Thus

$$
\begin{aligned}
\sum_{j=0}^{p q-1}\left(\frac{j}{p}\right)\left(\frac{j}{q}\right) j & =\sum_{j=0}^{p q-1}\left(\frac{p q-j}{p}\right)\left(\frac{p q-j}{q}\right)(p q-j) \\
& =\sum_{j=0}^{p q-1}\left(\frac{-j}{p}\right)\left(\frac{-j}{q}\right)(p q-j)=\sum_{j=0}^{p q-1}\left(\frac{j}{p}\right)\left(\frac{j}{q}\right)(p q-j),
\end{aligned}
$$

so

$$
2 \sum_{j=0}^{p q-1}\left(\frac{j}{p}\right)\left(\frac{j}{q}\right) j=p q \sum_{j=0}^{p q-1}\left(\frac{j}{p}\right)\left(\frac{j}{q}\right) .
$$

Now

$$
\begin{aligned}
\sum_{j=0}^{p q-1}\left(\frac{j}{p}\right)\left(\frac{j}{q}\right) & =\sum_{a=0}^{q-1} \sum_{r=0}^{p-1}\left(\frac{a p+r}{p}\right)\left(\frac{a p+r}{q}\right)=\sum_{r=0}^{p-1}\left(\frac{r}{p}\right) \sum_{a=0}^{q-1}\left(\frac{a p+r}{q}\right) \\
& =\sum_{r=0}^{p-1}\left(\frac{r}{p}\right) \sum_{k=0}^{q-1}\left(\frac{k}{q}\right)=0,
\end{aligned}
$$

since for each r, the set $\{a p+r: 0 \leq a \leq q-1\}$ is a complete system of residues modulo q.

Also solved by O. P. Lossers (Netherlands), R. E. Prather, Barclays Capital Problems Solving Group (U.K.), and the proposer.

A Prime Multiple of the Identity Matrix

11532 [2010, 834]. Proposed by Cezar Lupu (student), University of Bucharest, Bucharest, Romania, and Vicentiu Rădulescu, Institute of Mathematics "Simon Stoilow" of the Romanian Academy, Bucharest, Romania. Find all prime numbers p such that there exists a 2×2 matrix A with integer entries, other than the identity matrix I, for which $A^{p}+A^{p-1}+\cdots+A=p I$.
Solution by Stephen Pierce, San Diego State University, San Diego, CA. The only primes that qualify are 2 and 3 . Let $f(x)=-p x^{0}+\sum_{i=1}^{p} x^{i}$.

For $p=2$, let $A=\left(\begin{array}{rr}1 & 0 \\ 0 & -2\end{array}\right)$. For $p=3$, note that $f(x)=(x-1)\left(x^{2}+2 x+3\right)$. Let A be the "companion matrix" of $x^{2}+2 x+3$, that is, $A=\left(\begin{array}{ll}0 & -3 \\ 1-2\end{array}\right)$. We obtain $A^{2}+$ $2 A+3 I=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

For $p \geq 5$, we make some elementary observations about f.
(a) From the triangle inequality, $f(x)=0$ for x in the closed unit disk only when $x=1$.
(b) The root 1 is a simple root (by differentiation).
(c) If $f(A)=0$, then the minimal polynomial of A divides f.

Given a matrix A with $f(A)=0$, let λ and μ be the eigenvalues of A. If A is a multiple of the identity, then λ is an integer dividing p, and $f(\lambda)$ has the same sign as λ. The only such solution is $A=I$.

If A is not a multiple of the identity, then $\lambda \mu$ is an integer dividing p, by (c). Since p is prime, $|\lambda \mu| \in\{1, p\}$. If $|\lambda \mu|=1$, then $\lambda=\mu=1$ from (a), but this contradicts (b). If $|\lambda \mu|=p$, then then the product of the other roots of f is ± 1. Now the rest of the roots must all be 1 , which contradicts (b) when $p>3$.

