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We study the boundary value problem −div((a1(|∇u|)+a2(|∇u|))∇u) = λ|u|q(x)−2u in
Ω, u = 0 on ∂Ω, where Ω is a bounded domain in R

N (N ≥ 3) with smooth boundary, λ
is a positive real number, q is a continuous function and a1, a2 are two mappings such
that a1(|t|)t, a2(|t|)t are increasing homeomorphisms from R to R. We establish the
existence of two positive constants λ0 and λ1 with λ0 ≤ λ1 such that any λ ∈ [λ1,∞)
is an eigenvalue, while any λ ∈ (0, λ0) is not an eigenvalue of the above problem.
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1. Introduction and Preliminary Results

Nonlinear eigenvalue problems associated with differential operators with variable
exponent have been intensively studied in the last few years. In many cases (see,
e.g., [12,13,19–22,26]), the model example is the p(x)-Laplace operator defined by
∆p(x)u := div(|∇u|p(x)−2∇u), where p(x) is a continuous positive function. This
operator in nonhomogeneous and thus, many techniques which can be applied in
the homogeneous case (when p(x) is a positive constant) fail in this new setting.

†Corresponding author.
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A typical example is the Lagrange multiplier theorem, which does not apply to the
eigenvalue problem{−div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u, for x ∈ Ω

u = 0, for x ∈ ∂Ω,
(1)

where Ω ⊂ R
N is a bounded domain. This is due to the fact that the associated

Rayleigh quotient is not homogeneous, provided both p and q are not constant.
On the other hand, problems like (1) have been largely considered in the liter-

ature in the recent years. We give in what follows a concise but complete image of
the actual state of research on this topic.

• In the case when p(x) = q(x) on Ω, Fan, Zhang and Zhao [13] established the
existence of infinitely many eigenvalues for problem (1) by using an argument
based on the Ljusternik–Schnirelmann critical point theory. Denoting by Λ the set
of all nonnegative eigenvalues, Fan, Zhang, and Zhao showed that Λ is discrete,
sup Λ = +∞ and they pointed out that only under special conditions, which
are somehow connected with a kind of monotony of the function p(x), we have
inf Λ > 0 (this is in contrast with the case when p(x) is a constant; then, we
always have inf Λ > 0).

• If minx∈Ω q(x) < minx∈Ω p(x) and q(x) has a subcritical growth, Mihăilescu and
Rădulescu [22] used the Ekeland’s variational principle [11] in order to prove the
existence of a continuous family of eigenvalues which lies in a neighborhood of
the origin.

• In the case when maxx∈Ω p(x) < minx∈Ω q(x) and q(x) has a subcritical growth,
then standard mountain-pass arguments (similar to those used by Fan and Zhang
in the proof of Theorem 4.7 in [12]) can be applied in order to show that any
λ > 0 is an eigenvalue of problem (1).

• If maxx∈Ω q(x) < minx∈Ω p(x), then the energy functional associated with
problem (1) has a nontrivial minimum for any positive λ large enough (see [12,
Theorem 4.7]). Clearly, in this case the result in [22] can also be applied. Conse-
quently, in this situation there exist two positive constants λ� and λ�� such that
any λ ∈ (0, λ�) ∪ (λ��,∞) is an eigenvalue of problem (1).

In this paper, we are concerned with a related nonlinear eigenvalue problem in
a new framework, corresponding to Orlicz–Sobolev spaces. Our main result estab-
lishes a curious phenomenon, which does not hold in the standard setting corre-
sponding to the Laplace operator. More precisely, we prove that there exist two
constants 0 < λ0 ≤ λ1 such that any λ ∈ [λ1,∞) is an eigenvalue, while any
λ ∈ (0, λ0) is not an eigenvalue of our problem.

Let Ω be a bounded domain in R
N (N ≥ 3) with smooth boundary ∂Ω. Consider

the nonlinear eigenvalue problem{−div((a1(|∇u|) + a2(|∇u|))∇u) = λ|u|q(x)−2u, for x ∈ Ω
u = 0, for x ∈ ∂Ω.

(2)
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We assume that for any i = 1, 2, the functions ai : (0,∞) → R are such that the
mappings ϕi : R → R defined by

ϕi(t) =
{

ai(|t|)t, for t 	= 0
0, for t = 0,

are odd, increasing homeomorphisms from R onto R. We also suppose throughout
this paper that λ > 0 and q : Ω → (0,∞) is a continuous function.

Since the operator in the divergence form is nonhomogeneous we introduce an
Orlicz–Sobolev space setting for problems of this type. On the other hand, the term
arising in the right-hand side of Eq. (2) is also nonhomogeneous and its particular
form appeals to a suitable variable exponent Lebesgue space setting.

We first recall some basic facts about Orlicz spaces. For more details, we refer
to the books by Adams and Hedberg [2], Adams [1] and Rao and Ren [25] and the
papers by Clément et al. [6,7], Garciá-Huidobro et al. [16] and Gossez [17]. We also
refer to Chipot et al. [3], Ciarlet [4,5], Filippakis and Papageorgiou [14], Filippucci
et al. [15], and Rădulescu [24] for applications and related results.

Assume ϕi : R → R, i = 1, 2, are odd, increasing homeomorphisms from R

onto R. Define

Φi(t) =
∫ t

0

ϕi(s) ds, (Φi)�(t) =
∫ t

0

(ϕi)−1(s) ds, for all t ∈ R, i = 1, 2.

We observe that Φi, i = 1, 2, are Young’s functions, that is, Φi(0) = 0, Φi are
convex, and limx→∞ Φi(x) = +∞. Furthermore, since Φi(x) = 0 if and only if x = 0,
limx→0 Φi(x)/x = 0, and limx→∞ Φi(x)/x = +∞, then Φi are called N -functions.
The functions (Φi)�, i = 1, 2, are called the complementary functions of Φi, i = 1, 2,
and they satisfy

(Φi)�(t) = sup{st − Φi(s); s ≥ 0}, for all t ≥ 0.

We also observe that (Φi)�, i = 1, 2, are also N -functions and Young’s inequality
holds true

st ≤ Φi(s) + (Φi)�(t), for all s, t ≥ 0.

The Orlicz spaces LΦi(Ω), i = 1, 2, defined by the N -functions Φi (see [2,1,6])
are the spaces of measurable functions u : Ω → R such that

‖u‖LΦi
:= sup

{∫
Ω

uv dx;
∫

Ω

(Φi)�(|g|) dx ≤ 1
}

< ∞.

Then, (LΦi(Ω), ‖ · ‖LΦi
), i = 1, 2, are Banach spaces whose norm is equivalent to

the Luxemburg norm

‖u‖Φi := inf
{

k > 0;
∫

Ω

Φi

(
u(x)

k

)
dx ≤ 1

}
.

For Orlicz spaces Hölder’s inequality reads as follows (see [25, Inequality 4, p. 79]):∫
Ω

uv dx ≤ 2 ‖u‖LΦi
‖v‖L(Φi)�

for all u ∈ LΦi(Ω) and v ∈ L(Φi)�(Ω), i = 1, 2.
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We denote by W 1LΦi(Ω), i = 1, 2, the Orlicz–Sobolev spaces defined by

W 1LΦi(Ω) :=
{

u ∈ LΦi(Ω);
∂u

∂xi
∈ LΦi(Ω), i = 1, . . . , N

}
.

These are Banach spaces with respect to the norms

‖u‖1,Φi := ‖u‖Φi + ‖|∇u|‖Φi , i = 1, 2.

We also define the Orlicz–Sobolev spaces W 1
0 LΦi(Ω), i = 1, 2, as the closure of

C∞
0 (Ω) in W 1LΦi(Ω). By [17, Lemma 5.7] we obtain that on W 1

0 LΦi(Ω), i = 1, 2,
we may consider some equivalent norms

‖u‖i := ‖|∇u|‖Φi .

The spaces W 1
0 LΦi(Ω), i = 1, 2, are also reflexive Banach spaces.

In this paper, we will work with functions Φi and (Φi)�, i = 1, 2, satisfying the
∆2-condition (at infinity), namely

1 < lim inf
t→∞

tϕi(t)
Φi(t)

≤ lim sup
t>0

tϕi(t)
Φi(t)

< ∞.

Then, LΦi(Ω) and W 1
0 LΦi(Ω), i = 1, 2, are reflexive Banach spaces.

Now, we introduce the Orlicz–Sobolev conjugate (Φi)� of Φi, i = 1, 2, defined as

(Φi)−1
� (t) =

∫ t

0

(Φi)−1(s)
s(N+1)/N

ds.

We assume that

lim
t→0

∫ 1

t

(Φi)−1(s)
s(N+1)/N

ds < ∞ and lim
t→∞

∫ t

1

(Φi)−1(s)
s(N+1)/N

ds = ∞, i = 1, 2. (3)

Finally, we define

(pi)0 := inf
t>0

tϕi(t)
Φi(t)

and (pi)0 := sup
t>0

tϕi(t)
Φi(t)

, i = 1, 2.

Next, we recall some background facts concerning the variable exponent
Lebesgue spaces. For more details we refer to the book by Musielak [23] and
the papers by Edmunds et al. [8–10], Kovacik and Rákosńık [18], Mihăilescu and
Rădulescu [19], and Samko and Vakulov [26].

Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.
For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any q(x) ∈ C+(Ω), we define the variable exponent Lebesgue space Lq(x)(Ω)
(see [18]). On Lq(x)(Ω), we define the Luxemburg norm by the formula

|u|q(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣
q(x)

dx ≤ 1

}
.
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We remember that the variable exponent Lebesgue spaces are separable and reflex-
ive Banach spaces. If 0 < |Ω| < ∞ and q1, q2 are variable exponents so that
q1(x) ≤ q2(x) almost everywhere in Ω then there exists the continuous embedding
Lq2(x)(Ω) ↪→ Lq1(x)(Ω).

If (un), u ∈ Lq(x)(Ω), then the following relations hold true

|u|q(x) > 1 ⇒ |u|q−

q(x) ≤
∫

Ω

|u|q(x)dx ≤ |u|q+

q(x) (4)

|u|q(x) < 1 ⇒ |u|q+

q(x) ≤
∫

Ω

|u|q(x)dx ≤ |u|q−

q(x) (5)

|un − u|q(x) → 0 ⇔
∫

Ω

|un − u|q(x)dx → 0. (6)

In this paper, we analyze problem (2) under the following basic assumptions:

1 < (p2)0 ≤ (p2)0 < q(x) < (p1)0 ≤ (p1)0, ∀x ∈ Ω (7)

and

lim
t→∞

|t|q+

(Φ2)�(kt)
= 0, for all k > 0. (8)

2. Auxiliary Results

In this section, we point out certain useful auxiliary results.

Lemma 1. The following relations hold true:∫
Ω

Φi(|∇u(x)|) dx ≤ ‖u‖(pi)0
i , ∀u ∈ W 1

0 LΦi(Ω) with ‖u‖i < 1, i = 1, 2;

∫
Ω

Φi(|∇u(x)|) dx ≥ ‖u‖(pi)0
i , ∀u ∈ W 1

0 LΦi(Ω) with ‖u‖i > 1, i = 1, 2;

∫
Ω

Φi(|∇u(x)|) dx ≥ ‖u‖(pi)
0

i , ∀u ∈ W 1
0 LΦi(Ω) with ‖u‖i < 1, i = 1, 2;

∫
Ω

Φi(|∇u(x)|) dx ≤ ‖u‖(pi)
0

i , ∀u ∈ W 1
0 LΦi(Ω) with ‖u‖i > 1, i = 1, 2.

Proof. The proof of the first two inequalities can be carried out as in [7,
Lemma C.9].

Next, assume ‖u‖i < 1. Let ξ ∈ (0, ‖u‖i). By the definition of (pi)0, we deduce
that

Φi(t) ≥ τ (pi)
0
Φi(t/τ), ∀ t > 0, τ ∈ (0, 1).
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Using the above relation, we have∫
Ω

Φi(|∇u(x)|) dx ≥ ξ(pi)
0 ·

∫
Ω

Φi

( |∇u(x)|
ξ

)
dx. (9)

Defining v(x) = u(x)/ξ, for all x ∈ Ω, we have ‖v‖i = ‖u‖i/ξ > 1. Using the first
inequality of this lemma, we find∫

Ω

Φi(|∇v(x)|) dx ≥ ‖v‖(pi)0
i > 1. (10)

Relations (9) and (10) show that∫
Ω

Φi(|∇u(x)|) dx ≥ ξ(pi)
0
.

Letting ξ ↗ ‖u‖i in the above inequality, we obtain∫
Ω

Φi(|∇u(x)|) dx ≥ ‖u‖pi
0

i , ∀u ∈ W 1
0 LΦi(Ω) with ‖u‖i < 1.

Finally, we prove the last inequality in the lemma. A straightforward computa-
tion shows that

Φi(σt)
Φi(t)

≤ σpi
0
, ∀ t > 0 and σ > 1. (11)

Then, for all u ∈ W 1
0 LΦi(Ω) with ‖u‖i > 1, relation (11) implies∫

Ω

Φi(|∇u(x)|) dx =
∫

Ω

Φi

(
‖u‖i

|∇u(x)|
‖u‖i

)
dx

≤ ‖u‖(pi)
0

i

∫
Ω

Φi

(|∇u(x)|
‖u‖i

)
dx

≤ ‖u‖(pi)
0

i .

The proof of Lemma 1 is complete.

Lemma 2. Assume relation (7) holds true. Then, the continuous embedding

W 1
0 LΦ1(Ω) ⊂ W 1

0 LΦ2(Ω)

holds true.

Proof. By [1, Lemma 8.12(b)] it is enough to show that Φ1 dominates Φ2 near
infinity, that is, there exist k > 0 and t0 > 0 such that

Φ2(t) ≤ Φ1(k · t), ∀ t ≥ t0.
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Indeed, since by (7), we have (p2)0 < (p1)0, it follows that

ϕ2(t)
Φ2(t)

<
ϕ1(t)
Φ1(t)

, ∀ t > 0.

The above relation and some elementary computations imply(
Φ1(t)
Φ2(t)

)′
> 0, ∀ t > 0.

Thus, we deduce that Φ1(t)/Φ2(t) is increasing for any t ∈ (0,∞). It follows that
for a fixed t0 ∈ (0,∞) we have

Φ1(t0)
Φ2(t0)

<
Φ1(t)
Φ2(t)

, ∀ t > t0.

Let k ∈ (0, min{1, Φ1(t0)/Φ2(t0)}) be fixed. The above relations yield

Φ2(t) <
1
k
· Φ1(t), ∀ t > t0.

Finally, we point out that in order to end the proof of the lemma it is enough to
show that

1
k
· Φ1(t) ≤ Φ1

(
1
k
· t

)
, ∀ t > 0.

Indeed, define the function H : [0,∞) → R by

H(t) = Φ1

(
1
k
· t

)
− 1

k
· Φ1(t).

Therefore,

H ′(t) =
1
k
·
(

ϕ1

(
1
k
· t

)
− ϕ1(t)

)
.

Since ϕ1 is an increasing function and 1/k > 1 we deduce that H is an increasing
function. That fact combined with the remark that H(0) = 0 implies

H(t) ≥ H(0) = 0, ∀ t ≥ 0,

or

1
k
· Φ1(t) ≤ Φ1

(
1
k
· t

)
, ∀ t > 0.

The proof of Lemma 2 is complete.

Lemma 3. Assume relation (7) holds true. Then, there exists c > 0 such that the
following inequality holds true

c · [Φ1(t) + Φ2(t)] ≥ t(p1)0 + t(p2)0 , ∀ t ≥ 0.
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Proof. Using the definition of (p1)0, we deduce that(
Φ1(t)
t(p1)0

)′
> 0, ∀ t > 0,

or, the function Φ1(t)/t(p1)0 is increasing for t ∈ (0,∞). Thus, we deduce that

Φ1(t) ≥ Φ1(1) · t(p1)0 , ∀ t > 1,

or letting c1 = 1/Φ1(1)

c1 · Φ1(t) ≥ t(p1)0 , ∀ t > 1. (12)

Next, by the definition of (p2)0, it is easy to prove that

Φ2(t) ≥ τ (p2)0Φ2(t/τ), ∀ t > 0, τ ∈ (0, 1).

Letting t ∈ (0, 1) and τ = t, the above inequality implies

Φ2(t) ≥ t(p2)0 · Φ2(1), ∀ t ∈ (0, 1),

or letting c2 = 1/Φ2(1),

c2 · Φ2(t) ≥ t(p2)
0
, ∀ t ∈ (0, 1). (13)

Finally, let c = 2 ·max{c1, c2}. Then, since by relation (7) we have (p2)0 < (p1)0
and since relations (12) and (13) hold true, we deduce that

c · [Φ1(t) + Φ2(t)] ≥ 2 · t(p1)0 ≥ t(p1)0 + t(p2)0 , ∀ t ≥ 1,

and

c · [Φ1(t) + Φ2(t)] ≥ 2 · t(p2)0 ≥ t(p1)0 + t(p2)
0
, ∀ t ∈ (0, 1).

The proof of Lemma 3 is complete.

3. The Main Result

Since we study problem (2) under the hypothesis (7), it follows by Lemma 2 that
W 1

0 LΦ1(Ω) is continuously embedded in W 1
0 LΦ2(Ω). Thus, a solution for a problem

of type (2) will be sought in the variable exponent space W 1
0 LΦ1(Ω).

We say that λ ∈ R is an eigenvalue of problem (2) if there exists u ∈
W 1

0 LΦ1(Ω)\{0} such that∫
Ω

(a1(|∇u|) + a2(|∇u|))∇u∇v dx − λ

∫
Ω

|u|q(x)−2uv dx = 0,

for all v ∈ W 1
0 LΦ1(Ω). We point out that if λ is an eigenvalue of problem (2) then

the corresponding u ∈ W 1
0 LΦ1(Ω)\{0} is a weak solution of (2).

Define

λ1 := inf
u∈W 1

0 LΦ1(Ω)\{0}

∫
Ω

Φ1(|∇u|) dx +
∫

Ω

Φ2(|∇u|) dx∫
Ω

1
q(x)

|u|q(x) dx

.
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Our main result is given by the following theorem.

Theorem 1. Assume that conditions (3), (7) and (8) are fulfilled. Then λ1 > 0.
Moreover, any λ ∈ [λ1,∞) is an eigenvalue of problem (2). Furthermore, there exists
a positive constant λ0 such that λ0 ≤ λ1 and any λ ∈ (0, λ0) is not an eigenvalue
of problem (2).

Remark 1. Relations (3) and (8) enable us to apply [16, Theorem 2.2] (see also
[1, Theorem 8.33]) in order to obtain that W 1

0 LΦ2(Ω) is compactly embedded in
Lq+

(Ω). That fact combined with the continuous embedding of Lq+
(Ω) in Lq(x)(Ω)

and with the result of Lemma 2 ensures that W 1
0 LΦ1(Ω) is compactly embedded in

Lq(x)(Ω).

4. Proof of Theorem 1

Let E denote the generalized Sobolev space W 1
0 LΦ1(Ω). In this section, we denote

by ‖ · ‖1 the norm on W 1
0 LΦ1(Ω) and by ‖ · ‖2 the norm on W 1

0 LΦ2(Ω).
In order to prove our main result, we introduce four functionals J , I, J1, I1 :

E → R by

J(u) =
∫

Ω

Φ1(|∇u|) dx +
∫

Ω

Φ2(|∇u|) dx,

I(u) =
∫

Ω

1
q(x)

|u|q(x) dx,

J1(u) =
∫

Ω

a1(|∇u|)|∇u|2 dx +
∫

Ω

a2(|∇u|)|∇u|2 dx,

I1(u) =
∫

Ω

|u|q(x) dx.

Standard arguments imply that J, I ∈ C1(E, R) and

〈J ′(u), v〉 =
∫

Ω

(a1(|∇u|) + a2(|∇u|))∇u∇v dx,

〈I ′(u), v〉 =
∫

Ω

|u|q(x)−2uv dx

for all u, v ∈ E. We split the proof of Theorem 1 into four steps.

• Step 1. We show that λ1 > 0.
By Lemma 3 and relation (7), we deduce that the following relations hold true

2 · c · (Φ1(|∇u(x)|) + Φ2(|∇u(x)|)) ≥ 2 · (|∇u(x)|(p1)0 + |∇u(x)|(p2)0)

≥ |∇u(x)|q+
+ |∇u(x)|q−

and

|u(x)|q+
+ |u(x)|q− ≥ |u(x)|q(x).
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Integrating the above inequalities, we find

2c ·
∫

Ω

(Φ1(|∇u(x)|) + Φ2(|∇u(x)|)) dx ≥
∫

Ω

(|∇u|q+
+ |∇u|q−

) dx, ∀u ∈ E (14)

and ∫
Ω

(|u|q+
+ |u|q−

) dx ≥
∫

Ω

|u|q(x) dx, ∀u ∈ E. (15)

On the other hand, there exist two positive constants λq+ and λq− such that∫
Ω

|∇u|q+
dx ≥ λq+

∫
Ω

|u|q+
dx, ∀u ∈ W 1,q+

0 (Ω) (16)

and ∫
Ω

|∇u|q−
dx ≥ λq−

∫
Ω

|u|q−
dx, ∀u ∈ W 1,q−

0 (Ω). (17)

Using again the fact that q− ≤ q+ < (p1)0 and a similar technique as that used in
the proof of Lemma 2, we deduce that E is continuously embedded both in W 1,q+

0 (Ω)
and in W 1,q−

0 (Ω). Thus, inequalities (16) and (17) hold true for any u ∈ E.
Using inequalities (15)–(17), it is clear that there exists a positive constant µ

such that ∫
Ω

(|∇u|q+
+ |∇u|q−

) dx ≥ µ

∫
Ω

|u|q(x)dx, ∀u ∈ E. (18)

Next, inequalities (18) and (14) yield∫
Ω

(Φ1(|∇u(x)|) + Φ2(|∇u(x)|)) dx ≥ µ

2c

∫
Ω

|u|q(x) dx, ∀u ∈ E. (19)

The above inequality implies

J(u) ≥ µ · q−
2c

I(u), ∀u ∈ E. (20)

The last inequality ensures that λ1 > 0 and thus, Step 1 is verified.

Remark 2. We point out that by the definitions of (pi)0, i = 1, 2, we have

ai(t) · t2 = ϕi(t) · t ≥ (pi)0Φi(t), ∀ t > 0.

The above inequality and relation (19) imply

λ0 = inf
v∈E\{0}

J1(v)
I1(v)

> 0. (21)

• Step 2. We show that λ1 is an eigenvalue of problem (2).
We start with some auxiliary results.
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Lemma 4. The following relations hold true:

lim
‖u‖→∞

J(u)
I(u)

= ∞ (22)

and

lim
‖u‖→0

J(u)
I(u)

= ∞. (23)

Proof. Since E is continuously embedded in Lq±
(Ω) it follows that there exist two

positive constants c1 and c2 such that

‖u‖1 ≥ c1 · |u|q+ , ∀u ∈ E (24)

and

‖u‖1 ≥ c2 · |u|q− , ∀u ∈ E. (25)

For any u ∈ E with ‖u‖1 > 1 by Lemma 1 and relations (15), (24), (25), we infer

J(u)
I(u)

≥ ‖u‖(p1)0
1

|u|q+

q+ + |u|q−

q−

q−

≥ ‖u‖(p1)0
1

c−q+

1 ‖u‖q+

1 + c−q−
2 ‖u‖q−

1

q−

.

Since (p1)0 > q+ ≥ q−, passing to the limit as ‖u‖1 → ∞ in the above inequality,
we deduce that relation (22) holds true.

Next, by Lemma 2 the space W 1
0 LΦ1(Ω) is continuously embedded in W 1

0 LΦ2(Ω).
Thus, if ‖u‖1 → 0 then ‖u‖2 → 0.

The above remarks enable us to affirm that for any u ∈ E with ‖u‖1 < 1 small
enough, we have ‖u‖2 < 1.

On the other hand, since (8) holds true, we deduce that W 1
0 LΦ2(Ω) is contin-

uously embedded in Lq±
(Ω). It follows that there exist two positive constants d1

and d2 such that

‖u‖2 ≥ d1 · |u|q+ , ∀u ∈ W 1
0 LΦ2(Ω) (26)

and

‖u‖2 ≥ d2 · |u|q− , ∀u ∈ W 1
0 LΦ2(Ω). (27)

Thus, for any u ∈ E with ‖u‖1 < 1 small enough, Lemma 1 and relations (15),
(26), (27) imply

J(u)
I(u)

≥

∫
Ω

Φ2(|∇u|) dx

|u|q+

q+ + |u|q−

q−

q−

≥ ‖u‖(p2)
0

2

d−q+

1 ‖u‖q+

2 + d−q−
2 ‖u‖q−

2

q−

.
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Since (p2)0 < q− ≤ q+, passing to the limit as ‖u‖1 → 0 (and thus, ‖u‖2 → 0) in
the above inequality, we deduce that relation (23) holds true.

The proof of Lemma 4 is complete.

Lemma 5. There exists u ∈ E\{0} such that J(u)
I(u) = λ1.

Proof. Let {un} ⊂ E\{0} be a minimizing sequence for λ1, that is,

lim
n→∞

J(un)
I(un)

= λ1 > 0. (28)

By relation (22), it is clear that {un} is bounded in E. Since E is reflexive, it
follows that there exists u ∈ E such that un converges weakly to u in E. On the
other hand, similar arguments to those used in the proof of [21, Theorem 2] show
that the functional J is weakly lower semi-continuous. Thus, we find

lim inf
n→∞ J(un) ≥ J(u). (29)

By Remark 1, it follows that E is compactly embedded in Lq(x)(Ω). Thus, un

converges strongly in Lq(x)(Ω). Then, by relation (6), it follows that

lim
n→∞ I(un) = I(u). (30)

Relations (29) and (30) imply that if u 	≡ 0, then

J(u)
I(u)

= λ1.

Thus, in order to conclude that the lemma holds true it is enough to show that u

cannot be trivial. Assume by contradiction the contrary. Then, un converges weakly
to 0 in E and strongly in Lq(x)(Ω). In other words, we will have

lim
n→∞ I(un) = 0. (31)

Letting ε ∈ (0, λ1) be fixed by relation (28), we deduce that for n large enough, we
have

|J(un) − λ1I(un)| < εI(un),

or

(λ1 − ε)I(un) < J(un) < (λ1 + ε)I(un).

Passing to the limit in the above inequalities and taking into account that relation
(31) holds true, we find

lim
n→∞J(un) = 0.

That fact combined with the conclusion of Lemma 1 implies that actually un con-
verges strongly to 0 in E, that is, limn→∞ ‖un‖1 = 0. From this information and
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relation (23), we get

lim
n→∞

J(un)
I(un)

= ∞,

and this is a contradiction. Thus, u 	≡ 0.
The proof of Lemma 5 is complete.

By Lemma 5 we conclude that there exists u ∈ E\{0} such that

J(u)
I(u)

= λ1 = inf
w∈E\{0}

J(w)
I(w)

. (32)

Then, for any v ∈ E we have

d

dε

J(u + εv)
I(u + εv)

∣∣∣∣
ε=0

= 0.

A simple computation yields∫
Ω

(a1(|∇u|) + a2(|∇u|))∇u∇v; dx · I(u)

− J(u) ·
∫

Ω

|u|q(x)−2uv dx = 0, ∀ v ∈ E. (33)

Relation (33) combined with the fact that J(u) = λ1I(u) and I(u) 	= 0 implies the
fact that λ1 is an eigenvalue of problem (2). Thus, Step 2 is verified.

• Step 3. We show that any λ ∈ (λ1,∞) is an eigenvalue of problem (2).
Let λ ∈ (λ1,∞) be arbitrary but fixed. Define Tλ : E → R by

Tλ(u) = J(u) − λI(u).

Clearly, Tλ ∈ C1(E, R) with

〈T ′
λ(u), v〉 = 〈J ′(u), v〉 − λ〈I ′(u), v〉, ∀u ∈ E.

Thus, λ is an eigenvalue of problem (2) if and only if there exists uλ ∈ E\{0} a
critical point of Tλ.

With similar arguments as in the proof of relation (22) we can show that Tλ

is coercive, that is, lim‖u‖→∞ Tλ(u) = ∞. On the other hand, as we have already
remarked, similar arguments to those used in the proof of [21, Theorem 2] (see
also [20]) show that the functional Tλ is weakly lower semi-continuous. These two
facts enable us to apply [27, Theorem 1.2] in order to prove that there exists uλ ∈ E,
a global minimum point of Tλ, and thus, a critical point of Tλ. In order to conclude
that Step 3 holds true, it is enough to show that uλ is not trivial. Indeed, since
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λ1 = infu∈E\{0}
J(u)
I(u) and λ > λ1 it follows that there exists vλ ∈ E such that

J(vλ) < λI(vλ),

or, equivalently,

Tλ(vλ) < 0.

Thus,

inf
E

Tλ < 0

and we conclude that uλ is a nontrivial critical point of Tλ, that is, λ is an eigenvalue
of problem (2). Thus, Step 3 is verified.

• Step 4. We show that any λ ∈ (0, λ0), where λ0 is given by relation (21), is not
an eigenvalue of problem (2).

Indeed, assuming by contradiction that there exists λ ∈ (0, λ0) an eigenvalue of
problem (2) it follows that there exists uλ ∈ E\{0} such that

〈J ′(uλ), v〉 = λ〈I ′(uλ), v〉, ∀ v ∈ E.

Thus, for v = uλ we find

〈J ′(uλ), uλ〉 = λ〈I ′(uλ), uλ〉,
or

J1(uλ) = λI1(uλ).

The fact that uλ ∈ E\{0} ensures that I1(uλ) > 0. Since λ < λ0, the above
information implies

J1(uλ) ≥ λ0I1(uλ) > λI1(uλ) = J1(uλ).

Clearly, the above inequalities lead to a contradiction. Thus, Step 4 is verified.

By Steps 2–4, we deduce that λ0 ≤ λ1. The proof of Theorem 1 is now complete.

Remark 3. We point out that by the proof of Theorem 1 we cannot conclude
whether λ0 = λ1 or λ0 < λ1. Such a study remains an open problem and we expect
that the answer strongly depends on a1, a2, and q. In the case where λ0 < λ1,
another interesting open problem concerns the existence of eigenvalues of problem
(2) in the interval [λ0, λ1).
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