Proposed to The American Mathematical Monthly ${ }^{1}$

(a) Find a sequence of distinct complex numbers $\left(z_{n}\right)_{n \geq 1}$ and a sequence of nonzero real numbers $\left(\alpha_{n}\right)_{n \geq 1}$ such that the series $\sum_{n=1}^{\infty} \alpha_{n}\left|z-z_{n}\right|^{-1}$ either converges to a positive number or diverges to $+\infty$ for almost all complex numbers z, but not all α_{n} are positive.
(b) Let $\left(z_{n}\right)_{n \geq 1}$ be a sequence of distinct complex numbers. Assume that $\sum_{n=1}^{\infty} \alpha_{n}$ is an absolutely convergent series of real numbers such that $\sum_{n=1}^{\infty} \alpha_{n}\left|z-z_{n}\right|^{-1}$ converges to a nonnegative number, for almost all $z \in \mathbb{C}$. Prove that α_{n} are nonnegative for all $n \geq 1$.

Teodora-Liliana Rădulescu, "Fraţii Buzeşti" College, Craiova, Romania
Vicenţiu Rădulescu, University of Craiova, Romania

Solution. (a) We prove that the series

$$
\begin{equation*}
-\frac{1}{|z|}+\frac{1}{\left|z+\frac{1}{2}\right|}+\frac{1}{\left|z-\frac{1}{2}\right|}+\cdots+\frac{1}{\left|z+\frac{1}{n}\right|}+\frac{1}{\left|z-\frac{1}{n}\right|}+\cdots \tag{1}
\end{equation*}
$$

diverges to $+\infty$ for all $z \in \mathbb{C} \backslash\left\{0, \pm \frac{1}{2}, \ldots, \pm \frac{1}{n}, \ldots\right\}$.
Indeed, we first observe that, for any fixed $z \in \mathbb{C} \backslash\left\{0, \pm \frac{1}{2}, \ldots, \pm \frac{1}{n}, \ldots\right\}$, the above series has the same nature as the series $-1+1+1+1+\ldots$, which diverges. Next, we observe that

$$
-\frac{1}{|z|}+\frac{1}{\left|z+\frac{1}{n}\right|} \geq 0 \quad \text { if and only if } \quad \operatorname{Re} z \leq-\frac{1}{2 n}
$$

and

$$
-\frac{1}{|z|}+\frac{1}{\left|z-\frac{1}{n}\right|} \geq 0 \quad \text { if and only if } \quad \operatorname{Re} z \geq \frac{1}{2 n} .
$$

The above relations show that for any $z \in \mathbb{C} \backslash\left\{0, \pm \frac{1}{2}, \ldots, \pm \frac{1}{n}, \ldots\right\}$ with $\operatorname{Re} z \neq 0$ there exists $N \in \mathbb{N}$ such that $-\frac{1}{|z|}+\sum_{k=1}^{N}\left(\frac{1}{\left|z+\frac{1}{k}\right|}+\frac{1}{\left|z-\frac{1}{k}\right|}\right)>0$. It remains to prove that this is also true if $z=i y, y \in \mathbb{R} \backslash\{0\}$. For this purpose we observe that

$$
\begin{aligned}
& \frac{1}{\left|z+\frac{1}{2}\right|}+\frac{1}{\left|z-\frac{1}{2}\right|}+\cdots+\frac{1}{\left|z+\frac{1}{n}\right|}+\frac{1}{\left|z-\frac{1}{n}\right|}= \\
& \frac{2^{2}}{\sqrt{y^{2}+\frac{1}{4}}}+\cdots+\frac{2}{\sqrt{y^{2}+\frac{1}{n^{2}}}} \geq \frac{2 n-2}{\sqrt{y^{2}+\frac{1}{4}}} \geq \frac{1}{|y|}=\frac{1}{|z|},
\end{aligned}
$$

provided $2|y| \geq\left(4 n^{2}-8 n+3\right)^{-1}$. In conclusion, the series (1) diverges to $+\infty$ for all $z \in \mathbb{C} \backslash\left\{0, \pm \frac{1}{2}, \ldots, \pm \frac{1}{n}, \ldots\right\}$.

[^0]Another example of series with the above properties is

$$
-\frac{1}{|z|}+\sum_{n=2}^{\infty} \frac{1}{n}\left(\frac{1}{|z+\ln n|}+\frac{1}{|z-\ln n|}\right), \quad z \in \mathbb{C} \backslash\{0, \pm \ln 2 ; \pm \ln 3, \ldots\}
$$

(b) It is sufficient to focus on an arbitrary term of the sequence, say α_{1}, and to show that $\alpha_{1} \geq 0$. We can assume, without loss of generality, that $z_{1}=0$. Fix arbitrarily $\varepsilon \in(0,1)$. Since $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|<\infty$, there exists a positive integer N such that $\sum_{i=N+1}^{\infty}\left|\alpha_{i}\right|<\varepsilon$. Next, we choose $r>0$ small enough so that $\left|a_{i}\right|>r / \varepsilon$, for all $i \in\{2, \ldots, N\}$. Set

$$
f(z)=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{\left|z-z_{n}\right|} .
$$

It follows that

$$
\begin{align*}
0 & \leq \int_{B_{r}(0)} f(z) d z=\alpha_{1} \int_{B_{r}(0)} \frac{d z}{|z|}+\sum_{i=2}^{N} \alpha_{i} \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|}+\sum_{i=N+1}^{\infty} \alpha_{i} \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \\
& \leq \alpha_{1} \int_{B_{r}(0)} \frac{d z}{|z|}+\sum_{i=2}^{N}\left|\alpha_{i}\right| \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|}+\sum_{i=N+1}^{\infty}\left|\alpha_{i}\right| \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \\
& =2 \pi r \alpha_{1}+\sum_{i=2}^{N}\left|\alpha_{i}\right| \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|}+\sum_{i=N+1}^{\infty}\left|\alpha_{i}\right| \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \tag{2}\\
& \leq 2 \pi r \alpha_{1}+\sum_{i=2}^{N}\left|\alpha_{i}\right| \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|}+\varepsilon \sup _{i \geq N+1} \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} .
\end{align*}
$$

For every $i \in\{2, \ldots N\}$ we have $\left|z-z_{i}\right| \geq\left|z_{i}\right|-|z| \geq \frac{r}{\varepsilon}-r=r(1-\varepsilon) / \varepsilon$, so

$$
\begin{equation*}
\int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \leq \frac{\varepsilon}{r(1-\varepsilon)} \int_{B_{r}(0)} d z=\frac{\varepsilon \pi r}{1-\varepsilon} . \tag{3}
\end{equation*}
$$

If $i \geq N+1$ we distinguish two cases: either $\left|z_{i}\right| \geq 2 r$ or $\left|z_{i}\right|<2 r$. In the first situation we deduce that $\left|z-z_{i}\right| \geq r$, for any $z \in B_{r}(0)$. Thus

$$
\int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \leq \frac{1}{r} \int_{B_{r}(0)} d z=\pi r .
$$

If $\left|z_{i}\right|<2 r$ then

$$
\int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \leq \int_{B_{4 r}\left(z_{i}\right)} \frac{d z}{\left|z-z_{i}\right|}=8 \pi r .
$$

The above two relations show that

$$
\begin{equation*}
\sup _{i \geq N+1} \int_{B_{r}(0)} \frac{d z}{\left|z-z_{i}\right|} \leq 8 \pi r . \tag{4}
\end{equation*}
$$

Using (2), (3) and (4) we obtain

$$
0 \leq 2 \pi r \alpha_{1}+\sum_{i=2}^{N}\left|\alpha_{i}\right| \cdot \frac{\varepsilon \pi r}{1-\varepsilon}+8 \varepsilon \pi r .
$$

Dividing by r and letting $\varepsilon \rightarrow 0$ we deduce that $\alpha_{1} \geq 0$.
Remark. For part (a) of this proposal, we have not been able to find an example of series $\sum_{n=1}^{\infty} \alpha_{n}\left|z-z_{n}\right|^{-1}$ which converges to a positive number for almost all complex numbers z, but not all α_{n} being positive. It might be possible that such a series does not exist and the unique situation which can occur is that, under our assumptions described in (a), the series $\sum_{n=1}^{\infty} \alpha_{n}\left|z-z_{n}\right|^{-1}$ always diverges to $+\infty$. We let at your choice to decide if this assertion could be included as an open problem in this proposal.

[^0]: ${ }^{1}$ E-mail addresses: vicentiu.radulescu@math.cnrs.fr teodoraradulescu@yahoo.com http://www.inf.ucv.ro/~radulescu

