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a b s t r a c t

In this paper, we report on some recent results obtained in our joint paper
Papageorgiou and Rădulescu (2015). We consider a Robin problem driven by a
nonhomogeneous differential operator and with a reaction that exhibits competing
effects of concave (that is, sublinear) and convex (that is, superlinear) nonlinearities.
Without employing the Ambrosetti–Rabinowitz condition, we establish a bifurcation
property of the positive solutions near the origin. The approach relies on variational
methods and elliptic estimates.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with C2-boundary ∂Ω . Let a : RN → RN be a continuous strictly
monotone map. Let ∂u/∂na denote the conormal derivative defined by ∂u/∂na := (a(Du), n)RN , where n(z)
is the outward unit normal at z ∈ ∂Ω .

In this paper we study the following nonlinear Robin problem:
−div a(Du(z)) = f(z, u(z), λ) in Ω ,
∂u

∂na
(z) + β(z)u(z)p−1 = 0 on ∂Ω ,

u > 0, 1 < p <∞.

(Pλ)

The reaction f(z, x, λ) is a parametric function with λ > 0 being the parameter and (z, x) → f(z, x, λ)
is a Carathéodory function. We assume that f(z, ·, λ) exhibits competing nonlinearities, namely near the
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origin it has a “concave” term (that is, a strictly (p − 1)-sublinear term), while near +∞ the reaction is a
“convex” term (that is, x −→ f(z, x, λ) is (p− 1)-superlinear). A special case of our reaction is the function
f(z, x, λ) = f(x, λ) = λxq−1 + xr−1, for all x > 0 with

1 < q < p < r < p∗ :=


Np

N − p
if p < N

+∞ if N 6 p.

The first work concerning positive solutions for problems with concave and convex nonlinearities, was that
of Ambrosetti, Brezis and Cerami [1]. They studied semilinear equations driven by the Dirichlet Laplacian
and with a reaction of the form (1). Their work was extended to equations driven by the Dirichlet p-Laplacian
by Garcia Azorero, Manfredi and Peral Alonso [2] and by Guo and Zhang [3]. We also refer to the contribu-
tions of de Figueiredo, Gossez and Ubilla [4,5] to concave–convex type problems and general nonlinearities
for the Laplacian, resp. p-Laplacian case. Extensions to equations involving more general reactions were
obtained by Gasinski and Papageorgiou [6], Hu and Papageorgiou [7] and Rădulescu and Repovš [8].

Let η ∈ C1(0,∞) and assume that

0 < ĉ 6
tη′(t)
η(t) 6 c0 and c1t

p−1 6 η(t) 6 c2(1 + tp−1) for all t > 0 with c1, c2 > 0, 1 < p <∞. (1)

The hypotheses on the map a(·) are the following:
H(a): a(y) = a0(|y|)y for all y ∈ RN , with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t −→ a0(t)t is strictly increasing on (0,∞), a0(t)t→ 0
as t→ 0+ and

lim
t→0+

a′0(t)t
a0(t) > −1;

(ii) |∇a(y)| 6 c3 η(|y|)|y| for some c3 > 0, all y ∈ RN\{0};
(iii) η(|y|)|y| |ξ|

2 6 (∇a(y)ξ, ξ)RN for all y ∈ RN\{0}, all ξ ∈ RN ;
(iv) if G0(t) =

 t
0 a0(s)sds for all t > 0, then pG0(t)− a0(t)t2 > −ξ̂

for all t > 0, some ξ̂ > 0;
(v) there exists τ ∈ (1, p) such that t −→ G0(t1/τ ) is convex on (0,∞),

limt→0+
G0(t)
tτ = 0 and

a0(t)t2 − τG0(t) > c̃tp for some c̃ > 0, all t > 0.

According to the above conditions, the potential function G0(·) is strictly convex and strictly increasing.
We set G(y) = G0(|y|) for all y ∈ RN . Then the function y −→ G(y) is convex and differentiable on RN\{0}.
We have

∇G(y) = G′0(|y|) y
|y|

= a0(|y|)y = a(y) for all y ∈ RN\{0}, ∇G(0) = 0.

So, G(·) is the primitive of the map a(·). Because G(0) = 0 and y −→ G(y) is convex, from the properties
of convex functions, we have G(y) 6 (a(y), y)RN for all y ∈ RN .

The following properties follow by straightforward arguments.

Lemma 1. Assume that hypotheses H(a) (i)–(iii) hold. Then

(a) the mapping y −→ a(y) is continuous and strictly monotone, hence maximal monotone too;
(b) |a(y)| 6 c4(1 + |y|p−1) for some c4 > 0, all y ∈ RN ;
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(c) (a(y), y)RN > c1
p−1 |y|

p for all y ∈ RN ;
(d) for all y ∈ RN we have c1

p(p−1) |y|
p 6 G(y) 6 c5(1 + |y|p) with c5 > 0.

The hypotheses on the boundary weight map β(·) are the following:
H(β): β ∈ C1,α(∂Ω) with α ∈ (0, 1) and β(z) > 0 for all z ∈ ∂Ω .
Throughout this paper we assume that the reaction f satisfies the following hypotheses.
H(f): f : Ω × R× (0,∞)→ R is a function such that for a.a. z ∈ Ω and all λ > 0f(z, 0, λ) = 0 and

(i) for all (x, λ) ∈ R × (0,∞), z −→ f(z, x, λ) is measurable, while for a.a. z ∈ Ω , (x, λ) −→ f(z, x, λ) is
continuous;

(ii) |f(z, x, λ)| 6 aλ(z)(1 + xr−1) for a.a. z ∈ Ω , all x > 0, all λ > 0, with aλ ∈ L∞(Ω), λ −→ ∥aλ∥∞
bounded on bounded sets in (0,∞) and p < r < p∗;

(iii) if F (z, x, λ) =
 x
0 f(z, s, λ)ds, then limx→+∞

F (z,x,λ)
xp = +∞ uniformly for a.a. z ∈ Ω ;

(iv) there exists ϑ = ϑ(λ) ∈


(r − p) max

N
p , 1

, p∗


such that

0 < γ0 6 lim inf
x→+∞

f(z, x, λ)x− pF (z, x, λ)
xϑ

uniformly for a.a. z ∈ Ω ;

(v) there exist 1 < µ = µ(λ) < q = q(λ) < τ (see hypothesisH(a) (v)) and γ = γ(λ) > µ, δ0 = δ0(λ) ∈ (0, 1)
such that

c6x
q 6 f(z, x, λ)x 6 qF (z, x, λ) 6 ξλ(z)xµ + τxγ for a.a. z ∈ Ω , all 0 6 x 6 δ0

with c6 = c6(λ) > 0, c6(λ) → +∞ as λ → +∞, c = c(λ) > 0, ξλ ∈ L∞(Ω)+ with ∥ξλ∥∞ → 0 as
λ→ 0+;

(vi) for every ρ > 0, there exists ξρ = ξρ(λ) > 0 such that for a.a. z ∈ Ω , x −→ f(z, x, λ) + ξρxp−1 is
nondecreasing on [0, ρ];

(vii) for every interval K = [x0, x̂] with x0 > 0 and every λ > λ′ > 0, there exists dK(x0, λ) nondecreasing
in λ with dK(x0, λ)→ +∞ as λ→ +∞ and d̂K(x0, λ, λ′) such that

f(z, x, λ) > dK(x0, λ) for a.a. z ∈ Ω , all x ∈ K
f(z, x, λ)− f(z, x, λ′) > d̂K(x0, λ, λ′) for a.a. z ∈ Ω , all x ∈ K.

The following functions satisfy hypotheses H(f). For the sake of simplicity, we drop the z-dependence:

f1(x, λ) = λxq−1 + xr−1 for all x > 0, with 1 < q < p < r < p∗

f2(x, λ) =


λxq−1 − xη−1 if x ∈ [0, 1]

xp−1


ln x+ 1
p


+

λ− 1
p


xν−1 if x > 1

with q, ν ∈ (1, p) and η > p

f3(x, λ) =

xq−1 if x ∈ [0, ρ(λ)]
xr−1 + η(λ) if x > ρ(λ)

with 1 < q < p < r < p∗, η(λ) = ρ(λ)p−1 − ρ(λ)r−1

and ρ(λ)→ 0+ as λ→ 0+.
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Since we are interested to find positive solutions and the above hypotheses concern the positive semiaxis
R+ = [0,+∞), without any loss of generality we may assume that f(z, x, λ) = 0 for a.a. z ∈ Ω , all x 6 0
and all λ > 0. Note that hypotheses H(f) (ii), (iii) imply that

lim
x→+∞

f(z, x, λ)
xp−1 = +∞ uniformly for a.a. z ∈ Ω .

Thus f(z, ·, λ) is (p−1)-superlinear near +∞. However, we do not employ the Ambrosetti–Rabinowitz (AR)
condition (unilateral version) (Cf. [9]). We say that f(z, ·, λ) satisfies the (unilateral) (AR)-condition, if there
exist η = η(λ) > p and M =M(λ) > 0 such that

(a) 0 < ηF (z, x, λ) 6 f(z, x, λ)x for a.a. z ∈ Ω , all x >M,
(b) ess infΩ F (·,M, λ) > 0.

(2)

Integrating (2)a and using (2)b, we obtain a weaker condition, namely that

c7x
η 6 F (z, x, λ) for a.a. z ∈ Ω , all z >M and some c7 > 0. (3)

Evidently (3) implies the much weaker hypothesis H(f) (iii). In (2) we may assume that η > (r − p)
max

N
p , 1


. Then we have

f(z, x, λ)x− pF (z, x, λ)
xη

= f(z, x, λ)x− ηF (z, x, λ)
xη

+ (η − p)F (z, x, λ)
xη

> (η − p)c7 for a.a. z ∈ Ω , all x >M (see (2)a and (3)).

So, we see that the (AR)-condition implies hypothesis H1 (iv). This weaker “superlinearity” condition
incorporates in our setting (p − 1)-superlinear nonlinearities with “slower” growth near +∞, which fail to
satisfy the (AR)-condition (see the function f2(·, λ) defined above). Finally note that hypothesis H(f) (v)
implies the presence of a concave nonlinearity near zero.

The main result of this paper establishes the following bifurcation property.

Theorem 2. Assume that hypotheses H(a), H(β) and H(f) hold. Then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions
u0, û ∈ intC+, u0 6 û, u0 ̸= û;

(b) for λ = λ∗ problem (Pλ∗) has at least one positive solution u∗ ∈ intC+;
(c) for all λ > λ∗ problem (Pλ) has no positive solution.

Sketch of the Proof. We introduce the following Carathéodory function

f̂(z, x, λ) = f(z, x, λ) + (x+)p−1 for all (z, x, λ) ∈ Ω × R× (0,+∞).

Let F̂ (z, x, λ) =
 x
0 f̂(z, s, λ)ds and consider the C1-functional ϕ̂λ :W 1,p(Ω)→ R defined by

ϕ̂λ(u) =

Ω

G(Du)dz + 1
p
∥u∥pp + 1

p


∂Ω

β(z)(u+)pdσ −

Ω

F̂ (z, u, λ)dz.

We split the proof into several steps.

Step 1. For all λ > 0, the energy functional ϕ̂λ satisfies the Cerami compactness condition.

Step 2. There is some λ+ > 0 such that for all λ ∈ (0, λ+) there exists ρλ > 0 for which we have

inf {ϕ̂λ(u) : ∥u∥ = ρλ} = m̂λ > 0 = ϕ̂λ(0).

Step 3. If λ > 0 and u ∈ intC+ := {v ∈ C1(Ω) : v(z) > 0 for all z ∈ Ω}, then ϕ̂λ(tu)→ −∞ as t→∞.
This property is a direct consequence of hypothesis H(f) (iii).
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Next, we consider the following sets:

S = {λ > 0 : problem (Pλ) admits a positive solution},
S(λ) = the set of positive solutions of (Pλ).

Step 4. We have S ≠ ∅ and for every λ ∈ S we have ∅ ≠ S(λ) ⊆ intC+.

Step 5. If λ ∈ S, then (0, λ] ⊆ S.

Step 6. Set λ∗ = supS. We have λ∗ <∞.

Step 7. For all η ∈ (0, λ∗), problem (Pη) admits at least two distinct positive solutions u0, û ∈ intC+ with
u0 6 û.

Next we examine what happens in the critical case λ = λ∗. To this end, note that hypotheses H(f) (ii),
(v) imply that we can find c8 = c8(λ) > 0 such that

f(z, x, λ) > c6x
q−1 − c8xr−1 for a.a. z ∈ Ω , all z > 0. (4)

This unilateral growth estimate on the reaction f(z, ·, λ) leads to the following auxiliary Robin problem:
−div a(Du(z)) = c6u(z)q−1 − c8u(z)r−1 in Ω ,
∂u

∂n0
(z) + β(z)u(z)p−1 = 0 on ∂Ω ,

u > 0 in Ω .

(5)

Step 8. Problem (5) admits a unique positive solution ū ∈ intC+.

Step 9. If λ ∈ S, then ū 6 u for all u ∈ S(λ).

Step 10. We have λ∗ ∈ S and so S = (0, λ∗].

We refer to [10] for detailed arguments of the proof, as well as for related results on Neumann problems
with competing nonlinearities.
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