Research Article

Nikolaos S. Papageorgiou and Vicenţiu D. Rǎdulescu*

Infinitely Many Nodal Solutions for Nonlinear Nonhomogeneous Robin Problems

DOI: 10.1515/ans-2015-5040
Received August 1, 2015; revised December 27, 2015; accepted December 28, 2015

Abstract

We consider a nonlinear Robin problem driven by a nonhomogeneous differential operator which incorporates the p-Laplacian as special case. The reaction $f(z, x)$ is a Carathéodory function which need not satisfy a global growth condition and is only assumed to be odd near zero. Using variational tools, we show that the problem has a whole sequence of distinct nodal (that is, sign-changing) solutions.

Keywords: Nonhomogeneous Differential Operator, Nodal Solution, Nonlinear Regularity Theory, Nonlinear Maximum Principle

MSC 2010: 35J20, 35J60

Communicated by: Zhi-Qiang Wang

1 Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. We consider the nonlinear, nonhomogeneous Robin problem

$$
\left\{\begin{align*}
-\operatorname{div} a(D u(z)) & =f(z, u(z)) & & \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial n_{a}}+\beta(z)|u|^{p-2} u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

In this problem, $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a strictly monotone, continuous map which satisfies certain other regularity and growth conditions listed in the hypotheses $H(a)$ below. These conditions are general enough to incorporate in our framework many differential operators of interest, such as the p-Laplace operator, $1<p<\infty$, and the sum of a p-Laplacian with a q-Laplacian, $1<q<p<\infty$. The reaction term $f(z, x)$ is a Carathéodory function (that is, for all $x \in \mathbb{R}$, the map $z \mapsto f(z, x)$ is measurable, while, for almost all $z \in \Omega$, the function $x \mapsto f(z, x)$ is continuous).

The interesting feature of our work here is that we do not impose any global growth condition on $f(z, \cdot)$. Instead, we assume a local symmetry condition, namely, we require that, for almost all $z \in \Omega$, the function $x \mapsto f(z, x)$ is odd in the bounded interval $[-\eta, \eta]$. In the boundary condition, $\frac{\partial u}{\partial n_{a}}$ denotes the generalized normal derivative corresponding to the differential operator $\operatorname{div} a(D u)$ and is defined by

$$
\frac{\partial u}{\partial n_{a}}=(a(D u), n)_{\mathbb{R}^{N}} \quad \text { for all } u \in W^{1, p}(\Omega)
$$

with $n(\cdot)$ being the outward unit normal on $\partial \Omega$. This kind of normal derivative is dictated by the nonlinear Green's identity (see, for example, Gasiński and Papageorgiou [7, p. 210]) and can be also found in the work

[^0]of Lieberman [13]. The boundary weight function $\beta \in C^{0, \alpha}(\partial \Omega)$ with $\alpha \in(0,1)$ satisfies $\beta(z) \geq 0$ for all $z \in \partial \Omega$. When $\beta \equiv 0$, then we have the Neumann problem.

Under these general hypotheses on the data of (1.1), we show that there exists a whole sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq C^{1}(\bar{\Omega})$ of distinct nodal (that is, sign-changing) solutions. Our approach uses variational tools together with suitable truncation-perturbation techniques. Recently, nodal solutions for nonlinear, nonhomogeneous Robin problems were produced by Papageorgiou and Rădulescu [20, 22]. However, in the aforementioned works, the authors establish the existence of only one nodal solution.

2 Mathematical Background and Hypotheses

Let X be a Banach space and let $\varphi \in C^{1}(X, \mathbb{R})$. We say that φ satisfies the Palais-Smale condition (PScondition for short) if every sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } X^{*} \text { as } n \rightarrow \infty
$$

admits a strongly convergent subsequence.
Our main variational tool will be a variant due to Heinz [10] of a classical result of Clark [4]. The next result is essentially due to Heinz [10] and can be found in Wang [28]. Further extensions with applications to semilinear elliptic Dirichlet problems and to Hamiltonian systems can be found in the works of Liu and Wang [15] and Kajikiya [12].

Theorem 2.1. Let X be a Banach space and assume that $\varphi \in C^{1}(X, \mathbb{R})$ satisfies the PS-condition, it is even, bounded from below, $\varphi(0)=0$ and, for every $n \in \mathbb{N}$, there exist an n-dimensional subspace Y_{n} of X and $\rho_{n}>0$ such that

$$
\sup \left\{\varphi(u): u \in Y_{n} \cap \partial B_{\rho_{n}}\right\}<0
$$

where $\partial B_{\rho_{n}}=\left\{u \in X:\|u\|=\rho_{n}\right\}$. Then, there exists a sequence $\left\{u_{n}\right\}_{n \geq 1}$ of critical points of φ such that

$$
\varphi\left(u_{n}\right)<0 \quad \text { for all } n \in \mathbb{N}
$$

and

$$
\varphi\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Let $\vartheta \in C^{1}(0,+\infty)$ with $\vartheta(t)>0$ for all $t>0$ and assume that there exists $p>1$ such that

$$
\begin{equation*}
0<\hat{c} \leq \frac{\vartheta^{\prime}(t) t}{\vartheta(t)} \leq c_{0} \quad \text { and } \quad c_{1} t^{p-1} \leq \vartheta(t) \leq c_{2}\left(1+t^{p-1}\right) \tag{2.1}
\end{equation*}
$$

for all $t>0$ and for some $c_{1}, c_{2}>0$. Then, our hypotheses on the map $a(\cdot)$ involved in the definition of the differential operator are that
$H(a) a(y)=a_{0}(|y|) y$ for all $y \in \mathbb{R}^{N}$ with $a_{0}(t)>0$ for all $t>0$ and
(i) $\quad a_{0} \in C^{1}(0,+\infty), t \mapsto a_{0}(t) t$ is strictly increasing on $(0,+\infty), a_{0}(t) t \rightarrow 0$ as $t \rightarrow 0^{+}$and

$$
\lim _{t \rightarrow 0^{+}} \frac{a_{0}^{\prime}(t) t}{a_{0}(t)}>-1
$$

(ii) there exists $c_{3}>0$ such that $|\nabla a(y)| \leq c_{3} \frac{\vartheta(|y|)}{|y|}$ for all $y \in \mathbb{R}^{N} \backslash\{0\}$;
(iii) $(\nabla a(y) \xi, \xi)_{\mathbb{R}^{N}} \geq \frac{9(| | y \mid)}{|y|}|\xi|^{2}$ for all $y \in \mathbb{R}^{N} \backslash\{0\}$ and all $\xi \in \mathbb{R}^{N}$;
(iv) if $G_{0}(t)=\int_{0}^{t} a_{0}(s) s d s$ for $t>0$, then there exists $q \in(1, p)$ such that

$$
\limsup _{t \rightarrow 0^{+}} \frac{q G_{0}(t)}{t^{q}} \leq c^{*} \quad \text { and } \quad t \mapsto G_{0}\left(t^{1 / q}\right) \text { is convex. }
$$

Remark 2.2. Hypotheses $H(a)$ (i)-(iii) come from the nonlinear regularity theory of Lieberman [13] and the nonlinear maximum principle of Pucci and Serrin [26]. Hypothesis $H(a)$ (iv) serves the needs of our problem, but it is a mild condition which is satisfied in all the main cases of interest, as the examples which follow illustrate.

From the above hypotheses it is clear that the primitive $G_{0}(\cdot)$ is strictly convex and strictly increasing. We set $G(y)=G_{0}(|y|)$ for all $y \in \mathbb{R}^{N}$. Then, $G(\cdot)$ is convex, $G(0)=0$ and

$$
\nabla G(0)=0 \quad \text { and } \quad \nabla G(y)=G_{0}^{\prime}(|y|) \frac{y}{|y|}=a_{0}(|y|) y=a(y) \quad \text { for all } y \in \mathbb{R}^{N} \backslash\{0\}
$$

So, $G(\cdot)$ is the primitive of $a(\cdot)$. The convexity of $G(\cdot)$, since $G(0)=0$, implies that

$$
\begin{equation*}
G(y) \leq(a(y), y)_{\mathbb{R}^{N}} \quad \text { for all } y \in \mathbb{R}^{N} . \tag{2.2}
\end{equation*}
$$

The next lemma summarizes the main properties of the map $a(\cdot)$. It is a straightforward consequence of hypotheses $H(a)$ (i)-(iii) and of (2.1).

Lemma 2.3. If hypotheses $H(a)$ (i)-(iii) hold, then
(a) $y \mapsto a(y)$ is continuous and strictly monotone, hence, maximal monotone too;
(b) $|a(y)| \leq c_{4}\left(1+|y|^{p-1}\right)$ for all $y \in \mathbb{R}^{N}$ and for some $c_{4}>0$;
(c) $(a(y), y)_{\mathbb{R}^{N}} \geq \frac{c_{1}}{p-1}|y|^{p}$ for all $y \in \mathbb{R}^{N}$.

The last lemma and (2.2) lead to the following growth estimates for the primitive $G(\cdot)$.
Corollary 2.4. If hypotheses $H(a)$ (i)-(iii) hold, then $\frac{c_{1}}{p(p-1)}|y|^{p} \leq G(y) \leq c_{5}\left(1+|y|^{p}\right)$ for all $y \in \mathbb{R}^{N}$ and for some $c_{5}>0$.

The examples that follow illustrate that our conditions on the map $a(\cdot)$ cover many cases of interest.
Example 2.5. The following maps satisfy the hypotheses $H(a)$.
(i) The map $a(y)=|y|^{p-2} y$ with $1<p<\infty$, which corresponds to the p-Laplacian differential operator defined by

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right) \quad \text { for all } u \in W^{1, p}(\Omega)
$$

(ii) The map $a(y)=|y|^{p-2} y+|y|^{q-2} y$ with $1<q<p<\infty$, which corresponds to the (p, q) -differential operator defined by

$$
\Delta_{p} u+\Delta_{q} u \quad \text { for all } u \in W^{1, p}(\Omega)
$$

Such operators arise in problems of mathematical physics. We mention the works of Benci, D'Avenia, Fortunato and Pisani [1] (quantum physics) and Cherfils and Ilyasov [2] (plasma physics). Recently, existence and multiplicity results for such equations with Dirichlet boundary conditions were proved by Cingolani and Degiovanni [3], Gasiński and Papageorgiou [9], Mugnai and Papageorgiou [17], Papageorgiou and Rădulescu [19, 21, 23] and Sun, Zhang and Su [27].
(iii) The map $a(y)=\left(1+|y|^{2}\right)^{(p-2) / 2} y$ with $1<p<\infty$, which corresponds to the generalized p-mean curvature differential operator defined by

$$
\operatorname{div}\left(\left(1+|D u|^{2}\right)^{(p-2) / 2} D u\right) \quad \text { for all } u \in W^{1, p}(\Omega)
$$

(iv) The map $a(y)=|y|^{p-2} y\left(1+\frac{1}{1+|y|^{p}}\right)$ with $1<p<\infty$, which corresponds to the differential operator

$$
\Delta_{p} u+\operatorname{div}\left(\frac{|D u|^{p-2} D u}{1+|D u|^{p}}\right) \quad \text { for all } u \in W^{1, p}(\Omega)
$$

which is used in problems of plasticity.
Finally, we impose the hypothesis that
$H(\beta) \beta \in C^{0, \alpha}(\partial \Omega)$ with $\alpha \in(0,1)$ and $\beta(z) \geq 0$ for all $z \in \partial \Omega$
and our hypotheses on the reaction term $f(z, x)$ are that
$H(f) f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that, for almost all $z \in \Omega, f(z, 0)=0, f(z, \cdot)$ is odd on
$[-\eta, \eta]$ for some $\eta>0$ with $f(z, \eta) \leq 0 \leq f(z,-\eta)$ and
(i) there exists $a_{\eta} \in L^{\infty}(\Omega)_{+}$such that $|f(z, x)| \leq a_{\eta}(z)$ for almost all $z \in \Omega$ and all $|x| \leq \eta$;
(ii) if $q \in(1, p)$ is as in $H(a)$ (iv), then we have

$$
\lim _{x \rightarrow 0} \frac{f(z, x)}{|x|^{q-2} x}=+\infty \quad \text { uniformly for almost all } z \in \Omega
$$

Remark 2.6. We stress that the above hypotheses do not impose any global growth condition on $f(z, \cdot)$. Instead, we assume that $f(z, \cdot)$ has a kind of oscillatory behavior near zero and that it is symmetric in that interval. Hypothesis $H(f)$ (ii) implies the presence of a "concave" term near zero. We mention the work of Liu and Wang [14] who produced infinitely many nodal solutions for a semilinear Schrödinger equation without assuming the existence of zeros. We should point out that the idea of using cut-off techniques to produce an infinity of solutions converging to zero goes back to the work of Wang [28] who modified the reaction term in the interval $[-\eta, \eta]$ and applied the result of Clark and Heinz to the modified functional (see Wang [28, Lemma 2.3]).

Using hypothesis $H(f)$ (ii), we see that, given any $\xi>0$ and recalling that $q<p$, we can find $\delta=\delta(\xi) \in(0, \hat{\eta})$ with $\hat{\eta}=\min \{1, \eta\}$ such that

$$
\begin{equation*}
f(z, x) x \geq \xi|x|^{q} \geq \xi|x|^{p} \quad \text { for almost all } z \in \Omega \text { and all }|x| \leq \delta . \tag{2.3}
\end{equation*}
$$

Then, given $r \in(p,+\infty)$, we can find $c_{6}=c_{6}(r, \delta)>0$ such that

$$
\begin{equation*}
f(z, x) x \geq \xi|x|^{q}-c_{6}|x|^{r} \quad \text { for almost all } z \in \Omega \text { and all } x \in[-\eta, \eta] . \tag{2.4}
\end{equation*}
$$

From (2.3) we have

$$
\begin{equation*}
F(z, x) \geq \frac{\xi}{q}|x|^{q} \quad \text { for almost all } z \in \Omega \text { and all }|x| \leq \delta \tag{2.5}
\end{equation*}
$$

In our analysis of (1.1), in addition to the Sobolev space $W^{1, p}(\Omega)$, we will also use the Banach space $C^{1}(\bar{\Omega})$. This is an ordered Banach space with positive cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior and, if $u \in C_{+}$with $u(z)>0$ for all $z \in \bar{\Omega}$, then $u \in \operatorname{int} C_{+}$. On $\partial \Omega$, we consider the $(N-1)$-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure, we can define the "boundary" Lebesgue spaces $L^{q}(\partial \Omega), 1 \leq q \leq \infty$. From the theory of Sobolev spaces we know that there exists a unique continuous linear map $\gamma_{0}: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$, known as the "trace map", such that $\gamma_{0}(u)=\left.u\right|_{\partial \Omega}$ for all $u \in W^{1, p}(\Omega) \cap C(\bar{\Omega})$. We have

$$
\operatorname{Im} \gamma_{0}=W^{1 / p^{\prime}, p}(\partial \Omega)\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right) \quad \text { and } \quad \operatorname{ker} \gamma_{0}=W_{0}^{1, p}(\Omega)
$$

Moreover, the trace map γ_{0} is compact into $L^{q}(\partial \Omega)$ for $q \in\left[1, \frac{(N-1) p}{N-p}\right)$. Hereafter, for the sake of notational simplicity, we will drop the use of the trace map y_{0}. The restrictions of Sobolev functions on $\partial \Omega$ are understood in the sense of traces. By $\|\cdot\|$ we denote the norm of the Sobolev space $W^{1, p}(\Omega)$ defined by

$$
\|u\|=\left[\|u\|_{p}^{p}+\|D u\|_{p}^{p}\right]^{1 / p} \quad \text { for all } u \in W^{1, p}(\Omega)
$$

For every $x \in \mathbb{R}$, let $x^{ \pm}=\max \{ \pm x, 0\}$. Then, for $u \in W^{1, p}(\Omega)$, we set $u^{ \pm}(\cdot)=u(\cdot)^{ \pm}$. We know that

$$
u=u^{+}-u^{-}, \quad|u|=u^{+}+u^{-} \quad \text { and } \quad u^{+}, u^{-} \in W^{1, p}(\Omega)
$$

Also, by $|\cdot|_{N}$ we denote the Lebesgue measure on \mathbb{R}^{N} and $A: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)^{*}$ is the nonlinear map defined by

$$
\langle A(u), h\rangle=\int_{\Omega}(a(D u), D h)_{\mathbb{R}^{N}} d z \quad \text { for all } u, h \in W^{1, p}(\Omega)
$$

The map $A: W^{1, p}(\Omega) \rightarrow W^{1, p}(\Omega)^{*}$ is continuous, monotone and of type $(S)_{+}$, that is,

$$
u_{n} \xrightarrow{w} u \text { in } W^{1, p}(\Omega) \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle \leq 0 \text { implies that } u_{n} \rightarrow u \text { in } W^{1, p}(\Omega) .
$$

Here, by $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(W^{1, p}(\Omega)^{*}, W^{1, p}(\Omega)\right)$ (see Gasiński and Papageorgiou [8]). Finally, for any $\varphi \in C^{1}(X, \mathbb{R})$, by K_{φ} we denote the critical set of φ, that is,

$$
K_{\varphi}=\left\{u \in X: \varphi^{\prime}(u)=0\right\} .
$$

3 Nodal Solutions

Using (2.4), we introduce the truncation

$$
e(z, x)= \begin{cases}-\xi \eta^{q-1}+c_{6} \eta^{r-1} & \text { if } x<-\eta \tag{3.1}\\ \xi|x|^{q-2} x-c_{6}|x|^{r-2} x & \text { if }-\eta \leq x \leq \eta \\ \xi \eta^{q-1}-c_{6} \eta^{r-1} & \text { if } \eta<x\end{cases}
$$

of the right-hand side of (2.4) and, for all $(z, x) \in \partial \Omega \times \mathbb{R}$, the truncation

$$
b(z, x)= \begin{cases}-\beta(z) \eta^{p-1} & \text { if } x<-\eta \tag{3.2}\\ \beta(z)|x|^{p-2} x & \text { if }-\eta \leq x \leq \eta \\ \beta(z) \eta^{p-1} & \text { if } \eta<x\end{cases}
$$

of the boundary term $\beta(z)|x|^{p-2} x$. Both are Carathéodory functions. We consider the auxiliary nonlinear, nonhomogeneous Robin problem

$$
\left\{\begin{align*}
-\operatorname{div} a(D u(z)) & =e(z, u(z)) & & \text { in } \Omega \tag{3.3}\\
\frac{\partial u}{\partial n_{a}}+b(z, u) & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Proposition 3.1. If hypotheses $H(a), H(\beta)$ and $H(f)$ hold, then (3.3) admits a unique positive solution $\bar{u} \in \operatorname{int} C_{+}$ and $\bar{v}=-\bar{u} \in-\operatorname{int} C_{+}$is its unique negative solution.

Proof. We introduce the Carathéodory function $\tau: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\tau(z, x)= \begin{cases}-\eta^{p-1} & \text { if } x<-\eta \tag{3.4}\\ |x|^{p-2} x & \text { if }-\eta \leq x \leq \eta \\ \eta^{p-1} & \text { if } \eta<x\end{cases}
$$

Let

$$
T(z, x)=\int_{0}^{x} \tau(z, s) d s, \quad E(z, x)=\int_{0}^{x} e(z, s) d s \quad \text { and } \quad B(z, x)=\int_{0}^{x} b(z, s) d s
$$

and consider the C^{1}-functional $\psi_{+}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\psi_{+}(u)=\int_{\Omega} G(D u) d z+\frac{1}{p}\|u\|_{p}^{p}+\int_{\partial \Omega} B\left(z, u^{+}\right) d \sigma-\int_{\Omega} E\left(z, u^{+}\right) d z-\int_{\Omega} T\left(z, u^{+}\right) d z \quad \text { for all } u \in W^{1, p}(\Omega)
$$

From Corollary 2.4 and (3.1), (3.2) and (3.4) it is clear that ψ_{+}is coercive. Also, using the Sobolev embedding theorem and the trace theorem, we see that ψ_{+}is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $\bar{u} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\psi_{+}(\bar{u})=\inf \left\{\psi_{+}(u): u \in W^{1, p}(\Omega)\right\} . \tag{3.5}
\end{equation*}
$$

Hypothesis $H(a)$ (iv) implies that we can find $c_{1}^{*}>c^{*}$ and $\delta_{1} \in(0, \hat{\eta})$ such that

$$
\begin{equation*}
G_{0}(t) \leq \frac{c_{1}^{*}}{q} t^{q} \quad \text { for all } t \in\left[0, \delta_{1}\right] \tag{3.6}
\end{equation*}
$$

Let $u \in \operatorname{int} C_{+}$and choose $t \in(0,1)$ small such that

$$
\begin{equation*}
t u(z) \leq \delta_{1} \quad \text { and } \quad t|D u(z)| \leq \delta_{1} \quad \text { for all } z \in \bar{\Omega} \tag{3.7}
\end{equation*}
$$

Using (3.6), (3.7), (3.1), (3.2) and (3.4), we have (see hypothesis $H(\beta)$ and the trace theorem)

$$
\begin{aligned}
\psi_{+}(t u) & \leq \frac{t^{p} c_{1}^{*}}{p}\|D u\|_{p}^{p}+\frac{t^{p}}{p} \int_{\partial \Omega} \beta(z) u^{p} d \sigma-\frac{t^{q} \xi}{q}\|u\|_{q}^{q}+\frac{t^{r} c_{6}}{r}\|u\|_{r}^{r} \\
& \leq\left(\frac{t^{p-q} c_{1}^{*}}{p}\|D u\|_{p}^{p}+\frac{t^{p-q}}{p} c_{8}\|u\|^{p}-\frac{\xi}{q}\|u\|_{q}^{q}+\frac{t^{r-q}}{r} c_{8}\|u\|_{r}^{r}\right) t^{q}
\end{aligned}
$$

for some $c_{8}>0$. Since $1<q<p<r$, choosing $t \in(0,1)$ even smaller if necessary, we have that $\psi_{+}(t u)<0$ implies (see (3.5))

$$
\psi_{+}(\bar{u})<0=\psi_{+}(0)
$$

and, hence, $\bar{u} \neq 0$. From (3.5) we have that $\psi_{+}^{\prime}(\bar{u})=0$ implies

$$
\begin{equation*}
\langle A(\bar{u}), h\rangle+\int_{\Omega}|\bar{u}|^{p-2} \bar{u} h d z+\int_{\partial \Omega} b\left(z, u^{+}\right) h d \sigma=\int_{\Omega}\left(e\left(z, u^{+}\right)+\tau\left(z, u^{+}\right)\right) h d z \quad \text { for all } h \in W^{1, p}(\Omega) \tag{3.8}
\end{equation*}
$$

In (3.8), first we choose $h=-\bar{u}^{-} \in W^{1, p}(\Omega)$ and then we have that (see Lemma 2.3 and (3.1), (3.2) and (3.4))

$$
\frac{c_{1}}{p-1}\left\|D \bar{u}^{-}\right\|_{p}^{p}+\left\|u^{-}\right\|_{p}^{p} \leq 0
$$

implies $\bar{u} \geq 0$ and $\bar{u} \neq 0$. Also, in (3.8), we choose $h=(\bar{u}-\eta)^{+} \in W^{1, p}(\Omega)$ and then we have (see (3.1), (3.2) and (3.4) for the equality and (2.4) for the first inequality)

$$
\begin{aligned}
& \left\langle A(\bar{u}),(\bar{u}-\eta)^{+}\right\rangle+\int_{\Omega} \bar{u}^{p-1}(\bar{u}-\eta)^{+} d z+\int_{\partial \Omega} \beta(z) \eta^{p-1}(\bar{u}-\eta)^{+} d \sigma \\
& \quad=\int_{\Omega}\left(\xi \eta^{q-1}-c_{6} \eta^{r-1}+\eta^{p-1}\right)(\bar{u}-\eta)^{+} d z \\
& \quad \leq \int_{\Omega}\left(f(z, \eta)+\eta^{p-1}\right)(\bar{u}-\eta)^{+} d z \\
& \quad \leq\left\langle A(\eta),(\bar{u}-\eta)^{+}\right\rangle+\int_{\Omega} \eta^{p-1}(\bar{u}-\eta)^{+} d z+\int_{\partial \Omega} \beta(z) \eta^{p-1}(\bar{u}-\eta)^{+} d \sigma
\end{aligned}
$$

since $A(\eta)=0$ and $f(z, \eta) \leq 0$ for almost all $z \in \Omega$, which implies that

$$
\left\langle A(\bar{u})-A(\eta),(\bar{u}-\eta)^{+}\right\rangle+\int_{\Omega}\left(\bar{u}^{p-1}-\eta^{p-1}\right)(\bar{u}-\eta)^{+} d z \leq 0 .
$$

Therefore,

$$
|\{\bar{u}>\eta\}|_{N}=0,
$$

that is,

$$
\bar{u} \leq \eta
$$

Thus, we have proved that

$$
\begin{equation*}
\bar{u} \in[0, \eta]=\left\{u \in W^{1, p}(\Omega): 0 \leq u(z) \leq \eta \text { for almost all } z \in \Omega\right\} \quad \text { and } \quad \bar{u} \neq 0 \tag{3.9}
\end{equation*}
$$

Then, using (3.1), (3.2), (3.4) and (3.9), we see that (3.8) becomes

$$
\langle A(\bar{u}), h\rangle+\int_{\partial \Omega} \beta(z) \bar{u}^{p-1} h d \sigma=\int_{\Omega} e(z, \bar{u}) h d z \quad \text { for all } h \in W^{1, p}(\Omega),
$$

which gives (see Papageorgiou and Rǎdulescu [18])

$$
\left\{\begin{aligned}
-\operatorname{div} a(D \bar{u}(z)) & =e(z, \bar{u}(z)) & & \text { for almost all } z \in \Omega \\
\frac{\partial \bar{u}}{\partial n_{a}}+\beta(z) \bar{u}^{p-1} & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

that is, \bar{u} is a positive solution of (3.3). From Papageorgiou and Rădulescu [24] we have that $\bar{u} \in L^{\infty}(\Omega)$ and, then, the nonlinear regularity result of Lieberman [13, p. 320]) implies that $\bar{u} \in C_{+} \backslash\{0\}$. Because of (3.9) we have

$$
-\operatorname{div} a(D \bar{u}(z))=\xi \bar{u}(z)^{q-1}-c_{6} \bar{u}(z)^{r-1} \quad \text { for almost all } z \in \Omega,
$$

which gives

$$
\operatorname{div} a(D \bar{u}(z)) \leq c_{6} \eta^{r-p} \bar{u}(z)^{p-1} \quad \text { for almost all } z \in \Omega
$$

that is (see Pucci and Serrin [26, pp. 111, 120]),

$$
\bar{u} \in \operatorname{int} C_{+} .
$$

Next, we show the uniqueness of this positive solution. To this end, we consider the integral functional $j: L^{1}(\Omega) \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ defined by

$$
j(u)= \begin{cases}\int_{\Omega} G\left(D u^{1 / q}\right) d z+\frac{1}{p} \int_{\partial \Omega} \beta(z) u^{p / q} d \sigma & \text { if } u \geq 0, u^{1 / q} \in W^{1, p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

Let $u_{1}, u_{2} \in \operatorname{dom} j=\left\{u \in L^{1}(\Omega): j(u)<+\infty\right\}$ (the effective domain of j). We set

$$
u=\left((1-t) u_{1}+t u_{2}\right)^{1 / q} \quad \text { for } t \in[0,1]
$$

Using Díaz and Saá [5, Lemma 1], we have

$$
|D u(z)| \leq\left[(1-t)\left|D u_{1}(z)^{1 / q}\right|^{q}+t\left|D u_{2}(z)^{1 / q}\right|^{q}\right]^{1 / q} \quad \text { for almost all } z \in \Omega
$$

and because $G_{0}(\cdot)$ is increasing and from hypothesis $H(a)$ (iv), for almost all $z \in \Omega$, we have

$$
G_{0}(|D u(z)|) \leq G_{0}\left(\left[(1-t)\left|D u_{1}(z)^{1 / q}\right|^{q}+t\left|D u_{2}(z)^{1 / q}\right|^{q}\right]^{1 / q}\right) \leq(1-t) G_{0}\left(\left|D u_{1}(z)^{1 / q}\right|\right)+t G_{0}\left(\left|D u_{2}(z)^{1 / q}\right|\right)
$$

which gives

$$
G(D u(z)) \leq(1-t) G\left(D u_{1}(z)^{1 / q}\right)+t G\left(D u_{2}(z)^{1 / q}\right) \quad \text { for almost all } z \in \Omega
$$

that is, $j(\cdot)$ is convex (recall that $q<p$ and see hypothesis $H(\beta)$) By Fatou's lemma, $j(\cdot)$ is lower semicontinuous.

Let $\bar{y} \in W^{1, p}(\Omega)$ be another positive solution of (3.3). As we did for \bar{u} in the first part of the proof, we can show that

$$
\bar{y} \in[0, \eta] \cap \operatorname{int} C_{+}
$$

For any $h \in C^{1}(\bar{\Omega})$ and for $|t|<1$ small, we have

$$
\bar{u}^{q}+t h \in \operatorname{dom} j \text { and } \bar{y}^{q}+t h \in \operatorname{dom} j
$$

Then, we see that the functional $j(\cdot)$ is Gâteaux differentiable at \bar{u}^{q} and \bar{y}^{q} in the direction h. Moreover, via the chain rule and the nonlinear Green's identity, we have

$$
j^{\prime}\left(\bar{u}^{q}\right)(h)=\frac{1}{q} \int_{\Omega} \frac{-\operatorname{div} a(D \bar{u})}{\bar{u}^{q-1}} h d z \quad \text { and } \quad j^{\prime}\left(\bar{y}^{q}\right)(h)=\frac{1}{q} \int_{\Omega} \frac{-\operatorname{div} a(D \bar{y})}{\bar{y}^{q-1}} h d z
$$

Choose $h=\bar{u}^{q}-\bar{y}^{q}$. Since $j(\cdot)$ is convex, $j^{\prime}(\cdot)$ is monotone, and so we have (see (3.1))

$$
0 \leq \int_{\Omega}\left(\frac{-\operatorname{div} a(D \bar{u})}{\bar{u}^{q-1}}-\frac{-\operatorname{div} a(D \bar{y})}{\bar{y}^{q-1}}\right)\left(\bar{u}^{q}-\bar{y}^{q}\right) d z=\int_{\Omega} c_{6}\left(\bar{y}^{r-q}-\bar{u}^{r-q}\right)\left(\bar{u}^{q}-\bar{y}^{q}\right) d z
$$

which gives

$$
\bar{u}=\bar{y}
$$

and, then, $\bar{u} \in[0, \eta] \cap \operatorname{int} C_{+}$is the unique positive solution of (3.3). Evidently, since $x \mapsto \xi|x|^{q-2} x-c_{6}|x|^{r-2} x$ is odd, we have that $\bar{v}=-\bar{u} \in[-\eta, 0] \cap\left(-\operatorname{int} C_{+}\right)$is the unique negative solution of (3.3).

We introduce the sets

$$
\begin{aligned}
& S_{+}=\left\{u \in W^{1, p}(\Omega): u \text { is a positive solution of (1.1) with } u \in[0, \eta]\right\}, \\
& S_{-}=\left\{v \in W^{1, p}(\Omega): v \text { is a negative solution of (1.1) with } v \in[-\eta, 0]\right\} .
\end{aligned}
$$

As before, the nonlinear maximum principle implies that

$$
S_{+} \subseteq \operatorname{int} C_{+} \quad \text { and } \quad S_{-} \subseteq-\operatorname{int} C_{+}
$$

Moreover, as in Filippakis and Papageorgiou [6], we have that

$$
S_{+} \text {is downward directed, }
$$

that is, if $u_{1}, u_{2} \in S_{+}$, then we can find $u \in S_{+}$such that $u \leq \min \left\{u_{1}, u_{2}\right\}$, and

S_{-}is upward directed,

that is, if $v_{1}, v_{2} \in S_{-}$, then we can find $v \in S_{-}$such that $v \geq \max \left\{v_{1}, v_{2}\right\}$ (see also Motreanu, Motreanu and Papageorgiou [16, p. 421]).

Proposition 3.2. If hypotheses $H(a), H(\beta)$ and $H(f)$ hold, then $\bar{u} \leq u$ for all $u \in S_{+}$and $v \leq \bar{v}$ for all $v \in S_{-}$. Proof. Let $u \in S_{+}$. We consider the Carathéodory functions $k_{+}(z, x), \hat{b}_{+}(z, x)$ and $\hat{\tau}_{+}(z, x)$ defined by

$$
\begin{align*}
& k_{+}(z, x)= \begin{cases}0 & \text { if } x<0, \\
e(z, x) & \text { if } 0 \leq x \leq u(z), \\
e(z, u(z)) & \text { if } u(z)<x,\end{cases} \tag{3.10}\\
& \hat{b}_{+}(z, x)= \begin{cases}0 & \text { if } x<0, \\
\beta(z) x^{p-1} & \text { if } 0 \leq x \leq u(z), \text { for all }(z, x) \in \partial \Omega \times \mathbb{R}, \\
\beta(z) u(z)^{p-1} & \text { if } u(z)<x,\end{cases} \tag{3.11}\\
& \hat{\tau}_{+}(z, x)= \begin{cases}0 & \text { if } x<0, \\
x^{p-1} & \text { if } 0 \leq x \leq u(z), \\
u(z)^{p-1} & \text { if } u(z)<x .\end{cases} \tag{3.12}
\end{align*}
$$

We set

$$
K_{+}(z, x)=\int_{0}^{x} k_{+}(z, s) d s, \quad \hat{B}_{+}(z, x)=\int_{0}^{x} \hat{b}_{+}(d, s) d s \quad \text { and } \quad \hat{T}_{+}(z, x)=\int_{0}^{x} \hat{\tau}_{+}(z, s) d s .
$$

Consider the C^{1}-functional $\gamma_{+}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\gamma_{+}(u)=\int_{\Omega} G(D u) d z+\frac{1}{p}\|u\|_{p}^{p}+\int_{\partial \Omega} \hat{B}_{+}(z, u) d \sigma-\int_{\Omega} K_{+}(z, u) d z-\int_{\Omega} \hat{T}_{+}(z, u) d z \quad \text { for all } u \in W^{1, p}(\Omega) .
$$

From Corollary 2.4 and (3.10), (3.11) and (3.12) we see that γ_{+}is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find $\bar{u}_{0} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\gamma_{+}\left(\bar{u}_{0}\right)=\inf \left\{\gamma_{+}(u): u \in W^{1, p}(\Omega)\right\} . \tag{3.13}
\end{equation*}
$$

As before (see the proof of Proposition 3.1), since $1<q<p<r$, for $\tilde{u} \in \operatorname{int} C_{+}$and $t \in(0,1)$ small, we have (see hypothesis $H(a)(i v)$)

$$
\gamma_{+}(t \tilde{u})<0=\gamma_{+}(0),
$$

which implies (see (3.13))

$$
\gamma_{+}\left(\bar{u}_{0}\right)<0=\gamma_{+}(0)
$$

and, hence, $\bar{u}_{0} \neq 0$. From (3.13) we have that $y_{+}^{\prime}\left(\bar{u}_{0}\right)=0$ implies

$$
\begin{equation*}
\left\langle A\left(\bar{u}_{0}\right), h\right\rangle+\int_{\Omega}\left|\bar{u}_{0}\right|^{p-2} \bar{u}_{0} h d z+\int_{\partial \Omega} \hat{b}_{+}\left(z, \bar{u}_{0}\right) h d z=\int_{\Omega}\left(k_{+}\left(z, \bar{u}_{0}\right)+\hat{\tau}_{+}\left(z, \bar{u}_{0}\right)\right) h d z \quad \text { for all } h \in W^{1, p}(\Omega) \tag{3.14}
\end{equation*}
$$

In (3.14), we choose $h=-\bar{u}_{0}^{-}$. Using Lemma 2.3 and (3.10), (3.11) and (3.12), we obtain that

$$
\frac{c_{1}}{p-1}\left\|D \bar{u}_{0}^{-}\right\|_{p}^{p}+\left\|\bar{u}_{0}^{-}\right\|_{p}^{p} \leq 0
$$

implies $\bar{u}_{0} \geq 0$ and $\bar{u}_{0} \neq 0$. Also, in (3.14), we choose $h=\left(\bar{u}_{0}-u\right)^{+} \in W^{1, p}(\Omega)$. Then, we have (see (3.10), (3.11) and (3.12) for the first equality, see (3.1) and recall that $u \in[0, \eta]$ for the second one and see (2.4) for the first inequality)

$$
\begin{aligned}
& \left\langle A\left(\bar{u}_{0}\right),\left(\bar{u}_{0}-u\right)^{+}\right\rangle+\int_{\Omega} \bar{u}_{0}^{p-1}\left(\bar{u}_{0}-u\right)^{+} d z+\int_{\partial \Omega} \beta(z) u^{p-1}\left(\bar{u}_{0}-u\right)^{+} d \sigma \\
& \quad=\int_{\Omega}\left(e(z, u)+u^{p-1}\right)\left(\bar{u}_{0}-u\right)^{+} d z \\
& \quad=\int_{\Omega}\left(\xi u^{q-1}-c_{6} u^{r-1}+u^{p-1}\right)\left(\bar{u}_{0}-u\right)^{+} d z \\
& \quad \leq \int_{\Omega}\left(f(z, u)+u^{p-1}\right)\left(\bar{u}_{0}-u\right)^{+} d z \\
& \quad=\left\langle A(u),\left(\bar{u}_{0}-u\right)^{+}\right\rangle+\int_{\Omega} u^{p-1}\left(\bar{u}_{0}-u\right)^{+} d z+\int_{\partial \Omega} \beta(z) u^{p-1}\left(u_{0}-u\right)^{+} d \sigma
\end{aligned}
$$

since $u \in S_{+}$, which implies that

$$
\left\langle A\left(\bar{u}_{0}\right)-A(u),\left(\bar{u}_{0}-u\right)^{+}\right\rangle+\int_{\Omega}\left(\bar{u}_{0}^{p-1}-u^{p-1}\right)\left(\bar{u}_{0}-u\right)^{+} d z \leq 0 .
$$

Therefore,

$$
\left|\left\{\bar{u}_{0}>u\right\}\right|_{N}=0
$$

that is,

$$
\bar{u}_{0} \leq u
$$

Thus, we have proved that

$$
\begin{equation*}
\bar{u}_{0} \in[0, u]=\left\{y \in W^{1, p}(\Omega): 0 \leq y(z) \leq u(z) \text { for almost all } z \in \Omega\right\} \quad \text { and } \quad \bar{u}_{0} \neq 0 . \tag{3.15}
\end{equation*}
$$

Because of (3.10), (3.11), (3.12) and (3.15) we have that (3.14) becomes

$$
\left\langle A\left(\bar{u}_{0}\right), h\right\rangle+\int_{\partial \Omega} \beta(z) \bar{u}_{0}^{p-1} h d \sigma=\int_{\Omega} e\left(z, \bar{u}_{0}\right) h d z \quad \text { for all } h \in W^{1, p}(\Omega)
$$

which implies that \bar{u}_{0} is a positive solution of (3.3) (see Papageorgiou and Rădulescu [18]). Then, from Proposition 3.1 we have $\bar{u}_{0}=\bar{u}$ and, as a result, $\bar{u} \leq u$ for all $u \in S_{+}$.

In a similar fashion, we show that $v \leq \bar{v}$ for all $v \in S_{+}$.
Next, we produce extremal constant-sign solutions, that is, a smallest positive solution and a biggest negative solution.

Proposition 3.3. If hypotheses $H(a), H(\beta)$ and $H(f)$ hold, then (1.1) admits a smallest positive solution

$$
u_{*} \in[0, \eta] \cap \operatorname{int} C_{+}
$$

and a biggest negative solution

$$
v_{*} \in[-\eta, 0] \cap\left(-\operatorname{int} C_{+}\right)
$$

Proof. Evidently, we restrict ourselves to the sets S_{+}and S_{-}. From Hu and Papageorgiou [11, Lemma 3.10] we know that we can find a decreasing sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq S_{+}$such that

$$
\inf S_{+}=\inf _{n \geq 1} u_{n}
$$

For all $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\left\langle A\left(u_{n}\right), h\right\rangle+\int_{\partial \Omega} \beta(z) u_{n}^{p-1} h d z=\int_{\Omega} f\left(z, u_{n}\right) h d z \quad \text { for all } h \in W^{1, p}(\Omega) \tag{3.16}
\end{equation*}
$$

Clearly, $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega)$ is bounded and so we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u_{*} \text { in } W^{1, p}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u_{*} \text { in } L^{p}(\Omega) \text { and in } L^{p}(\partial \Omega) . \tag{3.17}
\end{equation*}
$$

In (3.16), we choose $h=u_{n}-u_{*} \in W^{1, p}(\Omega)$, we pass to the limit as $n \rightarrow \infty$ and we use (3.17). Then, we have that

$$
\lim _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u_{*}\right\rangle=0
$$

implies

$$
\begin{equation*}
u_{n} \rightarrow u_{*} \quad \text { in } W^{1, p}(\Omega) \tag{3.18}
\end{equation*}
$$

since $A(\cdot)$ is of type $(S)_{+}$. So, if in (3.16) we pass to the limit as $n \rightarrow \infty$ and use (3.18), then

$$
\begin{equation*}
\left\langle A\left(u_{*}\right), h\right\rangle+\int_{\partial \Omega} \beta(z) u_{*}^{p-1} h d \sigma=\int_{\Omega} f\left(z, u_{*}\right) h d z \quad \text { for all } h \in W^{1, p}(\Omega) \tag{3.19}
\end{equation*}
$$

Also (see Proposition 3.2),

$$
\begin{equation*}
\bar{u} \leq u_{*} . \tag{3.20}
\end{equation*}
$$

From (3.19) and (3.20) we infer that

$$
u_{*} \in S_{+} \subseteq \operatorname{int} C_{+} \quad \text { and } \quad u_{*}=\inf S_{+}
$$

Similarly, we produce

$$
v_{*} \in S_{-} \quad \text { and } \quad v_{*}=\sup S_{-} .
$$

Using these two extremal constant-sign solutions, we introduce the Carathéodory functions

$$
\begin{align*}
& \mu(z, x)= \begin{cases}f\left(z, v_{*}(z)\right)+\left|v_{*}(z)\right|^{p-2} v_{*}(z) & \text { if } x<v_{*}(z), \\
f(z, x)+|x|^{p-2} x & \text { if } v_{*}(z) \leq x \leq u_{*}(z), \\
f\left(z, u_{*}(z)\right)+u_{*}(z)^{p-1} & \text { if } u_{*}(z)<x,\end{cases} \tag{3.21}\\
& \bar{b}(z, x)= \begin{cases}\beta(z)\left|v_{*}(z)\right|^{p-2} v_{*}(z) & \text { if } x<v_{*}(z), \\
\beta(z)|x|^{p-2} x & \text { if } v_{*}(z) \leq x \leq u_{*}(z), \\
\beta(z) u_{*}(z)^{p-1} & \text { if } u_{*}(z)<x .\end{cases} \tag{3.22}
\end{align*}
$$

We set

$$
M(z, x)=\int_{0}^{x} \mu(z, s) d s \quad \text { and } \quad \bar{B}(z, x)=\int_{0}^{x} \bar{b}(z, s) d s
$$

and we consider the C^{1}-functional $\bar{\varphi}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\bar{\varphi}(u)=\int_{\Omega} G(D u) d z+\frac{1}{p}\|u\|_{p}^{p}+\int_{\partial \Omega} \bar{B}(z, u) d \sigma-\int_{\Omega} M(z, u) d z \quad \text { for all } u \in W^{1, p}(\Omega) .
$$

Proposition 3.4. If hypotheses $H(a), H(\beta)$ and $H(f)$ hold, then $\bar{\varphi}$ satisfies the PS-condition, it is even, bounded from below, $\bar{\varphi}(0)=0$ and $K_{\bar{\varphi}} \subseteq\left[v_{*}, u_{*}\right]$.

Proof. From (3.21) and (3.22) it is clear that $\bar{\varphi}$ is coercive. So, it is bounded from below and satisfies the PS-condition (see Papageorgiou and Winkert [25]). Hypotheses $H(f)$ imply that $\bar{\varphi}$ is even (recall that $u_{*} \in S_{+}$ and $v_{*} \in S_{-}$) and $\bar{\varphi}(0)=0$. Finally, let $u \in K_{\bar{\varphi}}$. Then, $\bar{\varphi}^{\prime}(u)=0$ implies that

$$
\begin{equation*}
\langle A(u), h\rangle+\int_{\Omega}|u|^{p-2} u h d z+\int_{\partial \Omega} \bar{b}(z, u) h d \sigma=\int_{\Omega} \mu(z, u) h d z \quad \text { for all } h \in W^{1, p}(\Omega) . \tag{3.23}
\end{equation*}
$$

In (3.23), we first choose $h=\left(u-u_{*}\right)^{+} \in W^{1, p}(\Omega)$. Then, we have (see (3.21) and (3.22) for the first equality and recall that $u_{*} \in S_{+}$for the second one)

$$
\begin{aligned}
& \left\langle A(u),\left(u-u_{*}\right)^{+}\right\rangle+\int_{\Omega} u^{p-1}\left(u-u_{*}\right)^{+} d z+\int_{\partial \Omega} \beta(z) u_{*}^{p-1}\left(u-u_{*}\right)^{+} d \sigma \\
& \quad=\int_{\Omega}\left(f\left(z, u_{*}\right)+u_{*}^{p-1}\right)\left(u-u_{*}\right)^{+} d z \\
& \quad=\left\langle A\left(u_{*}\right),\left(u-u_{*}\right)^{+}\right\rangle+\int_{\Omega} u_{*}^{p-1}\left(u-u_{*}\right)^{+} d z+\int_{\partial \Omega} \beta(z) u_{*}^{p-1}\left(u-u_{*}\right)^{+} d \sigma,
\end{aligned}
$$

which implies that

$$
\left\langle A(u)-A\left(u_{*}\right),\left(u-u_{*}\right)^{+}\right\rangle+\int_{\Omega}\left(u^{p-1}-u_{*}^{p-1}\right)\left(u-u_{*}\right)^{+} d z=0
$$

Therefore,

$$
\left|\left\{u>u_{*}\right\}\right|_{N}=0
$$

that is,

$$
u \leq u_{*}
$$

Similarly, if in (3.23) we choose $h=\left(v_{*}-u\right)^{+} \in W^{1, p}(\Omega)$, then we obtain that $v_{*} \leq u$ implies

$$
K_{\bar{\varphi}} \subseteq\left[v_{*}, u_{*}\right]
$$

The extremality of $v_{*} \in-\operatorname{int} C_{+}$and of $u_{*} \in \operatorname{int} C_{+}$implies the following property.
Corollary 3.5. If hypotheses $H(a), H(\beta)$ and $H(f)$ hold, then the elements of $K_{\bar{\varphi}} \backslash\left\{0, v_{*}, u_{*}\right\}$ are nodal solutions of (1.1).

Now, we are ready to produce a whole sequence of distinct nodal solutions for (1.1).
Theorem 3.6. Assume that hypotheses $H(a), H(\beta)$ and $H(f)$ hold. Then, (1.1) has a whole sequence $\left\{u_{n}\right\}_{n \geq 1} \subseteq$ $C^{1}(\bar{\Omega})$ of distinct nodal solutions.

Proof. Let $\bar{\eta}=\min \left\{\min _{\bar{\Omega}} u_{*},-\max _{\bar{\Omega}} v_{*}\right\}$ (recall that $u_{*} \in \operatorname{int} C_{+}$and $v_{*} \in-\operatorname{int} C_{+}$). Hypothesis $H(a)$ (iv) implies that we can find $\delta_{0} \in(0, \bar{\eta}]$ such that

$$
\begin{equation*}
G(y) \leq c_{9}|y|^{q} \quad \text { for all } y \in \mathbb{R}^{N} \text { with }|y| \leq \delta_{0} \text { and for some } c_{9}>0 \tag{3.24}
\end{equation*}
$$

Also, from (2.5) we have

$$
\begin{equation*}
F(z, x) \geq \frac{\xi}{q}|x|^{q} \quad \text { for almost all } z \in \Omega \text { and for all }|x| \leq \delta \text { with } \xi>0 . \tag{3.25}
\end{equation*}
$$

Let $n \in \mathbb{N}$ and let $Y_{n} \subseteq W^{1, p}(\Omega)$ be an n-dimensional subspace. Then, all norms are equivalent on Y_{n}. So, we can find $\rho_{n}>0$ such that $u \in Y_{n}$ and $\|u\| \leq \rho_{n}$ imply

$$
\begin{equation*}
|u(z)| \leq \delta \quad \text { for almost all } z \in \Omega \tag{3.26}
\end{equation*}
$$

Using (3.24), (3.25) and (3.26) together with (3.21) and (3.22), for all $u \in Y_{n}$ with $\|u\| \leq \rho_{n}$, we have

$$
\begin{equation*}
\bar{\varphi}(u) \leq c_{9}\|D u\|_{q}^{q}+\frac{1}{p} \int_{\partial \Omega} \beta(z)|u|^{p} d \sigma-\frac{\xi}{q}\|u\|_{q}^{q} \leq\left(c_{10}-\xi c_{11}\right)\|u\|^{q} \tag{3.27}
\end{equation*}
$$

with $c_{10}, c_{11}>0$ independent of $\xi>0$ (use the trace theorem and recall that all norms are equivalent on Y_{n}). Recall that $\xi>0$ is arbitrary (see (2.3)). So, we choose $\xi>\frac{c_{10}}{c_{11}}$ and we have that

$$
\varphi(u)<0 \quad \text { for all } u \in Y_{n} \text { with }\|u\|=\rho_{n} .
$$

Because of Proposition 3.4 we can apply Theorem 2.1 to find $\left\{u_{n}\right\}_{n \geq 1} \subseteq W^{1, p}(\Omega) \backslash\{0\}$ such that

$$
u_{n} \in K_{\bar{\varphi}} \backslash\{0\} \quad \text { for all } n \in \mathbb{N}
$$

and

$$
\bar{\varphi}\left(u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Since $K_{\bar{\varphi}} \subseteq C^{1}(\bar{\Omega})$ (nonlinear regularity theory), we have

$$
u_{n} \in C^{1}(\bar{\Omega}) \backslash\{0\} \quad \text { for all } n \in \mathbb{N} .
$$

Finally, Corollary 3.5 implies that $\left\{u_{n}\right\}_{n \geq 1} \subseteq C^{1}(\bar{\Omega})$ is a sequence of distinct nodal solutions for (1.1).

Acknowledgment: The authors would like to thank Professor Zhi-Qiang Wang for his interest in this work and for bringing to their attention some relevant related works.

Funding: V. D. Rădulescu was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-PT-PCCA-2013-4-0614 (PCCA-23/2014).

References

[1] V. Benci, P. D’Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297-324.
[2] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction-diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9-22.
[3] S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations 30 (2005), 1191-1203.
[4] D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972), 65-74.
[5] J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Math. Acad. Sci. Paris Sér. I 305 (1987), 521-524.
[6] M. E. Filippakis and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations 245 (2008), 1883-1922.
[7] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall, Boca Raton, 2006.
[8] L. Gasiński and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann p-Laplacian-type equations, Adv. Nonlinear Stud. 8 (2008), 843-870.
[9] L. Gasiński and N. S. Papageorgiou, Multiplicity of positive solutions for eigenvalue problems of ($p, 2$)-equations, Bound. Value Probl. (2012), Article ID 152.
[10] H.-P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), 263-300.
[11] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, 1997.
[12] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), 352-370.
[13] G. M. Liebermann, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361.
[14] Z. Liu and Z.-Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609-629.
[15] Z. Liu and Z.-Q. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 1015-1037.
[16] D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Boundary Value Problems, Springer, New York, 2014.
[17] D. Mugnai and N. S. Papageorgiou, Wang's multiplicity result for superlinear (p, q) -equations without the AmbrosettiRabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), 4919-4937.
[18] N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), 2449-2479.
[19] N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim. 69 (2014), 393-430.
[20] N. S. Papageorgiou and V. D. Rădulescu, Nonlinear parametric Robin problems with combined nonlinearities, Adv. Nonlinear Stud. 15 (2015), 715-748.
[21] N. S. Papageorgiou and V. D. Rădulescu, Resonant ($p, 2$)-equations with asymmetric reaction, Anal. Appl. (Singap.) 13 (2015), 481-506.
[22] N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., to appear.
[23] N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for resonant and superlinear nonhomogeneous elliptic equations, Topol. Methods Nonlinear Anal., to appear.
[24] N. S. Papageorgiou and V. D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, submitted.
[25] N. S. Papageorgiou and P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear. Stud. 14 (2014), 747-773.
[26] P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.
[27] M. Sun, M. Zhang and J. Su, Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl. 428 (2015), 696-712.
[28] Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001), 15-33.

[^0]: Nikolaos S. Papageorgiou: Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece, e-mail: npapg@math.ntua.gr
 *Corresponding author: Vicenţiu D. Rădulescu: Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Saudi Arabia; and Institute of Mathematics "Simion Stoilow" of the Romanian Academy, 014700 Bucharest, Romania, e-mail: vicentiu.radulescu@imar.ro

