Research Announcement

Bifurcation analysis for nonhomogeneous Robin problems with competing nonlinearities

Nikolaos S. Papageorgiou ${ }^{\text {a }}$, Vicenţiu D. Rădulescu ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
${ }^{\text {b }}$ Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
${ }^{c}$ Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

A R T I C L E I N F O

Article history:

Received 26 February 2015
Accepted 17 March 2015
Available online 1 April 2015

Keywords:

Competing nonlinearities
Nonhomogeneous differential operator
Bifurcation analysis
Robin problem

Abstract

In this paper, we report on some recent results obtained in our joint paper Papageorgiou and Rădulescu (2015). We consider a Robin problem driven by a nonhomogeneous differential operator and with a reaction that exhibits competing effects of concave (that is, sublinear) and convex (that is, superlinear) nonlinearities. Without employing the Ambrosetti-Rabinowitz condition, we establish a bifurcation property of the positive solutions near the origin. The approach relies on variational methods and elliptic estimates.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with C^{2}-boundary $\partial \Omega$. Let $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a continuous strictly monotone map. Let $\partial u / \partial n_{a}$ denote the conormal derivative defined by $\partial u / \partial n_{a}:=(a(D u), n)_{\mathbb{R}^{N}}$, where $n(z)$ is the outward unit normal at $z \in \partial \Omega$.

In this paper we study the following nonlinear Robin problem:

$$
\begin{cases}-\operatorname{div} a(D u(z))=f(z, u(z), \lambda) & \text { in } \Omega, \\ \frac{\partial u}{\partial n_{a}}(z)+\beta(z) u(z)^{p-1}=0 & \text { on } \partial \Omega, \\ u>0, \quad 1<p<\infty\end{cases}
$$

The reaction $f(z, x, \lambda)$ is a parametric function with $\lambda>0$ being the parameter and $(z, x) \rightarrow f(z, x, \lambda)$ is a Carathéodory function. We assume that $f(z, \cdot, \lambda)$ exhibits competing nonlinearities, namely near the

[^0]origin it has a "concave" term (that is, a strictly ($p-1$)-sublinear term), while near $+\infty$ the reaction is a "convex" term (that is, $x \longmapsto f(z, x, \lambda)$ is ($p-1$)-superlinear). A special case of our reaction is the function $f(z, x, \lambda)=f(x, \lambda)=\lambda x^{q-1}+x^{r-1}$, for all $x \geqslant 0$ with
\[

1<q<p<r<p^{*}:=\left\{$$
\begin{array}{cl}
\frac{N p}{N-p} & \text { if } p<N \\
+\infty & \text { if } N \leqslant p
\end{array}
$$\right.
\]

The first work concerning positive solutions for problems with concave and convex nonlinearities, was that of Ambrosetti, Brezis and Cerami [1]. They studied semilinear equations driven by the Dirichlet Laplacian and with a reaction of the form (1). Their work was extended to equations driven by the Dirichlet p-Laplacian by Garcia Azorero, Manfredi and Peral Alonso [2] and by Guo and Zhang [3]. We also refer to the contributions of de Figueiredo, Gossez and Ubilla [4,5] to concave-convex type problems and general nonlinearities for the Laplacian, resp. p-Laplacian case. Extensions to equations involving more general reactions were obtained by Gasinski and Papageorgiou [6], Hu and Papageorgiou [7] and Rădulescu and Repovš [8].

Let $\eta \in C^{1}(0, \infty)$ and assume that

$$
\begin{equation*}
0<\hat{c} \leqslant \frac{t \eta^{\prime}(t)}{\eta(t)} \leqslant c_{0} \quad \text { and } \quad c_{1} t^{p-1} \leqslant \eta(t) \leqslant c_{2}\left(1+t^{p-1}\right) \quad \text { for all } t>0 \text { with } c_{1}, c_{2}>0,1<p<\infty . \tag{1}
\end{equation*}
$$

The hypotheses on the map $a(\cdot)$ are the following:
$H(a): a(y)=a_{0}(|y|) y$ for all $y \in \mathbb{R}^{N}$, with $a_{0}(t)>0$ for all $t>0$ and
(i) $a_{0} \in C^{1}(0, \infty), t \longmapsto a_{0}(t) t$ is strictly increasing on $(0, \infty), a_{0}(t) t \rightarrow 0$ as $t \rightarrow 0^{+}$and

$$
\lim _{t \rightarrow 0^{+}} \frac{a_{0}^{\prime}(t) t}{a_{0}(t)}>-1
$$

(ii) $|\nabla a(y)| \leqslant c_{3} \frac{\eta(|y|)}{|y|}$ for some $c_{3}>0$, all $y \in \mathbb{R}^{N} \backslash\{0\}$;
(iii) $\frac{\eta(|y|)}{|y|}|\xi|^{2} \leqslant(\nabla a(y) \xi, \xi)_{\mathbb{R}^{N}}$ for all $y \in \mathbb{R}^{N} \backslash\{0\}$, all $\xi \in \mathbb{R}^{N}$;
(iv) if $G_{0}(t)=\int_{0}^{t} a_{0}(s) s d s$ for all $t \geqslant 0$, then $p G_{0}(t)-a_{0}(t) t^{2} \geqslant-\hat{\xi}$
for all $t \geqslant 0$, some $\hat{\xi}>0$;
(v) there exists $\tau \in(1, p)$ such that $t \longmapsto G_{0}\left(t^{1 / \tau}\right)$ is convex on $(0, \infty)$,
$\lim _{t \rightarrow 0^{+}} \frac{G_{0}(t)}{t^{\tau}}=0$ and

$$
a_{0}(t) t^{2}-\tau G_{0}(t) \geqslant \tilde{c} t^{p} \quad \text { for some } \tilde{c}>0, \text { all } t>0
$$

According to the above conditions, the potential function $G_{0}(\cdot)$ is strictly convex and strictly increasing. We set $G(y)=G_{0}(|y|)$ for all $y \in \mathbb{R}^{N}$. Then the function $y \longmapsto G(y)$ is convex and differentiable on $\mathbb{R}^{N} \backslash\{0\}$. We have

$$
\nabla G(y)=G_{0}^{\prime}(|y|) \frac{y}{|y|}=a_{0}(|y|) y=a(y) \quad \text { for all } y \in \mathbb{R}^{N} \backslash\{0\}, \nabla G(0)=0
$$

So, $G(\cdot)$ is the primitive of the map $a(\cdot)$. Because $G(0)=0$ and $y \longmapsto G(y)$ is convex, from the properties of convex functions, we have $G(y) \leqslant(a(y), y)_{\mathbb{R}^{N}}$ for all $y \in \mathbb{R}^{N}$.

The following properties follow by straightforward arguments.
Lemma 1. Assume that hypotheses $H(a)$ (i)-(iii) hold. Then
(a) the mapping $y \longmapsto a(y)$ is continuous and strictly monotone, hence maximal monotone too;
(b) $|a(y)| \leqslant c_{4}\left(1+|y|^{p-1}\right)$ for some $c_{4}>0$, all $y \in \mathbb{R}^{N}$;
(c) $(a(y), y)_{\mathbb{R}^{N}} \geqslant \frac{c_{1}}{p-1}|y|^{p}$ for all $y \in \mathbb{R}^{N}$;
(d) for all $y \in \mathbb{R}^{N}$ we have $\frac{c_{1}}{p(p-1)}|y|^{p} \leqslant G(y) \leqslant c_{5}\left(1+|y|^{p}\right)$ with $c_{5}>0$.

The hypotheses on the boundary weight map $\beta(\cdot)$ are the following:
$H(\beta): \beta \in C^{1, \alpha}(\partial \Omega)$ with $\alpha \in(0,1)$ and $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.
Throughout this paper we assume that the reaction f satisfies the following hypotheses.
$H(f): f: \Omega \times \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}$ is a function such that for a.a. $z \in \Omega$ and all $\lambda>0 f(z, 0, \lambda)=0$ and
(i) for all $(x, \lambda) \in \mathbb{R} \times(0, \infty), z \longmapsto f(z, x, \lambda)$ is measurable, while for a.a. $z \in \Omega,(x, \lambda) \longmapsto f(z, x, \lambda)$ is continuous;
(ii) $|f(z, x, \lambda)| \leqslant a_{\lambda}(z)\left(1+x^{r-1}\right)$ for a.a. $z \in \Omega$, all $x \geqslant 0$, all $\lambda>0$, with $a_{\lambda} \in L^{\infty}(\Omega), \lambda \longmapsto\left\|a_{\lambda}\right\|_{\infty}$ bounded on bounded sets in $(0, \infty)$ and $p<r<p^{*}$;
(iii) if $F(z, x, \lambda)=\int_{0}^{x} f(z, s, \lambda) d s$, then $\lim _{x \rightarrow+\infty} \frac{F(z, x, \lambda)}{x^{p}}=+\infty$ uniformly for a.a. $z \in \Omega$;
(iv) there exists $\vartheta=\vartheta(\lambda) \in\left((r-p) \max \left\{\frac{N}{p}, 1\right\}, p^{*}\right)$ such that

$$
0<\gamma_{0} \leqslant \liminf _{x \rightarrow+\infty} \frac{f(z, x, \lambda) x-p F(z, x, \lambda)}{x^{\vartheta}} \quad \text { uniformly for a.a. } z \in \Omega
$$

(v) there exist $1<\mu=\mu(\lambda)<q=q(\lambda)<\tau$ (see hypothesis $H(a)(\mathrm{v}))$ and $\gamma=\gamma(\lambda)>\mu, \delta_{0}=\delta_{0}(\lambda) \in(0,1)$ such that

$$
c_{6} x^{q} \leqslant f(z, x, \lambda) x \leqslant q F(z, x, \lambda) \leqslant \xi_{\lambda}(z) x^{\mu}+\tau x^{\gamma} \quad \text { for a.a. } z \in \Omega, \text { all } 0 \leqslant x \leqslant \delta_{0}
$$

with $c_{6}=c_{6}(\lambda)>0, c_{6}(\lambda) \rightarrow+\infty$ as $\lambda \rightarrow+\infty, \bar{c}=\bar{c}(\lambda)>0, \xi_{\lambda} \in L^{\infty}(\Omega)_{+}$with $\left\|\xi_{\lambda}\right\|_{\infty} \rightarrow 0$ as $\lambda \rightarrow 0^{+}$;
(vi) for every $\rho>0$, there exists $\xi_{\rho}=\xi_{\rho}(\lambda)>0$ such that for a.a. $z \in \Omega, x \longmapsto f(z, x, \lambda)+\xi_{\rho} x^{p-1}$ is nondecreasing on $[0, \rho]$;
(vii) for every interval $K=\left[x_{0}, \hat{x}\right]$ with $x_{0}>0$ and every $\lambda>\lambda^{\prime}>0$, there exists $d_{K}\left(x_{0}, \lambda\right)$ nondecreasing in λ with $d_{K}\left(x_{0}, \lambda\right) \rightarrow+\infty$ as $\lambda \rightarrow+\infty$ and $\hat{d}_{K}\left(x_{0}, \lambda, \lambda^{\prime}\right)$ such that

$$
\begin{aligned}
& f(z, x, \lambda) \geqslant d_{K}\left(x_{0}, \lambda\right) \quad \text { for a.a. } z \in \Omega, \text { all } x \in K \\
& f(z, x, \lambda)-f\left(z, x, \lambda^{\prime}\right) \geqslant \hat{d}_{K}\left(x_{0}, \lambda, \lambda^{\prime}\right) \quad \text { for a.a. } z \in \Omega, \text { all } x \in K
\end{aligned}
$$

The following functions satisfy hypotheses $H(f)$. For the sake of simplicity, we drop the z-dependence:

$$
\begin{aligned}
& f_{1}(x, \lambda)=\lambda x^{q-1}+x^{r-1} \quad \text { for all } x \geqslant 0, \text { with } 1<q<p<r<p^{*} \\
& f_{2}(x, \lambda)= \begin{cases}\lambda x^{q-1}-x^{\eta-1} & \text { if } x \in[0,1] \\
x^{p-1}\left(\ln x+\frac{1}{p}\right)+\left(\lambda-\frac{1}{p}\right) x^{\nu-1} & \text { if } x>1\end{cases}
\end{aligned}
$$

with $q, \nu \in(1, p)$ and $\eta>p$
$f_{3}(x, \lambda)= \begin{cases}x^{q-1} & \text { if } x \in[0, \rho(\lambda)] \\ x^{r-1}+\eta(\lambda) & \text { if } x>\rho(\lambda)\end{cases}$
with $1<q<p<r<p^{*}, \eta(\lambda)=\rho(\lambda)^{p-1}-\rho(\lambda)^{r-1}$
and $\rho(\lambda) \rightarrow 0^{+}$as $\lambda \rightarrow 0^{+}$.

Since we are interested to find positive solutions and the above hypotheses concern the positive semiaxis $\mathbb{R}_{+}=[0,+\infty)$, without any loss of generality we may assume that $f(z, x, \lambda)=0$ for a.a. $z \in \Omega$, all $x \leqslant 0$ and all $\lambda>0$. Note that hypotheses $H(f)$ (ii), (iii) imply that

$$
\lim _{x \rightarrow+\infty} \frac{f(z, x, \lambda)}{x^{p-1}}=+\infty \quad \text { uniformly for a.a. } z \in \Omega
$$

Thus $f(z, \cdot, \lambda)$ is $(p-1)$-superlinear near $+\infty$. However, we do not employ the Ambrosetti-Rabinowitz (AR) condition (unilateral version) (Cf. [9]). We say that $f(z, \cdot, \lambda$) satisfies the (unilateral) (AR)-condition, if there exist $\eta=\eta(\lambda)>p$ and $M=M(\lambda)>0$ such that

$$
\begin{align*}
& \text { (a) } 0<\eta F(z, x, \lambda) \leqslant f(z, x, \lambda) x \quad \text { for a.a. } z \in \Omega \text {, all } x \geqslant M \text {, } \\
& \text { (b) } \operatorname{essinf}_{\Omega} F(\cdot, M, \lambda)>0 . \tag{2}
\end{align*}
$$

Integrating (2) a and using (2)b, we obtain a weaker condition, namely that

$$
\begin{equation*}
c_{7} x^{\eta} \leqslant F(z, x, \lambda) \quad \text { for a.a. } z \in \Omega \text {, all } z \geqslant M \text { and some } c_{7}>0 . \tag{3}
\end{equation*}
$$

Evidently (3) implies the much weaker hypothesis $H(f)$ (iii). In (2) we may assume that $\eta>(r-p)$ $\max \left\{\frac{N}{p}, 1\right\}$. Then we have

$$
\begin{aligned}
\frac{f(z, x, \lambda) x-p F(z, x, \lambda)}{x^{\eta}} & =\frac{f(z, x, \lambda) x-\eta F(z, x, \lambda)}{x^{\eta}}+\frac{(\eta-p) F(z, x, \lambda)}{x^{\eta}} \\
& \geqslant(\eta-p) c_{7} \quad \text { for a.a. } z \in \Omega, \text { all } x \geqslant M(\text { see }(2) \mathrm{a} \text { and }(3)) .
\end{aligned}
$$

So, we see that the (AR)-condition implies hypothesis H_{1} (iv). This weaker "superlinearity" condition incorporates in our setting $(p-1)$-superlinear nonlinearities with "slower" growth near $+\infty$, which fail to satisfy the (AR)-condition (see the function $f_{2}(\cdot, \lambda)$ defined above). Finally note that hypothesis $H(f)$ (v) implies the presence of a concave nonlinearity near zero.

The main result of this paper establishes the following bifurcation property.
Theorem 2. Assume that hypotheses $H(a), H(\beta)$ and $H(f)$ hold. Then there exists $\lambda^{*}>0$ such that
(a) for all $\lambda \in\left(0, \lambda^{*}\right)$, problem $\left(P_{\lambda}\right)$ has at least two positive solutions $u_{0}, \hat{u} \in \operatorname{int} C_{+}, u_{0} \leqslant \hat{u}, u_{0} \neq \hat{u} ;$
(b) for $\lambda=\lambda^{*}$ problem $\left(P_{\lambda^{*}}\right)$ has at least one positive solution $u_{*} \in \operatorname{int} C_{+}$;
(c) for all $\lambda>\lambda^{*}$ problem $\left(P_{\lambda}\right)$ has no positive solution.

Sketch of the Proof. We introduce the following Carathéodory function

$$
\hat{f}(z, x, \lambda)=f(z, x, \lambda)+\left(x^{+}\right)^{p-1} \quad \text { for all }(z, x, \lambda) \in \Omega \times \mathbb{R} \times(0,+\infty)
$$

Let $\hat{F}(z, x, \lambda)=\int_{0}^{x} \hat{f}(z, s, \lambda) d s$ and consider the C^{1}-functional $\hat{\varphi}_{\lambda}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\hat{\varphi}_{\lambda}(u)=\int_{\Omega} G(D u) d z+\frac{1}{p}\|u\|_{p}^{p}+\frac{1}{p} \int_{\partial \Omega} \beta(z)\left(u^{+}\right)^{p} d \sigma-\int_{\Omega} \hat{F}(z, u, \lambda) d z .
$$

We split the proof into several steps.
Step 1. For all $\lambda>0$, the energy functional $\hat{\varphi}_{\lambda}$ satisfies the Cerami compactness condition.
Step 2. There is some $\lambda_{+}>0$ such that for all $\lambda \in\left(0, \lambda_{+}\right)$there exists $\rho_{\lambda}>0$ for which we have

$$
\inf \left\{\hat{\varphi}_{\lambda}(u):\|u\|=\rho_{\lambda}\right\}=\hat{m}_{\lambda}>0=\hat{\varphi}_{\lambda}(0) .
$$

Step 3. If $\lambda>0$ and $u \in \operatorname{int} C_{+}:=\left\{v \in C^{1}(\bar{\Omega}): v(z)>0\right.$ for all $\left.z \in \bar{\Omega}\right\}$, then $\hat{\varphi}_{\lambda}(t u) \rightarrow-\infty$ as $t \rightarrow \infty$. This property is a direct consequence of hypothesis $H(f)$ (iii).

Next, we consider the following sets:

$$
\begin{aligned}
& \mathcal{S}=\left\{\lambda>0 \text { : problem }\left(P_{\lambda}\right) \text { admits a positive solution }\right\}, \\
& S(\lambda)=\text { the set of positive solutions of }\left(P_{\lambda}\right)
\end{aligned}
$$

Step 4. We have $\mathcal{S} \neq \emptyset$ and for every $\lambda \in \mathcal{S}$ we have $\emptyset \neq S(\lambda) \subseteq \operatorname{int} C_{+}$.
Step 5. If $\lambda \in \mathcal{S}$, then $(0, \lambda] \subseteq \mathcal{S}$.
Step 6. Set $\lambda^{*}=\sup \mathcal{S}$. We have $\lambda^{*}<\infty$.
Step 7 . For all $\eta \in\left(0, \lambda^{*}\right)$, problem $\left(P_{\eta}\right)$ admits at least two distinct positive solutions $u_{0}, \hat{u} \in \operatorname{int} C_{+}$with $u_{0} \leqslant \hat{u}$.

Next we examine what happens in the critical case $\lambda=\lambda^{*}$. To this end, note that hypotheses $H(f)$ (ii), (v) imply that we can find $c_{8}=c_{8}(\lambda)>0$ such that

$$
\begin{equation*}
f(z, x, \lambda) \geqslant c_{6} x^{q-1}-c_{8} x^{r-1} \quad \text { for a.a. } z \in \Omega, \text { all } z \geqslant 0 . \tag{4}
\end{equation*}
$$

This unilateral growth estimate on the reaction $f(z, \cdot, \lambda)$ leads to the following auxiliary Robin problem:

$$
\begin{cases}-\operatorname{div} a(D u(z))=c_{6} u(z)^{q-1}-c_{8} u(z)^{r-1} & \text { in } \Omega \tag{5}\\ \frac{\partial u}{\partial n_{0}}(z)+\beta(z) u(z)^{p-1}=0 & \text { on } \partial \Omega \\ u>0 & \text { in } \Omega\end{cases}
$$

Step 8. Problem (5) admits a unique positive solution $\bar{u} \in \operatorname{int} C_{+}$.
Step 9. If $\lambda \in \mathcal{S}$, then $\bar{u} \leqslant u$ for all $u \in S(\lambda)$.
Step 10 . We have $\lambda^{*} \in \mathcal{S}$ and so $\mathcal{S}=\left(0, \lambda^{*}\right]$.
We refer to [10] for detailed arguments of the proof, as well as for related results on Neumann problems with competing nonlinearities.

Acknowledgment

V. Rădulescu acknowledges the support through Grant Advanced Collaborative Research Projects CNCS-PCCA-23/2014.

References

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543.
[2] J. Garcia Azero, J. Manfredi, I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000) 385-404.
[3] Z. Guo, Z. Zhang, $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003) 32-50.
[4] D.G. de Figueiredo, J.-P. Gossez, P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. 8 (2006) 269-286.
[5] D.G. de Figueiredo, J.-P. Gossez, P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal. 257 (2009) 721-752.
[6] L. Gasinski, N.S. Papageorgiou, Bifurcation-type results for nonlinear parametric elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012) 595-623.
[7] S. Hu, N.S. Papageorgiou, Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin, Tôhoku Math. J. 62 (2010) 137-162.
[8] V.D. Rădulescu, D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012) 1524-1530.
[9] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[10] N.S. Papageorgiou, V.D. Rădulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities, Discrete Contin. Dyn. Syst. 35 (10) (2015).

[^0]: * Corresponding author at: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania.

 E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@math.cnrs.fr (V.D. Rădulescu).

