϕ(x̄) − ∇ϕ(xn), x̄ − xn〉
= −(f (x̄, xn) + (γ − θ)〈∇ϕ(x̄) − ∇ϕ(xn), x̄ − xn〉). (11.6)

By assumption there exists n0 such that the expression between parentheses is
nonnegative for all n ≥ n0. This implies that condition (P5) holds for f̃ .

Corollary 11.1. If f satisfies condition (P4◦) with θ < γ , and assuming either

(i) K is bounded, or
(ii) X∗ is strictly convex and ϕ = (1/2)‖ · ‖2,

then f̃ satisfies condition (P5).

Proof. Using Proposition 5.5 it is enough to check that condition (P6) holds
under (i) or (ii). Condition (i) trivially implies condition (P6). Hence it is
enough to prove that (ii) implies condition (P6). Note that in this case ∇ϕ = J .
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By Theorem 11.1 we also know that J is single-valued and demicontinu-
ous. Take a sequence {xn} in K such that ‖xn‖ → ∞ and denote 	n =
〈J (x̄) − J (xn), x̄ − xn〉. Our assumptions imply that

	n ≥ (‖x̄‖ − ‖xn‖)2 > 0, for n large enough. (11.7)

We claim that dom ∂f (x̄, ·) ∩ K �= ∅. Indeed, the subdifferential of a proper,
lower semicontinuous and convex function is maximal monotone in any Ba-
nach space (see, e.g., [153]). If we extend the function f (x̄, ·) to the whole
space X by defining it as +∞ outside K , then we have that ∂f (x̄, ·) is maxi-
mal monotone. On the other hand, the operator T defined as T (x) = ∅ for all
x ∈ X is certainly not maximal monotone, because its graph is monotone and
strictly contained in the graph of every nontrivial maximal monotone operator.
Thus dom ∂f (x̄, ·) should be nonempty. Since ∂f (x̄, z) = ∅ for every z �∈ K , it
follows that dom ∂f (x̄, ·) ∩ K �= ∅ must hold. Hence the claim is true and there
exists v ∈ ∂f (x̄, x̂) for some x̂ ∈ K . Therefore, we can write the subgradient
inequality

f (x̄, xn) ≥ f (x̄, x̂) + 〈v, xn − x̂〉
= f (x̄, x̂) − 〈v, x̂〉 + 〈v, xn〉
≥ A − B‖xn‖,

(11.8)

where A := f (x̄, x̂) − 〈v, x̂〉 and B := ‖v‖. Altogether, we have

lim inf
n→∞

[
f (x̄, xn) + (γ − θ)	n

]
≥ lim inf

n→∞
[
A − B‖xn‖ + (γ − θ)(‖x̄‖ − ‖xn‖)2

]
= +∞,

and condition (P6) is established. By Proposition 11.4 we conclude that condi-
tion (P5) holds in this case.

The next result establishes the existence and uniqueness of the solution of
EP(f̃ ,K).

Corollary 11.2. Let all basic assumptions in Proposition 11.4 be valid. Then
the following assertions hold:

(i) If condition (P6) stated in Proposition 11.4 holds, then EP(f̃ ,K) admits
at least one solution.

(ii) If ϕ is strictly convex, then EP(f̃ ,K) admits at most one solution.

Altogether, if condition (P6) holds and ϕ is strictly convex, then EP(f̃ ,K) has
a unique solution.

Proof. From Proposition 11.4 we have that f̃ satisfies condition (P5). Using
now [93, Theorem 4.3] we obtain that EP(f̃ ,K) has a solution. This proves (i).
For proving (ii), assume that both x′ and x′′ solve EP(f̃ ,K). Hence

0 ≤ f̃ (x′, x′′) = f (x′, x′′) + γ 〈∇ϕ(x′) − ∇ϕ(x̄), x′′ − x′〉, (11.9)
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0 ≤ f̃ (x′′, x′) = f (x′′, x′) + γ 〈∇ϕ(x′′) − ∇ϕ(x̄), x′ − x′′〉. (11.10)

Adding (11.9) and (11.10), and using (P4◦) we get that

0 ≤ f (x′, x′′) + f (x′′, x′) − γ 〈∇ϕ(x′′) − ∇ϕ(x′), x′′ − x′〉
≤ (θ − γ )〈∇ϕ(x′′) − ∇ϕ(x′), x′′ − x′〉. (11.11)

Since θ − γ < 0 and ∇ϕ is strictly monotone, we obtain from (11.11) that
x′ = x′′, as asserted. The last statement is a direct combination of (i) and (ii).

In the following result, we assume that ϕ is coercive, i.e., lim‖x‖→∞
ϕ(x)

‖x‖ =
+∞.

Corollary 11.3. (see [151, Lemma 1, page 130]) Let ϕ be a coercive and
Gâteaux differentiable function. If the bifunction g : K × K → R satisfies con-
ditions (P1)–(P4), then Resϕ

g (x̄) �= ∅ for every x̄ ∈ K .

Proof. Note that all assumptions of Corollary 11.2 hold. Therefore, it is enough
to prove that condition (P6) holds for a coercive ϕ. Take a sequence {xn} in K

such that ‖xn‖ → ∞ and denote 	n := 〈∇ϕ(x̄) − ∇ϕ(xn), x̄ − xn〉. Using the
convexity of ϕ we can write

	n = 〈∇ϕ(x̄), x̄ − xn〉 − 〈∇ϕ(xn), x̄ − xn〉
≥ 〈∇ϕ(x̄), x̄ − xn〉 + [

ϕ(xn) − ϕ(x̄)
]

= ‖xn‖
[ 〈∇ϕ(x̄), x̄ − xn〉

‖xn‖ + ϕ(xn)

‖xn‖ − ϕ(x̄)

‖xn‖
]

.

(11.12)

On the other hand, we can write (as in the proof of Corollary 11.1(ii)),

f (x̄, xn) ≥ A − B‖xn‖, (11.13)

where A and B are as in the proof of Corollary 11.1(ii). Combining (11.12)
and (11.13) and re-arranging the resulting expression we have

lim inf
n→∞

[
f (x̄, xn) + (γ − θ)	n

]
≥ lim inf

n→∞

[
A − B‖xn‖ + (γ − θ)‖xn‖

( 〈∇ϕ(x̄), x̄ − xn〉
‖xn‖ + ϕ(xn)

‖xn‖ − ϕ(x̄)

‖xn‖
)]

= lim inf
n→∞

[
A + (γ − θ)‖xn‖

×
( 〈∇ϕ(x̄), x̄ − xn〉

‖xn‖ + ϕ(xn)

‖xn‖ − ϕ(x̄)

‖xn‖ − B

(γ − θ)

)]
.

The coercivity assumption implies that the expression between the inner brack-
ets tends to infinity, and hence condition (P6) is established.
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Remark 11.2. The previous corollary proves that condition (P6) is weaker than
the coercivity assumption. Moreover, condition (P6) is strictly weaker than co-
ercivity, since there exist Bregman functions which are not coercive but still
satisfy (P6). Let X =R, K ⊂ (0,+∞) and consider ϕ(x) = x − logx + 1. This
function is not coercive since limx→+∞ ϕ(x)/x < ∞. However, it is easy to ver-
ify from the definition that (P6) holds provided γ − θ is large enough. Indeed,
take tn → ∞. With the notation used in Corollary 11.3 with t̄ instead of x̄ and
tn instead of xn, we can write[

f (t̄, tn) + (γ − θ)	n

]
≥ A − Btn + (γ − θ)

[
(ϕ′

2(t̄) − ϕ′
2(tn))(t̄ − tn)

]
= A − Btn + (γ − θ)

(t̄ − tn)
2

t̄ tn

= A + tn

[
(γ − θ)

t̄
(1 − t̄

tn
)2 − B

]
.

Note now that the expression between parentheses is positive for large enough
γ − θ and n, hence condition (P6) holds in this case. How large should be γ − θ

depends also on the bifunction f , through the number B (see the proof of Corol-
lary 11.1).

Remark 11.3. Assuming condition (P4) and strict convexity of ϕ, Lemma 2(i)
in [151] proves that EP(f̃ ,K) has at most one solution. Since condition (P4◦) is
weaker than condition (P4), the uniqueness result in [151, Lemma 2(i)] can be
concluded from Corollary 11.2(ii).

Corollary 11.4. Let all assumptions in Proposition 11.4 be valid. Assume that
X∗ is strictly convex and ϕ = (1/2)‖ · ‖2. Then EP(f̃ ,K) has a unique solution.

Proof. Note that J = ∂ϕ is strictly monotone by Petryshyn’s theorem [140].
Hence the claim follows from Corollary 11.2.

11.1.4 A Bregman Proximal Method for the Equilibrium Problem

Assume from now on that ϕ is strictly convex, that all the hypotheses of Propo-
sition 11.4 hold, and furthermore that condition (P6) is satisfied.

Take a sequence of regularization parameters {γk} ⊂ (θ, γ̄ ], for some γ̄ > 0.
Based on the regularized problem (11.5) and the existence and uniqueness of
its solution (Corollaries 11.2 and 11.4), we construct the following algorithm
for solving EP(f,K). Choose x0 ∈ K and construct the sequence {xk} ⊂ K as
follows. Given xk ∈ K , xk+1 is the unique solution of the problem EP(fk,K),
where fk : K × K →R is given by

fk(x, y) = f (x, y) + γk〈∇ϕ(x) − ∇ϕ(xk), y − x〉. (11.14)
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Theorem 11.2. Let X be a reflexive Banach space and consider EP(f,K). For
all x0 ∈ K , we have the following.

(i) The sequence {xk} generated by the proximal point algorithm is well de-
fined;

(ii) If, additionally, B1 and B2 hold for Dϕ and Sd(f,K) �= ∅, then the se-
quence {xk} is bounded and limk→∞ ‖xk+1 − xk‖ = 0;

(iii) under the assumptions of item (ii) and assuming either
(iiia) X∗ uniformly convex and ϕ = (1/2)‖ · ‖2, or
(iiib) Dϕ satisfies B3,
the sequence {xk} is an asymptotically solving sequence for EP(f,K),
i.e.,

0 ≤ lim inf
k→∞ f (xk, y), ∀y ∈ K. (11.15)

(iv) if additionally f (·, y) is weakly upper semicontinuous for all y ∈ K , then
all weak cluster points of {xk} solve EP(f,K).

Proof. Item (i) is obvious by Corollary 11.2. For item (ii) take an arbitrary
x∗ ∈ Sd(f,K). Since xk+1 solves EP(fk,K), one has

0 ≤ fk(x
k+1, x∗) = f (xk+1, x∗) + γk〈∇ϕ(xk+1) − ∇ϕ(xk), x∗ − xk+1〉,

and since f (xk+1, x∗) ≤ 0 one gets

〈∇ϕ(xk+1) − ∇ϕ(xk), x∗ − xk+1〉 ≥ 0. (11.16)

Now using (11.2) (the “three point identity”) for Bregman distances we may
write

〈∇ϕ(xk+1) − ∇ϕ(xk), x∗ − xk+1〉
= Dϕ(x∗, xk) − Dϕ(xk+1, xk) − Dϕ(x∗, xk+1),

which, together with (11.16) leads to

Dϕ(xk+1, xk) + Dϕ(x∗, xk+1) ≤ Dϕ(x∗, xk). (11.17)

It follows that the sequence {Dϕ(x∗, xk)} is decreasing, and being nonnega-
tive, it converges. In particular it is bounded; and by condition B1 we conclude
that the sequence {xk} is also bounded. By (11.17),

0 ≤ Dϕ(xk+1, xk) ≤ Dϕ(x∗, xk) − Dϕ(x∗, xk+1) (11.18)

and since the rightmost expression in (11.18) converges to 0 we get that

lim
k→∞Dϕ(xk+1, xk) = 0.
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Now we can apply Lemma 11.1 to the sequences {xk} and {xk+1}, be-
cause the sequence {xk} is bounded and Dϕ verifies B2, to conclude that
limk→∞ ‖xk+1 − xk‖ = 0.

For item (iii) under assumption (iiia), observe that X∗ being uniformly con-
vex, the normalized duality map J is uniformly continuous on bounded subsets
of X (by Theorem 11.1), and therefore,

lim
k→∞‖Jxk+1 − Jxk‖ = 0. (11.19)

Now fix any y ∈ K . Since xk+1 solves EP(fk,K), we have

0 ≤ f (xk+1, y) + γk〈Jxk+1 − Jxk, y − xk+1〉
≤ f (xk+1, y) + γk‖Jxk+1 − Jxk‖‖y − xk+1‖. (11.20)

Since {γk} is bounded by γ̄ and {xk} is bounded by (ii), we obtain by (11.19)
that

0 ≤ lim inf
k→∞ f (xk, y), ∀y ∈ K, (11.21)

and hence {xk} is an asymptotically solving sequence for EP(f,K).
For item (iii) under assumption (iiib), we have that B∗

2 and Lemma 11.1 yield

lim
k→∞‖∇ϕ(xk+1) − ∇ϕ(xk)‖ = 0. (11.22)

Now fix any y ∈ K . Since xk+1 solves EP(fk,K), we have

0 ≤ f (xk+1, y) + γk〈∇ϕ(xk+1) − ∇ϕ(xk), y − xk+1〉
≤ f (xk+1, y) + γk‖∇ϕ(xk+1) − ∇ϕ(xk)‖‖y − xk+1‖. (11.23)

Since {γk} is bounded by γ̄ and {xk} is bounded by (ii), we obtain by (11.22)
that

0 ≤ lim inf
k→∞ f (xk, y), ∀y ∈ K, (11.24)

and hence {xk} is an asymptotically solving sequence for EP(f,K).
The proof of item (iv) is the same as in [96, Theorem 1(iv)]. We reproduce it

here for completeness. By (ii) the sequence {xk} has weak cluster points, all of
which belong to the (weakly closed and convex set) K . Let x̂ be a weak cluster
point of {xk}, and let {xkj } be a subsequence weakly converging to x̂. Since
f (·, y) is weakly upper semicontinuous, we can write

f (x̂, y) ≥ lim sup
j

f (xkj , y) ≥ 0, ∀y ∈ K,

which yields x̂ ∈ S(f,K).
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Proposition 11.5. Assume that ∇ϕ is weak-to-weak continuous and that the
hypotheses of Theorem 11.2 hold. If S(f,K) = Sd(f,K), then the sequence
{xk} converges weakly to a solution of the problem EP(f,K).

Proof. By Theorem 11.2 it suffices to check that there exists only one weak
cluster point of {xk}. Let x′ and x′′ be two weak cluster points of {xk} and
consider the subsequences {xik } and {xjk } converging weakly to x′ and x′′, re-
spectively. By item (iv) of Theorem 11.2 it follows that both x′ and x′′ belong
to S(f,K) = Sd(f,K). By (11.17) both Dϕ(x′, xk) and Dϕ(x′′, xk) are conver-
gent, say to σ ≥ 0 and μ ≥ 0. Taking limits on both sides of the relation

〈∇ϕ(xik ) − ∇ϕ(xjk ), x′ − x′′〉
= [Dϕ(x′, xjk ) − Dϕ(x′, xik )] − [Dϕ(x′′, xjk ) − Dϕ(x′′, xik )],

we obtain:

〈∇ϕ(x′) − ∇ϕ(x′′), x′ − x′′〉 = [σ − σ ] − [μ − μ] = 0,

and hence x′ = x′′ by the strict monotonicity of ∇ϕ.

The proof of the next result follows directly from the last proposition.

Corollary 11.5. Suppose that X has a weak-to-weak continuous normalized
duality mapping J . Assume that the hypotheses of Theorem 11.2 with (iiia) hold.
If S(f,K) = Sd(f,K), then the sequence {xk} converges weakly to a solution
of the problem EP(f,K).

11.2 THE TIKHONOV REGULARIZATION METHOD

Let C be a nonempty, closed, and convex subset of a real Banach space E and
let f : C × C −→ R be a bifunction satisfying f (x, x) = 0, for every x ∈ C.
Such a bifunction f is called an equilibrium bifunction.

Recall that an equilibrium problem in the sense of Blum, Muu, and Oettli
(see [42,133]) is a problem of the form:

find x∗ ∈ C such that f
(
x∗, y

)≥ 0 ∀y ∈ C, (EP)

where its set of solutions is denoted by SEP (C,f ).
Equilibrium problems are in relationship with quasi-hemivariational in-

equalities. Recall that if E is a real Banach space which is continuously em-
bedded in Lp (�;Rn), for some 1 < p < +∞ and n ≥ 1, where � is a bounded
domain in R

m, m ≥ 1, then a quasi-hemivariational inequality is a problem of
the form:

find u ∈ E and z ∈ A(u) such that

〈z, v〉 + h(u)J 0 (iu; iv) − 〈Fu,v〉 ≥ 0 ∀v ∈ E ,
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where i is the canonical injection of E into Lp (�;Rn), A : E ⇒ E∗ is
a nonlinear multi-valued mapping, F : E → E∗ is a nonlinear operator,
J : Lp (�;Rn) → R is a locally Lipschitz functional, and h : E → R is a given
nonnegative functional.

Consider the following quasi-hemivariational inequality:

find u ∈ C and z ∈ A(u) such that

〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉 ≥ 0 ∀v ∈ C, (QHVI)

where its set of solutions is denoted by SQHVI (C,A). Note that in the spe-
cial case when C is the whole space E, the above two formulations of quasi-
hemivariational inequalities are one and the same.

Regularization methods, which are widely used in convex optimization and
variational inequalities, have been also considered for equilibrium problems.
The proximal point method and the Tikhonov regularization method are funda-
mental regularization techniques for handling ill-posed problems.

In this section, we first deal with the Tikhonov regularization method for
pseudo-monotone equilibrium problems. Under weakened conditions of upper
semicontinuity of bifunctions in their first variable on a subset and of convexity,
we prove that strictly pseudo-monotone bifunctions can be also used as reg-
ularization bifunctions as well as strongly monotone bifunctions. We extend
Berge’s maximum theorem and develop some results in the qualitative analysis
of quasi-hemivariational inequalities to establish the relationship between quasi-
hemivariational inequality problems and equilibrium problems. We also give ex-
amples and apply the Tikhonov regularization method to quasi-hemivariational
inequalities.

11.2.1 Auxiliary Results

Let X be Hausdorff topological space, x ∈ X and f : X −→ R be a function.
Recall that f is said to be

1. upper semicontinuous at x if for every ε > 0, there exists an open neighbor-
hood U of x such that

f (y) ≤ f (x) + ε ∀y ∈ U ;
2. lower semicontinuous at x if for every ε > 0, there exists an open neighbor-

hood U of x such that

f (y) ≥ f (x) − ε ∀y ∈ U.

If X is a metric space (or more generally, a Fréchet-Urysohn space), then f

is upper (resp., lower) semicontinuous at x ∈ X if and only if for every sequence
(xn)n in X converging to x, we have
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f (x) ≥ lim sup
n→+∞

f (xn) (resp., f (x) ≤ lim inf
n→+∞f (xn)),

where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk) and lim inf
n→+∞f (xn) = sup

n
inf
k≥n

f (xk).

Proposition 11.6. Let f : X −→ R be a function and let S be a subset of X. If
the restriction f|U of f on an open subset U containing S is upper (resp., lower)
semicontinuous on S, then any extension of f|U to the whole space X is upper
(resp., lower) semicontinuous on S.

The following result provides us with some properties of upper (resp., lower)
semicontinuous functions.

Proposition 11.7. Let f : X −→ R be a function, S a subset of X, and a ∈R.

1. f is upper semicontinuous on S if and only if

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a} .

In particular, if f is upper semicontinuous on S, then the trace on S of any
upper level set of f is closed in S.

2. f is lower semicontinuous at S if and only if

{x ∈ X | f (x) ≤ a} ∩ S = {x ∈ S | f (x) ≤ a} .

In particular, if f is lower semicontinuous on S, then the trace on S of any
lower level set of f is closed in S.

Proof. The second statement being similar to the first one, we prove only the
case of upper semicontinuity. Let

x∗ ∈ {x ∈ X | f (x) ≥ a} ∩ S.

Clearly, x∗ ∈ S. To prove that f (x∗) ≥ a, we argue by contradiction and assume
that f (x∗) < a. Take ε > 0 such that f (x∗) + ε < a. By upper semicontinuity
of f at x∗, let U be an open neighborhood of x∗ such that f (y) ≤ f (x∗) + ε,
for every y ∈ U . It follows that

U ∩ {x ∈ X | f (x) ≥ a} = ∅,

which is a contradiction.
Conversely, let x∗ ∈ S, ε > 0 and put a = f (x∗) + ε. We have f (x∗) < a

and then

x∗ /∈ {x ∈ X | f (x) ≥ a}.
Let U be an open neighborhood of x∗ such that {x ∈ X | f (x) ≥ a} ∩ U = ∅. It
follows that

f (y) < a = f
(
x∗)+ ε ∀y ∈ U.
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Finally, we have

{x ∈ X | f (x) ≥ a} ∩ S = {x ∈ S | f (x) ≥ a} ,

which yields that the trace on S of any upper level set of f is closed in S.

In the sequel, for y ∈ C, we define the following sets:

f + (y) = {x ∈ C | f (x, y) ≥ 0} and f − (y) = {x ∈ C | f (y, x) ≤ 0} .

Clearly, x∗ ∈ C is a solution of the equilibrium problem (EP) if and only if
x∗ ∈⋂

y∈C f + (y).
The following result is a generalization of the Ky Fan’s minimax inequality

theorem.

Theorem 11.3. Let f : C ×C −→ R be an equilibrium bifunction and suppose
the following assumptions hold:

1. f is quasi-convex in its second variable on C;
2. there exists a compact subset K of C and y0 ∈ K such that

f (x, y0) < 0 ∀x ∈ C \ K;
3. f is upper semicontinuous in its first variable on K .

Then, the equilibrium problem (EP) has a solution and its set of solutions
SEP (C,f ) is a nonempty compact set.

Proof. Since f is an equilibrium bifunction, then f + (y) is nonempty and
closed, for every y ∈ C.

By quasi-convexity of f in its second variable, the mapping y �→ f + (y) is
a KKM mapping and since f + (y0) is contained in the compact subset K , then
by Ky Fan’s lemma, we have ⋂

y∈C

f + (y) �= ∅.

On the other hand, we have⋂
v∈C

f + (y) =
⋂
y∈C

(
f + (y) ∩ K

)
.

By Proposition 11.7, we have

f + (y) ∩ K = f + (y) ∩ K ∀y ∈ C.

Thus, ⋂
y∈C

f + (y) =
⋂
y∈C

f + (y) �= ∅ .

The compactness of the set of solutions is obvious.
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The Minty lemma for equilibrium problems deals in particular with prop-
erties such as compactness and convexity of the set of solutions of equilibrium
problems. For more properties of the set of solutions of equilibrium problems,
we need some additional concepts of monotonicity for bifunctions.

A bifunction f : C × C −→R is called

1. strongly monotone on C with modulus β if

f (x, y) + f (y, x) ≤ −β‖x − y‖2, ∀x, y ∈ C;

2. monotone on C if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

3. strictly pseudo-monotone on C if

f (x, y) ≥ 0 =⇒ f (y, x) < 0, ∀x, y ∈ C,x �= y;

4. pseudo-monotone on C if

f (x, y) ≥ 0 =⇒ f (y, x) ≤ 0, ∀x, y ∈ C.

Every strongly monotone bifunction is both monotone and strictly pseudo-
monotone and every strictly pseudo-monotone bifunction f is pseudo-monotone
provided it is an equilibrium bifunction, that is, f (x, x) = 0, ∀x ∈ C.

The following result deals with equilibrium problems defined on non neces-
sarily convex sets and its proof is elementary. We call such a problem, a non-
convex equilibrium problem.

Proposition 11.8. Let f : C × C −→ R be a strictly pseudo-monotone bifunc-
tion. Then for every subset A of C, the following nonconvex equilibrium problem

find x∗ ∈ A such that f
(
x∗, y

)≥ 0 ∀y ∈ A

has at most one solution.

We also need the following notions about convexity of functions. A function
f : C −→ R is said to be

1. semistrictly quasi-convex on C if, for every x1, x2 ∈ C such that f (x1) �=
f (x2), we have

f (λx1 + (1 − λ)x2) < max {f (x1) , f (x2)} ∀λ ∈ ]0,1[ ;

2. explicitly quasi-convex on C if it is quasi-convex and semistrictly quasi-
convex.
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Note that there is not any inclusion relationship between the class of
semistrictly quasi-convex functions and that of quasi-convex functions. How-
ever, if f is a lower semicontinuous and semistrictly quasi-convex function,
then f is explicitly quasi-convex.

The following results provide some additional properties of the set of solu-
tions of equilibrium problems.

Theorem 11.4. Under assumptions of Theorem 11.3 and suppose the following
conditions hold:

1. f is pseudo-monotone;
2. f is explicitly quasi-convex in its second variable on C.

Then the equilibrium problem (EP) has a solution and its set of solutions
SEP (C,f ) is nonempty compact set. If in addition, K is convex, then SEP (C,f )

is convex.

Proof. The first part of this theorem being proved above, we prove the second
part. By pseudo-monotonicity, we have f + (y) ⊂ f − (y), for every y ∈ C. Since⋂

y∈C f + (y) ⊂ K , then

⋂
y∈C

f + (y) ⊂
⎛
⎝⋂

y∈C

f − (y)

⎞
⎠∩ K.

Now, by explicit quasi-convexity, we obtain⎛
⎝⋂

y∈C

f − (y)

⎞
⎠∩ K ⊂

⋂
y∈C

f + (y) .

It follows that

⋂
y∈C

f + (y) =
⎛
⎝⋂

y∈C

f − (y)

⎞
⎠∩ K.

By quasi-convexity, the set f − (y) is convex, for every y. Thus, the set of solu-
tions SEP (C, θ) is convex whenever K is convex.

Note that Theorem 11.4 also holds if we replace upper semicontinuity of
f in the first variable by upper hemicontinuity in the first variable and lower
semicontinuity in the second variable. Recall that upper hemicontinuity is upper
semicontinuity on line segments.

11.3 THE TIKHONOV REGULARIZATION METHOD FOR
EQUILIBRIUM PROBLEMS

The Tikhonov regularization method (or ridge regression in statistics) is a pow-
erful tool in convex optimization to handle discrete or continuous ill-posed
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problems. In the framework of monotone variational inequalities, the basic idea
of this method is to perturb the problem with a strongly monotone operator de-
pending on a regularization parameter to the monotone cost operator to obtain a
strongly monotone variational inequality. The optimal regularization parameter
is usually unknown and usually in practical problems it is determined by various
methods, such as the discrepancy principle, cross-validation, L-curve method,
Bayesian interpretation, restricted maximum likelihood, and unbiased predic-
tive risk estimator. The resulting regularized inequality problem has a unique
solution that depends on the regularization parameter. Next, passing to the limit
as the parameter goes to a suitable value, the unique solution of the regularized
problem tends to a solution of the original problem. We point out that if the cost
operator is pseudo-monotone rather than monotone, then the monotonicity of
the regularized problem may fail.

We define a regularized equilibrium problem for the equilibrium prob-
lem (EP). Let θ : C × C −→ R be an equilibrium bifunction that we call the
regularization equilibrium bifunction. Then, for every ε > 0, we define the equi-
librium bifunction fε : C × C −→ R by

fε (x, y) = f (x, y) + εθ (x, y)

and we associate with the equilibrium problem (EP), the regularized equilibrium
problem defined as follows:

find x∗
ε ∈ C such that fε

(
x∗
ε , y

)≥ 0 ∀y ∈ C, (REP)

where its set of solutions is denoted by SREP (C,fε).
Note that when f or θ is pseudo-monotone, the regularized equilibrium bi-

function fε does not inherit any monotonicity property from f and θ in general.
Also, while the sum of two convex function is convex, this fact does not remain
true for quasi-convex functions. The sum of two quasi-convex functions need
not be quasi-convex even if one of the functions involved is linear.

In the following result, we avoid the lower semicontinuity of f and θ in
their second variable on C, the convexity of f and θ is weakened to the quasi-
convexity of the regularized bifunction, and the upper semicontinuity of f and
θ in their first variable is weakened to the set of uniform coerciveness. We also
point out that we do not need the quasi-convexity of f or θ in their second
variable.

Theorem 11.5. Let (εn)n be a sequence of positive numbers such that
lim

n→+∞ εn = 0 and suppose the following conditions hold:

1. f and θ are pseudo-monotone on C;
2. f + εnθ is quasi-convex in the second variable on C, for every n;
3. there exist a compact subset K of C and y0 ∈ C such that f (x, y0) < 0, for

every x ∈ C \ K;
4. f and θ are upper semicontinuous in the first variable on K .
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Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SREP
(
C,fεn

)∩K

for every n, is a solution to the nonconvex equilibrium problem:

find x∗ ∈ SEP (C,f ) such that θ
(
x∗, y

)≥ 0 ∀y ∈ SEP (C,f ) . (NC-EP)

Assume in addition that the following hypotheses hold:

1. θ is strictly pseudo-monotone on C;
2. there exists A ⊂ K such that θ (x, y0) < 0, for every x ∈ C \ A.

Then the regularized equilibrium problem (REP) is solvable, for every n, and
any sequence (xn)n with xn ∈ SREP

(
C,fεn

)
for every n, converges to the unique

solution of the nonconvex equilibrium problem (NC-EP).

Proof. Let (xn)n be a sequence with xn ∈ SREP
(
C,fεn

) ∩ K for every n, and
admitting x∗ ∈ C as a cluster point. We have x∗ ∈ K and without loss of gener-
ality, we may assume that (xn)n converges to x∗.

First we will prove that x∗ ∈ SEP (C,f ) and therefore SEP (C,f ) is not
empty. We know that for every n,

f (xn, y) + εnθ (xn, y) ≥ 0 ∀y ∈ C.

By upper semicontinuity of f and θ in their first variable on K and the properties
of the upper limits, we have

f
(
x∗, y

)≥ lim sup
n→+∞

f (xn, y) + lim sup
n→+∞

εnθ (xn, y)

≥ lim sup
n→+∞

(f (xn, y) + εnθ (xn, y)) ≥ 0 ∀y ∈ C.

It results that x∗ ∈ SEP (C,f ). Now, let z ∈ SEP (C,f ). By pseudo-monotonic-
ity of f , we have f (xn, z) ≤ 0, for every n. Then

εnθ (xn, z) ≥ −f (xn, z) ≥ 0 ∀n,

which implies that θ (xn, z) ≥ 0. Letting n go to +∞, we obtain by upper semi-
continuity of θ in its first variable on K that θ (x∗, z) ≥ 0. Thus,

θ
(
x∗, z

)≥ 0 ∀z ∈ SEP (C,f )

which completes the proof of the first part.
To prove the second part of the theorem, note that for every n,

f (xn, y0) + εnθ (xn, y0) < 0 ∀x ∈ C \ K.

By Theorem 11.3, the regularized equilibrium problem (REP
(
C,fεn

)
) is solv-

able and its set of solutions SREP
(
C,fεn

)
is contained in K . Let (xn)n be a se-

quence such that xn ∈ SREP
(
C,fεn

)
, for every n. Then the sequence (xn)n has

a cluster point x∗ ∈ K and by the first part of the theorem, x∗ is a solution to the
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nonconvex equilibrium problem (NC-EP). Since θ is strictly pseudo-monotone,
then by Proposition 11.8, the above nonconvex equilibrium problem (NC-EP)
has a unique solution. It follows that every subsequence of the sequence (xn)n
admits this unique solution of the nonconvex equilibrium problem (NC-EP) as
a cluster point. Thus, the sequence (xn)n converges to the unique solution of the
nonconvex equilibrium problem (NC-EP).

Remark 11.4. 1. Note that in the case of a finite dimensional real Banach
space E, if θ is strongly monotone on C, and θ and f are convex and lower
semicontinuous in the second variable on C, then the sequence (f + εnθ)n
is uniformly coercive whenever f has a set of coerciveness. This means that
even if we consider a strongly monotone bifunction θ as a regularization
bifunction, Theorem 11.5 can also be seen as a generalization of [62, The-
orem 2.9] since the upper semicontinuity on the first variable is weakened.
We choose in this case θ such that both θ and f are upper semicontinuous
in their first variable on the subset of the uniform coerciveness.

2. We point out that Theorem 11.5 provides us with a tool to use the Tikhonov
regularization method in the case of equilibrium problems involving nonup-
per semicontinuous bifunctions on their first variable.

3. Finally, even if strongly monotone bifunctions seem to be more widely used
in the Tikhonov regularization method, our Theorem 11.5 presents a gener-
alization in several directions of [62, Theorem 2.9] and provides us with a
largest family of bifunctions to use in the Tikhonov regularization method.

11.3.1 Examples of Suitable Bifunctions

We first construct in what follows two bifunctions f and θ satisfying all the
conditions of Theorem 11.5 without being upper semicontinuous in their first
variable on the whole space C. The bifunction f is pseudo-monotone nonstrictly
pseudo-monotone and θ is strictly pseudo-monotone nonstrongly monotone
on C.

Example 11.1. Let E = C =R, K = [−1,+1] and y0 = 0.

(I) First consider the bifunction f : C × C −→ R defined by

f (x, y) =

⎧⎪⎨
⎪⎩

(x + 2) (y − x) if x ∈ ]−∞,−2[ ,

(x + 1) (y − x) if x ∈ [−2,−1[ ,

max (x,0) (y − x) otherwise.

1. Clearly, f (x, x) = 0, for every x ∈ C and f (x,0) < 0, for every
x /∈ [−1,+1].

2. To verify that f is pseudo-monotone on C, let x, y ∈ C such that
f (x, y) ≥ 0.
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(a) If x ∈ ]−∞,−2[, then f (x, y) = (x + 2) (y − x). It follows that
y − x ≤ 0 and then, y < −2. Thus f (y, x) = (y + 2) (x − y) ≤ 0.

(b) If x ∈ [−2,−1[, then y − x ≤ 0 and then, y < −1. If y ∈ [−2,−1[,
then f (y, x) = (y + 1) (x − y) ≤ 0, and if y ∈ ]−∞,−2[, then
f (y, x) = (y + 2) (x − y) ≤ 0.

(c) If x ≥ −1, then y ≥ x. It follows that y ≥ −1 and then f (y, x) =
max (y,0) (x − y) ≤ 0.

3. Clearly, f is convex in its second variable on C and upper semicontinu-
ous in its first variable on [−1,+1].

4. To see that f is not upper semicontinuous in its first variable on C, con-
sider y > −2 and take a sequence (xn)n in ]−∞,−2[ converging to −2.
We have

f (−2, y) = − (y + 2) < 0 = lim sup
n→+∞

(xn + 2) (y + 2)

= lim sup
n→+∞

f (xn, y) .

5. Note that in addition, f is not lower semicontinuous in its first variable
on C. To see this fact, consider y < −2 and take a sequence (xn)n in
]−∞,−2[ converging to −2. We have

f (−2, y) = − (y + 2) > 0 = lim inf
n→+∞ (xn + 2) (y + 2)

= lim inf
n→+∞f (xn, y) .

6. Finally, let us point out that f is not strictly pseudo-monotone on C since
f (x, y) = f (y, x) = 0 whenever x, y ∈ [−1,0].

(II) Now, consider the bifunction θ : C × C −→ R is defined by

θ (x, y) =
⎧⎨
⎩

y4−x4

65 if x = 2,

y4 − x4 otherwise.

1. Clearly θ (x, x) = 0, for every x ∈ C and θ (x,0) < 0, for every
x /∈ K = [−1,+1]. It is also easy to see that θ is strictly pseudo-
monotone and not strongly monotone on C.

2. To see that θ is convex in its second variable, let x ∈ C be fixed.

(a) if x = 2, then θ (2, y) = y4−16
65 , for every y ∈ C. The function

y �→ y4−16
65 is convex on C.

(b) if x �= 2, then θ (x, y) = y4 − x4, for every y ∈ C. The function
y �→ y4 − x4 is convex on C.

3. To see that θ is upper semicontinuous in its first variable on [−1,+1],
let y ∈ C be fixed and denote by f : C −→R the function defined by

f (x) = θ (x, y) .
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The restriction f|U of f on the open set U = ]−∞,2[ containing
[−1,+1] is defined by f|U (x) = y4 − x4 which is continuous on U and
then by Proposition 11.6, f is upper semicontinuous on [−1,+1].

4. Finally, the bifunction θ is not upper semicontinuous in its first variable
on C. Indeed, consider y = 3 for example. Let (xn)n be a converging
sequence to 2 such that xn �= 2, for every n. We have

θ (2,3) = 1 < 65 = lim sup
n→+∞

θ (xn,3) .

Convexity and generalized convexity are important fields in many areas of
mathematics and more particularly, in Optimization since convex and concave
functions entail several useful properties. Moreover, quasi-convexity and, by
analogy, quasi-concavity, reveal properties of special interest in Economics The-
ory.

As observed, the sum of two quasi-convex functions need not be quasi-
convex even if one of the functions involved is linear. This means that the sum
of two non necessarily quasi-convex functions may be quasi-convex. Also, any
quasi-convex function could be split into a sum of two functions and it seems
that in general, nothing can justify that these functions must be quasi-convex. In
other words, this subject is very rich and for this reason, studies about convexity
and generalized convexity abound in the literature. Characterizations by means
of various notions including the notion of differentiability and different suffi-
cient conditions to obtain quasi-convexity as well as other stronger notions such
as convexity, strict convexity, and strict quasi-convexity are deeply developed
and many examples are constructed by several authors.

However, we recall here the following basic properties which will inspire us
in the construction of our next examples:

1. If f is a quasi-convex function, then for every α ≥ 0, αf is quasi-convex.
2. Every monotone function of one real variable is quasi-convex.
3. The sum of two monotone functions of one real variable with the same sense

of monotonicity is monotone, and therefore quasi-convex.

Now, we modify the bifunction θ of Example 11.1 in such a way that all
its above properties are conserved but it is quasi-convex nonconvex bifunction
in the second variable. Note that it could be more easy to construct further ex-
amples if we relax the condition on the semicontinuity of the bifunctions to the
whole space rather than only on the set of coerciveness.

Example 11.2. Let E = C =R, K = [−1,+1] and y0 = 0.
The bifunction θ : C × C −→ R is now defined by

θ (x, y) =
⎧⎨
⎩

y4−x4

65 if (x, y) ∈ {2} × ]−∞,3] ,

y4 − x4 otherwise.
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1. To see that θ is quasi-convex in its second variable, treat only the case of
x = 2. In this case, we have

θ (2, y) =
⎧⎨
⎩

y4−16
65 if y ∈ ]−∞,3] ,

y4 − 16 otherwise.

We have that θ (2,3) ≤ θ (2, y), for every y ∈ ]3,+∞[. A combination
with the other properties of the bifunction θ yields easily that the function
y �→ θ (2, y) is quasi-convex on C.

2. To see that the function y �→ θ (2, y) is not convex, choose y1 = 3 and
y2 = 4 for example. Take the point

y = 1

2
y1 +

(
1 − 1

2

)
y2 = 7

2

in the line segment between y1 and y2. We have

θ (2, y) = θ

(
2,

7

2

)
= 74

16
− 16.

In the other hand, we have

1

2
θ (2, y1) +

(
1 − 1

2

)
θ (2, y2) = 1

2
+ 1

2

(
44 − 16

)
= 241

2
< θ (2, y) .

Now, we show that the regularized bifunction constructed from f and θ as
in Theorem 11.5 is quasi-convex in its second variable.

Example 11.3. Let ε be a positive number and consider the regularized bifunc-
tion fε = f + εθ as in Theorem 11.5. Then, the bifunction fε is defined on
C × C by

fε (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x + 2) (y − x) + ε
(
y4 − x4

)
if x ∈ ]−∞,−2[ ,

(x + 1) (y − x) + ε
(
y4 − x4

)
if x ∈ [−2,−1[ ,

max (x,0) (y − x) + ε
y4−x4

65 if (x, y) ∈ {2} × ]−∞,3] ,

max (x,0) (y − x) + ε
(
y4 − x4

)
otherwise.

As above, only the quasi-convexity of the function y �→ fε (2, y) is important to
verify, the other cases come readily from the definition. In this case, we have

fε (2, y) =
⎧⎨
⎩2 (y − 2) + ε

y4−16
65 if y ∈ ]−∞,3] ,

2 (y − 2) + ε
(
y4 − 16

)
otherwise.

By the same argument as above, remark that fε (2,3) ≤ fε (2, y), for every
y ∈ ]3,+∞[, and this completes the proof.
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11.3.2 Applications to Quasi-Hemivariational Inequalities

We now intend to point out the relationship between equilibrium problems and
quasi-hemivariational inequalities. We develop results in the qualitative anal-
ysis of quasi-hemivariational inequalities and give a generalization to Berge’s
maximum theorem in order to apply the Tikhonov regularization for quasi-
hemivariational inequalities.

Recall that a function φ : E → R is called locally Lipschitzian if for every
u ∈ E, there exists a neighborhood U of u and a constant Lu > 0 such that

|φ (w) − φ (v) | ≤ Lu‖w − v‖X ∀w ∈ U, ∀v ∈ U.

If φ : E → R is locally Lipschitzian near u ∈ E, then the Clarke generalized
directional derivative of φ at u in the direction of v ∈ E, denoted by φ0 (u, v),
is defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λv) − φ (w)

λ
.

We will use the following properties of locally Lipschitz functionals.
Suppose that φ : E → R is locally Lipschitzian near u ∈ E. Then,

1. the function v �→ φ0 (u, v) is finite, positively homogeneous, and subaddi-
tive;

2. the function (u, v) �→ φ0 (u, v) is upper semicontinuous.

Remark 11.5. To avoid any confusion in the definition of semicontinuity on
subsets, the functions h and F , and the multi-valued mapping A will be consid-
ered from C rather than from E.

We observe that any solution of the quasi-hemivariational inequality (QHVI)
is a solution of the equilibrium problem (EP) where the equilibrium bifunction
� : C × C →R is defined by

�(u,v) = sup
z∈A(u)

〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉 ∀u,v ∈ C.

The converse needs some additional conditions on the multi-valued mapping A

and holds by a classical approach.

Theorem 11.6. If A has nonempty, convex and weak* compact values, then
any solution of the equilibrium problem (EP) is a solution of the quasi-
hemivariational inequality problem (QHVI).

Proof. Let u∗ ∈ C be such that �(u∗, v) ≥ 0, for every v ∈ C, and assume that
there does not exist z ∈ A(u∗) satisfying

〈z, v − u∗〉 + h
(
u∗)J 0 (iu∗; iv − iu∗)− 〈Fu∗, v − u∗〉 ≥ 0 ∀v ∈ C.
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Clearly, for every z ∈ A(u∗), there exist vz ∈ C and εz > 0 such that

〈z, vz − u∗〉 + h
(
u∗)J 0 (iu∗; ivz − iu∗)− 〈Fu∗, vz − u∗〉 < −εz.

Since, for every v ∈ C, the mapping defined on E∗ by

z �→ 〈z, v − u∗〉 + h
(
u∗)J 0 (iu∗; iv − iu∗)− 〈Fu∗, v − u∗〉

is weak* continue, then for every z ∈ A(u∗), we choose a weak* open subset
Oz of E∗ such that

〈z′, vz − u∗〉 + h
(
u∗)J 0 (iu∗; ivz − iu∗)− 〈Fu∗, vz − u∗〉 < −εz ∀z′ ∈ Oz.

For every z ∈ A(u∗), we have z ∈ Oz and then, {Oz | z ∈ A(u∗)} is a weak*
open cover of A(u∗). Since A(u∗) is weak* compact, there exist zj ∈ C,
j = 1, . . . , n such that

{
Ozj

| j = 1, . . . , n
}

is a finite subcover of A(u∗). Put
vj = vzj

, j = 1, . . . , n and ε = min
{
εzj

| j = 1, . . . , n
}
. Clearly for all

z ∈ A(u∗), we have

min
j=1,...,n

(
〈z, vj − u∗〉 + h

(
u∗)J 0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉

)
< −ε .

The Clarke generalized directional derivative being finite, then for every
j = 1, . . . , n, the functions

z �→ 〈z, vj − u∗〉 + h
(
u∗)J 0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉,

defined on the convex set A(u∗), are concave and proper with domain contain-
ing A(u∗), and therefore there exist μj ≥ 0, j = 1, . . . , n, with

∑n
j=1 = 1 such

that for all z ∈ A(u∗)
n∑

j=1

μj

(
〈z, vj − u∗〉 + h

(
u∗)J 0 (iu∗; ivj − iu∗)− 〈Fu∗, vj − u∗〉

)
< −ε .

Set v∗ = ∑n
j=1 μjvj . Then v∗ ∈ C and by the positive homogeneity and the

subadditivity of the Clarke generalized directional derivative in its second vari-
able, we have

〈z, v∗ −u∗〉+h
(
u∗)J 0 (iu∗; iv∗ − iu∗)−〈Fu∗, v∗ −u∗〉 < −ε ∀z ∈ A

(
u∗) ,

which implies that �(u∗, v∗) < 0, a contradiction.

We turn now into studying the properties inherited by the equilibrium bi-
functions defined from quasi-hemivariational inequalities.

Theorem 11.7. The bifunction � is lower semicontinuous and convex in its
second variable on C.
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Proof. From the positive homogeneity and the subadditivity of the Clarke gen-
eralized directional derivative in its second variable, the function

v �→ 〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉
is convex, for every u ∈ C and every z ∈ A(u∗). It is also lower semicontinuous
since the Clarke generalized directional derivative is lower semicontinuous. The
bifunction � being the superior envelope of a family of convex and lower semi-
continuous functions, it is then convex and lower semicontinuous in its second
variable on C.

The properties inherited by � in its first variable are more complicated and
need additional conditions on the functions and multi-valued mappings involved
in the quasi-hemivariational inequalities.

Recall that a multi-valued mapping T from a topological space X with values
in the set of subsets of a topological space Y is called upper semicontinuous at a
point x ∈ X if whenever V an open subset containing T (x), there exist an open
neighborhood U of x such that T

(
x ′) ⊂ V , for every x′ ∈ U . We say that T is

upper semicontinuous on a subset S of X if T is upper semicontinuous at every
point of S.

The following result is a generalization of the well-known Berge’s maximum
theorem.

Theorem 11.8. Let X and Y be two Hausdorff topological spaces, S a nonempty
subset of X, U an open subset containing S,T : X ⇒ Y a multi-valued mapping,
and ψ : Y ×X →R∪{+∞} a function. Suppose that ψ is upper semicontinuous
on Y × U and T is upper semicontinuous on S with nonempty compact values
on U . Then the value function f : X → R∪ {+∞} defined by

f (x) = sup
y∈T (x)

ψ (y, x)

is upper semicontinuous on S.

Proof. By Proposition 11.6, it suffices to prove that the restriction g = f|U of f

on U is upper semicontinuous on S. Let a ∈ R and by Proposition 11.7, we have
to prove that

{x ∈ U | g (x) ≥ a} ∩ S = {x ∈ S | g (x) ≥ a} ,

where the closure is taken with respect to U . Let x∗ ∈ {x ∈ U | g (x) ≥ a} ∩ S

and choose a net (xα)α∈� in {x ∈ U | g (x) ≥ a} converging in U to x∗. Since
xα ∈ U , then the restriction of the function ψ on Y × {xα} is upper semi-
continuous and therefore, by the Weierstrass theorem, it attains its maximum
on the compact set T (xα), for every α ∈ �. Let yα ∈ T (xα) be such that
g (xα) = ψ (yα, xα), for every α ∈ �.

The net (yα)α∈� has a cluster point in T (x∗). Indeed, suppose the contrary
holds. Then the compactness of T (x∗) yields the existence of an open set V
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containing T (x∗) and α0 ∈ � such that yα /∈ V , for every α ≥ α0. It follows by
upper semicontinuity of T at x∗ the existence of an open neighborhood W of
x∗ such that T (x) ⊂ V , for every x ∈ W . Let α1 ∈ � be such that xα ∈ W , for
every α ≥ α1. Thus yα ∈ V , for every α ≥ α1. Contradiction.

Take now y∗ ∈ T (x) and (yα)α∈� a subnet of (yα)α∈� converging to y∗. The
net ((yα, xα))α∈� is in Y × U , converging to (y∗, x∗) and satisfies

ψ (yα, xα) ≥ a ∀α ∈ �.

By upper semicontinuity of ψ on Y ×U , it follows that g (x∗) ≥ ψ (y∗, x∗) ≥ a,
which completes the proof.

We give in what follows a sufficient condition for the upper semicontinuity
in its first variable of the equilibrium bifunction �.

Corollary 11.6. Let K be a subset of C, U be an open subset containing K and
suppose the following conditions hold:

1. the nonlinear multi-valued mapping A is upper semicontinuous on K with
respect to the strong topology of E∗ and has nonempty compact values
on U ;

2. for every v ∈ C, the mapping u ∈ C �→ h(u)J 0 (iu; iv − iu) is upper semi-
continuous on U ;

3. for every v ∈ C, the mapping u ∈ C �→ 〈F (u) , v − u〉 is lower semicontin-
uous on U .

Then � is upper semicontinuous in its first variable on K .

Proof. Let v ∈ C be fixed and define the function ψ : E∗ × C → R by

ψ (z,u) = 〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉.
The function ψ being a sum of upper semicontinuous functions on E∗ × U ,
it is upper semicontinuous on E∗ × U , where E∗ is equipped with the strong
topology. It follows by Theorem 11.8 that the value function u �→ �(u,v) is
upper semicontinuous on K .

Corollary 11.7. Let K be a subset of C, U be an open subset containing K and
suppose the following conditions hold:

1. the nonlinear multi-valued mapping A is upper semicontinuous on K with
respect to the weak* topology of E∗ and has nonempty weak* compact val-
ues on U ;

2. for every v ∈ C, the mapping

(z,u) ∈ E∗ × U �→ 〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉
is upper semicontinuous on E∗ × U .

Then � is upper semicontinuous in its first variable on K .
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Recall that a multi-valued mapping T : C → 2E∗
is said to be:

1. pseudo-monotone on C if

〈z,u − v〉 ≤ 0 =⇒ 〈t, v − u〉 ≥ 0 ∀u,v ∈ C,∀z ∈ A(u) ,∀t ∈ A(v) ;
2. strictly pseudo-monotone if

〈z,u − v〉 ≤ 0 =⇒ 〈t, v − u〉 > 0 ∀u,v ∈ C,∀z ∈ A(u) ,∀t ∈ A(v) .

We observe that if T has weak* compact values, then T is pseudo-monotone
(resp., strictly pseudo-monotone) if and only if the equilibrium bifunction θ is
pseudo-monotone (resp., strictly pseudo-monotone) where θ : C × C → R is
defined by

θ (u, v) = sup
z∈T (u)

〈z, v − u〉.

This follows from the fact that for every u,v ∈ C, by the weak* compactness of
the values of T , there exist z ∈ T (u) and t ∈ T (v) such that

θ (u, v) = 〈z, v − u〉 and θ (v,u) = 〈t, u − v〉.
Now, to apply the Tikhonov regularization for quasi-hemivariational in-

equalities, first we take a multi-valued function G : C → 2E∗
and ε > 0, and

define the multi-valued function Aε : C → 2E∗
by

Aε (x) = A(x) + εG(x) .

The regularized quasi-hemivariational inequality has the following form:

Find u ∈ C and z ∈ Aε (u) such that

〈z, v − u〉 + h(u)J 0 (iu; iv − iu) − 〈Fu,v − u〉 ≥ 0 ∀v ∈ C. (RQHVI)

As previously, we denote its set of solutions by SRQHVI (C,Aε).
We say that the quasi-hemivariational inequality (QHVI) is pseudo-mono-

tone on C if the associated equilibrium bifunction � is pseudo-monotone on C.

Theorem 11.9. Let K be a compact subset of C, U an open subset containing K

and (εn)n is a sequence of positive numbers such that lim
n→+∞ εn = 0. Suppose

that the following assumptions hold:

1. G is pseudo-monotone on C, upper semicontinuous on K with respect to the
strong topology of E∗ and has nonempty, convex and compact values on C;

2. the quasi-hemivariational inequality (QHVI) is pseudo-monotone on C;
3. A is upper semicontinuous on K with respect to the strong topology of E∗

and has nonempty, convex and compact values on C;
4. for every v ∈ C, the mapping u ∈ C �→ h(u)J 0 (iu; iv − iu) is upper semi-

continuous on U ;
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5. for every v ∈ C, the mapping u ∈ C �→ 〈F (u) , v − u〉 is lower semicontin-
uous on U ;

6. there exists v0 ∈ C such that

〈z, v0 − u〉 + h(u)J 0 (iu; iv0 − iu) − 〈Fu,v0 − u〉 < 0

∀u ∈ C \ K,∀z ∈ A(u) .

Then any cluster point x∗ ∈ C of a sequence (xn)n with xn ∈ SRQHVI
(
C,Aεn

)∩
K for every n, is a solution to the multi-valued variational inequality:

Find u ∈ SQHVI (C,A) and z ∈ G(u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C,A) .

Assume in addition, that the following conditions hold:

1. G is strictly pseudo-monotone on C;
2. there exists K ′ ⊂ K such that 〈z, v0 −u〉 < 0, for every u ∈ C \K ′ and every

z ∈ G(u).

Then the regularized quasi-hemivariational inequality (RQHVI
(
C,Fεn

)
) is

solvable, for every n, and any sequence (xn)n with xn ∈ SRQHVI
(
C,Fεn

)
for ev-

ery n, converges to the unique solution of the multi-valued variational inequality
problem:

Find u ∈ SQHVI (C,A) and z ∈ G(u) such that

〈z, v − u〉 ≥ 0 ∀v ∈ SQHVI (C,A) .

Proof. Note that

sup
z∈Aε(x)

〈z, y − x〉 = sup
z∈A(x)

〈z, y − x〉 + ε sup
z∈G(x)

〈z, y − x〉 ∀x, y ∈ C.

The result holds now easily from the results developed above and by applying
Theorem 11.5.

Under assumptions of Theorem 11.9, the set of solutions of the quasi-
hemivariational inequality (QHVI) is nonempty and compact. It is also convex
whenever K is convex.

11.4 A SUBGRADIENT EXTRAGRADIENT METHOD FOR
SOLVING EQUILIBRIUM PROBLEMS

The aim of this section is to provide a further numerical method for solving
equilibrium problems (EP). Our framework will be a real Hilbert space, de-
noted H . Let K be a nonempty closed convex subset of H and f : K × K →R

a bifunction. Let us recall that (EP) is defined as:

find x ∈ K such that f (x, y) ≥ 0 ∀y ∈ K. (11.25)
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Some iterative methods have been proposed to solve various classes of equi-
librium problems. In these papers, the bifunction f is assumed to satisfy the
following conditions

(A1) f (x, x) = 0 for all x ∈ K;
(A2) f is monotone on K , i.e., f (x, y) + f (y, x) ≤ 0 for all x, y ∈ K;
(A3) lim sup

t→0+
f (x + t (z − x), y) ≤ f (x, y) for all x, y, z ∈ K;

(A4) f (x, ·) is convex and lower semicontinuous on C.

Under these assumptions, Combettes and Hirstoaga [57] showed that for
each r > 0 and x ∈ H the mapping T

f
r : H → K defined by

T
f
r (x) =

{
z ∈ K : f (z, y) + 1

r
〈y − z, z − x〉 ≥ 0 ∀y ∈ K

}
(11.26)

is single-valued. Based on the mapping T
f
r , the algorithm in [57] generates the

sequence {xn} by x0 ∈ H and,

xn+1 = T
f
rn xn for every n ∈N,

equivalently, xn+1 ∈ K such that

f (xn+1, y) + 1

rn
〈y − xn+1, xn+1 − xn〉 ≥ 0 for every y ∈ K, (11.27)

where {rn} ⊂ (0,+∞) satisfies the condition lim inf
n→∞ rn > 0. From computational

point of view, it is in general difficult to compute xn+1 in (11.27).
The next algorithm was first introduced by Antipin [17] in finite dimensional

vector spaces.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ K,

yn = argmin
y∈K

{
λf (xn, y) + 1

2
‖y − xn‖2

}
,

xn+1 = argmin
y∈K

{
λf (yn, y) + 1

2
‖y − xn‖2

}
, n ≥ 0.

(11.28)

The advantage of (11.28) is that two strongly convex programming prob-
lems are solved at each iteration, which seems numerically easier than solving
the nonlinear inequality (11.27). In 2010, the authors in [150] studied the al-
gorithm (11.28) for pseudo-monotone equilibrium problems in Hilbert spaces.
Under mild conditions, they obtained the weak convergence of the sequences
generated by (11.28).

Recently, Lyashko and Semenov [120] proposed a Popov type algorithm for
pseudo-monotone equilibrium problems. The algorithm in [120] (called two-
step proximal algorithm) is summarized as follows: choose x0 = y0 ∈ C, ε > 0
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and 0 < λ < 1
2(2c1+c2)

, where c1, c2 are positive constants (see (B5) in Sec-
tion 11.3).

Step 1. For xn and yn, compute

xn+1 = argmin
y∈C

{
λf (yn, y) + 1

2
‖y − xn‖2

}
.

Step 2. If max{‖xn+1 − xn‖,‖yn − xn‖} ≤ ε then stop, else compute

yn+1 = argmin
y∈C

{
λf (yn, y) + 1

2
‖y − xn+1‖2

}
.

Step 3. Set n := n + 1, and go to Step 1.

The weak convergence of their algorithm is proved under usual assumptions
imposed on bifunctions in which they required that for all bounded sequences
{xn}, {yn} satisfying ‖xn − yn‖ → 0 one has f (xn, yn) → 0 (condition (A6)).
It is worth mentioning that their condition (A6) is rather strong. On the other
hand, in Lyashko and Semenov’s algorithm and most other algorithms, it must
either solve two strongly convex programming problems or solve one strongly
convex programming problem and compute one projection onto the feasible set.
Therefore, their computations are expensive if the bifunctions and the feasible
sets have complicated structures.

Recently, the authors of [99] improved Lyashko and Semenov’s algorithm
such that the subprogram in Step 1 has been solved over a halfspace instead of
over C, and furthermore, some assumptions on f have been weakened. In the
next subsections we present their algorithm and convergence results.

11.4.1 A Projection Algorithm for Equilibrium Problems

As usual, the weak convergence will be denoted by “⇀” and the strong con-
vergence by “→” in the Hilbert space H . Let K be a nonempty closed convex
subset of H and f : H × H →R a bifunction satisfying:

(B1) f (x, x) = 0 for all x ∈ K;
(B2) f is pseudo-monotone on K , i.e., f (x, y) ≥ 0 =⇒ f (y, x) ≤ 0 for all

x, y ∈ K;
(B3) For any arbitrary sequence {zk} such that zk ⇀ z, if lim sup

k→∞
f (zk, y) ≥ 0

for all y ∈ K then z ∈ EP(f );
(B4) f (x, ·) is convex and lower semicontinuous for every x ∈ H ;
(B5) There exist positive numbers c1 and c2 such that the triangular inequality

f (x, y) + f (y, z) ≥ f (x, z) − c1‖x − y‖2 − c2‖y − z‖2 (11.29)

holds for all x, y, z ∈ H ;
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(B6) For all bounded sequences {xn}, {yn} ⊂ C such that ‖xn − yn‖ → 0, the
inequality

lim sup
n→∞

f (xn, yn) ≥ 0

holds;
(B7) EP(f ) �= ∅.

Next let us make some comments on the assumptions above.

Remark 11.6. The condition (B3) was first introduced by Khatibzadeh and
Mohebbi in [106]. It is easy to see that if f (., y) is weakly upper semicontinuous
for all y ∈ K then f satisfies the condition (B3). However, the converse is not
true in general.

This remark is illustrated by the following counterexample modified from
Remark 2.1 of [106].

Example 11.4. Let H = l2, K = {ξ = (ξ1, ξ2, ...) ∈ l2 : ξi ≥ 0 ∀i = 1,2, ...}
and

f (x, y) = (y1 − x1)

∞∑
i=1

(xi)
2.

Take xk = (0, ...,0,1
k
,0, ...), we have xk ⇀ x = (0, ...,0, ...) and x ∈ EP(f ).

Obviously, there is a y ∈ K such that

lim sup
k→∞

f (xk, y) > 0 = f (x, y).

Then f (., y) is not weakly upper semicontinuous. We now show that f sat-
isfies the condition (B3). If zk = (zk

1, z
k
2, ...) ⇀ z = (z1, z2, ...) is an arbitrary

sequence and lim sup
k→∞

f (zk, y) ≥ 0 for all y ∈ K , then we have

lim sup
k→∞

(y1 − zk
1)

∞∑
i=1

(zk
i )

2 ≥ 0.

Since lim
k→∞(y1 − zk

1) = y1 − z1, we get

(y1 − z1) lim sup
k→∞

∞∑
i=1

(zk
i )

2 ≥ 0,

thus y1 ≥ z1. Hence, f (z, y) ≥ 0 for all y ∈ K , i.e., f satisfies the condi-
tion (B3).
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Remark 11.7. Under (B1), assumption (B6’) is weaker than the joint weak
lower semicontinuity of f on the product K ×K , as usually assumed by several
authors. Indeed, let {xn}, {yn} be bounded sequences in K with ‖xn − yn‖ → 0.
Thus there exists a subsequence {xnk } of {xn} converging weakly to x̄ ∈ K . By
the assumption, the subsequence {ynk } converges weakly to the same x̄. Hence,

lim sup
n→∞

f (xn, yn) ≥ lim sup
k→∞

f (xnk , ynk ) ≥ lim inf
k→∞ f (xnk , ynk ) ≥ f (x̄, x̄) = 0.

Remark 11.8. We will hereafter consider two important particular cases of the
equilibrium problem, namely the optimization problem and the variational in-
equality problem in which (B6) is satisfied under mild conditions.

1. Let f (x, y) = F(y) − F(x), where K is a nonempty closed convex subset
of H and F : H → R is a uniformly continuous function on K . Then f

satisfies (B6). Indeed, if ‖xn − yn‖ → 0, then by uniform continuity we
have F(xn) − F(yn) → 0, as n → ∞, hence

lim sup
n→∞

f (xn, yn) = lim
n→∞f (xn, yn) = 0.

2. In case of variational inequalities, i.e., f (x, y) := 〈Ax,y − x〉, where
A : K → H is an operator, assumption (B6) is satisfied if A is bounded
on bounded sets. Indeed, fix an element z ∈ C. Then

f (xn, yn) = 〈Axn, yn − xn〉 ≥ −‖Axn‖‖xn − yn‖
≥ −M‖xn − yn‖,

where M is a positive constant such that ‖Axn‖ ≤ M . Hence, by the as-
sumption

lim sup
n→∞

f (xn, yn) ≥ − lim
n→∞M‖xn − yn‖ = 0.

Remark 11.9. Condition (11.29) was introduced by Mastroeni [123] to prove
the convergence of the Auxiliary Principle Method for equilibrium problems.
Note that

1. If f (x, y) = 〈Ax,y − x〉, where A : K → H is Lipschitz continuous
with constant L > 0 then f satisfies the inequality (11.29) with constants
c1 = c2 = L

2 . Indeed, for each x, y, z ∈ K , we have

f (x, y) + f (y, z) − f (x, z) = 〈Ax,y − x〉 + 〈Ay, z − y〉 − 〈Ax, z − x〉
= −〈Ay − Ax,y − z〉
≥ −‖Ax − Ay‖∥∥y − z

∥∥
≥ −L‖x − y‖∥∥y − z

∥∥
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≥ −L

2
‖x − y‖2 − L

2
‖y − z‖2

= −c1‖x − y‖2 − c2‖y − z‖2.

Thus f satisfies the inequality (11.29).
2. If there exists � > 0 such that

|f (v,w) − f (x,w) − f (v, y) + f (x, y)|
≤ �‖v − x‖∥∥w − y

∥∥ ∀v,w,x, y ∈ K, (11.30)

then it is easy to see that f also satisfies the inequality (11.29). The inequal-
ity (11.30) is called Lipschitz type inequality and has been introduced by
Antipin [17]. In the framework of a finite dimensional space, he showed
that if f is a differentiable function whose partial derivative with respect
to the first variable satisfies the Lipschitz type inequality, then the inequal-
ity (11.30) holds. Therefore, the class of these functions also satisfies the
inequality (11.29).

In order to describe the announced projection algorithm for solving pseudo-
monotone equilibrium problems, recall that the NK(x) denotes the normal cone
of the set K at x ∈ K (see Chapter 1, Section 1.1), and the subdifferential of a
function g : H → (−∞,∞] at x ∈ H is defined as the set of all subgradients of
g at x:

∂g(x) := {w ∈ H : g(y) − g(x) ≥ 〈w,y − x〉 ∀y ∈ H }.
Let K be a nonempty closed convex subset of H . As well-known, for every
element x ∈ H , there exists a unique nearest point in K , denoted by PKx such
that1

||x − PCx|| = inf{||x − y|| : y ∈ C}.
PK is called the metric projection of H onto K . It is well known that PK can

be characterized either by property (a) or by (b) below.2

(a) 〈x − PCx,y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;
(b) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 for all x ∈ H , y ∈ C.

We also need the following auxiliary results.

Lemma 11.2. ([86]) Let C be a nonempty closed convex subset of a real Hilbert
space H and g : H → R a lower semicontinuous convex function. Then, x∗ is a
solution of the following convex problem

min{g(x) : x ∈ C}
if and only if

0 ∈ ∂g(x∗) + NC(x∗).
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Lemma 11.3. (Opial [135]) Let {xn} be a sequence of elements of the Hilbert
space H which converges weakly to x ∈ H . Then we have

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖ ∀y ∈ H \ {x}.

Now the algorithm (called algorithm (A) in the sequel) is as follows.

Step 1: Specify x0, y0 ∈ K and λ > 0;
Compute

x1 = argmin
y∈K

{
λf (y0, y) + 1

2
‖y − x0‖2

}
,

y1 = argmin
y∈K

{
λf (y0, y) + 1

2
‖y − x1‖2

}
.

Step 2: Given xn, yn and yn−1 (n ≥ 1), let wn ∈ ∂f (yn−1, .)(yn) such that
there exists an element qn ∈ NK(yn) satisfying

0 = λwn + yn − xn + qn, (11.31)

and construct the halfspace

Hn = {z ∈ H : 〈xn − λwn − yn, z − yn〉 ≤ 0}.
Compute

xn+1 = argmin
y∈Hn

{
λf (yn, y) + 1

2
‖y − xn‖2

}
,

yn+1 = argmin
y∈K

{
λf (yn, y) + 1

2
‖y − xn+1‖2

}
.

Step 3: If xn+1 = xn and yn = yn−1 then stop. Otherwise, set n := n + 1, and
return to Step 2.

The existence of wn ∈ ∂f (yn−1, .)(yn) and qn ∈ NK(yn) satisfying (11.31)
is guaranteed by Lemma 11.2. Hence, the algorithm (A) is well-defined.

The following lemmas are helpful to analyze the convergence of algo-
rithm (A).

Lemma 11.4. C ⊆ Hn, ∀n ≥ 1.

Proof. From (11.31), we obtain

qn = xn − λwn − yn ∀n ≥ 1,

where wn ∈ ∂f (yn−1, .)(yn) and qn ∈ NK(yn). Moreover, we have

NK(yn) = {q ∈ H : 〈q, y − yn〉 ≤ 0 ∀y ∈ K}.
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Therefore, we infer that

〈xn − λwn − yn, y − yn〉 ≤ 0 ∀y ∈ K ∀n ≥ 1.

This shows that K ⊆ Hn ∀n ≥ 1.

Lemma 11.5. If xn+1 = xn and yn = yn−1 then yn ∈ EP(f ).

Proof. If xn = xn+1 we have

0 ∈ λ∂f (yn, .)(xn+1) + xn+1 − xn + NHn(x
n+1) = λ∂f (yn, .)(xn) + NHn(x

n),

thus there exists wn
1 ∈ ∂f (yn, .)(xn) such that −λwn

1 ∈ NHn(x
n), that is,

〈wn
1 , z − xn〉 ≥ 0 for all z ∈ Hn. Hence,

λ(f (yn, z) − f (yn, xn)) ≥ λ〈wn
1 , z − xn〉 ≥ 0 ∀z ∈ Hn, (11.32)

With z ∈ Hn and yn = yn−1 we get

〈xn − λwn − yn, z − yn〉 ≤ 0, (11.33)

where wn ∈ ∂f (yn, .)(yn) is the chosen element satisfying (11.31). We deduce
that

λ(f (yn, z) − f (yn, yn)) ≥ λ〈wn, z − yn〉 ≥ 〈xn − yn, z − yn〉.
Taking into account that xn = xn+1 ∈ Hn we obtain

λf (yn, xn) ≥ λ〈wn,xn − yn〉 ≥ 〈xn − yn, xn − yn〉 ≥ 0. (11.34)

Combining (11.32) and (11.34) we have

λf (yn, z) ≥ λ(f (yn, z) − f (yn, xn)) ≥ 0 ∀z ∈ Hn.

Since K ⊆ Hn, we arrive at

f (yn, z) ≥ 0 ∀z ∈ K.

This means that yn ∈ EP(f ).

Remark 11.10. If xn+1 = yn+1 = yn then we also obtain yn ∈ EP(f ).

Proof. If xn+1 = yn+1 = yn then from the fact that yn is the unique solution to
the strongly convex problem

min
y∈K

{
λf (yn, y) + 1

2
‖y − yn‖2

}
,
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and Lemma 11.2, we deduce that

0 = λwn + yn − yn + q,

where wn ∈ ∂f (yn, .)(yn) and q ∈ NK(yn). Since

NK(yn) = {q ∈ H : 〈q, z − yn〉 ≤ 0 ∀z ∈ K},
we obtain

〈−λwn, z − yn〉 ≤ 0 ∀z ∈ K.

Moreover, we have

λ(f (yn, z) − f (yn, yn)) ≥ λ〈wn, z − yn〉 ≥ 0 ∀z ∈ K.

Taking into account that f (yn, yn) = 0 we arrive at

f (yn, z) ≥ 0 ∀z ∈ K.

This means that yn ∈ EP(f ).

The next statement plays a crucial role in the proof of the convergence re-
sults.

Lemma 11.6. Let {xn} and {yn} be the sequences generated by algorithm (A)
and z ∈ EP(f ). Then

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2)‖xn+1 − yn‖2 + 4λc1‖xn − yn−1‖2.

Proof. From xn+1 = argmin
y∈Hn

{
λf (yn, y) + 1

2
‖y − xn‖2

}
and Lemma 11.2, we

have

0 = λwn
1 + xn+1 − xn + qn

1 ,

where wn
1 ∈ ∂f (yn, .)(xn+1) and qn

1 ∈ NHn(x
n+1). From the definition

NHn(x
n+1) = {q ∈ H : 〈q, y − xn+1〉 ≤ 0 ∀y ∈ Hn},

and Lemma 11.4, it follows that

〈xn − xn+1 − λwn
1 , z − xn+1〉 ≤ 0.

Consequently,

〈xn − xn+1, z − xn+1〉 ≤ λ〈wn
1 , z − xn+1〉 ≤ λ(f (yn, z) − f (yn, xn+1)).
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We have

‖xn+1 − z‖2

= ‖xn − z‖2 + ‖xn+1 − xn‖2 + 2〈xn+1 − xn, xn − z〉
≤ ‖xn − z‖2 − ‖xn+1 − xn‖2 + 2〈xn+1 − xn, xn+1 − z〉
≤ ‖xn − z‖2 − ‖xn+1 − xn‖2 + 2λ(f (yn, z) − f (yn, xn+1)) (11.35)

= ‖xn − z‖2 − ‖xn+1 − xn‖2 + 2λ[f (yn−1, yn) − f (yn−1, xn+1)]
+ 2λ[f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)] + 2λf (yn, z)

= ‖xn − z‖2 − ‖xn+1 − xn‖2 + A + B + 2λf (yn, z),

where

A = 2λ[f (yn−1, yn) − f (yn−1, xn+1)],
B = 2λ[f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)].

From xn+1 ∈ Hn we obtain 〈xn − λwn − yn, xn+1 − yn〉 ≤ 0, where
wn ∈ ∂f (yn−1, .)(yn). Using the definition of the subdifferential we arrive at

f (yn−1, y) − f (yn−1, yn) ≥ 〈wn,y − yn〉 ∀y ∈ H.

Therefore,

2λ[f (yn−1, xn+1) − f (yn−1, yn)] ≥ 2λ〈wn,xn+1 − yn〉
≥ 2〈xn − yn, xn+1 − yn〉.

It follows that

A ≤ 2〈yn − xn, xn+1 − yn〉
= ‖xn+1 − xn‖2 − ‖xn − yn‖2 − ‖xn+1 − yn‖2.

By the assumption (B5), we get

B = 2λ[f (yn−1, xn+1) − f (yn−1, yn) − f (yn, xn+1)]
≤ 2λ[c1‖yn−1 − yn‖2 + c2‖yn − xn+1‖2].

On the other hand, we have

‖yn−1 − yn‖2 = ‖yn − xn‖2 + ‖xn − yn−1‖2 + 2〈yn − xn, xn − yn−1〉
≤ 2(‖yn − xn‖2 + ‖xn − yn−1‖2).

So, we obtain

B ≤ 2λ[2c1‖yn − xn‖2 + 2c1‖xn − yn−1‖2 + c2‖yn − xn+1‖2].
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It implies that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2)‖xn+1 − yn‖2

+ 4λc1‖xn − yn−1‖2 + 2λf (yn, z). (11.36)

It follows from z ∈ EP(f ) and the pseudo-monotonicity of f that
f (yn, z) ≤ 0. Then the inequality (11.36) implies

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2)‖xn+1 − yn‖2 + 4λc1‖xn − yn−1‖2. (11.37)

The proof is complete.

We are now in a position to give the convergence of the sequence generated
by algorithm (A).

Theorem 11.10. Let K be a nonempty closed convex subset of H . Let
f : H × H → R satisfying (B1)–(B7). Assume further that λ ∈ (

0, 1
2(2c1+c2)

)
.

Then the sequence {xn} generated by algorithm (A) converges weakly to a solu-
tion of the EP (11.25).

Proof. We split the proof into several steps:

Step 1: We first show the boundedness of the sequence {xn}. Let z ∈ EP(f ).
The inequality (11.37) can be rewritten as

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2 − 4λc1)‖xn+1 − yn‖2

+ 4λc1‖xn − yn−1‖2 − 4λc1‖xn+1 − yn‖2. (11.38)

We fix a number N ∈ N and consider the inequality (11.38) for all the num-
bers N,N + 1, ...,M , where M > N . Adding these inequalities, we obtain

‖xM+1 − z‖2 ≤ ‖xN − z‖2 − (1 − 4λc1)

M∑
n=N

‖xn − yn‖2

− (1 − 2λc2 − 4λc1)

M∑
n=N

‖xn+1 − yn‖2 + 4λc1‖xN − yN−1‖2

− 4λc1‖xM+1 − yM‖2 (11.39)

≤ ‖xN − z‖2 + 4λc1‖xN − yN−1‖2. (11.40)
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The inequality (11.40) leads to the boundedness of {xn}. Hence, there exists
x̄ ∈ H and a subsequence {xnk } of {xn} such that xnk ⇀ x̄. Moreover, from the
inequality (11.39), we obtain the convergence of the series

∞∑
n=1

‖xn+1 − yn‖2 and
∞∑

n=1

‖xn − yn‖2.

Thus, we have

lim
n→∞‖xn+1 − yn‖ = lim

n→∞‖xn − yn‖ = 0. (11.41)

Step 2: Let us show that x̄ ∈ EP(f ). It follows from (11.41) that ynk ⇀ x̄ ∈ K .
We have

‖yn − yn+1‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − yn+1‖. (11.42)

Combining (11.41) and (11.42) we deduce that

lim
n→∞‖yn − yn+1‖ = 0. (11.43)

Therefore, we get ynk+1 ⇀ x̄.
It follows from

yn+1 = argmin
y∈K

{
λf (yn, y) + 1

2
‖y − xn+1‖2

}

and Lemma 11.2 that there exist wn+1 ∈ ∂f (yn, .)(yn+1) and qn+1 ∈ NC(yn+1)

such that

0 = λwn+1 + yn+1 − xn+1 + qn+1.

From the definition of NK(yn+1), we deduce that

〈xn+1 − yn+1 − λwn+1, y − yn+1〉 ≤ 0 ∀y ∈ K,

or

〈xn+1 − yn+1, y − yn+1〉 ≤ 〈λwn+1, y − yn+1〉 ∀y ∈ K.

On the other hand, since wn+1 ∈ ∂f (yn, .)(yn+1), we get

〈wn+1, y − yn+1〉 ≤ f (yn, y) − f (yn, yn+1) ∀y ∈ K.

Hence, we arrive at

〈xn+1 − yn+1, y − yn+1〉
λ

≤ f (yn, y) − f (yn, yn+1) ∀y ∈ K. (11.44)
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Since the left-hand side converges to zero, replacing n in (11.44) by nk we
have by (11.43) and the assumption (B6) that

0 ≤ lim sup
k→∞

f (ynk , ynk+1)

= lim sup
k→∞

( 〈xnk+1 − ynk+1, y − ynk+1〉
λ

+ f (ynk , ynk+1)

)
≤ lim sup

k→∞
f (ynk , y) ∀y ∈ K.

Now under the condition (B3), we obtain, x̄ ∈ EP(f ).

Step 3: We claim that xn ⇀ x̄. On the contrary, assume that there is a subse-
quence {xmk

} such that xmk
⇀ x̃ as k → ∞ and x̄ �= x̃. Arguing as in Step 2, we

also obtain x̃ ∈ EP(f ). It follows from the inequality (11.38) and the condition
0 < λ < 1

2(2c1+c2)
that

‖xn+1 − z‖2 + 4λc1‖xn+1 − yn‖2

≤ ‖xn − z‖2 + 4λc1‖xn − yn−1‖2 ∀z ∈ EP(f ).

Thus, for all z ∈ EP(f ), the sequence {‖xn −z‖2 +4λc1‖xn −yn−1‖2} must
be convergent. From (11.41) we have

lim
n→∞‖xn − z‖2 ∈ R ∀z ∈ EP(f ).

By Lemma 11.3 (Opial lemma), we have

lim
n→∞‖xn − x̄‖2 = lim

k→∞‖xnk − x̄‖2

= lim inf
k→∞ ‖xnk − x̄‖2 < lim inf

k→∞ ‖xnk − x̃‖2

= lim
k→∞‖xnk − x̃‖2 = lim

n→∞‖xn − x̃‖2

= lim
k→∞‖xmk − x̃‖2 = lim inf

k→∞ ‖xmk − x̃‖2

< lim inf
k→∞ ‖xmk − x̄‖2

= lim
k→∞‖xmk − x̄‖2 = lim

n→∞‖xn − x̄‖2,

which is a contradiction. Thus, x̄ = x̃ and this completes the proof.

Next we show that algorithm (A) is able to provide us more: strong con-
vergence, if we slightly strengthen the assumptions. The further assumption
guaranteeing this is the nonemptiness of the interior of EP(f ).
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Theorem 11.11. Suppose that beside the assumptions of Theorem 11.10,
intEP(f ) �= ∅ holds. Then the sequence {xn} generated by algorithm (A) con-
verges strongly to a solution of the EP (11.25).

Proof. Take the sequence αn := 4λc1‖xn − yn−1‖2. Then from the inequal-
ity (11.38) we deduce that

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + αn − αn+1 ∀z ∈ EP(f ). (11.45)

Now fix an element u ∈ intEP(f ) and choose r > 0 such that ‖v − u‖ ≤ r

implies v ∈ EP(f ). Then for any xn+1 �= xn we have∥∥∥∥xn+1 −
(

u − r
xn+1 − xn

‖xn+1 − xn‖
)∥∥∥∥

2

≤
∥∥∥∥xn −

(
u − r

xn+1 − xn

‖xn+1 − xn‖
)∥∥∥∥

2

+ αn − αn+1. (11.46)

Simplifying the inequality (11.46), we obtain

2r‖xn+1 − xn‖ ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + αn − αn+1. (11.47)

Let M > N be arbitrary positive integers. By summing up the inequality
(11.47) from N to M − 1 we obtain

2r‖xM − xN‖ ≤ ‖xN − u‖2 − ‖xM − u‖2 + αN − αM. (11.48)

Taking into account that the sequence βn := ‖xn − u‖2 + αn converges, we
conclude that the sequence {xn} is Cauchy, therefore, (strongly) convergent.

Since we already showed that each weak cluster point of {xn} is a solution
of EP (Step 2 in the proof of Theorem 11.10), the proof is complete.

In the following theorem we will show that our method has at least R-linear
rate of convergence under a strong pseudo-monotonicity assumption of f . A bi-
function f : H × H → R is said to be γ -strongly pseudo-monotone on K ⊂ H

(see [63]) if there exists γ > 0 such that for any x, y ∈ K

f (x, y) ≥ 0 =⇒ f (y, x) ≤ −γ ‖x − y‖2.

Theorem 11.12. Let C be a nonempty closed convex subset of H . Let
f : H × H → R be a bifunction satisfying conditions (B1), (B4),
(B5), (B7) and be γ -strongly pseudo-monotone on K . Assume that λ ∈(

0,min
{

1
16γ

; 3
16c1

; 1
4c1+2c2+γ

})
. Then the sequence {xn} generated by the al-

gorithm (A) converges strongly to the unique solution x∗ of the EP (11.25).
Moreover, there exist M > 0 and μ ∈ (0,1) such that

‖xn+1 − x∗‖ ≤ Mμn ∀n ≥ 1. (11.49)
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Proof. The uniqueness follows by the strong pseudo-monotonicity. Using simi-
lar arguments as in the proof of Lemma 11.6, it follows from (11.36) that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2)‖xn+1 − yn‖2

+ 4λc1‖xn − yn−1‖2 + 2λf (yn, x∗)
≤ ‖xn − x∗‖2 − (1 − 4λc1)‖xn − yn‖2

− (1 − 2λc2)‖xn+1 − yn‖2

+ 4λc1‖xn − yn−1‖2 − 2γ λ‖yn − x∗‖2

= (1 − 2γ λ)‖xn − x∗‖2 − (1 − 4λc1 + 2γ λ)‖xn − yn‖+2

− (1 − 2λc2)‖xn+1 − yn‖2 + 4λc1‖xn − yn−1‖2

− 4γ λ〈yn − xn, xn − x∗〉.

Applying the inequality −4γ λ〈yn − xn, xn − x∗〉 ≤ 16γ 2λ2‖xn − x∗‖2 +
1
4‖yn − xn‖2, we obtain

‖xn+1 − x∗‖2 ≤ (1 − 2γ λ + 16γ 2λ2)‖xn − x∗‖2

− (
3

4
− 4λc1 + 2γ λ)‖xn − yn‖2

+ 4λc1‖xn − yn−1‖2 − (1 − 2λc2)‖xn+1 − yn‖2.

Taking into account the fact that λ ≤ min
{

1
16γ

; 3
16c1

}
, we have

‖xn+1 − x∗‖2 ≤ (1 − γ λ)‖xn − x∗‖2 + 4λc1‖xn − yn−1‖2

− (1 − 2λc2)‖xn+1 − yn‖2

= (1 − γ λ)

(
‖xn − x∗‖2 + 4λc1

1 − γ λ
‖xn − yn−1‖2

)

− 4λc1

1 − γ λ
‖xn+1 − yn‖2

−
(

1 − 2λc2 − 4λc1

1 − γ λ

)
‖xn+1 − yn‖2. (11.50)

From the condition λ < 1
4c1+2c2+γ

, it is easy to see that 1−2λc2 − 4λc1
1−γ λ

> 0.
Hence

‖xn+1 − x∗‖2 + 4λc1

1 − γ λ
‖xn+1 − yn‖2

≤ (1 − γ λ)

(
‖xn − x∗‖2 + 4λc1

1 − γ λ
‖xn − yn−1‖2

)
.
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Let μ := 1 − γ λ ∈ (0,1), M := ‖x1 − x∗‖2 + 4λc1
1−γ λ

‖x1 − y0‖2. From the last
inequality and by induction, we arrive at

‖xn+1 − x∗‖2 ≤ ‖xn+1 − x∗‖2 + 4λc1

1 − γ λ
‖xn+1 − yn‖2 ≤ Mμn.

This finishes the proof of Theorem 11.12.

11.4.2 Applications to Variational Inequalities

Recall that if the equilibrium bifunction f is defined by f (x, y) = 〈Ax,y − x〉
for every x, y ∈ K , with A : H → H , then the equilibrium problem (11.25)
reduces to the variational inequality problem (VIP):

find x∗ ∈ K such that 〈Ax∗, y − x∗〉 ≥ 0 ∀y ∈ K. (11.51)

(See also (2.18) in Chapter 2.)
The set of solutions of the problem (11.51) is denoted by VI(K,A).
In this situation, algorithm (A) reduces to Algorithm 1 of Malitsky and Se-

menov [122], which is known as a subgradient extragradient type algorithm
for monotone variational inequalities. In the sequel we shall refer to it as algo-
rithm (B).

Step 1: Specify x0, y0 ∈ K and λ > 0;
Compute {

x1 = PK(x0 − λAy0),

y1 = PK(x1 − λAy0).

Step 2: Given xn, yn and yn−1, construct the halfspace

Hn = {z ∈ H : 〈xn − λAyn−1 − yn, z − yn〉 ≤ 0}.

Step 3: Compute {
xn+1 = PHn(x

n − λAyn),

yn+1 = PK(xn+1 − λAyn).

Step 4: If xn+1 = xn and yn = yn−1 then stop. Otherwise, set n := n + 1, and
return to Step 2.

To guarantee that f is jointly weakly lower semicontinuous on H × H , the
authors in [169] required the weak-to-strong continuity of A : H → H , i.e., A is
such that for any sequence {xn} ⊂ H ,

xn ⇀ x =⇒ Axn → Ax. (11.52)
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As indicated before, we do not need anymore the joint weak lower semi-
continuity of f , but only the weak upper semicontinuity of f (·, y). To this
end, we remind the following concept for single-valued operators (called
F -hemicontinuity in [125]).

Definition 11.2. Let X be a normed space with X∗ its dual space and K a closed
convex subset of X. The mapping A : K → X∗ is called F -hemicontinuous iff
for all y ∈ K , the function x �→ 〈A(x), x − y〉 is weakly lower semicontinu-
ous on K (or equivalently, x �→ 〈A(x), y − x〉 is weakly upper semicontinuous
on K).

Clearly, any weak-to-strong continuous mapping is also F -hemicontinuous,
but vice-versa not, as the following example shows.

Example 11.5. ([102]) Consider the Hilbert space l2 = {x = (xi)i∈N :
∞∑
i=1

|xi |2 < ∞} and A : l2 → l2 be the identity operator. Take an arbitrary se-

quence {xn} ⊆ l2 converging weakly to x. Since the function x �−→ ‖x‖2 is
continuous and convex, it is weakly lower semicontinuous. Hence,

‖x‖2 ≤ lim inf
n→∞ ‖xn‖2,

which clearly implies

〈x, x − y〉 ≤ lim inf
n→∞ 〈xn, xn − y〉,

for all y ∈ l2, i.e., A is F -hemicontinuous.
On the other hand, we take xn = en = (0,0, ...,0,1,0, ...) with 1 in the

nth position. It is obvious that en ⇀ 0, but {en} does not have any strongly
convergent subsequence, as ‖en − em‖ = √

2 for m �= n. Therefore, A is not
weak-to-strong continuous.

The next result, establishing weak convergence of algorithm (B) is a conse-
quence of Theorem 11.10.

Corollary 11.8. Let K be a nonempty closed convex subset of H . Let
A : H → H be a pseudo-monotone, F -hemicontinuous, Lipschitz continuous
mapping with constant L > 0 such that VI(C,A) �= ∅. Let {xn}, {yn} be the se-
quences generated by algorithm (B) with 0 < λ < 1

3L
. Then the sequences {xn}

and {yn} converge weakly to the same point x∗ ∈ VI(C,A).

Proof. For each pair x, y ∈ K , we define

f (x, y) := 〈Ax,y − x〉.
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From the assumptions, it is easy to check that all assumptions of Theo-
rem 11.10 are satisfied. Note that Step 3 of algorithm (B) can be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1 = argmin
y∈Hn

{
λ〈Ayn, y − yn〉 + 1

2
‖y − xn‖2

}
,

yn+1 = argmin
y∈K

{
λ〈Ayn, y − yn〉 + 1

2
‖y − xn+1‖2

}
.

It follows that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1 = argmin
y∈Hn

{
1

2
‖y − (xn − λAyn)‖2

}
= PHn(x

n − λAyn),

yn+1 = argmin
y∈K

{
1

2
‖y − (xn+1 − λAyn)‖2

}
= PK(xn+1 − λAyn).

By Theorem 11.10, the sequences {xn} and {yn} converge weakly to
x∗ ∈ EP(f ). It means that the sequences {xn} and {yn} converge weakly to
x∗ ∈ VI(C,A). Hence, the result is true and the proof is complete.

Note that in order to apply Corollary 11.8 one needs to know the Lipschitz
constant L. When A is Lipschitz continuous but the Lipschitz constant is un-
known, or cannot be calculated easily, we propose the following self-adaptive
algorithm (algorithm (C)).

Step 1: Take x0, y0 ∈ K , μ ∈ (0, 1
3 ). Set n = 0.

Compute {
x1 = PK(x0 − Ay0),

y1 = PK(x1 − Ay0).

Step 2: Given xn, yn and yn−1 (n ≥ 1), define

λn =
⎧⎨
⎩μ

‖yn−yn−1‖
‖Ayn−Ayn−1‖ if ‖Ayn − Ayn−1‖ �= 0;

1 otherwise,
(11.53)

and construct the halfspace

Hn = {z ∈ H : 〈xn − λnAyn−1 − yn, z − yn〉 ≤ 0}.

Compute {
xn+1 = PHn

(xn − λnAyn),

yn+1 = PK(xn+1 − λnAyn).
(11.54)
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Step 3: If xn+1 = xn and yn = yn−1 then stop. Otherwise, set n := n + 1, and
return to Step 2.

Remark 11.11. Since A is Lipschitz continuous with constant L, from (11.53),
we have

λn ≥ min{1; μ

L
}. (11.55)

In what follows, we assume that

(C1) A is pseudo-monotone on H ;
(C2) A is F -hemicontinuous, Lipschitz continuous but the Lipschitz constant

L is unknown;
(C3) VI(K,A) �= ∅.

We are now in a position to give the weak convergence of the sequence
generated by algorithm (C).

Theorem 11.13. Assume that A : H → H is a mapping satisfying condi-
tions (C1)–(C3). Then the sequences {xk} and {yk} converge weakly to the same
element of VI(K,A).

Proof. The proof is divided into two steps:

Step 1: We show that for each z ∈ VI(K,A), the following inequality holds:

∥∥∥xn+1 − z

∥∥∥2 ≤ ∥∥xn − z
∥∥2 − (1 − 2μ)

∥∥∥xn+1 − yn
∥∥∥2

− (1 − μ)
∥∥xn − yn

∥∥2 + μ

∥∥∥xn − yn−1
∥∥∥2

. (11.56)

Indeed, since z ∈ VI(K,A) ⊂Hn and xn+1 = PHn
(xn − λnAyn), the character-

ization (b) of the metric projection provides

∥∥∥xn+1 − z

∥∥∥2 ≤ ∥∥xn − λnAyn − z
∥∥2 −

∥∥∥xn − λnAyn − xn+1
∥∥∥2

= ∥∥xn − z
∥∥2 −

∥∥∥xn − xn+1
∥∥∥2 − 2λn

〈
Ayn, xn+1 − z

〉
. (11.57)

It follows from the pseudo-monotonicity of A and z ∈ VI(K,A) that
〈Ayn, yn − z〉 ≥ 0. Adding this term to the right-hand side of (11.57) we ob-
tain∥∥∥xn+1 − z

∥∥∥2 ≤ ∥∥xn − z
∥∥2 −

∥∥∥xn − xn+1
∥∥∥2 − 2λn

〈
Ayn, xn+1 − yn

〉
= ∥∥xn − z

∥∥2 − ∥∥xn − yn
∥∥2 −

∥∥∥xn+1 − yn
∥∥∥2 − 2

〈
xn − yn, yn − xn+1

〉
− 2λn

〈
Ayn, xn+1 − yn

〉
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= ∥∥xn − z
∥∥2 − ∥∥xn − yn

∥∥2 −
∥∥∥xn+1 − yn

∥∥∥2

+ 2λn

〈
Ayn−1 − Ayn, xn+1 − yn

〉
+ 2

〈
xn − λnAyn−1 − yn, xn+1 − yn

〉
.

Since xn+1 ∈ Hn, we have
〈
xn − λnAyn−1 − yn, xn+1 − yn

〉≤ 0. The fourth
term of the above inequality is estimated as follows.

2λn

〈
Ayn−1 − Ayn, xn+1 − yn

〉
≤ 2μ

∥∥∥yn−1 − yn
∥∥∥∥∥∥xn+1 − yn

∥∥∥
≤ 2μ

(∥∥∥yn−1 − xn
∥∥∥+ ∥∥xn − yn

∥∥)∥∥∥xn+1 − yn
∥∥∥

≤ μ

(∥∥∥yn−1 − xn
∥∥∥2 + 2

∥∥∥xn+1 − yn
∥∥∥2 + ∥∥xn − yn

∥∥2
)

.

Therefore, we get the desired inequality (11.56).

Step 2: We prove that the sequence {xk} converges weakly to x̄ ∈ VI(K,A).
First, it follows from (11.56) that

∥∥∥xn+1 − z

∥∥∥2 ≤ ∥∥xn − z
∥∥2 − (1 − 3μ)

∥∥∥xn+1 − yn
∥∥∥2

− (1 − μ)
∥∥xn − yn

∥∥2 + μ

∥∥∥xn − yn−1
∥∥∥2 − μ

∥∥∥xn+1 − yn
∥∥∥2

.

(11.58)

We fix a number N ∈ N and consider the inequality (11.58) for all the num-
bers N,N + 1, ...,M , where M > N . Adding these inequalities, we obtain

‖xM+1 − z‖2 ≤ ‖xN − z‖2 − (1 − μ)

M∑
n=N

‖xn − yn‖2

− (1 − 3μ)

M∑
n=N

‖xn+1 − yn‖2

+ μ‖xN − yN−1‖2 − μ‖xM+1 − yM‖2

≤ ‖xN − z‖2 + μ‖xN − yN−1‖2.

Thus we obtain the boundedness of the sequences {xn}, {yn}, and then, as in
Step 1 in the proof of Theorem 11.10,

lim
n→∞‖xn+1 − yn‖ = lim

n→∞‖xn − yn‖ = 0. (11.59)

Consequently,

lim
n→∞‖yn+1 − yn‖ = 0. (11.60)
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We now choose a subsequence {xnk
} of {xn} such that xnk

⇀ x̄. By (11.59),
ynk ⇀ x̄ and x̄ ∈ K . For all x ∈ K with allowance for characterization (a) of the
metric projection and (11.54), we get〈

ynk+1 − xnk+1 + λnk
Aynk , y − ynk+1

〉
≥ 0 ∀y ∈ K.

Hence,

0 ≤
〈
ynk+1 − xnk+1 + λnk

Aynk , y − ynk+1
〉
=
〈
ynk+1 − xnk+1, y − ynk+1

〉
+ λnk

〈
Aynk , ynk − ynk+1

〉
+ λnk

〈
Aynk , y − ynk

〉 ∀y ∈ K.

Dividing both sides of the last inequality by λnk
we get

0 ≤
〈
ynk+1 − xnk+1, y − ynk+1

〉
λnk

+
〈
Aynk , ynk − ynk+1

〉
+ 〈

Aynk , y − ynk
〉 ∀y ∈ K.

Passing to the limit for k tending to ∞ in the above inequality and us-
ing weak lower semicontinuity of the function x �→ 〈Ax,x − y〉 together
with (11.55), (11.59) and (11.60) we obtain

〈Ax̄, y − x̄〉 ≥ 0 ∀y ∈ K,

i.e., x̄ ∈ VI(K,A).
Now, in view of (11.58) we have∥∥∥xn+1 − z

∥∥∥2 + μ

∥∥∥xn+1 − yn
∥∥∥2 ≤ ∥∥xn − z

∥∥2 + μ

∥∥∥xn − yn−1
∥∥∥2

. (11.61)

Therefore the sequence {‖xn − z‖2 + μ
∥∥xn − yn−1

∥∥2} is convergent.
From (11.59) we have

lim
n→∞‖xn − z‖2 ∈R.

We claim that xn ⇀ x̄. On the contrary, assume that there is a subsequence
{xmk

} such that xmk
⇀ x̃ as k → ∞ and x̄ �= x̃. Using the same argument as

above, we also obtain x̃ ∈ VI(K,A). Finally, as in Step 3 of Theorem 11.10, we
obtain xn ⇀ x̄ by Lemma 11.3 (Opial’s lemma). The convergence of {yn} to x̄

is guaranteed by (11.59). This finishes the proof of Theorem 11.13.

11.4.3 Numerical Results

In this subsection some numerical results will be presented in order to test al-
gorithm (A) and compare it with other similar algorithms within the literature.
The MATLAB codes run on a PC (with Intel®Core2TM Quad Processor Q9400
2.66Ghz 4GB Ram) under MATLAB Version 7.11 (R2010b).



372 Equilibrium Problems and Applications

TABLE 11.1 The parameters used in Example 11.6

j α̂j β̂j γ̂j ᾱj β̄j γ̄j

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000

2 0.0350 1.75 0.00 1.7500 1.0000 28.5714

3 0.1250 1.00 0.00 1.0000 1.0000 8.0000

4 0.0116 3.25 0.00 3.2500 1.0000 86.2069

5 0.0500 3.00 0.00 3.0000 1.0000 20.0000

6 0.0500 3.00 0.00 3.0000 1.0000 20.0000

Example 11.6. (Nash-Cournot equilibrium models of electricity markets) In
this example, we apply the proposed algorithm to a Cournot-Nash equilibrium
model of electricity markets. In this model, it is assumed that there are three
electricity companies i (i = 1,2,3). Each company i owns several generat-
ing units with index set Ii . In this example, suppose that I1 = {1}, I2 = {2,3},
I3 = {4,5,6}. Let xj be the power generation of unit j (j = 1, . . . ,6) and as-
sume that the electricity price p can be expressed by:

p = 378.4 − 2
6∑

j=1

xj .

The cost of a generating unit j is defined as cj (xj ) := max{ĉj (xj ), c̄j (xj )}
with

ĉj (xj ) := α̂j

2
x2
j + β̂j xj + γ̂j

and

c̄j (xj ) := ᾱj xj + β̄j

β̄j + 1
γ̄

−1/β̄j

j (xj )
(β̄j +1)/β̄j ,

where the parameters α̂j , β̂j , γ̂j , ᾱj , β̄j and γ̄j are given in Table 11.1.
Suppose that the profit of the company i is given by

fi(x) := p
∑
j∈Ii

xj −
∑
j∈Ii

cj (xj ) =
(

378.4 − 2
6∑

l=1

xl

)∑
j∈Ii

xj −
∑
j∈Ii

cj (xj ),

where x=(x1,...,x6)
T subject to the constraint x∈C:=

{
x∈R6:xmin

j ≤xj≤xmax
j

}
with xmin

j and xmax
j given in Table 11.2.

We define the equilibrium bifunction f by

f (x, y) :=
3∑

i=1

(ϕi(x, x) − ϕi(x, y)) ,
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TABLE 11.2 The parameters used in Example 11.6

j 1 2 3 4 5 6

xmin
j

0 0 0 0 0 0

xmax
j

80 80 50 55 30 40

where

ϕi(x, y) :=
⎡
⎣378,4 − 2

⎛
⎝∑

j /∈Ii

xj +
∑
j∈Ii

yj

⎞
⎠
⎤
⎦∑

j∈Ii

yj −
∑
j∈Ii

cj (yj ).

Then the Nash-Cournot equilibrium models of electricity markets can be
reformulated as an equilibrium problem (see [111]):

find x∗ ∈ C such that f (x∗, y) ≥ 0 ∀y ∈ C. (EP(f,C))

Similar to [149], we rewrite the function f as

f (x, y) = 〈(A + B)x + By + a, y − x〉 + c(y) − c(x), (11.62)

where

A := 2
3∑

i=1

q̄i (qi)T , B := 2
3∑

i=1

qi(qi)T ,

a := −378.4
3∑

i=1

qi, c(x) :=
6∑

j=1

cj (xj ).

Here the vectors qi := (qi
1, . . . , q

i
6) and q̄i := (q̄i

1, . . . , q̄
i
6) are defined by

qi
j =

{
1 if j ∈ Ii

0 if j /∈ Ii

and q̄i
j = 1 − qi

j for all i = 1,2,3 and j = 1, . . . ,6. However, the function f

defined by (11.62) is not pseudo-monotone. Thanks to Lemma 7 in [149], the
problem EP(f,C) is equivalent to the problem EP(f1,C) where the function f1
is given by

f1(x, y) = 〈A1x + B1y + a, y − x〉 + c(y) − c(x),

with A1 := A + 3
2B and B1 := 1

2B. It is easy to see that the function f1 satisfies
all assumptions (B1)–(B7). We will apply the algorithm (A) to solve the prob-
lem EP(f1,C). Choose λ = 0.02, x0 = (0, . . . ,0)T and the stopping criteria
‖xn−1 − xn‖ < 10−4. The results are tabulated in Table 11.3.
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TABLE 11.3 The results of algorithm (A) in Example 11.6

Iter. xn
1 xn

2 xn
3 xn

4 xn
5 xn

6

0 0 0 0 0 0 0

1 7.2329 6.9704 6.9729 6.6977 6.6976 6.6976

2 11.1446 10.4950 10.4936 9.8546 9.8519 9.8519

3 14.8503 13.7060 13.6949 12.6240 12.6166 12.6166

4 17.7731 16.0636 16.0387 14.5041 14.4906 14.4906

5 20.2529 17.9295 17.8874 15.8785 15.8578 15.8578

6 22.3430 19.3752 19.3134 16.8342 16.8056 16.8056

7 24.1385 20.5089 20.4254 17.4901 17.4531 17.4531

8 25.6973 21.3988 21.2920 17.9217 17.8760 17.8760

9 27.0678 22.1005 21.9693 18.1894 18.1347 18.1347

. . . . . . . . . . . . . . . . . . . . .

3568 46.6551 32.1196 15.0304 23.4718 11.6675 11.6675

TABLE 11.4 The accuracy of the three algorithms in Example 11.6

Algorithm (A) Algorithm 1 [149] Algorithm 2 [149]

‖x∗ − proxf1
(x∗)‖ 0.0026 0.0088 0.0915

No. iter. 3568 4416 6850

The approximate solution obtained after 3568 iterations is

x∗ = (46.6551 32.1196 15.0304 23.4718 11.6675 11.6675)T .

We note that this result is slightly different from the ones obtained by Algo-
rithms 1 and 2 in [149]. To check the accuracy of these algorithms, we will use
the quantity ‖x∗ − proxf1

(x∗)‖, where proxf1
is the proximity operator of f1,

i.e.,

proxf1
:R6 → R

6, proxf1
(x) := argmin

{
λf1(x, y) + 1

2
‖y − x‖2 : y ∈ C

}
.

It is easy to see that x∗ is a solution of problem EP(f1,C) if and only
if x∗ = proxf1

(x∗). Hence, the smaller the value of ‖x∗ − proxf1
(x∗)‖ is, the

more accurate the algorithm is. Choosing λ = 0.05, the comparison results are
reported in Table 11.4.

From Table 11.4, we observe that in this example, the result obtained by our
algorithm is more accurate than by Algorithms 1 and 2 in [149] even the new
algorithm requires fewer iterations.
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TABLE 11.5 Comparison of the three algorithms in Example 11.7

EGM Popov’s Alg. Alg. (A)

CPU
times (s)

Iter. CPU
times (s)

Iter. CPU
times (s)

Iter.

p = 30, m = 20 1.2563 96 1.3752 96 1.1430 97

p = 30, m = 30 2.0369 100 1.9203 100 1.3180 102

p = 50, m = 20 3.6452 155 3.2950 155 2.6257 157

p = 50, m = 30 4.1871 154 3.7750 154 3.0050 156

p = 50, m = 50 5.9796 150 5.0016 150 4.1230 152

p = 50, m = 100 6.0657 148 5.6674 148 4.2408 151

p = 50, m = 200 9.3348 137 8.6526 138 6.1459 141

p = 50, m = 500 9.5166 135 8.8857 137 5.8242 142

p = 100, m = 100 30.0713 299 29.5453 299 20.7186 303

p = 100, m = 200 38.1460 294 37.3275 294 24.8415 299

p = 100, m = 500 55.2270 274 52.9948 275 33.5809 281

p = 100, m = 1000 70.3557 260 58.5535 263 34.5569 270

Example 11.7. In this example, we compare the performance of the proposed
algorithm with the extragradient algorithm given in [150] and with Popov’s ex-
tragradient algorithm [120]. Let H =R

p and

f :Rp ×R
p →R, f (x, y) = 〈Ax + By,y − x〉 ∀x, y ∈R

p,

where A and B are matrices defined by B=MT .M+pI , A=B+NT .N+2pI ;
M and N are p × p matrices; M(i, j) and N(i, j) ∈ (0,1) are randomly gener-
ated, and I is the identity matrix. The feasible set C is C := {x ∈R

p : Dx ≤ d},
where D is an m × p matrix and d = (d1, . . . , dm)T with D(i, j), di ∈ (0,1)

randomly generated for all i = 1, . . . ,m, j = 1, . . . , p.
We can see that all assumptions (B1)–(B7) are satisfied and the equilibrium

problem (11.25) has a unique solution x∗ = (0, . . . ,0)T . We will apply algo-
rithm (A) (Alg. (A)), the extragradient method described in (11.28) (EGM) and
Popov’s extragradient algorithm [120] (Popov’s Alg.) to solve this problem. To
run these three algorithms, we use the same parameter λ = 1

2(‖A‖+‖B‖)+4 , the

same starting point x0, which is randomly generated, and the same stopping
criteria ‖xn − x∗‖ < 10−3.

We have generated some random samples with different choices of m and p.
The results are tabulated in Table 11.5.

From Table 11.5, we observe that the time consumed by algorithm (A) is less
than that of (EGM) and of Popov’s extragradient algorithm, even when the pro-
posed algorithm requires more iterations. It is clearly shown that algorithm (A)
performs better than the two known algorithms, especially when the function f
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and the feasible set K are more complicated (when m and p are large). This hap-
pens because as mentioned in Remark 11.7, at each iteration of algorithm (A),
we solve one subprogram over a halfspace (one constraint) instead of the feasi-
ble set K (many constraints) as in the considered two algorithms.

It is worth noting that our proposed algorithm computes the value of the
bifunction f in the first argument only one time at each iteration, and hence,
the new method is very effective when the equilibrium bifunction f is compli-
cated and computationally expensive. We will illustrate this advantage by the
following example.

Example 11.8. Consider the problem (11.25) where

f :Rp ×R
p →R, f (x, y) = 〈Ax,y − x〉 (11.63)

and K := {(x1, . . . , xp) ∈ R
p :

p∑
i=1

xi = 0}. Here A is the proximity operator of

the function g(x) = ‖x‖4, namely,

A : Rp → R
p, A(x) := argmin

{
‖y‖4 + 1

2
‖y − x‖2 : y ∈R

p

}
∀x ∈R

p.

We note that A(x) does not have a closed form and it can be computed
efficiently, for example, by the MATLAB Optimization Toolbox, however, its
computation is expensive. It is easy to see that all assumptions (B1)–(B7) are
satisfied and the problem (11.25) has a unique solution x∗ = (0, . . . ,0)T . We
will apply algorithm (A) (Alg. (A)), the extragradient method (11.28) (EGM)
and the subgradient extragradient method (SEM) in [53] to solve this problem.
As in Example 11.7, we use the same parameter λ = 0.1, the stopping criteria
‖xn − x∗‖ < 10−4 and the same starting point x0, which is randomly generated.

In our experiments, we test the different choices of x0 for both cases p = 100
and p = 500. The comparison results are given in Tables 11.6 and 11.7. As
shown in this example, our algorithm has much lower time consumption than
the other two, although the number of iterations in all of them is almost the
same.

To investigate the effect of the step size λ, we implement the three methods,
using different step sizes. The results are reported in Table 11.8. We can see that
the number of iterations and computational time depend crucially on the step
size.

Next, we compare the performance of algorithm (A) with the modified
projection-type method (MPM) (Algorithm 3.2 in [162]). The parameters are
chosen as follows.

• In algorithm (A), μ = 1
4 ;

• In MPM, P is the identity matrix, θ = 1.5, ρ = 0.5, β = 0.9, α = 1.



Regularization and Numerical Methods for Equilibrium Problems Chapter | 11 377

TABLE 11.6 Comparison of the three algorithms in Example 11.8: the case
p = 100

Ex. 1 Ex. 2 Ex. 3

CPU
times (s)

Iter. CPU
times (s)

Iter. CPU
times (s)

Iter.

EGM 9.9265 136 9.7181 136 9.5595 134

SEM 8.8113 136 8.5276 136 8.6867 134

Alg. (A) 4.3703 136 3.3658 89 3.5988 133

TABLE 11.7 Comparison of the three algorithms in Example 11.8: the case
p = 500

Ex. 1 Ex. 2 Ex. 3

CPU
times (s)

Iter. CPU
times (s)

Iter. CPU
times (s)

Iter.

EGM 65.1697 171 65.5159 171 68.6349 173

SEM 64.4563 172 66.3343 171 68.5598 173

Alg. (A) 31.8188 172 32.6529 171 33.0386 173

TABLE 11.8 Performance of the three algorithms with different step sizes

Alg. (A) SEM EGM

CPU
times (s)

Iter. CPU
times (s)

Iter. CPU
times (s)

Iter.

λ = 0.01 88.1636 1438 180.1058 1439 180.2931 1439

λ = 0.05 17.8215 289 34.9525 289 35.0651 289

λ = 0.1 8.3393 144 17.1418 145 16.9643 145

λ = 0.2 4.9168 79 9.7717 80 9.4802 80

λ = 0.3 3.0769 54 6.5293 56 6.3676 56

TABLE 11.9 Comparison of algorithm (A) with the Modified
projection method in [162]

MPM Algorithm (A)

CPU times (s) Iter. CPU times (s) Iter.

n = 3 2.5911 54 0.5307 38

n = 10 11.1413 123 0.5954 38

n = 50 16.3885 141 0.6245 38

n = 100 41.1386 162 0.9394 39

n = 200 79.7956 201 1.5275 40
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We apply the two algorithms for solving (11.63) with the same starting point x0,
which is randomly generated and use the same stopping rule ‖xn − x∗‖ < 10−4.
The results are presented in Table 11.9. As we can see from this table, the com-
putational time of MPM is much greater than that of our method. This happens
because at each iteration of the modified projection method, to find the largest
α ∈ {αi−1, αi−1β,αi−1β

2, . . .} satisfying

α(xi − z(α))T (A(xi) − A(zi(α))) ≤ (1 − ρ)‖xi − zi(α)‖2,

we have to compute the value of the mapping A many times. As we noted, this
procedure is computationally very expensive.

NOTES
1. This fact has been proved in finite dimensions in Chapter 3, Lemma 3.2.
2. These properties have been proved in Chapter 3, Lemma 3.3.



Appendix A

Ekeland Variational Principle
If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.

John von Neumann (1903–1957)

The Ekeland1 variational principle [70] was established in 1974 and is the non-
linear version of the Bishop-Phelps theorem [141]. As pointed out in [71],
“the grandfather of it all is the celebrated 1961 theorem of Bishop and Phelps
(see [41,141]) that the set of continuous linear functionals on a Banach space
E which attain their maximum on a prescribed closed convex bounded subset
X ⊂ E is norm-dense in E∗”.

The main feature of Ekeland’s variational principle is how to use the norm
completeness and a partial ordering to obtain a point where a linear functional
achieves its supremum on a closed bounded convex set. For any bounded from
below, lower semicontinuous functional f , the Ekeland variational principle
provides a minimizing sequence whose elements minimize an appropriate se-
quence of perturbations of f which converges locally uniformly to f .

Roughly speaking, the Ekeland variational principle states that there exist
points which are almost points of minima and where the “gradient” is small.
In particular, it is not always possible to minimize a nonnegative continuous
function on a complete metric space. A major consequence of the Ekeland
variational principle is that even if it is not always possible to minimize a non-
negative C1 functional f on a Banach space, there is always a minimizing
sequence (un)n≥1 such that f ′(un) → 0 as n → ∞. The Ekeland variational
principle is a fundamental tool that is effective in numerous situations, which
led to many new results and strengthened a series of known results in various
fields of analysis, geometry, the Hamilton-Jacobi theory, extremal problems, the
Ljusternik-Schnirelmann theory, etc.

In what follows, we state the original version of the Ekeland variational prin-
ciple, which is valid in the general framework of complete metric spaces. This
property asserts that in mathematical analysis there exist nearly optimal solu-
tions to some optimization problems. Ekeland’s variational principle can be used
when the lower level set of minimization problems is not compact, so that the
Bolzano-Weierstrass theorem cannot be applied.

Theorem A.1. Let (X,d) be a complete metric space and let f : X → R ∪
{∞} be a lower semicontinuous, bounded from below functional with D(f ) =

379
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{u ∈ X : f (u) < ∞} 
= ∅. Then for every ε > 0, λ > 0, and u ∈ X such that

f (u) ≤ inf
X

f + ε

there exists an element v ∈ X such that

(a) f (v) ≤ f (u);
(b) d(v,u) ≤ 1

λ
;

(c) f (w) > f (v) − ελd(w,v) for each w ∈ X \ {v}.
Proof. It suffices to prove our assertion for λ = 1. The general case is then
obtained by replacing d with an equivalent metric λd . We define the relation on
X by:

w ≤ v ⇐⇒ f (w) + εd(v,w) ≤ f (v).

We first observe that this relation defines a partial ordering on X. Next, we
construct inductively a sequence {un} ⊂ X as follows: u0 = u, and assuming
that un has been defined, we set

Sn = {w ∈ X : w ≤ un}
and choose un+1 ∈ Sn so that

f (un+1) ≤ inf
Sn

f + 1

n + 1
.

Since un+1 ≤ un then Sn+1 ⊂ Sn and by the lower semicontinuity of f ,
Sn is closed. We now show that diamSn → 0. Indeed, if w ∈ Sn+1, then
w ≤ un+1 ≤ un and consequently,

εd(w,un+1) ≤ f (un+1) − f (w) ≤ inf
Sn

f + 1

n + 1
− inf

Sn

f = 1

n + 1
.

This estimate implies that

diamSn+1 ≤ 2

ε(n + 1)

and our claim follows. The fact that X is complete implies that ∩n≥0Sn = {v}
for some v ∈ X. In particular, v ∈ S0, that is, v ≤ u0 = u and hence

f (v) ≤ f (u) − εd(u, v) ≤ f (u)

and moreover,

d(u, v) ≤ 1

ε
(f (u) − f (v)) ≤ 1

ε
(inf

X
f + ε − inf

X
f ) = 1.
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FIGURE A.1 Geometric illustration of the Ekeland variational principle

Now, let w 
= v. To complete the proof we must show that w ≤ v implies w = v.
If w ≤ v, then w ≤ un for each integer n ≥ 0, that is, w ∈ ∩n≥0Sn = {v}. So,
w � v, which is actually (c).

In R
N equipped with the Euclidean metric, properties (a) and (c) in the state-

ment of the Ekeland variational principle are completely intuitive as Fig. A.1
shows. Indeed, assuming that λ = 1, let us consider a cone lying below the
graph of f , with slope +1, and vertex projecting onto u. We move up this cone
until it first touches the graph of f at some point (v, f (v)). Then the point v

satisfies both (a) and (c).
In the case when X =R

N we can give the following simple alternative proof
of the Ekeland variational principle, which is due to Hiriart-Urruty [88]. Indeed,
consider the perturbed functional

g(w) := f (w) + ελ‖w − u‖ , w ∈ R
N .

Since f is lower semicontinuous and bounded from below, then g is lower
semicontinuous and lim‖w‖→∞ g(w) = +∞. Therefore there exists v ∈ R

N

minimizing g on R
N such that for all w ∈R

N

f (v) + ελ‖v − u‖ ≤ f (w) + ελ‖w − u‖ . (A.1)

By letting w = u we find

f (v) + ελ‖v − u‖ ≤ f (u)

and (a) follows. Now, since f (u) ≤ infRN f + ε, we also deduce that ‖v − u‖ ≤
1/λ.

We infer from relation (A.1) that for any w,

f (v) ≤ f (w) + ελ [‖w − u‖ − ‖v − u‖] ≤ f (w) + ελ‖w − u‖ ,

which is the desired inequality (c).

Taking λ = 1√
ε

in the above theorem we obtain the following property.
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Corollary A.1. Let (X,d) be a complete metric space and let f : X →
R ∪ {∞} be a lower semicontinuous, bounded from below and D(f ) =
{u ∈ X : f (u) < ∞ } 
= ∅. Then for every ε > 0 and every u ∈ X such that

f (u) ≤ inf
X

f + ε

there exists an element uε ∈ X such that

(a) f (uε) ≤ f (u);
(b) d(uε,u) ≤ √

ε;
(c) f (w) > f (uε) − √

εd(w,uε) for each w ∈ X \ {uε}.
Let (X,‖ · ‖) be a real Banach space, X� its topological dual endowed with

its natural norm, denoted for simplicity also by ‖ · ‖. We denote by 〈·, ·〉 the
duality mapping between X and X�, that is, 〈x�,u〉 = x�(u) for every x� ∈ X�,
u ∈ X. Theorem A.1 readily implies the following property, which asserts the
existence of almost critical points. In other words, the Ekeland variational prin-
ciple can be viewed as a generalization of the Fermat theorem which establishes
that interior extrema points of a smooth functional are necessarily critical points
of this functional.

Corollary A.2. Let X be a Banach space and let f : X → R be a lower semi-
continuous functional which is bounded from below. Assume that f is Gâteaux
differentiable at every point of X. Then for every ε > 0 there exists an element
uε ∈ X such that

(i) f (uε) ≤ inf
X

f + ε;

(ii) ‖f ′(uε)‖ ≤ ε.

Letting ε = 1/n, n ∈ N, Corollary A.2 gives rise to a minimizing sequence
for the infimum of a given function which is bounded from below. Note however
that such a sequence need not converge to any point. Indeed, let f : R → R be
defined by f (s) = e−s . Then infR f = 0, and any minimizing sequence fulfill-
ing (a) and (b) from Corollary A.2 tends to +∞.

The following consequence of the Ekeland variational principle has been of
particular interest in our arguments. Roughly speaking, this property establishes
the existence of almost critical points for bounded from below C1 functionals
defined on Banach spaces.

Sullivan [164] observed that the Ekeland variational principle characterizes
complete metric spaces in the following sense.

Theorem A.2. Let (M,d) be a metric space. Then M is complete if and only
if the following holds: for every mapping f : M → (−∞,∞], f 
≡ ∞, which is
bounded from below, and for every ε > 0, there exists zε ∈ M such that

(i) f (zε) ≤ infM f + ε;
(ii) f (x) > f (zε) − ε d(x, zε), for any x ∈ M \ {zε}.
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The following extended form of the Ekeland variational principle, called
Ekeland variational principle for equilibrium problems, has been introduced
in [31].

Theorem A.3. Let A be a nonempty closed subset of a complete metric space
(X,d) and � : A×A → R be a bifunction. Assume that the following conditions
hold:

1. �(x,x) = 0, for every x ∈ A;
2. �(z, x) ≤ �(z, y) + �(y,x), for every x, y, z ∈ A;
3. � is lower bounded and lower semicontinuous in its second variable.

Then, for every ε > 0 and for every x0 ∈ A, there exists x∗ ∈ A such that{
�(x0, x

∗) + εd (x0, x
∗) ≤ 0,

�(x∗, x) + εd (x∗, x) > 0, for all x ∈ A, x 
= x∗.

A.1 BISHOP-PHELPS THEOREM

The statement of the Bishop-Phelps theorem in the setting of complete metric
spaces is the following.

Theorem A.4. Let (X,d) be a complete metric space, f : X → R be lower
semicontinuous and bounded from below and ε > 0. Then for any u0 ∈ X, there
exists u ∈ X such that

f (u) ≤ f (u0) − εd(u0, u)

and

f (u) < f (v) + εd(u, v)

for every v 
= u.

Let (H, | · |) be a Hilbert space which is identified with its dual and let (. , .)

denote the inner product on H . Let BR be the closed ball of H of radius R

centered at the origin and let ∂BR denote its boundary.
In relationship with the Bishop-Phelps theorem, we recall here the following

Schechter’s critical point theorem in a ball, see [159,160].

Theorem A.5. Let H be a Hilbert space and assume that f : BR → R is a
C1-functional, bounded from below. There exists a sequence (xn) ⊂ BR such
that f (xn) → infBR

f and one of the following two situations holds:

(a) f ′(xn) → 0 as n → ∞;
(b) |xn| = R, (f ′(xn), xn) ≤ 0 for all n and

f ′(xn) − (f ′(xn), xn)

R2
xn → 0 as n → ∞.
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If, in addition, (f ′(x), x) ≥ −a > −∞ for all x ∈ ∂BR , f satisfies a Palais-
Smale compactness condition guaranteeing that any sequence as above has a
convergent subsequence, and the boundary condition

f ′(x) + μx 
= 0 for all x ∈ ∂BR and μ > o

holds, then there exists x ∈ BR with

f (x) = inf
BR

f and f ′(x) = 0.

We refer to Precup [145] for a direct proof of Theorem A.5 by using the
Bishop-Phelps theorem.

A.2 CASE OF SZULKIN-TYPE FUNCTIONALS

We now state the following consequence of Ekeland’s variational principle in
the case of Szulkin-type functionals. We refer to Szulkin [165] for proofs and
related results.

Theorem A.6. Let Z be a Banach space with norm | . |Z , � : Z → R

a C1-functional and η : Z → (−∞,+∞] a proper lower semicontinuous and
convex function. If the functional E := � + η is bounded from below on D (η),
then there exists a sequence (zn) such that

E (zn) ≤ inf
Z

E + 1

n

and

〈
�′ (zn) , z′ − zn

〉 + η
(
z′) − η (zn) ≥ −1

n

∣∣z′ − zn

∣∣
Z

for all z′ ∈ Z.

In addition, any limit point z of the sequence (zn) is a minimizer and a critical
point of E, that is,

E (z) = inf
Z

E,〈
�′ (z) , z′ − z

〉 + η
(
z′) − η (z) ≥ 0 for all z′ ∈ Z.

The existence of a limit point of the sequence (zn) in the above theorem is
guaranteed if E satisfies a Palais-Smale type compactness condition, namely: if
(zn) is any sequence such that E (zn) → c ∈R and

〈
�′ (zn) , z′ − zn

〉 + η
(
z′) − η (zn) ≥ −εn

∣∣z′ − zn

∣∣
Z

for all z′ ∈ Z, (A.2)

where εn → 0, then (zn) has a convergent subsequence.
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We note a sufficient condition for the Palais-Smale type condition to hold:

〈
�′ (z) − �′ (z′) , z − z′〉 ≥ μ

∣∣z − z′∣∣β
Z

for all z, z′ ∈ Z, (A.3)

and some β > 1 and μ > 0. Indeed, if (zn) satisfies (A.2), then from〈
�′ (zn) , zn+p − zn

〉 + η
(
zn+p

) − η (zn) ≥ −εn

∣∣zn+p − zn

∣∣
Z〈

�′ (zn+p

)
, zn − zn+p

〉 + η (zn) − η
(
zn+p

) ≥ −εn+p

∣∣zn − zn+p

∣∣
Z

we deduce that〈
�′ (zn) − �′ (zn+p

)
, zn+p − zn

〉 ≥ − (
εn + εn+p

) ∣∣zn − zn+p

∣∣
Z

.

Using relation (A.3) we obtain

μ
∣∣zn − zn+p

∣∣β
Z

≤ (
εn + εn+p

) ∣∣zn − zn+p

∣∣
Z

,

whence

∣∣zn − zn+p

∣∣
Z

≤
(

εn + εn+p

μ

)1/(β−1)

.

This implies that the sequence (zn) is Cauchy and so convergent. In particular,
condition (A.3) holds if Z is a Hilbert space identified with its dual, �′ (z) =
z − T (z) and T is a contraction with the Lipschitz constant m < 1. In this case,
μ = 1 − m and β = 2.

NOTE
1. Ivar Ekeland (1944–) is a French mathematician of Norwegian descent. He has written influen-

tial monographs and textbooks on nonlinear functional analysis, the calculus of variations, and
mathematical economics.



Appendix B

Minimization Problems and
Fixed Point Theorems

There is nothing permanent except change.
Heraclitus, pre-Socratic Greek philosopher (c. 535–c. 475 B.C.)

In this appendix, we recall some basic facts concerning the minimization of
lower semicontinuous functionals defined on metric spaces. These properties
are used to deduce the Caristi fixed point theorem and the Banach contraction
principle.

Let K be a subset of a metric space X and assume that f : X → R is a given
function. We are looking for solutions x0 ∈ K of the following minimization
problem:

f (x0) = inf{f (x) : x ∈ K}. (B.1)

We start by introducing a related minimization problem. Let fK : X → R ∪
{+∞} be the function defined by

fK(x) :=
{

f (x), if x ∈ K

+∞, if x �∈ K.

We observe that any solution of problem (B.1) is a solution of the problem

fK(x0) = inf{fK(x) : x ∈ X} (B.2)

and conversely. Thus, we introduce the class of functions f from X to R∪{+∞}
with the domain

Dom f := {x ∈ X; f (x) < +∞}. (B.3)

We observe that K = Dom(fK). We say that a function f from X to
R∪ {+∞} is nontrivial if its domain is nonempty.

Definition B.1. Let K be a subset of X. We say that the function ψK : X →
R∪ {∞} defined by

ψK(x) =
{

0, if x ∈ K

+∞, if x �∈ K

is the indicator function of K .

387
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Note that the sum f + ψK of a function f and the indicator function of a
subset K may be identified with the restriction of f to K . We point out that the
minimization problem (B.1) is equivalent to the problem

f (x0) + ψK(x0) = inf{f (x) + ψK(x); x ∈ K}. (B.4)

This new formulation of the minimization problem will enable us to derive
interesting properties of its possible solutions in a convenient way.

We can characterize a function f from X to R∪{+∞} by its epigraph, which
is a subset of X × R.

Definition B.2. Let f be a function from X to R∪ {+∞}. The subset

Epi (f ) := {(x,λ) ∈ X ×R; f (x) ≤ λ} (B.5)

is called the epigraph of f .

We observe that the epigraph of f is nonempty if and only if f is nontrivial.
The following property of the epigraph is useful in many circumstances.

Proposition B.1. Consider a family of functions fi from X to R ∪ {+∞} and
its upper envelope supi∈I fi . Then

Epi

(
sup
i∈I

fi

)
=

⋂
i∈I

Ep (fi).

A related notion is introduced in the following definition.

Definition B.3. Let f be a function from X to R∪ {+∞}. The set

S(f,λ) := {x ∈ X; f (x) ≤ λ}
is called a lower section of f .

Let α := infx∈X f (x) and let M be the set of solutions of problem (B.1). We
observe that M can be written in the form

M =
⋂
λ>α

S(fK,λ).

Thus, the set M of solutions inherits the properties of the sections of f which
are stable with respect to intersection (for instance, closed, compact, convex,
etc.).

Proposition B.2. Consider a family of functions fi from X to R ∪ {∞} and its
upper envelope supi∈I fi . Then

S

(
sup
i∈I

fi, λ

)
=

⋂
i∈I

S(fi, λ).
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We recall that a function f from X to R∪ {+∞} is lower semicontinuous at
x0 if for all λ < f (x0), there exists η > 0 such that λ ≤ f (x) for all x ∈ B(x0, η).
A function is upper semicontinuous at x0 if −f is lower semicontinuous at x0.
By definition we deduce that

lim inf
x→x0

f (x) := sup
η>0

inf
B(x0,η)

f (x).

Moreover, a function f from X to R → {+∞} is lower semicontinuous at
x0 if and only if

f (x0) ≤ lim inf
x→x0

f (x).

Proposition B.3. Let f be a function from X to R ∪ {+∞}. The following
assertions are equivalent:

(i) f is lower semicontinuous;
(ii) the epigraph of f is closed;

(iii) all sections S(f,λ) of f are closed.

Proof. (i) Let (xn, λn) ∈ Epi (f ) be a sequence of elements converging to (x,λ).
We show that (x,λ) ∈ Epi (f ), hence f (x) ≤ λ. Indeed, by the lower semicon-
tinuity of f we have

f (x) ≤ lim inf
n→∞ f (xn) ≤ lim inf

n→∞ λn = lim
n→∞λn = λ,

since f (xn) ≤ λ for all n.
(ii) We suppose that Epi (f ) is closed and we show that an arbitrary section

S(f,λ) is also closed. For this purpose, we consider a sequence (xn) ⊂ S(f,λ)

converging to x. We show that x ∈ S(f,λ), hence (x,λ) ∈ Epi (f ). But this is
a consequence of the fact that the sequence of elements (xn, λ) of the epigraph
of f , which is closed, converges to (x,λ).

(iii) We suppose that all sections of f are closed. We take x0 ∈ X and
λ < f (x0). Then (x0, λ) does not belong to S(f,λ), which is a closed set. It fol-
lows that there exists η > 0 such that B(x0, η) ∩ S(f,λ) = ∅, that is, λ ≤ f (x)

for all x ∈ B(x0, η). We conclude that f is lower semicontinuous at x0.

We remark that if f is not lower semicontinuous, then we can associate to f

the function f , whose epigraph is the closure of the epigraph of f , namely

Epi (f ) := Epi (f ).

This is the largest lower semicontinuous function smaller than or equal to f .

Corollary B.1. A subset K of X is closed if and only if its indicator function is
lower semicontinuous.

Proof. In fact, Epi (ψK) = K ×R+ is closed if and only if K is closed.
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Proposition B.4. Assume that the functions f , g, fi from X to R ∪ {+∞} are
lower semicontinuous. Then the following properties hold:

(i) f + g is lower semicontinuous;
(ii) if α > 0, then αf is lower semicontinuous;

(iii) inf(f, g) is lower semicontinuous;
(iv) if A is a continuous mapping from Y to X then f ◦ A is lower semicontin-

uous;
(v) supi∈I fi is lower semicontinuous.

Proposition B.5. Assume that K is a closed subset of X and let f be a lower
semicontinuous function from the metric subspace K to R. Then the function fK

from X to R∪ {+∞} is lower semicontinuous.

Proof. We first observe that the sections S(fK,λ) and S(f,λ) are identical.
Since S(f,λ) is closed in K and since K is closed in X, it follows that
S(fK,λ) = S(f,λ) is closed in X.

In the study of minimization problems, the following class of functions plays
an important role.

Definition B.4. A function f from X to R ∪ {+∞} is said to be lower semi-
compact (or inf-compact) if all its lower sections are relatively compact.

Theorem B.1. Assume that a nontrivial function f from X to R ∪ {+∞} is
both lower semicontinuous and lower semicompact. Then the set M of elements
at which f attains its minimum is nonempty and compact.

Proof. Let α = infx∈X f (x) ∈ R and λ0 > α. For all λ ∈ (α,λ0], there exists
xλ ∈ S(f,λ) ⊂ S(f,λ0). Since the set S(f,λ0) is compact, then a subsequence
of elements xλ′ converges to some x0 ∈ S(f,λ0). Since f is lower semicontinu-
ous, we deduce that

f (x0) ≤ lim inf
xλ′→x0

f (xλ′) ≤ lim inf
λ>α

λ = α ≤ f (x0).

It follows that f (x0) = α. Moreover, M = ∩α<λ≤λ0S(f,λ) being an intersection
of compact sets, is compact.

Corollary B.2. Any lower semicontinuous function from a compact subset
K ⊂ X to R is bounded below and attains its minimum.

Proof. We apply Theorem B.1 to the function fK defined by fK(x) = f (x) if
x ∈ K and fK(x) = +∞ if x �∈ K . We notice that fK is lower semicontinu-
ous (since K is closed and f is lower semicontinuous) and that fK is lower
semicompact, K being relatively compact. The proof is now complete.
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Theorem B.1 is a simple and general property for the existence of solutions
of an optimization problem. The difficulty essentially arises in the verification
of the hypotheses. For instance, if a general vector space E is infinite dimen-
sional, we can supply it with topologies which are not equivalent, contrary to
the case of finite dimensional vector spaces. In this case, since compact subsets
remain compact when the topology is weaker, supplying E with weaker topolo-
gies increases the possibilities of having f lower semicompact. But continuous
or lower semicontinuous functions remain continuous or lower semicontinuous
respectively whenever the topology of E is stronger, so that strengthening the
topology of E is advantageous. Hence, for applying Theorem B.1, we have to
construct topologies on E satisfying opposite requirements.

The following existence property does not use compactness, but instead it
requires stronger assumptions on the regularity of the function.

Proposition B.6. Assume that K is a compact topological space and that g is
a lower semicontinuous function from X × K to R ∪ {+∞}. Then the function
f : X → R ∪ {+∞} defined by f (x) := infy∈K g(x, y) is also lower semicon-
tinuous.

Proof. Fix λ ∈ R and let (xn) ⊂ S(f,λ) be a sequence that converges to x0. We
prove that x0 ∈ S(f,λ). By Corollary B.2, since the mapping y 
→ f (xn, y)

is lower semicontinuous and K is compact, there exists yn ∈ K such that
f (xn) = g(xn, yn). It follows that, up to a subsequence, (yn) converges to
y0 ∈ K . Then the sequence of pairs (xn, yn) ⊂ S(g,λ) converges to (x0, y0),
which belongs to S(g,λ) since g is a lower semicontinuous function. Since
f (x0) ≤ f (x0, y0) ≤ λ, we conclude that x0 ∈ S(f,λ).

Proposition B.7. Consider n lower semicontinuous functions fi from X to
R ∪ {+∞} and suppose that at least one of them is lower semicompact. De-
fine the mapping F from K := ∩m

i=1Domfi to R
n by F(x) := (f1(x), ..., fn(x)).

Then the set F(K) +R
n+ is closed in R

n.

Proof. Consider the sequences (xn) ⊂ K and (un) ⊂ R
n+ such that the se-

quence of elements yn := F(xn) + un converges to some y of Rn. We show that
y ∈ F(K) +R

n+.
Let fi0 be the function that is both lower-continuous and lower semi-

compact. Since fi0(xn) + uni0 converges to yi0 , there exists n0 such that
|yi0 − fi0(xn) − uni0 | ≤ 1 whenever n ≥ n0. Since fi0(xn) ≤ yi0 − uni0 + 1 ≤
yi0 + 1, we deduce that for all n ≥ n0 we have xn ∈ S(fi0, yi0 + 1), which is
compact. Thus, up to a subsequence, (xn) converges to an element x0. Since fi

is lower semicontinuous, we have for all i = 1, ..., n

fi(x0) ≤ lim inf
n→∞ fi(xn) = lim inf

n→∞ (yni
− uni

) ≤ lim inf
n→∞ yni

= yi .

Thus, setting ui := yi −fi(x0) ≥ 0, we obtain that y = F(x0)+u, where x0 ∈ K

and u ∈ R
n+.
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B.1 CARISTI AND BANACH FIXED POINT THEOREMS

If G : X → 2X then a solution x of the inclusion

x ∈ G(x) (B.6)

is called a fixed point of G.
We start with the following fixed point theorem, which is due to Caristi.

Theorem B.2. Let G be a nontrivial correspondence of a complete metric space
X into 2X. We suppose that there exists a proper, positive, lower semicontinuous
function f from X to R+ ∪ {+∞} such that for all x ∈ X there exists y ∈ G(x)

such that f (y) + d(x, y) ≤ f (x). Then G has a fixed point.
Moreover, if

f (y) + d(y, x) ≤ f (x) for all x ∈ X, all y ∈ G(x), (B.7)

then there exists x ∈ X such that G(x) = {x}.
Proof. By Ekeland’s variational principle, there exists x ∈ X such that

f (x) < f (x) + εd(x, x) for all x �= x, (B.8)

with ε < 1. Let y ∈ G(x) be such that f (y) + d(x, y) ≤ f (x). If y is not equal
to x, relation (B.8) with x := y implies that d(x, y) ≤ εd(x, y), which is impos-
sible since ε < 1. It follows that y = x.

If the stronger condition (B.7) is fulfilled then all such elements y satisfying
y ∈ G(x) are equal to x, hence G(x) = {x}.

In the next result, f is no longer assumed to be lower semicontinuous.
However the correspondence G must have a closed graph. The graph of a cor-
respondence G from E to F is defined by

Graph (G) := {(x, y); y ∈ G(x)}. (B.9)

Theorem B.3. Let X be a complete metric space. We consider a correspondence
G from X to 2X with a closed graph. Assume that there exists a nontrivial posi-
tive function f from X to R+ ∪ {+∞} satisfying the hypothesis of Theorem B.2.
Then G has a fixed point.

Proof. Fix x0 ∈ Dom f and use a recurrence to calculate a sequence (xn) ⊂ X

such that

xn+1 ∈ G(xn), d(xn+1, xn) ≤ f (xn) − f (xn+1). (B.10)

This implies that the sequence of positive numbers f (xn) is decreasing, hence
it converges to a real number α. Adding the inequalities (B.10) from n = p to
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n = q − 1, the triangle inequality implies that

d(xp, xq) ≤
q−1∑
n=p

d(xn+1, xn) ≤ f (xp) − f (xq).

It follows that (xn) is a Cauchy sequence, so it converges to an element x ∈ X.
Since the pairs (xn, xn+1) belong to the graph of G, which is closed, and con-
verge to the pair (x, x) which thus belongs to the graph of G, the limit x is a
fixed point of G.

As a corollary we obtain the Banach-Picard fixed point theorem for contrac-
tions.

Theorem B.4. Suppose that X is a complete metric space and that g : X → X is
a contraction, that is, there exists k ∈ (0,1) such that d(g(x), g(y)) ≤ kd(x, y)

for all x, y ∈ X. Then g has a unique fixed point.

Proof. We associate g with the function f from X to R+ defined by

f (x) :=
∞∑

n=0

d(gn(x), gn+1(x)).

By hypothesis we have

d(gn(x), gn+1(x)) ≤ kd(gn−1(x), gn(x)) ≤ kd(x, g(x)).

It follows that f satisfies the condition

0 ≤ f (x) ≤ 1

1 − k
d(x, g(x)) < +∞.

On the other hand, note that

f (x) = d(x, g(x)) +
∞∑

n=1

d(gn(x), gn+1(x)) = d(x, g(x)) + f (g(x)).

Thus, by Theorem B.3, there exists a fixed point for the contraction g. Moreover,
if x and y are fixed points of g, then the inequality

d(x, y) = d(g(x), g(y)) ≤ kd(x, y)

implies that d(x, y) = 0 since k < 1. We conclude that x = y.



Appendix C

Nonsmooth Clarke Theory and
Generalized Derivatives

The study of mathematics, like the Nile, begins in minuteness but ends in
magnificence.

Charles Caleb Colton, English cleric (1780–1832)

In this appendix, we recall the basic elements of the theory of generalized gra-
dients for locally Lipschitz functionals, in the sense of Clarke [56].

Let X be a real Banach space endowed with the norm ‖ · ‖. The dual space
of X is denoted X∗ and is equipped with the dual norm ‖ · ‖∗ defined by

‖ζ‖∗ = sup{〈ζ, v〉 : v ∈ X, ‖v‖ ≤ 1}.
We recall that a functional f : X →R is called locally Lipschitz if for every

x ∈ X there exist a neighborhood V of x in X and a constant K > 0 such that

|f (y) − f (z)| ≤ K‖y − z‖ for all y, z ∈ V.

Definition C.1. The generalized directional derivative of a locally Lipschitz
functional f : X → R at a point u ∈ X in the direction v ∈ X, denoted f 0(u;v),
is defined by

f 0(u;v) = lim sup
x→u; t→0+

f (x + tv) − f (x)

t
.

The locally Lipschitz continuity of f at u ensures that f 0(u;v) ∈ R for all
v ∈ X. The function f 0(u; ·) : X → R is subadditive, positively homogeneous
and satisfies the inequality

|f 0(u;v)| ≤ K‖v‖ for all v ∈ X,

where K > 0 is the Lipschitz constant of f near the point u ∈ X. Moreover, the
function (u, v) 	→ f 0(u;v) is upper semicontinuous.

Definition C.2. The generalized gradient of a locally Lipschitz functional
f : X → R at a point u ∈ X, denoted ∂f (u), is the subset of X∗ defined by

∂f (u) = {ζ ∈ X∗ : f 0(u;v) ≥ 〈ζ, v〉 for all v ∈ X}.
395
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Using the Hahn-Banach theorem, we deduce that ∂f (u) �= ∅.

Proposition C.1. Let f : X → R be Lipschitz continuous on a neighborhood of
a point u ∈ X. Then the following properties hold.

(i) ∂f (u) is a convex, weak* compact subset of X∗ and

‖ζ‖∗ ≤ K for all ζ ∈ ∂f (u),

where K > 0 is the Lipschitz constant of f near u.
(ii) We have

f 0(u;v) = max{〈ζ, v〉 : ζ ∈ ∂f (u)} for all v ∈ X.

The following result establishes useful properties of the generalized gradient.

Proposition C.2. Let f : X → R be a locally Lipschitz functional. Then the
following properties hold.

(i) For all u ∈ X, ε > 0 and v ∈ X, there exists δ > 0 such that whenever w ∈
∂f (x) with ‖x − u‖ < δ we can find z ∈ ∂f (u) satisfying |〈w − z, v〉| < ε.

(ii) The function λ : X →R given by

λ(x) = min
w∈∂f (x)

‖w‖∗

is lower semicontinuous.

Proof. (i) Arguing by contradiction, we assume that there exist u ∈ X, v ∈ X,
ε0 > 0 and sequences {xn} ⊂ X, {ξn} ⊂ X∗ with ξn ∈ ∂f (xn) such that

‖xn − u‖ <
1

n

and

|〈ξn − w,v〉| ≥ ε0 for all w ∈ ∂f (u). (C.1)

Since xn → u and ξn ∈ ∂f (xn) we can suppose that ‖ξn‖∗ ≤ K , where K > 0 is

the Lipschitz constant around u, and ξn
∗
⇀ξ weakly* in X∗ as n → ∞.

We claim that

ξ ∈ ∂f (u). (C.2)

Indeed, the fact that ξn ∈ ∂f (xn) implies

〈ξn, y〉 ≤ f 0(xn;y), for all y ∈ X.

Definition C.1 yields sequences λn → 0+, hn → 0 such that for all y ∈ X

f (xn + hn + λny) − f (xn + hn)

λn

≥ f 0(xn;y) − 1

n
≥ 〈ξn, y〉 − 1

n
.
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Passing to the limit, we obtain

f 0(u;y) ≥ lim sup
n→∞

f (xn + hn + λny) − f (xn + hn)

λn

≥ lim sup
n→∞

[
〈ξn, y〉 − 1

n

]
= 〈ξ, y〉, for all y ∈ X.

Definition C.2 shows that relation (C.2) is true.
Letting n → ∞ in (C.1) leads to a contradiction with relation (C.2). This

contradiction establishes property (i).
(ii) Applying the Banach-Alaoglu theorem, in the definition of λ(x) we de-

duce that the minimum makes sense.
In order to show that the function λ is lower semicontinuous, let us suppose,

on the contrary, that there exists a sequence {xn} such that xn → u and

lim inf
n→∞ λ(xn) < λ(u).

We know that there is wn ∈ ∂f (xn) with λ(xn) = ‖wn‖∗. Therefore we can
choose a subsequence of {wn}, denoted again {wn}, and an element z ∈ ∂f (u)

such that wn
∗
⇀ z weakly*. Then we obtain

lim inf
n→∞ ‖wn‖∗ ≥ ‖z‖∗ ≥ λ(u).

This contradiction shows that assertion (ii) is valid.

We conclude with the following mean value theorem due to Lebourg [116].

Theorem C.1. Given the points x and y in X and a real-valued function f

which is Lipschitz continuous on an open set containing the segment

[x, y] = {(1 − t)x + ty : t ∈ [0,1]},
then there exist u = x + t0(y − x), with 0 < t0 < 1, and x∗ ∈ ∂f (u) such that

f (y) − f (x) = 〈x∗, y − x〉.
Proof. Consider the function θ : [0,1] →R defined by

θ(t) = f (x + t (y − x)) + t[f (x) − f (y)], for all t ∈ [0,1].
The continuity of θ combined with the equalities θ(0) = θ(1) = f (x) yields
a point t0 ∈]0,1[ where θ assumes a local minimum or maximum. A direct
verification ensures that 0 ∈ ∂θ(t0) and

∂θ(t0) ⊂ 〈∂f (x + t0(y − x)), y − x〉 + [f (x) − f (y)]
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(see Lebourg [116] or Clarke [56, p. 41]). It follows that there exists x∗ ∈
∂f (x + t0(y − x)) such that the conclusion of Theorem C.1 holds.

We refer to the monographs by Clarke [56] and Motreanu and Rădulescu
[131] for more details, proofs, and applications of Clarke’s generalized gradient
theory.



Appendix D

Elements of Szulkin Critical
Point Theory

Imagination will often carry us to worlds that never were. But without it we
go nowhere.

Carl Sagan1 (1934–1996)

In Chapter 8 we used elements of critical point theory in the sense of
Szulkin [165] in relationship with Nash equilibria of some classes of nonlinear
systems. Our aim in this appendix is to recall the basic notions and proper-
ties concerning the Szulkin theory for nonsmooth functionals. Throughout this
appendix we assume that X is a real Banach space.

Definition D.1. Let � : X → R be a continuously differentiable function and
let � : X → R∪ {+∞} be a proper, convex and lower semicontinuous function.
We say that the functional � + � : X → R ∪ {+∞} satisfies the Palais-Smale
condition if every sequence {un} ⊂ X with �(un) + �(un) bounded and for
which there exists a sequence {εn} ⊂R

+ with εn ↓ 0, and such that

�′(un)(v − un) + �(v) − �(un) ≥ −εn‖v − un‖ for all v ∈ X,

contains a (strongly) convergent subsequence in X.

Definition D.2. Let � : X → R be a locally Lipschitz functional and let
� : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function.
We say that the functional � + � : X → R ∪ {+∞} satisfies the Palais-Smale
condition if every sequence {un} ⊂ X with �(un) + �(un) bounded and for
which there exists a sequence {εn} ⊂R

+, εn ↓ 0, such that

�0(un;v − un) + �(v) − �(un) ≥ −εn‖v − un‖ for all v ∈ X,

contains a (strongly) convergent subsequence in X.

Lemma D.1. Let χ : X → R∪ {+∞} be a lower semicontinuous, convex func-
tion with χ(0) = 0. If

χ(x) ≥ −‖x‖ for all x ∈ X,

then there exists some z ∈ X∗ such that ‖z‖∗ ≤ 1 and

χ(x) ≥ 〈z, x〉 for all x ∈ X.

399
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Proof. Consider the following convex subsets A and B of X ×R :

A = {(x, t) ∈ X ×R : ‖x‖ < −t}
and

B = {(x, t) ∈ X ×R : χ(x) ≤ t}.
Notice that A is an open set and due to the condition χ(x) ≥ −‖x‖, we have
A ∩ B = ∅. By the separation theorem for convex sets, we deduce the existence
of real numbers α and β and of w ∈ X∗ such that (w,α) �= (0,0),

〈w,x〉 − αt ≥ β for all (x, t) ∈ Ā

and

〈w,x〉 − αt ≤ β for all (x, t) ∈ B.

We see that β = 0 since (0,0) ∈ Ā ∩ B.
Set t = −‖x‖ in the first inequality above. It follows that

〈w,x〉 ≥ −α‖x‖ for all x ∈ X,

which implies α > 0 and ‖w‖∗ ≤ α.
Set z = α−1w and t = χ(x) in the second equality above. We deduce that

〈z, x〉 ≤ χ(x) for all x ∈ X.

Since ‖w‖∗ ≤ α we obtain ‖z‖∗ ≤ 1. The conclusion is achieved.

Next, we are concerned with nonsmooth functionals which can be written
as a sum of a locally Lipschitz function and a convex, proper, and lower semi-
continuous functional (possibly, taking the value +∞). Namely, we consider
functionals f : X → ]−∞,+∞], which satisfy the following structure hypoth-
esis:

(Hf ) f = � + �, where � : X → R is locally Lipschitz and � : X →
]−∞,+∞] is convex, proper, lower semicontinuous.

Definition D.3. An element u ∈ X is said to be a critical point of functional
f : X → ]−∞,+∞] satisfying assumption (Hf ) if

�0(u;x − u) + �(x) − �(u) ≥ 0 for all x ∈ X.

If � = 0, Definition D.3 introduces the notion of critical point for a locally
Lipschitz functional. In particular, if � = 0 and � is continuously differen-
tiable, we obtain the usual concept of critical point. In the case where � is
continuously differentiable and � is convex, lower semicontinuous, and proper,
Definition D.3 reduces with the notion of critical point in the sense of Szulkin.
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An equivalent formulation of Definition D.3 is that u ∈ X is a critical point
of f : X → ]−∞,+∞] if and only if

0 ∈ ∂�(u) + ∂�(u),

where ∂�(u) denotes the generalized gradient of � and ∂�(u) is the subdiffer-
ential of � in the sense of convex analysis.

Given a real number c, we denote

Kc(f ) = {u ∈ X : f (u) = c, u is a critical point of f } .

We say that the number c ∈ R is a critical value of the functional f : X →
]−∞,+∞] satisfying (Hf ) if Kc(f ) �= ∅.

The following result provides critical points in the sense of Definition D.3.

Proposition D.1. Let the function f satisfy hypothesis (Hf ). Then each local
minimum of f is a critical point of f in the sense of Definition D.3.

Proof. Suppose that u is a local minimum of f and fix v ∈ X. Using the con-
vexity of � we deduce that

0 ≤ f ((1 − t)u + tv) − f (u) ≤ �(u + t (v − u)) − �(u) + t (�(v) − �(u))

for all small t > 0.
Dividing by t and letting t → 0+ we infer that u is a critical point of f in

the sense of Definition D.3.

The appropriate Palais-Smale condition for the function f : X→]−∞,+∞]
in (Hf ) at the level c ∈R is stated below.

Definition D.4. The function f : X → ]−∞,+∞] satisfying assumption (Hf )

is said to verify the Palais-Smale condition at the level c ∈ R if any sequence
{xn} ⊂ X such that f (xn) → c and

�0(xn;x − xn) + �(x) − �(xn) ≥ −εn‖xn − x‖ for all n ∈N, x ∈ X ,

where εn → 0+, has a strongly convergent subsequence.

A direct computation shows that the inequality in Definition D.4 is equiva-
lent with

�0(xn;x − xn) + �(x) − �(xn) ≥ 〈zn, x − xn〉 for alln ∈ N, x ∈ X,

for some sequence {zn} ⊂ X∗ with zn → 0.
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NOTE
1. Carl Sagan (1934–1996) was an American astronomer, cosmologist, astrophysicist, astrobiolo-

gist, and science communicator in astronomy and other natural sciences. Sagan assembled the
first physical messages sent into space: the Pioneer plaque and the Voyager Golden Record,
universal messages that could potentially be understood by any extraterrestrial intelligence that
might find them.
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