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Abstract We consider a nonlinear boundary value problem driven by a nonhomo-
geneous differential operator. The problem exhibits competing nonlinearities with a
superlinear (convex) contribution coming from the reaction term and a sublinear (con-
cave) contribution coming from the parametric boundary (source) term. We show that
for all small parameter values λ > 0, the problem has at least five nontrivial smooth
solutions, four of constant sign and one nodal. We also produce extremal constant sign
solutions and determine their monotonicity and continuity properties as the parameter
λ > 0 varies. In the semilinear case we produce a sixth nontrivial solution but without
any sign information. Our approach uses variational methods together with truncation
and perturbation techniques, and Morse theory.
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vicentiu.radulescu@imar.ro

Nikolaos S. Papageorgiou
npapg@math.ntua.gr

Dušan D. Repovš
dusan.repovs@guest.arnes.si

1 Department of Mathematics Zografou Campus, National Technical University, 15780 Athens,
Greece

2 Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza
30, 30-059 Kraków, Poland

3 Department of Mathematics, University of Craiova, 200585 Craiova, Romania

4 Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana,
1000 Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-017-9465-6&domain=pdf


252 Appl Math Optim (2019) 80:251–298

Keywords Nonlinear nonhomogeneous differential operator · Nonlinear boundary
condition · Nonlinear regularity theory · Nonlinear maximum principle · Critical
groups

Mathematics Subject Classification 35J20 (Primary) · 35J60 · 58E05 (Secondary)

1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonlinear, nonhomogeneous elliptic problem

(Pλ)

{−div a(Du(z)) = f (z, u(z)) in �,
∂u
∂na

= λβ(z, u) on ∂�.

}

In this problem, a : R
N → R

N is a strictly monotone, continuous map which
satisfies certain other regularity and growth conditions, listed in hypotheses H(a) in
Sect. 2. These hypotheses are general enough to incorporate in our framework several
differential operators of interest, such as, e.g., the p-Laplacian. The reaction term
f (z, x) is a Carathéodory function (that is, for all x ∈ R, z �→ f (z, x) is measurable
and for almost all z ∈ �, x �→ f (z, x) is continuous) which satisfies the well-
known Ambrosetti–Rabinowitz condition (AR-condition for short) in the x-variable,
hence exhibiting (p−1)-superlinear growth near±∞. In the boundary condition, ∂u

∂na
denotes the generalized normal derivative corresponding to the differential operator
u �→ div a(Du) and is defined by

∂u

∂na
= (a(Du), n)RN for all u ∈ W 1,p(�),

with n(·) being the outward unit normal on ∂�. This kind of generalized normal
derivative is dictated by the nonlinear Green’s identity (see Gasinski and Papageorgiou
[13, p. 210] and it was also used by Lieberman [21]). The boundary function β(z, x)
is continuous on ∂�×R and it satisfies certain other regularity and growth conditions
listed in hypotheses H(β) in Sect. 3. In fact, β(z, ·) exhibits strict (p − 1)-sublinear
growth near±∞. So, we see that problem (Pλ) has competing nonlinearities.We refer
to a convex (superlinear) input coming from the reaction term f (z, x) and a concave
(sublinear) input resulting from the source (boundary) term.

The study of problems with competition phenomena was initiated with the seminal
paper of Ambrosetti et al. [2] for semilinear Dirichlet equations. In their work, both
competing nonlinearities appear in the reaction term f (z, x), which has the form

f (z, x) = f (x) = λ|x |q−2x + |x |r−2x for all x ∈ R,

with λ > 0, 1 < q < 2 < r ≤ 2∗ =
{ 2N

N−2 if N ≥ 3
+∞ if N = 1, 2

. Since then, there has been

a lot of work in this direction, extending the results of [2] to nonlinear equations. In
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contrast, in the present paper the concave term comes from the boundary condition.
The study of such problems is still lagging behind. In this direction, there are only the
semilinear works of Furtado and Ruviaro [11], Garcia-Azorero et al. [12] and Hu and
Papageorgiou [20].

In this paper, we prove a multiplicity theorem which says that for small values of
the parameter λ > 0, the problem has at least five nontrivial smooth solutions, four
of constant sign and one nodal. We also show the existence of extremal constant sign
solutions, that is, a smallest positive solution u∗

λ and a biggest negative solution v∗
λ,

and we investigate the monotonicity and continuity properties of the maps λ �→ u∗
λ

and λ �→ v∗
λ. Finally, in the semilinear case, we generate a sixth nontrivial smooth

solution (without being able to provide any sign information).
Our approach uses variational methods based on the critical point theory, combined

with suitable truncation-perturbation and comparison techniques, and Morse theory.

2 Preliminaries: Hypotheses

In this section we present the main mathematical tools which we will use in the sequel
and we prove some auxiliary results which will be needed later. In this section we also
fix our notation and we have gathered all the hypotheses on the data of problem (Pλ)

which will be used to prove our results. We also state the main results of this work, in
order for the reader to have a feeling of what is achieved in this paper.

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X,R). We say that ϕ satisfies the
“Cerami condition” (the “C-condition” for short), if the following property holds:

Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and
(1 + ||un||)ϕ′(un) → 0 in X∗ as n → ∞, admits a strongly convergent subse-
quence.

This compactness-type condition on the functional ϕ is needed in the critical point
theory because the ambient space need not be locally compact (being in general infinite
dimensional). Using this compactness-type condition, one can prove a deformation
theorem describing the change of the topological structure of the sublevel sets of ϕ

along the negative gradient or pseudogradient flow. The deformation theorem leads to
the minimax theory of the critical values of ϕ. Prominent in that theory is the so-called
“mountain pass theorem” due to Ambrosetti and Rabinowitz [3]. Here we state it in a
slightlymore general form (see, for example, Gasinski and Papageorgiou [13, p. 648]).

Theorem 1 Let X be a Banach space. Suppose that ϕ ∈ C1(X,R) satisfies the C-
condition, and u0, u1 ∈ X satisfy ||u1 − u0|| > ρ > 0

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = ρ] = mρ.

Let c = inf
γ∈	

max
0≤t≤1

ϕ(γ (t)) with 	 = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) = u1}.
Then c ≥ mρ and c is a critical value of ϕ (that is, there exists û ∈ X such that
ϕ′(û) = 0 and ϕ(û) = c).

123



254 Appl Math Optim (2019) 80:251–298

Let ϑ ∈ C1(0,∞) with ϑ(t) > 0 for all t > 0 and assume that

0 < ĉ≤ ϑ ′(t)t
ϑ(t)

≤c0 and c1t
p−1 ≤ ϑ(t) ≤ c2(t

q−1 + t p−1) for all t > 0,

with c1, c2 > 0, 1 < q ≤ p. (1)

The hypotheses on the map y �→ a(y) involved in the definition of the differential
operator in problem (Pλ), are the following:

H(a) : a(y) = a0(|y|)y for all y ∈ R
N , with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t �→ a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+
as t → 0+ and

lim
t→0+

a′
0(t)t

a0(t)
> −1;

(ii) There exists c3 > 0 such that

|∇a(y)| ≤ c3
ϑ(|y|)

|y| for all y ∈ R
N\{0};

(iii) (∇a(y)ξ, ξ)RN ≥ ϑ(|y|)
|y| |ξ |2 for all y ∈ R

N\{0} and all ξ ∈ R
N ;

(iv) If G0(t) = ∫ t0 a0(s)sds for t > 0, then there exists τ ∈ (1, p) such that

t �→ G0(t
1/τ ) is convex, 0 ≤ lim inf

t→0+
G0(t)

tτ
≤ lim sup

t→0+

G0(t)

tτ
≤ c̃,

c4t
p ≤ a0(t)t − τG0(t) for all t > 0 and some c4 > 0,

−c̄ ≤ pG0(t) − a0(t)t
2 for all t > 0 and some c̄ > 0.

Remark 1 Hypotheses H(a)(i), (i i), (i i i)were motivated by the nonlinear regularity
theory of Lieberman [21] and the nonlinear maximum principle of Pucci and Serrin
[33, pp. 111, 120]. Hypothesis H(a)(iv) serves the particular needs of our problem.
However, this is a mild restriction and it is satisfied in all cases of interest, as the
examples below show.

Clearly, hypotheses H(a) imply thatG0(·) is strictly convex and strictly increasing.
We set

G(y) = G0(|y|) for all y ∈ R
N .

Then G(·) is convex, G(0) = 0, and

∇G(0) = 0,∇G(y) = G ′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}.

So,G(·) is the primitive of the map a(·). Using the convexity ofG(·) andG(0) = 0,
we have

G(y) ≤ (a(y), y)RN for all y ∈ R
N . (2)
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Hypotheses H(a)(i), (i i), (i i i) and (1), lead to the following lemma which sum-
marizes the main properties of the map y �→ a(y).

Lemma 1 If hypotheses H(a)(i), (i i), (i i i) hold, then

(a) y �→ a(y) is strictly monotone, continuous, hence also maximal monotone;
(b) |a(y)| ≤ c4(1 + |y|p−1) for all y ∈ R

N and some c4 > 0;
(c) (a(y), y)RN ≥ c1

p−1 |y|p for all y ∈ R
N .

This lemma and (2) lead to the following growth estimates for the primitive G(·).
Corollary 1 If hypotheses H(a)(i), (i i), (i i i) hold, then c1

p(p−1) |y|p ≤ G(y) ≤
c5(1 + |y|p) for all y ∈ R

N and some c5 > 0.

The examples which follow illustrate that hypotheses H(a) cover many interesting
cases.

Example 1 The following maps satisfy hypotheses H(a):

(a) a(y) = |y|p−2y with 1 < p < ∞. This map corresponds to the p-Laplacian
differential operator defined by

pu = div (|Du|p−2Du) for all u ∈ W 1,p(�).

(b) a(y) = |y|p−2y + |y|τ−2y with 1 < τ < p. This map corresponds to the (p, τ )-
differential operator defined by

pu + τu for all u ∈ W 1,p(�).

Such differential operators arise in problems ofmathematical physics.Wemention
the works of Benci et al. [4] (in quantum physics) and Cherfils and Ilyasov [6]
(in plasma physics). Recently, there have been some existence and multiplicity
results for such equations.Wemention theworks of Cingolani andDegiovanni [7],
Gasinski and Papageorgiou [15], Marano et al. [22], Mugnai and Papageorgiou
[24], Papageorgiou and Rădulescu [26,28], Papageorgiou et al. [31], Sun [34],
and Sun et al. [35].

(c) a(y) = (1+|y|2) p−2
2 y with 1 < p < ∞. This map corresponds to the generalized

p-mean curvature differential operator defined by

div
(
(1 + |Du|2) p−2

2 Du
)
for all u ∈ W 1,p(�).

(d) a(y) = |y|p−2y
[
1 + 1

1+|y|p
]
for all u ∈ W 1,p(�). This map corresponds to the

differential operator

pu + div

( |Du|p−2Du

1 + |Du|p
)

for all u ∈ W 1,p(�).
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(e) a(y) = |y|p−2y + ln(1 + |y|2)y with 1 < p < ∞. This map corresponds to the
differential operator

pu + div (ln(1 + |Du|2)Du) for all u ∈ W 1,p(�).

Wewill use the Sobolev spaceW 1,p(�), the Banach spaceC1(�) and the boundary
Lebesgue spaces Lq(∂�); 1 ≤ q ≤ ∞. The Sobolev spaceW 1,p(�) is a Banach space
for the norm

||u|| = [ ||u||pp + ||Du||pp ]1/p for all u ∈ W 1,p(�).

The Banach space C1(�) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �)}.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z)>0 for all z ∈ �,

∂u

∂n

∣∣
∂�∩u−1(0) <0 if ∂� ∩ u−1(0) �= ∅

}
.

This cone contains the open set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

In fact, note that D+ is the interior ofC+ whenC1(�) is furnished with the relative
C(�)-topology.

On C1(�) the C1(�)-norm topology is stronger than the C(�)-norm topology.
Therefore we have

D+ ⊆ intC+.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define in the usual way the Lebesgue spaces Lq(∂�),
1 ≤ q ≤ ∞. From the theory of Sobolev spaces we know that there exists a unique
continuous linear map γ0 : W 1,p(�) → Lτ (∂�), τ = Np−p

N−p if p < N , and τ ≥ 1 if
N ≤ p, known as the “trace map”, such that

γ0(u) = u|∂� for all u ∈ W 1,p(�) ∩ C(�).

So, we can understand the trace map as an expression of the “boundary values” of
a Sobolev function. We know that

im γ0 = W
1
p′ ,p(∂�), where

1

p
+ 1

p′ = 1 and ker γ0 = W 1,p
0 (�).

The trace map γ0 is compact into Lq(∂�) for all q ∈
[
1, Np−p

N−p

)
when 1 < p < N

and for all q ≥ 1, when p ≥ N . In the sequel, for the sake of notational simplicity we
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drop the use of the map γ0. All restrictions of Sobolev functions on ∂� are understood
in the sense of traces.

Introducing some more notation, for every x ∈ R, we set x± = max{±x, 0}. Then
for u ∈ W 1,p(�) we define u±(·) = u(·)± and have

u = u+ − u−, |u| = u+ + u−, u+, u− ∈ W 1,p(�).

By | · |N we denote the Lebesgue measure on R
N and if g : � × R → R is

a measurable function (for example, a Carathéodory function), then we define the
Nemytskii map corresponding to g

Ng(u)(·) = g(·, u(·)) for all u ∈ W 1,p(�).

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

〈A(u), h〉 =
∫

�

(a(Du), Dh)RN dz for all u, h ∈ W 1,p(�). (3)

The next proposition establishes the main properties of this map. It is a special case
of Proposition 3.5 in Gasinski and Papageorgiou [14].

Proposition 1 Assume that hypotheses H(a)(i), (i i), (i i i) hold and that A :
W 1,p(�) → W 1,p(�)∗ is the nonlinearmap defined by (3). Then A is bounded (that is,
maps bounded sets to bounded sets), continuous,monotone (hence alsomaximalmono-
tone) and of type (S)+ (that is, if un

w→ u in W 1,p(�) and lim sup
n→∞

〈A(un), un − u〉 ≤
0, then un → u in W 1,p(�)).

Next, consider a Carathéodory function f0 : � × R → R and a function β0 ∈
C(∂� × R) ∩ C0,α

loc (∂� × R) with α ∈ (0, 1] such that

| f0(z, x)| ≤ a0(z)(1 + |x |r−1) for almost all z ∈ � and all x ∈ R

with a0 ∈ L∞(�)+, p ≤ r < p∗ =
{

Np
N−p if p < N
+∞ if p ≥ N

and

|β0(z, x)| ≤ c6(1 + |x |q−1) for all (z, x) ∈ ∂� × R,

with c6 > 0, 1 < q < p. We set

F0(z, x) =
∫ x

0
f0(z, s)ds, B0(z, x) =

∫ x

0
β0(z, s)ds for all (z, x) ∈ ∂� × R,

and consider the C1-functional ϕ0 : W 1,p(�) → R defined by

ϕ0(u) =
∫

�

G(Du)dz −
∫

�

F0(z, u)dz −
∫

∂�

B0(z, u)dσ for all u ∈ W 1,p(�).
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From Papageorgiou and Rădulescu [27,30] (the case of the p-Laplacian) we obtain
the following property.

Proposition 2 Assume that u0 ∈ W 1,p(�) is a local C1(�)-minimizer of the func-
tional ϕ0, that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(�), ||h||C1(�) ≤ ρ0.

Then u0 ∈ C1,μ(�) with μ ∈ (0, 1) and u0 is also a local W 1,p(�)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(�), ||h|| ≤ ρ1.

Next, let us recall some basic definitions and facts from Morse theory (critical
groups) which we will need later.

Given a Banach space X , a function ϕ ∈ C1(X,R) and c ∈ R, we introduce the
following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at the level c),

Kϕ = {u ∈ X : ϕ′(u) = c} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

Let (Y1,Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X . By Hk(Y1,Y2), k ∈ N0,
we denote the kth relative singular homology group for the topological pair (Y1,Y2)
with integer coefficients. The critical groups of ϕ at an isolated point u ∈ Kc

ϕ are
defined by

Ck(ϕ, u) = Hk(ϕ
c ∩U, ϕc ∩U\{0}) for all k ∈ N0.

Here,U is a neighborhood of u such that Kϕ ∩ϕc∩U = {u}. The excision property
of singular homology implies that the above definition of critical groups is independent
of the choice of the neighborhood U of u.

Suppose that ϕ satisfies the C-condition and that inf ϕ(Kϕ) > −∞. Let c <

inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ∈ N0.

The second deformation theorem (see, for example, Gasinski and Papageorgiou
[13, p. 628]) implies that this definition is independent of the level c < inf ϕ(Kϕ).

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and that Kϕ is finite. We
define

M(t, u) =
∑
k∈N0

rankCk(ϕ, u)tk for all t ∈ R, u ∈ Kϕ,

P(t,∞) =
∑
k∈N0

rankCk(ϕ,∞)tk for all t ∈ R.
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Then the Morse relation says that

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t) for all t ∈ R, (4)

with Q(t) = ∑
k∈N0

βk tk being a formal series in t ∈ R with nonnegative integer

coefficients βk .
Next, we state a strong comparison principle. Our proof uses ideas from Guedda

and Véron [17], who were the first to prove a strong comparison principle for the
Dirichlet p-Laplacian. Recall that n(·) denotes the outward unit normal on ∂�.

Proposition 3 Assume that hypotheses H(a)(i), (i i), (i i i) hold, u1, u2 ∈ C1(�),

g1, g2 ∈ L∞(�), u1(z) ≤ u2(z) for all z ∈ �, and

g1(z) ≤ g2(z) for almost all z ∈ �, g1 �≡ g2,

−div a(Du1(z)) = g1(z) for almost all z ∈ �,
∂u1
∂n

∣∣∣∣
∂�

> 0 or
∂u1
∂n

∣∣∣∣
∂�

< 0,

−div a(Du2(z)) = g2(z) for almost all z ∈ �,
∂u2
∂n

∣∣∣∣
∂�

> 0 or
∂u2
∂n

∣∣∣∣
∂�

< 0.

Then (u2 − u1)(z) > 0 for all z ∈ � and ∂(u2−u1)
∂n (z0) < 0 for all z0 ∈ �0 = {z ∈

∂� : u2(z) = u1(z)}.
Proof By hypothesis we have

− div (a(Du2(z)) − a(Du1(z))) = g2(z) − g1(z) ≥ 0 for almost all z ∈ �. (5)

Let a = (ak)Nk=1 with ak : RN → R for every k ∈ {1, . . . , N }. Using the mean
value theorem, we have

ak(y) − ak(y
′) =

N∑
i=1

∫ 1

0

∂ak
∂yi

(y′ + t (y − y′))(yi − y′
i )dt (6)

for all y = (yi )Ni=1, y
′ = (y′

i )
N
i=1 ∈ R

N and all k ∈ {1, . . . , N }.
We introduce the following coefficient functions

ck,i (z) =
∫ 1

0

∂ak
∂yi

(Du1(z) + t (Du2(z) − Du1(z))). (7)

Using these coefficients, we introduce the following linear differential operator

L(v) = −div

(
N∑
i=1

ck,i (z)
∂v

∂zi

)
= −

N∑
k,i=1

∂

∂zk

(
ck,i (z)

∂v

∂zi

)
. (8)
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Let v = u2 − u1. Then v �= 0 (recall that g1 �≡ g2) and from (5) to (8) we have

L(v)(z) = g2(z) − g1(z) ≥ 0 for almost all z ∈ �. (9)

By hypothesis, we have ∂u1
∂n

∣∣∣
∂�

, ∂u2
∂n

∣∣∣
∂�

> 0 or < 0. So, for small δ > 0 we have

|D((1 − t)u1(z) + tu2(z))| ≥ η > 0 for all z ∈ �δ, (10)

with �δ = {z ∈ � : d(z, ∂�) < δ}. It follows from (8) and (10) that the operator L
is strictly elliptic on �δ .

Suppose that u1|�δ = u2|�δ . Then g1(z) = g2(z) for almost all z ∈ �δ . We
consider a function ϑ ∈ C1(�) such that

ϑ(z) > 0 for all z ∈ �, ϑ |∂� = 0, ϑ |�\�δ ≡ 1. (11)

We have
∫

�

g1ϑdz = 〈A(u1), ϑ〉 =
∫

�δ

(a(Du1), Dϑ)RN dz (see (11))

=
∫

�δ

(a(Du2), Dϑ)RN dz (recall that u1|�δ = u2|�δ )

=
∫

�

g2ϑdz (see (11)),

which is in contradiction with the hypothesis that g1 �≡ g2 (recall that ϑ > 0, see
(11)). So, we have u2 − u1 ∈ C+\{0}.

Then from (9) and the strong maximum principle (see, for example, Gasinski and
Papageorgiou [13, p. 738]), we derive

(u2 − u1)(z) > 0 for all z ∈ �δ and
∂(u2 − u1)

∂n

∣∣∣∣
�0

< 0. (12)

It follows from (12) that the set S = {z ∈ � : u1(z) = u2(z)} is compact. Hence
Corollary 8.23, p. 215, of Motreanu et al. [23], implies that

(u2 − u1)(z) > 0 for all z ∈ � and
∂(u2 − u1)

∂n

∣∣∣∣
�0

< 0.

This completes the proof. ��
Remark 2 Consider the following order cone in C1(�):

Ĉ+ =
{
y ∈ C1(�) : y(z) ≥ 0 for all z ∈ �,

∂y

∂n

∣∣∣∣
�0

≤ 0

}
,
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where �0 = {z ∈ ∂� : y(z) = 0}. This cone has a nonempty interior given by

int Ĉ+ =
{
y ∈ Ĉ+ : y(z) > 0 for all z ∈ �,

∂y

∂n

∣∣∣∣
�0

< 0

}
.

Then Proposition 3 says that u2 − u1 ∈ intĈ+.

We will also use the next proposition, which essentially produces an equivalent
norm for the Sobolev spaceW 1,p(�). The result is stated in a more general form than
the one we will need, because we believe that in this form it is of independent interest
and can be used in other circumstances.

Proposition 4 Assume that β ∈ L∞(∂�), β(z) ≥ 0 for almost all z ∈ ∂�, β �≡ 0,
1 ≤ q ≤ Np−p

N−p if p < N, and 1 ≤ p if N ≤ p, and |u| = ||Du||p +
(
∫
∂�

β(z)|u|qdσ)1/q for all u ∈ W 1,p(�). Then we can find 0 < c7 ≤ c8 such
that c7|u| ≤ ||u|| ≤ c8|u| for all u ∈ W 1,p(�).

Proof Note that

|u| ≤ ||Du||p + ||β||1/qL∞(∂�)||u||Lq (∂�)

≤ ||Du||p + ||β||L∞(∂�)||γ0||L||u||
≤ c9||u|| for some c9 > 0. (13)

Next, we show that we find c10 > 0 such that

||u||p ≤ c10|u| for all u ∈ W 1,p(�). (14)

Suppose that (14) is not true. Then we can find {un}n≥1 ⊆ W 1,p(�) such that

||un||p > n|un| for all n ∈ N.

Normalizing in L p(�) if necessary, we may assume that ||un||p = 1 for all n ∈ N.
Then

|un| <
1

n
for all n ∈ N,

⇒ |un| → 0 as n → ∞, (15)

⇒ ||Dun||p → 0 as n → ∞,

⇒ {un}n≥1 ⊆ W 1,p(�) is bounded (recall that ||un||p = 1 for all n ∈ N).

Then by passing to a subsequence if necessary, we may assume that

un
w→ u in W 1,p(�), un → u in L p(�) and un

w→ u in Lq(∂�) (16)
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(here we use the continuity of the trace map). It follows from (15), (16) that

||Du||p +
(∫

∂�

β(z)|u|qdσ

)1/q

≤ 0 (recall that β ∈ L∞(�)) (17)

⇒ u ≡ ξ ∈ R.

If ξ �= 0, then by virtue of (17) we have

0 < |ξ |q
∫

∂�

β(z)dσ ≤ 0,

a contradiction. Hence ξ = 0 and so from (16) we have

u0 → 0 in L p(�),

which is a contradiction to the fact that ||un||p = 1 for all n ∈ N. So, (14) holds and
this, combined with (13), implies that the assertion of the proposition is true. ��
Remark 3 If β ≡ 1, then Proposition 4 asserts that

u �→ |u| = ||Du||p + ||u||Lq (∂�)

with q ∈
[
1, Np−p

N−p

]
if p < N , and q ≥ 1 if N < p, is an equivalent norm on the

Sobolev space W 1,p(�) (see also Gasinski and Papageorgiou [13], Proposition 2.5.8,
p. 218).

Finally, we present all the conditions on the other data of (Pλ) (that is, for f (z, x)
and β(z, x)) which we will use to prove our results and then we give the statements
of our main results.

We start with the following hypotheses on the reaction term f (z, x).
H( f ) : f : � × R → R is a Carathéordory function such that f (z, 0) = 0 for

almost all z ∈ � and

(i) | f (z, x)| ≤ a(z)(1 + |x |r−1) for almost all z ∈ � and all x ∈ R, with a ∈
L∞(�)+, p < r < p∗;

(ii) If F(z, x) = ∫ x0 f (z, s)ds, then there exist η > p and M > 0 such that

0<ηF(z, x)≤ f (z, x)x for almost all z ∈ � and all |x |≥M;
f (z, x)x≤c∗

1 |x |r −c∗
2 |x |p for almost all z∈�, all |x |≥M, and some c∗

1, c
∗
2 >0;

(iii) lim
x→0

f (z,x)
|x |p−2x

= 0 uniformly for almost all z ∈ �.

Remark 4 Hypothesis H( f )(i i) is the well-known Ambrosetti–Rabinowitz condition
and it implies that

c11|x |η ≤ F(z, x) for almost all z ∈ �, all |x | ≥ M and some c11 > 0. (18)
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From (18) and hypothesis H( f )(i i), we infer that for almost all z ∈ �, f (z, ·) is
(p−1)-superlinear. It would be interesting to know if one can replace the Ambrosetti–
Rabinowitz condition by more general superlinearity conditions, like the ones used in
Papageorgiou and Rădulescu [29,30]. Below we give simple examples of functions
which satisfy hypotheses H( f ) (for the sake of simplicity, we drop the z-dependence):

f (x) = |x |r−2x for all x ∈ R, with p < r < p∗,

f (x) =
{ |x |η−2x if |x | ≤ 1
2|x |r−2x − |x |p−2x if 1 < |x | with 1 < p < η, r.

One of our main results is that for all small λ > 0, problem (Pλ) admits extremal
constant sign solutions, that is, there is a smallest positive solution u∗

λ ∈ D+ and
a biggest negative solution v∗

λ ∈ −D+. These solutions are crucial in our proof on
the existence of nodal (that is, sign changing) solutions (Sect. 4). To study the maps
λ �→ u∗

λ and λ �→ v∗
λ and to prove the existence of nodal solutions, we will need to

strengthen hypotheses H( f ) as follows.
H( f )′ : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for

almost all z ∈ �, hypotheses H( f )′(i), (i i), (i i i) are the same as the corresponding
hypotheses H( f )(i), (i i), (i i i), and (iv) for almost all z ∈ �, f (z, ·) is strictly
increasing.

Remark 5 The reason we impose this extra condition on f (z, ·) is to be able to use
the strong comparison principle in Proposition 3. The fact that the parameter λ > 0
appears in the boundary and not in the reaction term, leads to stronger conditions on
f (z, ·).
Finally, in Sect. 5, where we deal with the semilinear problem (that is, a(y) = y

for all y ∈ R
N ), in order to make use of tools from Morse theory (critical groups), we

will need to introduce differentiability conditions on f (z, ·). More precisely, the new
hypotheses on f (z, x) are:

H( f )′′ : f : � × R → R is a measurable function such that for almost all z ∈ �,
f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i) | f ′
x (z, x)| ≤ a(z)(1 + |x |r−2) for almost all z ∈ � and all x ∈ R, with a ∈

L∞(�), 2 < r < 2∗;
(ii) If F(z, x) = ∫ x0 f (z, s)ds, then there exist η > 2 and M > 0 such that

0 < ηF(z, x) ≤ f (z, x)x and f (z, x)x

≤ c∗
1 |x |r − c∗

2 |x |2 for almost all z ∈ � and all |x | ≥ M;

(iii) f ′
x (z, 0) = lim

x→0

f (z,x)
x = 0 uniformly for almost all z ∈ �;

(iv) For every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ � the function

x �→ f (z, x) + ξ̂ρx

is nondecreasing on [−ρ, ρ].
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Remark 6 Here, hypothesis H( f )′′(iv) is much weaker than hypothesis H( f )′(iv).
The linearity of the differential operator leads to a more general strong comparison
principle, which is a trivial consequence of the maximum principle.

It is clear from the above hypotheses that in this paper we deal with subcritical
reaction terms.

For the boundary function β(z, x), we start with the following conditions.
H(β) : β ∈ C(∂� × R) ∩ C0,α

loc (∂� × R) for some α ∈ (0, 1], β(z, 0) = 0 for all
z ∈ ∂� and

(i) c12|x |q ≤ β(z, x)x for all (z, x) ∈ ∂� × R and some c12 > 0, with q < τ < p
(see H(a)(iv));

(ii) lim
x→±∞

β(z,x)
|x |p−1x

= 0 uniformly for all z ∈ ∂�;

(iii) lim sup
x→0

β(z,x)
|x |q−2x

≤ c13 uniformly for all z ∈ ∂�, with c13 > 0;

(iv) If B(z, x) = ∫ x
0 β(z, s)ds then c14|x |q ≤ τ B(z, x) − β(z, x)x for all (z, x) ∈

∂� × R and some c9 > 0 (see H(a)(iv)).

Remark 7 The above hypotheses imply that

|β(z, x)| ≤ c15|x |q−1 for all (z, x) ∈ ∂� × R and some c15 > 0. (19)

So, the boundary termβ(z, ·) is strictly (p−1)-superlinear. The typical example of a
function satisfying hypotheses H(β) above is the following (for the sake of simplicity
we again drop the z-dependence):

β(x) = |x |q−2x for all x ∈ R, with 1 < q < τ < p.

Other possibilities are the functions

β(x) = |x |q−2x + |x |μ−2x for all x ∈ R, with 1 < q < μ < τ < p

β(x) =
{ |x |q−2x if |x | ≤ 1
2|x |μ−2x − |x |q−2x if |x | > 1

with 1 < q < μ < τ < p,

q < μ < 2q, μ <
τ(2q − μ)

q
.

Later, to deal with the semilinear problem we will need a stronger version of these
conditions.

H(β)′ : β ∈ C(∂� × R) ∩ C0,α
loc (∂� × R) with α ∈ (0, 1), for all z ∈ ∂�,

β(z, 0) = 0, β(z, ·) ∈ C1(R\{0}) and
(i) c50|x |q ≤ β(z, x)x for all (z, x) ∈ ∂� × R, some c50 > 0 and with q ∈ (1, 2);
(ii) lim

x→±∞
β(z,x)

x = 0 uniformly for all z ∈ ∂�;

(iii) lim sup
x→0

β(z,x)
|x |q−2x

≤ c51 uniformly for all z ∈ ∂�, with c51 > 0;

(iv) If B(z, x) = ∫ x
0 β(z, s)ds, then c52|x |q ≤ 2B(z, x) − β(z, x)x for all (z, x) ∈

∂� × R and some c52 > 0.
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Now we state our main results.

Proposition A If hypotheses H(a), H( f ), H(β) hold, then

(a) For every λ ∈ (0, λ+) problem (Pλ) admits two positive solutions

u0, û ∈ D+;

(b) For every λ ∈ (0, λ−) problem (Pλ) admits two negative solutions

v0, v̂ ∈ −D+;

(c) For every λ ∈ (0, λ0 = min{λ+, λ−}) problem (Pλ) admits four nontrivial con-
stant sign solutions

u0, û ∈ D+ and v0, v̂ ∈ −D+.

Proposition B If hypotheses H(a), H( f ), H(β) hold, then

(a) For every λ ∈ (0, λ+) problem (Pλ) has a smallest positive solution

u∗
λ ∈ D+;

(b) For every λ ∈ (0, λ−) problem (Pλ) has a biggest negative solution

v∗
λ ∈ −D+.

Theorem C If hypotheses H(a), H( f )′, H(β) hold, then there exists λ0 > 0 such
that for every λ ∈ (0, λ0) problem (Pλ) has at least five nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+, y0 ∈ C1(�) nodal.

Moreover, for every λ ∈ (0, λ0), problem (Pλ) has extremal constant sign solutions

u∗
λ ∈ D+ and v∗

λ ∈ −D+

such that y0 ∈ [v∗
λ, u∗

λ] ∩ C1(�) and the map λ �→ u∗
λ is

• strictly increasing (that is, μ < λ ⇒ u∗
λ − u∗

μ ∈ int Ĉ+),
• left continuous from (0, λ0) into C1(�),

while the map λ �→ v∗
λ is

• strictly decreasing (that is, μ < λ ⇒ v∗
μ − v∗

λ ∈ int Ĉ+),
• right continuous.
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Finally, for the semilinear problem

Sλ

{−u(z) = f (z, u(z)) in �,
∂u
∂n = λβ(z, u) on ∂�

}

we prove the following multiplicity result.

Theorem D If hypotheses H( f )′′, H(β)′ hold, then we can find λ0 > 0 such that for
every λ ∈ (0, λ0) problem (Sλ) has at least six nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+
y0 ∈ C1(�) nodal and ŷ ∈ C1(�).

Concluding this section, we point out that we use the word “solution” instead
of “weak solution”, since our solution has a pointwise a.e. interpretation (like the
Carathéodory or strong solutions from the theory of ordinary differential equations).
This pointwise interpretation of the solutions is convenient for the use of strong com-
parison principles (Proposition 3).

3 Constant Sign Solutions

In this section, we show that for small λ > 0, problem (Pλ) admits at least four
nontrivial constant sign smooth solutions (two positive and two negative). We also
establish the existence of extremal constant sign solutions u∗

λ, v∗
λ and determine the

monotonicity and continuity properties of the maps λ �→ u∗
λ and λ �→ v∗

λ.
The energy (Euler) functional of problem (Pλ) is ϕλ : W 1,p(�) → R (λ > 0) and

it is defined by

ϕλ(u) =
∫

�

G(Du)dz −
∫

�

F(z, u)dz − λ

∫
∂�

B(z, u)dσ for all u ∈ W 1,p(�).

Evidently, ϕλ ∈ C1(W 1,p(�)).
Let c̃2 ∈ (0, c∗

2) and consider the following truncation-perturbation of the reaction
term f (z, ·):

f̂+(z, x) =
{
0 if x ≤ 0
f (z, x) + c̃2x p−1 if 0 < x

and (20)

f̂−(z, x) =
{
f (z, x) + c̃2|x |p−2x if x < 0
0 if 0 ≤ x .

Both are Carathéodory functions. We set F̂±(z, x) = ∫ x
0 f̂±(z, s)ds. In addition,

we introduce the positive and negative truncations of the boundary term β(z, ·):
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β+(z, x) =
{
0 if x ≤ 0
β(z, x) if 0 < x

and (21)

β−(z, x) =
{

β(z, x) if x < 0
0 if 0 ≤ x

for all (z, x) ∈ ∂� × R.

Clearly, β± ∈ C(∂� × R). We set B±(z, x) = ∫ x
0 β±(z, s)ds for all (z, x) ∈

∂� × R. We consider the C1-functionals ϕ̂±
λ : W 1,p(�) → R λ > 0, defined by

ϕ̂±
λ (u) =

∫
�

G(Du)dz + c̃2
p

||u||pp −
∫

�

F̂±(z, u)dz − λ

×
∫

∂�

B±(z, u)dσ for all u ∈ W 1,p(�).

Proposition 5 If hypotheses H(a), H( f ), H(β) hold and λ > 0, then the functionals
ϕ̂±

λ satisfy the C-function.

Proof We give the proof for the functional ϕ̂+
λ , the proof for ϕ̂−

λ is similar.
So, we consider a sequence {un} ⊆ W 1,p(�) such that

|ϕ̂+
λ (un)| ≤ M1 for some M1 and all n ∈ N, (22)

(1 + ||un||)(ϕ̂+
λ )′(un) → 0 in W 1,p(�)∗ as n → ∞. (23)

From (23) we have

∣∣∣∣〈A(un), h〉 +
∫

�

c̃2|un|p−2unhdz −
∫

�

f̂+(z, un)hdz − λ

∫
∂�

β+(z, un)hdσ

∣∣∣∣
≤ εn||h||

1 + ||un|| for all h ∈ W 1,p(�) with εn → 0+. (24)

In (24) we choose h = −u−
n ∈ W 1,p(�). Using (20) and (21), we obtain

∫
�

(a(Dun),−Du−
n )RN dz + c̃2||u−

n ||pp ≤ εn for all n ∈ N,

⇒ c1
p − 1

||Du−
n ||pp + c̃2||u−

n ||pp ≤ εn for all n ∈ N (see Lemma 2),

⇒ u−
n → 0 in W 1,p(�). (25)

Using (19), (21), (20), (25) and hypothesis H( f )(i), we have

∫
�

pG(Du+
n )dz −

∫
�

pF(z, u+
n )dz − λ

∫
∂�

pB(z, u+
n )dσ (26)

≤ M2 for some M2 > 0, all n ∈ N.
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In (24) we choose h = u+
n ∈ W 1,p(�). Then

−
∫

�

(a(Du+
n ), Du+

n )RN dz +
∫

�

f (z, u+
n )u+

n dz + λ

∫
∂�

β(z, u+
n )u+

n dσ ≤ εn

for all n ∈ N. (27)

Adding (26) and (27), we obtain

∫
�

[
pG(Du+

n ) − (a(Du+
n ), Du+

n )RN

]
dz +

∫
�

[
f (z, u+

n )u+
n − pF(z, u+

n )
]
dz

≤ M3 + λ

∫
∂�

[
pB(z, u+

n ) − β(z, u+
n )u+

n

]
dσ for some M3 > 0 and all n ∈ N

⇒
∫

�

[
f (z, u+

n )u+
n − pF(z, u+

n )
]
dz ≤ c16(1 + ||u+

n ||q) for some c16

> 0 and all n ∈ N (see hypothesis H(a)(iv) and (19))

⇒
∫

�

[
f (z, u+

n )u+
n − ηF(z, u+

n )
]
dz + (η − p)

∫
�

F(z, u+
n )dz

≤ c16(1 + ||u+
n ||q) for all n ∈ N,

⇒ (η − p)
∫

�

F(z, u+
n )dz ≤ c17(1 + ||u+

n ||q) for some c17 > 0 and all n ∈ N

(see hypotheses H( f )(i), (i i)). (28)

From (18) and hypothesis H( f )(i), we see that

c11|x |η − c18 ≤ F(z, x) for almost all z ∈ �, all x ∈ R, and some c18 > 0. (29)

Using (29) in (28) and recalling that η > p, we obtain

||u+
n ||ηη ≤ c19(1 + ||u+

n ||q) for some c19 > 0 and all n ∈ N,

⇒ ||u+
n ||pη ≤ cp/η19 (1 + ||u+

n ||q)p/η

≤ c20(1 + ||u+
n ||pq/η) for c20=cp/η19 and all n∈N (note that

p

η
∈ (0, 1)).

(30)

It follows from (22) and (25) that for all n ∈ N

∫
�

ηG(Du+
n )dz −

∫
�

ηF(z, u+
n )dz −λ

∫
∂�

ηB(z, u+
n )dσ ≤ M4, for some M4 > 0.

(31)
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Adding (27) and (31), we have

∫
�

[
ηG(Du+

n ) − (a(Du+
n ), Du+

n )RN

]
dz +

∫
�

[
f (z, u+

n )u+
n − ηF(z, u+

n )
]
dz

≤ M5 + λ

∫
∂�

[
ηB(z, u+

n ) − β(z, u+
n )u+

n

]
dσ for some M5 > 0 and all n ∈ N.

(32)

Note that

∫
�

[
ηG(Du+

n ) − (a(Du+
n ), Du+

n )RN

]
dz

= (η − p)
∫

�

G(Du+
n )dz +

∫
�

[
pG(Du+

n ) − (a(Du+
n ), Du+

n )RN

]
dz

≥ (η − p)c1
p(p − 1)

||Du+
n ||pp − c̄|�|n (see Corollary 3 and hypothesis H(a)(iv)).

(33)

Also, hypotheses H( f )(i), (i i) imply that

− c21 ≤
∫

�

[
f (z, u+

n )u+
n − ηF(z, u+

n )
]
dz for some c21 > 0 and all n ∈ N. (34)

Moreover, from (19) we have

∫
∂�

[ηB(z, u+
n ) − β(z, u+

n )u+
n ]dσ ≤ c22||u+

n ||q for some c22 > 0 and all n ∈ N.

(35)

Returning to (32) and using (33), (34), (35), we obtain

||Du+
n ||pp ≤ c23(1 + ||u+

n ||q) for some c23 > 0 and all n ∈ N. (36)

It follows from (30) and (36) that

||Du+
n ||pp + ||u+

n ||pη ≤ c24(1 + ||u+
n ||q) for some c24 > 0 and all n ∈ N. (37)

We can always assume that η ≤ p∗ (see hypotheses H( f )(i), (i i)). We know that

u �→ ||Du||p + ||u||η

is an equivalent norm on the Sobolev spaceW 1,p(�) (see Gasinski and Papageorgiou
[13, p. 227]). Therefore from (37) we can infer that
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||u+
n ||p ≤ c25(1 + ||u+

n ||q) for some c20 > 0 and all n ∈ N,

⇒ {u+
n }n≥1 ⊆ W 1,p(�) is bounded (recall that q < p).

This together with (25) imply that {un}n≥1 ⊆ W 1,p(�) is bounded and so we may
assume that

un
w→ u in W 1,p(�) and un → u in Lr (�) and in Lq(∂�) (recall that r < p∗).

(38)

In (24) we choose h = un − u ∈ W 1,p(�), pass to the limit as n → ∞, and use
(38). Then

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(�) (see (38) and Proposition 4),

⇒ ϕ̂+
λ satisifes the C-condition.

Similarly for the functional ϕ̂−
λ . ��

In a similar fashion, we prove the next property.

Proposition 6 If hypotheses H(a), H( f ), H(β) hold and λ > 0, then the functional
ϕλ satisfies the C-condition.

Next, we provide the mountain pass geometry for the functional ϕ̂±
λ .

Proposition 7 If hypotheses H(a), H( f ), H(β) hold, then there exists λ± > 0 such
that for every λ ∈ (0, λ±) we can find ρ±

λ for which we have

inf{ϕ̂±
λ (u) : ||u|| = ρ±

λ } = m̂±
λ > 0 = ϕ̂±

λ (0).

Proof We again present the proof only for ϕ̂+
λ , since the proof for ϕ̂−

λ is similar.
Hypotheses H( f ) imply that given ε > 0, we can find δ > 0 and c26 > 0 such

that

|F(z, x)| ≤ ε

p
|x |p for almost all z ∈ � and all |x | ≤ δ (39)

F(z, x) ≤ c26|x |r − c∗
2

p
|x |p for almost all z ∈ � and all |x | > δ. (40)

Similarly, hypotheses H(β)(i), (i i), (i i i), imply that given ε > 0, we can find
c27 > 0 such that

B(z, x) ≤ ε|x |p + c27|x |q for all (z, x) ∈ ∂� × R. (41)
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Then for all u ∈ W 1,p(�), we have

ϕ̂+
λ (u) ≥ c1

p(p − 1)
||Du||pp + c̃2

p
||u||pp −

∫
�

F(z, u+)dz

− λ

∫
∂�

B(z, u+)dσ − c̃2
p

||u+||pp (see Corollary 3 and (20)). (42)

We have
∫

�

F(z, u+)dz =
∫

{u+>δ}
F(z, u+)dz +

∫
{u+≤δ}

F(z, u+)dz

≤ c26||u||r − c∗
2

p

∫
{u+>δ}

(u+)pdz + ε

p
||u||pp (see (39) and (40)).

Also, we have

λ

∫
∂�

B(z, u+)dσ ≤ λεc28||u||p + λc29||u||q for some c28, c29 > 0 (see (41)).

Using these two estimates and choosing small ε > 0, we obtain

ϕ̂+
λ (u) ≥ c30||u||p − c26||u||r − λc29||u||q + c∗

2

p

∫
{u+>δ}

(u+)pdz − c̃2
p

||u+||pp.

Note that ∫
{u+>δ}

(u+)pdz → ||u+||pp as δ → 0+.

So, given ϑ > 0, we can find δ0 > 0 such that

c∗
2

p

∫
{u+>δ}

(u+)pdz ≥ c∗
2

p
(1 − ϑ)||u+||pp for all 0 < δ ≤ δ0.

Then we have

ϕ̂+
λ (u) ≥ c30||u||p − c26||u||r − λc29||u||q + 1

p
[c∗

2(1 − ϑ) − c̃2]||u+||pp.

Since c∗
2 > c̃2 we choose small ϑ > 0 such that c∗

2(1 − ϑ) ≥ c̃2. Then

ϕ̂+
λ (u) ≥ [c30 − (c26||u||r−p + λc29||u||q−p)]||u||p. (43)

Consider the function

�λ(t) = c26t
r−q + λc29t

q−p for all t > 0.

Since q < p < r , we see that �λ(t) → +∞ as t → 0+ and t → +∞. So, we can
find t0 > 0 such that
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�λ(t0) = inf
R+

�λ,

⇒ �′
λ(t0) = 0,

⇒ t0 =
[
(p − q)λc29
(r − q)c26

] 1
r−q

.

Then �λ(t0) → 0 as λ → 0+ and so we can find small λ+ > 0 such that �λ(t0) <

c30 for all λ ∈ (0, λ+). From (43) we see that

ϕ̂+
λ (u) ≥ m̂+

λ > 0 = ϕ̂+
λ (0) for all u ∈ W 1,p(�) with ||u|| = ρ+

λ = t0(λ).

Similarly, we show that there exists λ− > 0 such that for every λ ∈ (0, λ−) we can
find ρ−

λ > 0 for which we have

ϕ̂−
λ (u) ≥ m̂−

λ > 0 = ϕ̂−
λ (0) for all u ∈ W 1,p(�) with ||u|| = ρ−

λ = t0(λ).

��
It is immediate from hypothesis H( f )(i i) (see also (18)) that:

Proposition 8 If hypotheses H(a), H( f ), H(β) hold, u ∈ D+, and λ > 0, then
ϕ̂+

λ (tu) → −∞ as t → +∞.

Now, we are ready to produce constant sign solutions.

Proposition 9 If hypotheses H(a), H( f ), H(β) hold, then

(a) For every λ ∈ (0, λ+) problem (Pλ) admits two positive solutions

u0, û ∈ D+;

(b) For every λ ∈ (0, λ−) problem (Pλ) admits two negative solutions

v0, v̂ ∈ −D+;

(c) For every λ ∈ (0, λ0 = min{λ+, λ−}) problem (Pλ) admits four nontrivial con-
stant sign solutions

u0, û ∈ D+ and v0, v̂ ∈ −D+.

Proof (a) Let λ ∈ (0, λ+) and let ρ+
λ be as postulated by Proposition 7. We consider

the set

B̄ρ+
λ

= {u ∈ W 1,p(�) : ||u|| ≤ ρ+
λ }.

This set is weakly compact in W 1,p(�). Moreover, using the Sobolev embedding
theorem and the compactness of the trace map, we see that ϕ̂+

λ is sequentially weakly
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lower semicontinuous. So, by the Weierstrass theorem, we can find u0 ∈ W 1,p(�)

such that
ϕ̂+

λ (u0) = inf{ϕ̂+
λ (u) : u ∈ B̄ρ+

λ
(u0)}. (44)

Hypotheses H(a)(iv), H( f )(i i i) imply that we can find δ ∈ (0, 1) such that

G(y) ≤ c31|y|τ for all |y| ≤ δ with c31 > 0, (45)

|F(z, x)| ≤ |x |p for almost all z ∈ � and all |x | ≤ δ. (46)

Then for u ∈ C+\{0} with ||u||C1(�) ≤ δ, we have

ϕ̂+
λ (u) ≤ c32δ

τ − δ p|�|N − λc12
q

δq |�|N for some c32 > 0 (47)

(see (45), (46) and hypothesis H(β)(i)).

Since q < τ < p, by taking δ ∈ (0, 1) even smaller if necessary, we infer from
(47) that

ϕ̂+
λ (u) < 0 and ||u|| ≤ ρ+

λ . (48)

It follows from (44) and (48) that

ϕ̂+
λ (u0) < 0 = ϕ̂+

λ (0), (49)

⇒ u0 �= 0 and ||u0|| < ρ+
λ (see Proposition 10). (50)

From (44) and (50) we have

(ϕ̂+
λ )′(u0) = 0

⇒ 〈A(u0), h〉 +
∫

�

c∗
2 |u0|p−2u0hdz =

∫
�

f̂+(z, u0)hdz + λ

∫
∂�

β(z, u+
0 )hdσ

for all h ∈ W 1,p(�). (51)

In (51) we choose h = −u−
0 ∈ W 1,p(�). Then, using Lemma 1 and (20), (21), we

obtain

c1
p − 1

||Du−
0 ||pp + c∗

2 ||u−||pp ≤ 0,

⇒ u0 ≥ 0, u0 �= 0.

Hence, Eq. (51) becomes

〈A(u0), h〉 =
∫

�

f (z, u0)hdz + λ

∫
∂�

β(z, u0)hdσ for all h ∈ W 1,p(�),

⇒ −div a(Du0(z)) = f (z, u0(z)) for almost all z ∈ �,
∂u

∂na
= λβ(z, u0) on ∂�

(see Papageorgiou and Răadulescu[28]). (52)
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From Hu and Papageorgiou [19] and Papageorgiou and Rădulescu [30], we have

u0 ∈ L∞(�).

Then invoking the nonlinear regularity theory of Lieberman [21, p. 320], we can
infer that

u0 ∈ C+\{0}.

Hypotheses H( f )(i), (i i i) imply that given ρ > 0, we can find ξ̂ρ > 0 such that

f (z, x)x + ξ̂ρ |x |p ≥ 0 for almost all z ∈ � and all |x | ≤ ρ.

If ρ = ||u0||∞, we have from (52)

div a(Du0(z)) ≤ ξ̂ρu0(z)
p−1 for almost all z ∈ �. (53)

Let μ(t) = a0(t)t, t > 0. Then

μ′(t)t = a′
0(t)t

2 + a0(t)t.

Performing integration by parts, we obtain

∫ t

0
μ′(s)sds = μ(t)t −

∫ t

0
μ(s)ds

= a0(t)t
2 − G0(t)

≥ c4t
p (see hypothesis H(a)(iv)).

We set H(t) = a0(t)t2 − G0(t), H0(t) = c4t p for all t ≥ 0. Let δ ∈ (0, 1) and
s > 0. We introduce the sets

C1 = {t ∈ (0, 1) : H(t) ≥ s} and C2 = {t ∈ (0, 1) : H0(t) ≥ s}.

Then C2 ⊆ C1 and so inf C1 ≤ inf C2. Hence

H−1(s) ≤ H−1
0 (s) (see Gasinski and Papageorgiou [16, Proposition 1.55])

⇒
∫ δ

0

1

H−1(
ξ̂
p s

p)
ds ≥

∫ δ

0

1

H−1
0 (

ξ̂
p s

p)
ds= ξ̂ρ

p

∫ δ

0

ds

s
= +∞.

Because of (53), we can apply the nonlinear strong maximum principle of Pucci
and Serrin [33, p. 111], from which we obtain

0 < u(z) for all z ∈ �.
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Then the boundary point theorem of Pucci and Serrin [33, p. 120] implies that

u0 ∈ D+.

Next, note that Propositions 5, 7 and 8 permit the use of Theorem 1 (the mountain
pass theorem) on the functional ϕ̂+

λ (λ ∈ (0, λ+)). So, we can find û ∈ W 1,p(�) such
that

û ∈ Kϕ̂+
λ
and m̂+

λ ≤ ϕ̂+
λ (û). (54)

It follows from (54) that

û /∈ {0, u0} (see Proposition 10 and (49)).

As before, we can easily check that

Kϕ̂+
λ
\{0} ⊆ D+ ⇒ û ∈ D+ (see (54)).

(b) Similarly, working this time with the functional ϕ̂−
λ (λ ∈ (0, λ−)), we produce two

negative solutions

v0, v̂ ∈ −D+.

(c) This part follows from (a) and (b) above. ��
In fact, we can show the existence of extremal constant sign solutions, that is, we

will show the following:

• For every λ ∈ (0, λ+), problem (Pλ) has a smallest positive solution u∗
λ ∈ D+;

• For every λ ∈ (0, λ−), problem (Pλ) has a biggest negative solution v∗
λ ∈ −D+.

To this end, note that hypotheses H( f ) imply that

f (z, x)x ≥ −c33|x |p for almost all z ∈ � and all x ∈ R, with c33 > 0. (55)

This unilateral growth estimate on the reaction term f (z, ·) and hypothesis H(β)(i),
lead to the following auxiliary nonlinear boundary value problem:

(Auλ)

{−div a(Du(z)) + c33|u(z)|p−2u(z) = 0 in �,
∂u
∂na

= λc12|u|q−2u on ∂�

}

Proposition 10 If hypotheses H(a) hold and λ > 0 then problem (Auλ) has a unique
positive solution ūλ ∈ D+ and a unique negative solution v̄λ ∈ −D+.

Proof First, we establish the existence of a positive solution.
So we consider the C1-functional ψ+

λ : W 1,p(�) → R defined by

ψ+
λ (u) =

∫
�

G(Du)dz + 1

p
||u||pp + (c33 − 1)||u+||pp − λc12

q

∫
∂�

(u+)qdσ

for all u ∈ W 1,p(�).
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Evidently, we can always assume that c33 > 1 (see (55)). Then we have

ψ+
λ (u) ≥ c1

p(p − 1)
||Du+||pp + c34||u+||pp

+ c1
p(p − 1)

||Du−||pp + 1

p
||u−||pp − λc35||u||q

for some c34, c35 > 0 (see Corollary 3),

≥ c36||u||p − λc35||u||q for some c36 > 0,

⇒ ψ+
λ is coercive (recall that q < p).

Moreover, the Sobolev embedding theorem and the compactness of the trace map,
imply that ψ+

λ is sequentially weakly lower semicontinuous. So, we can find ūλ ∈
W 1,p(�) such that

ψ+
λ (ūλ) = inf[ψ+

λ (u) : u ∈ W 1,p(�)]. (56)

As in the proof of Proposition 9, exploiting the fact that q < τ < p, we show that

ψ+
λ (ūλ) < 0 = ψ+

λ (0),

⇒ ūλ �= 0.

From (56) we have

(ψ+
λ )′(ūλ) = 0,

⇒ 〈A(ūλ), h〉 +
∫

�

|ūλ|p−2ūλhdz + (c33 − 1)
∫

�

(ū+
λ )p−1hdz

= λ

∫
∂�

c12(ū
+
λ )q−1hdσ (57)

for all h ∈ W 1,p(�).

In (57) we choose h = −ū−
λ ∈ W 1,p(�). Then

c1
p − 1

||Dū−
λ ||pp + ||ū−

λ ||pp ≤ 0 (see Lemma 2),

⇒ ūλ ≥ 0, ūλ �= 0.

Then Eq. (57) becomes

〈A(ūλ), h〉 +
∫

�

c33ū
p−1
λ hdz − λ

∫
∂�

c12ū
q−1
λ hdσ = 0 for all h ∈ W 1,p(�),

⇒ −div a(Dūλ(z)) + c33ūλ(z)
p−1 = 0 for almost all z ∈ �,

∂ ūλ

∂na
= λc12ū

q−1
λ on ∂�.
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As before, the nonlinear regularity theory (see Lieberman [21]) and the nonlinear
maximum principle (see [33]), imply that

ūλ ∈ D+.

Next, we show the uniqueness of this positive solution. To this end, we introduce
the integral functional j : L1(�) → R̄ = R ∪ {+∞} defined by

j (u) =
{∫

�
G(Du1/τ )dz − c12τ

q

∫
∂�

uq/τdσ if u ≥ 0, u1/τ ∈ W 1,p(�)

+∞ otherwise.
(58)

Let dom j = {u ∈ L1(�) : j (u) < +∞} (the effective domain of j) and let
u1, u2 ∈ dom j . We set

u = ((1 − t)u1 + tu2)
1/τ for t ∈ [0, 1].

From Lemma 1 of Diaz and Saa [9], we have

|Du(z)| ≤
[
(1 − t)|Du1(z)

1/τ |τ + t |Du2(z)
1/τ |τ

]1/τ
for almost all z ∈ �.

Then

G0(|Du(z)|) ≤ G0

([
(1 − t)|Du1(z)

1/τ |τ + t |Du2(z)
1/τ |τ

]1/τ)

(recall that G0(·) is increasing)
≤ (1 − t)G0(|Du1(z)

1/τ |)
+ tG0(|Du2(z)

1/τ |) (see hypothesis H(a)(iv))

⇒ G(Du(z)) ≤ (1 − t)G(Du1(z)
1/τ ) + tG(Du2(z)

1/τ ) for almost all z ∈ �.

Also, recall that q < τ and so x �→ −xq/τ is convex on [0,+∞). Therefore
it follows that j (·) is convex. Moreover, Fatou’s lemma implies that j (·) is lower
semicontinuous.

Now suppose that w̄λ ∈ W 1,p(�) is another positive solution of problem (Auλ).
As above, we can show that

w̄λ ∈ D+.

Then for all h ∈ C1(�) and for small enough |t | ≤ 1, we have

ūτ
λ + th, w̄τ

λ + th ∈ dom j (see (58)).

We can easily see that j (·) is Gâteaux differentiable at ūτ
λ, w̄

τ
λ in the direction h.

Moreover, via the chain rule and the nonlinear Green’s identity (see Gasinski and
Papageorgiou [13, p. 210]), we have
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j ′(ūτ
λ)(h) = 1

τ

∫
�

−div a(Dūλ)

ūτ−1
λ

hdz

j ′(w̄τ
λ)(h) = 1

τ

∫
�

−div a(Dw̄λ)

w̄τ−1
λ

hdz for all h ∈ C1(�).

The convexity of j (·) implies that j ′(·) is monotone. Hence

0 ≤
∫

�

[
−div a(Dūλ)

ūτ−1
λ

− −div a(Dw̄λ)

w̄τ−1
λ

]
(ūτ

λ − w̄τ
λ)dz

=
∫

�

c33[w̄ p−τ
λ − ū p−τ

λ ](ūτ
λ − w̄τ

λ)dz. (59)

Since x �→ x p−τ is strictly increasing on [0,+∞) it follows from (59) that

ūλ = w̄λ.

This proves the uniqueness of the positive solution ūλ ∈ D+ of problem (Auλ).
The fact that problem (Auλ) is odd, implies that v̄λ = −ūλ ∈ −D+ is the unique

negative solution. ��
In what follows, for every λ > 0, let S+(λ) (respectively, S−(λ)) be the set of

positive (respectively, negative) solutions of problem (Pλ). From Proposition 9 and
its proof, we know that:

• If λ ∈ (0, λ+), then S+(λ) �= ∅ and S+(λ) ⊆ D+.
• If λ ∈ (0, λ−), then S−(λ) �= ∅ and S−(λ) ⊆ −D+.

We will use the unique constant sign solutions ūλ ∈ D+ (respectively, v̄λ ∈ −D+)
of the auxiliary problem (Auλ) produced in Proposition 10, to provide a lower bound
(respectively, upper bound) for the elements of S+(λ) (respectively, S−(λ)).

Proposition 11 If hypotheses H(a), H( f ), H(β) hold, then

(a) For all λ ∈ (0, λ+) and all u ∈ S+(λ), we have ūλ ≤ u;
(b) For all λ ∈ (0, λ−) and all v ∈ S−(λ), we have v ≤ v̄λ.

Proof (a) Let λ ∈ (0, λ+) and u ∈ S+(λ). We introduce the following Carathéodory
functions

k̂+(z, x) =
⎧⎨
⎩
0 if x < 0
(−c33 + 1)x p−1 if 0 ≤ x ≤ u(z)
(−c33 + 1)u(z)p−1 if u(z) < x

(60)

β̂+(z, x) =
⎧⎨
⎩
0 if x < 0
c12xq−1 if 0 ≤ x ≤ u(z)
c12u(z)q−1 if u(z) < x

for all (z, x) ∈ ∂� × R. (61)
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We set K̂+(z, x) = ∫ x0 k̂+(z, s)ds and B̂+(z, x) = ∫ x
0 β̂+(z, s)ds and consider the

C1-functional ψ̂+
λ : W 1,p(�) → R defined by

ψ̂+
λ (u) =

∫
�

G(Du)dz + 1

p
||u||pp

−
∫

�

K̂+(z, u)dz − λ

∫
∂�

B̂+(z, u)dσ for all u ∈ W 1,p(�).

FromCorollary 1 and (60), (61), we see that ψ̂+
λ is coercive. Also, from the Sobolev

embedding theorem and the compactness of the trace map, it follows that ψ̂+
λ is

sequentially weakly lower semicontinuous. So, we can find ũλ ∈ W 1,p(�) such that

ψ̂+
λ (ũλ) = inf{ψ̂+

λ (u) : u ∈ W 1,p(�)}. (62)

In fact, since q < τ < p, as in the proof of Proposition 9 (see (47) with δ ≤ min
�

u

and recall that u ∈ D+), we have

ψ̂+
λ (ũλ) < 0 = ψ̂+

λ (0) ⇒ ũλ �= 0.

From (62) we have

(ψ̂+
λ )′(ũλ) = 0,

⇒ 〈A(ũλ), h〉 +
∫

�

|ũλ|p−2ũλhdz =
∫

�

k̂+(z, ũλ)hdz + λ

∫
∂�

β̂+(z, ũλ)hdσ

for all h ∈ W 1,p(�). (63)

In (63) we first choose h = −ũ−
λ ∈ W 1,p(�). Then

c1
p − 1

||Dũ−
λ ||pp + ||ũ−

λ ||pp ≤ 0 (see Corollary 3 and (60), (61)),

⇒ ũλ ≥ 0, ũλ �= 0.

Next, in (63) we choose h = (ũλ − u)+ ∈ W 1,p(�). Then

〈
A(ũλ), (ũλ − u)+

〉+
∫

�

ũ p−1
λ (ũλ − u)+dz

=
∫

�

(−c33 + 1)u p−1(ũλ − u)+dz + λ

∫
∂�

c12u
q−1(ũλ − u)+dσ (see (60), (61))

≤
∫

�

f (z, u)(ũλ − u)+dz +
∫

�

u p−1(ũλ − u)+dz + λ

∫
∂�

β(z, u)(ũλ − u)+dσ

(see (55) and hypothesis H(β)(i))

= 〈A(u), (ũλ − u)+
〉+
∫

�

u p−1(ũλ − u)+dz (since u ∈ S+(λ)),
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⇒ 〈
A(ũλ) − A(u), (ũλ − u)+

〉+
∫

�

(ũ p−1
λ − u p−1)(ũλ − u)+dz ≤ 0,

⇒ ũλ ≤ u.

So, we have proved that

ũλ ∈ [0, u] = {y ∈ W 1,p(�) : 0 ≤ y(z) ≤ u(z) for almost all z ∈ �}.

Therefore Eq. (63) becomes

〈A(ũλ), h〉 +
∫

�

c33ũ
p−1
λ hdz = λ

∫
∂�

c12ũ
q−1
λ hdσ for all h ∈ W 1,p(�),

⇒ −div a(Dũλ(z)) + c33ũλ(z)
p−1 = 0 for almost all z ∈ �,

∂ ũλ

∂na
= λc12ũ

q−1
λ on ∂�, ũλ ≥0, ũλ �=0 (see Papageorgiou and Răadulescu[28]),

⇒ ũλ = ūλ (see Proposition 13).

Since u ∈ S+(λ) is arbitrary, we conclude that

ūλ ≤ u for all u ∈ S+(λ).

(b) In a similar fashion, we show that if λ ∈ (0, λ−), then v ≤ v̄λ for all v ∈ S−(λ).
��

Using this proposition, we can produce the desired extremal constant sign solutions
for problem (Pλ).

As in Filippakis and Papageorgiou [10] (see Lemmata 4.1 and 4.2), we have:

• S+(λ) is downward directed, that is, if u1, u2 ∈ S+(λ), thenwe can find u ∈ S+(λ)

such that u ≤ u1, u ≤ u2.
• S−(λ) is upward directed, that is, if v1, v2 ∈ S−(λ), then we can find v ∈ S−(λ)

such that v1 ≤ v, v2 ≤ v.

Proposition 12 If hypotheses H(a), H( f ), H(β) hold, then

(a) For every λ ∈ (0, λ+) problem (Pλ) has a smallest positive solution

u∗
λ ∈ D+;

(b) For every λ ∈ (0, λ−) problem (Pλ) has a biggest negative solution

v∗
λ ∈ −D+.

Proof (a) Using Lemma 3.9, p. 178 of Hu and Papageorgiou [18], we can find a
decreasing sequence {un}n≥1 ⊆ S+(λ) such that

inf S+(λ) = inf
n≥1

un .
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We have for all h ∈ W 1,p(�) and all n ∈ N

〈A(un), h〉 =
∫

�

f (z, un)hdz + λ

∫
∂�

β(z, un)hdσ. (64)

Since 0 ≤ un ≤ u1 for all n ∈ N, using (64), Corollary 1, hypothesis H( f )(i) and
(19), we can infer that {un}n≥1 ⊆ W 1,p(�) is bounded.

So, we may assume that

un
w→ u∗

λ in W 1,p(�) and un → u∗
λ in Lr (�) and in Lq(∂�). (65)

In (64) we choose h = un − u∗
λ ∈ W 1,p(�), pass to the limit as n → ∞ and use

(65). Then we obtain

lim
n→∞

〈
A(un), un − u∗

λ

〉 = 0,

⇒ un → u∗
λ in W 1,p(�) (see Proposition 4). (66)

So, passing to the limit as n → ∞ in (64) and using (66), we have

〈
A(u∗

λ), h
〉 =

∫
�

f (z, u∗
λ)hdz + λ

∫
∂�

β(z, u∗
λ)hdσ for all h ∈ W 1,p(�),

⇒ u∗
λ is a nonnegative solution of (Pλ).

From Proposition 11 we know that

ūλ ≤ un for all n ∈ N,

⇒ ūλ ≤ u∗
λ (see(66)),

⇒ u∗
λ ∈ S+(λ) and u∗

λ = inf S+(λ).

(b) Reasoning in a similar fashion, we show that for all λ ∈ (0, λ−) problem (Pλ) has
a biggest negative solution v∗

λ ∈ S−(λ). ��
In Sect. 4, using these extremal constant sign solutions, we will produce a nodal

(sign changing) solution for problem (Pλ). For the moment, in the remaining part of
this section we examine the maps

λ �→ u∗
λ from (0, λ+) into C1(�), (67)

λ �→ v∗
λ from (0, λ−) into C1(�). (68)

The next proposition will be used to prove the monotonicity properties of the maps
in (67), (68).

Proposition 13 If hypotheses H(a), H( f )′, H(β) hold, then
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(a) Given λ,μ ∈ (0, λ+) with μ < λ and uλ ∈ S+(λ), we can find uμ ∈ S+(μ) such
that

uλ − uμ ∈ int Ĉ+;
(b) Given λ,μ ∈ (0, λ−) with μ < λ and vλ ∈ S−(λ), we can find uμ ∈ S−(μ) such

that

vμ − vλ ∈ int Ĉ+.

Proof (a) We introduce the following Carathéodory functions

e+(z, x) =
{
f (z, x+) + (x+)p−1 if x ≤ uλ(z)
f (z, uλ(z)) + uλ(z)p−1 if uλ(z) < x,

(69)

d+
μ (z, x) =

{
μβ(z, x) if x ≤ uλ(z)
μβ(z, uλ(z)) if uλ(z) < x

for all (z, x) ∈ ∂� × R. (70)

We set

E+(z, x) =
∫ x

0
e+(z, s)ds and D+

μ (z, x) =
∫ x

0
d+
μ (z, s)ds

and consider the C1-functional ϑ+
μ (z, x) : W 1,p(�) → R defined by

ϑ+
μ (u) =

∫
�

G(Du)dz + 1

p
||u||pp −

∫
�

E+(z, u)dz −
∫

∂�

D+
μ (z, u)dσ

for all u ∈ W 1,p(�).

From Corollary 1 and (69), (70), it is clear that the function ϑ+
μ is coercive. Also,

it is sequentially weakly lower semicontinuous. So, we can find uμ ∈ W 1,p(�) such
that

ϑ+
μ (uμ) = inf{ϑ+

μ (u) : u ∈ W 1,p(�)}. (71)

Since q < τ < p, we have

ϑ+
μ (uμ) < 0 = ϑ+

μ (0) (see the proof of Proposition 12),

⇒ uμ �= 0.

From (71) we have

(ϑ+
μ )′(uμ) = 0,

⇒ 〈
A(uμ), h

〉+
∫

�

|uμ|p−2uμhdz =
∫

�

e+(z, uμ)hdz +
∫

∂�

d+
μ (z, uμ)hdσ

for all h ∈ W 1,p(�). (72)

123



Appl Math Optim (2019) 80:251–298 283

In (72) we first choose h = −u−
μ ∈ W 1,p(�). From Lemma 1 and (69), (70) we

have

c1
p − 1

||Du−
μ ||pp + ||u−

μ ||pp ≤ 0,

⇒ uμ ≥ 0, uμ �= 0.

Next, in (72) we choose h = (uμ − uλ)
+ ∈ W 1,p(�). Then

〈
A(uμ), (uμ − uλ)

+〉+
∫

�

u p−1
μ (uμ − uλ)

+dz

=
∫

�

f (z, uλ)(uμ − uλ)
+dz +

∫
�

u p−1
λ (uμ − uλ)

+dz

+μ

∫
∂�

β(z, uλ)(uμ − uλ)
+dσ (see(69), (70))

≤
∫

�

f (z, uλ)(uμ − uλ)
+dz +

∫
�

u p−1
λ (uμ − uλ)

+dz

+ λ

∫
∂�

β(z, uλ)(uλ − uμ)+dσ(since μ < λ, see hypothesis H(β)(i))

= 〈A(uλ), (uμ − uλ)
+〉+

∫
�

u p−1
λ (uμ − uλ)

+dz (since uλ ∈ S+(λ)),

⇒ 〈
A(uμ) − A(uλ), (uμ − uλ)

+〉+
∫

�

(u p−1
μ − u p−1

λ )(uμ − uλ)
+dz ≤ 0,

⇒ uμ ≤ uλ.

So, we have proved that
uμ ∈ [0, uλ]. (73)

Invoking (69), (70), (73), Eq. (72) becomes

〈
A(uμ), h

〉 =
∫

�

f (z, uμ)hdz + μ

∫
∂�

β(z, uμ)hdσ for all h ∈ W 1,p(�),

⇒ −div a(Duμ(z)) = f (z, uμ(z)) for almost all z ∈ �,
∂uμ

∂na
= μβ(z, uμ) on ∂� (see Papageorgiou and Răadulescu[28]),
⇒ uμ ∈ S+(μ). (74)

Evidently, uμ �= uλ (recall that μ < λ and use hypothesis H(β)(i)). Then hypoth-
esis H( f )′(iv) implies that

−div a(Duμ(z)) = f (z, uμ(z)) = gμ(z)

≤ gλ(z) = f (z, uλ(z)) = −div a(Duλ(z)) for almost all z ∈ �,
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with gμ, gλ ∈ L∞(�) and gμ �≡ gλ. Also, we have

∂uμ

∂n

∣∣∣∣
∂�

> 0,
∂uλ

∂n

∣∣∣∣
∂�

> 0 (see hypothesis H(β)(i)).

Therefore, we can use Proposition 3 and infer that

uλ − uμ ∈ int Ĉ+ (that is, uμ ∈ intC1(�)[0, uλ]).

(b) For this part, we consider the following Carathéodory functions

e−(z, x) =
{
f (z, vλ(z)) + |vλ(z)|p−2vλ(z) if x < vλ(z)
f (z,−x−) + |x |p−2(−x−) if vλ(z) ≤ x,

(75)

d−
μ (z, x) =

{
μβ(z, vλ(z)) if x < vλ(z)
μβ(z,−x−) if vλ(z) ≤ x

for all (z, x) ∈ ∂� × R. (76)

We set E−(z, x) = ∫ x
0 e−(z, s)ds and D−

μ (z, x) = ∫ x
0 d−

μ (z, s)ds and consider the
C1-functional ϑ−

μ : W 1,p(�) → R defined by

ϑ−
μ (u) =

∫
�

G(Du)dz + 1

p
||u||pp −

∫
�

E−(z, u)dz

−
∫

∂�

D−
μ (z, u)dσ for all u ∈ W 1,p(�).

Reasoning as in part (a), we produce some vμ ∈ S−(μ) such that

vμ − vλ ∈ int Ĉ+ (that is, vμ ∈ intC1(�)[vλ, 0]).

��

Now we can establish the monotonicity and continuity properties of the two maps
defined in (67) and (68).

Proposition 14 If hypotheses H(a), H( f )′, H(β) hold, then

(a) The map λ �→ u∗
λ from (0, λ+) into C1(�) is strictly increasing in the sense that

μ < λ ⇒ u∗
λ − u∗

μ ∈ int Ĉ+ and is left continuous;

(b) The map λ �→ v∗
λ from (0, λ−) into C1(�) is strictly decreasing in the sense that

μ < λ ⇒ v∗
μ − v∗

λ ∈ int Ĉ+ and is right continuous.

Proof (a)Letμ, λ ∈ (0, λ+)withμ < λ. From Proposition 12, we know that problem
(Pλ) has a smallest positive solution u∗

λ ∈ S+(λ). Invoking Proposition 13, we can
find uμ ∈ S+(μ) such that
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u∗
λ − uμ ∈ int Ĉ+,

⇒ u∗
λ − u∗

μ ∈ int Ĉ+ (see Proposition 15)

⇒ λ �→ u∗
λ is strictly increasing, as claimed by the proposition.

Next, let {λn, λ}n≥1 ⊆ (0, λ+) and assume that λn → λ−. We have

0 < λ̃ ≤ λn ≤ λ̂ < λ+ for all n ∈ N.

Then from Proposition 12 and the first part of the proof, we have

0 ≤ u∗
λ̃

≤ u∗
λn

≤ u∗
λ̂
for all n ∈ N. (77)

Hence the nonlinear regularity theory of Lieberman [21] implies that there exist
α ∈ (0, 1) and c37 > 0 such that

u∗
λn

∈ C1,α(�) and ||u∗
λn

||C1,α(�) ≤ c37 for all n ∈ N. (78)

Exploiting the compact embedding of C1,α(�) into C1(�) and by passing to a
subsequence if necessary, we can say that

u∗
λn

→ ũλ in C1(�). (79)

Evidently, we have

u∗
λ̃

≤ ũλ and ũλ ∈ S+(λ) (see(77), (79)).

Suppose that ũλ �= u∗
λ. Then we can find z0 ∈ � such that

u∗
λ(z0) < ũλ(z0),

⇒ u∗
λ(z0) < u∗

λn
(z0) for all n ≥ n0 (see(79)).

This contradicts the first part (that is, the “monotonicity” part) of the proof. So,
ũλ = u∗

λ and now by Urysohn’s criterion we conclude that for the initial sequence we
have

u∗
λn

→ u∗
λ in C1(�),

⇒ λ �→ u∗
λ is left continuous from (0, λ+) into C1(�).

(b) In a similar fashion we show that the map λ �→ v∗
λ from (0, λ−) into C1(�) is

strictly decreasing (in the sense described in the proposition) and right continuous.
��
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4 Nodal Solutions

In this section we turn our attention to the existence of nodal solutions. To do this, we
will use a combination of variational methods and Morse theory. So, we start with the
computation of the critical groups at the origin of the energy (Euler) functional ϕλ.

Proposition 15 If hypotheses H(a), H( f )′, H(β) hold, λ > 0, and Kϕλ is finite, then
Ck(ϕλ, 0) = 0 for all k ∈ N0.

Proof Hypothesis H(a)(iv) and Corollary 1 imply that

G(y) ≤ c38(|y|τ + |y|p) for all y ∈ R
N and some c38 > 0. (80)

Also, hypotheses H( f )′(i), (i i), (i i i) (see also (18)) imply that

F(z, x) ≥ c39|x |η − c40|x |p for almost all z ∈ � and all x ∈ R, with c39, c40 > 0.
(81)

Moreover, from (19) we have

|B(z, x)| ≤ c41|x |q for all (z, x) ∈ ∂� × R and some c41 > 0. (82)

For u ∈ W 1,p(�) and t > 0, we have

ϕλ(tu) =
∫

�

G(t Du)dz −
∫

�

F(z, tu)dz − λ

∫
∂�

B(z, tu)dσ

≤ c38(t
τ ||Du||ττ + t p||Du||pp) − c39t

η||u||ηη + c40t
p||u||pp

− λc41t
q ||u||qLq (∂�)(see (80), (81), (82)). (83)

Since q < τ < p < η, from (83) we see that we can find t∗ = t∗(u) ∈ (0, 1) such
that

ϕλ(tu) < 0 for all t ∈ (0, t∗). (84)

Now, let u ∈ W 1,p(�) with 0 < ||u|| ≤ 1 and ϕλ(u) = 0. Then

d

dt
ϕλ(tu)

∣∣∣∣
t=1

= 〈
ϕ′

λ(u), u
〉

(by the chain rule)

=
∫

�

(a(Du), Du)RN dz −
∫

�

f (z, u)udz − λ

∫
∂�

β(z, u)udσ

=
∫

�

[(a(Du), Du)RN − τG(Du)]dz

+
∫

�

[τ F(z, u) − f (z, u)u]dz + λ

∫
∂�

[τ B(z, u)

−β(z, u)u]dσ (since ϕλ(u) = 0). (85)
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Hypothesis H(a)(iv) implies that

∫
�

[(a(Du), Du)RN − τG(Du)]dz ≥ c4||Du||pp. (86)

Also, hypotheses H( f )′(i), (i i i) imply that given ε > 0, we can find c42 =
c42(ε) > 0 such that

τ F(z, x) − f (z, x)x ≥ −ε|x |p − c42|x |r for almost all z ∈ � and all x ∈ R,

⇒
∫

�

[τ F(z, u) − f (z, u)u]dz ≥ −ε||u||pp − c42||u||rr . (87)

Finally, from hypothesis H(β)(iv), we have

λ

∫
�

[τ B(z, u) − β(z, u)u]dσ ≥ λc14||u||qLq (∂�).

Since q < p, for all ||u||Lq (∂�) ≤ 1 we have

||u||qLq (∂�) ≥ ||u||pLq (∂�),

⇒ λ

∫
∂�

[τ B(z, u) − β(z, u)u]dσ ≥ λc14||u||pLq (∂�). (88)

From Proposition 7 (see also the remark following that proposition), we know that

v �→ ||Dv||p + ||v||Lq (∂�), v ∈ W 1,p(�),

is an equivalent norm on the Sobolev space W 1,p(�).
So, returning to (85) and using (86), (87) and (88) and choosing small ε > 0, we

see that for all u ∈ W 1,p(�) with 0 < ||u|| ≤ 1 and ||u||Lq (∂�) ≤ 1, ϕλ(u) = 0, we
have

d

dt
ϕλ(tu)

∣∣∣∣
t=1

≥ c43||u||p − c44||u||r for some c43, c44 > 0. (89)

Recall that p < r . Choosing ρ ∈ (0, 1) small, we have

d

dt
ϕλ(tu)

∣∣∣∣
t=1

> 0 for all 0 < ||u|| ≤ ρ, ϕλ(u) = 0 (90)

(recall that via the trace map, W 1,p(�) is embedded continuously into Lq(∂�)).
Now consider u ∈ W 1,p(�) with 0 < ||u|| ≤ ρ, ϕλ(u) = 0. We will show that

ϕλ(tu) ≤ 0 for all t ∈ [0, 1]. (91)

If (91) is not true, then we can find t0 ∈ (0, 1) such that

ϕλ(t0u) > 0.
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Since ϕλ(u) = 0 and ϕλ(·) is continuous, we have

t∗ = min{t ∈ [t0, 1] : ϕλ(tu) = 0} > t0 > 0.

We have
ϕλ(tu) > 0 for all t ∈ [t0, t∗) . (92)

We set y = t∗u. Then 0 < ||y|| ≤ ||u|| ≤ ρ and ϕλ(y) = 0. So, it follows from
(90) that

d

dt
ϕλ(t y)

∣∣∣∣
t=1

> 0. (93)

From (92) we have

ϕλ(y) = ϕλ(t∗u) = 0 < ϕλ(tu) for all t ∈ [t0, t∗)

and this implies that

d

dt
ϕλ(t y)

∣∣∣∣
t=1

= t∗
d

dt
ϕλ(tu)

∣∣∣∣
t=t∗

= t∗ lim
t→t−∗

ϕλ(tu)

t − t∗
≤ 0. (94)

Comparing (93) and (94), we obtain a contradiction. This proves (91).
We can always choose ρ ∈ (0, 1) small enough so that Kϕλ ∩ B̄ρ = {0} (here,

B̄ρ = {v ∈ W 1,p(�) : ||v|| ≤ ρ}). We consider the deformation h : [0, 1] × (ϕ0
λ ∩

B̄ρ) → ϕ0
λ ∩ B̄ρ defined by

h(t, u) = (1 − t)u for all (t, u) ∈ [0, 1] × (ϕ0
λ ∩ B̄ρ).

Using (91), we can easily see that this is a well-defined deformation and it implies
that the set ϕ0

λ ∩ B̄ρ is contractible in itself.
Let u ∈ B̄ρ and assume that ϕλ(u) > 0. We will show that there is a unique

t (u) ∈ (0, 1) such that
ϕλ(t (u)u) = 0. (95)

From (84) and Bolzano’s theorem, we see that there exists t (u) ∈ (0, 1) such that
(95) holds. We need to show that t (u) ∈ (0, 1) is unique. Arguing by contradiction,
suppose we can find

0 < t1 = t (u)1 < t2 = t (u)2 < 1 such that ϕλ(t1u) = ϕλ(t2u) = 0. (96)

From (91) we have

ϕλ(t t2u) ≤ 0 for all t ∈ [0, 1],
⇒ t1

t2
∈ (0, 1) is a maximizer of the function t �→ ϕλ(t t2u),

⇒ t1
t2

d

dt
ϕλ(t t2u)

∣∣∣∣
t= t1

t2

= d

dt
ϕλ(t t1u)

∣∣∣∣
t=1

= 0,
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which contradicts (90). Therefore t (u) ∈ (0, 1) for which (95) holds is indeed unique.
Then

ϕλ(tu) < 0 for all t ∈ (0, t (u)) (see (84)) and ϕλ(tu) > 0 for all t ∈ (t (u), 1] .

Consider the function ϑ : B̄ρ\{0} → [0, 1] defined by

ϑ(u) =
{
1 if u ∈ B̄ρ\{0}, ϕλ(u) ≤ 0
t (u) if u ∈ B̄ρ\{0}, ϕλ(u) > 0.

It is easy to see that ϑ(·) is continuous. Now let d : B̄ρ\{0} → (ϕ◦
λ ∩ B̄ρ)\{0} be

the map defined by

d(u) =
{
u if u ∈ B̄ρ\{0}, ϕλ(u) ≤ 0
ϑ(u)u if u ∈ B̄ρ\{0}, ϕλ(u) > 0.

The continuity of ϑ(·) implies the continuity of d(·). Note that

d|(ϕ0
λ∩B̄ρ)\{0} = id|(ϕ0

λ∩B̄ρ)\{0}.

Hence (ϕ0
λ ∩ B̄ρ)\{0} is a retract of B̄ρ\{0} and the latter is contractible. Thus

so is the set (ϕ0
λ ∩ B̄ρ)\{0}. Recall that we have established earlier that ϕ0

λ ∩ B̄ρ is
contractible. Therefore we have

Hk(ϕ
0
λ ∩ B̄ρ, (ϕ0

λ ∩ B̄ρ)\{0}) = 0 for all k ∈ N0

(see Motreanu et al. [23, p. 147])

⇒ Ck(ϕλ, 0) = 0 for all k ∈ N0.

��
Recall that λ0 = min{λ+, λ−}. Next, we show that for every λ ∈ (0, λ0) problem

(Pλ) admits a nodal solution.

Proposition 16 If hypotheses H(a), H( f )′, H(β) hold andλ ∈ (0, λ0), then problem
(Pλ) admits a nodal solution y0 ∈ [v∗

λ, u∗
λ] ∩ C1(�).

Proof Let u∗
λ ∈ D+ and v∗

λ ∈ −D+ be the two extremal constant sign solutions of
problem (Pλ) produced in Proposition 12. We introduce the following Carathéodory
functions

k(z, x) =
⎧⎨
⎩

f (z, v∗
λ(z)) + |v∗

λ(z)|p−2v∗
λ(z) if x < v∗

λ(z)
f (z, x) + |x |p−2x if v∗

λ(z) ≤ x ≤ u∗
λ(z)

f (z, u∗
λ(z)) + u∗

λ(z)
p−1 if u∗

λ(z) < x
(97)

e(z, x) =
⎧⎨
⎩

β(z, v∗
λ(z)) if x < v∗

λ(z)
β(z, x) if v∗

λ(z) ≤ x ≤ u∗
λ(z)

β(z, u∗
λ(z)) if u

∗
λ(z) < x

for all (z, x) ∈ ∂� × R. (98)
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We set K (z, x) = ∫ x
0 k(z, s)ds and E(z, x) = ∫ x

0 e(z, s)ds and consider the C1-
functional γλ : W 1,p(�) → R defined by

γλ(u) =
∫

�

G(Du)dz + 1

p
||u||pp −

∫
�

K (z, u)dz

−λ

∫
∂�

E(z, u)dσ for all u ∈ W 1,p(�).

Also, we consider the positive and negative truncations of k(z, ·), e(z, ·), that is,
the Carathéodory functions

k±(z, x) = k(z,±x±) and e±(z, x) = e(z,±x±).

We set K±(z, x) = ∫ x
0 k±(z, s)ds and E±(z, x) = ∫ x0 e±(z, s)ds and consider the

C1-functionals γ ±
λ : W 1,p(�) → R defined by

γ ±
λ (u) =

∫
�

G(Du)dz + 1

p
||u||pp

−
∫

�

K±(z, u)dz − λ

∫
∂�

E±(z, u)dσ for all u ∈ W 1,p(�).

��

Claim 1 Kγλ ⊆ [v∗
λ, u∗

λ], Kγ +
λ

= {0, u∗
λ}, Kγ −

λ
= {0, v∗

λ}.

Suppose that u ∈ Kγλ . Then

〈A(u), h〉+
∫

�

|u|p−2uhdz=
∫

�

k(z, u)hdz+λ

∫
∂�

e(z, u)hdσ for all h ∈ W 1,p(�).

(99)
In (99) first we choose h = (u − u∗

λ)
+ ∈ W 1,p(�). We obtain

〈
A(u), (u − u∗

λ)
+〉+

∫
�

|u|p−2u(u − u∗
λ)

+dz

=
∫

�

[ f (z, u∗
λ) + (u∗

λ)
p−1](u − u∗

λ)
+dz

+ λ

∫
∂�

β(z, u∗
λ)(u − u∗

λ)
+dσ (see(97), (98))

= 〈A(u∗
λ), (u − u∗

λ)
+〉+

∫
�

(u∗
λ)

p−1(u − u∗
λ)

+dz (since u∗
λ ∈ S+(λ)),

⇒ 〈
A(u) − A(u∗

λ), (u − u∗
λ)

+〉+
∫

�

[|u|p−2u − (u∗
λ)

p−1](u − u∗
λ)

+dz ≤ 0,

⇒ u ≤ u∗
λ.
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Similarly, if in (99) we choose h = (v∗
λ − u)+ ∈ W 1,p(�), then we can show that

v∗
λ ≤ u.

So, we have proved that

u ∈ [v∗
λ, u∗

λ],
⇒ Kγλ ⊆ [v∗

λ, u∗
λ].

Similarly, we show that

Kγ +
λ

⊆ [0, u∗
λ] and Kγ −

λ
⊆ [v∗

λ, 0].

The extremality of the constant sign solutions u∗
λ and v∗

λ, implies that

Kγ +
λ

= {0, u∗
λ} and Kγ −

λ
= {0, v∗

λ}.

This proves Claim 1.

Claim 2 u∗
λ ∈ D+ and v∗

λ ∈ −D+ are local minimizers of γλ.

Corollary 1 and (97), (98) imply that γ +
λ is coercive. Also, it is sequentially weakly

lower semicontinuous. So, we can find ũλ ∈ W 1,p(�) such that

γ +
λ (ũλ) = inf{γλ(u) : u ∈ W 1,p(�)}. (100)

As before (see the proof of Proposition 9), since q < τ < p < η, we have

γ +
λ (ũλ) < 0 = γ +

λ (0),

⇒ ũλ �= 0. (101)

From (100) we have ũλ ∈ Kγ +
λ
. Then Claim 1 and (101) imply that

ũλ = u∗
λ ∈ D+.

Note that

γλ|C+ = γ +
λ |C+

⇒ u∗
λ is a local C1(�)−minimizer of γλ,

⇒ u∗
λ is a local W 1,p(�)−minimizer of γλ (see Proposition 4).

Similarly, for v∗
λ ∈ −D+, using this time the functional γ −

λ . This proves Claim 2.
Without any loss of generality we may assume that

γλ(v
∗
λ) ≤ γλ(u

∗
λ).
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The reasoning is similar if the opposite inequality holds.
We assume that Kγλ is finite. Otherwise, on account of Claim 1 and (97), (98),

we already have an infinity of nodal solutions in C1(�) (by the nonlinear regularity
theory of Lieberman [21]). Then since u∗

λ ∈ D+ is a local minimizer of γλ (see Claim
2), we can find ρ ∈ (0, 1) so small that

γλ(v
∗
λ) ≤ γλ(u

∗
λ) < inf{γλ(u) : ||u − u∗

λ|| = ρ} = mλ (102)

(see Aizicovici et al. [1], proof of Proposition 29).
The functional γλ is coercive (see (97), (98)). So, we have that

γλ satisfies the C-condition (103)

(see Papageorgiou and Winkert [32]). Then (102), (103) permit the use of Theorem 1
(the mountain pass theorem). So, we can find y0 ∈ W 1,p(�) such that

y0 ∈ Kγλ and mλ ≤ γλ(y0). (104)

From (102) and (104) we see that

y0 /∈ {u∗
λ, v

∗
λ} and y0 ∈ C1(�) (nonlinear regularity theory). (105)

Moreover, Corollary 6.81, p. 168 of Motreanu, Motreanu and Papageorgiou [23]
implies that

C1(γλ, y0) �= 0. (106)

Claim 3 Ck(γλ, 0) = Ck(ϕλ, 0) for all k ∈ N0.

We consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)ϕλ(u) + tγλ(u) for all (t, u) ∈ [0, 1] × W 1,p(�).

Suppose that we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p(�) such that

tn → t in [0, 1], un → 0 in W 1,p(�) and h′
u(tn, un) = 0 for all n ∈ N. (107)

From the equality in (107), we have

〈A(un), h〉 + tn

∫
�

|un|p−2unhdz

= (1 − tn)
∫

�

f (z, un)hdz + tn

∫
�

k(z, un)hdz + λ

∫
∂�

[(1 − tn)β(z, un)

+ tne(z, un)]dσ for all n ∈ N, h ∈ W 1,p(�).

123



Appl Math Optim (2019) 80:251–298 293

It follows (see Papageorgiou and Rădulescu [27]) that

⎧⎨
⎩

−div a(Dun(z)) + tn|un(z)|p−2un(z) = (1 − tn) f (z, un(z)) + tnk(z, un(z))
for almost all z ∈ �,
∂un
∂na

= λ[(1 − tn)β(z, un) + tne(z, un)] on ∂�, n ∈ N.

⎫⎬
⎭

(108)

From (107), (108), we see that we can find c45 > 0 such that

||un||∞ ≤ c45 for all n ∈ N (109)

(see Hu and Papageorgiou [19] and Papageorgiou and Rădulescu [30]). This L∞-
bound permits the use of the nonlinear regularity theory of Lieberman [21], hence
there exist α ∈ (0, 1) and c46 > 0 such that

un ∈ C1,α(�) and ||un||C1,α(�) ≤ c46 for all n ∈ N. (110)

From (107), (110) and the compact embedding of C1,α(�) into C1(�), we have

un → 0 in C1(�),

⇒ un ∈ [v∗
λ, u∗

λ] for all n ≥ n0. (111)

It follows from (97), (98), (108), (111) that

un ∈ Kγλ for all n ≥ n0,

which contradicts the assumption that Kγλ is finite. So, (107) cannot occur and we can
use Theorem 5.2 of Corvellec and Hantoute [8] (the homotopy invariance of critical
groups) and obtain

Ck(h(0, ·), 0) = Ck(h(1, ·), 0) for all k ∈ N0,

⇒ Ck(ϕλ, 0) = Ck(γλ, 0) for all k ∈ N0.

This proves Claim 3.
From Claim 3 and Proposition 15, we have

Ck(γλ, 0) = 0 for all k ∈ N0. (112)

Comparing (106) and (112), we see that

y0 �= 0,

⇒ y0 ∈ [v∗
λ, u∗

λ] ∩ C1(�) is a nodal solution of (Pλ) (see 105).

Summarizing the situation for problem (Pλ), we can state the followingmultiplicity
theorem.
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Theorem 20 If hypotheses H(a), H( f )′, H(β) hold, then there exists λ0 > 0 such
that for every λ ∈ (0, λ0) problem (Pλ) has at least five nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+, y0 ∈ C1(�) nodal.

Moreover, for every λ ∈ (0, λ0), problem (Pλ) has extremal constant sign solutions

u∗
λ ∈ D+ and v∗

λ ∈ −D+

such that y0 ∈ [v∗
λ, u∗

λ] ∩ C1(�) and the map λ �→ u∗
λ is

• strictly increasing (that is, μ < λ ⇒ u∗
λ − u∗

μ ∈ int Ĉ+),
• left continuous from (0, λ0) into C1(�),

while the map λ �→ v∗
λ is

• strictly decreasing (that is, μ < λ ⇒ v∗
μ − v∗

λ ∈ int Ĉ+),
• right continuous.

In the next section, we show that in the semilinear case, we can improve this
theorem and produce a sixth nontrivial smooth solution ŷ, but we cannot provide any
sign information for it.

5 Semilinear Problem

In this section we deal with the semilinear problem

(Sλ)

{−u(z) = f (z, u(z)) in �,
∂u
∂n = λβ(z, u) on ∂�.

}

We strengthen the regularity hypotheses on the reaction term f (z, ·) and on the
boundary (source) term β(z, ·) and by using Morse theory we are able to generate a
sixth nontrivial smooth solution. However, we cannot provide any sign information
for this new solution.

In this case the energy (Euler) functional of problem (Sλ) is ϕλ : H1(�) → R

defined by

ϕλ(u) = 1

2
||Du||22 −

∫
�

F(z, u)dz − λ

∫
∂�

B(z, u)dσ for all u ∈ H1(�).

Hypotheses H( f )′′ and H(β)′ imply that ϕλ ∈ C2(H1(�)\{0}). Under these
hypotheses we can show that problem (Sλ) has six nontrivial smooth solutions for
all small λ > 0.

Theorem 21 If hypotheses H( f )′′, H(β)′ hold, then we can find λ0 > 0 such that
for every λ ∈ (0, λ0) problem (Sλ) has at least six nontrivial smooth solutions
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u0, û ∈ D+, v0, v̂ ∈ −D+
y0 ∈ C1(�) nodal and ŷ ∈ C1(�).

Proof FromTheorem 20, we know that we can find λ0 > 0 such that for all λ ∈ (0, λ0)
problem (Sλ) has five nontrivial smooth solutions

u0, û ∈ D+, v0, v̂ ∈ −D+ and y0 ∈ [v0, u0] ∩ C1(�) nodal.

From the proof of Proposition 9, we know that u0 ∈ D+ and v0 ∈ −D+ are local
minimizers of ϕλ and so we have

Ck(ϕλ, u0) = Ck(ϕλ, v0) = δk,0Z for all k ∈ N0. (113)

Let ρ = max{||u0||∞, ||v0||∞} and let ξ̂ρ > 0 be as postulated by hypothesis
H( f )(iv). We have

−y0(z) + ξ̂ρ y0(z) = f (z, y0(z)) + ξ̂ρ y0(z)

≤ f (z, u0(z)) + ξ̂ρu0(z) = −u0(z)

+ ξ̂ρu0(z) for almost all z ∈ �,

⇒ (u0 − y0)(z) ≤ ξ̂ρ(u0 − y0)(z) for almost all z ∈ �,

⇒ u0 − y0 ∈ D+ (by the strong maximum principle).

Similarly, we show that

y0 − v0 ∈ D+.

Therefore we can assert that

y0 ∈ intC1(�)[v0, u0]. (114)

Keeping the notation of the previous section (see the proof of Proposition 16), and
assumingwithout any loss of generality that u0, v0 are extremal constant sign solutions
(see Proposition 12), we have

γλ|[v0,u0] = ϕλ|[v0,u0].

Then it follows from (114) that

Ck(γλ|C1(�), y0) = Ck(ϕλ|C1(�), y0) for all k ∈ N0,

⇒ Ck(γλ, y0) = Ck(ϕλ, y0) for all k ∈ N0

(since C1(�) is dense in H1(�), see Chang [5, p. 14] and Palais [25]),

⇒ C1(ϕλ, y0) �= 0 (115)
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(since y0 is a critical point of mountain pass type of γλ).
Since ϕλ ∈ C2(H1(�)\{0}), it follows from (115) that

Ck(ϕλ, y0) = δk,1Z for all k ∈ N0 (116)

(see Motreanu et al. [23], Corollary 6.102, p. 177).
Similarly, from the proof of Proposition 9 and keeping the notion introduced there,

û ∈ D+ is a critical point of mountain pass type of ϕ̂+
λ ,

v̂ ∈ −D+ is a critical point of mountain pass type of ϕ̂−
λ .

Since ϕ̂+
λ |C+ = ϕλ|C+ and ϕ̂−

λ |−C+ = ϕλ|−C+ , as above we have

Ck(ϕλ, û) = Ck(ϕλ, v̂) = δk,1Z for all k ∈ N0. (117)

From Proposition 15, we know that

Ck(ϕλ, 0) = 0 for all k ∈ N0. (118)

Finally, hypothesis H( f )′′(i i) implies that

Ck(ϕλ,∞) = 0 for all k ∈ N0 (119)

(see Papageorgiou and Rădulescu [29, Proposition 13]). Suppose that

Kϕλ = {0, u0, û, v0, v̂, y0}.

Then using (113), (116), (117), (118), (119) and the Morse relation (see Eq. (4)) with
t = −1, we obtain

2(−1)0 + 2(−1)1 + (−1)1 = 0,

⇒ (−1)1 = 0, a contradiction

So, there exists ŷ ∈ Kϕλ, ŷ /∈ {0, u0, û, v0, v̂, y0}. Then ŷ is the sixth nontrivial
solution of (Sλ) and ŷ ∈ C1(�) (by regularity theory). ��
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