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1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following parametric
Robin problem:

{{
{{
{

−∆u(z) + ξ(z)u(z) = f(z, u(z)) − λ|u(z)|q−2u(z) in Ω,
∂u
∂n
+ β(z)u(z) = 0 on ∂Ω.

(Pλ)

In this problem, the potential function ξ ∈ Ls(Ω) (s > N) is indefinite (that is, sign changing). In the
reaction (right-hand side), the function f(z, x) is Carathéodory (that is, for all x ∈ ℝ the function z → f(z, x)
is measurable and for almost all z ∈ Ω the function x → f(z, x) is continuous) and f(z, ⋅ ) has linear growth
near ±∞. However, the asymptotic behavior of f(z, ⋅ ) as x → ±∞ is asymmetric. More precisely, we assume
that the quotient f(z,x)

x as x → +∞ stays above the principal eigenvalue λ̂1 of the differential operator
u → −∆u + ξ(z)u with Robin boundary condition, while as x → −∞ the quotient f(z,x)

x stays below λ̂1 with
possible interaction (resonance) with respect to λ̂1 from the left. So, f(z, ⋅ ) is a crossing (jumping) nonlinear-
ity. In the term −λ|u|q−2u, we suppose that λ > 0 is a parameter and 1 < q < 2. Hence this term is a concave
nonlinearity. Therefore, in the reaction we have the competing effects of resonant and concave terms. How-
ever, note that in our problem the concave nonlinearity enters with a negative sign. Such problems were
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considered by Perera [12], de Paiva and Massa [3] and de Paiva and Presoto [4] for Dirichlet problems with
zero potential (that is, ξ ≡ 0). Of the aforementioned works, only de Paiva and Presoto [4] have an asymmet-
ric reaction of special form, which is superlinear in the positive direction and linear and nonresonant in the
negative direction. Recently, problems with asymmetric reaction have been studied by D’Agui, Marano and
Papageorgiou [2] (Robin problems), Papageorgiou and Rădulescu [8, 11] (Neumann and Robin problems)
and Recova and Rumbos [14] (Dirichlet problems).

We prove two multiplicity results in which we show that for all small λ > 0 the problem has four and
five nontrivial smooth solutions, respectively. Our approach uses variational tools based on the critical point
theory, togetherwith suitable truncation, perturbation and comparison techniques andMorse theory (critical
groups).

2 Mathematical Background and Hypotheses
Let X be a Banach space. We denote by X∗ the topological dual of X and by ⟨ ⋅ , ⋅ ⟩ the duality brackets for the
pair (X∗, X). Given φ ∈ C1(X,ℝ), we say that φ satisfies the “Cerami condition” (the “C-condition” for short)
if the following property holds:
∙ Every sequence {un}n⩾1 ⊆ X such that {φ(un)}n⩾1 ⊆ ℝ is bounded and (1 + ‖un‖)φ(un)→ 0 in X∗ as

n →∞, admits a strongly convergent subsequence.
This compactness-type condition on φ( ⋅ ) is crucial in deriving the minimax theory of the critical values

of φ. One of the main results in that theory is the so-called “mountain pass theorem”, which we recall below.

Theorem 2.1. Assume that φ ∈ C1(X,ℝ) satisfies the C-condition, u0, u1 ∈ X, ‖u1 − u0‖ > r,

max{φ(u0), φ(u1)} < inf{φ(u) : ‖u − u0‖ = r} = mr

and
c = inf

γ∈Γ
max
0⩽t⩽1

φ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ⩾ mr and c is a critical value of φ (that is, there exists u ∈ X such that φ(u) = c and φ(u) = 0).

Recall that a Banach space X has the “Kadec–Klee property” if the following holds:

un
w
→ u in X, ‖un‖→ ‖u‖ ⇒ un → u in X.

It is an easy consequence of the parallelogram law that every Hilbert space has the Kadec–Klee property
(see [5]).

In the study of problem (Pλ), we will use the following three spaces:

H1(Ω), C1(Ω), Lr(∂Ω) (1 ⩽ r ⩽∞).

The Sobolev space H1(Ω) is a Hilbert space with inner product given by

(u, h) = ∫
Ω

(Du, Dh)ℝN dz + ∫
Ω

uh dz for all u, h ∈ H1(Ω).

We denote by ‖ ⋅ ‖ the corresponding norm on H1(Ω). So, we have

‖u‖ = [‖u‖22 + ‖Du‖
2
2]

1/2 for all u ∈ H1(Ω).

The space C1(Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior. Note that

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω} ⊆ int C+.

In fact, D+ is the interior of C+ when the latter is furnished with the relative C(Ω)-norm topology.
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On ∂Ωwe consider the (N − 1)-dimensional Hausdorff (surface)measure σ( ⋅ ). Using thismeasure on ∂Ω,
we can define in the usual way the “boundary” Lebesgue spaces Lr(∂Ω) (for 1 ⩽ r ⩽∞). From the theory of
Sobolev spaces we know that there exists a unique continuous linear map γ0 : H1(Ω)→ L2(∂Ω) known as
the “trace map” such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

So, the tracemap assigns “boundary values” to every Sobolev function. The tracemap is compact into Lp(∂Ω)
for all 1 ⩽ p < 2(N−1)

N−2 if N ⩾ 3, and into Lp(∂Ω) for all 1 ⩽ p ⩽∞ if N = 1, 2. Also, we have

im γ0 = H
1
2 ,2(∂Ω) and ker γ0 = H1

0(Ω).

In what follows, for the sake of notational simplicity, we drop the use of the trace map γ0. All restrictions
of Sobolev functions on ∂Ω are understood in the sense of traces.

Next, we consider the following linear eigenvalue problem:

{{
{{
{

−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u
∂n
+ β(z)(u) = 0 on ∂Ω.

(2.1)

This problem was studied by D’Agui, Marano and Papageorgiou [2]. We impose the following conditions on
the potential function ξ( ⋅ ) and on the boundary coefficient β( ⋅ ):
H(ξ): ξ ∈ Ls(Ω) with s > N.
H(β): β ∈ W1,∞(∂Ω) and β(z) ⩾ 0 for all z ∈ ∂Ω.

Remark. The potential function ξ is both unbounded and sign-changing.

Remark. If β ≡ 0, then we recover the Neumann problem.

Let γ : H1(Ω)→ ℝ be the C2-functional defined by

γ(u) = ‖Du‖22 + ∫
Ω

ξ(z)u2 dz + ∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

Problem (2.1) admits a smallest eigenvalue λ̂1 ∈ ℝ given by

̂λ1 = inf{
γ(u)
‖u‖22

: u ∈ H1(Ω), u ̸= 0}. (2.2)

Moreover, there exists μ > 0 such that

γ(u) + μ‖u‖22 ⩾ c0‖u‖
2 for some c0 > 0 and for all u ∈ H1(Ω). (2.3)

Using (2.3) and the special theorem for compact self-adjoint operators on Hilbert spaces, we produce
the full spectrum of (2.2). This consists of a sequence {λ̂k}k∈ℕ of distinct eigenvalues such that λ̂k → +∞.
Let E(λ̂k) denote the eigenspace corresponding to the eigenvalue λ̂k. By the regularity theory of Wang [15],
we have

E(λ̂k) ⊆ C1(Ω) for all k ∈ ℕ.

Each eigenspace has the “Unique Continuation Property” (UCP for short). This means that if u ∈ E(λ̂k)
vanishes on a set of positive Lebesgue measure, then u ≡ 0.

Let

Hm =
m
⨁
k=1

E(λ̂k) and Ĥm = H
⊥
m = ⨁

k⩾m+1
E(λ̂k).

We have
H1(Ω) = Hm ⊕ Ĥm .
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Moreover, for everym ⩾ 2, we have variational characterizations for the eigenvalues λ̂m analogue to that
for λ̂1 (see (2.2)):

λ̂m = inf{
γ(u)
‖u‖22

: u ∈ Ĥm−1, u ̸= 0} = sup{
γ(u)
‖u‖22

: u ∈ Hm , u ̸= 0}, m ⩾ 2. (2.4)

In (2.2) the infimum is realized on E(λ̂1), while in (2.4) both the infimum and the supremum are realized
on E(λ̂m). We know that dim E(λ̂1) = 1 (that is, the first eigenvalue λ̂1 is simple). Hence the elements of E(λ̂1)
have constant sign. We denote by û1 ∈ C+ \ {0} the positive L2-normalized eigenfunction (that is, ‖û1‖2 = 1)
corresponding to λ̂1. By the strong maximum principle, we have û1(z) > 0 for all z ∈ Ω and if ξ+ ∈ L∞(Ω)
(that is, the potential function is bounded above), by the Hopf boundary point theoremwe have û1 ∈ D+ (see
[13, p. 120]).

Using (2.2), (2.4) and the above properties, we get the following useful inequalities.

Proposition 2.2. (i) If ϑ ∈ L∞(Ω), ϑ(z) ⩽ λ̂m for almost all z ∈ Ω, ϑ ̸≡ λ̂m,m ∈ ℕ, then there exists c1 > 0 such
that

c1‖u‖2 ⩽ γ(u) − ∫
Ω

ϑ(z)u2 dz for all u ∈ Ĥm−1.

(ii) If ϑ ∈ L∞(Ω), ϑ(z) ⩾ λ̂m for almost all z ∈ Ω, ϑ ̸≡ λ̂m, m ∈ ℕ, then there exists c2 > 0 such that

γ(u) − ∫
Ω

ϑ(z)u2 dz ⩽ −c2‖u‖2 for all u ∈ Hm .

Note that if ξ ≡ 0 and β ≡ 0, then λ̂1 = 0, while if ξ ⩾ 0 and either ξ ̸≡ 0 or β ̸≡ 0, then λ̂1 > 0. Also, the ele-
ments of E(λ̂k) for k ⩾ 2 are nodal (that is, sign-changing).

In addition to the eigenvalue problem (2.1), we can consider its weighted version. So, let m ∈ L∞(Ω),
m(z) ⩾ 0 for almost all z ∈ Ω, m ̸≡ 0, and consider the following linear eigenvalue problem:

{{
{{
{

−∆u(z) + ξ(z)u(z) = λ̃m(z)u(z) in Ω,
∂u
∂n
+ β(z)u = 0 on ∂Ω.

(2.5)

This eigenvalue problem exhibits the same properties as (2.1). So, the spectrum consists of a sequence
{λ̃k(m)}k∈ℕ of distinct eigenvalues such that λ̃k(m)→ +∞ as k → +∞. As for (2.1), the first eigenvalue λ̃1(m)
is simple and the elements of E(λ̃1(m)) ⊆ C1(Ω) have fixed sign, while the elements of E(λ̃k(m)) ⊆ C1(Ω) (for
all k ⩾ 2) are nodal. We have variational characterizations for all the eigenvalues as in (2.2) and (2.4) except
that now the Rayleigh quotient is

γ(u)
∫Ω m(z)u

2 dz
.

Moreover, the eigenspaces have theUCPproperty. These properties yield the followingmonotonicity property
for the map m → λ̃k(m), k ∈ ℕ.

Proposition 2.3. If m1,m2 ∈ L∞(Ω), 0 ⩽ m1(z) ⩽ m2(z) for almost all z ∈ Ω, m1 ̸≡ 0, m2 ̸≡ m1, then

λ̃k(m2) < λ̃k(m1) for all k ∈ ℕ.

Let f0 : Ω ×ℝ→ ℝ be a Carathéodory function such that

f0(z, x) ⩽ a0(z)[1 + |x|
r−1] for almost all x ∈ ℝ,

with a0 ∈ L∞(Ω) and

1 < r ⩽ 2∗ =
{{
{{
{

2N
N − 2 if N ⩾ 3,

+∞ if N = 1, 2

(the critical Sobolev exponent). Let F0(z, x) = ∫
x
0 f0(z, s) ds and consider the C1-functional φ0 : H1(Ω)→ ℝ
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defined by
φ0(u) =

1
2 γ(u) − ∫

Ω

F0(z, u) dz for all u ∈ H1(Ω).

As in [10, Proposition 8], using the regularity theory of Wang [15], we obtain the following result.

Proposition 2.4. Assume that u0 ∈ H1(Ω) is a local C1(Ω)-minimizer of φ0( ⋅ ), that is, there exists ρ1 > 0 such
that

φ0(u0) ⩽ φ0(u0 + h) for all h ∈ C1(Ω), ‖h‖C1(Ω) ⩽ ρ1.

Then u0 ∈ C1,α(Ω)with 0 < α < 1, and u0 is also a local H1(Ω)-minimizer of φ0, that is, there exists ρ2 > 0 such
that

φ0(u0) ⩽ φ0(u0 + h) for all h ∈ C1(Ω), ‖h‖ ⩽ ρ2.

Next, we recall some definitions and facts from Morse theory (critical groups). So, let X be a Banach space,
let φ ∈ C1(X,ℝ) and let c ∈ ℝ. We introduce the following sets:

φc = {u ∈ X : φ(u) ⩽ c},
Kφ = {u ∈ X : φ(u) = 0},
Kc
φ = {u ∈ Kφ : φ(u) = c}.

Given a topological pair (Y1, Y2) such that Y2 ⊆ Y1 ⊆ X, for every k ∈ ℕ0 we denote by Hk(Y1, Y2) the
k-th-relative singular homology group for the pair (Y1, Y2) with integer coefficients. Suppose that u ∈ Kc

φ is
isolated. The critical groups of φ at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k ∈ ℕ0,

with U being a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of singular homology
implies that the above definition of critical groups is independent of the choice of the neighborhood U. If u
is a local minimizer of φ, then

Ck(φ, u) = δk,0ℤ for all k ∈ ℕ0.

Here, δk,m denotes the Kronecker symbol defined by

δk,m =
{
{
{

1 if k = m,
0 if k ̸= m.

Next, let us fix our notation. If x ∈ ℝ, we set x± = max{±x, 0}. For u ∈ W1,p(Ω) we define u±( ⋅ ) = u( ⋅ )±.
We know that

u± ∈ W1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Given a measurable function g : Ω ×ℝ→ ℝ (for example, a Carathéodory function), we denote by Ng( ⋅ )
the Nemitsky (superposition) map defined by

Ng(u)( ⋅ ) = g( ⋅ , u( ⋅ )) for all u ∈ W1,p(Ω).

Also, A ∈ L (H1(Ω), H1(Ω)∗) is defined by

⟨A(u), h⟩ = ∫
Ω

(Du, Dh)ℝN dz for all u, h ∈ H1(Ω).

The hypotheses on the nonlinearity f(z, x) are the following:
H(f): f : Ω ×ℝ→ ℝ is a Carathéodory function such that f(z, 0) = 0 for almost all z ∈ Ω and

(i) For every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f(z, x)| ⩽ aρ(z) for almost all z ∈ Ω and for all |x| ⩽ ρ.
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(ii) There exist functions η, η̂ ∈ L∞(Ω) and m ∈ ℕ, m ⩾ 2, such that

λ̂1 ⩽ η(z) ⩽ η̂(z) ⩽ λ̂m for almost all z ∈ Ω, η ̸≡ λ̂1, η̂ ̸≡ λ̂m ,

η̂(z) ⩽ lim inf
x→+∞

f(z, x)
x
⩽ lim sup

x→+∞

f(z, x)
x
⩽ η̂(z) uniformly for almost all z ∈ Ω,

and there exists η̃ > 0 such that

−η̂ ⩽ lim inf
x→−∞

f(z, x)
x
⩽ lim sup

x→−∞

f(z, x)
x
⩽ λ̂1 uniformly for almost all z ∈ Ω.

(iii) If F(z, x) = ∫x0 f(z, s) ds, then

f(z, x)x − 2F(z, x)→ +∞ uniformly for almost all z ∈ Ω as x → −∞,
f(z, x)x − 2F(z, x) ⩾ 0 for almost all z ∈ Ω and for all x ⩾ M0 > 0,

F(z, x) ⩽ λ̂m2 x2 for almost all z ∈ Ω and for all x ∈ ℝ.

(iv) There exist functions ϑ, ϑ̂ ∈ L∞(Ω) and l ∈ ℕ, l ⩾ m, such that

λ̂l ⩽ ϑ(z) ⩽ ϑ̂(z) ⩽ λ̂l+1 for almost all z ∈ Ω, ϑ ̸≡ λ̂l , ϑ̂ ̸= λ̂l+1,

ϑ(z) ⩽ lim inf
x→0

f(z, x)
x
⩽ lim sup

x→0

f(z, x)
x
⩽ ϑ̂(z) uniformly for almost all z ∈ Ω.

Remark. HypothesisH(f) (ii) implies that f(z, ⋅ )has asymmetric behavior as x → ±∞ (jumping nonlinearity).
Moreover, as x → −∞we can have resonancewith respect to the principal eigenvalue λ̂1. HypothesisH(f) (iii)
implies that this resonance is from the left of λ̂1 in the sense that

λ̂1x2 − 2F(z, x)→ +∞ uniformly for almost all z ∈ Ω as x → −∞.

Note that hypotheses H(f) (i), (ii) and (iv) imply that

|f(z, x)| ⩽ c3|x| for almost all z ∈ Ω for all x ∈ ℝ and for some c3 > 0. (2.6)

For every λ > 0, let φλ : H1(Ω)→ ℝ be the energy functional for problem (Pλ) defined by

φλ(u) =
1
2 γ(u) +

λ
q
‖u‖qq − ∫

Ω

F(z, u) dz for all u ∈ H1(Ω).

Evidently, φλ ∈ C1(H1(Ω),ℝ).
Let μ > 0 be as in (2.3). We introduce the following truncations-perturbations of the reaction in prob-

lem (Pλ):
{{{{{{{
{{{{{{{
{

k+λ (z, x) =
{
{
{

0 if x ⩽ 0,
f(z, x) − λxq−1 + μx if x > 0,

k−λ (z, x) =
{
{
{

f(z, x) − λ|x|q−2x + μx if x < 0,
0 if x ⩾ 0.

(2.7)

Both are Carathéodory functions. We set

K±λ (z, x) =
x

∫
0

k±λ (z, s) ds

and consider the C1-functionals φ̂±λ : H
1(Ω)→ ℝ defined by

φ̂±λ (u) =
1
2 γ(u) +

μ
2 ‖u‖

2
2 − ∫

Ω

K±λ (z, u) dz for all u ∈ H1(Ω).
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3 Compactness Conditions for the Functionals
We consider the functionals φ̂±λ and φλ and we show that they satisfy the compactness-type condition.

Proposition 3.1. If hypotheses H(ξ), H(β) and H(f) hold, then for every λ > 0 the functional λ̂+λ satisfies the
C-condition.

Proof. We consider a sequence {un}n⩾1 ⊆ H1(Ω) such that

|φ̂+λ (un)| ⩽ M1 for some M1 > 0 and for all n ∈ ℕ,
(1 + ‖un‖)(φ̂+λ )

(un)→ 0 in H1(Ω)∗ as n → +∞. (3.1)

From (3.1) we have


⟨A(un), h⟩ + ∫

Ω

[ξ(z) + μ]unh dz + ∫
∂Ω

β(z)unhdσ − ∫
Ω

k+λ (z, un)h dz

⩽

ϵn‖h‖
1 + ‖un‖

(3.2)

for all h ∈ H1(Ω), with ϵn → 0+. In (3.2) we choose h = −u−n ∈ H1(Ω). Then

γ(u−n) + μ‖u−n‖22 ⩽ ϵn for all n ∈ ℕ (see (2.7)),
⇒ c0‖u−n‖2 ⩽ ϵn for all n ∈ ℕ (see (2.3)),
⇒ u−n → 0 in H1(Ω) as n →∞. (3.3)

From (3.2) and (3.3) we have

⟨A(u+n), h⟩ + ∫

Ω

ξ(z)u+nh dz + ∫
∂Ω

β(z)u+nhdσ − ∫
Ω

[f(z, u+n) − λ(u+n)q−1]h dz

⩽ ϵn‖h‖ (3.4)

for all h ∈ H1(Ω), with ϵn → 0+ (see (2.7)).
We show that {u+n}n⩾1 ⊆ H1(Ω) is bounded. Arguing by contradiction, suppose that

‖u+n‖→∞ as n →∞. (3.5)

Let
yn =

u+n
‖u+n‖

, n ∈ ℕ.

Then ‖yn‖ = 1 and yn ⩾ 0 for all n ∈ ℕ. So, we may assume that

yn
w
→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω), y ⩾ 0. (3.6)

Using (3.4), we obtain


⟨A(yn), h⟩ + ∫

Ω

ξ(z)ynh dz + ∫
∂Ω

β(z)ynhdσ +
λ
‖u+n‖2−q

∫
Ω

yq−1n h dz − ∫
Ω

Nf (u+n)
‖u+n‖

h dz


⩽
ϵ‖h‖
‖u+n‖

for all n ∈ ℕ. (3.7)

From (2.6) we see that

{
Nf (u+n)
‖u+n‖
}
n⩾1
⊆ L2(Ω) is bounded. (3.8)

So, by passing to a subsequence if necessary and using hypothesis H(f) (ii), we have (see [1, Proof of Propo-
sition 16])

Nf (u+n)
‖u+n‖

w
→ ν(z)y in L2(Ω), η(z) ⩽ ν(z) ⩽ η̂(z) for almost all z ∈ Ω. (3.9)



76 | N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Asymmetric Robin Problems

If in (3.7) we choose h = yn − y ∈ H1(Ω), passing to the limit as n →∞ and using (3.5), (3.6), (3.8) and
the fact that q < 2, we obtain

lim
n→∞
⟨A(yn), yn − y⟩ = 0,

⇒ ‖Dyn‖2 → ‖Dy‖2,
⇒ yn → y in H1(Ω) (by the Kadec–Klee property), and hence ‖y‖ = 1. (3.10)

In (3.7) we pass to the limit as n →∞ and use (3.9). We obtain

⟨A(y), h⟩ + ∫
Ω

ξ(z)yh dz + ∫
∂Ω

β(z)yhdσ = ∫
Ω

ν(z)yh dz for all h ∈ H1(Ω),

which implies

−∆y(z) + ξ(z)y(z) = ν(z)y(z) for almost all z ∈ Ω,
∂y
∂n
+ β(z)y = 0 on ∂Ω (see [9]). (3.11)

From (3.9) and Proposition 2.3 we have

λ̃1(ν) < λ̃1(λ̂1) = 1. (3.12)

Then (3.11), (3.12) and the fact that ‖y‖ = 1 (see (3.10)) imply that y( ⋅ )must be nodal. But this contradicts
(3.6). Therefore,

{u+n}n⩾1 ⊆ H1(Ω) is bounded,
⇒ {un}n⩾1 ⊆ H1(Ω) is bounded (see (3.3)).

Wemay assume that

un
w
→ u in H1(Ω) and un → u in L2(Ω) and in L2(∂Ω). (3.13)

In (3.2) we choose h = un − u ∈ H1(Ω), pass to the limit as n →∞ and use (3.13) and (2.6). Then

lim
n→∞
⟨A(un), un − u⟩ = 0,

⇒ un → u in H1(Ω) (again by the Kadec–Klee property),
⇒ φ̂+λ satisfies the C-condition.

The proof is now complete.

Proposition 3.2. If hypotheses H(ξ), H(β) and H(f) hold, then for every λ > 0 the functional φ̂−λ is coercive.

Proof. According to hypothesis H(f) (iii), given any ρ > 0, we can find M2 = M2(ρ) > 0 such that

ρ ⩽ f(z, x)x − 2F(z, x) for almost all z ∈ Ω and for all x ⩽ −M2. (3.14)

We have

d
dx (

F(z, x)
x2
) =

f(z, x)x2 − 2xF(z, x)
x4

=
f(z, x)x − 2F(z, x)
|x|2x

⩽
ρ
|x|2x

for almost all z ∈ Ω and all x ⩽ −M2 (see (3.14)),

which implies

F(z, v)
v2
−
F(z, y)
y2
⩾
ρ
2(

1
y2
−

1
v2
) for almost all z ∈ Ω and for all v ⩽ y ⩽ −M2. (3.15)



N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Asymmetric Robin Problems | 77

From hypothesis H(f) (ii) we have

− η̃ ⩽ lim inf
x→−∞

2F(z, x)
x2
⩽ lim sup

x→−∞

2F(z, x)
x2
⩽ λ̂1 uniformly for almost all z ∈ Ω. (3.16)

If in (3.15) we let v → −∞ and use (3.16), then

λ̂1y2 − 2F(z, y) ⩾ ρ for almost all z ∈ Ω and for all y ⩽ −M2,

⇒ λ̂1y2 − 2F(z, y)→ +∞ uniformly for almost all z ∈ Ω as y → −∞. (3.17)

Suppose to the contrary that λ̂−λ is not coercive. This means that we can find {un}n⩾1 ⊆ H1(Ω) such that

‖un‖→∞ as n →∞ and φ̂−λ (un) ⩽ M3 for some M3 > 0 and for all n ∈ ℕ. (3.18)

Let
vn =

un
‖un‖

, n ∈ ℕ.

Then ‖vn‖ = 1 for all n ∈ ℕ, and so we may assume that

vn
w
→ v in H1(Ω) and vn → v in L2(Ω) and in L2(∂Ω). (3.19)

From (3.18) we have

1
2 γ(un) +

μ
2 ‖un‖

2
2 − ∫

Ω

K−λ (z, un) dz ⩽ M3 for all n ∈ ℕ,

⇒
1
2 γ(vn) +

μ
2 ‖vn‖

2
2 − ∫

Ω

K−λ (z, un)
‖un‖2

dz ⩽ M3
‖un‖2

for all n ∈ ℕ. (3.20)

From (2.6) we obtain

|F(z, x)| ⩽ c32 x2 for almost all z ∈ Ω and for all x ∈ ℝ,

⇒ {
K−λ ( ⋅ , un( ⋅ ))
‖un‖2

}
n⩾1
⊆ L1(Ω) is uniformly integrable (see (2.7) and (3.19)).

Hence, by the Dunford–Pettis theorem and hypothesis H(f) (ii) we have

K−λ ( ⋅ , un( ⋅ ))
‖un‖2

w
→

1
2 [ẽ(z) + μ](v

−)2 in L1(Ω) as n →∞ (3.21)

with −η̃ ⩽ ẽ(z) ⩽ λ̂1 for almost all z ∈ Ω (see [1]).
We return to (3.20) and pass to the limit as n →∞ in (3.18), (3.19) and (3.21). Since γ( ⋅ ) is sequentially

weakly lower semicontinuous on H1(Ω), we obtain (see (2.3))

1
2 γ(v) +

μ
2 ‖v‖

2
2 ⩽

1
2 ∫

Ω

[ẽ(z) + μ](v−)2 dz

⇒ γ(v−) ⩽ ∫
Ω

ẽ(z)(v−)2 dz. (3.22)

First, we assume that ẽ ̸≡ λ̂1 (see (3.21)). Then by (3.22) and Proposition 2.2 we have c1‖v−‖2 ⩽ 0, which
implies

v ⩾ 0. (3.23)

Then on account of (3.19) and (3.23) we have

v−n
w
→ 0 in H1(Ω) and v−n → 0 in L2(Ω) and in L2(∂Ω). (3.24)
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In (3.20) we pass to the limit as n →∞ and use (3.24), (3.22) and the sequential weak lower semicontinuity
of γ( ⋅ ). We obtain

γ(v+) + μ‖v+‖22 ⩽ 0,
⇒ c0‖v+‖2 ⩽ 0 (see (2.3)),
⇒ v = 0 (see (3.23)).

From (3.20) we obtain ‖Dvn‖2 → 0, which implies vn → 0 in H1(Ω) (see (3.19)), which contradicts the fact
that ‖vn‖ = 1 for all n ∈ ℕ.

Next, we assume that ẽ(z) = λ̂1 for almost all z ∈ Ω. From (3.22) and (2.2)we have γ(v−) = λ̂1‖v−‖22, which
implies

v− = τû1 for some τ ⩾ 0. (3.25)

If τ = 0, then v ⩾ 0 and, arguing as above (see the part of the proof after (3.23)),we obtain v = 0, contradicting
the fact that ‖vn‖ = 1 for all n ∈ ℕ. If τ > 0, then from (3.25) we have

v(z) < 0 for all z ∈ Ω.

This means that

u−n(z)→ −∞ for almost all z ∈ Ω as n →∞,

⇒ λ̂1u−n(z)2 − 2F(z, u−n(z))→ +∞ for almost all z ∈ Ω as n →∞ (see (3.17)),

⇒ ∫
Ω

[λ̂1(u−n)2 − 2F(z, u−n)] dz → +∞ as n →∞ (by Fatou’s lemma, see (3.17)),

⇒ γ(u−n) − 2∫
Ω

F(z, −u−n) dz → +∞ as n →∞ (see (2.2)),

⇒ 2φ̂−λ (u
−
n)→ +∞ as n →∞ (see (2.7)).

But this contradicts (3.18). We conclude that φ̂−λ is coercive.

This proposition leads to the following corollary (see [6, Proposition 2.2]).

Corollary 3.3. If hypotheses H(ξ), H(β) and H(f) hold, then for every λ > 0 the functional φ̂−λ satisfies the
C-condition.

Next, we turn our attention to the energy functional φλ, λ > 0.

Proposition 3.4. If hypotheses H(ξ), H(β) and H(f) hold, then for every λ > 0 the functional φλ satisfies the
C-condition.

Proof. We consider a sequence {un}n⩾1 ⊆ H1(Ω) such that

|φλ(un)| ⩽ M4 for some M4 > 0 and for all n ∈ ℕ, (3.26)
(1 + ‖un‖)φλ(un)→ 0 in H1(Ω)∗ as n →∞. (3.27)

From (3.27) we have

⟨A(un), h⟩ + ∫

Ω

ξ(z)unh dz + ∫
∂Ω

β(z)unhdσ + λ∫
Ω

|un|q−2unhdσ − ∫
Ω

f(z, un)h dz


⩽
ϵn‖h‖

1 + ‖un‖
for all h ∈ H1(Ω), with ϵn → 0+. (3.28)

In (3.28) we choose h = un ∈ H1(Ω). Then

− γ(un) − λ‖un‖
q
q + ∫

Ω

f(z, un)undz ⩽ ϵn for all n ∈ ℕ. (3.29)
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On the other hand, from (3.26) we have

γ(un) +
2λ
q
‖un‖

q
q − ∫

Ω

2F(z, un) dz ⩽ 2M4 for all n ∈ ℕ. (3.30)

We add (3.29) and (3.30). Recalling that q < 2, we obtain

∫
Ω

[f(z, un)un − 2F(z, un)] dz ⩽ M5 for all n ∈ ℕ.

Using hypothesis H(f) (iii), we see that

∫
Ω

[f(z, −u−n)(−u−n) − 2F(z, −u−n)] dz ⩽ M5 for all n ∈ ℕ. (3.31)

We use (3.31) to show that {u−n}n⩾1 ⊆ H1(Ω) is bounded. Arguing by contradiction, we may assume that

‖u−n‖→∞ as n →∞. (3.32)

Let
yn =

u−n
‖u−n‖

, n ∈ ℕ.

Then ‖yn‖ = 1 and yn ⩾ 0 for all n ∈ ℕ. We may assume that

yn
w
→ y in H1(Ω) and yn → y in L2(Ω) and in L2(∂Ω), y ⩾ 0. (3.33)

In (3.28) we choose h = −u−n ∈ H1(Ω). Then

γ(u−n) + λ‖u−n‖
q
q − ∫

Ω

f(z, −u−n)(−u−n) dz ⩽ ϵn for all n ∈ ℕ,

⇒ γ(yn) +
λ
‖u−n‖2−q

‖yn‖
q
q − ∫

Ω

Nf (−u−n)
‖u−n‖

yndz ⩽
ϵn
‖u−n‖2

for all n ∈ ℕ. (3.34)

From (2.6) we see that

{
Nf (−u−n)
‖u−n‖
}
n⩾1
⊆ L2(Ω) is bounded.

So, by passing to a subsequence if necessary and using hypothesis H(f) (ii), we have

Nf (−u−n)
‖u−n‖

w
→ ẽ(z)y in L2(Ω) as n →∞ (3.35)

with −η̃ ⩽ ẽ(z) ⩽ λ̂1 for almost all z ∈ Ω.
Returning to (3.34), passing to the limit as n →∞ and using (3.32) (recall that q < 2), (3.33), (3.35) and

the sequential weak lower semicontinuity of γ( ⋅ ), we obtain

γ(y) ⩽ ∫
Ω

ẽ(z)y2 dz. (3.36)

First, we assume that ẽ ̸≡ λ̂1 (see (3.35)). Then from (3.36) and Proposition 2.2 we get c1‖y‖2 ⩽ 0, which
implies y = 0. From this and (3.34) we infer that ‖Dyn‖2 → 0, which implies yn → 0 in H1(Ω), which contra-
dicts the fact that ‖yn‖ = 1 for all n ∈ ℕ.

We now assume that ẽ(z) = λ̂1 for almost all z ∈ Ω. Then from (3.36) and (2.2) we have

y = τû1 with τ ⩾ 0.

If τ = 0, then y = 0 and, as above, we have

yn → 0 in H1(Ω),
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a contradiction since ‖yn‖ = 1 for all n ∈ ℕ. If τ > 0, then y(z) > 0 for all z ∈ Ω, and so

u−n(z)→ +∞ for almost all z ∈ Ω,
⇒ f(z, −u−n(z))(−u−n)(z) − 2F(z, −u−n(z))→ +∞ for almost all z ∈ Ω (see hypothesis H(f) (iii)),

⇒ ∫
Ω

[f(z, −u−n)(−u−n) − 2F(z, −u−n)] dz → +∞ (by Fatou’s lemma).

This contradicts (3.31). Therefore,

{u−n}n⩾1 ⊆ H1(Ω) is bounded. (3.37)

Next, we show that {u+n}n⩾1 ⊆ H1(Ω) is bounded. From (3.28) and (3.37) we have


⟨A(u+n), h⟩ + ∫

Ω

ξ(z)u+nh dz + ∫
∂Ω

β(z)u+nhdσ + λ∫
Ω

(u+n)q−1h dz − ∫
Ω

f(z, u+n)h dz

⩽ M6

for some M6 > 0 and all n ∈ ℕ. Using this bound and a contradiction argument as in the proof of Proposi-
tion 3.1, we show that

{u+n}n⩾1 ⊆ H1(Ω) is bounded,
⇒ {un}n⩾1 ⊆ H1(Ω) is bounded (see (3.37)).

From this, as before (see the proof of Proposition 3.1), via the Kadec–Klee property, we conclude that φλ
satisfies the C-condition.

4 Multiplicity Theorems
In this section, using variational methods, truncation and perturbation techniques and Morse theory, we
prove two multiplicity theorems for problem (Pλ) when λ > 0 is small. In the first result, we produce four
nontrivial smooth solutions, while in the second theorem, under stronger conditions on f(z, ⋅ ), we establish
the existence of five nontrivial smooth solutions.

We start with a result which allows us to satisfy the mountain pass geometry (see Theorem 2.1) and also
to distinguish the solutions we produce from the trivial one.

Proposition 4.1. If hypotheses H(ξ), H(β) and H(f) hold, then u = 0 is a local minimizer of φλ and of φ̂±λ for
every λ > 0.

Proof. We give the proof for the functional φλ. The proofs for the φ̂±λ are similar.
Recall that

|F(z, x)| ⩽ c32 |x|
2 for almost all z ∈ Ω and for all x ∈ ℝ (see (2.6)). (4.1)

Then for u ∈ C1(Ω) \ {0} we have

φλ(u) ⩾
λ
q
‖u‖qq − [

c8
2 + ‖ξ‖∞]‖u‖

2
2 (see (4.1) and hypotheses H(ξ), H(β)).

⩾
λ
q
‖u‖qq − c4‖u‖

2−q
∞ ‖u‖

q
q (with c4 = [

c1
2 + ‖ξ‖∞] > 0)

= [
λ
q
− c4‖u‖

2−q
∞ ]‖u‖

q
q .

So, if

‖u‖∞ ⩽ ‖u‖C1(Ω) < (
λ
qc4
)

1
2−q ,
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then φλ(u) > 0 = φλ(0). Hence,

u = 0 is a local C1(Ω)-minimizer of φλ( ⋅ ),
⇒ u = 0 is a local H1(Ω)-minimizer of φλ( ⋅ ) (see Proposition 2.4).

The proofs for the functionals φ̂±λ are similar.

With the next proposition we guarantee that for small λ > 0 the functional φ̂+λ ( ⋅ ) satisfies the mountain pass
geometry (see Theorem 2.1).

Proposition 4.2. If hypotheses H(ξ), H(β) and H(f) hold, then we can find λ∗ > 0 such that for all λ ∈ (0, λ∗)
there is t0 = t0(λ) > 0 for which we have φ̂+λ (t0û1) < 0.

Proof. Let r > 2. FromhypothesisH(f) (iv) and (4.1), we see that given ϵ > 0we canfind c5 = c5(ϵ, r) > 0 such
that

F(z, x) ⩾ 12 [ϑ(z) − ϵ]x
2 − c5xr for almost all z ∈ Ω and for all x ⩾ 0. (4.2)

Then for all t > 0 we have

φ̂+λ (tû1) =
t2

2 γ(û1) +
λtq

q
‖û1‖

q
q − ∫

Ω

F(z, tû1) dz (see (2.7))

⩽
t2

2 [γ(û1) − ∫
Ω

ϑ(z)û21 dz + ϵ] +
λtq

q
‖û1‖

q
q + c5tr‖û1‖rr (see (4.2) and recall that ‖û1‖2 = 1)

=
t2

2 [∫
Ω

(λ̂1 − ϑ(z))û21 dz + ϵ] +
λtq

q
‖û1‖

q
q + c5tr‖û1‖rr . (4.3)

Note that
k∗ = ∫

Ω

(ϑ(z) − λ̂1)û21 dz > 0 (see hypothesis H(f) (iv)).

Choosing ϵ ∈ (0, k∗), we see from (4.3) that

φ̂+λ (tû1) ⩽ −c6t
2 + λc7tq + c8tr = [−c6 + λc7tq−2 + c8tr−2]t2 for some c6, c7, c8 > 0. (4.4)

Consider the function
Jλ(t) = λc7tq−2 + c8tr−2 for all t > 0.

Evidently, Jλ ∈ C1(0, +∞), and since 1 < q < 2 < r, we see that

Jλ(t)→ +∞ as t → 0+ and as t → +∞.

So, we can find t0 ∈ (0, +∞) such that

Jλ(t0) = min{J(t) : 0 < t < +∞},
⇒ Jλ(t0) = 0,

⇒ λc7(2 − q)tq−30 = c8(r − 2)t
r−3
0 ,

⇒ t0 = t0(λ) = [
λc7(2 − q)
c8(r − 2)

]
1
r−q .

Then

Jλ(t0) = λc7
[c8(r − 2)]

2−q
r−q

[λc2(2 − q)]
2−q
r−q + c8 [λc2(2 − q)]

r−2
2−q

[c8(r − 2)]
r−2
2−q .

Since 2−q
r−q < 1, we see that

Jλ(t0)→ 0+ as λ → 0+.
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So, we can find λ∗ > 0 such that
Jλ(t0) < c6 for all λ ∈ (0, λ∗).

Then it follows from (4.4) that
φ̂+λ (t0û1) < 0 for all λ ∈ (0, λ∗).

This completes the proof of Proposition 4.2.

Remark. In fact, a careful reading of the above proof reveals that

φ̂−λ (−t0û1) < 0 for all λ ∈ (0, λ∗). (4.5)

Proposition 4.3. If hypotheses H(ξ), H(β) and H(f) hold and λ ∈ (0, λ∗), then there exists u0 ∈ C1(Ω) with
u0(z) < 0 for all z ∈ Ω and

φ̂−λ (u0) = inf{φ̂
−
λ (u) : u ∈ H

1(Ω)} < 0.

Proof. From Proposition 3.2 we know that φ̂−λ is coercive. Also, the Sobolev embedding theorem and the
compactness of the trace map imply that φ̂−λ is sequentially weakly lower semicontinuous. Hence, by the
Weierstrass–Tonelli theorem, we can find u0 ∈ H1(Ω) such that

φ̂−λ (u0) = inf{φ̂
−
λ (u) : u ∈ W

1,p(Ω)}. (4.6)

From (4.5) we see that φ̂−λ (u0) < 0 = λ̂
−
λ (0), which implies u0 ̸= 0.

From (4.6) we have (φ̂−λ )
(u0) = 0, which implies

⟨A(u0), h⟩ + ∫
Ω

[ξ(z) + μ]u0h dz + ∫
∂Ω

β(z)u0hdσ = ∫
Ω

k−λ (z, u0)h dz for all h ∈ H1(Ω). (4.7)

In (4.7) we choose h = u+0 ∈ H1(Ω). Then

γ(u+0) + μ‖u
+
0‖

2
2 = 0 (see (2.7)),

⇒ c0‖u+0‖
2 ⩽ 0 (see (2.3)),

⇒ u0 ⩽ 0, u0 ̸= 0.

From (4.7) and (2.7) it follows that

⟨A(u0), h⟩ + ∫
Ω

ξ(z)u0h dz + ∫
∂Ω

β(z)u0hdσ = ∫
Ω

[f(z, u0) − λ|u0|q−2u0]h dz for all h ∈ H1(Ω),

which implies

−∆u0(z) + ξ(z)u0(z) = f(z, u0(z)) − λ|u0(z)|q−2u0(z) for almost all z ∈ Ω,
∂u0
∂n
+ β(z)u0 = 0 on ∂Ω (see [9]). (4.8)

Let
τλ(z, x) = f(z, x) − λ|x|q−2x and k̂λ(z) =

τλ(z, u0(z))
1 + |u0(z)|

for λ > 0.

Hypotheses H(f) (i) and (ii) imply that

|τλ(z, x)| ⩽ c9[1 + |x|] for almost all z ∈ Ω and all x ∈ ℝ, with c9 = c9(λ) > 0,

⇒ |k̂λ(z)| =
|τλ(z, u0(z))|
1 + |u0(z)|

⩽ c9 for almost all z ∈ Ω,

⇒ k̂λ ∈ L∞(Ω).

From (4.8) we have

−∆u0(z) = [ξ(z) − k̂λ(z)]u0(z) + k̂λ(z) for almost all z ∈ Ω,
∂u0
∂n
+ β(z)u0 = 0 on ∂Ω
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(recall that u0 ⩽ 0). Since (ξ − k̂λ)( ⋅ ) ∈ Ls(Ω) (for s > N), we deduce by [15, Lemma 5.1] that

u0 ∈ L∞(Ω).

Then the Calderon–Zygmund estimates (see [15, Lemma 5.2]) imply that

u0 ∈ (−C+) \ {0}.

Moreover, the Harnack inequality (see [13, p. 163, Theorem 7.2.1]) implies that

u0(z) < 0 for all z ∈ Ω.

This completes the proof.

Remark. The negative sign of the concave termdoes not allowus to conclude that u0 ∈ −D+when ξ+ ∈ L∞(Ω)
(by Hopf’s boundary point theorem, see [13, p. 120]).

Now we can state and prove our first multiplicity theorem.

Theorem 4.4. Assume that hypotheses H(ξ), H(β) and H(f) hold. Then there exists λ̂ > 0 such that for all
λ ∈ (0, λ̂) problem (Pλ) has at least four nontrivial solutions

u0, û ∈ (−C+) \ {0}, u0(z), û(z) < 0 for all z ∈ Ω,
v0 ∈ C+ \ {0}, v0(z) > 0 for all z ∈ Ω,

y0 ∈ C1(Ω) \ {0}.

Proof. From Proposition 4.3 and its proof (see (4.8)) we already have one solution

u0 ∈ (−C+) \ {0}, u0(z) < 0 for all z ∈ Ω, when λ ∈ (0, λ∗).

This solution is a global minimizer of the functional φ̂−λ .

Claim. The solution u0 is a local minimizer of the energy functional φλ.

We first show that u0 is a local C1(Ω)-minimizer of φλ. Arguing by contradiction, suppose that we could find
a sequence {un}n⩾1 ⊆ C1(Ω) such that

un → u0 in C1(Ω) as n →∞ and φλ(un) < φλ(u0) for all n ∈ ℕ. (4.9)

Then for all n ∈ ℕ, we have

0 > φλ(un) − φλ(u0)
= φλ(un) − φ̂−λ (u0) (since φλ|(−C+) = φ̂−λ |(−C+), see (2.7))
⩾ φλ(un) − φ̂−λ (un) (recall that u0 is a global minimizer of φ̂−λ )

=
1
2 γ(un) +

λ
q
‖un‖

q
q − ∫

Ω

F(z, un) dz −
1
2 γ(un) −

μ
2 ‖u
+
n‖

2
2 −

λ
q
‖u−n‖

q
q + ∫

Ω

F(z, −u−n) dz (see (2.7))

=
λ
q
‖u+n‖

q
q −

μ
2 ‖u
+
n‖

2
2 − ∫

Ω

F(z, u+n) dz

⩾
λ
q
‖u+n‖

q
q − (

μ + c3
2 )‖u

+
n‖

2
2 (see (4.1))

⩾
λ
q
‖u+n‖

q
q − c10‖u+n‖

2−q
∞ ‖u+n‖qq

= [
λ
q
− c10‖u+n‖

2−q
∞ ]‖u+n‖

q
q , (4.10)

where
c10 =

μ + c3
2 > 0.
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From (4.9) we have
u+n → 0 in C1(Ω) (recall that u0|Ω < 0).

Therefore, we can find n0 ∈ ℕ such that
λ
q
> c10‖u+n‖

2−q
∞ for all n ⩾ n0,

⇒ 0 > φλ(un) − φ(u0) > 0 for all n ⩾ n0 (see (4.10)),

a contradiction. Hence we have that

u0 is a local C1(Ω)-minimizer of φλ ,
⇒ u0 is a local H1(Ω)-minimizer of φλ (see Proposition 2.4).

This proves the claim.
Using (2.7) and the regularity theory of Wang [15], we can see that

Kλ̂−λ ⊆ (−C+) and Kφ̂+
λ
⊆ C+ for all λ > 0. (4.11)

On account of (4.11), we see that we may assume that both critical sets Kφ̂−
λ
and Kφ̂+

λ
are finite or, otherwise,

we already have an infinity of nontrivial smooth solutions of constant sign and so we are done.
From Proposition 4.1 we know that u = 0 is a local minimizer of φ̂−λ for all λ > 0. Since Kφ̂−

λ
is finite, we

can find ρ ∈ (0, ‖u0‖) small such that (see [1, Proof of Proposition 29])

φ̂−λ (u0) < 0 = φ̂
−
λ (0) < inf{φ̂

−
λ (u) : ‖u‖ = ρ} = m̂

−
ρ . (4.12)

From Corollary 3.3 we know that
φ̂−λ satisfies the C-condition. (4.13)

Then (4.12) and (4.13) permit the use of Theorem2.1 (themountain pass theorem). So,we canfind û ∈ H1(Ω)
such that

û ∈ Kφ̂−
λ
⊆ (−C+) (see (4.11)) and φ̂−λ (u0) < 0 = φ̂

−
λ (0) < m̂

−
ρ ⩽ φ̂−λ (û).

It follows that
û ∈ (−C+) \ {0, u0} is a solution of (Pλ) (see (2.7)).

As before, Harnack’s inequality implies that

û(z) < 0 for all z ∈ Ω.

Now we use once more Proposition 4.1 to find ρ0 ∈ (0, t0) small enough such that

0 = φ̂+λ (0) < inf{φ̂
+
λ (u) : ‖u‖ = ρ0} = m̂

+
ρ0 , λ > 0. (4.14)

Proposition 4.2 implies that we can find λ∗ > 0 such that

φ̂+λ (t0û1) < 0 for all λ ∈ (0, λ∗) with t0 = t0(λ) > 0. (4.15)

Moreover, Proposition 2.5 implies that

φ̂+λ satisfies the C-condition for all λ > 0. (4.16)

Then, on account of (4.14)–(4.16), we can apply Theorem 2.1 (the mountain pass theorem) and produce
v0 ∈ H1(Ω) such that

v0 ∈ Kφ̂+
λ
⊆ C+ (see (4.11)) and 0 = φ̂+λ (0) < m̂

+
ρ ⩽ φ̂+λ (v0),

⇒ v0 ∈ C+ \ {0} is a solution of (Pλ), λ ∈ (0, λ∗) (see (2.7)).

Once again, Harnack’s inequality guarantees that

v0(z) > 0 for all z ∈ Ω.
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Let l ∈ ℕ be as in hypothesis H(f) (iv) and set

H l =
l
⨁
k=1

E(λ̂k), Ĥl = H
⊥
l = ⨁

k⩾l+1
E(λ̂k).

We have
H1(Ω) = H l ⊕ Ĥl and dimH l < +∞.

Consider u ∈ H l. We have

φλ(u) =
1
2 γ(u) +

λ
q
‖u‖qq − ∫

Ω

F(z, u) dz

⩽
1
2[γ(u) − ∫

Ω

ϑ(z)u2 dz + ϵ‖u‖2] + c11[λ‖u‖q + ‖u‖r] (4.17)

⩽
1
2 [−c2 + ϵ]‖u‖

2 + c11[λ‖u‖q + ‖u‖r], (4.18)

where (4.17) holds for some c11 > 0 and follows from (4.2) and the fact that all norms on H l are equivalent,
and (4.18) follows from Proposition 2.2. Choosing ϵ ∈ (0, c2), we have

φλ(u) ⩽ [−c12 + λc11‖u‖q−2 + c11‖u‖r−2]‖u‖2 for some c12 > 0.

Reasoning as in the proof of Proposition 4.3, we can find λ̂ ∈ (0, λ∗] such that for all λ ∈ (0, λ̂] there exists
ρλ > 0 for which we have

φλ(u) < 0 for all u ∈ H l , ‖u‖ = ρλ . (4.19)

For u ∈ Ĥl we have

φλ(u) ⩾
1
2 γ(u) +

λ
q
‖u‖qq −

λ̂m
2 ‖u‖

2
2 (see hypothesis H(f) (iii))

⩾
1
2 [γ(u) − λ̂l‖u‖

2
2] +

λ
q
‖u‖qq (since l ⩾ m)

⩾ 0. (4.20)

Finally, consider the half-space

H+ = {tû1 + ũ : t ⩾ 0, ũ ∈ Ĥl}.

Exploiting the orthogonality of Ĥl and H l, for every u ∈ H+ we have

φλ(u) ⩾
1
2 [t

2γ(û1) + γ(ũ)] −
λ̂m
2 [t

2‖û1‖22 + ‖ũ‖
2
2] (see hypothesis H(f) (iii))

⩾ 0 (since ũ ∈ Ĥl, l ⩾ m). (4.21)

Then (4.19)–(4.21) permit the use of [12, Theorem 3.1]. So, we can find y0 ∈ H1(Ω) such that

y0 ∈ Kφλ ⊆ C1(Ω) (by the regularity theory of Wang [15]),
φλ(y0) < 0 = φλ(0) and Cdl−1(φλ , y0) ̸= 0 (dl = dimH l). (4.22)

From (4.22) it is clear that y0 ̸= 0. Recall that

0 < φλ(û), φλ(v0) (since φλ = φ̂−λ |(−C+) = φ̂+λ |C+ ).
Therefore, it follows from (4.22) that

y0 ̸∈ {û, v0, 0}.

Also, by the claim we have that u0 is a local minimizer of φλ. Hence,

Ck(φλ , u0) = δk,0ℤ for all k ∈ ℕ0. (4.23)
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Note that dl ⩾ 2 (since l ⩾ m ⩾ 2). Therefore,

dl−1 ⩾ 1,

and so from (4.22) and (4.23) we infer that
y0 ̸= u0.

So, we conclude that y0 ∈ C1(Ω) \ {0} is a fourth nontrivial solution of (Pλ) (for all λ ∈ (0, λ̂)) distinct from u0,
û and v0.

If we strengthen the hypotheses on f(z, ⋅ ), we can improve the abovemultiplicity theorem and produce a fifth
nontrivial smooth solution.

The new conditions on the nonlinearity f(z, x) are the following:
H(f): f : Ω ×ℝ→ ℝ is a measurable function such that for almost all z ∈ Ω, f(z, 0) = 0, f(z, ⋅ ) ∈ C1(ℝ),

hypotheses H(f) (i), (ii) and (iii) are the same as the corresponding hypotheses H(f) (i), (ii) and (iii),
and, furthermore,
(iv) there exist l ∈ ℕ, l ⩾ m such that

f x(z, 0) = limx→0
f(z, x)
x

uniformly for almost all z ∈ Ω,

f x(z, 0) ∈ [λ̂l , λ̂l+1] for almost all z ∈ Ω,

f x( ⋅ , 0) ̸≡ λ̂l , f x( ⋅ , 0) ̸≡ λ̂l+1.

Theorem 4.5. If hypotheses H(ξ), H(β) and H(f) hold, then there exists λ̂ > 0 such that for all λ ∈ (0, λ̂) prob-
lem (Pλ) has at least five nontrivial solutions

u0, û ∈ (−C+), u0(z) < 0 for all z ∈ Ω,
v0 ∈ C+, v0(z) > 0 for all z ∈ Ω,

y0, ŷ ∈ C1(Ω) \ {0}.

Proof. Now we have φλ ∈ C2(H1(Ω) \ {0},ℝ). Similarly, φ̂±λ ∈ C
2(H1(Ω) \ {0},ℝ).

The solutions u0, û, v0, y0 are a consequence of Theorem 4.4. From Proposition 4.1 and (4.23) we have

Ck(φλ , u0) = Ck(φλ , 0) = δk,0ℤ for all k ∈ ℕ0, λ ∈ (0, λ̂). (4.24)

Also, from the proof of Theorem 4.4 we know that û is a critical point of φ̂−λ of mountain pass type, and v0 is
a critical point of φ̂+λ of mountain pass type.

Invoking [7, Corollary 6.102], we have

Ck(φ−λ , û) = Ck(φ̂
+
λ , v0) = δk,1ℤ for all k ∈ ℕ0. (4.25)

The continuity in the C1-norm of the critical groups (see [5, p. 836, Theorem 5.126]) implies that

Ck(φ̂−λ , û) = Ck(φλ , û) for all k ∈ ℕ0, (4.26)
Ck(φ̂+λ , v0) = Ck(φλ , v0) for all k ∈ ℕ0. (4.27)

From (4.25)–(4.27) it follows that

Ck(φλ , û) = Ck(φλ , v0) = δk,1ℤ for all k ∈ ℕ0. (4.28)

The fourth nontrivial solution y0 ∈ C1(Ω) was produced by using [12, Theorem 3.1]. According to that
theorem, we can also find another function ŷ ∈ H1(Ω), ŷ ̸= y0, such that

ŷ ∈ Kφλ ⊆ C1(Ω) and Cdl (φλ , ŷ) ̸= 0 (dl ⩾ 2). (4.29)

From (4.24)–(4.29) we conclude that

ŷ ∈ C1(Ω) \ {u0, û, v0, y0, 0}

is the fifth nontrivial solution of problem (Pλ) for all λ ∈ (0, λ̂).
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