Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity

Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu
Dedicated to Professor Patrizia Pucci, with deep esteem and admiration, on the occasion of her 60th birthday

Abstract

We consider a semilinear Neumann problem with an indefinite and unbounded potential and an asymmetric reaction that crosses at least the principal eigenvalue of the operator $-\Delta+\beta I$ in $H^{1}(\Omega), \beta$ being the potential function. Using a combination of variational methods, with truncation and perturbation techniques and Morse theory, we prove multiplicity theorems providing precise sign information for all the solutions.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper we study the following semilinear Neumann problem

$$
\begin{cases}\Delta u(z)+\beta(z) u(z)=f(z, u(z)) & \text { in } \Omega \tag{1}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

Here, $\beta \in L^{s}(\Omega)$ with $s>N$ and, in general, it is indefinite (sign changing) and unbounded. We assume that the reaction $f(z, x)$ is a measurable function which is C^{1} in the x-variable. The aim of this paper is to prove a multiplicity theorem for problem (11) providing information for all the solutions, provided that the reaction $x \rightarrow f(z, x)$ exhibits an asymmetric behavior at $+\infty$ and $-\infty$ (crossing and jumping nonlinearity).

The multiplicity of solutions for such semilinear elliptic equations was first studied by Hofer [13, who examined a Dirichlet problem with $\beta \equiv 0$. Assuming that $f(z, x)=f(x)$ with $f \in C^{1}(\mathbb{R}), f(0)=0, f^{\prime}(0) \in\left(\lambda_{i}, \lambda_{i+1}\right)$ for some $i \geq 2$ (here $\left\{\lambda_{i}\right\}_{i \geq 1}$ denotes the sequence of distinct eigenvalues of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ and that $\lim \sup _{x \rightarrow \pm \infty} f(x) / x<\lambda_{1}$, Hofer [13] proved that the equation has at least four nontrivial solutions, two of which have constant sign (one positive and the other negative). Later, Bartsch \& Wang [3] proved that from the other two solutions, one is nodal (sign-changing). In fact, Dancer \& Du [7] and Li \& Wang [16] established that both solutions are nodal. In the aforementioned works it is assumed that asymptotically at $\pm \infty$ the quotient $f(z, x) / x$ stays below λ_{1} and this makes the

[^0]energy functional of the problem coercive. Problems with asymmetric (crossing) reaction, are usually studied using the so-called "Fučik spectrum". We refer to the works Các [5], Cuesta \& Gossez [6], Magalhaes [19], and Perera \& Schechter [22]. However, this approach has two serious limitations. First, the use of the Fučik spectrum requires that the limits $\lim _{x \rightarrow \pm \infty} f(z, x) / x$ do exist. Second, our knowledge of the Fučik spectrum is limited (see Schechter [24]). More recently, Liu \& Sun [18] considered the asymmetric Dirichlet problem with $\beta=0$ and without any use of the Fučik spectrum. Their method of proof is based on some elaborate flow invariance arguments. In fact, Liu \& Sun [18, p. 1071] mention that alternatively "Morse theory could work, but then the techniques will be more complicated". In the present paper, working in the framework of Neumann problems (which in principle are more difficult to deal with, due to the failure of the Poincaré inequality) with an indefinite and unbounded potential $\beta(\cdot)$, using a combination of variational methods and Morse theory, we prove multiplicity results with precise sign information for all the solutions, under weaker conditions on the reaction $f(z, x)$ than in Liu \& Sun [18. Our approach is based on the critical point theory, together with suitable perturbation, truncation and comparison techniques and with the use of Morse theory (critical groups). In the next section, for the convenience of the reader, we recall the main mathematical tools which we will use in the sequel. Also, we examine the spectral properties of the operator $H^{1}(\Omega) \ni u \longmapsto-\Delta u+\beta u$.

2. Mathematical Background

In the study of problem (1), in addition to the Sobolev space $H^{1}(\Omega)$, we will also use the Banach space $C^{1}(\bar{\Omega})$. This is an ordered Banach space with positive cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}) ; u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\}
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+} ; u(z)>0 \text { for all } z \in \bar{\Omega}\right\}
$$

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function (that is, for all $x \in \mathbb{R}$, the mapping $z \longmapsto g(z, x)$ is measurable, and for a.a. $z \in \Omega$, the function $x \longmapsto f(z, x)$ is continuous) with subcritical growth in $x \in \mathbb{R}$, namely

$$
|g(z, x)| \leq \alpha(z)\left(1+|x|^{r-1}\right) \quad \text { for a.a. } z \in \Omega \text { and for all } x \in \mathbb{R}
$$

with $\alpha \in L^{\infty}(\Omega)_{+}$and $1<r<2^{*}$, where $2^{*}=2 N /(N-2)$ if $N \geq 3$ and $2^{*}=+\infty$ if $N=1,2$. Also, let $\beta \in L^{s}(\Omega)$ with $s>N, G(z, x)=\int_{0}^{x} g(z, t) d t$, and consider the C^{1}-functional $\Psi_{0}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\Psi_{0}(u)=\frac{1}{2}\|D u\|_{2}^{2}+\frac{1}{2} \int_{\Omega} \beta u^{2} d z-\int_{\Omega} G(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

The next result was first proved by Brezis \& Nirenberg [4] for the "Dirichlet" space $H_{0}^{1}(\Omega)$ and was later extended to the space $W_{0}^{1, p}(\Omega)$ (with $1<p<\infty$) by Garcia-Azorero, Manfredi \& Peral Alonso 11 and to the space $W^{1, p}(\Omega)$ (Neumann case) by Iannizzotto \& Papageorgiou [14. The proof of 14 applies in the present setting using the regularity results of Wang [26]. So, we have:

Proposition 2.1. Assume that $u_{0} \in H^{1}(\Omega)$ is a local $C^{1}(\bar{\Omega})$-minimizer of Ψ_{0}, that is, there exists $\rho_{0}>0$ such that $\Psi_{0}\left(u_{0}\right) \leq \Psi_{0}\left(u_{0}+h\right)$ for all $h \in C^{1}(\bar{\Omega})$ with
$\|h\|_{C^{1}(\bar{\Omega})} \leq \rho_{0}$. Then $u_{0} \in C^{1, \gamma}(\bar{\Omega})$ for some $\gamma \in(0,1)$ and u_{0} is a local $H^{1}(\Omega)-$ minimizer of Ψ_{0}, that is, there exists $\rho_{1}>0$ such that $\Psi_{0}\left(u_{0}\right) \leq \Psi_{0}\left(u_{0}+h\right)$ for all $h \in H^{1}(\Omega)$ with $\|h\|_{H^{1}(\Omega)} \leq \rho_{1}$.

Here and in the sequel, we denote by $\|\cdot\|$ the norm in $H^{1}(\Omega)$, that is,

$$
\|u\|=\left(\|u\|_{2}^{2}+\|D u\|_{2}^{2}\right)^{1 / 2} \quad \text { for all } u \in H^{1}(\Omega)
$$

Next we recall some basic definitions and facts from critical point theory. For details, we refer to the books by Gasinski \& Papageorgiou 12$]$ and Kristaly, Rădulescu \& Varga 15.

Let X be a Banach space and let X^{*} be its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the dual pair $\left(X^{*}, X\right)$. Let $\varphi \in C^{1}(X)$. We say that φ satisfies the "Cerami condition" (the "C-condition" for short), if the following is true:
"Every sequence $\left\{x_{n}\right\}_{n \geq 1} \subset X$ such that $\left\{\varphi\left(x_{n}\right)\right\}_{n \geq 1} \subset \mathbb{R}$ is bounded and

$$
\left(1+\left\|x_{n}\right\|_{X}\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \text { in } X^{*}
$$

admits a strongly convergent subsequence."
This compactness-type condition is in general weaker than the more usual Palais-Smale condition. Nevertheless it suffices to prove a deformation theorem and to deduce the minimax theory for certain critical values of φ. In particular, we have the following result, known in the literature as the "mountain pass theorem".

Theorem 2.1. Assume that $\varphi \in C^{1}(X), x_{0}, x_{1} \in X,\left\|x_{1}-x_{0}\right\|_{X}>\rho>0$,

$$
\left.\max \| \varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}<\inf \left\{\varphi(x) ;\left\|x-x_{0}\right\|_{X}=\rho\right\}=\eta_{l}
$$

$$
c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \varphi(\gamma(t)), \quad \text { where } \Gamma=\left\{\gamma \in C([0,1] ; X) ; \gamma(0)=x_{0}, \gamma(1)=x_{1}\right\},
$$

and φ satisfies the C-condition. Then $c \geq \eta_{l}$ and c is a critical value of φ.
Next, from Morse theory, we recall the definition of critical groups and the Morse relation. So, let $\varphi \in C^{1}(X)$ and $c \in \mathbb{R}$. We define the following sets:
$\varphi^{c}=\{x \in X ; \varphi(x) \leq c\}, K_{\varphi}=\left\{x \in X ; \varphi^{\prime}(x)=0\right\}, K_{\varphi}^{c}=\left\{x \in K_{\varphi} ; \varphi(x)=c\right\}$.
Let $\left(Y_{1}, Y_{2}\right)$ be a topological pair such that $Y_{2} \subseteq Y_{1} \subseteq X$ and $k \geq 0$ be an integer. By $H_{k}\left(Y_{1}, Y_{2}\right)$ we denote the k th singular homology group for the topological pair $\left(Y_{1}, Y_{2}\right)$ with integer coefficients. The critical groups of φ at an isolated $x \in K_{\varphi}^{c}$ are defined by

$$
C_{k}(\varphi, x)=H_{k}\left(\varphi^{c} \cap \mathcal{U}, \varphi^{c} \cap \mathcal{U} \backslash\{x\}\right) \quad \text { for all } k \geq 0
$$

where \mathcal{U} is a neighborhood of x such that $K_{\varphi} \cap \varphi^{c} \cap \mathcal{U}=\{x\}$. The excision property of singular homology implies that the above definition of critical groups is independent of the neighborhood \mathcal{U} of x.

Suppose that $\varphi \in C^{1}(X)$ satisfies the C-condition and $\inf \varphi\left(K_{\varphi}\right)>-\infty$. Let $c<\inf \varphi\left(K_{\varphi}\right)$. The critical groups of φ at infinity are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \quad \text { for all } k \geq 0
$$

The second deformation theorem (see for example Gasinski \& Papageorgiou [12, p. 628]) implies that the above definition of critical groups of φ at infinity is independent of the choice of the level $c<\inf \varphi\left(K_{\varphi}\right)$.

Suppose that K_{φ} is finite. We define

$$
\begin{gathered}
M(t, x)=\sum_{k \geq 0} \operatorname{rank} C_{k}(\varphi, x) t^{k} \quad \text { for all } t \in \mathbb{R} \text { and all } x \in K_{\varphi} \\
P(t, \infty)=\sum_{k \geq 0} \operatorname{rank} C_{k}(\varphi, \infty) t^{k} \quad \text { for all } t \in \mathbb{R}
\end{gathered}
$$

The Morse relation says

$$
\begin{equation*}
\sum_{x \in K_{\varphi}} M(t, x)=P(t, \infty)+(1+t) Q(t) \tag{2}
\end{equation*}
$$

where $Q(t)=\sum_{k>0} a_{k} t^{k}$ is a formal series with nonnegative integer coefficients a_{k}, $k \geq 0$.

Suppose that $X=H$ is a Hilbert space, $x \in H, \mathcal{U}$ is a neighborhood of x and $\varphi \in C^{2}(\mathcal{U})$. If $x \in K_{\varphi}$, then the Morse index of x denoted by $\mu=\mu(x)$, is defined as the supremum of the dimensions of vector subspaces of H in which $\varphi^{\prime \prime}(x)$ is negative definite. The nullity of φ at $x \in K_{\varphi}$, denoted by $\nu=\nu(x)$, is defined to be the dimension of $\operatorname{Ker} \varphi^{\prime \prime}(x)$. We say that $x \in K_{\varphi}$ is nondegenerate if $\nu(x)=0$, that is, $\varphi^{\prime \prime}(x)$ is invertible. If $x \in K_{\varphi}$ is nondegenerate with Morse index μ, then (see Mawhin \& Willem [20)

$$
\begin{equation*}
C_{k}(\varphi, x)=\delta_{k, \mu} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{3}
\end{equation*}
$$

where $\delta_{k, \mu}$ denotes the Kronecker symbol.
Now we develop the spectrum of $-\Delta u+\beta u$ for $u \in H^{1}(\Omega)$. We follow Willem [27], where the Dirichlet eigenvalue problem is examined. For completeness we provide the details. So, we examine the following liner eigenvalue problem

$$
\begin{cases}-\Delta u(z)+\beta(z) u(z)=\lambda u(z) & \text { in } \Omega \tag{4}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

Set

$$
\sigma(u)=\frac{1}{2}\|D u\|_{2}^{2}+\frac{1}{2} \int_{\Omega} \beta u^{2} d z, \quad u \in H^{1}(\Omega) .
$$

To analyze the linear eigenvalue problem (4) it suffices to impose the following condition on the potential β. Eventually, in order to deal with problem (1) we will have to strengthen this condition. $H_{0}: \beta \in L^{N / 2}(\Omega)$ if $N \geq 3, \beta \in L^{r}(\Omega)$ with $r>1$ if $N=2$ and $\beta \in L^{1}(\Omega)$ if $N=1$.

Lemma 2.1. If hypothesis H_{0} holds, then

$$
\widehat{\lambda}_{1}=\inf \left\{\sigma(u) ; u \in H^{1}(\Omega),\|u\|_{2}=1\right\}>-\infty .
$$

Proof. We treat the case $N \geq 3$, the other two cases being similar using the Sobolev embedding theorem.

We proceed by contradiction. So, suppose that the conclusion of Lemma is not true. Then we can find $\left\{u_{n}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ such that $\left\|u_{n}\right\|_{2}=1$ for all $n \geq 1$ and $\sigma\left(u_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$. So, we can find $n_{0} \geq 1$ such that

$$
\begin{equation*}
\sigma\left(u_{n}\right) \leq-1 \quad \text { for all } n \geq n_{0} \tag{5}
\end{equation*}
$$

Suppose that $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$ and let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \rightarrow y \text { weakly in } H^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2}(\Omega) . \tag{6}
\end{equation*}
$$

Note that $\left\{y_{n}^{2}\right\}_{n \geq 1} \subset L^{\frac{N}{N-2}}(\Omega)$ is bounded (by the Sobolev embedding theorem) and so, by (6), we may assume that

$$
\begin{equation*}
y_{n}^{2} \rightarrow y^{2} \quad \text { weakly in } L^{\frac{N}{N-2}}(\Omega) \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{\Omega} \beta y_{n}^{2} d z \rightarrow \int_{\Omega} \beta y^{2} d z \quad\left(\text { since } \frac{N-2}{N}+\frac{2}{N}=1, \text { see } H_{0}\right) . \tag{8}
\end{equation*}
$$

Thus, by (5) and (8) and passing at the limit as $n \rightarrow \infty$, we obtain $\sigma(y) \leq 0$.
If $y=0$, then $y_{n} \rightarrow 0$ in $H^{1}(\Omega)$, a contradiction to the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. Hence $y \neq 0$. On the other hand

$$
\left\|y_{n}\right\|_{2}=\frac{\left\|u_{n}\right\|_{2}}{\left\|u_{n}\right\|}=\frac{1}{\left\|u_{n}\right\|} \rightarrow 0 \text { as } n \rightarrow \infty
$$

which implies $\|y\|_{2}=0$ (see (6)), hence $y=0$, a contradiction. This proves that $\left\{u_{n}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ is bounded. So we may assume that

$$
\begin{aligned}
& u_{n} \rightarrow u \text { weakly in } H^{1}(\Omega) \\
& u_{n} \rightarrow u \text { weakly in }{L^{2^{*}}}^{(\Omega)} \quad\left(\text { recall } 2^{*}=\frac{2 N}{N-2}\right)
\end{aligned}
$$

Therefore

$$
\int_{\Omega} \beta u_{n}^{2} d z \rightarrow \int_{\Omega} \beta u^{2} d z
$$

Taking the limit as $n \rightarrow \infty$ we obtain $\sigma(u) \leq \widehat{\lambda}_{1}=-\infty$, a contradiction. So, we conclude that $\hat{\lambda}_{1}>-\infty$.

By virtue of Lemma 2.1 we see that we can find $\hat{\gamma}>\max \left\{-\widehat{\lambda}_{1}, 0\right\}$ such that

$$
\begin{equation*}
\sigma(u)+\widehat{\gamma}\|u\|_{2}^{2} \geq \widehat{c}\|u\|^{2} \quad \text { for all } u \in H^{1}(\Omega) \text { with } \widehat{c}>0 \tag{9}
\end{equation*}
$$

Then relation (9) suggests the introduction of the following inner product on $H^{1}(\Omega)$:

$$
(u, y)_{*}=\int_{\Omega}(D u, D y)_{\mathbb{R}^{N}} d z+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u y d z \quad \text { for all } u, y \in H^{1}(\Omega)
$$

Given $h \in L^{2}(\Omega)$, by the Riesz representation theorem, we can find a unique $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
(u, v)_{*}=\int h v d z \quad \text { for all } v \in H^{1}(\Omega) \tag{10}
\end{equation*}
$$

So, we can define the continuous linear map $K_{0}: L^{2}(\Omega) \rightarrow H^{1}(\Omega)$ which to each $h \in L^{2}(\Omega)$ assigns the unique $u \in H^{1}(\Omega)$ satisfying (10). Let $i: H^{1}(\Omega) \rightarrow L^{2}(\Omega)$ be the embedding map. By virtue of the Sobolev embedding theorem, i is compact and so $K_{0} \circ i$ is compact, self-adjoint and positive. Then by the spectral theorem for such operators (see, for example, Gasinski \& Papageorgiou [12, p. 296]), we can find $\left\{\mu_{n}\right\}_{n \geq 1}$ a sequence of eigenvalues of $K_{0} \circ i$ such that $\mu_{1}>\mu_{2}>\ldots>\mu_{n}>\ldots>0$ and $\mu_{n} \rightarrow 0$.

We set $\widehat{\lambda_{n}}=\frac{1}{\mu_{n}}-\widehat{\gamma}$ for all $n \geq 1$. Then $\left\{\widehat{\lambda_{n}}\right\}_{n \geq 1}$ is the sequence of distinct eigenvalues of (4). We have $-\infty<\widehat{\lambda_{1}}<\widehat{\lambda_{2}}<\ldots<\widehat{\lambda_{n}}<\ldots$, and $\widehat{\lambda_{n}} \rightarrow+\infty$ as $n \rightarrow \infty$.

To these eigenvalues corresponds a sequence $\left\{\widehat{u_{n}}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ of eigenfunctions, which form an orthonormal basis of $L^{2}(\Omega)$ and an orthogonal basis of $H^{1}(\Omega)$. Moreover, if $\beta \in L^{s}(\Omega)$ with $s>N$, then the regularity results of Wang [26] imply $\left\{\widehat{u_{n}}\right\}_{n \geq 1} \subset C^{1}(\bar{\Omega})$. These eigenvalues admit variational characterizations of

Courant type using the Rayleigh quotient $\frac{\sigma(u)}{\|u\|_{2}^{2}}$ for all $u \in H^{1}(\Omega) \backslash\{0\}$. So, denoting by $E\left(\widehat{\lambda}_{i}\right)$ the eigenspace corresponding to $\widehat{\lambda}_{i}$, we have

$$
\begin{gather*}
\hat{\lambda}_{1}=\inf \left\{\frac{\sigma(u)}{\|u\|_{2}^{2}} ; u \in H^{1}(\Omega), u \neq 0\right\} \tag{11}\\
\widehat{\lambda}_{k}=\inf \left\{\frac{\sigma(u)}{\|u\|_{2}^{2}} ; u \in \overline{\oplus_{i \geq k} E\left(\widehat{\lambda}_{i}\right)}, u \neq 0\right\} \\
=\sup \left\{\frac{\sigma(u)}{\|u\|_{2}^{2}} ; u \in \underset{i=1}{\oplus} E\left(\widehat{\lambda}_{i}\right), u \neq 0\right\} \text { for } k \geq 2
\end{gather*}
$$

The infimum in (11) and both the infimum and the supremum in (12) are realized on $E\left(\widehat{\lambda}_{k}\right), k \geq 1$. The first eigenvalue $\widehat{\lambda}_{1}$ is simple (that is, $\operatorname{dim} E\left(\widehat{\lambda}_{1}\right)=1$) and from (11) it is clear that the nontrivial elements of $E\left(\widehat{\lambda}_{1}\right)$ do not change sign. In fact $\widehat{\lambda}_{1}$ is the only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have nodal (sign changing) eigenfunctions. By \widehat{u}_{1} we denote the L^{2} normalized (that is, $\left\|\widehat{u}_{1}\right\|_{L_{2}}=1$) positive eigenfunction corresponding to $\widehat{\lambda}_{1}$. If $\beta \in L^{s}(\Omega)$ with $s>N$, then $\widehat{u}_{1} \in C_{+} \backslash\{0\}$ and in fact by the Harnack inequality of Pucci \& Serrin [23, p. 163], we have $\widehat{u}_{1}(z)>0$ for all $z \in \Omega$. Finally, if $\beta^{+} \in L^{\infty}(\Omega)$, then the boundary point theorem of Pucci \& Serrin [23, p. 120] implies that $\widehat{u}_{1} \in \operatorname{int} C_{+}$. When $\beta \in L^{s}(\Omega)$ with $s>N / 2$, the eigenspaces $E\left(\widehat{\lambda}_{k}\right)$ have the so-called "Unique Continuation Property" (UCP for short). Namely, if $u \in E\left(\widehat{\lambda}_{k}\right)$ and u vanishes on a set of positive measure, then $u \equiv 0$ (see de Figueiredo $\&$ Gossez [10).

A similar analysis can be conducted for a weighted version of the eigenvalue problem (4). So, let $m \in L^{\infty}(\Omega), m \geq 0, m \neq 0$ and consider the following linear eigenvalue problem

$$
\left\{\begin{array}{cccc}
-\Delta u(z)+\beta(z) u(z) & = & \lambda m(z) u(z) & \text { in } \Omega \tag{13}\\
\frac{\partial u}{\partial n} & = & 0 & \text { on } \partial \Omega
\end{array}\right.
$$

As for (4), the eigenvalue problem (13) has a strictly increasing sequence $\left\{\tilde{\lambda}_{k}(m)\right\}_{k \geq 1}$ of eigenvalues such that $\tilde{\lambda}_{k}(m) \rightarrow+\infty$ as $k \rightarrow \infty$. These eigenvalues admit variational characterizations in terms of Rayleigh quotient $\frac{\sigma(u)}{\int_{\Omega} m u^{2} d z}$ for all $u \in H^{1}(\Omega), u \neq 0$ (see (11), (121). The first eigenvalues $\tilde{\lambda}_{j}(m)>0$ is simple and has eigenfunctions of constant sign. These eigenspaces $E\left(\tilde{\lambda}_{k}(m)\right)$ have the UCP and this leads to the following monotonicity property for the eigenvalues:

Proposition 2.2. If $m_{1}, m_{2} \in L^{\infty}(\Omega) \backslash\{0\}, m_{1}(z) \leq m_{2}(z)$ a.e. in Ω and $m_{1} \neq m_{2}$, then $\tilde{\lambda}_{k}\left(m_{2}\right)<\tilde{\lambda}_{k}\left(m_{1}\right)$ for all $k \geq 1$.

Also, as a consequence of the Harnack inequality (see Pucci \& Serrin [23, p. 163]), we have the following useful inequality.

Proposition 2.3. If $\vartheta \in L^{s}(\Omega)$ with $s>\frac{N}{2}, \vartheta(z) \leq \widehat{\lambda}_{1}$ a.e. in Ω and $\vartheta \neq \widehat{\lambda}_{1}$ then there exists $c_{0}>0$ such that

$$
\eta(u)=\sigma(u)-\int_{\Omega} \vartheta u^{2} d z \geq c_{0}\|u\|^{2} \quad \text { for all } u \in H^{1}(\Omega)
$$

Proof. Evidently $\eta \geq 0$. Suppose that the result is not true. Then by virtue of the 2-homogeneity of the functional η, we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega)$ such that $\left\|u_{n}\right\|=1$ for all $n \geq 1$ and $\eta\left(u_{n}\right) \downarrow 0$ as $n \rightarrow \infty$. We may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } H^{1}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{2}(\Omega) . \tag{14}
\end{equation*}
$$

The functional $\sigma(\cdot)$ is sequentially weakly lower semi-continuous. Thus, for some $\xi \in \mathbb{R}$,

$$
\begin{equation*}
\sigma(u) \leq \int_{\Omega} \vartheta u^{2} d z \quad(\text { see (14) }) \Rightarrow \sigma(u)=\widehat{\lambda}_{1}\|u\|_{2}^{2} \quad(\text { see (11) }) \Rightarrow u=\xi \widehat{u}_{1} . \tag{15}
\end{equation*}
$$

If $\xi=0$ then $u_{n} \rightarrow 0$ in $H^{1}(\Omega)$, which contradicts the fact that $\left\|u_{n}\right\|=1$ for all $n \geq 1$. So $\xi \neq 0$. By the Harnack inequality $\widehat{u}_{1}(z)>0$ for all $z \in \Omega$ (see Pucci \& Serrin [23, p. 163]). Hence $|u(z)|>0$ for all $z \in \Omega$ and so from (15) we have $\sigma(u)<\widehat{\lambda}\|u\|_{2}^{2}$, which contradicts (11).

For every $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$ and for $u \in H^{1}(\Omega)$, we define $u^{ \pm}(\cdot)=u(\cdot)^{ \pm}$. We know that $u^{ \pm} \in H^{1}(\Omega),|u|=u^{+}+u^{-}$, and $u=u^{+}-u^{-}$.

Given a measurable function $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ (for example a Carathéodory function), we define

$$
N_{h}(u)(\cdot)=h(\cdot, u(\cdot)) \quad \text { for all } u \in H^{1}(\Omega)
$$

(the Nemytsky map corresponding to h). Also, $A \in \mathcal{L}\left(H^{1}(\Omega), H^{1}(\Omega)^{*}\right)$ is defined by

$$
\langle A(u), y\rangle=\int_{\Omega}(D u, D y)_{\mathbb{R}^{N}} d z \quad \text { for all } u, y \in H^{1}(\Omega)
$$

Finally, by $|\cdot|_{N}$ we denote the Lebesgue measure on \mathbb{R}^{N}.

3. Solutions of Constant Sign

In this section we produce solutions of constant sign for problem (1). In section 4 we have the full multiplicity theorems.

The hypotheses on the data of (1), are the following:
$H_{1}: \beta \in L^{s}(\Omega)$ with $s>N$ and $\beta^{+} \in L^{\infty}(\Omega)$.
$H_{2}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is measurable such that for a.a. $z \in \Omega, f(z, 0)=0, f(z, \cdot) \in$ $C^{1}(\mathbb{R})$ and (i) $\left|f_{x}^{\prime}(z, x)\right| \leq a(z)\left(1+|x|^{r-2}\right)$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in$ $L^{\infty}(\Omega), 2 \leq r<2^{*}$;
(ii) there exist functions $\theta, \widehat{\theta} \in L^{\infty}(\Omega)$ such that

$$
\begin{aligned}
& \theta(z) \leq \widehat{\lambda} \text {, a.e. in } \Omega, \theta \neq \widehat{\lambda}_{1} \text { and } \\
& \widehat{\theta}(z) \leq \liminf _{x \rightarrow+\infty} \frac{f(z, x)}{x} \leq \limsup _{x \rightarrow+\infty} \frac{f(z, x)}{x} \leq \theta(z) \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iii) there are functions $\eta, \widehat{\eta} \in L^{\infty}(\Omega)$ such that

$$
\begin{aligned}
& \eta(z) \geq \widehat{\lambda} \text {, a.e. in } \Omega, \eta \neq \widehat{\lambda}_{1} \text { and } \\
& \eta(z) \leq \liminf _{x \rightarrow-\infty} \frac{f(z, x)}{x} \leq \limsup _{x \rightarrow-\infty} \frac{f(z, x)}{x} \leq \widehat{\eta}(z) \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iv) there exists integer $\ell \geq 2$ such that

$$
\begin{aligned}
& f_{x}^{\prime}(z, 0) \in\left[\widehat{\lambda}_{\ell}, \widehat{\lambda}_{\ell+1}\right] \text { a.e. in } \Omega f_{x}^{\prime}(\cdot, 0) \neq \hat{\lambda}_{\ell}, f_{x}^{\prime}(\cdot, 0) \neq \widehat{\lambda}_{\ell+1} \text { and } \\
& f_{x}^{\prime}(z, 0)=\lim _{x \rightarrow 0} \frac{f(z, x)}{x} \text { uniformly for a.a. } z \in \Omega .
\end{aligned}
$$

Remark: Hypotheses $H_{2}(i i)$, (iii) classify this nonlinearity as "crossing" or "jumping" since as we move from $-\infty$ to $+\infty$ the quotient $\frac{f(z, x)}{x}$ crosses at least the principal eigenvalue $\widehat{\lambda}_{1}$. This asymmetric behavior of $f(z, \cdot)$ makes it impossible to use the methods and techniques of the papers mentioned in the Introduction.

Let $\varphi: H^{1}(\Omega) \rightarrow \mathbb{R}$ be the energy functional for problem (1) defined by

$$
\varphi(u)=\frac{1}{2} \sigma(u)-\int_{\Omega} F(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

Evidently $\varphi \in C^{2}\left(H^{1}(\Omega)\right)$. Also let $\hat{\gamma}>0$ be as in (9). We introduce the following perturbations-truncations of the reaction $\rho(z, \cdot)$:

$$
\widehat{f}_{+}(z, x)=f\left(z, x^{+}\right)+\widehat{\gamma} x^{+} \quad \text { and } \quad \widehat{f}_{-}(z, x)=f\left(z,-x^{-}\right)+\widehat{\gamma}\left(-x^{-}\right) .
$$

Both are Carathéodory functions. We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1} - functionals $\widehat{\varphi}_{ \pm}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\varphi}_{ \pm}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

Proposition 3.1. If hypotheses H_{1} and H_{2} hold, then φ satisfies the C condition.

Proof. Let $\left\{u_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega)$ be a sequence such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } H^{1}(\Omega)^{*} \tag{16}
\end{equation*}
$$

From (16) we have

$$
\begin{align*}
& \left|\left\langle\varphi^{\prime}\left(u_{n}\right), h\right\rangle\right| \leq \frac{\epsilon_{n}\|h\|}{1+\|\mid\| u_{n} \|} \text { for all } h \in H^{1}(\Omega) \text { with } \epsilon_{n} \rightarrow 0 \tag{17}\\
& \Rightarrow\left|\int_{\Omega} u_{n} h d z+\int_{\Omega} \beta u_{n} h d z-\int_{\Omega} f\left(z, u_{n}\right) h d z\right| \leq \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \text { for all } n \geq 1 .
\end{align*}
$$

In (17) we choose $h=u_{n}^{+} \in H^{1}(\Omega)$. Then

$$
\begin{equation*}
\left\|D u_{n}^{+}\right\|_{2}^{2}+\int_{\Omega} \beta\left(u_{n}^{+}\right)^{2} d z-\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z \leq \epsilon_{n} \quad \text { for all } n \geq 1 \tag{18}
\end{equation*}
$$

Suppose that $\left\|u_{n}^{+}\right\| \rightarrow \infty$. We set $y_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|}, n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } H^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2 s^{\prime}}(\Omega)\left(\frac{1}{s}+\frac{1}{s^{\prime}}=1\right) . \tag{19}
\end{equation*}
$$

From (18) we have

$$
\begin{equation*}
\sigma\left(y_{n}\right)-\int_{\Omega} \frac{f\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|} y_{n} d z \leq \frac{\epsilon_{n}}{\left\|u_{n}^{+}\right\|^{2}} \text { for all } n \geq 1 \tag{20}
\end{equation*}
$$

From hypotheses $H_{2}(i),(i i)$ we obtain

$$
\left\{\frac{N_{f}\left(u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|}\right\}_{n \geq 1} \subseteq L^{2}(\Omega) \text { is bounded. }
$$

So, we may assume that

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|} \xrightarrow{w} g \text { in } L^{2}(\Omega) \tag{21}
\end{equation*}
$$

Moreover, hypothesis $H_{2}(i i)$ implies that

$$
\begin{equation*}
g=\theta_{0} y \text { with } \widehat{\theta}(z) \leq \theta_{0}(z) \leq \theta(z) \text { a.e. in } \Omega . \tag{22}
\end{equation*}
$$

So, if in (20) we pass to the limit as $n \rightarrow \infty$ and use (19), (21), (22), then

$$
\sigma(y)-\int_{\Omega} \theta_{0} y^{2} d z \leq 0 \Rightarrow C_{0}\|y\|^{2} \leq 0 \text { (see Proposition 2.3) } \Rightarrow y=0 .
$$

Then

$$
\sigma\left(y_{n}\right) \rightarrow 0 \Rightarrow D y_{n} \rightarrow 0 \text { in } L^{2}(\Omega, \mathbb{R}) \Rightarrow y_{n} \rightarrow 0 \text { in } H^{1}(\Omega)(\text { see (19) }),
$$

which contradicts the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. This proves that

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \leq 1} \subset H^{1}(\Omega) \text { is bounded. } \tag{23}
\end{equation*}
$$

From (17) and (23), we have for all $n \geq 1$ and for some $M_{1}>0$,

$$
\begin{equation*}
\left|\left\langle A\left(-u_{n}^{-}\right), h\right\rangle+\int_{\Omega} \beta\left(-u_{n}^{-}\right) h d z-\int_{\Omega} f\left(z,-u_{n}^{-}\right) h d z\right| \leq M_{1}\|h\| . \tag{24}
\end{equation*}
$$

Suppose that $\left\|u_{n}^{-}\right\| \rightarrow \infty$. We set $v_{n}=\frac{u_{n}^{-}}{\left\|u_{n}^{-}\right\|}, n \geq 1$. Then $\left\|v_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
v_{n} \xrightarrow{w} v \text { in } H^{1}(\Omega) \text { and } v_{n} \rightarrow v \text { in } L^{2}(\Omega) . \tag{25}
\end{equation*}
$$

From (24), we have for all $n \geq 1$,

$$
\begin{equation*}
\left|\left\langle A\left(-v_{n}^{-}\right), h\right\rangle+\int_{\Omega} \beta\left(-v_{n}\right) h d z-\int_{\Omega} \frac{f\left(z,-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|} h d z\right| \leq \frac{M_{1}\|h\|}{\left\|u_{n}^{-}\right\|} . \tag{26}
\end{equation*}
$$

Again we have that $\left\{\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|}\right\}_{n \geq 1} \subseteq L^{2}(\Omega)$ is bounded and by virtue of hypothesis $H_{2}(i i i)$ we have
(27) $\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|} \xrightarrow{w} g_{*}=\eta_{0} v$ in $L^{2}(\Omega)$ with $\eta(z) \leq \eta_{0}(z) \leq \widehat{\eta}(z)$ for a.a. $z \in \Omega$.

So, if in (26) we pass to the limit as $n \rightarrow \infty$ and use (25) and (27), then

$$
\begin{align*}
& \langle A(-v), h\rangle+\int_{\Omega} \beta(-v) h d z=\int_{\Omega} \eta_{0}(-v) h d z \text { for all } h \in H^{1}(\Omega) \\
& \Rightarrow A(v)+\beta v=\eta_{0} v, \tag{28}\\
& \Rightarrow-\Delta v(z)+\beta(z) v(z)=\eta_{0}(z) v(z) \text { a.e. in } \Omega, \frac{\theta v}{\theta n}=0 \text { on } \theta \Omega .
\end{align*}
$$

Also, if in (26) we choose $h=v_{n}-v \in H^{1}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (25) and (27), then

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle A\left(-v_{n}\right), v_{n}-v\right\rangle=0 \Rightarrow\left\|D v_{n}\right\|_{2} \rightarrow\|D v\|_{2} \\
& \Rightarrow v_{n} \rightarrow v \text { in } H^{1}(\Omega) \text { (by the Kadec-Klee property, see (25)) } \tag{29}\\
& \Rightarrow\|v\|=1, v \geq 0 .
\end{align*}
$$

By virtue of Proposition [2.2, we have

$$
\begin{equation*}
\tilde{\lambda}_{1}\left(\eta_{0}\right) \leq \tilde{\lambda}_{1}(\eta)<\tilde{\lambda}_{1}\left(\widehat{\lambda}_{1}\right)=1 \tag{30}
\end{equation*}
$$

From (28) and (30) it follows that $v \neq 0$ (see (29)) is nodal, a contradiction. This means that

$$
\left\{u_{n}^{-}\right\}_{n \geq 1} \subseteq H^{1}(\Omega) \text { is bounded } \Rightarrow\left\{u_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega) \text { is bounded (see (23)). }
$$

Hence we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } H^{1}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{2}(\Omega) . \tag{31}
\end{equation*}
$$

In (17) we choose $h=u_{n}-u \in H^{1}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (31). Then

$$
\lim _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle=0 \Rightarrow\left\|D u_{n}\right\|_{2} \rightarrow\|D u\|_{2} \Rightarrow u_{n} \rightarrow u \text { in } H^{1}(\Omega)
$$

This proves that φ satisfies the C-condition.
Proposition 3.2. If hypotheses H_{1} and H_{2} hold, then problem (1) has a solution u_{0} in int C_{+}which is a local minimizer of the functional φ.

Proof. Hypotheses $H_{2}(i),(i i)$ imply that given $\epsilon>0$, we can find $C_{\epsilon}>0$ such that

$$
\begin{equation*}
F(z, x) \leq \frac{1}{2}(\theta(z)+\epsilon) x^{2}+C_{\epsilon} \text { for a.a. } z \in \Omega, \text { and for all } x \geq 0 \tag{32}
\end{equation*}
$$

Then for all $u \in H^{1}(\Omega)$ we have

$$
\begin{align*}
\widehat{\varphi}_{+}(u)= & \frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} \widehat{F}_{+}(z, u) d z \\
& \geq \frac{1}{2}\left[\sigma(u)-\int_{\Omega} \theta u^{2} d z\right]-\frac{\epsilon}{2}\|u\|^{2}-C_{\epsilon}|\Omega|_{N} \text { (see (32)) } \\
& \geq \frac{C_{0}-\epsilon}{2}\|u\|^{2}-C_{\epsilon}|\Omega|_{N} \text { (see Prop. (2.3). } \tag{33}
\end{align*}
$$

Choosing $\epsilon \in\left(0, C_{0}\right)$, from (33) we infer that $\widehat{\varphi}_{+}$is coercive. Also, it is sequentially weakly lower semi-continuous. So, by the Weierstrass theorem, we can find $v_{0} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}\left(u_{0}\right)=\inf \left\{\widehat{\varphi}_{+}(u): u \in H^{1}(\Omega)\right\} \tag{34}
\end{equation*}
$$

Hypothesis $H_{2}(i v)$ implies that we can find $\delta>0$ and $\epsilon>\widehat{\lambda}_{1}$ (recall $\ell \geq 2$, see $\left.H_{2}(i v)\right)$ such that

$$
\begin{equation*}
F(z, x) \geq \frac{\epsilon}{2} x^{2} \text { for a.a. } z \in \Omega, \text { all } x \in[0, \delta] . \tag{35}
\end{equation*}
$$

Since $\widehat{u}_{1} \in \operatorname{int} C_{+}\left(\right.$see Section(2), we can find $t \in(0,1)$ small such that $t \widehat{u}_{1}(z) \in[0, \delta]$ for all $z \in \bar{\Omega}$. Then

$$
\begin{aligned}
\widehat{\varphi}_{+}\left(t \widehat{u}_{1}\right)= & \frac{t^{2}}{2} \sigma\left(\widehat{u}_{1}\right)-\int_{\Omega} F\left(z, t \widehat{u}_{1}\right)\left(\text { recall the definition of } \widehat{f}_{+}(z, x)\right) \\
& \left.\leq \frac{t^{2}}{2}\left[\widehat{\lambda}_{1}-\epsilon\right](\text { see (35) }) \text { and recall that }\left\|\widehat{u}_{1}\right\|_{2}=1\right) \\
& <0\left(\text { since } \epsilon>\widehat{\lambda}_{1}\right) \Rightarrow \widehat{\varphi}_{+}\left(u_{0}\right)<0=\widehat{\varphi}_{+}(\text {see (34) }),
\end{aligned}
$$

hence $u_{0} \neq 0$. Therefore

$$
\begin{equation*}
\widehat{\varphi}_{+}^{\prime}\left(u_{0}\right)=0 \Rightarrow A\left(u_{0}\right)+(\beta+\widehat{\gamma}) u_{0}=N_{\widehat{f}_{+}}\left(u_{0}\right) . \tag{36}
\end{equation*}
$$

On (36) we act with $-u_{0}^{-} \in H^{1}(\Omega)$. Then

$$
\sigma\left(u_{0}^{-}\right)+\widehat{\gamma}\left\|u_{0}^{-}\right\|_{2}^{2}=0 \Rightarrow \widehat{c}\left\|u_{0}^{-}\right\|^{2} \leq 0 \text { (see (9)), hence } u_{0} \geq 0, u_{0} \neq 0 .
$$

Then relation (36) becomes

$$
\begin{equation*}
A\left(u_{0}\right)+\beta u_{0}=N_{f}\left(u_{0}\right) \Rightarrow-\Delta u_{0}+\beta u_{0}=f\left(z, u_{0}\right) \text { in } \Omega, \frac{\partial u_{0}}{\partial n}=0 \text { on } \partial \Omega . \tag{37}
\end{equation*}
$$

Hypotheses H_{2} imply

$$
\begin{equation*}
|f(z, x)| \leq c_{1}|x| \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \text { and some } c_{1}>0 \tag{38}
\end{equation*}
$$

We set

$$
\zeta(s)=\left\{\begin{array}{cc}
\frac{f\left(z, u_{0}(z)\right)}{u_{0}(z)} & \text { if } u_{0}(z) \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Evidently $\zeta \in L^{\infty}(\Omega)$ (see (38)). From (37) we have

$$
\begin{equation*}
-\Delta u_{0}(z)=(\zeta-\beta)(z) u_{0}(z) \text { a.e. in } \Omega, \frac{\partial u_{0}}{\partial n}=0 \text { on } \partial \Omega \tag{39}
\end{equation*}
$$

Note that $\zeta-\beta \in L^{s}(\Omega)$ with $s>N\left(\right.$ see $\left.H_{1}\right)$. Lemma 5.1 of Wang [26] implies that $u_{0} \in L^{\infty}(\Omega)$. Then from (39) we have $\Delta u_{0} \in L^{s}(\Omega)$. Invoking Lemma 5.2 of Wang [26], we have $u_{0} \in W^{2, s}(\Omega)$. Since $s>N$, from the Sobolev embedding theorem we have $W^{2, s}(\Omega) \subset C^{1+\alpha}(\bar{\Omega})$ with $\alpha=1-\frac{N}{s}>0$. Therefore $u_{0} \in C_{+} \backslash\{0\}$. From (39) we have

$$
\begin{aligned}
& \Delta u_{0}(z) \leq\left(\|\zeta\|_{\infty}+\left\|\beta^{+}\right\|_{\infty}\right) u_{0}(z) \text { a.e. in } \Omega\left(\text { see } H_{1}\right) \\
& \Rightarrow u_{0} \in \operatorname{int} C_{+}(\text {see Pucci \& Serrin [23, p. 120] and Vázquez [25]). }
\end{aligned}
$$

Note that $\left.\widehat{\varphi}_{+}\right|_{C_{+}}=\left.\varphi\right|_{C_{+}}$. So, $u_{0} \in \operatorname{int} C_{+}$is a local $C^{1}(\bar{\Omega})$-minimizer of φ, hence by virtue of Proposition 2.1 $u_{o} \in \operatorname{int} C_{+}$is a local $H^{1}(\Omega)$-minimizer of φ.

In fact we can show that problem (1) has a smallest nontrivial positive solution.
Proposition 3.3. Assume that hypotheses H_{1} and H_{2} hold. Then problem (1) has a smallest nontrivial positive solution $u_{+} \in \operatorname{int} C_{+}$(that is, if u is a nontrivial positive solution of (1), then $u_{+} \leq u$).

Proof: Let S_{+}be the set of nontrivial positive solutions of (1). From Proposition 3.2 and its proof, we have $S_{+} \neq \varnothing$ and $S_{+} \subseteq \operatorname{int} C_{+}$.

We know that S_{+}is downward directed (that is, if $u_{1}, u_{2} \in S_{+}$, then we can find $u \in S_{+}$such that $u \leq u_{1}, u \leq u_{2}$, see Aizicovici, Papageorgiou \& Staicu [1, p. 703]). So, without any loss of generality, we may assume that there exists $M_{2}>0$ such that $u(z) \leq M_{2}$ for all $z \in \bar{\Omega}$, all $u \in S_{+}$.

Let $C \subseteq S_{+}$be a chain (a totally ordered subset of S_{+}). From Dunford \& Schwartz [8, p. 336], we know that we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq C$ such that $\inf C=$ $\inf _{n \geq 1} u_{n}$.

We have for all $n \geq 1$,

$$
\begin{equation*}
A\left(u_{n}\right)+\beta u_{n}=N_{f}\left(u_{n}\right) \Rightarrow\left\{u_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega) \text { is bounded. } \tag{40}
\end{equation*}
$$

So, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } H^{1}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{2}(\Omega) . \tag{41}
\end{equation*}
$$

Moreover, acting on (40) with $u_{n}-u \in H^{1}(\Omega)$, passing to the limit as $n \rightarrow \infty$ and using (41) and the Kadec-Klee property of Hilbert spaces, we obtain

$$
\begin{equation*}
u_{n} \rightarrow u \text { in } H^{1}(\Omega) . \tag{42}
\end{equation*}
$$

Then passing to the limit as $n \rightarrow \infty$ in (40) and using (41), we have

$$
A(u)+\beta u=N_{f}(u) \Rightarrow u \in C_{+} \text {is a solution of (1). }
$$

If we show that $u \neq 0$, then $u \in S_{+}$. Suppose that $u=0$ and let $y_{n}=$ $\frac{u_{n}}{\left\|u_{n}\right\|}, n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } H^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2}(\Omega), y \geq 0 . \tag{43}
\end{equation*}
$$

From (40) we have

$$
\begin{equation*}
A\left(y_{n}\right)+\beta y_{n}=\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \text { for all } n \geq 1 \tag{44}
\end{equation*}
$$

Since $u_{n} \rightarrow 0$ in $H^{1}(\Omega)$ (see (42)), by virtue of hypothesis $H_{2}(i v)$, we have

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \stackrel{w}{\rightarrow} \mu_{0}=m y \text { in } L^{2}(\Omega), \text { where } m(\cdot)=f_{x}^{\prime}(\cdot, 0) \in L^{\infty}(\Omega) . \tag{45}
\end{equation*}
$$

So, from (43) and (44) it follows that

$$
\begin{align*}
& A(y)+\beta y=m y \\
& \Rightarrow-\Delta y(z)+\beta(z) y(z)=m(z) y(z) \text { a.e. in } \Omega, \frac{\partial y}{\partial n}=0 \text { on } \partial \Omega . \tag{46}
\end{align*}
$$

From Proposition 2.2 and hypothesis $H_{2}(i v)$, we have

$$
\begin{equation*}
\tilde{\lambda}_{l}(m)<\tilde{\lambda}_{l}\left(\tilde{\lambda}_{l}\right)=1 \text { and } 1=\tilde{\lambda}_{l+1}\left(\tilde{\lambda}_{l+1}\right)<\tilde{\lambda}_{l+1}(m) \tag{47}
\end{equation*}
$$

From (46) and (47) it follows that $y=0$. On the other hand, acting on (44) with $y_{n}-y \in H^{1}(\Omega)$ and using (43) and (45), we obtain

$$
\lim _{n \rightarrow \infty}\left\langle A\left(y_{n}\right), y_{n}-y\right\rangle=0 \Rightarrow y_{n} \rightarrow y \text { in } H^{1}(\Omega) \text { (as before) } \Rightarrow\|y\|=1
$$

a contradiction. Therefore $u \in S_{+}$and $u \in \operatorname{int} C$.
Since C is an arbitrary chain, from the Kuratowski-Zara lemma it follows that S_{+}has a minimal element $u_{+} \in S_{+} \subseteq \operatorname{int} C_{+}$. If $u \in S_{+}$, then since S_{+}is downward directed, we can find $\tilde{u} \in S_{+}$such that $\tilde{u} \leq u_{t}, \tilde{u} \leq u$. The minimality of u_{+}implies that $\tilde{u}=u_{+}$and so $u_{+} \leq u$. Therefore u_{+}is the smallest nontrivial positive solution of problem (1).

Let $S_{\text {- }}$ be the set of nontrivial negative solutions of problem (1).
In general hypotheses H_{2} do not guarantee that $S_{-} \neq \emptyset$. If $S_{-} \neq \emptyset$, then $S_{-} \subseteq-\operatorname{int} C_{+}$and it is upward directed (that is, $v_{1}, v_{2} \in S_{-}$, then we can find $v \in S_{-}$such that $v_{1} \leq v_{1}, v_{2} \leq v$, see [1]).

Reasoning as in the proof of Proposition 3.3, we have:
Proposition 3.4. Assume that hypotheses H_{1} and H_{2} hold and $S_{-} \neq \emptyset$. Then problem (11) has a biggest nontrivial negative solution $v_{-} \in-i n t C_{+}$(that is, if v is a nontrivial negative solution of (11), then $\left.v \leq v_{-}\right)$.

If we strengthen the conditions on $f(z, \cdot)$ we can guarantee that $S_{-} \neq \emptyset$. These stronger conditions on the reaction f are the following:
$H_{3}: \quad f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that
for a.a. $z \in \Omega, f(z, 0)=0, f(z, \cdot) \in C^{1}(\mathbb{R})$, hypotheses
$H_{3}(i) \rightarrow(i v)$ are the same as the corresponding hypotheses $H_{2}(i) \rightarrow(i v)$ $\operatorname{and}(v)$ there exists $\xi_{x}>0$ such that $f\left(z,-\xi_{x}\right) \geq\left(-\xi_{x}\right) \beta(z)$ a.e. in Ω.

Remark 3.1. If $\beta \equiv 0$, then condition $H_{3}(v)$ implies that for a.a. $z \in$ $\Omega, f(z, \cdot)$
has a zero in $(-\infty, 0)$.
Proposition 3.5. If hypotheses H_{1} and H_{3} hold, then $S_{-} \neq \emptyset, S_{-} \subseteq-$ int C_{+}.

Proof. We consider the following perturbation-truncation of the reaction $f(z, \cdot)$:

$$
\tau(z, x)=\left\{\begin{array}{lc}
f\left(z,-\xi_{x}\right)+\widehat{\gamma}\left(-\xi_{x}\right) & \text { if } x<-\xi_{x} \tag{48}\\
f(z, x)+\widehat{\gamma} x & \text { if }-\xi_{x} \leq x \leq 0 \\
0 & \text { if } 0<x
\end{array}\right.
$$

Clearly $\tau(\cdot, \cdot)$ is a Carathéodory function. We set $T(z, x)=\int_{0}^{x} \tau(z, s) d s$ and consider the C^{1}-functional $\chi_{0}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\chi_{0}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} T(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

From (48) and (9), we see that χ_{0} is coercive. Also, it is sequentially weakly lower semi-continuous. Se, we can find $v_{0} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\chi_{0}\left(v_{0}\right)=\inf \left\{\chi_{0}(v): v \in H^{1}(\Omega)\right\} \tag{49}
\end{equation*}
$$

As in the proof of Proposition 3.2, for $t \in(0,1)$ small such that at least we have $t \widehat{u}_{1}(z) \in\left[0, \xi_{x}\right]$ for all $z \in \bar{\Omega}$, we have $\chi_{0}\left(-t \widehat{u}_{1}\right)<0$. Therefore $\chi_{0}\left(v_{0}\right)<0=\chi_{0}(0)$ (see (49)), hence $v_{0} \neq 0$.

From (49) we have

$$
\begin{equation*}
\chi_{0}^{\prime}\left(v_{0}\right)=0 \Rightarrow A\left(v_{0}\right)+(\beta+\widehat{\gamma}) v_{0}=N_{\tau}\left(v_{0}\right) . \tag{50}
\end{equation*}
$$

On (50) we act with $\left(-\xi_{x}-v_{0}\right)^{+} \in H^{1}(\Omega)$. Then

$$
\begin{aligned}
& \left\langle A\left(v_{0}\right),\left(-\xi_{x}-v_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) v_{0}\left(-\xi_{x}-v_{0}\right)^{+} d z \\
& =\int_{\Omega} \tau\left(z, v_{0}\right)\left(-\xi_{x}-v_{0}\right)^{+} d z \\
& =\int_{\Omega}\left[f\left(z_{1}-\xi_{x}\right)+\widehat{\gamma}-\xi_{x}\right]\left(-\xi_{z}-v_{0}\right)^{+} d z \quad(\text { see (48) }) \\
& \geq\left\langle A\left(-\xi_{x}\right),\left(-\xi_{x}-v_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma})\left(-\xi_{x}\right)\left(-\xi_{x}-v_{0}\right)^{+} d z \\
& \Rightarrow\left\langle A\left(-\xi_{x}-v_{0}\right),\left(-\xi_{x}-v_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma})\left(-\xi_{x}-v_{0}\right)\left(-\xi_{x}-v_{0}\right)^{+} d z \leq 0, \\
& \Rightarrow \sigma\left(\left(-\xi_{x}-v_{0}\right)^{+}\right)+\widehat{\gamma}\left\|\left(-\xi_{x}-v_{0}\right)^{+}\right\|_{2}^{2} \leq 0, \\
& \Rightarrow-\xi_{x} \leq v_{0}(\text { see (9)). }
\end{aligned}
$$

Also, acting on (50) with $v_{0}^{+} \in H^{1}(\Omega)$, we obtain $v_{0} \leq 0, v_{0} \neq 0$. Therefore

$$
v_{0} \in\left[-\xi_{x}, 0\right]=\left\{v \in H^{1}(\Omega):-\xi_{x} \leq v(z) \leq 0 \text { a.e. in } \Omega\right\} .
$$

Therefore (50) yields $A\left(v_{0}\right)+\beta v_{0}=N_{f}\left(v_{0}\right)$, hence v_{0} is a nontrivial negative solution of problem (1). As before, from Wang [26] and the strong maximum principle, we deduce that $v_{0} \in-\operatorname{int} C_{+}$.

4. Nodal Solutions

In this section we present the full multiplicity theorems for problem (1) by producing nodal solutions.

First we treat the case $S_{-} \neq \emptyset$.
Theorem 4.1. Assume that hypotheses H_{1} and H_{2} hold and $S_{-} \neq \emptyset$. Then problem (1) has at least four nontrivial solutions: $u_{0} \in \operatorname{int} C_{+}, v_{0} \in-$ int C_{+}and $y_{0}, \widehat{y} \in \operatorname{int}_{C^{1}(\bar{\Omega})}\left[v_{0}, u_{0}\right]$ both nodal.

Proof. From Proposition 3.2 we already have a nontrivial positive solution $u_{0} \in \operatorname{int} C_{+}$. In fact, by virtue of Proposition 3.3 we may assume that u_{0} is the smallest nontrivial positive solution of (1) (that is, $u_{0}=u_{+} \in \operatorname{int} C_{+}$). Similarly, since by hypothesis $S_{-} \neq \emptyset$, from Proposition 3.4 we can have a nontrivial negative solution $v_{0} \in-\operatorname{int} C_{+}$which can be taken to be the biggest such solution of (1) (that is, $v_{0}=v_{-} \in-\operatorname{int} C_{+}$). We introduce the following perturbation-truncation of $f(z, \cdot)$:

$$
g(z, x)=\left\{\begin{array}{lc}
f\left(z, v_{0}(z)\right)+\widehat{\gamma} v_{0}(z) & \text { if } x<v_{0}(z) \tag{51}\\
f(z, x)+\widehat{\gamma} x & \text { if } v_{0}(z) \leq x \leq u_{0}(z) \\
f\left(z, u_{0}(z)\right)+\widehat{\gamma} u_{0}(z) & \text { if } u_{0}(z)<x
\end{array}\right.
$$

This is a Carathéodory function. We set $G(z, x)=\int_{0}^{x} g(z, s) d s$ and introduce the C^{1}-functional $\Psi: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\Psi(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} G(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

Also, let $g_{ \pm}(z, x)=g\left(z, \pm x^{ \pm}\right)$and $G_{ \pm}(z, x)=\int_{0}^{x} g_{ \pm}(z, s) d s$. We introduce the C^{1}-functional $\Psi_{ \pm}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\Psi_{ \pm}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} G_{ \pm}(z, u) d z \quad \text { for all } u \in H^{1}(\Omega)
$$

CLaim 1: $K_{\Psi} \subseteq\left[v_{0}, u_{0}\right], K_{\Psi_{+}}=\left\{0, u_{0}\right\}, K_{\Psi_{-}}=\left\{0, v_{0}\right\}$.
Let $u \in K_{\Psi}$. Then

$$
\begin{equation*}
A(u)+(\beta+\widehat{\gamma}) u=N_{g}(u) \tag{52}
\end{equation*}
$$

On (52) we act with $\left(u-u_{0}\right)^{+} \in H^{1}(\Omega)$. Then

$$
\begin{aligned}
& \left\langle A(u),\left(u-u_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u\left(u-u_{0}\right)^{+} d z \\
& =\int_{\Omega} g(z, u)\left(u-u_{0}\right)^{+} d z \\
& \left.=\int_{\Omega}\left[f\left(z, u_{0}\right)+\widehat{\gamma} u_{0}\right]\left(u-u_{0}\right)^{+} d z \quad \text { (see (51) }\right) \\
& =\left\langle A\left(u_{0}\right),\left(u-u_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u_{0}\left(u-u_{0}\right)^{+} d z \\
& \Rightarrow \sigma\left(\left(u-u_{0}\right)^{+}\right)+\widehat{\gamma}\left\|\left(u-u_{0}\right)^{+}\right\|_{2}^{2}=0 \\
& \Rightarrow \widehat{c}\left\|\left(u-u_{0}\right)^{+}\right\|^{2} \leq 0(\text { see (9)) } \\
& \Rightarrow u \leq u_{0} .
\end{aligned}
$$

In a similar manner acting on (52) with $\left(v_{0}-u\right)^{+} \in H^{1}(\Omega)$, we obtain $v_{0} \leq u$. Hence $u \in\left[v_{0}, u_{0}\right]=\left\{y \in H^{1}(\Omega): v_{0}(z) \leq y(z) \leq u_{0}(z)\right.$ a.e. in $\left.\Omega\right\} \Rightarrow K_{\Psi} \subseteq\left[v_{0}, u_{0}\right]$.

Similarly we show that

$$
K_{\Psi_{+}} \subseteq\left[0, u_{0}\right]=\left\{y \in H^{1}(\Omega): 0 \leq y(z) \leq u_{0}(z) \text { a.e. in } \Omega\right\}
$$

and

$$
K_{\Psi_{-}} \subseteq\left[v_{0}, 0\right]=\left\{y \in H^{1}(\Omega): v_{0}(z) \leq y(z) \leq 0 \text { a.e. in } \Omega\right\}
$$

Recall that u_{0} and v_{0} are extremal constant sign solutions. So, it follows that $K_{\Psi_{+}}=\left\{0, u_{0}\right\}$ and $K_{\Psi_{-}}=\left\{0, v_{0}\right\}$. This proves Claim 1.

Claim 2: $u_{0} \in \operatorname{int} C_{+}$and $v_{0} \in-\operatorname{int} C_{+}$are local minimizers of Ψ.
From (9) and (51) it follows that the functional Ψ_{+}is coercive. Also, it is sequentially weakly lower semi-continuous. So, by the Weierstrass theorem, we can find $\tilde{u} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\Psi_{+}(\tilde{u})=\inf \left\{\Psi_{+}(u): u \in H^{1}(\Omega)\right\} \tag{53}
\end{equation*}
$$

As before (see the proof of Proposition (3.2), for $t \in(0,1)$ small (at least such that $t \widehat{u}_{1} \in\left[0, u_{0}\right]$, recall $\left.u_{0} \in \operatorname{int} C_{+}\right)$, we have $\Psi_{+}\left(t \widehat{u}_{1}\right)<0$. Therefore $\Psi_{+}(\tilde{u})<$ $0=\Psi_{+}(0)($ see (531) $)$, hence $\tilde{u} \neq 0$.

From (53)) we have $\tilde{u} \in K_{\Psi_{+}}=\left\{0, u_{0}\right\}$ (see Claim 1). So, $\tilde{u}=u_{0}$. Note that $\left.\Psi_{+}\right|_{C_{+}}=\left.\Psi\right|_{C_{+}}$and $u_{0} \in \operatorname{int} C_{+}$.

It follows that u_{0} is a local $C^{1}(\bar{\Omega})$-minimizer of Ψ. From Proposition 2.1 we infer that u_{0} is a local $H^{1}(\Omega)$-minimizer of Ψ. Similarly for $v_{0} \in-\operatorname{int} C_{+}$using this time the functional Ψ_{-}. This proves Claim 2.

Without any loss of generality, we may assume that $\Psi\left(v_{0}\right) \leq \Psi\left(u_{0}\right)$ (the analysis is similar if the opposite inequality holds). By virtue of Claim 2, we can find $\rho \in(0,1)$ such that

$$
\begin{equation*}
\Psi\left(v_{0}\right) \leq \Psi\left(u_{0}\right)<\inf \left\{\Psi(u):\left\|u-u_{0}\right\|=\rho\right\}=\eta_{\rho} \tag{54}
\end{equation*}
$$

The functional Ψ is coercive (see (91) and (52)), hence it satisfies the C-condition. This fact and (54) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find $y_{0} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
y_{0} \in K_{\Psi} \subseteq\left[v_{0}, u_{0}\right](\text { see Claim } 1) \text { and } \eta_{\rho} \leq \Psi\left(y_{0}\right) \tag{55}
\end{equation*}
$$

From (54) and (55) we have $y_{0} \notin\left\{v_{0}, u_{0}\right\}$.
Hypothesis $H_{2}(i v)$ via the UCP implies that $u=0$ is a nondegenerate critical point of $\varphi \in C^{2}\left(H^{1}(\Omega)\right)$. Therefore

$$
\begin{equation*}
C_{k}(\varphi, 0)=\delta_{k, d_{l}} \mathbb{Z} \text { for all } k \geq 0 \text { with } d_{l}=\operatorname{dim} \underset{i}{\oplus} \underset{i}{l} E\left(\widehat{\lambda_{i}}\right) \geq 2 \tag{56}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \left.\Psi\right|_{\left[v_{0}, u_{0}\right]}=\left.\varphi\right|_{\left[v_{0}, u_{0}\right]}\left(\text { see }(\underline{511)}) \text { and } v_{0} \in-\operatorname{int} C_{+}, u_{0} \in \operatorname{int} C_{+},\right. \\
& \Rightarrow C_{k}\left(\left.\Psi\right|_{C^{1}(\bar{\Omega})}, 0\right)=C_{K}\left(\left.\varphi\right|_{C^{1}(\bar{\Omega})}, 0\right) \text { for all } k \geq 0, \\
& \Rightarrow C_{k}(\Psi, 0)=C_{k}(\varphi, 0) \text { for all } k \geq 0 \text { (see Palais [21] and Bartsch [2]), } \\
& \Rightarrow C_{k}(\Psi, 0)=\delta_{k, d_{l}} \mathbb{Z} \text { for all } k \geq 0 \text { (see (56)). }
\end{aligned}
$$

Recall that y_{0} is a critical point of mountain pass type for Ψ. Hence

$$
\begin{equation*}
C_{1}\left(\Psi, y_{0}\right) \neq 0 \tag{58}
\end{equation*}
$$

Since $d_{l} \geq 2$, comparing (57) and (58), we infer that $y_{0} \neq 0$. Since $y_{0} \in\left[v_{0}, u_{0}\right]$, the extremality of the solutions u_{0}, v_{0} and (51) implies that y_{0} is a solution of (1). Moreover, the regularity results of Wang [26] imply $y_{0} \in C^{1}(\bar{\Omega})$.

We have

$$
-\Delta y_{0}(z)+\beta(z) y_{0}(z)=f\left(z, y_{0}(z)\right) \text { a.e. in } \Omega, \frac{\partial y_{0}}{\partial n}=0 \text { on } \partial \Omega .
$$

Hypotheses $H(i)$ and the mean value theorem imply that if $\rho=\max \left\{\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty}\right\}$, then we can find $\xi_{\rho}>0$ such that for a.a. $z \in \Omega$ the function $x \rightarrow f(z, x)+\xi_{\rho} x$ is
nondecreasing on $[-\rho, \rho]$. We have

$$
\begin{aligned}
& -\Delta y_{0}(z)+\left(\beta(z)+\xi_{\rho}\right) y_{0}(z)=f\left(z, y_{0}(z)\right)+\xi_{\rho} y_{0}(z) \\
& \leq f\left(z, u_{0}(z)\right)+\xi_{\rho} u_{0}(z)\left(\text { since } y_{0} \leq u_{0}\right) \\
& =-\Delta u_{0}(z)+\left(\beta(z)+\xi_{\rho}\right) u_{0}(z) \text { a.e. in } \Omega \\
& \Rightarrow \Delta\left(u_{0}-y_{0}\right)(z) \leq\left(\left\|\beta^{+}\right\|_{\infty}+\xi_{\rho}\right) u_{0}(z) \text { a.e. in } \Omega\left(\text { see } H_{1}\right) \\
& \Rightarrow u_{0}-y_{0} \in \operatorname{int} C_{+}(\text {see Vázquez [25]). }
\end{aligned}
$$

Similarly we show that

$$
y_{0}-v_{0} \in \operatorname{int} C_{+} \Rightarrow y_{0} \in \operatorname{int}_{C^{1}(\bar{\Omega})}\left[v_{0}, u_{0}\right] .
$$

Recall that $\left.\Psi\right|_{\left[v_{0}, u_{0}\right]}=\left.\varphi\right|_{\left[v_{0}, u_{0}\right]}$ (see (51)). Hence

$$
\begin{align*}
& C_{k}\left(\left.\Psi\right|_{C^{1}(\bar{\Omega})}, y_{0}\right)=C_{k}\left(\left.\varphi\right|_{C^{1}(\bar{\Omega})}, y_{0}\right) \text { for all } k \geq 0, \\
& \left.\Rightarrow C_{k}\left(\Psi, y_{0}\right)=C_{k}\left(\varphi, y_{0}\right) \text { for all } k \geq 0 \quad \text { (see [21, [2] }\right), \tag{60}\\
& \Rightarrow C_{1}\left(\varphi, y_{0}\right) \neq 0 \quad(\text { see (58) }) . \tag{61}
\end{align*}
$$

Hypotheses H_{2} imply that $\varphi \in C^{2}\left(H^{1}(\Omega)\right)$ and for all $u, v \in H^{1}(\Omega)$

$$
\left\langle\varphi^{\prime \prime}\left(y_{0}\right) u, v\right\rangle=\int_{\Omega}(D u, D v)_{\mathbb{R}^{N}} d z+\int_{\Omega} \beta(z) u v d z-\int_{\Omega} \widehat{m}_{0} u v d z
$$

where $\widehat{m}_{0}(z)=f_{x}^{\prime}\left(z, y_{0}(z)\right), \widehat{m}_{0} \in L^{\infty}(\Omega)_{+}\left(\right.$see $\left.H_{2}(i)\right)$. Therefore $\varphi^{\prime \prime}\left(y_{0}\right)$ is a Fredholm operator. Let $\sigma\left(\varphi^{\prime \prime}\left(y_{0}\right)\right)$ denote the spectrum of $\varphi^{\prime \prime}\left(y_{0}\right)$ and suppose that $\sigma\left(\varphi^{\prime \prime}\left(y_{0}\right)\right) \subseteq[0, \infty)$. Then we have

$$
\begin{equation*}
\int_{\Omega} \widehat{m}_{0} u^{2} d z \leq \sigma(u) \quad \text { for all } u \in H^{1}(\Omega) \tag{62}
\end{equation*}
$$

Let $u \in \operatorname{Ker} \varphi^{\prime \prime}\left(y_{0}\right)$. Then

$$
\begin{equation*}
-\Delta u(z)=\left(\widehat{m}_{0}-\beta\right)(z) u(z) \text { a.e. in } \Omega, \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega \tag{63}
\end{equation*}
$$

We have $\widehat{m}_{0}-\beta \in L^{s}(\Omega)$ with $s>N$ (see $\left.H_{1}\right)$. If $(\widehat{m}-\beta)^{+}=0$, then from (63) it follows that $u=0$. If $\left(\widehat{m}_{0}-\beta\right)^{+} \neq 0$, then from (62) and de Figueiredo [9], we have $\operatorname{Ker} \varphi^{\prime \prime}\left(y_{0}\right) \leq 1$. So, we can apply Proposition 2.5 of Bartsch [2] and obtain

$$
\begin{align*}
& C_{k}\left(\varphi, y_{0}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0 \tag{64}\\
& \Rightarrow C_{k}\left(\Psi, y_{0}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0 \text { (see (60)). }
\end{align*}
$$

From Claim 2 we know that v_{0} and u_{0} are local minimizers of Ψ. Hence

$$
\begin{equation*}
C_{k}\left(\Psi, u_{0}\right)=C_{k}\left(\Psi, v_{0}\right)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{65}
\end{equation*}
$$

Finally recall that Ψ is coercive. Therefore

$$
\begin{equation*}
C_{k}(\Psi, \infty)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{66}
\end{equation*}
$$

Suppose that $K_{\Psi}=\left\{0, u_{0}, v_{0}, y_{0}\right\}$. Then from (57), (64), (65), (66) and the Morse relation (see (2)) with $t=-1$, we have $(-1)^{d_{l}}+2(-1)^{0}+(-1)^{1}=(-1)^{0}$, a contradiction.

This means that there exists $\widehat{y} \in K_{\Psi}, \widehat{y} \notin\left\{0, u_{0}, v_{0}, y_{0}\right\}$. From Claim 1 and Wang [26, we have $\widehat{y} \in\left[v_{0}, u_{0}\right] \cap C^{1}(\bar{\Omega})$, hence \widehat{y} is the second nodal solution of problem (11). As we did for y_{0}, using the strong maximum principle of Vázquez [25], we have $\widehat{y} \in \operatorname{int}_{C^{1}(\Omega)}\left[v_{0}, y_{0}\right]$.

Next we deal with the case when $S_{-}=\oslash$. In this case there is no extremal negative solution. So, we introduce the following "unilateral" perturbation-truncation of the reaction $f(z, \cdot)$:

$$
g_{*}(z, x)= \begin{cases}f(z, x)+\widehat{\gamma} x & \text { if } x \leq u_{+}(z) \tag{67}\\ f\left(z, u_{+}(z)\right)+\widehat{\gamma} u_{+}(z) & \text { if } u_{+}(z)<x\end{cases}
$$

This is a Carathéodory function. We set $G_{*}(z, x)=\int_{0}^{x} g_{*}(z, s) d s$ and consider the C^{1}-functional $\varphi_{*}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{*}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} G_{*}(z, u) d z \quad \text { for all } u \in H^{1}(\Omega) .
$$

Proposition 4.1. Assume that hypotheses H_{1} and H_{2} hold. Then the functional φ_{*} satisfies the C-condition.

Proof. Let $\left\{u_{n}\right\}_{n \geq 1} \subseteq H^{1}(\Omega)$ be a sequence such that $\left\{\varphi_{*}\left(u_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|\right) \varphi_{*}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } H^{1}(\Omega)^{*} . \tag{68}
\end{equation*}
$$

From (67) we have for all $n \geq 1$,

$$
\begin{align*}
& \left|\left\langle\varphi_{*}^{\prime}\left(u_{n}\right), h\right\rangle\right| \leq \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \text { for all } h \in H^{1}(\Omega) \text { with } \epsilon_{n} \rightarrow 0^{+} \\
& \Rightarrow\left|\left\langle A\left(u_{n}\right), h\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u_{n} h d z-\int_{\Omega} g_{*}\left(z, u_{n}\right) h d z\right| \leq \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \tag{69}
\end{align*}
$$

Let $h=u_{n}^{+} \in H^{1}(\Omega)$. We have

$$
\begin{align*}
& \sigma\left(u_{n}^{+}\right)+\widehat{\gamma}\left\|u_{n}^{+}\right\|_{2}^{2} \leq M_{3} \text { for some } M_{3}>0(\text { see (67) }) \\
& \Rightarrow \widehat{c}\left\|u_{n}^{+}\right\|^{2} \leq M_{3} \text { for all } n \geq 1 \text { (see (84)) } \\
& \Rightarrow\left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq H^{1}(\Omega) \text { is bounded. } \tag{70}
\end{align*}
$$

We assume that $\left\|u_{n}^{-}\right\| \rightarrow \infty$ and set $y_{n}=\frac{u_{n}^{-}}{\left\|u_{n}^{-}\right\|}$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$. So we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } H^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2 s^{\prime}}(\Omega)\left(\frac{1}{s}+\frac{1}{s^{\prime}}=1\right) \tag{71}
\end{equation*}
$$

From (69) and (70), we have

$$
\begin{equation*}
\left|\left\langle A\left(-y_{n}\right), h\right\rangle-\int_{\Omega}(\beta(z)+\widehat{\gamma}) y_{n} h d z-\int_{\Omega} \frac{g_{*}\left(z,-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|} h d z\right| \leq M_{4} \frac{\|h\|}{\left\|u_{n}^{-}\right\|} \tag{72}
\end{equation*}
$$

Hypotheses H_{2} (i),(ii),(iii) imply that

$$
\left\{\frac{N_{g_{\star}}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|}\right\}_{n \geq 1} \subset L^{2}(\Omega) \text { is bounded. }
$$

So, if in (72) we choose $h=y_{n}-y \in H^{1}(\Omega)$ and pass to the limit as $n \rightarrow \infty$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle A\left(-y_{n}\right), y_{n}-y\right\rangle=0 \Rightarrow\left\|D y_{n}\right\|_{2} \rightarrow\|D y\|_{2} \\
& \Rightarrow y_{n} \rightarrow y \text { in } H^{1}(\Omega) \text { (by the Kadec - Klee property) } \tag{73}\\
& \Rightarrow\|y\|=1, y \geq 0
\end{align*}
$$

Then using hypothesis $H_{2}(i i i)$ and by passing to a suitable suitable subsequence if necessary we have

$$
\begin{equation*}
\frac{N g_{*}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|} \xrightarrow{w}-\left(\eta_{0}+\widehat{\gamma}\right) y \text { in } L^{2}(\Omega) \text { with } \eta(z) \leq \eta_{0}(z) \leq \widehat{\eta}(z) \text { a.e. in } \Omega \text {. } \tag{74}
\end{equation*}
$$

So, if in (72) we pass to the limit as $n \longrightarrow \infty$, and use (73), then

$$
\begin{align*}
& \langle A(y), h\rangle+\int_{\Omega} \beta y h d z=\int_{r} \eta_{0} y h d z \text { for all } h \in H^{1}(\Omega), \\
& \Rightarrow A(y)+\beta y=\eta_{0} y, \tag{75}\\
& \Rightarrow-\Delta y(z)+\beta(z) y(z)=\eta_{0}(z) y(z) \text { a.e. in } \Omega, \frac{\partial y}{\partial n}=0 \text { on } \partial \Omega .
\end{align*}
$$

From Proposition 2.2 we have $\tilde{\lambda}_{1}\left(\eta_{0}\right) \leq \tilde{\lambda}_{1}(\eta)<\tilde{\lambda}_{1}\left(\widehat{\lambda}_{1}\right)=1$. So, from (75) it follows that y is nodal, witch contradicts (73). It follows that
$\left\{u_{n}^{-}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ is bounded $\Rightarrow\left\{u_{n}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ is bounded (see (70)).
Therefore, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } H^{1}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{2 s^{\prime}}(\Omega) . \tag{76}
\end{equation*}
$$

In (69) we choose $h=u_{n}-u \in H^{1}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (76). Then

$$
\lim _{n \rightarrow \infty}\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle=0 \Rightarrow u_{n} \rightarrow u \text { in } H^{1}(\Omega) \Rightarrow \varphi_{*} \text { satisfies the C-condition. }
$$

The next result permits the computation of the critical groups of φ_{*} at infinity.
Proposition 4.2. If hypotheses H_{1} and H_{2} hold, then $C_{k}\left(\varphi_{*}, \infty\right)=0$ for all $k \geq$ 0.

Proof. Let $\lambda>\max \left\{\hat{\lambda}_{1}, \frac{1}{|\Omega|_{N}} \int_{\Omega} \beta d z\right\}$ and consider the C^{1}-functional Ψ_{*} : $H^{1}(\Omega) \rightarrow R$ defined by

$$
\Psi_{*}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\frac{1}{2}(\lambda+\widehat{\gamma})\left\|u^{-}\right\|_{2}^{2} \quad \text { for all } u \in H^{1}(\Omega) .
$$

We consider the homotopy

$$
h(t, u)=h_{t}(u)=(1-t) \varphi_{*}(u)+t \Psi_{*}(u) \quad \text { for all }(t, u) \in[0,1] \times H^{1}(\Omega) .
$$

Claim 1. There exist $\epsilon \in \mathbb{R}$ and $\delta>0$ such that

$$
h_{t}(u) \leq \epsilon \Rightarrow(1+\|u\|)\left\|\left(h_{t}\right)^{\prime}(u)\right\|_{*} \geq \delta\|u\|^{2} \quad \text { for all } t \in[0,1] .
$$

We argue by contradiction. So, suppose that the Claim is not true. Since h maps bounded sets to bounded sets, we can find $\left\{t_{n}\right\}_{n \geq 1} \subset[0,1]$ and $\left\{u_{n}\right\}_{n \geq 1} \subset H^{1}(\Omega)$ such that

$$
\begin{equation*}
t_{n} \rightarrow t,\left\|u_{n}\right\| \rightarrow \infty, h_{t_{n}}\left(u_{n}\right) \rightarrow-\infty \text { and }\left\|\left(h_{t_{n}}\right)^{\prime}\left(u_{n}\right)\right\|<\frac{1}{n}\left\|u_{n}\right\| . \tag{77}
\end{equation*}
$$

From (77) we have
$\left|\left\langle A\left(u_{n}\right), h\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u_{n} h d z-\left(1-t_{n}\right) \int_{\Omega} g_{*}\left(z, u_{n}\right) h d z-(\lambda+\widehat{\gamma}) t_{n} \int_{\Omega} u_{n}^{-} h d z\right|$ $<\frac{1}{n}\left\|u_{n}\right\| \cdot\|h\|$ for all $n \geq 1$.

In (78) first we choose $h=u_{n}^{+} \in H^{1}(\Omega)$ then

$$
\begin{equation*}
\sigma\left(u_{n}^{+}\right)+\widehat{\gamma}\left\|u_{n}^{+}\right\|_{2}^{2} \leq \frac{1}{n}\left\|u_{n}\right\| \cdot\left\|u_{n}^{+}\right\| \quad \text { for all } n \geq 1 \tag{79}
\end{equation*}
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then from (79) we have

$$
\begin{align*}
& \sigma\left(y_{n}^{+}\right)+\widehat{\gamma}\left\|y_{n}^{+}\right\|_{2}^{2} \leq \frac{1}{n}\left\|y_{n}\right\| \cdot\left\|y_{n}^{+}\right\| \\
& \Rightarrow \widehat{c}\left\|y_{n}^{+}\right\|^{2} \leq \frac{1}{n}\left\|y_{n}^{+}\right\| \text {(see (9) and recall that }\left\|y_{n}\right\|=1 \text {) } \tag{80}\\
& \Rightarrow y_{n}^{+} \rightarrow 0 \text { in } H^{1}(\Omega) .
\end{align*}
$$

From (78) and (80), we have

$$
\begin{align*}
& \left|\left\langle A\left(-y_{n}^{-}\right), h\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma})\left(-y_{n}^{-}\right) d z-\left(1-t_{n}\right) \int_{\Omega} \frac{q_{*}\left(z,-u_{n}^{-}\right)}{\left\|u_{n}\right\|} h d z+(\lambda+\widehat{\gamma}) t_{n} \int_{\Omega} y_{n}^{-} h d z\right| \tag{81}\\
& \leq \epsilon_{n}\|h\| \text { with } \epsilon_{n} \downarrow 0 \text {. }
\end{align*}
$$

Since $\left\|y_{n}\right\|=1$ for all $n \geq 1$, by passing to a suitable subsequence if necessary, we may assume that

$$
\begin{align*}
& y_{n} \xrightarrow{w} y \text { in } H^{1}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{2 s^{\prime}}(\Omega) \tag{82}\\
& \Rightarrow y_{n}^{-} \xrightarrow{w} y^{-} \text {in } H^{1}(\Omega) \text { and } y_{n}^{-} \rightarrow y^{-} \text {in } L^{2 s^{\prime}}(\Omega) .
\end{align*}
$$

In (81) we choose $h=y_{n}^{-}-y^{-} \in H^{1}(\Omega)$ and pass to the limit as $n \rightarrow \infty$. Recalling that $\left\{\frac{N g_{*}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|}\right\}_{n \geq 1} \subseteq L^{2}(\Omega)$ is bounded and using (82), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle A\left(-y_{n}^{-}\right), y_{n}^{-}-y^{-}\right\rangle=0 \Rightarrow y_{n}^{-} \rightarrow y^{-} \text {in } H^{1}(\Omega) . \tag{83}
\end{equation*}
$$

Note that $y^{-} \neq 0$ or otherwise from (80) and (83), we have $y_{n} \rightarrow 0$ in $H^{1}(\Omega)$ which contradicts the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. Now, using hypothesis $\mathrm{H}_{2}(i i i)$, we have

$$
\begin{equation*}
\frac{N g_{*}\left(-u_{n}^{-}\right)}{\left\|u_{n}\right\|} \xrightarrow{w} \xi=-\left(\eta_{0}+\widehat{\gamma}\right) y^{-} \text {in } L^{2}(\Omega), \text { with } \eta \leq \eta_{0} \leq \widehat{\eta} . \tag{84}
\end{equation*}
$$

So, if in (81) we pass to the limit as $n \rightarrow \infty$ and use (83) and (84), then

$$
\begin{align*}
& \left\langle A\left(y^{-}\right), h\right\rangle+\int_{\Omega} \beta y^{-} h d z=\int_{\Omega} \eta_{0} y^{-} h d z \text { for all } h \in H^{1}(\Omega) \\
& \Rightarrow A\left(y^{-}\right)+\beta y^{-}=\eta_{0} y^{-} \tag{85}\\
& \Rightarrow-\Delta y^{-}(z)+\beta(z) y^{-}(z)=\eta_{0}(z) y^{-}(z) \text { a.e. in } \Omega, \frac{\partial y^{-}}{\partial n}=0 \text { on } \partial \Omega .
\end{align*}
$$

By virtue of Proposition [2.2, we have $\tilde{\lambda}_{1}\left(\eta_{0}\right) \leq \tilde{\lambda}_{1}(\eta)<\tilde{\lambda}_{1}\left(\widehat{\lambda}_{1}\right)=1$.
Therefore (85) implies that y^{-}must be nodal (recall $y^{-} \neq 0$), contradiction. This proves Claim 1.

Note that

$$
\left|\partial_{t} h_{t}(u)\right|=\left|\Psi_{*}(u)-\varphi_{*}(u)\right| \leq C_{1}\|u\|^{2} \text { for some } c_{1}>0 \text { and } u \in H^{1}(\Omega)
$$

Finally note that $h_{0}(\cdot)=\varphi_{*}$ satisfies the C-condition (see Proposition 4.1) while $h_{1}(\cdot)=\Psi_{*}$ also satisfies the C-condition since $\lambda>\widehat{\lambda}_{1}$. So, we have

$$
\begin{equation*}
C_{k}\left(\varphi_{*}, \infty\right)=C_{k}\left(\Psi_{*}, \infty\right) \quad \text { for all } k \geq 0 \text { (see Liang \& Su [17]). } \tag{86}
\end{equation*}
$$

It is easy to check that $K_{\Psi_{*}} \subset-C_{+}$and since $\lambda>\widehat{\lambda_{1}}$, it follows that $K_{\Psi_{*}}=\{0\}$ (recall that $\widehat{\lambda}_{1}$ is the only eigenvalue with eigenfunctions of constant sign). Hence

$$
\begin{equation*}
C_{k}\left(\Psi_{*}, \infty\right)=C_{k}\left(\Psi_{*}, 0\right) \text { for all } k \geq 0 \tag{87}
\end{equation*}
$$

Let $\zeta \in L^{\infty}(\Omega), \zeta \leq 0, \zeta \neq 0$ and consider the homotopy

$$
\tilde{h}_{t}(u)=\Psi_{*}(u)-t \zeta u \text { for all } t \in[0,1], \text { and } u \in H^{1}(\Omega)
$$

Claim 2: $\left(\tilde{h}_{t}\right)^{\prime}(u)=0$ for all $t \in[0,1]$ and for all $u \in H^{1}(\Omega) \backslash\{0\}$.

Again we argue indirectly. So suppose that we can find $t \in[0,1]$ and $u \in$ $H^{1}(\Omega), u \neq 0$ such that

$$
\begin{equation*}
\left(\tilde{h}_{t}\right)^{\prime}(u)=0 \Rightarrow A(u)+(\beta+\widehat{\gamma}) u=-(\lambda+\widehat{\gamma}) u^{-}+t \zeta \tag{88}
\end{equation*}
$$

On (88) we act with $u^{+} \in H^{1}(\Omega)$. Then $\sigma\left(u^{+}\right)+\widehat{\gamma}\left\|u^{+}\right\|_{2}^{2}=t \int_{\Omega} \zeta u^{+} d z \leq 0$. Thus, by (9), $\widehat{c}\left\|u^{+}\right\|^{2} \leq 0$, hence $u \leq 0, u \neq 0$. Then relation (88) becomes

$$
\begin{align*}
& A(u)+\beta u=\lambda u-t \zeta \\
& \Rightarrow-\Delta u(z)+\beta(z) u(z)=\lambda u(z)-t \zeta \text { a.e. in } \Omega, \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega \tag{89}\\
& \Rightarrow u \in-\operatorname{int} C_{+}(\text {as before using [26], [25]). }
\end{align*}
$$

Let $v \in \operatorname{int} C_{+}$and consider the function

$$
R(v,-u)(z)=\|D v(z)\|^{2}-\left(-D u(z), D\left(\frac{v^{2}}{-u}\right)(z)\right)_{\mathbb{R}^{N}}
$$

From Picone's identity (see, for example, Gasinski \& Papageorgiou 12, p. 785]), we have

$$
R(v,-u)(z) \geq 0 \quad \text { for a.a. } z \in \Omega .
$$

Therefore

$$
\begin{aligned}
0 & \leq \int_{\Omega} R(v,-u) d z=\|D v\|_{2}^{2}-\int_{\Omega}(-\Delta u) \frac{v^{2}}{u} d z \text { (by Green's identity) } \\
& =\|D v\|_{2}^{2}-\int_{\Omega}(\lambda-\beta(z)) v^{2} d z+t \int_{\Omega} \zeta v^{2} d z \\
& \leq\|D v\|_{2}^{2}-\int_{\Omega}(\lambda-\beta(z)) v^{2} d z(\text { since } \zeta \leq 0)
\end{aligned}
$$

Choose $v \equiv 1 \in \operatorname{int} C_{+}$. Then

$$
\left.0 \leq-\lambda|\Omega|_{N}+\int_{\Omega} \beta(z) d z<0 \text { (recall the choice of } \lambda\right)
$$

a contradiction. This proves Claim 2.
Then Claim 2 and the homotopy invariance of critical groups imply that for all $k \geq 0$,

$$
C_{k}\left(\Psi_{*}, 0\right)=0 \Rightarrow C_{k}\left(\varphi_{*}, \infty\right)=0 \quad(\text { see (86), (87) }) .
$$

Now we are ready for the second multiplicity theorem for problem (1), taking care of the case $S_{-}=\Omega$.

Theorem 4.2. Assume that hypotheses H_{1} and H_{2} hold and $S_{-}=\Omega$. Then problem (1) has at least three nontrivial solutions $u_{0} \in \operatorname{int} C_{+}$and $y_{0}, \widehat{y} \in C^{1}(\bar{\Omega})$ nodal solutions such that $u_{0}-y_{0}, u_{0}-\widehat{y} \in \operatorname{int} C_{+}$.

Proof. From Proposition 3.2 we already have a nontrivial positive solution $u_{0} \in \operatorname{int} C_{+}$. By virtue of Proposition 3.3 we can always assume that u_{0} is the smallest nontrivial positive solution of (1) (that is, $u_{0}=u_{+} \in \operatorname{int} C_{+}$). We still consider the C^{1}-functional $\varphi_{*}: H^{1}(\Omega) \rightarrow \mathbb{R}$ introduced in the beginning of this section. Let

$$
g_{*}^{+}(z, x)=g_{*}\left(z, x^{+}\right)\left(\text {see (677)) and } G_{*}^{+}(z, x)=\int_{0}^{x} g_{*}^{+}(z, s) d s\right.
$$

We consider the C^{1}-functional $\varphi_{*}^{+}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{*}^{+}(u)=\frac{1}{2} \sigma(u)+\frac{\widehat{\gamma}}{2}\|u\|_{2}^{2}-\int_{\Omega} G_{*}^{+}(z, u) d z \quad \text { for all } u \in H^{1}(\Omega) .
$$

Claim 1. We have

$$
K_{\varphi_{*}} \subset\left(u_{0}\right]=\left\{u \in H^{1}(\Omega): u(z) \leq u_{0}(z) \text { a.e. in } \Omega\right\} \text { and } K_{\varphi_{*}^{+}}=\left\{0, u_{0}\right\} .
$$

Let $u \in K_{\varphi_{*}}$. Then

$$
\begin{equation*}
A(u)+(\beta+\widehat{\gamma}) u=N_{g_{*}}(u) . \tag{90}
\end{equation*}
$$

On (90) we act with $\left(u-u_{0}\right)^{+} \in H^{1}(\Omega)$. Then

$$
\begin{aligned}
& \left\langle A(u),\left(u-u_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u\left(u-u_{0}\right)^{+} d z=\int_{\Omega} g_{*}(z, u)\left(u-u_{0}\right)^{+} d z \\
& =\int_{\Omega}\left[f\left(z, u_{0}\right)+\widehat{\gamma} u_{0}\right]\left(u-u_{0}\right)^{+} d z\left(\text { see }(67) \text { and recall } u_{0}=u_{+}\right) \\
& =\left\langle A\left(u_{0}\right),\left(u-u_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma}) u_{0}\left(u-u_{0}\right)^{+} d z \\
& \Rightarrow\left\langle A\left(\left(u-u_{0}\right)^{+}\right),\left(u-u_{0}\right)^{+}\right\rangle+\int_{\Omega}(\beta(z)+\widehat{\gamma})\left[\left(u-u_{0}\right)^{+}\right]^{2} d z=0 \\
& \left.\Rightarrow \widehat{c}\left\|\left(u-u_{0}\right)^{+}\right\|^{2} \leq 0 \text { (see (9) }\right),
\end{aligned}
$$

hence $u \leq u_{0}$. This proves that $K_{\varphi_{*}} \subseteq\left(u_{0}\right]=\left\{u \in H^{1}(\Omega): u(z) \leq u_{0}(z)\right.$ a.e. in $\left.\Omega\right\}$. In a similar fashion, we show that $K_{\varphi_{*}^{+}} \subseteq\left[0, u_{0}\right]=\left\{u \in H^{1}(\Omega): 0 \leq u(z) \leq\right.$ $u_{0}(z)$ a.e. in $\left.\Omega\right\}$.

The extremality of $u_{0}=u_{+} \in \operatorname{int} C_{+}$(see Proposition 3.3) implies $K_{\varphi_{*}^{+}}=$ $\left\{0, u_{0}\right\}$. This proves Claim 1 .

Claim 2: $u_{0} \in \operatorname{int} C_{+}$is a local minimizer of the functional φ_{*}.
Evidently φ_{*}^{+}is coercive (see (677). Also, it is sequentially weakly lower semicontinuous. So, we can find $\widehat{u}_{0} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{*}^{+}\left(\widehat{u}_{0}\right)=\inf \left\{\varphi_{*}^{+}(u): u \in H^{1}(\Omega)\right\} . \tag{91}
\end{equation*}
$$

For $t \in(0,1)$ small and using hypothesis $H_{2}(i v)$, we have

$$
\left.\varphi_{*}^{+}\left(t \widehat{u}_{1}\right)<0 \text { (see the proof of Proposition 3.2) } \Rightarrow \varphi_{*}^{+}(\widehat{u})<0=\varphi_{k}^{+}(0) \text { (see (91) }\right),
$$

hence $\widehat{u}_{0} \neq 0$. Then from (91) and Claim 1, we have $\widehat{u}_{0}=u_{0} \in \operatorname{int} C_{+}$. Since $\left.\varphi_{*}\right|_{C_{+}}=\left.\varphi_{*}^{t}\right|_{C_{+}}$(see (67)), it follows that $u_{0} \in \operatorname{int} C_{+}$is a local $C^{1}(\bar{\Omega})$-minimizer of φ_{*}. Invoking Proposition 2.1 we have that $u_{0} \in \operatorname{int} C_{+}$in a local $H^{1}(\Omega)$-minimizer of φ_{*}. This proves Claim 2 .

Claim 2 implies that we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\varphi_{*}\left(u_{0}\right)<\inf \left\{\varphi_{*}(u):\left\|u-u_{0}\right\|=\rho\right\}=\eta_{\rho}^{*},\left\|u_{0}\right\|>\rho . \tag{92}
\end{equation*}
$$

Hypothesis $H_{2}(i i i)$ implies that

$$
\begin{equation*}
\varphi_{*}\left(t \widehat{u}_{1}\right) \rightarrow-\infty \text { as } t \rightarrow-\infty . \tag{93}
\end{equation*}
$$

Finally recall that φ_{*} satisfies the C-condition (see Proposition 4.1). This fact together with (92) and (931), implies that we can apply Theorem [2.1] (the mountain pass theorem). So, we can find $y_{0} \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
y_{0} \in K_{\varphi_{*}} \subseteq\left(u_{0}\right] \text { and } \eta_{\rho}^{*} \leq \varphi_{*}\left(y_{0}\right) \tag{94}
\end{equation*}
$$

From (92) and (94), we see that $y_{0} \neq u_{0}$. Since y_{0} is a critical point of φ_{*} of mountain pass type, we have

$$
\begin{equation*}
C_{1}\left(\varphi_{*}, y_{0}\right) \neq 0 \tag{95}
\end{equation*}
$$

On the other hand, as in the proof of Theorem4.1 (see (57)), using hypothesis $H_{2}(i v)$, we have

$$
\begin{equation*}
C_{k}\left(\varphi_{*}, 0\right)=\delta_{k_{1} d_{l}} \mathbb{Z} \quad \text { for all } k \geq 0 \text { and } d_{l} \geq 2 \tag{96}
\end{equation*}
$$

Comparing (95) and (96), we conclude that $y_{0} \neq 0$. Since $y_{0} \in\left(u_{0}\right]$ (see Claim 1) and due to the extremality of u_{0}, we infer that y_{0} is nodal and $y_{0} \in C^{1}(\bar{\Omega})$ (see Wang [26). Moreover, we have

$$
\begin{array}{ll}
& u_{0}-y_{0} \in \operatorname{int} C_{+}\left(\text {that is, } y_{0} \in \operatorname{int}_{C^{1}(\bar{\Omega})}\left(u_{0}\right]\right) \\
\text { and } & C_{k}\left(\varphi_{*}, y_{0}\right)=\delta_{k, 1} \mathbb{Z} \text { for all } k \geq 0 . \tag{97}
\end{array}
$$

From Claim 2 we have

$$
\begin{equation*}
C_{k}\left(\varphi_{*}, u_{0}\right)=\delta_{k, 0} \mathbb{Z} \text { for all } k \geq 0 \tag{98}
\end{equation*}
$$

while from Proposition 4.2 we have

$$
\begin{equation*}
C_{k}\left(\varphi_{*}, \infty\right)=0 \text { for all } k \geq 0 \tag{99}
\end{equation*}
$$

Suppose $K_{\varphi_{*}}=\left\{0, u_{0}, y_{0}\right\}$. From (96), (97), (98), (99) and the Morse relation (see (2)), we have $(-1)^{d_{l}}+(-1)^{0}+(-1)^{1}=0$, a contradiction. So we can find $\widehat{y} \in K_{\varphi_{*}}, \widehat{y} \notin\left\{0, u_{0}, y_{0}\right\}$. We have $\widehat{y} \in\left(u_{0}\right]$ (see Claim 1), hence $\widehat{y} \in C^{1}(\bar{\Omega})$ (see Wang [26]) is nodal. Moreover, as for y_{0}, we have $u_{0}-\widehat{y} \in \operatorname{int} C_{+}$(that is, $\left.\widehat{y} \in \operatorname{int}_{C^{1}(\bar{\Omega})}\left(u_{0}\right]\right)$.

Acknowledgements

V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.

References

[1] Sergiu Aizicovici, Nikolaos S. Papageorgiou, and Vasile Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4) 188 (2009), no. 4, 679-719, DOI 10.1007/s10231-009-0096-7. MR2533962 (2010h:35162)
[2] Thomas Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), no. 1, 117-152, DOI 10.1006/jfan.2001.3789. MR1863294 (2002i:58011)
[3] Thomas Bartsch and Zhi-Qiang Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 115-131. MR1422008 (97m:35076)
[4] Haïm Brezis and Louis Nirenberg, H^{1} versus C^{1} local minimizers, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 5, 465-472 (English, with English and French summaries). MR1239032 (94g:49044)
[5] Nguyên Phuong Các, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), no. 2, 379-404, DOI 10.1016/0022-0396(89)90090-9. MR.1011156 (90f:35077)
[6] Mabel Cuesta and Jean-Pierre Gossez, A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Anal. 19 (1992), no. 5, 487-500, DOI 10.1016/0362-546X(92)90087-U. MR1181350(93i:34032)
[7] E. N. Dancer and Yihong Du, The generalized Conley index and multiple solutions of semilinear elliptic problems, Abstr. Appl. Anal. 1 (1996), no. 1, 103-135, DOI 10.1155/S108533759600005X. MR1390562 (97i:35048)
[8] N. Dunford and J. Schwartz, Linear Operators I, Wiley-Interscience, New York, 1958.
[9] Djairo Guedes de Figueiredo, Positive solutions of semilinear elliptic problems, Differential equations (S ao Paulo, 1981), Lecture Notes in Math., vol. 957, Springer, Berlin, 1982, pp. 3487. MR679140 (84k:35067)
[10] Djairo G. de Figueiredo and Jean-Pierre Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations 17 (1992), no. 1-2, 339-346, DOI 10.1080/03605309208820844. MR 1151266 (93b:35098)
[11] J. P. García Azorero, I. Peral Alonso, and Juan J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385-404, DOI 10.1142/S0219199700000190. MR 1776988 (2001k:35062)
[12] Leszek Gasiński and Nikolaos S. Papageorgiou, Nonlinear analysis, Series in Mathematical Analysis and Applications, vol. 9, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR2168068 (2006e:47001)
[13] Helmut Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982), no. 4, 493-514, DOI 10.1007/BF01457453. MR682663 (84g:58030)
[14] Antonio Iannizzotto and Nikolaos S. Papageorgiou, Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities, Nonlinear Anal. 70 (2009), no. 9, 32853297, DOI 10.1016/j.na.2008.04.033. MR2503075 (2010d:35117)
[15] Alexandru Kristály, Vicenţiu D. Rădulescu, and Csaba György Varga, Variational principles in mathematical physics, geometry, and economics, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010. Qualitative analysis of nonlinear equations and unilateral problems; With a foreword by Jean Mawhin. MR2683404 (2011i:49003)
[16] Shujie Li and Zhi-Qiang Wang, Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems, J. Anal. Math. 81 (2000), 373-396, DOI 10.1007/BF02788997. MR 1785289 (2001h:35063)
[17] Zhanping Liang and Jiabao Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl. 354 (2009), no. 1, 147-158, DOI 10.1016/j.jmaa.2008.12.053. MR2510425|(2010j:35185)
[18] Zhaoli Liu and Jingxian Sun, An elliptic problem with jumping nonlinearities, Nonlinear Anal. 63 (2005), no. 8, 1070-1082, DOI 10.1016/j.na.2005.03.109. MR 2211582 (2006m:35104)
[19] C. A. Magalhães, Semilinear elliptic problem with crossing of multiple eigenvalues, Comm. Partial Differential Equations 15 (1990), no. 9, 1265-1292, DOI 10.1080/03605309908820724. MR 1077275 (91h:35127)
[20] Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR982267(90e:58016)
[21] Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16. MR0189028 (32 \#6455)
[22] Kanishka Perera and Martin Schechter, A generalization of the Amann-Zehnder theorem to nonresonance problems with jumping nonlinearities, NoDEA Nonlinear Differential Equations Appl. 7 (2000), no. 4, 361-367, DOI 10.1007/PL00001430. MR1807945 (2001k:35099)
[23] Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. MR 2356201 (2008m:35001)
[24] Martin Schechter, Minimax systems and critical point theory, Birkhäuser Boston Inc., Boston, MA, 2009. MR2512303 (2010e:58009)
[25] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191-202, DOI 10.1007/BF01449041. MR768629 (86m:35018)
[26] Xu Jia Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), no. 2, 283-310, DOI 10.1016/0022-0396(91)90014-Z. MR 1125221 (92j:35072)
[27] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1400007 (97h:58037)
(Nikolaos S. Papageorgiou) National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

E-mail address: npapg@math.ntua.gr
(Vicenţiu D. Rădulescu) Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania \& Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585 Craiova, Romania

E-mail address: vicentiu.radulescu@imar.ro

[^0]: 2010 Mathematics Subject Classification. Primary 35J20; Secondary 35J60, 58E05.
 Key words and phrases. Indefinite and unbounded potential, crossing nonlinearity, maximum principle, critical groups, truncation and perturbation techniques, nodal solutions.

