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PROBLEMS

11404. Proposed by Raimond Struble, North Carolina State at Raleigh, Raleigh, NC.
Any three non-concurrent cevians of a triangle create a subtriangle. Identify the sets
of non-concurrent cevians which create a subtriangle whose incenter coincides with
the incenter of the primary triangle. (A cevian of a triangle is a line segment joining a
vertex to an interior point of the opposite edge.)

11405. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania. Let P be an interior
point of a tetrahedron ABC D. When X is a vertex, let X ′ be the intersection of the
opposite face with the line through X and P . Let X P denote the length of the line
segment from X to P .
(a) Show that P A · P B · PC · P D ≥ 81P A′ · P B ′ · PC ′ · P D′, with equality if and
only if P is the centroid of ABC D.
(b) When X is a vertex, let X ′′ be the foot of the perpendicular from P to the plane of
the face opposite X . Show that P A · P B · PC · P D = 81P A′′ · P B ′′ · PC ′′ · P D′′ if
and only if the tetrahedron is regular and P is its centroid.

11406. Proposed by A. A. Dzhumadil’daeva, Almaty, Republics Physics and Mathe-
matics School, Almaty, Kazakhstan. Let n!! denote the product of all positive integers
not greater than n and congruent to n mod 2, and let 0!! = (−1)!! = 1. Thus, 7!! = 105
and 8!! = 384. For positive integer n, find

n∑
i=0

(
n

i

)
(2i − 1)!! (2(n − i) − 1)!!

in closed form.

11407. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni-
versity of New York, New York, NY. Let p be prime greater than 3. Does there exists
a ring with more than one element (not necessarily having a multiplicative identity)
such that for all x in the ring,

∑p
i=1 x2i−1 = 0?
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11408. Proposed by Marius Cavachi, “Ovidius” University of Constanţa, Constanţa,
Romania. Let k be a fixed integer greater than 1. Prove that there exists an integer n
greater than 1, and distinct integers a1, a2, . . . , an , all greater than 1, such that both∑n

j=1 a j and
∑n

j=1 φ(a j ) are kth powers of a positive integer. Here φ denotes Euler’s
totient function.

11409. Proposed by Paolo Perfetti, Dept. Math, University “Tor Vergata”, Rome, Italy.
For positive real α and β, let

S(α, β, N ) =
N∑

n=2

n log(n)(−1)n
n∏

k=2

α + k log k

β + (k + 1) log(k + 1)
.

Show that if β > α, then limN→∞ S(α, β, N ) exists.

11410. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology, Damascus, Syria. For 0 < φ < π/2, find

lim
x→0

x−2

(
1

2
log cos φ +

∞∑
n=1

(−1)n−1

n

sin2(nx)

(nx)2
sin2(nφ)

)
.

SOLUTIONS

A Solid with the Rupert Property

11291 [2007, 451]. Proposed by Richard Jerrard and John Wetzel, University of Illi-
nois at Urbana-Champaign, Urbana, IL.
The base of a solid P symmetric in the xz-plane is the
unit disk x2 + y2 ≤ 1 in the xy-plane. The portion of P
in the half-space y ≥ 0 is bounded by the surface swept
by a segment P Q as P moves uniformly from (1, 0, 2) to
(−1, 0, 2) while Q moves uniformly around the unit semi-
circle from (1, 0, 0) to (−1, 0, 0). The solid is completed
by reflecting this half through the xz-plane (see sketch).

x
y

z

The projections of P are the unit disk in the xy-plane, a square region of side two in
the xz-plane, and an isosceles triangular region in the yz-plane with base and altitude
two. Show that P has the Rupert property, that is, it is possible to cut a tunnel through
P through which a second copy of P can be passed.

Solution by Mark D. Meyerson, U.S. Naval Academy, Annapolis, MD. The circular
base of P is inscribed in the square of side 2 with vertices at ±√

2 on the x and y
axes. Let S denote this square. The four points of tangency are (±√

2/2, ±√
2/2). If

we rotate the base disk about the x-axis by less than 90◦ and orthogonally project the
result to the xy-plane, we get a ellipsoidal region that lies strictly inside S. Such a
rotation applied to the top edge of P will move its projection away from the x-axis;
if the rotation is small this projection will continue to lie strictly inside S. And so, for
such a small rotation, since S is convex, all segments connecting the top edge of P to
the boundary of the base of P will project into the interior of S. Since these segments,
together with the base, form the boundary of P , the orthogonal projection to the xy-
plane of this rotation of P lies strictly inside S. Since S is congruent to the xz-plane
slice of P , we can drill a slightly smaller square tunnel in the y-axis direction through
which P can pass.
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As an example, after a rotation through 11.537◦ about the x-axis, all points of P
will project to points of the xy-plane more than 0.01 units from S. So a square tunnel
of side length 1.98 (leaving a border of 0.01) will allow P to pass (with a clearance of
about 0.00005).

Also solved by R. Bagby, D. Chakerian, O. P. Lossers (Netherlands), J. Schaer (Canada), V. Schindler (Ger-
many), GCHQ Problem Solving Group (U. K.), and the proposer.

An Infinite Product

11299 [2007, 547]. Proposed by Pablo Fernàndez Refolio, UAM, Spain. Show that

∞∏
n=2

(
1

e

(
n2

n2 − 1

)n2−1
)

= e
√

e

2π
.

Solution by Timothy Achenbach, Hillsborough Community College, Plant City, FL. Let

Pk =
k∏

n=2

(
1

e

(
n2

(n − 1)(n + 1)

)n2−1
)

be the partial product. For 2 ≤ j ≤ k − 1, the factor j appears in the numerator with
exponent 2( j2 − 1) and in the denominator with exponents j ( j + 2) and j ( j − 2).
After cancelling, only a factor of j2 will remain in the denominator. The factor k
occurs in the numerator with exponent 2(k2 − 1) and in the denominator with exponent
k(k − 2), hence after cancelling k occurs with exponent k2 + 2k − 2. The factor k + 1
occurs only in the denominator with exponent k2 − 1. Hence

Pk = kk2+2k

ek−1(k + 1)k2−1(k!)2
.

The desired infinite product is thus

lim
k→∞

Pk = e2

2π
· lim

k→∞

(
ek−1kk2−1

(k + 1)k2−1

)
· lim

k→∞

(
kk

√
2πk

ekk!

)2

.

The second limit is 1 by Stirling’s formula. For the first limit, take logarithms and use
the Taylor series for log(1 + z) to get

k − 1 − (k2 − 1) log

(
1 + 1

k

)
= k − 1 − (k2 − 1)

(
1

k
− 1

2k2
+ O(k−3)

)
,

which simplifies to −1/2 + O(1/k). Hence the first limit is e−1/2 and the infinite prod-
uct is e

√
e/(2π).

Also solved by T. Amdeberhan & V. Moll, S. Amghibech (Canada), R. Bagby, D. Beckwith, B. Brandie,
B. S. Burdick, R. Chapman (U. K.), K. Dale (Norway), P. P. Dályay (Hungary), M. Goldenberg & M. Kaplan,
J. Grivaux (France), E. A. Herman, C. Hill, G. Keselman, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers
(Netherlands), K. McInturff, M. Omarjee (France), A. Plaza (Spain), G. T. Prajitura, M. A. Prasad (India),
O. G. Ruehr, H.-J. Seiffert (Germany), N. C. Singer, A. Stadler (Switzerland), R. Tauraso (Italy), M. Tetiva
(Romania), M. Vowe (Switzerland), F. Wang (China), BSI Problems Group (Germany), GCHQ Problem Solv-
ing Group (U. K.), Microsoft Research Problems Group, and the proposer.

A Bernstein Polynomial Integral

11300 [2007, 547]. Proposed by Ulrich Abel, University of Applied Sciences Giessen-
Friedberg, Friedberg, Germany. For integers k and n with 0 ≤ k ≤ n, let pn,k(t) =
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(n
k

)
t k(1 − t)n−k . Let Kn(x, y) = ∑n

k=0(y − k/n)pn,k(x)pn,k(y). Prove that for 0 ≤
u ≤ 1 and 0 ≤ y ≤ 1,

∫ u
x=0 Kn(x, y) dx ≥ 0.

Solution by the BSI Problems Group, Bonn, Germany. We use generating functions.
Write [sk]P(s) for “the coefficient of sk in the polynomial P(s).” Letting fn(s, x) =
(x + s(1 − x))n , we have pn,k(x) = [sk](1 − x + sx)n = [sn−k](x + s(1 − x))n =
[sn−k] fn(s, x). Thus

n∑
k=0

pn,k(x)pn,k(y) = [sn](1 − (1 − s)x)n fn(s, y).

Compute (
y − k

n

)
pn,k(y) = −y(1 − y)

n
p′

n,k(y).

Thus

Kn(x, y) =
n∑

k=0

(
y − k

n

)
pn,k(x)pn,k(y)

=
(−y(1 − y)

n

∂

∂y

)
[sn]((1 − (1 − s)x)n fn(s, y)

)
= −y(1 − y)[sn](1 − s)(1 − (1 − s)x)n fn−1(s, y)

= y(1 − y)

n + 1
[sn] ∂

∂x
(1 − (1 − s)x)n+1 fn−1(s, y)

and∫ u

0
Kn(x, y) dx = y(1 − y)

n + 1
[sn]((1 − (1 − s)u)n+1 − 1

)
fn−1(s, y)

= y(1 − y)

n + 1
[sn]

(
n+1∑
j=1

(
n + 1

j

)
s j u j (1 − u)n+1− j

)
fn−1(s, y).

For 0 ≤ u ≤ 1 and 0 ≤ y ≤ 1, all coefficients of the two polynomials in s are nonneg-
ative, so all coefficients of their product are also nonnegative.

Also solved by R. Chapman (U. K.), P. P. Dályay (Hungary), A. Stadler (Switzerland), GCHQ Problem Solving
Group (U. K.), and Microsoft Research Problems Group.

A Quartic Inequality

11301 [2007, 547]. Proposed by Finbarr Holland, University College Cork, Ireland.
Find the least real number M such that, for all complex a, b, and c,∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣∣ ≤ M(|a|2 + |b|2 + |c|2)2.

Solution by Byoung Tae Bae, Institute of Science Education, Yonsei University, Seoul,
Korea. First note that

ab(a2 − b2) + bc(b2 − c2) + ac(c2 − a2) = (b − c)(a − c)(a − b)(a + b + c).

It is required to find the smallest real number M such that

I = |(a − b)(b − c)(c − a)(a + b + c)|
(|a|2 + |b|2 + |c|2)2

≤ M.
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Let a = a1 + ia2, b = b1 + ib2, c = c1 + ic2, where a j , b j , and c j are real numbers
for j ∈ {1, 2}. Now

I = K

(a2
1 + a2

2 + b2
1 + b2

2 + c2
1 + c2

2)
2
,

where K is given by

K =
√

(a1 − b1)2 + (a2 − b2)2
√

(b1 − c1)2 + (b2 − c2)2
√

(c1 − a1)2 + (c2 − a2)2

·
√

(a1 + b1 + c1)2 + (a2 + b2 + c2)2.

Now the AM-GM inequality states that for nonnegative numbers x1, x2, x3, and x4,

4
√

x1x2x3x4 ≤ 1

4
(x1 + x2 + x3 + x4),

with equality if and only if x1 = x2 = x3 = x4. Applying this to the case where x1 =
|a − b|2, x2 = |b − c|2, x3 = |c − a|2, and x4 = |a + b + c|2 gives

K ≤ 1

16

[
(a1 − b1)

2 + (a2 − b2)
2 + (b1 − c1)

2 + (b2 − c2)
2

+ (c1 − a1)
2 + (c2 − a2)

2 + (a1 + b1 + c1)
2 + (a2 + b2 + c2)

2
]2

,

with equality if and only if (a1 − b1)
2 + (a2 − b2)

2 = (b1 − c1)
2 + (b2 − c2)

2 =
(c1 − a1)

2 + (c2 − a2)
2 = (a1 + b1 + c1)

2 + (a2 + b2 + c2)
2. However, since

(ai − bi )
2 + (bi − ci )

2 + (ci − ai )
2 + (ai + bi + ci )

2 = 3(a2
i + b2

i + c2
i ),

holds for i = 1, 2, it follows that

K ≤ 9

16
(a2

1 + b2
1 + c2

1 + a2
2 + b2

2 + c2
2)

2 = 9

16
(|a|2 + |b|2 + |c|2)2.

Therefore, I ≤ 9/16. To conclude that M = 9/16, it suffices that there be complex
a, b, and c for which I = 9/16. Breaking it down by real and imaginary parts, we
take (a1, a2) = (−√

3 + √
2/3, 1 + √

2/3), (b1, b2) = (
√

3 + √
2/3, 1 + √

2/3), and
(c1, c2) = (

√
2/3, −2 + √

2/3).

Also solved by R. Bagby, M. Bataille (France), D. Beckwith, D. R. Bridges, R. Chapman (U. K.), P. P. Dályay
(Hungary), P. De (India), O. Kouba (Syria), O. P. Lossers (Netherlands), J. H. Nieto (Venezuela), T. L. Rado-
lescu (Romania), H.-J. Seiffert (Germany), N. C. Singer, A. Stadler (Switzerland), F. Wang (China), H. Wid-
mer (Switzerland), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, Northeastern
University Math Problem Solving Group, and the proposer.

A Series with Harmonic Numbers

11302 [2007, 547]. Proposed by Horst Alzer, Waldbröl, Germany. Find
∞∑

k=2

(2k + 1)H 2
k

(k − 1)k(k + 1)(k + 2)
,

where Hk is the kth harmonic number, defined to be
∑k

j=1 1/j .

Solution by Michael Vowe, Fachschule Nordwestschweiz, Muttenz, Switzerland. De-
note the proposed sum by S. Since

2k + 1

(k − 1)k(k + 1)(k + 2)
= 1

(k − 1)k(k + 1)
− 1

k(k + 2)
,
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summation by parts gives

S = H 2
2

3
+

∞∑
k=2

1

k(k + 2)

(
H 2

k+1 − H 2
k

)
.

Since

H 2
k+1 − H 2

k = (Hk+1 + Hk)(Hk+1 − Hk) =
(

2Hk + 1

k + 1

)
1

k + 1
,

we obtain

S = 3

4
+

∞∑
k=2

2Hk

k(k + 1)(k + 2)
+

∞∑
k=2

1

k(k + 1)2(k + 2)

= 3

4
+

∞∑
k=2

(
1

k(k + 1)
− 1

(k + 1)(k + 2)

)
Hk +

∞∑
k=2

1

k(k + 1)2(k + 2)

= 3

4
+ H2

6
+

∞∑
k=2

1

(k + 1)(k + 2)
(Hk+1 − Hk) +

∞∑
k=1

1

k(k + 1)2(k + 2)

= 1 +
∞∑

k=2

(
1

(k + 1)2(k + 2)
+ 1

k(k + 1)2(k + 2)

)

= 1 +
∞∑

k=2

(
1

2k(k + 1)
− 1

2(k + 1)(k + 2)

)
= 1 + 1

12
= 13

12
.

Also solved by T. Amdeberhan & T. V. Angelis, B. T. Bae (Korea), R. Bagby, M. Bataille (France), D. Beck-
with, P. Bracken, M. A. Carlton, R. Chapman (U. K.), K. Dale (Norway), P. P. Dályay (Hungary), M. N.
Deshpande, C. R. Diminnie, M. J. Englefield (Australia), W. Fosheng (China), M. Goldenberg and M. Kap-
lan, J. Grivaux (France), E. A. Herman, G. Keselman, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers
(Netherlands), M. Omarjee (France), P. Perfetti (Italy), G. T. Prajitura, M. A. Prasad (India), R. Pratt, O. G.
Ruehr, H.-J. Seiffert (Germany), N. C. Singer, A. Stadler (Switzerland), R. Tauraso (Italy), M. Tetiva (Roma-
nia), GCHQ Problem Solving Group (U. K.), Microsoft Research Problems Group, NSA Problems Group, and
the proposer.

Signed Series Terms

11304 [2007, 548]. Proposed by Teodora-Liliana Rădulescu, Fraţii Buzeşti College,
Craiova, and Vicenţiu Rădulescu, University of Craiova, Romania.
(a) Find a sequence 〈zn〉 of distinct complex numbers, and a sequence 〈αn〉 of nonzero
real numbers, such that for almost all complex numbers z (excluding a set of measure
zero),

∑∞
n=1 αn|z − zn|−1 diverges to +∞ yet not all αn are positive.

(b) Let 〈βn〉 be a sequence of real numbers such that
∑∞

n=1 |βn| is finite and such that,
for almost all z in C,

∑∞
n=1 βn|z − zn|−1 converges to a nonnegative real number. Prove

that βn ≥ 0 for all n.
(c∗) Can there be a sequence 〈αn〉 of real numbers, not all positive, and a sequence 〈zn〉
of distinct complex numbers, such that for almost all complex z,

∑∞
n=1 αn|z − zn|−1

converges to a positive real number?

Solution by the GCHQ Problem Solving Group, Cheltenham, U. K. The problem state-
ment uses metric and measure properties of C but not the algebraic ones, so the setting
can be thought of as R2 rather than C . It is then natural to extend it to Rd . Our example
for part (a) works for d ≥ 1 and our proof for part (b) works for d ≥ 2.
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(a) Let d ≥ 1. Let 〈zn〉 be any convergent sequence in Rd whose limit is, say, z0, and
let 〈αn〉 be the sequence 〈2, −1, 2, −1, · · · 〉. Let z ∈ Rd be any point except one of the
zn . There exists n0 such that for all n ≥ n0, (4/5)|z − z0| < |z − zn| < (4/3)|z − z0|.

When n ≥ n0 is even, αn|z − zn|−1 + αn+1|z − zn+1|−1 ≥ (1/4)|z − z0|−1, so∑∞
n=1 αn|z − zn|−1 diverges to +∞.
(b) Let d ≥ 2, and let S be the d − 1 dimensional surface area of the unit sphere in

Rd . If r > 0 and D = {z ∈ Rd : |z| ≤ r}, then
∫

D |z|−1 dz = Sr d−1/(d − 1), where dz
is d-dimensional Lebesgue measure. The volume of D is Srd/d, so the mean value of
|z|−1 on D is d/(r(d − 1)). It follows (on pairing off points in the symmetric difference
of D and D′) that the mean value of |z|−1 on any spherical domain D′ of radius r is at
most d/(r(d − 1)).

If βk < 0 for some k, then there exists n0 with n0 > k such that
∑∞

n=n0
|βn| <

−βk(d − 1)/(2d). There exists r > 0 such that for all z with 0 < |z − zk | < r ,

n0−1∑
n=1
n �=k

|βn|
|z − zn| <

−βk

2|z − zk | .

For N > n0, the mean value of
∑N

n=n0
|βn| |z − zn|−1 on D = {z : |z − zk | ≤ r} is at

most
∑N

n=n0
|βn|d/(r(d − 1)) ≤ −βk/(2r).

It follows that there is a subdomain D1 of D, with D1 having positive measure, on
which

∞∑
n=n0

|βn|
|z − zn| ≤ −βk

2r
≤ −βk

2|z − zk | .

Therefore, on the subdomain D1 the series
∑∞

n=1 βn|z − zn|−1 converges to a negative
number. The result follows from this contradiction.

Editorial comment. More than one solver noted that part (c) is trivial unless it is re-
quired that αn �= 0, but no solution was received for that nontrivial problem.

Parts (a) and (b) also solved by J. H. Lindsey II, A. Stadler (Switzerland), and the proposer. Part (a) also solved
by the Microsoft Research Problems Group.

An Inequality for Triangles

11306 [2007, 640]. Proposed by Alexandru Rosoiu, University of Bucharest, Bucharest,
Romania. Let a, b, and c be the lengths of the sides of a nondegenerate triangle, let
p = (a + b + c)/2, and let r and R be the inradius and circumradius of the triangle,
respectively. Show that

a

2
· 4r − R

R
≤ √

(p − b)(p − c) ≤ a

2
,

and determine the cases of equality.

Solution by Victor Pambuccian, Arizona State University, Pheonix, AZ. Write S for
the area of the triangle. The following are well known:

S2 = p(p − a)(p − b)(p − c), S = abc

4R
= r p.

Let x , y, and z denote the lengths of the tangent segments to the incircle from the
vertices opposite c, a, and b, respectively. Now a = z + x , b = x + y, c = y + z,
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p = x + y + z, and the inequalities to be proved become:

x + z

2
· 14xyz − x2(y + z) − z2(x + y) − y2(x + z)

(x + y)(y + z)(z + x)
≤ √

zx ≤ x + z

2
.

The second inequality follows from the AM–GM inequality, with equality when x = z
(that is, b = c). The first inequality may be rewritten

2(x + y)(y + z)
√

zx + x2(y + z) + z2(x + y) + y2(x + z) ≥ 14xyz. (1)

Now by the AM–GM inequality, x + y ≥ 2
√

xy and y + z ≥ 2
√

yz, so

2(x + y)(y + z)
√

zx ≥ 8xyz. (2)

Further applications of the AM–GM inequality yield

x2(y + z) + y2(z + x) + z2(x + y) ≥ 2
(
x2(yz)1/2 + y2(zx)1/2 + z2(xy)1/2

)
= 2(xyz)1/2

(
x3/2 + y3/2 + z3/2

)
≥ 6(xyz)1/2

(
x3/2 y3/2z3/2

)1/3 = 6xyz. (3)

Inequality (1) is the sum of (2) and (3), and is thus established. Equality holds in (1) if
and only if it holds in both (2) and (3). Since these were based on AM–GM inequalities
for the pairs {x, y}, {y, z}, and {z, x}, equality occurs if and only if x = y = z, i.e., if
and only if a = b = c and the triangle is equilateral.

Editorial comment. Li Zhou proved a slightly stronger result in place of the first in-
equality, namely

a

2
· 4r − R

R
≤ 2(p − b)(p − c)

a
≤ √

(p − b)(p − c).

V. V. Garcı́a rediscovered and used a lemma that strengthens the inequality R ≥ 2r
of Euler: If m and h are the lengths of the median and altitude from the same vertex,
respectively, then R/(2r) ≥ m/h. (See IX.10.22, p 216, in D. Mitrinović, J. Pečarić,
and V. Volonec’s Recent Advances in Geometric Inequalities, Kluwer Academic Pub-
lishers, Boston, 1989.)

Also solved by S. Amghibech (Canada), M. Bataille (France), D. Beckwith, E. Braune (Austria), R. Chapman
(U. K.), P. P. Dályay (Hungary), A. & A. Darbinyan (Armenia), P. De (India), J. Fabrykowski & T. Smotzer, W.
Fosheng (China), V. V. Garcı́a (Spain), C. Grosu (Romania), J. G. Heuver (Canada), R. A. Kopas, K.-W. Lau
(China), J. Minkus, D. J. Moore, J. H. Nieto (Venezuela), Á. Plaza (Spain), J. Posch, C. R. Pranesachar (India),
M. A. Prasad (India), H.-J. Seiffert (Germany), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), N. T. Tuan
(Vietnam), M. Vowe (Switzerland), J. B. Zacharias, L. Zhou, BSI Problems Group (Germany), GCHQ Prob-
lem Solving Group (U. K.), Microsoft Research Problems Group, Northwestern University Problem Solving
Group, Princeton Problem Solving Group, and the proposer.
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