EIGENVALUE PROBLEMS ASSOCIATED WITH NONHOMOGENEOUS DIFFERENTIAL OPERATORS IN ORLICZ-SOBOLEV SPACES

MIHAI MIHĂILESCU*, ${ }^{\ddagger}$ and VICENŢIU RĂDULESCU*, \dagger
*Department of Mathematics, University of Craiova
200585 Craiova, Romania
and
Department of Mathematics, Central European University
1051 Budapest, Hungary
${ }^{\dagger}$ Institute of Mathematics "Simion Stoilow" of the Romanian Academy P.O. Box 1-764, 014700 Bucharest, Romania
${ }^{\ddagger}$ mmihailes@yahoo.com
${ }^{\dagger}$ vicentiu.radulescu@math.cnrs.fr

Received 19 June 2007
Accepted 27 June 2007

Abstract

We study the boundary value problem $-\operatorname{div}\left(\left(a_{1}(|\nabla u|)+a_{2}(|\nabla u|)\right) \nabla u\right)=\lambda|u|^{q(x)-2} u$ in $\Omega, u=0$ on $\partial \Omega$, where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary, λ is a positive real number, q is a continuous function and a_{1}, a_{2} are two mappings such that $a_{1}(|t|) t, a_{2}(|t|) t$ are increasing homeomorphisms from \mathbb{R} to \mathbb{R}. We establish the existence of two positive constants λ_{0} and λ_{1} with $\lambda_{0} \leq \lambda_{1}$ such that any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue, while any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of the above problem.

Keywords: Nonhomogeneous differential operator; nonlinear eigenvalue problem; Orlicz-Sobolev space.

Mathematics Subject Classification 2000: 35D05, 35J60, 35J70, 58E05, 68T40, 76A02

1. Introduction and Preliminary Results

Nonlinear eigenvalue problems associated with differential operators with variable exponent have been intensively studied in the last few years. In many cases (see, e.g., $[12,13,19-22,26]$), the model example is the $p(x)$-Laplace operator defined by $\Delta_{p(x)} u:=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$, where $p(x)$ is a continuous positive function. This operator in nonhomogeneous and thus, many techniques which can be applied in the homogeneous case (when $p(x)$ is a positive constant) fail in this new setting.
${ }^{\dagger}$ Corresponding author.

A typical example is the Lagrange multiplier theorem, which does not apply to the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)=\lambda|u|^{q(x)-2} u, & \text { for } x \in \Omega \tag{1}\\ u=0, & \text { for } x \in \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain. This is due to the fact that the associated Rayleigh quotient is not homogeneous, provided both p and q are not constant.

On the other hand, problems like (1) have been largely considered in the literature in the recent years. We give in what follows a concise but complete image of the actual state of research on this topic.

- In the case when $p(x)=q(x)$ on $\bar{\Omega}$, Fan, Zhang and Zhao [13] established the existence of infinitely many eigenvalues for problem (1) by using an argument based on the Ljusternik-Schnirelmann critical point theory. Denoting by Λ the set of all nonnegative eigenvalues, Fan, Zhang, and Zhao showed that Λ is discrete, $\sup \Lambda=+\infty$ and they pointed out that only under special conditions, which are somehow connected with a kind of monotony of the function $p(x)$, we have $\inf \Lambda>0$ (this is in contrast with the case when $p(x)$ is a constant; then, we always have $\inf \Lambda>0)$.
- If $\min _{x \in \bar{\Omega}} q(x)<\min _{x \in \bar{\Omega}} p(x)$ and $q(x)$ has a subcritical growth, Mihăilescu and Rădulescu [22] used the Ekeland's variational principle [11] in order to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin.
- In the case when $\max _{x \in \bar{\Omega}} p(x)<\min _{x \in \bar{\Omega}} q(x)$ and $q(x)$ has a subcritical growth, then standard mountain-pass arguments (similar to those used by Fan and Zhang in the proof of Theorem 4.7 in [12]) can be applied in order to show that any $\lambda>0$ is an eigenvalue of problem (1).
- If $\max _{x \in \bar{\Omega}} q(x)<\min _{x \in \bar{\Omega}} p(x)$, then the energy functional associated with problem (1) has a nontrivial minimum for any positive λ large enough (see [12, Theorem 4.7]). Clearly, in this case the result in [22] can also be applied. Consequently, in this situation there exist two positive constants λ^{\star} and $\lambda^{\star \star}$ such that any $\lambda \in\left(0, \lambda^{\star}\right) \cup\left(\lambda^{\star \star}, \infty\right)$ is an eigenvalue of problem (1).

In this paper, we are concerned with a related nonlinear eigenvalue problem in a new framework, corresponding to Orlicz-Sobolev spaces. Our main result establishes a curious phenomenon, which does not hold in the standard setting corresponding to the Laplace operator. More precisely, we prove that there exist two constants $0<\lambda_{0} \leq \lambda_{1}$ such that any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue, while any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of our problem.

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega$. Consider the nonlinear eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(\left(a_{1}(|\nabla u|)+a_{2}(|\nabla u|)\right) \nabla u\right)=\lambda|u|^{q(x)-2} u, & \text { for } x \in \Omega \tag{2}\\ u=0, & \text { for } x \in \partial \Omega .\end{cases}
$$

We assume that for any $i=1,2$, the functions $a_{i}:(0, \infty) \rightarrow \mathbb{R}$ are such that the mappings $\varphi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\varphi_{i}(t)= \begin{cases}a_{i}(|t|) t, & \text { for } t \neq 0 \\ 0, & \text { for } t=0\end{cases}
$$

are odd, increasing homeomorphisms from \mathbb{R} onto \mathbb{R}. We also suppose throughout this paper that $\lambda>0$ and $q: \bar{\Omega} \rightarrow(0, \infty)$ is a continuous function.

Since the operator in the divergence form is nonhomogeneous we introduce an Orlicz-Sobolev space setting for problems of this type. On the other hand, the term arising in the right-hand side of Eq. (2) is also nonhomogeneous and its particular form appeals to a suitable variable exponent Lebesgue space setting.

We first recall some basic facts about Orlicz spaces. For more details, we refer to the books by Adams and Hedberg [2], Adams [1] and Rao and Ren [25] and the papers by Clément et al. [6,7], Garciá-Huidobro et al. [16] and Gossez [17]. We also refer to Chipot et al. [3], Ciarlet [4,5], Filippakis and Papageorgiou [14], Filippucci et al. [15], and Rădulescu [24] for applications and related results.

Assume $\varphi_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are odd, increasing homeomorphisms from \mathbb{R} onto \mathbb{R}. Define

$$
\Phi_{i}(t)=\int_{0}^{t} \varphi_{i}(s) d s, \quad\left(\Phi_{i}\right)^{\star}(t)=\int_{0}^{t}\left(\varphi_{i}\right)^{-1}(s) d s, \quad \text { for all } t \in \mathbb{R}, \quad i=1,2 .
$$

We observe that $\Phi_{i}, i=1,2$, are Young's functions, that is, $\Phi_{i}(0)=0, \Phi_{i}$ are convex, and $\lim _{x \rightarrow \infty} \Phi_{i}(x)=+\infty$. Furthermore, since $\Phi_{i}(x)=0$ if and only if $x=0$, $\lim _{x \rightarrow 0} \Phi_{i}(x) / x=0$, and $\lim _{x \rightarrow \infty} \Phi_{i}(x) / x=+\infty$, then Φ_{i} are called N-functions. The functions $\left(\Phi_{i}\right)^{\star}, i=1,2$, are called the complementary functions of $\Phi_{i}, i=1,2$, and they satisfy

$$
\left(\Phi_{i}\right)^{\star}(t)=\sup \left\{s t-\Phi_{i}(s) ; s \geq 0\right\}, \quad \text { for all } t \geq 0 .
$$

We also observe that $\left(\Phi_{i}\right)^{\star}, i=1,2$, are also N-functions and Young's inequality holds true

$$
s t \leq \Phi_{i}(s)+\left(\Phi_{i}\right)^{\star}(t), \quad \text { for all } s, t \geq 0
$$

The Orlicz spaces $L_{\Phi_{i}}(\Omega), i=1,2$, defined by the N-functions Φ_{i} (see [2,1,6]) are the spaces of measurable functions $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\|u\|_{L_{\Phi_{i}}}:=\sup \left\{\int_{\Omega} u v d x ; \int_{\Omega}\left(\Phi_{i}\right)^{\star}(|g|) d x \leq 1\right\}<\infty .
$$

Then, $\left(L_{\Phi_{i}}(\Omega),\|\cdot\|_{L_{\Phi_{i}}}\right), i=1,2$, are Banach spaces whose norm is equivalent to the Luxemburg norm

$$
\|u\|_{\Phi_{i}}:=\inf \left\{k>0 ; \int_{\Omega} \Phi_{i}\left(\frac{u(x)}{k}\right) d x \leq 1\right\} .
$$

For Orlicz spaces Hölder's inequality reads as follows (see [25, Inequality 4, p. 79]):

$$
\int_{\Omega} u v d x \leq 2\|u\|_{L_{\Phi_{i}}}\|v\|_{L_{\left(\Phi_{i}\right)^{*}}} \quad \text { for all } u \in L_{\Phi_{i}}(\Omega) \text { and } v \in L_{\left(\Phi_{i}\right)^{*}}(\Omega), \quad i=1,2 .
$$

We denote by $W^{1} L_{\Phi_{i}}(\Omega), i=1,2$, the Orlicz-Sobolev spaces defined by

$$
W^{1} L_{\Phi_{i}}(\Omega):=\left\{u \in L_{\Phi_{i}}(\Omega) ; \frac{\partial u}{\partial x_{i}} \in L_{\Phi_{i}}(\Omega), i=1, \ldots, N\right\}
$$

These are Banach spaces with respect to the norms

$$
\|u\|_{1, \Phi_{i}}:=\|u\|_{\Phi_{i}}+\|\nabla v u\|_{\Phi_{i}}, \quad i=1,2 .
$$

We also define the Orlicz-Sobolev spaces $W_{0}^{1} L_{\Phi_{i}}(\Omega), i=1,2$, as the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1} L_{\Phi_{i}}(\Omega)$. By [17, Lemma 5.7] we obtain that on $W_{0}^{1} L_{\Phi_{i}}(\Omega), i=1,2$, we may consider some equivalent norms

$$
\|u\|_{i}:=\||\nabla u|\|_{\Phi_{i}} .
$$

The spaces $W_{0}^{1} L_{\Phi_{i}}(\Omega), i=1,2$, are also reflexive Banach spaces.
In this paper, we will work with functions Φ_{i} and $\left(\Phi_{i}\right)^{\star}, i=1,2$, satisfying the Δ_{2}-condition (at infinity), namely

$$
1<\liminf _{t \rightarrow \infty} \frac{t \varphi_{i}(t)}{\Phi_{i}(t)} \leq \limsup _{t>0} \frac{t \varphi_{i}(t)}{\Phi_{i}(t)}<\infty
$$

Then, $L_{\Phi_{i}}(\Omega)$ and $W_{0}^{1} L_{\Phi_{i}}(\Omega), i=1,2$, are reflexive Banach spaces.
Now, we introduce the Orlicz-Sobolev conjugate $\left(\Phi_{i}\right)_{\star}$ of $\Phi_{i}, i=1,2$, defined as

$$
\left(\Phi_{i}\right)_{\star}^{-1}(t)=\int_{0}^{t} \frac{\left(\Phi_{i}\right)^{-1}(s)}{s^{(N+1) / N}} d s
$$

We assume that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{t}^{1} \frac{\left(\Phi_{i}\right)^{-1}(s)}{s^{(N+1) / N}} d s<\infty \quad \text { and } \quad \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\left(\Phi_{i}\right)^{-1}(s)}{s^{(N+1) / N}} d s=\infty, \quad i=1,2 . \tag{3}
\end{equation*}
$$

Finally, we define

$$
\left(p_{i}\right)_{0}:=\inf _{t>0} \frac{t \varphi_{i}(t)}{\Phi_{i}(t)} \quad \text { and } \quad\left(p_{i}\right)^{0}:=\sup _{t>0} \frac{t \varphi_{i}(t)}{\Phi_{i}(t)}, i=1,2
$$

Next, we recall some background facts concerning the variable exponent Lebesgue spaces. For more details we refer to the book by Musielak [23] and the papers by Edmunds et al. [8-10], Kovacik and Rákosník [18], Mihăilescu and Rădulescu [19], and Samko and Vakulov [26].

Set

$$
C_{+}(\bar{\Omega})=\{h ; h \in C(\bar{\Omega}), h(x)>1 \text { for all } x \in \bar{\Omega}\} .
$$

For any $h \in C_{+}(\bar{\Omega})$, we define

$$
h^{+}=\sup _{x \in \Omega} h(x) \quad \text { and } \quad h^{-}=\inf _{x \in \Omega} h(x) .
$$

For any $q(x) \in C_{+}(\bar{\Omega})$, we define the variable exponent Lebesgue space $L^{q(x)}(\Omega)$ (see [18]). On $L^{q(x)}(\Omega)$, we define the Luxemburg norm by the formula

$$
|u|_{q(x)}=\inf \left\{\mu>0 ; \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{q(x)} d x \leq 1\right\}
$$

We remember that the variable exponent Lebesgue spaces are separable and reflexive Banach spaces. If $0<|\Omega|<\infty$ and q_{1}, q_{2} are variable exponents so that $q_{1}(x) \leq q_{2}(x)$ almost everywhere in Ω then there exists the continuous embedding $L^{q_{2}(x)}(\Omega) \hookrightarrow L^{q_{1}(x)}(\Omega)$.

If $\left(u_{n}\right), u \in L^{q(x)}(\Omega)$, then the following relations hold true

$$
\begin{align*}
|u|_{q(x)}>1 & \Rightarrow|u|_{q(x)}^{q^{-}} \leq \int_{\Omega}|u|^{q(x)} d x \leq|u|_{q(x)}^{q^{+}} \tag{4}\\
|u|_{q(x)}<1 & \Rightarrow|u|_{q(x)}^{q^{+}} \leq \int_{\Omega}|u|^{q(x)} d x \leq|u|_{q(x)}^{q^{-}} \tag{5}\\
\left|u_{n}-u\right|_{q(x)} & \rightarrow 0 \tag{6}
\end{align*}
$$

In this paper, we analyze problem (2) under the following basic assumptions:

$$
\begin{equation*}
1<\left(p_{2}\right)_{0} \leq\left(p_{2}\right)^{0}<q(x)<\left(p_{1}\right)_{0} \leq\left(p_{1}\right)^{0}, \quad \forall x \in \bar{\Omega} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{|t|^{q^{+}}}{\left(\Phi_{2}\right)_{\star}(k t)}=0, \quad \text { for all } k>0 \tag{8}
\end{equation*}
$$

2. Auxiliary Results

In this section, we point out certain useful auxiliary results.
Lemma 1. The following relations hold true:

$$
\begin{array}{lll}
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \leq\|u\|_{i}^{\left(p_{i}\right)_{0}}, & \forall u \in W_{0}^{1} L_{\Phi_{i}}(\Omega) \text { with }\|u\|_{i}<1, & i=1,2 ; \\
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \geq\|u\|_{i}^{\left(p_{i}\right)_{0}}, & \forall u \in W_{0}^{1} L_{\Phi_{i}}(\Omega) \text { with }\|u\|_{i}>1, & i=1,2 ; \\
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \geq\|u\|_{i}^{\left(p_{i}\right)^{0}}, & \forall u \in W_{0}^{1} L_{\Phi_{i}}(\Omega) \text { with }\|u\|_{i}<1, & i=1,2 ; \\
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \leq\|u\|_{i}^{\left(p_{i}\right)^{0}}, & \forall u \in W_{0}^{1} L_{\Phi_{i}}(\Omega) \text { with }\|u\|_{i}>1, & i=1,2 .
\end{array}
$$

Proof. The proof of the first two inequalities can be carried out as in [7, Lemma C.9].

Next, assume $\|u\|_{i}<1$. Let $\xi \in\left(0,\|u\|_{i}\right)$. By the definition of $\left(p_{i}\right)^{0}$, we deduce that

$$
\Phi_{i}(t) \geq \tau^{\left(p_{i}\right)^{0}} \Phi_{i}(t / \tau), \quad \forall t>0, \quad \tau \in(0,1)
$$

Using the above relation, we have

$$
\begin{equation*}
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \geq \xi^{\left(p_{i}\right)^{0}} \cdot \int_{\Omega} \Phi_{i}\left(\frac{|\nabla u(x)|}{\xi}\right) d x \tag{9}
\end{equation*}
$$

Defining $v(x)=u(x) / \xi$, for all $x \in \Omega$, we have $\|v\|_{i}=\|u\|_{i} / \xi>1$. Using the first inequality of this lemma, we find

$$
\begin{equation*}
\int_{\Omega} \Phi_{i}(|\nabla v(x)|) d x \geq\|v\|_{i}^{\left(p_{i}\right)_{0}}>1 \tag{10}
\end{equation*}
$$

Relations (9) and (10) show that

$$
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \geq \xi^{\left(p_{i}\right)^{0}} .
$$

Letting $\xi \nearrow\|u\|_{i}$ in the above inequality, we obtain

$$
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x \geq\|u\|_{i}^{p_{i}{ }^{0}}, \quad \forall u \in W_{0}^{1} L_{\Phi_{i}}(\Omega) \quad \text { with } \quad\|u\|_{i}<1 .
$$

Finally, we prove the last inequality in the lemma. A straightforward computation shows that

$$
\begin{equation*}
\frac{\Phi_{i}(\sigma t)}{\Phi_{i}(t)} \leq \sigma^{p_{i}{ }^{0}}, \quad \forall t>0 \quad \text { and } \quad \sigma>1 . \tag{11}
\end{equation*}
$$

Then, for all $u \in W_{0}^{1} L_{\Phi_{i}}(\Omega)$ with $\|u\|_{i}>1$, relation (11) implies

$$
\begin{aligned}
\int_{\Omega} \Phi_{i}(|\nabla u(x)|) d x & =\int_{\Omega} \Phi_{i}\left(\|u\|_{i} \frac{|\nabla u(x)|}{\|u\|_{i}}\right) d x \\
& \leq\|u\|_{i}^{\left(p_{i}\right)^{0}} \int_{\Omega} \Phi_{i}\left(\frac{|\nabla u(x)|}{\|u\|_{i}}\right) d x \\
& \leq\|u\|_{i}^{\left(p_{i}\right)^{0}} .
\end{aligned}
$$

The proof of Lemma 1 is complete.

Lemma 2. Assume relation (7) holds true. Then, the continuous embedding

$$
W_{0}^{1} L_{\Phi_{1}}(\Omega) \subset W_{0}^{1} L_{\Phi_{2}}(\Omega)
$$

holds true.

Proof. By [1, Lemma 8.12(b)] it is enough to show that Φ_{1} dominates Φ_{2} near infinity, that is, there exist $k>0$ and $t_{0}>0$ such that

$$
\Phi_{2}(t) \leq \Phi_{1}(k \cdot t), \quad \forall t \geq t_{0}
$$

Indeed, since by (7), we have $\left(p_{2}\right)^{0}<\left(p_{1}\right)_{0}$, it follows that

$$
\frac{\varphi_{2}(t)}{\Phi_{2}(t)}<\frac{\varphi_{1}(t)}{\Phi_{1}(t)}, \quad \forall t>0
$$

The above relation and some elementary computations imply

$$
\left(\frac{\Phi_{1}(t)}{\Phi_{2}(t)}\right)^{\prime}>0, \quad \forall t>0
$$

Thus, we deduce that $\Phi_{1}(t) / \Phi_{2}(t)$ is increasing for any $t \in(0, \infty)$. It follows that for a fixed $t_{0} \in(0, \infty)$ we have

$$
\frac{\Phi_{1}\left(t_{0}\right)}{\Phi_{2}\left(t_{0}\right)}<\frac{\Phi_{1}(t)}{\Phi_{2}(t)}, \quad \forall t>t_{0}
$$

Let $k \in\left(0, \min \left\{1, \Phi_{1}\left(t_{0}\right) / \Phi_{2}\left(t_{0}\right)\right\}\right)$ be fixed. The above relations yield

$$
\Phi_{2}(t)<\frac{1}{k} \cdot \Phi_{1}(t), \quad \forall t>t_{0}
$$

Finally, we point out that in order to end the proof of the lemma it is enough to show that

$$
\frac{1}{k} \cdot \Phi_{1}(t) \leq \Phi_{1}\left(\frac{1}{k} \cdot t\right), \quad \forall t>0
$$

Indeed, define the function $H:[0, \infty) \rightarrow \mathbb{R}$ by

$$
H(t)=\Phi_{1}\left(\frac{1}{k} \cdot t\right)-\frac{1}{k} \cdot \Phi_{1}(t)
$$

Therefore,

$$
H^{\prime}(t)=\frac{1}{k} \cdot\left(\varphi_{1}\left(\frac{1}{k} \cdot t\right)-\varphi_{1}(t)\right)
$$

Since φ_{1} is an increasing function and $1 / k>1$ we deduce that H is an increasing function. That fact combined with the remark that $H(0)=0$ implies

$$
H(t) \geq H(0)=0, \quad \forall t \geq 0
$$

or

$$
\frac{1}{k} \cdot \Phi_{1}(t) \leq \Phi_{1}\left(\frac{1}{k} \cdot t\right), \quad \forall t>0
$$

The proof of Lemma 2 is complete.

Lemma 3. Assume relation (7) holds true. Then, there exists $c>0$ such that the following inequality holds true

$$
c \cdot\left[\Phi_{1}(t)+\Phi_{2}(t)\right] \geq t^{\left(p_{1}\right)_{0}}+t^{\left(p_{2}\right)^{0}}, \quad \forall t \geq 0
$$

Proof. Using the definition of $\left(p_{1}\right)_{0}$, we deduce that

$$
\left(\frac{\Phi_{1}(t)}{t^{\left(p_{1}\right)_{0}}}\right)^{\prime}>0, \quad \forall t>0
$$

or, the function $\Phi_{1}(t) / t^{\left(p_{1}\right)_{0}}$ is increasing for $t \in(0, \infty)$. Thus, we deduce that

$$
\Phi_{1}(t) \geq \Phi_{1}(1) \cdot t^{\left(p_{1}\right)_{0}}, \quad \forall t>1,
$$

or letting $c_{1}=1 / \Phi_{1}(1)$

$$
\begin{equation*}
c_{1} \cdot \Phi_{1}(t) \geq t^{\left(p_{1}\right)_{0}}, \quad \forall t>1 \tag{12}
\end{equation*}
$$

Next, by the definition of $\left(p_{2}\right)^{0}$, it is easy to prove that

$$
\Phi_{2}(t) \geq \tau^{\left(p_{2}\right)^{0}} \Phi_{2}(t / \tau), \quad \forall t>0, \quad \tau \in(0,1)
$$

Letting $t \in(0,1)$ and $\tau=t$, the above inequality implies

$$
\Phi_{2}(t) \geq t^{\left(p_{2}\right)^{0}} \cdot \Phi_{2}(1), \quad \forall t \in(0,1)
$$

or letting $c_{2}=1 / \Phi_{2}(1)$,

$$
\begin{equation*}
c_{2} \cdot \Phi_{2}(t) \geq t^{\left(p_{2}\right)^{0}}, \quad \forall t \in(0,1) . \tag{13}
\end{equation*}
$$

Finally, let $c=2 \cdot \max \left\{c_{1}, c_{2}\right\}$. Then, since by relation (7) we have $\left(p_{2}\right)^{0}<\left(p_{1}\right)_{0}$ and since relations (12) and (13) hold true, we deduce that

$$
c \cdot\left[\Phi_{1}(t)+\Phi_{2}(t)\right] \geq 2 \cdot t^{\left(p_{1}\right)_{0}} \geq t^{\left(p_{1}\right)_{0}}+t^{\left(p_{2}\right)^{0}}, \quad \forall t \geq 1
$$

and

$$
c \cdot\left[\Phi_{1}(t)+\Phi_{2}(t)\right] \geq 2 \cdot t^{\left(p_{2}\right)^{0}} \geq t^{\left(p_{1}\right)_{0}}+t^{\left(p_{2}\right)^{0}}, \quad \forall t \in(0,1) .
$$

The proof of Lemma 3 is complete.

3. The Main Result

Since we study problem (2) under the hypothesis (7), it follows by Lemma 2 that $W_{0}^{1} L_{\Phi_{1}}(\Omega)$ is continuously embedded in $W_{0}^{1} L_{\Phi_{2}}(\Omega)$. Thus, a solution for a problem of type (2) will be sought in the variable exponent space $W_{0}^{1} L_{\Phi_{1}}(\Omega)$.

We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (2) if there exists $u \in$ $W_{0}^{1} L_{\Phi_{1}}(\Omega) \backslash\{0\}$ such that

$$
\int_{\Omega}\left(a_{1}(|\nabla u|)+a_{2}(|\nabla u|)\right) \nabla u \nabla v d x-\lambda \int_{\Omega}|u|^{q(x)-2} u v d x=0,
$$

for all $v \in W_{0}^{1} L_{\Phi_{1}}(\Omega)$. We point out that if λ is an eigenvalue of problem (2) then the corresponding $u \in W_{0}^{1} L_{\Phi_{1}}(\Omega) \backslash\{0\}$ is a weak solution of (2).

Define

$$
\lambda_{1}:=\inf _{u \in W_{0}^{1} L_{\Phi_{1}}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \Phi_{1}(|\nabla u|) d x+\int_{\Omega} \Phi_{2}(|\nabla u|) d x}{\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x} .
$$

Our main result is given by the following theorem.
Theorem 1. Assume that conditions (3), (7) and (8) are fulfilled. Then $\lambda_{1}>0$. Moreover, any $\lambda \in\left[\lambda_{1}, \infty\right)$ is an eigenvalue of problem (2). Furthermore, there exists a positive constant λ_{0} such that $\lambda_{0} \leq \lambda_{1}$ and any $\lambda \in\left(0, \lambda_{0}\right)$ is not an eigenvalue of problem (2).

Remark 1. Relations (3) and (8) enable us to apply [16, Theorem 2.2] (see also [1 , Theorem 8.33]) in order to obtain that $W_{0}^{1} L_{\Phi_{2}}(\Omega)$ is compactly embedded in $L^{q^{+}}(\Omega)$. That fact combined with the continuous embedding of $L^{q^{+}}(\Omega)$ in $L^{q(x)}(\Omega)$ and with the result of Lemma 2 ensures that $W_{0}^{1} L_{\Phi_{1}}(\Omega)$ is compactly embedded in $L^{q(x)}(\Omega)$.

4. Proof of Theorem 1

Let E denote the generalized Sobolev space $W_{0}^{1} L_{\Phi_{1}}(\Omega)$. In this section, we denote by $\|\cdot\|_{1}$ the norm on $W_{0}^{1} L_{\Phi_{1}}(\Omega)$ and by $\|\cdot\|_{2}$ the norm on $W_{0}^{1} L_{\Phi_{2}}(\Omega)$.

In order to prove our main result, we introduce four functionals J, I, J_{1}, I_{1} : $E \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
J(u) & =\int_{\Omega} \Phi_{1}(|\nabla u|) d x+\int_{\Omega} \Phi_{2}(|\nabla u|) d x \\
I(u) & =\int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x \\
J_{1}(u) & =\int_{\Omega} a_{1}(|\nabla u|)|\nabla u|^{2} d x+\int_{\Omega} a_{2}(|\nabla u|)|\nabla u|^{2} d x \\
I_{1}(u) & =\int_{\Omega}|u|^{q(x)} d x .
\end{aligned}
$$

Standard arguments imply that $J, I \in C^{1}(E, \mathbb{R})$ and

$$
\begin{aligned}
& \left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}\left(a_{1}(|\nabla u|)+a_{2}(|\nabla u|)\right) \nabla u \nabla v d x \\
& \left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega}|u|^{q(x)-2} u v d x
\end{aligned}
$$

for all $u, v \in E$. We split the proof of Theorem 1 into four steps.

- Step 1. We show that $\lambda_{1}>0$.

By Lemma 3 and relation (7), we deduce that the following relations hold true

$$
\begin{aligned}
2 \cdot c \cdot\left(\Phi_{1}(|\nabla u(x)|)+\Phi_{2}(|\nabla u(x)|)\right) & \geq 2 \cdot\left(|\nabla u(x)|^{\left(p_{1}\right)_{0}}+|\nabla u(x)|^{\left(p_{2}\right)^{0}}\right) \\
& \geq|\nabla u(x)|^{q^{+}}+|\nabla u(x)|^{q^{-}}
\end{aligned}
$$

and

$$
|u(x)|^{q^{+}}+|u(x)|^{q^{-}} \geq|u(x)|^{q(x)}
$$

Integrating the above inequalities, we find
$2 c \cdot \int_{\Omega}\left(\Phi_{1}(|\nabla u(x)|)+\Phi_{2}(|\nabla u(x)|)\right) d x \geq \int_{\Omega}\left(|\nabla u|^{q^{+}}+|\nabla u|^{q^{-}}\right) d x, \quad \forall u \in E$
and

$$
\begin{equation*}
\int_{\Omega}\left(|u|^{q^{+}}+|u|^{q^{-}}\right) d x \geq \int_{\Omega}|u|^{q(x)} d x, \quad \forall u \in E . \tag{15}
\end{equation*}
$$

On the other hand, there exist two positive constants $\lambda_{q^{+}}$and $\lambda_{q^{-}}$such that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q^{+}} d x \geq \lambda_{q^{+}} \int_{\Omega}|u|^{q^{+}} d x, \quad \forall u \in W_{0}^{1, q^{+}}(\Omega) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q^{-}} d x \geq \lambda_{q^{-}} \int_{\Omega}|u|^{q^{-}} d x, \quad \forall u \in W_{0}^{1, q^{-}}(\Omega) . \tag{17}
\end{equation*}
$$

Using again the fact that $q^{-} \leq q^{+}<\left(p_{1}\right)_{0}$ and a similar technique as that used in the proof of Lemma 2, we deduce that E is continuously embedded both in $W_{0}^{1, q^{+}}(\Omega)$ and in $W_{0}^{1, q^{-}}(\Omega)$. Thus, inequalities (16) and (17) hold true for any $u \in E$.

Using inequalities (15)-(17), it is clear that there exists a positive constant μ such that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{q^{+}}+|\nabla u|^{q^{-}}\right) d x \geq \mu \int_{\Omega}|u|^{q(x)} d x, \quad \forall u \in E . \tag{18}
\end{equation*}
$$

Next, inequalities (18) and (14) yield

$$
\begin{equation*}
\int_{\Omega}\left(\Phi_{1}(|\nabla u(x)|)+\Phi_{2}(|\nabla u(x)|)\right) d x \geq \frac{\mu}{2 c} \int_{\Omega}|u|^{q(x)} d x, \quad \forall u \in E . \tag{19}
\end{equation*}
$$

The above inequality implies

$$
\begin{equation*}
J(u) \geq \frac{\mu \cdot q^{-}}{2 c} I(u), \quad \forall u \in E . \tag{20}
\end{equation*}
$$

The last inequality ensures that $\lambda_{1}>0$ and thus, Step 1 is verified.
Remark 2. We point out that by the definitions of $\left(p_{i}\right)_{0}, i=1,2$, we have

$$
a_{i}(t) \cdot t^{2}=\varphi_{i}(t) \cdot t \geq\left(p_{i}\right)_{0} \Phi_{i}(t), \quad \forall t>0 .
$$

The above inequality and relation (19) imply

$$
\begin{equation*}
\lambda_{0}=\inf _{v \in E \backslash\{0\}} \frac{J_{1}(v)}{I_{1}(v)}>0 . \tag{21}
\end{equation*}
$$

- Step 2. We show that λ_{1} is an eigenvalue of problem (2).

We start with some auxiliary results.

Lemma 4. The following relations hold true:

$$
\begin{equation*}
\lim _{\|u\| \rightarrow \infty} \frac{J(u)}{I(u)}=\infty \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\|u\| \rightarrow 0} \frac{J(u)}{I(u)}=\infty \tag{23}
\end{equation*}
$$

Proof. Since E is continuously embedded in $L^{q^{ \pm}}(\Omega)$ it follows that there exist two positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
\|u\|_{1} \geq c_{1} \cdot|u|_{q^{+}}, \quad \forall u \in E \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{1} \geq c_{2} \cdot|u|_{q^{-}}, \quad \forall u \in E \tag{25}
\end{equation*}
$$

For any $u \in E$ with $\|u\|_{1}>1$ by Lemma 1 and relations (15), (24), (25), we infer

$$
\frac{J(u)}{I(u)} \geq \frac{\|u\|_{1}^{\left(p_{1}\right)_{0}}}{\frac{|u|_{q^{+}}^{q^{+}}+|u|_{q^{-}}^{q^{-}}}{q^{-}}} \geq \frac{\|u\|_{1}^{\left(p_{1}\right)_{0}}}{\frac{c_{1}^{-q^{+}}\|u\|_{1}^{q^{+}}+c_{2}^{-q^{-}}\|u\|_{1}^{q^{-}}}{q^{-}}}
$$

Since $\left(p_{1}\right)_{0}>q^{+} \geq q^{-}$, passing to the limit as $\|u\|_{1} \rightarrow \infty$ in the above inequality, we deduce that relation (22) holds true.

Next, by Lemma 2 the space $W_{0}^{1} L_{\Phi_{1}}(\Omega)$ is continuously embedded in $W_{0}^{1} L_{\Phi_{2}}(\Omega)$. Thus, if $\|u\|_{1} \rightarrow 0$ then $\|u\|_{2} \rightarrow 0$.

The above remarks enable us to affirm that for any $u \in E$ with $\|u\|_{1}<1$ small enough, we have $\|u\|_{2}<1$.

On the other hand, since (8) holds true, we deduce that $W_{0}^{1} L_{\Phi_{2}}(\Omega)$ is continuously embedded in $L^{q^{ \pm}}(\Omega)$. It follows that there exist two positive constants d_{1} and d_{2} such that

$$
\begin{equation*}
\|u\|_{2} \geq d_{1} \cdot|u|_{q^{+}}, \quad \forall u \in W_{0}^{1} L_{\Phi_{2}}(\Omega) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{2} \geq d_{2} \cdot|u|_{q^{-}}, \quad \forall u \in W_{0}^{1} L_{\Phi_{2}}(\Omega) \tag{27}
\end{equation*}
$$

Thus, for any $u \in E$ with $\|u\|_{1}<1$ small enough, Lemma 1 and relations (15), (26), (27) imply

$$
\frac{J(u)}{I(u)} \geq \frac{\int_{\Omega} \Phi_{2}(|\nabla u|) d x}{\frac{|u|_{q^{+}}^{q^{+}}+|u|_{q^{-}}^{q^{-}}}{q^{-}}} \geq \frac{\|u\|_{2}^{\left(p_{2}\right)^{0}}}{\frac{d_{1}^{-q^{+}}\|u\|_{2}^{q^{+}}+d_{2}^{-q^{-}}\|u\|_{2}^{q^{-}}}{q^{-}}}
$$

Since $\left(p_{2}\right)^{0}<q^{-} \leq q^{+}$, passing to the limit as $\|u\|_{1} \rightarrow 0$ (and thus, $\|u\|_{2} \rightarrow 0$) in the above inequality, we deduce that relation (23) holds true.

The proof of Lemma 4 is complete.
Lemma 5. There exists $u \in E \backslash\{0\}$ such that $\frac{J(u)}{I(u)}=\lambda_{1}$.
Proof. Let $\left\{u_{n}\right\} \subset E \backslash\{0\}$ be a minimizing sequence for λ_{1}, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{J\left(u_{n}\right)}{I\left(u_{n}\right)}=\lambda_{1}>0 \tag{28}
\end{equation*}
$$

By relation (22), it is clear that $\left\{u_{n}\right\}$ is bounded in E. Since E is reflexive, it follows that there exists $u \in E$ such that u_{n} converges weakly to u in E. On the other hand, similar arguments to those used in the proof of [21, Theorem 2] show that the functional J is weakly lower semi-continuous. Thus, we find

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} J\left(u_{n}\right) \geq J(u) \tag{29}
\end{equation*}
$$

By Remark 1, it follows that E is compactly embedded in $L^{q(x)}(\Omega)$. Thus, u_{n} converges strongly in $L^{q(x)}(\Omega)$. Then, by relation (6), it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=I(u) . \tag{30}
\end{equation*}
$$

Relations (29) and (30) imply that if $u \not \equiv 0$, then

$$
\frac{J(u)}{I(u)}=\lambda_{1} .
$$

Thus, in order to conclude that the lemma holds true it is enough to show that u cannot be trivial. Assume by contradiction the contrary. Then, u_{n} converges weakly to 0 in E and strongly in $L^{q(x)}(\Omega)$. In other words, we will have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I\left(u_{n}\right)=0 \tag{31}
\end{equation*}
$$

Letting $\epsilon \in\left(0, \lambda_{1}\right)$ be fixed by relation (28), we deduce that for n large enough, we have

$$
\left|J\left(u_{n}\right)-\lambda_{1} I\left(u_{n}\right)\right|<\epsilon I\left(u_{n}\right),
$$

or

$$
\left(\lambda_{1}-\epsilon\right) I\left(u_{n}\right)<J\left(u_{n}\right)<\left(\lambda_{1}+\epsilon\right) I\left(u_{n}\right) .
$$

Passing to the limit in the above inequalities and taking into account that relation (31) holds true, we find

$$
\lim _{n \rightarrow \infty} J\left(u_{n}\right)=0
$$

That fact combined with the conclusion of Lemma 1 implies that actually u_{n} converges strongly to 0 in E, that is, $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{1}=0$. From this information and
relation (23), we get

$$
\lim _{n \rightarrow \infty} \frac{J\left(u_{n}\right)}{I\left(u_{n}\right)}=\infty
$$

and this is a contradiction. Thus, $u \not \equiv 0$.
The proof of Lemma 5 is complete.

By Lemma 5 we conclude that there exists $u \in E \backslash\{0\}$ such that

$$
\begin{equation*}
\frac{J(u)}{I(u)}=\lambda_{1}=\inf _{w \in E \backslash\{0\}} \frac{J(w)}{I(w)} \tag{32}
\end{equation*}
$$

Then, for any $v \in E$ we have

$$
\left.\frac{d}{d \epsilon} \frac{J(u+\epsilon v)}{I(u+\epsilon v)}\right|_{\epsilon=0}=0 .
$$

A simple computation yields

$$
\begin{align*}
& \int_{\Omega}\left(a_{1}(|\nabla u|)+a_{2}(|\nabla u|)\right) \nabla u \nabla v ; d x \cdot I(u) \\
& \quad-J(u) \cdot \int_{\Omega}|u|^{q(x)-2} u v d x=0, \quad \forall v \in E . \tag{33}
\end{align*}
$$

Relation (33) combined with the fact that $J(u)=\lambda_{1} I(u)$ and $I(u) \neq 0$ implies the fact that λ_{1} is an eigenvalue of problem (2). Thus, Step 2 is verified.

- Step 3. We show that any $\lambda \in\left(\lambda_{1}, \infty\right)$ is an eigenvalue of problem (2).

Let $\lambda \in\left(\lambda_{1}, \infty\right)$ be arbitrary but fixed. Define $T_{\lambda}: E \rightarrow \mathbb{R}$ by

$$
T_{\lambda}(u)=J(u)-\lambda I(u) .
$$

Clearly, $T_{\lambda} \in C^{1}(E, \mathbb{R})$ with

$$
\left\langle T_{\lambda}^{\prime}(u), v\right\rangle=\left\langle J^{\prime}(u), v\right\rangle-\lambda\left\langle I^{\prime}(u), v\right\rangle, \quad \forall u \in E .
$$

Thus, λ is an eigenvalue of problem (2) if and only if there exists $u_{\lambda} \in E \backslash\{0\}$ a critical point of T_{λ}.

With similar arguments as in the proof of relation (22) we can show that T_{λ} is coercive, that is, $\lim _{\|u\| \rightarrow \infty} T_{\lambda}(u)=\infty$. On the other hand, as we have already remarked, similar arguments to those used in the proof of [21, Theorem 2] (see also [20]) show that the functional T_{λ} is weakly lower semi-continuous. These two facts enable us to apply [27, Theorem 1.2] in order to prove that there exists $u_{\lambda} \in E$, a global minimum point of T_{λ}, and thus, a critical point of T_{λ}. In order to conclude that Step 3 holds true, it is enough to show that u_{λ} is not trivial. Indeed, since
$\lambda_{1}=\inf _{u \in E \backslash\{0\}} \frac{J(u)}{I(u)}$ and $\lambda>\lambda_{1}$ it follows that there exists $v_{\lambda} \in E$ such that

$$
J\left(v_{\lambda}\right)<\lambda I\left(v_{\lambda}\right),
$$

or, equivalently,

$$
T_{\lambda}\left(v_{\lambda}\right)<0 .
$$

Thus,

$$
\inf _{E} T_{\lambda}<0
$$

and we conclude that u_{λ} is a nontrivial critical point of T_{λ}, that is, λ is an eigenvalue of problem (2). Thus, Step 3 is verified.

- Step 4 . We show that any $\lambda \in\left(0, \lambda_{0}\right)$, where λ_{0} is given by relation (21), is not an eigenvalue of problem (2).

Indeed, assuming by contradiction that there exists $\lambda \in\left(0, \lambda_{0}\right)$ an eigenvalue of problem (2) it follows that there exists $u_{\lambda} \in E \backslash\{0\}$ such that

$$
\left\langle J^{\prime}\left(u_{\lambda}\right), v\right\rangle=\lambda\left\langle I^{\prime}\left(u_{\lambda}\right), v\right\rangle, \quad \forall v \in E .
$$

Thus, for $v=u_{\lambda}$ we find

$$
\left\langle J^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle=\lambda\left\langle I^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle,
$$

or

$$
J_{1}\left(u_{\lambda}\right)=\lambda I_{1}\left(u_{\lambda}\right) .
$$

The fact that $u_{\lambda} \in E \backslash\{0\}$ ensures that $I_{1}\left(u_{\lambda}\right)>0$. Since $\lambda<\lambda_{0}$, the above information implies

$$
J_{1}\left(u_{\lambda}\right) \geq \lambda_{0} I_{1}\left(u_{\lambda}\right)>\lambda I_{1}\left(u_{\lambda}\right)=J_{1}\left(u_{\lambda}\right) .
$$

Clearly, the above inequalities lead to a contradiction. Thus, Step 4 is verified.
By Steps 2-4, we deduce that $\lambda_{0} \leq \lambda_{1}$. The proof of Theorem 1 is now complete.

Remark 3. We point out that by the proof of Theorem 1 we cannot conclude whether $\lambda_{0}=\lambda_{1}$ or $\lambda_{0}<\lambda_{1}$. Such a study remains an open problem and we expect that the answer strongly depends on a_{1}, a_{2}, and q. In the case where $\lambda_{0}<\lambda_{1}$, another interesting open problem concerns the existence of eigenvalues of problem (2) in the interval $\left[\lambda_{0}, \lambda_{1}\right)$.

Acknowledgments

Both authors have been supported by Grants CNCSIS A-589/2007 and CNCSIS PNII-79/2007 "Procese Neliniare Degenerate si Singulare".

References

[1] R. Adams, Sobolev Spaces (Academic Press, New York, 1975).
[2] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), Vol. 314 (Springer-Verlag, Berlin, 1996).
[3] M. Chipot, W. Gangbo and B. Kawohl, On some nonlocal variational problems, Anal. Appl. (Singap.) 4 (2006) 345-356.
[4] Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Vol. 40 (SIAM, Philadelphia, 2002).
[5] Ph. G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity (Springer-Verlag, Heidelberg, 2005).
[6] Ph. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 11 (2000) 33-62.
[7] Ph. Clément, B. de Pagter, G. Sweers and F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math. 1 (2004) 241-267.
[8] D. E. Edmunds, J. Lang and A. Nekvinda, On $L^{p(x)}$ norms, Proc. Roy. Soc. London Ser. A 455 (1999) 219-225.
[9] D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k, p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A 437 (1992) 229-236.
[10] D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math. 143 (2000) 267-293.
[11] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324-353.
[12] X. L. Fan and Q. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
[13] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317.
[14] M. Filippakis and N. Papageorgiou, Multiple solutions for nonlinear elliptic problems with a discontinuous nonlinearity, Anal. Appl. (Singap.) 4 (2006) 1-18.
[15] R. Filippucci, P. Pucci and V. Rădulescu, Existence and nonexistence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, to appear in Commun. Partial Differ. Equations.
[16] M. Garciá-Huidobro, V. K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differential Equations Appl. (NoDEA) 6 (1999) 207-225.
[17] J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974) 163-205.
[18] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. J. 41 (1991) 592-618.
[19] M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A 462 (2006) 2625-2641.
[20] M. Mihăilescu and V. Rădulescu, Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 344 (2007) 15-20.
[21] M. Mihăilescu and V. Rădulescu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl. 330 (2007) 416-432.
[22] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007) 2929-2937.
[23] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034 (Springer, Berlin, 1983).
[24] V. Rădulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, in Handbook of Differential Equations: Stationary Partial Differential Equations, ed. M. Chipot, Vol. 4 (Elsevier, 2007), pp. 483-591.
[25] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces (Marcel Dekker, Inc., New York, 1991).
[26] S. Samko and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005) 229-246.
[27] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (Springer-Verlag, Heidelberg, 1996).

