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1 Introduction

Inequality theory plays an important role in many fields, such as mechanics, engineering sciences,
economics, optimal control, etc. Because of their wide applicability, inequality problems have become
an important area of investigation in the past several decades, an important part of this research focusing
on the existence of the solutions. Inequality problems can be divided into two main classes: that of
variational inequalities and that of hemivariational inequalities. The study of variational inequality
problems began in the early sixties with the work of G. Fichera [2], J. L. Lions and G. Stampacchia
[5]. The most basic result is due to Hartman and Stampacchia [4], which states that if X is a finite
dimensional Banach space, K ⊂ X is compact and convex, and A is a continuous operator, then the
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variational inequality problem of finding u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K (1)

has a solution. When K is not compact, or X is infinite dimensional, certain monotonicity properties
are required to prove the existence of solution.

By replacing the subdifferential of a convex function by the generalized gradient (in the sense of F.
H. Clarke) of a locally Lipschitz functional, hemivariational inequalities arise whenever the energetic
functional associated to a concrete problem is nonconvex. This new type of inequalities appears as a
generalization of the variational inequalities, but hemivariational inequalities are much more general, in
the sense that they are not equivalent to minimum problems but, give rise to substationarity problems.
The theory of hemivariational inequalities can be viewed as a new field of Nonsmooth Mechanics
since the main ingredient used in the study of these inequalities is the notion of Clarke subdifferential
of a locally Lipschitz functional. The mathematical theory hemivariational inequalities, as well as
their applications in Mechanics, Engineering or Economics were introduced and developed by P. D.
Panagiotopoulos [14]-[18] in the case of nonconvex energy functions. For a treatment of this theory and
further comments we recommend the monographs by Z. Naniewicz and P. D. Panagiotopoulos [13], D.
Motreanu and P. D. Panagiotopoulos [10] and by D. Motreanu and V. Rădulescu [12].

Throughout this paper V will denote a real Banach space and let T : V → Lp(Ω; Rk) be a linear and
continuous operator, where 1 < p < ∞, k ≥ 1, and Ω is a bounded open set in RN . We shall denote
Tu = û and by p′ the conjugated exponent of p. Let K be a subset of V , A : K → V ∗ a nonlinear
operator and j = j(x, y) : Ω× Rk → R is a function such that the mapping

j(·, y) : Ω → R is measurable, for every y ∈ Rk. (2)

We assume that at least one of the following conditions hold true: either there exist l ∈ Lp′(Ω; R) such
that

|j(x, y1)− j(x, y2)| ≤ l(x)|y1 − y2|, ∀x ∈ Ω, ∀ y1, y2 ∈ Rk, (3)

or
the mapping j(x, ·) is locally Lipschitz, ∀x ∈ Ω, (4)

and there exist C > 0 such that

|z| ≤ C(1 + |y|p−1), ∀x ∈ Ω,∀ z ∈ ∂j(x, y). (5)

Recall that j 0(x, y;h) denotes the Clarke’s generalized directional derivative of the locally Lipschitz
mapping j(x, ·) at the point y ∈ Rk with respect to the direction h ∈ Rk, where x ∈ Ω, while ∂j(x, y)
is the Clarke’s generalized gradient of this mapping at y ∈ Rk, that is (see e.g. [1], [12], [13])

j 0(x, y;h) = lim sup
y′→y

t↓0

j(x, y′ + th)− j(x, y′)
t

,
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∂j(x, y) = {z ∈ Rk : z · h ≤ j 0(x, y;h), for all h ∈ Rk},

where the symbol “·” means the inner product on Rk.
The euclidian norm in Rk, k ≥ 1, resp. the duality pairing between a Banach space and its dual

will be denoted by | · |, respectively 〈·, ·〉.

Definition 1. The operator A : K → V ∗ is said to be

(i) hemicontinuous if A is continuous from line segments in K to the w∗ topology of V ∗;

(ii) monotone if 〈Av −Au, v − u〉 ≥ 0, for all u, v ∈ K;

(iii) pseudomonotone if 〈Au, v − u〉 ≥ 0 implies 〈Av, v − u〉 ≥ 0, for all u, v ∈ K;

(iv) stably pseudomonotone with respect to a set U ⊂ V ∗ if, A and A(·) − z are pseudomonotone for
every z ∈ U .

Remark 1. Clearly a monotone map is pseudomonotone and stably pseudomonotone with respect to
any set U ⊂ V ∗. Stably pseudomonotone mappings are introduced and discussed in [6, 7, 8]. Moreover,
Yiran He showed in [7] (see Example 2, p.460) that the class of of stably pseudomonotone mappings
is strictly broader than the class of monotone mappings (we point out the fact that the operator in this
example is also hemicontinuous).

The following fixed point theorem will be used in the proof of the main results. We denote by 2K

the family all nonempty subsets of a set K.

Theorem 1. (Tarafdar [20]) Let K 6= ∅ be a convex subset of a Hausdorff topological vector space E.
Let F : K → 2K be a set valued map such that

(1) for each u ∈ K, F (u) is a nonempty convex subset of K;

(2) for each v ∈ K, F−1(v) = {u ∈ K : v ∈ F (u)} contains an open set Ov which may be empty;

(3)
⋃

v∈K Ov = K;

(4) there exists a nonempty set V0 contained in a compact convex subset V1 of K such that D =⋂
v∈V0

Oc
v is either empty or compact (where Oc

v is the complement of Ov in K).

Then there exist a point u0 ∈ K such that u0 ∈ F (u0).

2 Hemivariational inequalities of Hartman-Stampacchia type involv-
ing stably pseudomonotone operators

This section is devoted to the study of the hemivariational inequality problem of Hartman-Stampacchia
type (as it was called by Panagiotopoulos, Fundo and Rădulescu in [19] to show that this kind of
inequalities are a generalization of those studied by Hartman and Stampacchia in [4]):
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(P) Find u ∈ K such that

〈Au, v − u〉+
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 0, ∀ v ∈ K.

Throughout this section V will denote a real reflexive Banach space and T : V → Lp(Ω; Rk) will
stand for a linear and compact operator.

Let us consider a Banach space Y such that there exists a linear and compact operator L : V → Y

and let J : Y → R be an arbitrary locally Lipschitz functional. For each u ∈ V there exists (see e.g.
[1], [12], [13]) zu ∈ ∂J(Lu) such that

J0(Lu; ζ) = 〈zu, ζ〉 = max { 〈w, ζ〉 : w ∈ ∂J(Lu)} . (6)

Denoting by L∗ : Y ∗ → V ∗ the adjoint operator of L, we define the subset U(J, L) of V ∗ as follows

U(J, L) = {−Zu : u ∈ K and Zu = L∗zu}. (7)

Lemma 1. Let K be a nonempty, closed and convex subset of V . Assume that A : K → V ∗ is a
hemicontinuous and stably pseudomonotone map with respect to the set U(J, L) defined in (7). Further
we assume that there exists a nonempty subset V0 contained in a weakly compact subset V1 of K such
that the set

D = {u ∈ K : 〈Av, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0, ∀ v ∈ V0}

is weakly compact or empty. Then the problem
(P′) Find u ∈ K such that

〈Au, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0, ∀ v ∈ K,

admits at least one solution.

As we will see problem (P ′) closely links to the following problem:
(P?) Find u ∈ K such that

〈Av, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0, ∀ v ∈ K.

We denote by S ′ and S? the solution sets of problem (P′) and problem (P?), respectively. Now we
establish the relationship between problems (P′) and (P?).

Proposition 1. Let K be a nonempty closed and convex subset of V . If A : K → V ∗ is stably
pseudomonotone with respect to the set U(J, L) defined in (7), then S ′ ⊆ S?. In addition, if A is
hemicontinuous, then S ′ = S?.

Proof. Let u0 ∈ S ′. For any v ∈ K we have

0 ≤ 〈Au0, v − u0〉+ J0(Lu0;Lv − Lu0)

= 〈Au0, v − u0〉+ 〈zu0 , L(v − u0)〉

= 〈Au0, v − u0〉+ 〈L∗zu0 , v − u0〉

= 〈Au0, v − u0〉+ 〈Zu0 , v − u0〉.

4



Using the stably pseudomonotonicity of A we get that

〈Av, v − u0〉+ 〈Zu0 , v − u0〉 ≥ 0, ∀v ∈ K.

The above inequality is equivalent to

〈Av, v − u0〉+ J0(Lu0;Lv − Lu0) ≥ 0, ∀v ∈ K,

which means that u0 ∈ S?.
In addition, if A is hemicontinuous, we will show that S ′ = S?. Suppose u0 ∈ S?. For any v ∈ K,

let
vt = tv + (1− t)u0, t ∈ (0, 1).

Then vt ∈ K and
〈Avt, t(v − u0)〉+ J 0(Lu0; t(Lv − Lu0)) ≥ 0.

Using the positive homogeneity of the map J 0(· ; ·) and dividing by t we obtain that

〈Avt, v − u0〉+ J 0(Lu0;Lv − Lu0) ≥ 0.

Letting t → 0, by the hemicontinuity of A, we get

〈Au0, v − u0〉+ J 0(Lu0;Lv − Lu0) ≥ 0, ∀v ∈ K,

which means u0 ∈ S ′. �

Proof of Lemma 1. Arguing by contradiction, suppose that for every u ∈ K, there exists v ∈ K such
that

〈Au, v − u〉+ J 0(Lu;Lv − Lu) < 0.

This implies, by Proposition 1 that for every u ∈ K there exists v ∈ K such that

〈Av, v − u〉+ J 0(Lu;Lv − Lu) < 0. (8)

We define the set valued map F : K → 2K as follows

F (u) = { v ∈ K : 〈Au, v − u〉+ J 0(Lu;Lv − Lu) < 0}

We will prove next that F satisfies the conditions of Theorem 1.
Let u ∈ K be arbitrary but fixed. Obviously F (u) is nonempty for each u ∈ K since we have

assumed that the problem (P′) has no solutions. Let v1, v2 ∈ F (u) and t ∈ [0, 1]. Taking into account
that L is linear and the application Lv 7−→ J 0(Lu;Lv) is convex we have

〈Au, tv1 + (1− t)v2 − u〉+ J 0(Lu;L(tv1 + (1− t)v2)− Lu) ≤

t〈Au, v1 − u〉+ (1− t)〈Au, v2 − u〉+ tJ 0(Lu;Lv1 − Lu) + (1− t)J 0(Lu;Lv2 − Lu) < 0,
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which shows that F (u) is a convex subset of K.
Let, now v ∈ K be arbitrary but fixed.

F−1(v) = {u ∈ K : v ∈ F (u)}

= {u ∈ K : 〈Au, v − u〉+ J 0(Lu;Lv − Lu) < 0}

⊇ {u ∈ K : 〈Av, v − u〉+ J 0(Lu;Lv − Lu) < 0} := Ov.

We shall prove that [F−1(v)]c ⊆ Oc
v which implies Ov ⊆ F−1(v). Let u ∈ [F−1(v)]c. Then

〈Au, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0.

Using the fact that A is stably pseudomonotone with respect to the set U(J, L) we get that

〈Av, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0,

which leads to the conclusion that u ∈ Oc
v.

We claim that Ov is weakly open. Indeed, if Ov 3 un ⇀ u then, since L is linear and compact
Lun → Lu and by the upper semicontinuity of J 0(·, ·), we obtain

lim sup
n→∞

[
〈Av, v − un〉+ J 0(Lun;Lv − Lun)

]
≤ lim

n→∞
〈Av, v − un〉+ lim sup

n→∞
J 0(Lun;Lv − Lun)

≤ 〈Av, v − u〉+ J 0(Lu;Lv − Lu).

The above relation implies that the application u 7−→ 〈Av, v − u〉 + J 0(Lu;Lv − Lu) is weakly upper
semicontinuous. Thus by the definition of the upper semicontinuity, Ov is an weakly open set.

Obviously
⋃

v∈K Ov ⊆ K. Now, let u ∈ K. By (8) there exists v ∈ K such that 〈Av, v − u〉 +
J 0(Lu;Lv − Lu) < 0 and thus u ∈ Ov. It follows that K ⊆

⋃
v∈K Ov.

By our hypothesis the set

D = {u ∈ K : 〈Av, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0, ∀ v ∈ V0}

=
⋂

v∈V0

{u ∈ K : 〈Av, v − u〉+ J 0(Lu;Lv − Lu) ≥ 0}

=
⋂

v∈V0

Oc
v

is weakly compact or empty.
Thus the mapping F satisfies the conditions of Theorem 1 in the weak topology, so there exists a

point u0 ∈ K such that u0 ∈ F (u0); that is 0 = 〈Au0, u0 − u0〉 + J 0(Lu0;Lu0 − Lu0) < 0 and this
contradiction completes the proof of Lemma 1.

We will derive a result applicable to the inequality problem (P) which constitutes the main result
of this section.

Theorem 2. Assume that the hypotheses of Lemma 1 are fulfilled for Y = Lp(Ω; Rk), L = T and
J : Lp(Ω; Rk) → R

J(u) =
∫

Ω
j(x, u(x)) dx.

Then the problem (P) has at least one solution.
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Proof. Conditions (2) and (3) or (2) and (4)-(5) on j ensure that J is locally Lipschitz on Y (see e.g.
Clarke [1], p. 83 or Motreanu-Rădulescu [12] Theorem 1.3) and∫

Ω
j 0(x, u(x); v(x)) dx ≥ J 0(u; v), ∀u, v ∈ Lp(Ω; Rk).

It follows that ∫
Ω

j 0(x, û(x); v̂(x)) dx ≥ J 0(û; v̂), ∀u, v ∈ V. (9)

It results that if u ∈ K is a solution of the problem (P′) then u solves inequality problem (P), too. �

If in addition K is bounded it follows that K is a weakly compact set. Setting V0 = V1 = K, we
notice that the set D in Theorem 2 is weakly compact as it is the intersection of weakly closed sets Oc

v.
The following result follows.

Corollary 1. Let Y = Lp(Ω; Rk), L = T and J : Lp(Ω; Rk) → R be the function

J(u) =
∫

Ω
j(x, u(x)) dx.

Assume that K is a nonempty, closed, bounded and convex subset of V and let A : K → V ∗ be a
hemicontinuous and stably pseudomonotone map with respect to the set U(J, L) defined in (7). Then
the problem (P) has at least one solution.

3 Existence results for nonlinear hemivariational inequalities and ap-
plications

This section is concerned with the study of the following nonlinear hemivariational inequality problem
Find u ∈ K such that

Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉, ∀ v ∈ K, (10)

where Λ : K ×K → R is a given function and f ∈ V ∗.
We point out the fact that the study of inequality problems involving nonlinear terms has captured

special attention in the last few years. We just refer to the prototype problem of finding u ∈ K such
that

Λ(u, v) ≥ 〈f, v − u〉, ∀ v ∈ K. (11)

Nonlinear inequality problems of the type (11) model some equilibrium problems drawn from operations
research, as well as some unilateral boundary value problems stemming from mathematical physics and
where introduced by J. Gwinner [3] who investigated the existence theory and abstract stability analysis
in the setting of reflexive Banach spaces.

The main object of this section is to establish existence results for the nonlinear hemivariational
inequality (10) for general maps, without monotonicity assumptions. As a consequence to our theorems,
we will derive some existence results for hemivariational inequalities that have been studied in [11], [13]
and [19] as it will be seen at the end of this section.

7



3.1 Existence results

In this subsection we shall establish two existence results for the inequality problem (10). The first
result is given by the following theorem.

Theorem 3. Let K be a nonempty, closed and convex subset of V and f ∈ V ∗. Let Λ : K ×K → R
a function vanishing on the diagonal, that is, Λ(u, u) = 0, for all u ∈ K, which satisfies the following
assumptions:

(1) Λ is convex with respect to the second variable;

(2) Λ is upper semicontinuous with respect to the first variable, that is, lim supn→∞ Λ(un, v) ≤ Λ(u, v),
for all v ∈ K whenever un → u in K;

(3) There exists a compact convex subset V1 of K such that for each u ∈ K \ V1 there is some v in V1

for which we have

Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉.

If j satisfies the conditions (2) and (4)-(5) and T : V → Lp(Ω; Rk) is linear and continuous, then the
nonlinear hemivariational inequality problem (10) has at least one solution in K.

Proof. For each v ∈ K we define the set

N(v) :=
{

u ∈ K : Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉

}
.

We point out the fact that the solution set of (10) is S =
⋂

v∈K N(v).
First we prove that for each v ∈ K the set N(v) is closed. Let {un} ⊂ N(v) be a sequence which

converges to u as n →∞. We show that u ∈ N(v). Since j satisfies the conditions (2) and (4)-(5), by
part (a) of Lemma 1 in [19] (pp. 44) the application

(u, v) 7−→
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx

is upper semicontinuous. Since T is linear and continuous, ûn → û and by the fact that un ∈ N(v) for
each n, we have

〈f, v − u〉 = lim sup
n→∞

〈f, v − un〉 ≤ lim sup
n→∞

[
Λ(un, v) +

∫
Ω

j 0(x, ûn(x); v̂(x)− ûn(x)) dx

]
≤ lim sup

n→∞
Λ(un, v) + lim sup

n→∞

∫
Ω

j 0(x, ûn(x); v̂(x)− ûn(x)) dx

≤ Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx.

This is equivalent to u ∈ N(v).
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Arguing by contradiction, suppose that S = ∅. Then for each u ∈ K there exists v ∈ K such that

Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉. (12)

We define the set valued map F : K → 2K by u 7−→ F (u) where

F (u) =
{

v ∈ K : Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉

}
.

Taking (12) into account we deduce that F (u) is nonempty for each u ∈ K. Using the fact that Λ
is convex with respect to the second variable, T is linear and the application v̂ 7−→ j 0(x, û; v̂) is also
convex, we obtain that F (u) is a convex set.

Now, for each v ∈ K, the set

F−1(v) = {u ∈ K : v ∈ F (u)}

=
{

u ∈ K : Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉

}
=

{
u ∈ K : Λ(u, v) +

∫
Ω

j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉
}c

= [N(v)]c = Ov

is open in K. We claim next that
⋃

v∈K Ov = K. To prove that, let u ∈ K. As F (u) is nonempty
it follows that there exists v ∈ F (u) which implies u ∈ F−1(v). Thus K ⊆

⋃
v∈K Ov, the converse

inclusion being obvious.
Finally, from the last conditions of the theorem, for each u ∈ K \ V1 there exists v ∈ V1 such that

Λ(u, v) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉

which means that u 6∈ N(v). This implies that the set D =
⋂

v∈V1
Oc

v =
⋂

v∈V1
N(v) ⊂ V1 is empty or

compact as a closed subset of the compact set V1. Taking V0 = V1 we have proved that the set valued
map F satisfies the conditions of Theorem 1, hence there exists u0 ∈ K such that u0 ∈ F (u0), that is,

0 = Λ(u0, u0) +
∫

Ω
j 0(x, û0(x); û0(x)− û0(x)) dx < 〈f, u0 − u0〉 = 0,

which is a contradiction. Hence the solution set S of problem (10) is nonempty. �

In case K is compact, the last condition of Theorem 3 is automatically fulfilled, since we can set
V1 = K. Thus the following Corollary has been proved.

Corollary 2. Let K be a compact convex subset of V and f ∈ V ∗. Let Λ : K × K → R be a
function which vanishes on the diagonal such that Λ is convex with respect to the second variable
and upper semicontinuous with respect to the first variable. Then, if j satisfies (2) and (4)-(5) and
T : V → Lp(Ω; Rk) is linear and continuous, the problem (10) has a solution in K.
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Remark 2. If V is reflexive and the operator T : V → Lp(Ω; Rk) is linear and compact the conclusion
of Theorem 3 still holds if Λ is weakly upper semicontinuous with respect to the first variable instead of
being upper semicontinuous, because in these conditions, by part (b) of Lemma 1 in [19] the application

(u, v) 7−→
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx

is weakly upper semicontinuous. The proof is identical to that of Theorem 3, but the conditions of
Theorem 1 are satisfied in the weak topology.

Taking into account the above remark, we can state a variant of Corollary 2 for reflexive Banach
spaces as follows:

Corollary 3. Let K be a nonempty, bounded, closed and convex subset of a real reflexive Banach space
V and f ∈ V ∗. Let Λ : K ×K → R be a function which vanishes on the diagonal such that Λ is convex
with respect to the second variable and weakly upper semicontinuous with respect to the first variable.
Then, if j satisfies (2) and (4)-(5) and T : V → Lp(Ω; Rk) is linear and compact, the inequality problem
(10) has a solution in K.

In order to establish another result concerning the existence of solutions for the nonlinear hemivari-
ational problem (10) we need the following result which is due to Mosco (see [9]):

Mosco’s Theorem. Let K be a nonempty convex and compact subset of a topological vector space V .
Let Φ : V → R∪{+∞} be a proper, convex and lower semicontinuous function such that D(Φ)∩K 6= ∅.
Let g, h : V × V → R be two functions such that

(i) g(x, y) ≤ h(x, y), for every x, y ∈ V ;

(ii) the mapping h(·, y) is concave, for any y ∈ V ;

(iii) the mapping g(x, ·) is lower semicontinuous, for every x ∈ V .

Let λ be an arbitrary real number. Then the following alternative holds: either
-there exists y0 ∈ D(Φ) ∩K such that g(x, y0) + Φ(y0)− Φ(x) ≤ λ, for any x ∈ V ,
or
-there exists x0 ∈ V such that h(x0, x0) > λ.
We notice that a particular case of interest for the above result is if λ = 0 and h(x, x) ≤ 0, for every

x ∈ V .

Lemma 2. Let K be a nonempty, bounded, closed and convex subset of a real reflexive Banach space
V and f ∈ V ∗ be arbitrary but fixed. Consider a Banach space Y such that there exists a linear and
compact mapping L : V → Y and let J : Y → R be an arbitrary locally Lipschitz function. Suppose in
addition that Λ : V × V → R is a function which satisfies the following conditions:

(1) Λ(u, u) = 0, ∀ u ∈ V ;
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(2) Λ(u, v) + Λ(v, u) ≥ 0, ∀ u, v ∈ V ;

(3) Λ is weakly upper semicontinuous and concave with respect to the first variable.

Then it exists u ∈ K such that for all v ∈ K we have

Λ(u, v) + J 0(Lu;Lv − Lu) ≥ 〈f, v − u〉.

Proof. Set
g(v, u) = −Λ(u, v)− 〈f, u− v〉 − J 0(Lu;Lv − Lu)

and
h(v, u) = Λ(v, u)− 〈f, u− v〉 − J 0(Lu;Lv − Lu).

By condition (2) we have

g(v, u)− h(v, u) = −[Λ(u, v) + Λ(v, u)] ≤ 0, ∀ u, v ∈ V.

The mapping u 7−→ g(v, u) is weakly lower semicontinuous for each v ∈ V , while the mapping
v 7−→ h(v, u) is concave for each u ∈ V . We shall apply Mosco’s Theorem with λ = 0 and Φ = IK ,
where IK denotes the indicator function of the set K, that is IK(u) = 0 if u ∈ K and IK(u) = ∞
otherwise. Clearly IK is proper, convex and lower semicontinuous since K is nonempty, convex and
closed. We obtain that exists u ∈ K satisfying

g(v, u) + IK(u)− IK(v) ≤ 0, ∀v ∈ V ;

A simple computation yields that there exists u ∈ K such that

Λ(u, v) + J 0(Lu;Lv − Lu) ≥ 〈f, v − u〉, ∀v ∈ K.

�

The second existence result concerning the nonlinear hemivariational inequality problem can now
be stated as follows:

Theorem 4. Assume that the hypotheses of Lemma 2 are fulfilled for Y = Lp(Ω; Rk), L = T and
J : Lp(Ω; Rk) → R

J(u) =
∫

Ω
j(x, u(x)) dx.

Then the inequality problem (10) has at least one solution.
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3.2 Applications

3.2.1 Noncoercive hemivariational and variational-hemivariational inequalities

Let us consider the noncoercive forms of the coercive and semicoercive hemivariational inequalities
investigated in [13] (pp. 65-77, 80-85). For this, let assume that V is a real Hilbert space with the
property that

V ⊂
[
L2(Ω; Rk)

]N
⊂ V ∗

and the injections are continuous and dense. Moreover, let T : V → L2(Ω; Rk), Tu = û, û(x) ∈ Rk be
linear and continuos. It is also assumed that f ∈ V ∗ and a : V × V → R is a bilinear symmetric and
continuous form. We consider the problem:

(P1) Find u ∈ K such that

a(u, v − u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉, ∀ v ∈ K.

We take Λ : V × V → R defined by Λ(u, v) = a(u, v − u).

Case 1. If K is compact and convex it suffices to apply Corollary 2 to conclude that the problem
(P1) has at least one solution. We point out that this result is more general from the point of
view of the absence of the coercivity and semicoercivity assumption, but less general from the
point of view of the compactness of K.

Case 2. If K is the entire space V (as in [13]) we can replace the coercivity and semicoercivity
assumptions by the following assumption:
There exists a compact convex subset V1 of V such that for each u ∈ V \ V1 there is some v ∈ V1

for which we have

a(u, v − u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉.

It suffices in this case to apply Theorem 3 to conclude that the problem (P1) admits at least one
solution.

Let us consider now a functional Φ : V → (−∞,+∞], which is convex, lower semicontinuous and proper
and formulate the following variational-hemivariational problem:

(P2) Find u ∈ K such that

a(u, v − u) + Φ(v)− Φ(u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉, ∀ v ∈ K.

Here V , a and j satisfy the same conditions as in the case of the hemivariational problem (P1).
Defining Λ : V × V → R by Λ(u, v) = a(u, v − u) + Φ(v) − Φ(u) the conclusions from Case 1 and

Case 2 still hold with the specification that the condition which replaces coercivity and semicoercivity
assumptions, when we take K = V , becomes:

12



There exists a compact convex subset V1 of V such that for each u ∈ V \ V1 there is some v ∈ V1 for
which we have

a(u, v − u) + Φ(v)− Φ(u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 〈f, v − u〉.

3.2.2 Hartman-Stampacchia type hemivariational and variational-hemivariational inequal-
ities

Let us consider we are in the framework of [19] where it is studied a hemivariational inequality of
Hartman-Stampacchia type. Let V be a real Banach space and let T : V → Lp(Ω; Rk) be a linear
continuous operator, where 1 ≤ p < ∞, k ≥ 1. K is a subset of V , and A : K → V ∗ an operator while
j satisfies conditions (2) and (4)-(5). We consider the problem:

(P3) Find u ∈ K such that

〈Au, v − u〉+
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 0, ∀ v ∈ K.

If A is w∗-demicontinuous, that is, for any sequence {un} ⊂ K converging to u, the sequence {Aun}
converges to Au for the w∗ topology of V ∗, then accordingly to Remark 3 in [19]

lim
n→∞

〈Aun, un〉 = 〈Au, u〉, whenever un → u.

We define Λ(u, v) = 〈Au, v − u〉 and assume that A is w∗-demicontinuous (or equivalently the
application u 7−→ 〈Au, v〉 is weakly upper semicontinuos), then Λ satisfies conditions (1)-(2) of Theorem
3.

Case 1. Let K be a compact convex subset of the infinite dimensional Banach space V . Applying
Corollary 2 we obtain that the problem (P3) has a solution.

Case 2. Weaking the hypotheses on K by assuming that K is a nonempty, closed and convex subset
of the Banach space V we need an extra condition to “balance” the lack of compactness. Theorem
3 states that a sufficient condition such that (P3) has a solution is:
There exists a compact convex subset V1 of K such that for each u ∈ K there is some v ∈ K for
which we have

〈Au, v − u〉+
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx < 0.

In [11] it is studied the following variational-hemivariational inequality problem:
(P4) Find u ∈ K such that

〈Au− f, v − u〉+ Φ(v)− Φ(u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 0, ∀ v ∈ K,

where f ∈ V ∗, K is a subset of the real reflexive Banach space V , A : V → V ∗ is a nonlinear operator
and Φ : V → R ∪ {+∞} is a proper, convex and lower semicontinuos function. We also consider that
T : Lp(Ω; Rk) → V is a linear and compact operator and Tu = û.
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If A is monotone and hemicontinuous, and K is nonempty, bounded, closed and convex we shall
rediscover the result of Theorem 2 in [11] by means of Theorem 4. We take Λ : V × V → R to be
Λ(u, v) = 〈Av, v − u〉+ Φ(v)− Φ(u). It is easy to observe that Λ(v, u) = −〈Au, v − u〉+ Φ(u)− Φ(v).
Then by the monotonicity of A we have

Λ(u, v) + Λ(v, u) = 〈Av −Au, v − u〉 ≥ 0.

Clearly the application Λ defined as above is concave and weakly upper semicontinuous with respect
to the first variable. Thus by Theorem 4 there exists u ∈ K such that

〈Aw,w − u〉+ Φ(w)− Φ(u) +
∫

Ω
j 0(x, û(x); ŵ(x)− û(x)) dx ≥ 〈f, w − u〉, ∀ w ∈ K. (13)

We fix v ∈ K and set w = tv + (1− t)u ∈ K, for t ∈ (0, 1). So, by (13),

t〈A(tv + (1− t)u), v − u〉+ Φ(tv + (1− t)u)− Φ(u) +
∫

Ω
j 0(x, û(x); t(v̂(x)− û(x))) dx ≥ t〈f, v − u〉.

Using the convexity of Φ, the fact that j 0(x, u; ·) is positive homogeneous and dividing by t we find

〈A(tv + (1− t)u), v − u〉+ Φ(v)− Φ(u) +
∫

Ω
j 0(x, û(x); v̂(x)− û(x)) dx ≥ 〈f, v − u〉.

Now, letting t → 0 and using the hemicontinuity of A we find that u is a solution of (P4).
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