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(a) Find a sequence of distinct complex numbers (zn)n≥1 and a sequence of nonzero
real numbers (αn)n≥1 such that the series

∑∞
n=1 αn |z − zn|−1 either converges to a

positive number or diverges to +∞ for almost all complex numbers z, but not all αn

are positive.

(b) Let (zn)n≥1 be a sequence of distinct complex numbers. Assume that
∑∞

n=1 αn is an
absolutely convergent series of real numbers such that

∑∞
n=1 αn |z − zn|−1 converges

to a nonnegative number, for almost all z ∈ C. Prove that αn are nonnegative for all
n ≥ 1.
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Solution. (a) We prove that the series
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diverges to +∞ for all z ∈ C \ {
0,±1

2 , . . . ,± 1
n , . . .

}
.

Indeed, we first observe that, for any fixed z ∈ C\{
0,±1

2 , . . . ,± 1
n , . . .

}
, the above series

has the same nature as the series −1 + 1 + 1 + 1 + . . ., which diverges. Next, we observe
that
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The above relations show that for any z ∈ C \ {
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n , . . .

}
with Re z 6= 0 there

exists N ∈ N such that − 1
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> 0. It remains to prove that this is

also true if z = iy, y ∈ R \ {0}. For this purpose we observe that
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provided 2|y| ≥ (4n2 − 8n + 3)−1. In conclusion, the series (1) diverges to +∞ for all
z ∈ C \ {

0,±1
2 , . . . ,± 1

n , . . .
}
.
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Another example of series with the above properties is
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|z + ln n| +
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|z − ln n|
)

, z ∈ C \ {0,± ln 2;± ln 3, . . .} .

(b) It is sufficient to focus on an arbitrary term of the sequence, say α1, and to show that
α1 ≥ 0. We can assume, without loss of generality, that z1 = 0. Fix arbitrarily ε ∈ (0, 1).
Since

∑∞
n=1 |αn| < ∞, there exists a positive integer N such that

∑∞
i=N+1 |αi| < ε. Next,

we choose r > 0 small enough so that |ai| > r/ε, for all i ∈ {2, . . . , N}. Set

f(z) =
∞∑

n=1

αn

|z − zn| .

It follows that
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For every i ∈ {2, . . . N} we have |z − zi| ≥ |zi| − |z| ≥ r
ε − r = r(1− ε)/ε, so
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If i ≥ N + 1 we distinguish two cases: either |zi| ≥ 2r or |zi| < 2r. In the first situation we
deduce that |z − zi| ≥ r, for any z ∈ Br(0). Thus
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If |zi| < 2r then ∫
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The above two relations show that
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Using (2), (3) and (4) we obtain

0 ≤ 2πrα1 +
N∑

i=2

|αi| · επr

1− ε
+ 8επr .
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Dividing by r and letting ε → 0 we deduce that α1 ≥ 0.

Remark. For part (a) of this proposal, we have not been able to find an example
of series

∑∞
n=1 αn |z − zn|−1 which converges to a positive number for almost all complex

numbers z, but not all αn being positive. It might be possible that such a series does not
exist and the unique situation which can occur is that, under our assumptions described in
(a), the series

∑∞
n=1 αn |z − zn|−1 always diverges to +∞. We let at your choice to decide

if this assertion could be included as an open problem in this proposal.
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