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Abstract:We consider a (p, 2)-equation, that is, a nonlinear nonhomogeneous elliptic equation driven by the
sum of a p-Laplacian and a Laplacian with p > 2. The reaction term is (p − 1)-linear, but exhibits asymmetric
behavior at ±∞ and at 0±. Using variational tools, together with truncation and comparison techniques and
Morse theory,weprove twomultiplicity theorems, one of themproviding sign information for all the solutions
(positive, negative, nodal).
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1 Introduction
Let Ω ⊆ ℝℕ be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following nonlinear
nonhomogeneous Dirichlet problem:

− ∆pu(z) − ∆u(z) = f(z, u(z)) in Ω, u|∂Ω = 0, 2 < p. (1.1)

Here, ∆p denotes the p-Laplace differential operator defined by

∆pu(z) = div(|Du|p−2Du) for all u ∈ W1,p
0 (Ω).

If p = 2, then ∆2 = ∆ the Laplacian.
In problem (1.1), the reaction term f(z, x) is a Carathéodory function such that f(z, 0) = 0. We assume

that f(z, ⋅ ) exhibits (p − 1)-linear growth near ±∞. However, the growth of f(z, ⋅ ) is asymmetric near ±∞.
More precisely, the quotient

f(z, x)
|x|p−2x

crosses at least the principal eigenvalue λ̂1(p) > 0 of (−∆p ,W1,p
0 (Ω)) as wemove from −∞ to +∞ (crossing or

jumping nonlinearity). In the negative direction we allow resonance with respect to λ̂1(p) > 0, while in the
positive direction resonance can occur with respect to any nonprincipal eigenvalue of (−∆p ,W1,p

0 (Ω)). We
have a similar asymmetric behavior when x → 0±. This time the quotient f(z,x)

x crosses λ̂1(2) > 0. Under this
double asymmetric setting, we prove amultiplicity theorem producing three nontrivial smooth solutions and
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provide sign information for all of them. A second multiplicity theorem is also proved without sign informa-
tion for the third solution.

Equations involving the sumof a Laplacian and a p-Laplacian arise in problems ofmathematical physics;
seeCherfils and Ilyasov [9] (plasmaphysics) andBenci,D’Avenia, Fortunato andPisani [6] (quantumphysics).
Recently, there have been existence and multiplicity results for different classes of such equations. We men-
tion the works of Aizicovici, Papageorgiou and Staicu [3], Cingolani and Degiovanni [10], Gasinski and
Papageorgiou [13, 15], Papageorgiou and Rădulescu [22, 23], Papageorgiou, Rădulescu and Repovš [25],
Sun [30], Sun, Zhang and Su [31] and Yang and Bai [32]. In the aforementioned works, only Papageorgiou
and Rădulescu [23] deal with an asymmetric p-sublinear reaction term. They consider a reaction term f(z, x)
such that the quotient

f(z, x)
|x|p−2x

crosses only the first eigenvalue λ̂1(p) as we move from −∞ to +∞, and resonance is allowed at −∞. At
zero, the behavior of the quotient f(z,x)

x is symmetric. Finally, in [23] the multiplicity result does not produce
nodal solutions. Concerning asymmetric sublinear problems, we should also mention the semilinear works
of D’Agui, Marano and Papageorgiou [11] (Robin problems with an indefinite and unbounded potential) and
Recova and Rumbos [28] (Dirichlet problems with zero potential).

Our approach is variational, based on the critical point theory combined with suitable truncation and
comparison techniques and Morse theory (critical groups).

2 Mathematical background
Let X be a Banach space and X∗ its topological dual. By ⟨ ⋅ , ⋅ ⟩ we denote the duality brackets for the pair
(X∗, X). Given φ ∈ C1(X,ℝ), we say that φ satisfies the “Cerami condition” (the “C-condition” for short) if the
following holds: Every sequence {un}n⩾1 ⊆ X such that {φ(un)}n⩾1 ⊆ ℝ is bounded and

(1 + ‖un‖)φ󸀠(un)→ 0 in X∗ as n →∞

admits a strongly convergent subsequence.
This is a compactness-type condition on the functional. It leads to a deformation theorem from which

one can derive the minimax theory of the critical values of φ. One of the main results in this theory is the
so-called “mountain pass theorem” of Ambrosetti and Rabinowitz [5], stated here in a slightly more general
form (see Gasinski and Papageorgiou [12]).

Theorem 2.1. Assume that φ ∈ C1(X,ℝ) satisfies the C-condition, u0, u1 ∈ X, ‖u1 − u0‖ > r > 0,

max{φ(uo), φ(u1)} < inf[φ(u) : ‖u − u0‖ = r] = mr

and
c = inf

γ∈Γ
max
0⩽t⩽1

φ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ⩾ mr and c is a critical value of φ (that is, there exists u ∈ X such that φ(u) = c, φ󸀠(u) = 0).

In the study of (1.1), we will use the Sobolev spacesW1,p
0 (Ω) and H1

0(Ω) and the Banach space

C10(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

By ‖ ⋅ ‖ we denote the norm ofW1,p
0 (Ω). By Poincaré’s inequality, the norm ofW1,p

0 (Ω) can be defined by

‖u‖ = ‖Du‖p for all u ∈ W1,p
0 (Ω).

The Sobolev space H1
0(Ω) is a Hilbert space and, as above, the Poincaré inequality implies that we can

choose as inner product
(u, h) = ∫

Ω

(Du, Dh)ℝℕ dz for all u, h ∈ H1
0(Ω).
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The corresponding norm is

‖u‖H1
0(Ω) = ‖Du‖2 for all u ∈ H1

0(Ω).

The space C10(Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C10(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u
∂n
󵄨󵄨󵄨󵄨󵄨󵄨∂Ω
< 0}.

Here, by ∂u
∂n we denote the normal derivative of u, with n( ⋅ ) being the outward unit normal on ∂Ω. Recall

that C10(Ω) is dense in bothW1,p
0 (Ω) and H1

0(Ω).
We consider a function f0 : Ω ×ℝ→ ℝwhich is Carathéodory function, that is, for all x ∈ ℝ themapping

z 󳨃→ f0(z, x) is measurable and for almost all z ∈ Ω the function x 󳨃→ f0(z, x) is continuous. We assume that

|f0(z, x)| ⩽ a0(z)[1 + |x|r−1] for almost all z ∈ Ω and all x ∈ ℝ,

with a0 ∈ L∞(Ω) and

1 < r < p∗ =
{
{
{

Np
N−p if p < N,
+∞ if N ⩽ p

(the critical Sobolev exponent for p). We set

F0(z, x) =
x

∫
0

f0(z, s) ds

and consider the C1-functional φ0 : W1,p
0 (Ω)→ ℝ defined by

φ0(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F0(z, u) dz for all u ∈ W1,p
0 (Ω).

The next proposition is a special case of a more general result of Aizicovici, Papageorgiou and Staicu
[2, Proposition 2]. See also Papageorgiou and Rădulescu [21, 24] for corresponding results for the Neumann
and Robin problems. The result is essentially a byproduct of the regularity theory of Lieberman [18, Theo-
rem 1].

Proposition 2.2. Assume that u0 ∈ W1,p
0 (Ω) is a local C10(Ω)-minimizer of φ0, that is, there exists ρ0 > 0 such

that
φ0(u0) ⩽ φ0(u0 + h) for all h ∈ C10(Ω) with ‖h‖C10(Ω) ⩽ ρ0.

Then u0 ∈ C1,α0 (Ω) for some α ∈ (0, 1) and u0 is a local W1,p
0 (Ω)-minimizer of φ0, that is, there exists ρ1 > 0

such that
φ0(u0) ⩽ φ0(u0 + h) for all h ∈ W1,p

0 (Ω) with ‖h‖ ⩽ ρ1.

For any r ∈ (1, +∞), let
Ar : W1,r

0 (Ω)→ W−1,r󸀠 (Ω) = W1,r
0 (Ω)

∗(
1
r
+
1
r󸀠
= 1)

be the map defined by

⟨Ar(u), h⟩ = ∫
Ω

|Du|r−2(Du, Dh)ℝN dz for all u, h ∈ W1,r
0 (Ω).

From Motreanu, Motreanu and Papageorgiou [19, Proposition 2.72, p. 40] we have the following prop-
erty.
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Proposition 2.3. The map Ar is bounded (that is, it maps bounded sets to bounded sets), continuous, strictly
monotone (hence, maximal monotone, too) and of type (S)+, that is,

un
w
󳨀→ u inW1,r

0 (Ω) and lim sup
n→∞
⟨Ar(un), un − u⟩ ⩽ 0

imply
un → u inW1,p

0 (Ω).

Note that if p = 2, then A2 = A ∈ L (H1
0(Ω), H−1(Ω)).

We will use the spectrum of (−∆p ,W1,p
0 (Ω)) and the Fučik spectrum of (−∆, H1

0(Ω)). So, let us recall some
basic facts about them.

We start with the following nonlinear eigenvalue problem:

− ∆ru(z) = λ̂|u(z)|r−2u(z) in Ω, u|∂Ω = 0, 1 < r <∞. (2.1)

We say that λ̂ ∈ ℝ is an “eigenvalue” of (−∆r ,W1,r
0 (Ω)) if problem (2.1) admits a nontrivial solution

û ∈ W1,r
0 (Ω), known as an “eigenfunction” corresponding to λ̂. There is a smallest eigenvalue λ̂1(r) > 0 such

that the following conditions hold:
∙ λ̂1(r) is isolated in the spectrum σ̂(r) of (−∆r ,W1,r

0 (Ω)), that is, there exists ϵ > 0 such that

(λ̂1(r), λ̂1(r) + ϵ) ∩ σ̂(r) = 0.

∙ λ̂1(r) is simple, that is, if û, ũ ∈ W1,r
0 (Ω) are eigenfunctions corresponding to λ̂1(r), then there exists

ξ ∈ ℝ \ {0} such that û = ξ ũ.
∙ The equation

λ̂1(r) = inf[
‖Du‖rr
‖u‖rr

: u ∈ W1,r
0 (Ω), u ̸= 0] (2.2)

holds.
In (2.2), the infimum is realized on the one-dimensional eigenspace corresponding to λ̂1(r). The afore-

mentioned properties imply that the elements of this eigenspace have fixed sign. Moreover, the nonlinear
regularity theory (see, for example, Gasinski and Papageorgiou [12, pp. 737–738]) implies that all the
eigenfunctions of (−∆r ,W1,r

0 (Ω)) belong in C10(Ω). By û1(r) we denote the positive Lr-normalized (that is,
‖û1(r)‖r = 1) eigenfunction corresponding to λ̂1(r) > 0. The nonlinear strong maximum principle (see, for
example, Gasinski and Papageorgiou [12, p. 738]) implies that û1(r) ∈ int C+. An eigenfunction û ∈ C10(Ω)
corresponding to an eigenvalue λ̂ ̸= λ̂1(r) is necessarily nodal (sign-changing). It is easily seen that the set
σ̂(r) is closed. Since λ̂1(r) > 0 is isolated, the second eigenvalue λ̂2(r) > 0 is well-defined by

λ̂2(r) = min[λ̂ ∈ σ̂(r) : λ̂ ̸= λ̂1(r)].

To produce additional eigenvalues, we can use the Ljusternik–Schnirelmann minimax scheme. In this
way, we obtain a whole nondecreasing sequence of eigenvalues {λ̂k(r)}k⩾1 of (−∆r ,W1,r

0 (Ω)) such that
λ̂k(r)→ +∞ as k →∞. These eigenvalues are known as “variational eigenvalues”, and λ̂1(r) and λ̂2(r) are
as described above. We do not know if the variational eigenvalues exhaust the spectrum of (−∆r ,W1,r

0 (Ω)).
This is the case if r = 2 (linear eigenvalue problem) or if N = 1 (ordinary differential equations). In the linear
case (r = 2), the eigenspaces E(λ̂k(2)), k ∈ ℕ, are finite-dimensional subspaces of C10(Ω) and we have the
following orthogonal direct sum decomposition:

H1
0(Ω) =⨁

k⩾1
E(λ̂k(2)).

When r ̸= 2 (nonlinear eigenvalue problem), the eigenspaces are only cones and there is no decomposi-
tion of the space W1,r

0 (Ω) in terms of them. This makes the study of problems driven by −∆r and resonant at
higher parts of the spectrum difficult to deal with.

We will also encounter a weighted version of the eigenvalue problem (2.1). So, let m ∈ L∞(Ω), m(z) ⩾ 0
for almost all z ∈ Ω, m ̸≡ 0. We consider the following nonlinear eigenvalue problem:

− ∆ru(z) = λ̃m(z)|u(z)|r−2u(z) in Ω, u|∂Ω = 0. (2.3)
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Again λ̃ ∈ ℝ is an eigenvalue of (−∆r ,W1,r
0 (Ω),m) if problem (2.3) admits a nontrivial solution. We have

a smallest eigenvalue λ̃1(r,m) > 0 which is isolated, simple and satisfies

λ̃1(r,m) = inf[
‖Du‖rr
∫Ω m|u|

r dz
: u ∈ W1,r

0 (Ω), u ̸= 0]. (2.4)

As before, the infimum is realized on the corresponding one-dimensional eigenspace, the elements of
which do not change sign. This fact and (2.4) lead to the following monotonicity property of m → λ̃1(r,m).

Proposition 2.4. Suppose m,m󸀠 ∈ L∞(Ω) \ {0}, 0 ⩽ m(z) ⩽ m󸀠(z) for almost all z ∈ Ω, and m ̸≡ m󸀠. Then
λ̃1(r,m󸀠) < λ̃1(r,m).

Remark 1. For the linear eigenvalue problem (that is, r = 2), the spectrum consists of a sequence

{λ̃k(2,m) = λ̃k(m)}k∈ℕ

of distinct eigenvalues such that

λ̃k(m)→ +∞ as k →∞.

The eigenspaces E(λ̃k(2,m)) have the unique continuation property, that is, if u ∈ E(λ̃k(2,m)) and u( ⋅ ) van-
ishes on a set of positive Lebesguemeasure, then u ≡ 0. This property leads to the following strict monotonic-
ity property of λ̃k(2, ⋅ ):

m,m󸀠 ∈ L∞(Ω) \ {0}, 0 ⩽ m(z) ⩽ m󸀠(z) for almost all z ∈ Ω, m ̸≡ m󸀠

imply

λ̃k(2,m󸀠) < λ̃k(2,m) for all k ∈ ℕ.

Another related result is the following lemma, which is a consequence of the properties of λ̂1(p) (see
Motreanu, Motreanu and Papageorgiou [19, Lemma 11.3, p. 305]).

Lemma 2.5. If ϑ ∈ L∞(Ω) and ϑ(z) ⩽ λ̂1(p) for almost all z ∈ Ω, ϑ ̸≡ λ̂1(p), then there exists ĉ > 0 such that

ĉ‖u‖p ⩽ ‖Du‖pp − ∫
Ω

ϑ(z)|u|p dz for all u ∈ W1,p
0 (Ω).

Since our problem is also asymmetric at zero, in our analysis we will use the Fučik spectrum of (−∆, H1
0(Ω)).

So, we consider the following linear eigenvalue problem:

− ∆u(z) = αu+(z) − βu−(z) in Ω, u|∂Ω = 0, (2.5)

where u±( ⋅ ) = max{±u( ⋅ ), 0} (the positive and negative parts of u). By Σ2 we denote the set of points
(α, β) ∈ ℝ2 for which problem (2.5) admits a nontrivial solution. The set Σ2 is called the “Fučik spectrum”
of (−∆, H1

0(Ω)). Let {λ̂k(2)}k∈ℕ be the sequence of distinct eigenvalues of (−∆, H1
0(Ω)). While the spectrum

of (−∆, H1
0(Ω)) is a sequence of points, the frame of the Fučik spectrum Σ2 consists of a family of curves.

In particular, the lines ({λ̂1(2)} ×ℝ) ∪ (ℝ × {λ̂1(2)}) can be considered as the first curve of Σ2. In fact, this
curve is isolated in Σ2. For every ℓ ∈ ℕ, ℓ ⩾ 2, there are two decreasing curves Cℓ,1, Cℓ,2 (which may coin-
cide) which pass through the point (λ̂ℓ(2), λ̂ℓ(2)) such that all points in the square Qℓ = (λ̂ℓ−1(2), λ̂ℓ+1(2))2
which are either in the region Iℓ,1 below both curves or in the region Iℓ,2 above the curves, do not belong
to Σ2 (these are the regions of type I). The status of the points between the two curves (when they do not
coincide) is unknown in general. However, when λ̂ℓ(2) is a simple eigenvalue, points between the two curves
are not in Σ2. We mention that Σ2 ⊆ ℝ2 is closed with respect to the diagonal (that is, (α, β) ∈ Σ2 if and only
if (β, α) ∈ Σ2). Also, (λ, λ) ∈ Σ2 if and only if λ = λ̂n(2) for some n ∈ ℕ. As we have already mentioned the
lines {λ̂1(2)} ×ℝ and ℝ × {λ̂1(2)} are contained in Σ2. In the scalar case (that is, N = 1), we have a complete
description of the Fučik spectrum. For more information about Σ2, we refer to Schechter [29].

Authenticated | vicentiu.radulescu@math.cnrs.fr
Download Date | 8/1/18 11:05 AM



332 | N. S. Papageorgiou et al., (p, 2)-equations asymmetric at both zero and infinity

Next, we recall some basic definitions and facts from Morse theory (critical groups). So, as before, X is
a Banach space, φ ∈ C1(X,ℝ) and c ∈ ℝ. We introduce the following sets:

Kφ = {u ∈ X : φ󸀠(u) = 0},
Kc
φ = {u ∈ Kφ : φ(u) = c},

φc = {u ∈ X : φ(u) ⩽ c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ ℕ0. By Hk(Y1, Y2)we denote the kth rel-
ative singular homology group with integer coefficients for the pair (Y1, Y2). Suppose that u ∈ Kc

φ is isolated.
The critical groups of φ at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k ∈ ℕ0,

where U is a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of singular homology
implies that the above definition of critical groups is independent of the choice of the isolating neighbor-
hood U. Suppose that φ satisfies the C-condition and that inf φ(Kφ) > −∞. Let c < inf φ(Kφ). The critical
groups of φ at infinity are defined by

Ck(φ,∞) = Hk(X, φc) for all k ∈ ℕ0.

This definition is independent of the choice of the level c < inf φ(Kφ). Indeed, suppose c󸀠 < c < inf φ(Kφ).
From Motreanu, Motreanu and Papageorgiou [19, Corollary 6.35, p. 115], we have that

φc󸀠 is a strong deformation retract of φc ,

which implies
Hk(X, φc) = Hk(X, φc󸀠 ) for all k ∈ ℕ0

(see [19, Corollary 6.15 (a), p. 145]). Therefore, indeed Ck(φ,∞) is independent of the choice of the level
c < inf φ(Kφ).

Now suppose that φ ∈ C1(X,ℝ) satisfies the C-condition and that Kφ is finite. We define

M(t, u) = ∑
k∈ℕ0

rank Ck(φ, u)tk for all t ∈ ℝ and all u ∈ Kφ ,

P(t,∞) = ∑
k∈ℕ0

rank Ck(φ,∞)tk for all t ∈ ℝ.

The Morse relation says that

∑
u∈Kφ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ ℝ, (2.6)

where
Q(t) = ∑

k∈ℕ0
βk tk

is a formal series in t ∈ ℝ with nonnegative integer coefficients βk.
We conclude this section by fixing our notation and introducing the hypotheses on the reaction term

f(z, x). Recall that if u ∈ W1,p
0 (Ω), we define

u±(z) = max{±u(z), 0}.

We know that u± ∈ W1,p
0 (Ω), and we have u = u+ − u− and |u| = u+ + u−. By | ⋅ |N we denote the Lebesgue

measure on ℝN , and given f(z, x) a measurable function (for example, a Carathéodory function), we denote
by Nf ( ⋅ ) the Nemitsky (superposition) map corresponding to f( ⋅ , ⋅ ) and defined by

Nf (u)( ⋅ ) = f( ⋅ , u( ⋅ )) for all u ∈ W1,p
0 (Ω).

The hypotheses on f(z, x) are the following.
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Hypotheses H(f ). f : Ω ×ℝ→ ℝ is a Carathéodory function such that f(z, 0) = 0 for almost all z ∈ Ω and the
following conditions hold:
(i) For every r > 0, there exists ar ∈ L∞(Ω)+ such that

|f(z, x)| ⩽ ar(z) for almost all z ∈ Ω and all |x| ⩽ r.

(ii) There exist η ∈ L∞(Ω), η(z) ⩾ λ̂1(p) for almost all z ∈ Ω, η ̸= λ̂1(p), and η̂, ϑ̂ > 0 such that

−ϑ̂ ⩽ lim inf
x→−∞

f(z, x)
|x|p−2x

⩽ lim sup
x→−∞

f(z, x)
|x|p−2x

⩽ λ̂1(p),

η(z) ⩽ lim inf
x→+∞

f(z, x)
xp−1
⩽ lim sup

x→+∞

f(z, x)
xp−1
⩽ η̂

uniformly for almost all z ∈ Ω.
(iii) If F(z, x) = ∫x0 f(z, s) ds, then f(z, x)x − pF(z, x)→ +∞ as x → −∞ uniformly for almost all z ∈ Ω and

there exists M0 > 0 such that

f(z, x)x − pF(z, x) ⩾ 0 for almost all z ∈ Ω and all x ⩾ M0.

(iv) There exist 0 < α < λ̂1(2) < β < λ̂2(2) such that

lim
x→0+ f(z, x)x

= α, lim
x→0− f(z, x)x

= β

uniformly for almost all z ∈ Ω, and for every ρ > 0 there exists ̂ξρ > 0 such that for almost all z ∈ Ω the
mapping x 󳨃→ f(z, x) + ̂ξρxp−1 is nondecreasing on [0, ρ].

Remark 2. Hypothesis H(f ) (ii) implies that f(z, ⋅ ) is a crossing nonlinearity. In fact, we can cross any finite
number of variational eigenvalues, starting with λ̂1(p) > 0. Note that in the negative direction we can have
resonance with respect to λ̂1(p) > 0, while in the positive direction resonance is possible with respect to any
nonprincipal eigenvalue of (−∆p ,W1,p

0 (Ω)). Aswewill see in the proof of Proposition 3.3, Hypothesis H(f ) (iii)
guarantees that at −∞ the resonance with respect to λ̂1(p) > 0 is from the left of the principal eigenvalue in
the sense that

λ̂1(p)|x|p − pF(z, x)→ +∞ as x → −∞, uniformly for almost all z ∈ Ω.

This makes the negative truncation of the energy functional of (1.1) coercive. So, we can use the direct
method of the calculus of variations. Hypothesis H(f ) (iv) implies that at zero, too, we have an asymmetric
behavior of the quotient f(z,x)

x .

3 Solutions of constant sign
In this section, using variational tools, we show that problem (1.1) admits two nontrivial smooth solutions
of constant sign (one positive and the other one negative).

So, let φ : W1,p
0 (Ω)→ ℝ be the energy functional for problem (1.1) defined by

φ(u) = 1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F(z, u) dz for all u ∈ W1,p
0 (Ω).

Evidently, φ ∈ C1(W1,p
0 (Ω),ℝ). Also, we consider the positive and negative truncations of f(z, ⋅ ), that is,

the Carathéodory function
f±(z, x) = f(z, ±x±).

We set F±(z, x) = ∫
x
0 f±(z, s) ds and consider the C1-functionals φ± : W1,p

0 (Ω)→ ℝ defined by

φ±(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F±(z, u) dz for all u ∈ W1,p
0 (Ω).
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Proposition 3.1. If Hypotheses H(f ) hold, then φ satisfies the C-condition.

Proof. We consider a sequence {un}n⩾1 ⩽ W1,p
0 (Ω) such that

|φ(un)| ⩽ M1 for some M1 > 0 and all n ∈ ℕ, (3.1)

(1 + ‖un‖)φ󸀠(un)→ 0 inW−1,p󸀠 (Ω) = W1,p
0 (Ω)

∗ as n →∞. (3.2)

From (3.2) we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(un), h⟩ + ⟨A(un), h⟩ − ∫

Ω

f(z, un)h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

ϵn‖h‖
1 + ‖un‖

for all h ∈ W1,p
0 (Ω), with ϵn → 0+. (3.3)

In (3.3), we chose h = un ∈ W1,p
0 (Ω). Then

− ‖Dun‖
p
p − ‖Dun‖22 + ∫

Ω

f(z, un)un dz ⩽ ξn for all n ∈ ℕ. (3.4)

Also, from (3.1) we have

‖Dun‖
p
p +

p
2 ‖Dun‖

2
2 − ∫

Ω

pF(z, un) dz ⩽ pM1 for all n ∈ ℕ. (3.5)

We add (3.4) and (3.5). Recalling that p > 2, we obtain

∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ M2 for some M2 > 0 and all n ∈ ℕ,

which implies

∫
Ω

[f(z, −u−n)(−u−n) − pF(z, −u−n)] dz ⩽ M3 for some M3 > 0 and all n ∈ ℕ (3.6)

(see Hypotheses H(f ) (i) and (iii)).

Claim 1. {u−n}n⩾1 ⊆ W
1,p
0 (Ω) is bounded.

We argue by contradiction. So, suppose that Claim 1 is not true. By passing to a subsequence if necessary, we
may assume that

‖u−n‖→∞ as n →∞. (3.7)

Let yn = u−n
‖u−n ‖ , n ∈ ℕ. Then ‖yn‖ = 1 and yn ⩾ 0 for all n ∈ ℕ. So, we may assume that

yn
w
󳨀→ y inW1,p

0 (Ω) and yn → y in Lp(Ω), y ⩾ 0. (3.8)

In (3.3), we choose h = −u−n ∈ W
1,p
0 (Ω). Then

‖Du−n‖
p
p + ‖Du−n‖22 − ∫

Ω

f(z, −u−n)(−u−n) dz ⩽ ξn for all n ∈ ℕ,

which implies

‖Dyn‖
p
p +

1
‖u−n‖p−2

‖Dyn‖22 − ∫
Ω

Nf (−u−n)
‖u−n‖p−1

yn dz ⩽
ξn
‖u−n‖p

for all n ∈ ℕ. (3.9)

Hypotheses H(f ) (i), (ii) and (iii) imply that

|f(z, x)| ⩽ c1[1 + |x|p−1] for almost all z ∈ Ω, all x ∈ ℝ and for some c1 > 0. (3.10)

From (3.10) it follows that

{
Nf (−u−n)
‖u−n‖p−1

}
n⩾1
⊆ Lp󸀠 (Ω) is bounded (1p + 1

p󸀠
= 1). (3.11)
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On account of (3.11) and Hypothesis H(f ) (ii), at least for a subsequence we have

Nf (−u−n)
‖u−n‖p−1

w
󳨀→ ϑ(z)yp−1 in Lp󸀠 (Ω) with − ϑ̂ ⩽ ϑ(z) ⩽ λ̂1(p) for almost all z ∈ Ω (3.12)

(see Aizicovici, Papageorgiou and Staicu [1, proof of Proposition 16]). We pass to the limit as n →∞ in (3.9).
Using (3.7), (3.8), (3.12) and the fact that 2 < p, we obtain

‖Dy‖pp ⩽ ∫
Ω

ϑ(z)yp dz. (3.13)

If ϑ ̸≡ λ̂1(p), then from (3.7) and Lemma 2.5 we have ĉ‖y‖p ⩽ 0, which implies

y = 0. (3.14)

Then from (3.9), using as before (3.7), (3.8) and (3.12) (the last two relations with y = 0, see (3.14)) and
the fact that p > 2, we infer that ‖Dyn‖p → 0, which implies yn → 0 in W1,p

0 (Ω), which contradicts the fact
that ‖yn‖ = 1 for all n ∈ ℕ.

Next we assume that ϑ(z) = λ̂1(p) for almost all z ∈ Ω (resonant case). Then from (3.13) and (2.2) we have

‖Dy‖pp = λ̂1(p)‖y‖
p
p ,

which implies
y = ϑ̃û1(p) with ϑ̃ ⩾ 0

(recall that y ⩾ 0, see (3.8)).
If ϑ̃ = 0, then y = 0 and as above we have

yn → 0 inW1,p
0 (Ω),

again contradicting the fact that ‖yn‖ = 1 for all n ∈ ℕ.
If ϑ̃ > 0, then y(z) > 0 for all z ∈ Ω, and so

u−n(z)→ +∞ for all z ∈ Ω,

which implies

fn(z, −u−n(z))(−u−n(z)) − pF(z, −u−n(z))→ 0 for almost all z ∈ Ω as n →∞

(see Hypothesis H(f ) (iii)), which implies

∫
Ω

[f(z, −u−n)(−u−n) − pF(z, −u−n)] dz → +∞ (by Fatou’s lemma). (3.15)

We compare (3.15) and (3.6) and have a contradiction. This proves Claim 1.

Claim 2. {u+n}n⩾1 ⊆ W
1,p
0 (Ω) is bounded.

Again we argue indirectly. So, suppose that Claim 2 is not true. Then at least for a subsequence we have

‖u+n‖→ +∞ as n →∞. (3.16)

Let vn = u+n
‖u+n ‖ , n ∈ ℕ. Then ‖vn‖ = 1 and vn ⩾ 0 for all n ∈ ℕ, and so we may assume that

vn
w
󳨀→ v inW1,p

0 (Ω) and vn → v in Lp(Ω), v ⩾ 0. (3.17)

From (3.3) and Claim 1 we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(u+n), h⟩ + ⟨A(u+n), h⟩ − ∫

Ω

f(z, u+n)h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ M4‖h‖
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for some M4 > 0, all n ∈ ℕ and all h ∈ W1,p
0 (Ω) (see Hypothesis H(f ) (i)), which implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(vn), h⟩ +

1
‖u+n‖p−2

, ⟨A(vn), h⟩ − ∫
Ω

Nf (u+n)
‖u+n‖p−1

h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

M4‖h‖
‖u+n‖p−1

for all n ∈ ℕ. (3.18)

Using the growth condition from (3.10), we see that

{
Nf (u+n)
‖u+n‖p−1

}
n⩾1
⊆ Lp󸀠 (Ω) is bounded. (3.19)

In (3.18), we choose h = vn − v ∈ W1,p
0 (Ω), pass to the limit as n →∞ and use (3.13), (3.16), (3.17) and

the fact that p > 2. Then
lim
n→∞
⟨Ap(vn), vn − v⟩ = 0,

which implies
vn → v inW1,p

0 (Ω) (3.20)

(see Proposition 2.3).
From (3.19) and Hypothesis H(f ) (ii) we see that at least for a subsequence we have

Nf (u+n)
‖u+n‖p−1

w
󳨀→ η̃(z)vp−1 in Lp󸀠 (Ω) with η(z) ⩽ η̂(z) ⩽ η̂ for almost all z ∈ Ω (see [1]). (3.21)

So, if in (3.18) we pass to the limit as n →∞ and use (3.16), (3.20), (3.21) and the fact that p > 2, then

⟨Ap(v), h⟩ = ∫
Ω

η̃(z)vp−1h dz for all h ∈ W1,p
0 (Ω),

which implies
− ∆pv(z) = η̃(z)v(z)p−1 for almost all z ∈ Ω, v|∂Ω = 0. (3.22)

From Proposition 2.4 we have
λ̃1(p, η̃) < λ̃1(p, λ̂1) = 1. (3.23)

From (3.22) and (3.23) and since ‖v‖ = 1 (see (3.20)), it follows that v( ⋅ ) must be nodal, contradict-
ing (3.17). This proves Claim 2.

From Claims 1 and 2 we deduce that

{un}n⩾1 ⊆ W
1,p
0 (Ω) is bounded.

So, we may assume that
un

w
󳨀→ u inW1,p

0 (Ω) and un → u in Lp(Ω). (3.24)

In (3.3), we choose h = un − u ∈ W1,p
0 (Ω), pass to the limit as n →∞ and use (3.24) and the fact that

{Nf (un)}n⩾1 ⊆ Lp
󸀠
(Ω) is bounded (see (3.10)). Then

lim
n→∞
[⟨Ap(un), un − u⟩ + ⟨A(un), un − u⟩] = 0,

which implies
lim sup
n→∞
[⟨Ap(un), un − u⟩ + ⟨A(u), un − u⟩] ⩽ 0

(since A( ⋅ ) is monotone), which then implies

un → u inW1,p
0 (Ω)

(see Proposition 2.3).
Therefore, the energy functional φ satisfies the C-condition.

Next, we show that φ+ satisfies the C-condition, too.
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Proposition 3.2. If Hypotheses H(f ) hold, then φ+ satisfies the C-condition.

Proof. We consider a sequence {un}n⩾1 ⊆ W1,p
0 (Ω) such that

|φ+(un)| ⩽ M5 for some M5 > 0 and for all n ∈ ℕ,

(1 + ‖un‖)φ󸀠+(un)→ 0 inW−1,p󸀠 (Ω) as n →∞. (3.25)

From (3.25) we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(un), h⟩ + ⟨A(un), h⟩ − ∫

Ω

f+(z, un)h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

ϵn‖h‖
1 + ‖un‖

for all h ∈ W1,p
0 (Ω), with ϵn → 0+. (3.26)

In (3.26), we choose h = −u−n ∈ W
1,p
0 (Ω). Then

‖Du−n‖
p
p + ‖Du−n‖22 ⩽ ϵn for all n ∈ ℕ,

which implies
u−n → 0 inW1,p

0 (Ω) as n →∞. (3.27)

From (3.26) and (3.27) it follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(u+n), h⟩ + ⟨A(u+n), h⟩ − ∫

Ω

f(z, u+n)h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ϵ󸀠n‖h‖ for all h ∈ W1,p

0 (Ω), with ϵ󸀠n → 0.

Suppose that {u+n}n⩾1 ⊆ W
1,p
0 (Ω) is unbounded. So, we may assume that ‖u+n‖→∞. We set vn = u+n

‖u+n ‖ ,
n ∈ ℕ, and have ‖vn‖ = 1 and vn ⩾ 0 for all n ∈ ℕ. Hence we can say (at least for a subsequence) that

vn
w
󳨀→ v inW1,p

0 (Ω) and vn → v in Lp(Ω).

Then, reasoning as in the proof of Proposition 3.1 (see the part of the proof after (3.17)), we show that

{u+n}n⩾1 ⊆ W
1,p
0 (Ω) is bounded. (3.28)

From (3.27) and (3.28) it follows that

{un}n⩾1 ⊆ W
1,p
0 (Ω) is bounded.

So, we may assume that

un
w
󳨀→ u inW1,p

0 (Ω) and un → u in Lp(Ω). (3.29)

In (3.26), we choose h = un − u ∈ W1,p
0 (Ω). Passing to the limit as n →∞, using (3.29) and following

the argument in the last part of the proof of Proposition 3.1 (see the part of the proof after (3.24)), we obtain
un → u inW1,p

0 (Ω). We conclude that φ+ satisfies the C-condition.

For the functional φ−, we have the following result.

Proposition 3.3. If Hypotheses H(f ) hold, then φ− is coercive.

Proof. Hypothesis H(f ) (iii) implies that given any ξ > 0, we can find M6 = M6(ξ) > 0 such that

f(z, x)x − pF(z, x) ⩾ ξ for almost all z ∈ Ω and all x ⩽ −M6. (3.30)

We have

d
dx [

F(z, x)
|x|p ]
=
f(z, x)|x|p − p|x|p−2xF(z, x)

|x|2p

=
f(z, x)x − pF(z, x)
|x|px

⩽
ξ
|x|px
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for almost all z ∈ Ω and all x ⩽ M6 (see (3.30)), which implies

F(z, y)
|y|p
−
F(z, w)
|w|p
⩾
ξ
p [

1
|w|p
−

1
|y|p ]

for almost all z ∈ Ω and all y ⩽ w ⩽ −M6. (3.31)

Hypothesis H(f ) (iii) implies that

− ϑ̂ ⩽ lim inf
x→−∞

pF(z, x)
|x|p
⩽ lim sup

x→−∞

pF(z, x)
|x|p
⩽ λ̂1(p) uniformly for almost all z ∈ Ω. (3.32)

If in (3.31) we pass to the limit as y → −∞ and use (3.32), then

λ̂1(p)|w|p − pF(z, w) ⩾ ξ for almost all z ∈ Ω and all w ⩽ −M6.

But ξ > 0 is arbitrary. So, we infer that

λ̂1(p)|w|p − pF(z, w)→ +∞ as w → −∞, uniformly for almost all z ∈ Ω. (3.33)

We will use (3.33) to show that φ− is coercive. We argue by contradiction. So, suppose that φ− is not
coercive. Then we can find {un}n⩾1 ⊆ W1,p

0 (Ω) and M7 > 0 such that

‖un‖→∞ and φ−(un) ⩽ M7 for all n ∈ ℕ. (3.34)

Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ and so we may assume that

yn
w
󳨀→ y inW1,p

0 (Ω) and yn → y in Lp(Ω). (3.35)

From (3.34) we have

‖Dyn‖
p
p +

p
2‖un‖p−2

‖Dyn‖22 − ∫
Ω

pF−(z, un)
‖un‖p

dz ⩽ M7
‖un‖p

for all n ∈ ℕ. (3.36)

From (3.10) we have

|F(z, x)| ⩽ c3[1 + |x|p] for almost all z ∈ Ω, all x ∈ ℝ and some c3 > 0,

which implies that
{
F−( ⋅ , un( ⋅ ))
‖un‖p

}
n⩾1
⊆ L1(Ω) is uniformly integrable.

By the Dunford–Pettis theorem and (3.32), we have (at least for a subsequence) that

F−( ⋅ , un( ⋅ ))
‖un‖p

w
󳨀→

1
p
ϑ(z)(y−)p in L1(Ω) with − ϑ̂ ⩽ ϑ(z) ⩽ λ̂1(p) for almost all z ∈ Ω. (3.37)

We return to (3.36), pass to the limit as n →∞ and use (3.34), (3.35) and (3.37) together with the fact
that p > 2. Then

‖Dy‖pp ⩽ ∫
Ω

ϑ(z)(y−)p dz, (3.38)

which implies
‖Dy−‖pp ⩽ ∫

Ω

ϑ(z)(y−)p dz. (3.39)

If ϑ ̸≡ λ̂1(p), then from (3.39) and Lemma 2.5 we have ĉ‖y−‖p ⩽ 0, which implies y ⩾ 0. Then (3.38)
implies that y = 0. So, from (3.36) it follows that

yn → 0 inW1,p
0 (Ω),

which contradicts the fact that ‖yn‖ = 1 for all n ∈ ℕ.
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Next, assume that ϑ(z) = λ̂1(p) for almost all z ∈ Ω. From (3.39) and (2.2) we have

‖Dy−‖
p
p = λ̂1(p)‖y−‖

p
p ,

which implies
y− = ϑ̃û1(p) with ϑ̃ ⩾ 0.

If ϑ̃ = 0, then y ⩾ 0 and, as above, we reach a contradiction.
If ϑ̃ > 0, then y(z) < 0 for all z ∈ Ω, and so

un(z)→ −∞ for all z ∈ Ω as n →∞,

which implies
u−n(z)→ +∞ for all z ∈ Ω as n →∞,

thus
λ̂1(p)u−n(z)p − pF(z, −u−n(z))→ +∞ for almost all z ∈ Ω

(see (3.33)), which implies
∫
Ω

[λ̂1(p)(u−n)p − pF(z, −u−n)] dz → +∞

by Fatou’s lemma.
Since λ̂1(p)‖u−n‖

p
p ⩽ ‖Du−n‖

p
p for all n ∈ ℕ (see (2.2)), it follows that

pφ−(un)→ +∞ as n →∞,

which contradicts (3.34). Therefore φ− is coercive.

Remark 3. From (3.33) we see that the resonance with respect to λ̂1(p) > 0 at −∞ is from the left of the prin-
cipal eigenvalue.

From the above proposition we infer the following fact about the functional φ− (see [19]).

Corollary 3.4. If Hypotheses H(f ) hold, then φ− satisfies the C-condition.

Next, we determine the nature of the critical point u = 0 for φ+.

Proposition 3.5. If Hypotheses H(f ) hold, then u = 0 is a local minimizer for φ+.

Proof. Hypothesis H(f ) (iv) implies that given ϵ > 0, we can find δ = δ(ϵ) > 0 such that

F(z, x) ⩽ 12 (α + ϵ)x
2 for almost all z ∈ Ω and all 0 ⩽ x ⩽ δ. (3.40)

Let u ∈ C10(Ω) with ‖u‖C10(Ω) ⩽ δ. Then

φ+(u) ⩾
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 −

α + ϵ
2 ‖u

+‖22 (see (3.40))

⩾
1
p
‖Du‖pp +

1
2 ‖Du

−‖22 +
1
2 [‖Du

+‖22 − α‖u
+‖22] −

ϵ
2λ̂1(2)
‖Du+‖22 (see (2.2))

⩾
1
p
‖Du‖pp +

1
2 ‖Du

−‖22 +
1
2[c4 −

ϵ
λ̂1(2)
]‖Du+‖22 for some c4 > 0

(recall that α < λ̂1(2)).
Choosing ϵ ∈ (0, λ̂1(2)c4), we have

φ+(u) ⩾
1
p
‖Du‖pp for all u ∈ C10(Ω),with ‖u‖C10(Ω) ⩽ δ,

which implies that
u = 0 is a local C10(Ω)-minimizer of φ+,
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which then implies
u = 0 is a localW1,p

0 (Ω)-minimizer of φ+

(see Proposition 2.2). The proof is complete.

Now we are ready to produce constant sign smooth solutions for problem (1.1).

Proposition 3.6. If Hypotheses H(f ) hold, then problem (1.1) admits two constant sign smooth solutions

u0 ∈ int C+ and v0 ∈ − int C+.

Proof. We can easily check that Kφ+ ⊆ C+. So, we may assume that Kφ+ is finite or otherwise we already have
an infinity of positive solutions for problem (1.1). Then on account of Proposition 3.5 we can find small
ρ ∈ (0, 1) such that

0 = φ+(0) < inf[φ+(u) : ‖u‖ = ρ] = m+ (3.41)

(see Aizicovici, Papageorgiou and Staicu [1, proof of Proposition 29]). Hypotheses H(f ) (i) and (ii) imply that
given ϵ > 0, we can find c3 > 0 such that

F(z, x) ⩾ 1
p [
η(z) − ϵ]xp − c5 for almost all z ∈ Ω and all x ⩾ 0. (3.42)

Then for t > 0 we have

φ+(tû1(p)) ⩽
tp

p
λ̂1(p) +

t2

2 ‖Dû1(p)‖
2
2 −

tp

p ∫
Ω

η(z)û1(p)p dz +
tp

p
ϵ + c5|Ω|N

=
tp

p [∫
Ω

[λ̂1(p) − η(z)]û1(p)p dz + ϵ] +
t2

2 ‖Dû1(p)‖
2
2 + c5|Ω|N

(for the inequality, see (3.42) and recall that ‖û1(p)‖p = 1).
Since û1(p) ∈ int C+, we have

k0 = ∫
Ω

[η(z) − λ̂1(p)]û1(p)p dz > 0.

Choosing ϵ ∈ (0, k0), we have

φ+(tû1(p)) ⩽ −
tp

p
c6 +

t2

2 ‖Dû1(p)‖
2
2 for some c6 > 0.

Since p > 2, it follows that

φ+(tû1(p))→ −∞ as t → +∞. (3.43)

Also, from Proposition 3.2 we know that

φ+ satisfies the C-condition. (3.44)

Then relations (3.41), (3.43) and (3.44) permit the use of Theorem 2.1 (the mountain pass theorem). So,
we can find u0 ∈ W1,p

0 (Ω) such that u0 ∈ Kφ+ and φ+(0) = 0 < m+ ⩽ φ+(u0), which implies u0 ̸= 0.
Since Kφ+ ⊆ C+, we have that u0 ∈ C+ \ {0}. With ρ = ‖u0‖∞, let ̂ξp > 0 be as postulated by Hypothesis

H(f ) (iv), that is, for almost all z ∈ Ω the function

x 󳨃→ f(z, x) + ξpxp−1

is nondecreasing on [0, ρ].
Consider the map a : ℝN → ℝN defined by

a(y) = |y|p−2y + y for all y ∈ ℝN .
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Then a ∈ C1(ℝN ,ℝN) and

div a(Du) = ∆pu + ∆u for all u ∈ W1,p
0 (Ω),

which implies
∇a(y) = |y|p−2y[idN +(p − 2)

y ⊗ y
|y|2
] + idN ,

with idN being the identity map onℝN . For all ξ ∈ ℝN , we have

(∇a(y)ξ, ξ)ℝN ⩾ |ξ|2 > 0 for all ξ ∈ ℝN \ {0}.

Also, for 0 ⩽ x ⩽ v ⩽ ρ we have

f(z, v) − f(z, x) ⩾ −ξp(vp−1 − xp−1)

⩾ − ̂ξp(v − x)

for almost all z ∈ Ω and some ̂ξp > 0 (recall that p > 2). So, we can apply the tangency principle of Pucci and
Serrin [27, Theorem 2.5.2, p. 35] and have

u0(z) > 0 for all z ∈ Ω.

Then the boundary point theorem of Pucci and Serrin [27, Theorem 5.5.1, p. 120] implies that

u0 ∈ int C+.

By the Sobolev embedding theorem, φ− is sequentially weakly lower semicontinuous. Also, from Propo-
sition 3.3 we know that φ− is coercive. Hence by the Weierstrass–Tonelli theorem, we can find v0 ∈ W1,p

0 (Ω)
such that

φ−(v0) = inf[φ−(u) : u ∈ W1,p
0 (Ω)], (3.45)

which implies
v0 ∈ Kφ− ⊆ −C+.

Hypotheses H(f ) (i), (ii) and (iv) imply that given ϵ > 0, we can find c7 = c7(ϵ) > 0 such that

F(z, x) ⩾ 12 (β − ϵ)x
2 − c7|x|p for almost all z ∈ Ω and all x ⩽ 0. (3.46)

Then for t > 0 we have

φ−(−tû1(2)) ⩽
tp

p
‖Dû1(2)‖pp +

t2

2 λ̂1(2) −
t2

2 (β − ϵ) + c7t
p‖û1(2)‖pp

= tp[1p ‖Dû1(2)‖
p
p + ‖û1(2)‖

p
p] −

t2

2 [β − ϵ − λ̂1(2)]

(see (3.46) and recall that ‖û1(2)‖2 = 1).
We choose 0 < ϵ < β − λ̂1(2) (see Hypothesis H(f ) (iv)). Then, since 2 < p for t ∈ (0, 1) small, we can see

that
φ−(−tû1(2)) < 0,

which implies
φ−(v0) < 0 = φ−(0),

(see (3.45)), which then implies
v0 ̸= 0.

Moreover, as for u0, using the nonlinear strongmaximumprinciple, we have v0 ∈ − int C+, and this is the
second constant sign solution of (1.1).
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4 Nodal solutions – multiplicity theorems
In this section, using tools fromMorse theory (critical groups), we show the existence of a nodal (sign chang-
ing) smooth solution and formulate our multiplicity theorems.

To produce a nodal sign, changing solution, we will need one more hypothesis which is the following
one.

Hypothesis H0. Problem (1.1) has a finite number of solutions of constant sign.

Remark 4. This condition is equivalent to saying that Kφ+ and Kφ− are finite sets.
We start by computing the critical groups of φ at infinity.

Proposition 4.1. If Hypotheses H(f ) hold, then Ck(φ,∞) = 0 for all k ∈ ℕ0.

Proof. Let λ > λ̂1(p), λ ̸∈ σ̂(p), and consider the C1-functional Ψ : W1,p
0 (Ω)→ ℝ defined by

Ψ(u) = 1
p
‖Du‖pp −

λ
p
‖u+‖pp for all u ∈ W1,p

0 (Ω).

We consider the homotopy

h(t, u) = (1 − t)φ(u) + tΨ(u) for all t ∈ [0, 1] and all u ∈ W1,p
0 (Ω).

Claim. There exist γ ∈ ℝ and τ > 0 such that

h(t, u) ⩽ γ implies (1 + ‖u‖)‖h󸀠u(t, u)‖∗ ⩾ τ for all t ∈ [0, 1].

We argue by contradiction. Since h( ⋅ , ⋅ )maps bounded sets to bounded sets, if the claim is not true, then we
can find two sequences {tn}n⩾1 ⊆ [0, 1] and {un}n⩾1 ⊆ W1,p

0 (Ω) such that

tn → t, ‖un‖→∞, h(tn , un)→ −∞, (1 + ‖un‖)h󸀠u(tn , un)→ 0. (4.1)

From the last convergence in (4.1) we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(un), h⟩ + (1 − t)⟨A(un), h⟩ − (1 − tn)∫

Ω

f(z, un)h dz − λtn ∫
Ω

(u+n)p−1h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

ϵn‖h‖
1 + ‖un‖

(4.2)

for all h ∈ W1,p
0 (Ω), with ϵn → 0+.

From the third convergence in (4.1) we see that we can find n0 ∈ ℕ such that

‖Dun‖
p
p +
(1 − tn)p

2 ‖Dun‖22 − (1 − tn)∫
Ω

pF(z, un) dz − λtn‖u+n‖
p
p ⩽ −1 for all n ⩾ n0. (4.3)

In (4.2), we choose h = un ∈ W1,p
0 (Ω). Then

− ‖Dun‖
p
p − (1 − tn)‖Dun‖22 + (1 − tn)∫

Ω

f(z, un)un dz + λtn‖u+n‖
p
p ⩽ ϵn for all n ∈ ℕ. (4.4)

Adding (4.3) and (4.4), we obtain

(1 − tn)∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ 0 for all n ⩾ n1 ⩾ n0 (4.5)

(recall that p > 2 and ϵn → 0+ as n → +∞).
We claim that t < 1. If tn → 1, then let yn = un

‖un‖ , n ∈ ℕ. We have ‖yn‖ = 1 for all n ∈ ℕ, and so we may
assume that

yn
w
󳨀→ y inW1,p

0 (Ω) and yn → y in Lp(Ω). (4.6)
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From (4.2) we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(yn), h⟩ +

1 − tn
‖un‖p−2

⟨A(yn), h⟩ − (1 − tn)∫
Ω

Nf (un)
‖un‖p−1

h dz − λtn ∫
Ω

(y+n)p−1h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

ϵn‖h‖
(1 + ‖un‖)‖un‖p−1

(4.7)

for all n ∈ ℕ.
In (4.7) we choose h = yn − y, pass to the limit as n →∞ and use (4.6), (3.10) and tn → 1, p > 2. Then

lim
n→∞
⟨Ap(yn), yn − y⟩ = 0,

which implies
yn → y inW1,p

0 (Ω), and so ‖y‖ = 1 (4.8)

(see Proposition 2.3). So, if in (4.7) we pass to the limit as n →∞ and use (4.8), then

⟨Ap(y), h⟩ = λ∫
Ω

(y+)p−1h dz for all h ∈ W1,p
0 (Ω) (4.9)

(recall that tn → 1). Choosing h = −y− ∈ W1,p
0 (Ω), we have ‖Dy−‖pp = 0, which implies y ⩾ 0 and y ̸= 0

(see (4.8)).
From (4.9) we have

−∆py(z) = λy(z)p−1 for almost all z ∈ Ω, y|∂Ω = 0.

Since λ > λ̂1(p), λ ̸∈ σ̂(p), from (4.9) we infer that

y = 0,

which contradicts (4.8). Therefore, t < 1 and we have

∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ 0 for all n ⩾ n1,

which implies

∫
Ω

[f(z, −u−n)(−u−n) − pF(z, −u−n)] dz ⩽ c8 (4.10)

for some c8 > 0 and all n ⩾ n1 (see Hypothesis H(f ) (iii)).
Using (4.10) and reasoning as in Claims 1 and 2 in the proof of Proposition 3.1, we establish that

{un}n⩾1 ⊆ W
1,p
0 (Ω) is bounded.

This contradicts (4.1). Therefore, we have proven the claim.
Then by the claim and Chang [8, Theorem 5.1.21, p. 334] (see also Liang and Su [17, Proposition 3.2])

we have
Ck(h(0, ⋅ ),∞) = Ck(h(1, ⋅ ),∞) for all k ∈ ℕ0,

which implies
Ck(φ,∞) = Ck(Ψ,∞) for all k ∈ ℕ0. (4.11)

So, our task is now to compute Ck(Ψ,∞). To this end, first note that since λ > λ̂1(p), we have

KΨ = {0}. (4.12)

Consider the C1-functional ĥ : [0, 1] ×W1,p
0 (Ω)→ ℝ defined by

ĥ(t, u) = Ψ(u) − t∫
Ω

u(z) dz for all t ∈ [0, 1] and all u ∈ W1,p
0 (Ω).
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Suppose that u ∈ Kĥ(t,⋅ ), t ∈ (0, 1]. Then

⟨Ap(u), h⟩ = λ∫
Ω

(u+)p−1h dz + t∫
Ω

h dz for all h ∈ W1,p
0 (Ω). (4.13)

Choosing h = −u− ∈ W1,p
0 (Ω), we obtain ‖Du−‖

p
p ⩽ 0, which implies u ⩾ 0 and u ̸= 0.

From (4.13) we have

− ∆pu(z) = λu(z)p−1 + t for almost all z ∈ Ω, u|∂Ω = 0, (4.14)

which implies u ∈ int C+ by the nonlinear strong maximum principle (see [12, p. 738]).
Let v ∈ int C+ and consider the function

R(v, u)(z) = |Dv(z)|p − |Du(z)|p−2(Du(z), D( vp

up−1
)(z))
ℝN
.

From the nonlinear Picone’s identity of Allegretto and Huang [4] we have

0 ⩽ ∫
Ω

R(v, u) dz

= ‖Dv‖pp − ∫
Ω

(−∆pu)
vp

up−1
dz

= ‖Dv‖pp − ∫
Ω

[λup−1 + t] v
p

up−1
dz

⩽ ‖Dv‖pp − ∫
Ω

λvp dz,

where the first equation uses the nonlinear Green’s identity (see [12, p. 211]), the second equation follows
from (4.14) and the last inequality holds since u, v ∈ int C+.

Choosing v = û1(p) ∈ int C+, we have

0 ⩽ λ̂1(p) − λ < 0

(recall that ‖û1(p)‖p = 1), a contradiction. Therefore,

Kĥ(t,⋅ ) = 0 for all t ∈ (0, 1]. (4.15)

From the homotopy invariance of singular homology, for r > 0 small we have

Hk(ĥ(0, ⋅ )0 ∩ Br , ĥ(0, ⋅ )0 ∩ Br \ {0}) = Hk(ĥ(1, ⋅ )0 ∩ Br , ĥ(1, ⋅ )0 ∩ Br \ {0}) for all k ∈ ℕ. (4.16)

Then by (4.15) and the noncritical interval theorem (see Chang [8, Theorem5.1.6, p. 320] andMotreanu,
Motreanu and Papageorgiou [19, Corollary 5.35, p. 115]), we have

Hk(ĥ(1, ⋅ )0 ∩ Br , ĥ(1, ⋅ )0 ∩ Br \ {0}) = 0 for all k ∈ ℕ0. (4.17)

Also, from the definition of critical groups we have

Hk(ĥ(0, ⋅ )0 ∩ Br , ĥ(0, ⋅ )0 ∩ Br \ {0}) = Hk(Ψ0 ∩ Br , Ψ0 ∩ Br \ {0}) = Ck(Ψ, 0) for all k ∈ ℕ0. (4.18)

From (4.16)–(4.18) we conclude that

Ck(Ψ, 0) = 0 for all k ∈ ℕ0,

which implies
Ck(Ψ,∞) = 0 for all k ∈ ℕ0

(see (4.12) and [19, Proposition 6.61 (c), p. 160]), which then implies

Ck(φ,∞) = 0 for all k ∈ ℕ0 (see (4.11)).
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Next, we compute the critical groups at infinity for the functional φ±.

Proposition 4.2. If Hypotheses H(f ) hold, then Ck(φ+,∞) = 0 for all k ∈ ℕ0.

Proof. Let Ψ ∈ C1(W1,p
0 (Ω),ℝ) be as in the proof of Proposition 4.1 and consider the homotopy

h+(t, u) = (1 − t)φ+(u) + tΨ(u) for all t ∈ [0, 1] and all u ∈ W1,p
0 (Ω).

Claim. There exist γ ∈ ℝ and τ > 0 such that for all t ∈ [0, 1],

h+(t, u) ⩽ γ implies (1 + ‖u‖)‖(h+)󸀠(t, u)‖∗ ⩾ τ.

As in the proof of Proposition 4.1, we argue by contradiction. So, we can find two sequences

{tn}n⩾1 ⊆ [0, 1] and {un}n⩾1 ⊆ W1,p
0 (Ω)

such that
tn → t, ‖un‖→∞, h+(tn , un)→ −∞, (1 + ‖un‖)(h+)󸀠(tn , un)→ 0. (4.19)

From the last convergence in (4.19) we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(un), h⟩ + (1 − tn)⟨A(un), h⟩ − (1 − tn)∫

Ω

f+(z, un)h dz − λtn ∫
Ω

(u+n)p−1h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽

ϵn‖h‖
1 + ‖un‖

(4.20)

for all h ∈ W1,p
0 (Ω), with ϵn → 0+.

In (4.20), we choose h = −u−n ∈ W
1,p
0 (Ω). Then

‖Du−n‖
p
p + (1 − t)‖Du−n‖22 ⩽ ϵn for all n ∈ ℕ,

which implies
u−n → 0 inW1,p

0 (Ω). (4.21)

From (4.20) and (4.21) we infer that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨Ap(u+n), h⟩ + (1 − tn)⟨A(u+n), h⟩ − (1 − tn)∫

Ω

f(z, u+n)h dz − λtn ∫
Ω

(u+n)p−1h dz
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⩽ ϵ󸀠n‖h‖

for all h ∈ W1,p
0 (Ω), with ϵ󸀠n → 0+.

Suppose that ‖u+n‖→ +∞. We set vn = u+n
‖u+n ‖ , n ∈ ℕ. Then ‖vn‖ = 1 and vn ⩾ 0 for all n ∈ ℕ, and so wemay

assume that
vn

w
󳨀→ v inW1,p

0 (Ω) and vn → v in Lp(Ω).

Reasoning as in the proof of Proposition 3.1 (see the proof of Claim 2), we reach a contradiction, and so
we infer that

{u+n}n⩾1 ⊆ W
1,p
0 (Ω) is bounded,

which implies that
{un}n⩾1 ⊆ W

1,p
0 (Ω) is bounded

(see (4.21)).
But this contradicts (4.19). Hence the claim holds and, as before (see the proof of Proposition 4.1), we

have
Ck(h+(0, ⋅ ),∞) = Ck(h+(1, ⋅ ),∞) for all k ∈ ℕ0,

which implies
Ck(φ+,∞) = Ck(Ψ,∞) for all k ∈ ℕ0,

which then implies
Ck(φ+,∞) = 0 for all k ∈ ℕ0

(see the end of the proof of Proposition 4.1).
The proof is complete.
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Proposition 4.3. If Hypotheses H(f ) hold, then Ck(φ−,∞) = δk,0ℤ for all k ∈ ℕ0.

Proof. FromProposition3.3weknow thatφ− is coercive. So, it is boundedbelowand satisfies the C-condition
(see Corollary 3.4). Hence [19, Proposition 6.64 (a), p. 116] implies that

Ck(φ−,∞) = δk,0ℤ for all k ∈ ℕ0,

as desired.

Next, we compute the critical groups of φ at u = 0.

Proposition 4.4. If Hypotheses H(f ) hold, then Ck(φ, 0) = δk,0ℤ for all k ∈ ℕ0.

Proof. Let α ∈ (0, λ̂1(2)) and β ∈ (λ̂1(2), λ̂2(2)) be as postulated by Hypothesis H(f ) (iv). We consider the
C1-functional Ψ̂0 : H1

0(Ω)→ ℝ defined by

Ψ̂0(u) =
1
2 ‖Du‖

2
2 −

α
2 ‖u
+‖22 −

β
2 ‖u
−‖22 for all u ∈ H1

0(Ω).

Let Ψ0 = Ψ̂0|W1,p
0 (Ω)

(recall that 2 < p) and consider the homotopy

h(t, u) = (1 − t)φ(u) + tΨ0(u) for all t ∈ [0, 1] and all u ∈ W1,p
0 (Ω).

Suppose that we can find {tn}n⩾1 ⊆ [0, 1] and {un}n⩾1 ⊆ W1,p
0 (Ω) such that

tn → t ∈ [0, 1], un → 0 inW1,p
0 (Ω), h󸀠u(tn , un) = 0 for all n ∈ ℕ. (4.22)

From the equality in (4.22) we have

(1 − tn)Ap(un) + A(un) = (1 − tn)Nf (un) + tn[αu+n − βu−n] inW−1,p󸀠 (Ω) for all n ∈ ℕ. (4.23)

Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ, and so we may assume that

yn
w
󳨀→ y inW1,p

0 (Ω) and yn → y in Lp(Ω). (4.24)

From (4.23) we have

(1 − tn)‖un‖p−2Ap(yn) + A(yn) = (1 − tn)
Nf (un)
‖un‖
+ tn[αy+n − βy−n] for all n ∈ ℕ. (4.25)

Note that Hypotheses H(f ) (i), (ii) and (iv) imply that for some c9 > 0,

|f(z, x)| ⩽ c9[|x| + |x|p−1] for almost all z ∈ Ω and all x ∈ ℝ,

which implies that
{
Nf (un)
‖un‖
}
n⩾1
⊆ Lp󸀠 (Ω) is bounded.

This fact and Hypothesis H(f ) (iv) imply that

Nf (un)
‖un‖

w
󳨀→ αy+ − βy− in Lp󸀠 (Ω) as n →∞ (4.26)

(see Aizicovici, Papageorgiou and Staicu [1, proof of Proposition 16]). From (4.25) we have

−(1 − tn)‖un‖p−2∆pyn(z) − ∆yn(z) = (1 − tn)
f(z, un(z))
‖un‖

+ tn[αy+n(z) − βy−n(z)]

for almost all z ∈ Ω, yn|∂Ω = 0, n ∈ ℕ.
Then by (4.22), (4.24), (4.26) (recall that p > 2) and [16, Theorem 7.1, p. 286] we can find M8 > 0 such

that
‖yn‖∞ ⩽ M8 for all n ∈ ℕ.
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Then invoking [18, Theorem 1], we can find ϑ ∈ (0, 1) and M9 > 0 such that

yn ∈ C1,ϑ0 (Ω) and ‖yn‖C1,ϑ0 (Ω)
⩽ M9 for all n ∈ ℕ.

From (4.5) and the compact embedding of C1,ϑ0 (Ω) into C10(Ω), we have

yn → y in C10(Ω), (4.27)

which implies ‖y‖ = 1, and so y ̸= 0.
If in (4.25) we pass to the limit as n →∞ and use (4.22), (4.26), (4.27) and the fact that p > 2, we obtain

A(y) = αy+ − βy− inW−1,p󸀠 (Ω),
which implies

−∆y(z) = αy+(z) − βy−(z) for almost all z ∈ Ω, y|∂Ω = 0.

Since 0 < α < λ̂1(2) < β < λ̂2(2) (see Hypothesis H(f ) (iv)), we have (α, β) ̸∈ Σ2, and so

y = 0,

a contradiction (recall that ‖y‖ = 1). Therefore (4.22) cannot occur, and then the homotopy invariance of
critical groups (see Gasinski and Papageorgiou [14, Theorem 5.125, p. 836]) implies that

Ck(φ, 0) = Ck(Ψ0, 0) for all k ∈ ℕ0. (4.28)

SinceW1,p
0 (Ω) is dense in H1

0(Ω) from [20, Theorem 16] (see also Chang [7, p. 14]), we have

Ck(Ψ0, 0) = Ck(Ψ̂0, 0) for all k ∈ ℕ0. (4.29)

But [26, Theorem 1.1 (a)] implies that

Ck(Ψ̂0, 0) = δk,0ℤ for all k ∈ ℕ0,

which implies
Ck(φ, 0) = δk,0ℤ for all k ∈ ℕ0

(see (4.28) and (4.29)).

Also, we have the following property.

Proposition 4.5. If Hypotheses H(f ) hold, then Ck(φ−, 0) = 0 for all k ∈ ℕ0.

Proof. In this case, we consider the C1-functional Ψ̂ : H1
0(Ω)→ ℝ defined by

Ψ̂−(u) =
1
2 ‖Du‖

2
2 − β‖u

−‖22 for all u ∈ H1
0(Ω).

We set Ψ− = Ψ̂−|W1,p
0 (Ω)

(recall that p > 2) and consider the homotopy

h−(t, u) = (1 − t)φ−(u) + tΨ−(u) for all t ∈ [0, 1] and all u ∈ W1,p
0 (Ω).

As in the proof of Proposition 4.4, via the homotopy invariance of critical groups we have

Ck(φ−, 0) = Ck(Ψ−, 0) for all k ∈ ℕ0.

Recalling that the nonprincipal eigenfunctions of (−∆, H1
0(Ω)) are nodal and since β > λ̂1(2), we infer

that KΨ− = {0}. Moreover, as in the last part of the proof of Proposition 4.1, using Picone’s identity, we have
Ck(Ψ−, 0) = 0 for all k ∈ ℕ0,
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which implies
Ck(φ−, 0) = 0 for all k ∈ ℕ0.

This completes the proof.

Nowwe are ready for our first multiplicity theorem. Recall that at the beginning of this section we have intro-
duced an extraHypothesisH0, which says that the constant sign solutions of (1.1) are finite. This is equivalent
to saying that

Kφ− = {vi}mi=1 ∪ {0} ⊆ (− int C+) ∪ {0},
Kφ+ = {ul}nl=1 ∪ {0} ⊆ int C+ ∪ {0}.

From Proposition 3.6 we know that
m, n ∈ ℕ.

Then we have the following multiplicity theorem.

Theorem 4.6. If HypothesesH(f ) andH0 hold, then problem (1.1) has at least three nontrivial smooth solutions

u0 ∈ int C+, v0 ∈ − int C+, y0 ∈ C10(Ω) nodal.

Proof. From Proposition 3.6 we already have two nontrivial constant sign smooth solutions

u0 ∈ int C+ and v0 ∈ − int C+.

By Hypothesis H0, we have

Kφ− = {vi}mi=1 ∪ {0} ⊆ (− int C+) ∪ {0},
Kφ+ = {ul}nl=1 ∪ {0} ⊆ int C+ ∪ {0}.

We set

χ−(vi) = ∑
k⩾0
(−1)k rank Ck(φ−, vi), i = 1, . . . ,m,

χ+(ul) = ∑
k⩾0
(−1)k rank Ck(φ+, ul), l = 1, . . . , n,

χ(vi) = ∑
k⩾0
(−1)k rank Ck(φ, vi),

χ(ul) = ∑
k⩾0
(−1)k rank Ck(φ, ul).

Since vi ∈ − int C+ and ul ∈ int C+, we have

χ−(vi) = χ(vi) for all i = 1, . . . ,m and χ+(ul) = χ(ul) for all l = 1, . . . , n. (4.30)

From Propositions 3.5, 4.4 and 4.5 we have

χ+(0) = 1, χ(0) = 1, χ−(0) = 0. (4.31)

Let {yi}dj=1 ⊆ Kφ ⊆ C10(Ω) (nonlinear regularity theory) be the set of nodal solutions of (1.1) (if there are
no nodal solutions, then d = 0). From the Morse relation (see (2.6)) we have

χ−(0) +
m
∑
i=1

χ−(vi) = 0 +
m
∑
i=1

χ(vj) = 1 (see (4.30), (4.31) and Proposition 4.3), (4.32)

χ+(0) +
n
∑
l=1

χ+(ul) = 1 +
n
∑
l=1

χ(ul) = 0 (see (4.30), (4.31) and Proposition 4.2), (4.33)

χ(0) +
m
∑
i=1

χ(vi) +
n
∑
l=1

χ(ul) +
d
∑
j=1

χ(yj) = 0 (see Proposition 4.1),
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where the last line implies

1 + 1 − 1 +
d
∑
j=1

χ(yj) = 0

(see (4.31)–(4.33)), which then implies
d
∑
j=1

χ(yj) = −1,

and so d ⩾ 1.
This means that problem (1.1) admits at least one nodal solution y0 ∈ C10(Ω).

We can drop Hypothesis H0 at the expense of strengthening the regularity of f(z, ⋅ ). Then we can still have
a three nontrivial solutionsmultiplicity theorem, butwithout providing sign information about the third non-
trivial smooth solution.

The new hypotheses on f(z, x) are the following.

Hypothesis H(f )󸀠. f : Ω ×ℝ→ ℝ is a Carathéodory function such that f(z, 0) = 0 and f(z, ⋅ ) ∈ C1(ℝ \ {0}) for
almost all z ∈ Ω, and Hypotheses H(f )󸀠 (i)–(iv) are the same as the corresponding Hypotheses H(f ) (i)–(iv).

Theorem 4.7. If Hypotheses H(f )󸀠 hold, then problem (1.1) admits at least three nontrivial smooth solutions

v0 ∈ int C+, v0 ∈ − int C+, y0 ∈ C10(Ω).

Proof. Again, from Proposition 3.6 we already have two nontrivial constant sign smooth solutions

u0 ∈ int C+ and v0 ∈ − int C+.

From the proof of Proposition 3.6 we know that u0 ∈ Kφ+ is of mountain pass type. Since u0 ∈ int C+, we
have

Ck(φ, u0) = Ck(φ+, u0) for all k ∈ ℕ and C1(φ+, u0) ̸= 0

(see Motreanu, Motreanu and Papageorgiou [19, Corollary 6.81, p. 168]). Therefore,

C1(φ, u0) ̸= 0. (4.34)

But φ ∈ C2(W1,p
0 (Ω) \ {0}). Hence from (4.34) and Papageorgiou and Rădulescu [22] we have

Ck(φ, u0) = δk,1ℤ for all k ∈ ℕ0. (4.35)

The negative solution v0 ∈ Kφ− is a global minimizer of φ−. Since

φ−|−C+ = φ|−C+ and v0 ∈ − int C+,

it follows that v0 is a local C10(Ω)-minimizer of φ. Invoking Proposition 2.2, we infer that v0 is a local
W1,p

0 (Ω)-minimizer of φ. Therefore,

Ck(φ, v0) = δk,0ℤ for all k ∈ ℕ0. (4.36)

From Propositions 4.1 and 4.4 we have

Ck(φ,∞) = 0 for all k ∈ ℕ0, (4.37)
Ck(φ, 0) = δk,0ℤ for all k ∈ ℕ0. (4.38)

Suppose that Kφ = {u0, v0, 0}. Then the Morse relation with t = −1 and (4.35)–(4.38) imply that

(−1)1 + (−1)0 + (−1)0 = 0,

which implies (−1)1 = 0, a contradiction.
So, there exists y0 ∈ Kφ, y0 ̸∈ {u0, v0, 0}. Hence y0 is the third nontrivial solution of problem (1.1) and

the nonlinear regularity theory implies that y0 ∈ C10(Ω).
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