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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonlinear Neumann elliptic differential inclusion

{
div (a(u(z))Du(z)) ∈ ∂ϕ(u(z)) + F(z, u(z), Du(z)) in �,
∂u
∂n = 0 on ∂�.

}
(1)

In this problem, ϕ ∈ �0(R) (that is, ϕ : R → R = R∪{+∞} is proper, convex and
lower semicontinuous, see Sect. 2) and ∂ϕ(x) is the subdifferential of ϕ(·) in the sense
of convex analysis. Also F(z, x, ξ) is a multivalued term with closed convex values
depending on the gradient of u. So, problem (1) incorporates variational inequalities
with a multivalued reaction term.

By a solution of problem (1), we understand a function u ∈ H1(�) such that we
can find g, f ∈ L2(�) for which we have

g(z) ∈ ∂ϕ(u(z)) and f (z) ∈ F(z, u(z), Du(z)) for almost all z ∈ �,∫
�

a(u(z))(Du, Dh)RN dz +
∫

�

(g(z) + f (z))h(z)dz = 0 for all h ∈ H1(�).

The presence of the gradient in the multifunction F , precludes the use of variational
methods in the analysis of (1). To deal with such problems, a variety of methods have
been proposed. Indicatively, we mention the works of Amann and Crandall [1], de
Figueiredo, Girardi and Matzeu [5], Girardi and Matzeu [8], Loc and Schmitt [13],
Pohozaev [20]. All these papers consider problems with no unilateral constraint (that
is, ϕ = 0) and the reaction term F is single-valued. Variational inequalities (that is,
problems where ϕ is the indicator function of a closed, convex set), were investigated
by Arcoya, Carmona and Martinez Aparicio [2], Matzeu and Servadei [15], Mokrane
and Murat [17]. All have single valued source term.

Ourmethod of proof is topological and it is based on a slight variant of Theorem 8 of
Bader [3] (a multivalued alternative theorem). Also, our method uses approximations
of ϕ and the theory of nonlinear operators of monotone type. In the next section, we
recall the basic notions and mathematical tools which we will use in the sequel.

2 Mathematical Background

Let X be a Banach space and X∗ be its topological dual. By 〈·, ·〉we denote the duality
brackets for the pair (X∗, X). By �0(X) we denote the cone of all convex functions
ϕ : X → R = R ∪ {+∞} which are proper (that is, not identically +∞) and lower
semicontinuous. By dom ϕ we denote the effective domain of ϕ, that is,

dom ϕ := {u ∈ X : ϕ(u) < +∞}.
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Given ϕ ∈ �0(X), the subdifferential of ϕ at u ∈ X is the set

∂ϕ(u) = {u∗ ∈ X∗ : 〈
u∗, h

〉
� ϕ(u + h) − ϕ(u) for all h ∈ X}.

Evidently ∂ϕ(u) ⊆ X∗ isw∗-closed, convex and possibly empty. If ϕ is continuous
at u ∈ X , then ∂ϕ(u) ⊆ X∗ is nonempty, w∗-compact and convex. Moreover, if ϕ is
Gâteaux differentiable at u ∈ X , then ∂ϕ(u) = {ϕ′

G(u)} (ϕ′
G(u) being the Gâteaux

derivative of ϕ at u). We know that the map ∂ϕ : X → 2X
∗
is maximal monotone. If

X = H = a Hilbert space and ϕ ∈ �0(H), then for every λ > 0, the “Moreau-Yosida
approximation” ϕλ of ϕ, is defined by

ϕλ(u) = inf

[
ϕ(h) + 1

2λ
||h − u||2 : h ∈ H

]
for all u ∈ H.

We have the following properties:

• ϕλ is convex, dom ϕλ = H ;
• ϕλ is Fréchet differentiable and the Fréchet derivative ϕ′

λ is Lipschitz continuous
with Lipschitz constant 1/λ;

• if λn → 0, un → u in H , ϕ′
λn

(un)
w∗→ u∗ in H , then u∗ ∈ ∂ϕ(u).

We refer for details to Gasinski and Papageorgiou [6] and Papageorgiou and Kyritsi
[19].

We know that if ϕ ∈ �0(X), then ϕ is locally Lipschitz in the interior of its effective
domain (that is, on int dom ϕ). So, locally Lipschitz functions are the natural candidate
to extend the subdifferential theory of convex functions.

We say that ϕ : X → R is locally Lipschitz if for every u ∈ X we can find U a
neighborhood of u and a constant k > 0 such that

|ϕ(v) − ϕ(y)| � k||v − y|| for all v, y ∈ U.

For such functions we can define the generalized directional derivative ϕ0(u; h) by

ϕ◦(u; h) = lim sup
u′→u
λ↓0

ϕ(u′ + λh) − ϕ(u′)
λ

.

Then ϕ◦(u; ·) is sublinear continuous and so we can define the nonempty w∗-
compact set ∂cϕ(u) by

∂cϕ(u) = {u∗ ∈ X∗ : 〈
u∗, h

〉
� ϕ◦(u; h) for all h ∈ X}.

We say that ∂cϕ(u) is the “Clarke subdifferential” of ϕ at u ∈ X . In contrast to the
convex subdifferential, the Clarke subdifferential is always nonempty. Moreover, if ϕ

is convex, continuous (hence locally Lipschitz on X ), then the two subdifferentials
coincide, that is, ∂ϕ(u) = ∂cϕ(u) for all u ∈ X . For further details we refer to Clarke
[4].
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Suppose that X is a reflexive Banach space and A : X → X∗ a map. We say that
A is “pseudomonotone”, if the following two conditions hold:

• A is continuous from every finite dimensional subspace V of X into X∗ furnished
with the weak topology;

• if un
w→ u in X , A(un)

w→ u∗ in X∗ and lim sup
n→∞

〈A(un), un − u〉 � 0, then for

every y ∈ X , we have

〈A(u), u − y〉 � lim inf
n→∞ 〈A(un), un − y〉 .

If A : X → X∗ is maximal monotone, then A is pseudomonotone.
A pseudomonotone map A : X → X∗ which is strongly coercive, that is,

〈A(u), u〉
||u|| → +∞ as ||u|| → ∞,

it is surjective (see Gasinski and Papageorgiou [6, p. 336]).
Let V be a set and let G : V → 2X

∗\{∅} be a multifunction. The graph of G is the
set

Gr G = {(v, u) ∈ V × X : u ∈ G(v)}.

(a) If V is a Hausdorff topological space and Gr G ⊆ V × X is closed, then we say
that G is “closed”.

(b) If there is a σ -field 	 defined on V and Gr G ⊆ 	 × B(X), with B(X) being the
Borel σ -field of X , then we say that G is “graph measurable”.

As we already mentioned in the Introduction, our approach uses a slight variant
of Theorem 8 of Bader [3] in which the Banach space V is replaced by its dual V ∗
equipped with the w∗-topology. A careful reading of the proof of Bader [3], reveals
that the result remains true if we make this change.

So, as above X is a Banach space, V ∗ is a dual Banach space, G : X → 2V
∗
is

a multifunction with nonempty, w∗-compact, convex values. We assume that G(·) is
“upper semicontinuous” (usc for short), from X with the norm topology into V ∗ with
the w∗-topology (denoted by V ∗

w∗ ), that is, for all U ⊆ V ∗ w∗-open, we have

G−(U ) = {x ∈ X : G(x) ∩U �= ∅} is open.

Note that if Gr G ⊆ X ×V ∗
w∗ is closed and G(·) is locally compact into V ∗

w∗ , that is,

for all u ∈ X we can find U a neighborhood of u such that G(U )
w∗

is w∗-compact in
V ∗, thenG is usc from X intoV ∗

w∗ . Also, let K : V ∗
w∗ → X be a sequentially continuous

map. Then the nonlinear alternative theorem of Bader [3], reads as follows.

Theorem 1 Assume that G and K are as above and S = K ◦G : X → 2X\{∅} maps
bounded sets into relatively compact sets. Define

E = {u ∈ X : u ∈ t S(u) for some t ∈ (0, 1)}.

Then either E is unbounded or S(·) admits a fixed point.
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3 Existence Theorem

In this section we prove an existence theorem for problem (1). We start by introducing
the hypotheses on the data of problem (1).

H(a): a : R → R is a function which satisfies

|a(x) − a(y)| � k|x − y| for all x, y ∈ R, some k > 0,

0 < c1 � a(x) � c2 for all x ∈ R.

H(ϕ): ϕ ∈ �0(R) and 0 ∈ ∂ϕ(0).

Remark 1 Werecall that inR×R, everymaximalmonotone set is of the subdifferential
type. In higher dimensions this is no longer true (see Papageorgiou and Kyritsi [19, p.
175]).

H(F): F : � × R × R
N → Pfc (R) is a multifunction such that

(i) for all (x, ξ) ∈ R × R
N , z �→ F(z, x, ξ) is graph measurable;

(ii) for almost all z ∈ �, (x, ξ) �→ F(z, x, ξ) is closed;
(iii) for almost all z ∈ � and all (x, ξ, v) ∈ Gr F(z, ·, ·), we have

|v| � γ1(z, |x |) + γ2(z, |x |)|ξ |

with

sup[γ1(z, s) : 0 � s � k] � η1,k(z) for almost all z ∈ �,

sup[γ2(z, s) : 0 � s � k] � η2,k(z) for almost all z ∈ �,

and η1,k, η2,k ∈ L∞(�);

(iv) there exists M > 0 such that if |x0| > M , then we can find δ > 0 and η > 0
such that

inf[vx + c1|ξ |2 : |x−x0|+|ξ | � δ, v ∈ F(z, x, ξ)] � η > 0 for almost all z ∈ �,

with c1 > 0 as in hypothesis H(a);
(v) for almost all z ∈ � and all (x, ξ, v) ∈ Gr F(z, ·, ·), we have

vx � −c3|x |2 − c4|x |ξ | − γ3(z)|x |

with c3, c4 > 0 and γ3 ∈ L1(�)+.

Remark 2 Hypothesis H(F)(iv) is an extension to multifunctions of the Nagumo-
Hartman condition for continuous vector fields (see Hartman [9, p. 433], Knobloch
[11] and Mawhin [16]).
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Let â : H1(�) → H1(�)∗ be the nonlinear continuous map defined by

〈
â(u), h

〉 =
∫

�

a(u)(Du, Dh)RN dz for all u, h ∈ H1(�). (2)

Proposition 2 If hypotheses H(a) hold, then the map â : H1(�) → H1(�)∗ defined
by (2) is pseudomonotone.

Proof Evidently â(·) is bounded (that is, maps bounded sets to bounded sets), see
hypotheses H(a) and it is defined on all of H1(�). So, in order to prove the desired
pseudomonotonicity of â(·), it suffices to show the following:

(GP): “Ifun
w→ u inH1(�), â(un)

w→ u∗ inH1(�)∗ and lim sup
n→∞

〈
â(un), un − u

〉
�

0,
then u∗ = â(u) and

〈
â(un), un

〉 → 〈
â(u), u

〉
”

(see Gasinski and Papageorgiou [6], Proposition 3.2.49, p. 333).
So, according to (GP) above we consider a sequence {un}n�1 ⊆ H1(�) such that

un
w→ u in H1(�), â(un)

w→ u∗ in H1(�)∗ and lim sup
n→∞

〈
â(un), un − u

〉
� 0. (3)

We have

〈
â(un), un − u

〉 =
∫

�

a(un)(Dun, Dun − Du)RN dz

=
∫

�

a(un)|Dun − Du|2dz +
∫

�

a(un)(Du, Dun − Du)RN dz.

(4)

Hypotheses H(a) and (3) imply that

∫
�

a(un)(Du, Dun − Du)RN dz → 0 as n → ∞. (5)

Also we have

∫
�

a(un)|Dun − Du|2dz � c1||Dun − Du||22 (see hypotheses H(a)),

⇒ Dun → Du in L2(�,RN ) (see(3), (4), (5))

⇒ un → u in H1(�) (see(3)). (6)
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For all h ∈ H1(�), we have

〈
â(un), h

〉 =
∫

�

a(un)(Dun, Dh)RN dz →
∫

�

a(u)(Du, Dh)RN dz = 〈
â(u), h

〉
(see (3) and hypotheses H(a)),

⇒ â(un)
w→ â(u) in H1(�)∗,

⇒ â(u) = u∗ (see(3)).

From (6) and the continuity of a(·) (see hypotheses H(a)), we have

〈
â(un), un

〉 → 〈
â(u), u

〉
.

Therefore property (GP) is satisfied and so we conclude that â(·) is
pseudomonotone. ��

Next we will approximate problem (1) using theMoreau-Yosida approximations of
ϕ ∈ �0(R). For this approach to lead to a solution of problem (1), we need to have a
priori bounds for the approximate solutions. The proposition which follows is a crucial
step in this direction. Its proof is based on the so-called “Moser iteration technique”.

So, we consider the following nonlinear Neumann problem:

{−div (a(u(z))Du(z)) = g(z, u(z)) in �,
∂u
∂n = 0 on ∂�.

}
(7)

The conditions on the reaction term g(z, x) are the following:
H(g) : g : � × R → R is a Carathéodory function (that is, for all x ∈ R,

z �→ g(z, x) is measurable and for almost all z ∈ �, x �→ g(z, x) is continuous) and

|g(z, x)| � a(z)(1 + |x |r−1) for almost all z ∈ �, all x ∈ R,

witha ∈ L∞(�)+, 2 � r < 2∗ =
{ 2N

N−2 if N � 3
+∞ if N = 1, 2

(the critical Sobolev exponent).

By a weak solution of problem (7), we understand a function u ∈ H1(�) such that

∫
�

a(u)(Du, Dh)RN dz =
∫

�

g(z, u)hdz for all h ∈ H1(�).

Proposition 3 If hypothesis H(g) holds and u ∈ H1(�) is a nontrivial weak solution
of (7), then u ∈ L∞(�) and ||u||∞ � M = M(||a||∞, N , 2, ||u||2∗).

Proof Let p0 = 2∗ and pn+1 = 2∗ + 2∗
2 (pn − r) for all n ∈ N0. Evidently {pn}n�0

is increasing. First suppose that u � 0. For every k ∈ N we set

uk = min{u, k} ∈ H1(�) . (8)
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Let ϑ = pn − r > 0 (note that pn � 2∗ > r ). We have

â(u) = Ng(u) in H1(�)∗ (9)

with Ng(u)(·) = g(·, u(·)) ∈ Lr ′
(�) ⊆ H1(�)∗, 1

r + 1
r ′ = 1 (the Nemytskii map

corresponding to g). On (9) we act with uϑ+1
k (see (8)). Then

〈
â(u), uϑ+1

k

〉
=

∫
�

g(z, u)uϑ+1
k dz. (10)

Note that

〈
â(u), uϑ+1

k

〉
=

∫
�

a(u)
(
Du, Duϑ+1

k

)
RN

dz

= (ϑ + 1)
∫

�

uϑ
k a(u)(Du, Duk)RN dz

�(ϑ+1)
∫

�

uϑ
k c1|Duk |2dz (see hypothesis H(a) and recall that u � 0)

= c1(ϑ + 1)
2

ϑ + 2

∫
�

∣∣∣∣Du
ϑ+2
2

k

∣∣∣∣
2

dz. (11)

Also we have

∫
�

g(z, u)uϑ+1
k dz

�
∫

�

a(z)(1 + ur−1)uϑ+1dz (see hypothesisH(g), (8) and recall u � 0)

� c3

(
1 +

∫
�

u pndz

)
for some c3 > 0 (since ϑ + 1 < ϑ + r = pn). (12)

We return to (10) and use (11) and (12). Then

c1(ϑ + 1)
2

ϑ + 2

∫
�

[∣∣∣∣Du
ϑ+2
2

k

∣∣∣∣
2

+
∣∣∣∣u

ϑ+2
2

k

∣∣∣∣
2
]
dz

� c4

(
1 +

∫
�

u pndz

)
for some c4 > 0 (since ϑ + r = pn)

⇒ ‖u
ϑ+2
2

k ‖2 � c5

(
1 +

∫
�

u pndz

)
for some c5 > 0, all k ∈ N, and n ∈ N0.

Here || · || denotes the norm of H1(�) (recall that ||v|| = [||v||22 + ||Dv||22]1/2 for
all v ∈ H1(�)).
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By the Sobolev embedding theorem (see (8) and note that H1(�) ↪→ L
2pn+1

pn (�))
we have

||uk ||pnpn+1 � c6

(
1 +

∫
�

u pndz

)
for some c6 > 0, all k ∈ N0 and n ∈ N.

Let k → ∞. Then uk(z) ↑ u(z) for almost all z ∈ � (see (8)). So, by the monotone
convergence theorem, we have

(∫
�

u pn+1dz

) pn
pn+1 � c6

(
1 +

∫
�

u pndz

)
for all n ∈ N0. (13)

Recall that p0 = 2∗ and by the Sobolev embedding theorem we have u ∈ L2∗
(�).

So, from (13) and by induction we infer that u ∈ L pn (�) for all n ∈ N0. Also we
have

||u||pnpn+1 � c6(1 + ||u||pnpn ) for all n ∈ N0 (see(13)).

Since pn < pn+1, using the Hölder and Young inequalities (the latter with ε > 0
small), we obtain

||u||pn � c7 for some c7 > 0, all n ∈ N0. (14)

Claim 1.pn → ∞.
Arguing by contradiction, suppose that the Claim is not true. Since {pn}n∈N0 is

increasing, we have
pn → p∗ > 2∗. (15)

By definition

pn+1 = 2∗ + 2∗

2
(pn − r),

⇒ p∗ = 2∗ + 2∗

2
(p∗ − r) (see 15))

⇒ p∗
(
2∗

2
− 1

)
= 2∗ ( r

2
− 1

)
< 2∗

(
2∗

2
− 1

)
(since 2 � r < 2∗),

⇒ p∗ < 2∗, a contradiction (see 15).

This proves the Claim.
So, passing to the limit as n → ∞ in (14), it follows from Gasinski and Papageor-

giou [7, p. 477] that

||u||∞ � c7, hence u ∈ L∞(�).

Moreover, it is clear from the above proof that ||u||∞ � M = M(||a||∞,

N , 2, ||u||2∗).
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Finally for the general case,wewrite u = u+−u−, with u± = max{±u, 0} � 0 and
workwith each one separately as above, to conclude u± ∈ L∞(�), hence u ∈ L∞(�).

��

Now for λ > 0, let ϕλ be the Moreau-Yosida approximation of ϕ ∈ �0(R) and for
ϑ ∈ L∞(�), consider the following auxiliary Neumann problem:

{−div (a(u(z))Du(z)) + u(z) + ϕ′
λ(u(z)) = ϑ(z) in �,

∂u
∂n = 0 on ∂�

}
(16)

Proposition 4 If hypotheses H(a), H(ϕ) hold and ϑ ∈ L∞(�), then problem (16)
admits a unique solution u ∈ C1(�).

Proof Let Vλ : H1(�) → H1(�)∗ be the nonlinear map defined by

Vλ(u) = â(u) + u + Nϕ′
λ
(u) for all u ∈ H1(�).

As before Nϕ′
λ
(u) is the Nemytskii map corresponding to ϕ′

λ (that is, Nϕ′
λ
(u)(·) =

ϕ′
λ(u(·))). We have

〈Vλ(u), u〉 = 〈
â(u), u

〉 + ||u||22 +
∫

�

ϕ′
λ(u)udz

� c1||Du||22 + ||u||22
(see hypothesis H(a) and recall that ϕ′

λ is increasing, ϕ′
λ(0) = 0),

⇒ Vλ is strongly coercive. (17)

Using the Sobolev embedding theorem we see that u �→ Nϕ′
λ
(u) is completely

continuous from H1(�) into H1(�)∗ (that is, if un
w→ u in H1(�), then Nϕ′

λ
(un) →

Nϕ′
λ
(u) in H1(�)∗), hence it is pseudomonotone. From Proposition 2 we know that

â(·) is pseudomonotone and of course the same is true for the embedding H1(�) ↪→
H1(�)∗ (which is compact). So, from Gasinski and Papageorgiou [6], Proposition
3.2.51, p. 334, we infer that

u �→ Vλ(u) is pseudomonotone. (18)

Recall that a pseudomonotone strongly coercive map is surjective. So, from (17),
(18) it follows that there exists u ∈ H1(�) such that

Vλ(u)=ϑ,⇒
∫

�

a(u)(Du, Dh)RN dz

+
∫

�

uhdz +
∫

�

ϕ′
λ(u)hdz=

∫
�

ϑhdz for all h ∈ H1(�). (19)
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From the nonlinear Green’s identity (see Gasinski and Papageorgiou [6], Theorem
2.4.53, p. 210), we have

∫
�

a(u)(Du, Dh)RN dz = 〈−div (a(u)Du), h〉+
〈
a(u)

∂u

∂n
, h

〉
∂�

for all h ∈ H1(�),

(20)
where by 〈·, ·〉∂� we denote the duality brackets for the pair (H− 1

2 ,2(∂�), H
1
2 ,2(∂�)).

From the representation theorem for the elements of H−1(�) = H1
0 (�)∗ (see

Gasinski and Papageorgiou [6], Theorem 2.4.57, p. 212), we have

div (a(u)Du) ∈ H−1(�).

So, if by 〈·, ·〉0 we denote the duality brackets for the pair (H−1(�), H1
0 (�)) we

have

〈−div (a(u)Du), h〉0 =
∫

�

a(u)(Du, Dh)RN dz for all h ∈ H1
0 (�),

⇒ 〈−div (a(u)Du), h〉0 =
∫

�

(ϑ − u − ϕ′
λ(u))hdz for all h ∈ H1

0 (�) (see (19)),

⇒ −div (a(u(z))Du(z)) = ϑ(z) − u(z) − ϕ′
λ(u(z)) for almost all z ∈ �. (21)

Then from (19), (20), (21) it follows that

〈
a(u)

∂u

∂n
, h

〉
∂�

= 0 for all h ∈ H1(�). (22)

If by γ0 we denote the trace map, we recall that

im γ0 = H
1
2 ,2(∂�)

(see Gasinski and Papageorgiou [6], Theorem 2.4.50, p. 209). Hence from (22) we
infer that

∂u

∂n

∣∣∣∣
∂�

= 0 (see hypothesis H(a)).

Therefore we have

{−div (a(u)(z)Du(z)) + u(z) + ϕ′
λ(u(z)) = ϑ(z) for almost all z ∈ �,

∂u
∂n = 0 on ∂�

}
(23)

From (23) and Proposition 3, we infer that

u ∈ L∞(�).
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Then we can use Theorem 2 of Lieberman [12] and conclude that

u ∈ C1(�).

We establish in what follows the uniqueness of this solution. So, suppose that
v ∈ C1(�) is another solution. We have

â(u) + u + Nϕ′
λ
(u) = ϑ in H1(�)∗, (24)

â(v) + v + Nϕ′
λ
(v) = ϑ in H1(�)∗. (25)

Let k > 0 be the Lipschitz constant in hypothesis H(a).We introduce the following
function

ηε(s) =
{∫ s

ε
dt

(kt)2
is s � ε

0 if s < ε
with ε > 0. (26)

Evidently ηε is Lipschitz continuous. So, from Marcus and Mizel [14], we have

ηε(u − v) ∈ H1(�), (27)

D(ηε(u − v)) = η′
ε(u − v)D(u − v) (28)

(see also Gasinski and Papageorgiou [6], Proposition 2.4.25, p. 195). Subtracting (25)
from (24), we have

â(u) − â(v) + (u − v) + (Nϕ′
λ
(u) − Nϕ′

λ(v)) = 0 in H1(�)∗. (29)

On (29) we act with ηε(u − v) ∈ H1(�) (see (27)). Then

〈
â(u) − â(v), ηε(u − v)

〉+
∫

�

(u−v)ηε(u−v)dz+
∫

�

(ϕ′
λ(u)−ϕ′

λ(v))(u−v)dz = 0.

(30)
We have

∫
�

(u − v)ηε(u − v)dz =
∫

{u−v�ε}
(u − v)ηε(u − v)dz

� 1

k

∫
{u−v�ε}

(
u − v

ε
− 1

)
dz (see (26)). (31)

Recall that ϕ′
λ is increasing. Therefore

∫
�

(ϕ′
λ(u) − ϕ′

λ(v))ηε(u − v)dz =
∫

{u−v�ε}
(ϕ′

λ(u) − ϕ′
λ(v))ηε(u − v)dz � 0

(see (26)). (32)
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We return to (30) and use (31), (32). Then

〈
â(u) − â(v), ηε(u − v)

〉
� 0,

⇒
∫

�

(a(u)Du − a(v)Dv, Dηε(u − v))RN dz � 0,

⇒
∫

�

a(u)(Du − Dv, Dηε(u − v))RN dz � −
∫

�

(a(u)

−a(v))(Dv, Dηε(u − v))RN dz. (33)

Let �ε = {z ∈ � : (u − v)(z) � ε}. Then
∫

�

a(u)(Du − Dv, Dηε(u − v))RN dz

=
∫

�ε

a(u)η′
ε(u − v)|Du − Dv|2dz (see (26), (28))

� c1

∫
�ε

|Du − Dv|2
k2(u − v)2

dz (see hypothesisH(a) and (26)). (34)

Also we have

−
∫

�

(a(u) − a(v))(Dv, Dηε(u − v))RN dz

�
∫

�ε

k(u − v)η′
ε(u − v)(Dv, Du − Dv)RN dz (see hypothesis H(a) and (28))

=
∫

�ε

1

k(u − v)
(Dv, Du − Dv)RN dz (see (26))

� ||Dv||2
(∫

�ε

|Du − Dv|2
k2|u − v|2 dz

)1/2

(by the Cauchy-Schwarz inequality). (35)

Returning to (33) and using (34), (35) we obtain

∫
�ε

|Du − Dv|2
|u − v|2 dz � k2

c21
||Dv||22.

Let �∗
ε be a connected component of �̂ = {z ∈ �; (u − v)(z) > 0}, �̂ �= � (see

(31)). We have

∫
�∗

ε

|Du − Dv|2
|u − v|2 dz � k2

c21
||Dv||22 with �∗

ε = �ε ∩ �∗ . (36)

Consider the function

γε(y) =
{∫ y

ε
dt
t if t � ε

0 if t < ε.
(37)
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This function is Lipschitz continuous and as before from Marcus and Mizel [14],
we have

γε(u − v) ∈ H1(�) (38)

Dγε(u − v) = γ ′
ε(u − v)(Du − Dv)

= 1

u − v
(Du − Dv) for almost all z ∈ �ε (see (37)). (39)

Returning to (36) and using (38), (39), we obtain

∫
�∗

|Dγε(u − v)|2dz � k2

c21
||Dv||22 . (40)

Note that u = v on ∂�∗ (that is, u−v ∈ H1
0 (�∗); recall that u, v ∈ C1(�)). Hence

γε(u − v) ∈ H1
0 (�∗). (41)

From (40), (41) and the Poincaré inequality, we have

∫
�∗

|γε(u − v)|2dz � c8||v||2 for some c8 > 0, all ε > 0.

If |�∗|N > 0 (by | · |N we denote the Lebesgue measure on R
N ), then letting

ε → 0+, we reach a contradiction (see (37)). So, every connected component of the
open set

�̂ = {z ∈ � : u(z) > v(z)}

is Lebesgue-null. Hence |�̂|N = 0 and so

u � v. (42)

Interchanging the roles of u, v in the above argument, we also obtain

v � u. (43)

From (42) and (43) we conclude that

u = v.

This prove the uniqueness of the solution u ∈ C1(�) of the auxiliary problem (16).
��

Let C1
n(�) = {u ∈ C1(�) : ∂u

∂n |∂� = 0} and for every λ > 0 let Kλ : L∞(�) →
C1
n(�) be the map which to each ϑ ∈ L∞(�) assigns the unique solution u =
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Kλ(ϑ) ∈ C1
n(�)of the auxiliary problem (16) (seeProposition4). Thenext proposition

establishes the continuity properties of this map.

Proposition 5 If hypotheses H(a), H(ϕ) hold then the map Kλ : L∞(�) → C1
n(�)

is sequentially continuous from L∞(�) furnished with the w∗-topology into C1
n(�)

with the norm topology.

Proof Suppose that ϑn
w∗→ ϑ in L∞(�) and let un = Kλ(ϑn), u = Kλ(ϑ).

For every n ∈ N, we have

â(un) + un + Nϕ′
λ
(un) = ϑn

⇒ −div (a(un(z))Dun(z)) + un(z) + ϕ′
λ(un(z)) = ϑn(z) (44)

for almost all z ∈ �,
∂un
∂n

= 0 on ∂�. (45)

On (44) we act with un ∈ C1
n(�). Then

∫
�

a(un)|Dun|2dz + ||un||22 +
∫

�

ϕ′
λ(un)undz =

∫
�

ϑnundz

⇒ c1||Dun||22 + ||un||22 � c9||un|| for some c9 > 0, all n ∈ N

(see hypothesis H(a)and recall that ϕ′
λ is increasing with ϕ′

λ(0) = 0)

⇒ ||un|| � c10 for some c10 > 0, all n ∈ N,

⇒ {un}n�1 ⊆ H1(�) is bounded.

By passing to a subsequence if necessary, we may assume that

un
w→ û in H1(�) and un → û in L2(�). (46)

Then for every h ∈ H1(�) we have

〈
â(un), h

〉 =
∫

�

a(un)(Dun, Dh)RN dz →
∫

�

a(û)(Dû, Dh)RN dz = 〈
â(û), h

〉
(see (46) and hypothesis H(a)),

⇒ â(un)
w→ â(û) in H1(�)∗. (47)

Therefore, if in (44) we pass to the limit as n → ∞ and use (46), (47), then

â(û) + û + Nϕ′
λ
(û) = ϑ,

⇒ û = u ∈ C1(�) = the unique solution of (16) (see Proposition 4).

From (45) and Proposition 3, (recall that {un}n�1 ⊆ H1(�) is bounded), we see
that we can find c11 > 0 such that

||un||∞ � c11 for all n ∈ N. (48)
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Then (48) and Theorem 2 of Lieberman [12] imply that we can find α ∈ (0, 1) and
c12 > 0 such that

un ∈ C1,α(�), ||un||C1,α(�) � c12 for all n ∈ N. (49)

From (49), the compact embedding of C1,α(�) into C1(�) and (46), we have

un → u in C1(�),

⇒ Kλ(ϑn) → Kλ(ϑ) in C1(�).

This proves that Kλ is sequentially continuous from L∞(�) with the w∗-topology
into C1

n(�) with the norm topology. ��

We consider the following approximation to problem (1):

{
div (a(u(z))Du(z)) ∈ ϕ′

λ(u(z)) + F(z, u(z), Du(z)) in �,
∂u
∂n = 0 on ∂�, λ > 0.

}
(50)

Proposition 6 If hypotheses H(a), H(ϕ), H(F) hold and λ > 0, then problem (50)
admits a solution uλ ∈ C1(�).

Proof Consider the multifunction N : C1
n(�) → 2L

∞(�) defined by

N (u) = {
f ∈ L∞(�) : f (z) ∈ F(z, u(z), Du(z)) for almost all z ∈ �

}
.

Hypotheses H(F)(i), (i i) imply that the multifunction z �→ F(z, u(z), Du(z))
admits a measurable selection (see Hu and Papageorgiou [10, p. 21]) and then hypoth-
esis H(F)(i i i) implies that this measurable selection belongs in L∞(�) and so N (·)
has nonempty values, which is easy to see that they are w∗-compact (Alaoglu’s theo-
rem) and convex. Let

N1(u) = u − N (u) for all u ∈ C1
n(�).

We consider the following fixed point problem

u ∈ KλN1(u). (51)

Let E = {u ∈ C1
n(�) : u ∈ t KλN1(u) for some t ∈ (0, 1)}.

Claim 2. The set E ⊆ C1
n(�) is bounded.

Let u ∈ E . Then from the definitions of Kλ and N1 we have

â

(
1

t
u

)
+ 1

t
u + Nϕ′

λ

(
1

t
u

)
= u − f with f ∈ N (u). (52)
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On (52) we act with u ∈ H1(�). Using hypothesis H(a), we obtain

c1
t

||Du||22 + 1

t
||u||22 � ||u||22 −

∫
�

f udz

(recall that ϕ′
λ is increasing and ϕ′

λ(0) = 0),

⇒ c1||Du||22 � (t − 1)||u||22 − t
∫

�

f udz � −t
∫

�

f udz (recall that t ∈ (0, 1)).

(53)

Hypothesis H(F)(v) implies that

− t
∫

�

f udz � tc3||u||22 + tc4

∫
�

|u|2 |Du|dz +
∫

�

γ3(z)|u|2dz. (54)

Let M > 0 be as postulated by hypothesis H(F)(iv). We will show that

||u||∞ � M.

To this end let σ̂0(z) = |u(z)|2. Let z0 ∈ � be such that

σ̂0(z0) = max
�

σ̂0 (recall that u ∈ E ⊆ C1
n(�)).

Suppose that σ̂0(z0) > M2. First assume that z0 ∈ �. Then

0 = Dσ̂0(z0) = 2u(z0)Du(z0),

⇒ Du(z0) = 0 (since |u(z0)| > M).

Let δ, η > 0 be as in hypothesis H(F)(iv). Since σ̂0(z0) > M2 and u ∈ C1
n(�)

we can find δ1 > 0 such that

z ∈ Bδ1(z0) = {z ∈ � : |z − z0| � δ1} ⇒ |u(z) − u(z0)| + |Du(z)| � δ

(recall that Du(z0) = 0),

⇒ t f (z)u(z) + tc1|Du(z)|2 � tη > 0 for almost all z ∈ Bδ1(z0)

(see hypothesis H(F)(iv)). (55)

From (52) as before (see the proof of Proposition 4), we have

− div

(
a

(
1

t
u(z)

)
D

(
1

t
u

)
(z)

)
+ ϕ′

λ

(
1

t
u(z)

)

=
(
1 − 1

t

)
u(z) − f (z) for almost all z ∈ �. (56)
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Using (56) in (55), we obtain

[
div

(
a

(
1

t
u(z)

)
Du(z)

)
− tϕ′

λ

(
1

t
u(z)

)
+ (t − 1)u(z)

]
u(z)

+ tc1|Du(z)|2 � tη for almost all z ∈ Bδ1(z0). (57)

We integrate over Bδ1(z0) and use the fact that t ∈ (0, 1). Then

∫
Bδ1 (z0)

div

(
a

(
1

t
u

)
Du

)
udz − t

∫
Bδ1 (z0)

ϕ′
λ

(
1

t
u

)
udz

+ tc1

∫
Bδ1 (z0)

|Du|2dz � μη|Bδ1(z0)|N

⇒
∫
Bδ1 (z0)

div

(
a

(
1

t
u

)
Du

)
udz + tc1

∫
Bδ1 (z0)

|Du|2dz > 0

(recall that ϕ′
λ is increasing and ϕ′

λ(0) = 0).

Using the nonlinear Green’s identity (see Gasinski and Papageorgiou [6], Theorem
2.4.53, p. 210), we obtain

0 < −
∫
Bδ1 (z0)

a

(
1

t
u

)
|Du|2dz +

∫
∂Bδ1 (z0)

a

(
1

t
u

)
∂u

∂n
udσ + tc1

∫
Bδ1 (z0)

|Du|2dz.

Here by σ(·) we denote the (N − 1)-dimensional Hausdorff (surface) measure
defined on ∂�. Hence we ahve

0 < −c1

∫
Bδ1 (z0)

|Du|2dz +
∫

∂Bδ1 (z0)
a

(
1

t
u

)
∂u

∂n
udσ + tc1

∫
Bδ1 (z0)

|Du|2dz
(see hypothesis H(a)),

⇒ 0 <

∫
∂Bδ1 (z0)

a

(
1

t
u

)
∂u

∂n
udσ (recall that t ∈ (0, 1)),

⇒ 0 < c2

∫
∂Bδ1 (z0)

∂u

∂n
udσ (see hypothesis H(a)).

Thus we can find a continuous path {c(t)}t∈[0,1] in Bδ1(z0) with c(0) = z0 such
that

a <

∫ 1

0
u(c(t))(Du(c(t)), c′(t))RN dt =

∫ 1

0

1

2

d

dt
u(c(t))2dt

= 1

2
[u(c(1)) − u(z0)],

⇒ u(z0) < u(c(1)),

which contradicts the choice of z0. So, we cannot have z0 ∈ �.
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Therefore we assume that z0 ∈ ∂�. Since u ∈ C1
n(�), again we have Du(z0) = 0

and so the above argument applies with ∂Bδ1(z0) replaced by ∂Bδ1(z0) ∩ �.
Hence we have proved that

||u||∞ � M for all u ∈ E (here M > 0 is as in hypothesis H(F)(iv)). (58)

We use (58) in (54) and have

−t
∫

�

f udz � tc13(1 + ||Du||2) for some c13 > 0,

⇒ c1||Du||22 � c13(1 + ||Du||2) (see (53) and recall t ∈ (0, 1)),

⇒ ||Du||2 � c14 for some c14 > 0, all u ∈ E . (59)

Then (58), (59) imply that E ⊆ H1(�) is bounded. Invoking Theorem 2 of Lieber-
man [12], we can find c15 > 0 such that

||u||C1(�) � c15 for all u ∈ E,

⇒ E ⊆ C1
n(�) is bounded.

This proves the Claim.
Recall that hypotheses H(F)(i), (i i), (i i i) imply that N1 is a multifunction which

is usc from C1
n(�) with the norm topology into L∞(�) with the w∗-topology (see Hu

and Papageorgiou [10, p. 21]). This fact, Proposition 5 and the Claim, permit the use
of Theorem 1. So, we can find uλ ∈ C1

n(�) such that

uλ ∈ KλN1(uλ),

⇒ uλ ∈ C1
n(�) is a solution of problem(50).

��

Now we are ready for the existence theorem concerning problem (1).

Theorem 7 If hypotheses H(a), H(ϕ), H(F) hold, then problem (1) admits a solu-
tion u ∈ C1

n(�).

Proof Let λn → 0+. From Proposition 6, we know that problem (50) (with λ = λn)
has a solution un = uλn ∈ C1

n(�). Moreover, from the proof of that proposition, we
have

||un||∞ � M for all n ∈ N (see (58)). (60)

For every n ∈ N, we have

â(un)+ Nϕ′
λn

(un)+ fn = 0 with fn ∈ N (un) (see the proof of Proposition 6). (61)
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On (61) we act with un and obtain

c1||Dun||22 � || fn||2||un||2
(see hypothesis H(a)and recall that ϕ′

λ(s)s � 0 for all s ∈ R),

⇒ ||Dun||2 � c16 for some c16 > 0, all n ∈ N

(see (60) and hypothesis H(F)(i i i)). (62)

From (60) and (62) it follows that

{un}n�1 ⊆ H1(�) is bounded.

So, by passing to a subsequence if necessary, we may assume that

un
w→ u in H1(�) and un → u in L2(�).

Acting on (61) with Nϕ′
λn

(un)(·) = ϕ′
λn

(un(·)) ∈ C(�)∩ H1(�) (recall that ϕ′
λn

(·)
is Lipschitz continuous and see Marcus and Mizel [14]), we have

∫
�

a(un)(Dun, Dϕ′
λ(un))RN dz + ||Nϕ′

λn
(un)||22 = −

∫
�

fnϕ
′
λn

(un)dz. (63)

From the chain rule of Marcus and Mizel [14], we have

Dϕ′
λn

(un) = ϕ′′
λn

(un)Dun . (64)

Since ϕ′
λn

(·) is increasing (recall that ϕλn is convex), we have

ϕ′′
λn

(un(z)) � 0 for almost all z ∈ �. (65)

Using (64), (65) and hypothesis H(a), we see that

0 �
∫

�

a(un)(Dun, Dϕ′
λn

(un))RN dz. (66)

Using (66) in (63), we obtain

||Nϕ′
λn

(un)||22 � || fn||2||Nϕ′
λn

(un)||2 for all n ∈ N,

⇒ ||Nϕ′
λn

(un)||2 � || fn||2 � c17 for some c17 > 0, all n ∈ N

(see (60) and hypothesis H(F)(iii))

⇒ {Nϕ′
λn

(un)}n�1 ⊆ L2(�) is bounded.

So, we may assume that

Nϕ′
λn

w→ g and fn
w→ f in L2(�). (67)
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As in the proof of Proposition 5 (see (47)), we show that

â(un)
w→ â(u) in H1(�)∗. (68)

So, if in (61) we pass to the limit as n → ∞ and use (67) and (68), we obtain

â(u) + g + f = 0,

⇒ −div (a(u(z))Du(z)) + g(z) + f (z) = 0 for almost all z ∈ �,
∂u

∂n
= 0 on ∂�

(see the proof of Proposition 4). (69)

Because of (60) and Theorem 2 of Lieberman [12], we know that there exist α ∈
(0, 1) and c18 > 0 such that

un ∈ C1,α(�), ||un||C1,α(�) � c18 for all n ∈ N,

⇒ un → u in C1(�) (recall that C1,α(�) is embedded compactly into C1(�)).

(70)

Recall that

fn(z) ∈ F(z, un(z), Dun(z)) for almost all z ∈ �, all n ∈ N,

⇒ f (z) ∈ F(z, u(z), Du(z))

(see (67), (70), hypothesis H(F)(ii) and Proposition 6.6.33, p. 521 of [19]),

⇒ f ∈ N (u). (71)

Also, from (67), (70) and Corollary 3.2.51, p. 179 of [19], we have

g(z) ∈ ∂ϕ(u(z)) for almost all z ∈ �. (72)

So, from (69), (71), (72) we conclude that u ∈ C1
n(�) is a solution of problem (1).

��

4 Examples

In this section we present two concrete situations illustrating our result.
For the first, let μ � 0 and consider the function

ϕ(x) =
{+∞ if x < μ

0 if μ � x .

Evidently we have

ϕ ∈ �0(R) and 0 ∈ ∂ϕ(0).

123



22 Appl Math Optim (2018) 78:1–23

In fact note that

∂ϕ(x) =
⎧⎨
⎩

∅ if x < μ

R− if x = μ

{0} if μ < x .

Also consider a Carathéodory function f : � × R × R
N → R which satisfies

hypotheses H(F)(i i i), (iv), (v). For example, we can have the following function
(for the sake of simplicity we drop the z-dependence):

f (x, ξ) = c sin x + x − ln(1 + |ξ |) + ϑ with c1ϑ > 0.

Then according to Theorem 7, we can find a solution u0 ∈ C1(�) for the following
problem:

⎧⎨
⎩
div (a(u(z))Du(z)) � f (z, u(z), Du(z)) for almost all z ∈ {u = μ},
div (a(u(z))Du(z)) = f (z, u(z), Du(z)) for almost all z ∈ {μ < u},
u(z) � μ for all z ∈ �, ∂u

∂n = 0 on ∂�.

⎫⎬
⎭

For the second example, we consider a variational-hemivariational inequality. Such
problems arise in mechanics, see Panagiotopoulos [18]. So, let j (z, x) be a locally
Lipschitz integrand (that is, for all x ∈ R, z �→ j (z, x) is measurable and for almost
all z ∈ �, x �→ j (z, x) is locally Lipschitz). By ∂c j (z, x) we denote the Clarke
subdifferential of j (z, ·).We impose the following conditions on the integrand j (z, x):

(a) for almost all z ∈ �, all x ∈ R and all v ∈ ∂ j (z, x)

|v| � ĉ1(1 + |x |) for almost all z ∈ �, all x ∈ R, with ĉ1 > 0;

(b) 0 < ĉ2 � lim inf
x→±∞

v
x � lim sup

x→±∞
v
x � ĉ3 uniformly for almost all z ∈ �, all

v ∈ ∂ j (z, x)
(c) −ĉ4 � lim inf

x→0

v
x � lim sup

x→0

v
x � ĉ5 uniformly for almost all z ∈ �, all v ∈ ∂ j (z, x)

and with ĉ4, ĉ5 > 0.

A possible choice of j is the following (as before for the sake of simplicity we drop
the z-dependence):

j (x) =
{

1
p |x |p − cos(π

2 |x |) if |x | � 1
1
2 x

2 − ln |x | + c if 1 < |x | with c = 1

p
− 1

2
, 1 < p.

We set

F(z, x, ξ) = ∂ j (z, x) + x |ξ | + ϑ(z) with ϑ ∈ L∞(�).

Using (a),(b),(c) above, we can see that hypotheses H(F) are satisfied.
Also, suppose that ϕ satisfies hypothesis H(ϕ). Two specific choices of interest are
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ϕ(x) = |x | and ϕ(x) = i[−1,1](x) =
{
0 if |x | � 1
+∞ if 1 < |x |.

Then the following problem admits a solution u0 ∈ C1(�):{
div (a(u(z))Du(z)) ∈ ∂ϕ(u(z)) + F(z, u(z), Du(z)) in �,
∂u
∂n = 0 on ∂�.

}

The case ϕ ≡ 0 (hemivariational inequalities) incorporates problems with discon-
tinuities in which we fill-in the gaps at the jump discontinuities.
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