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a b s t r a c t

We consider semilinear Neumann equations with an indefinite and unbounded potential.
We establish the existence and uniqueness of positive solutions. We show that our setting
incorporates as special cases several parametric equations of interest (such as the equidif-
fusive logistic equation).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we deal with the following semilinear Neumann problem

− ∆u(z) + β(z)u(z) = f (z, u(z)) in Ω,
∂u
∂n

= 0 on ∂Ω. (1)

Here Ω ⊆ RN is a bounded domain with a C2-boundary, β is a potential function which is in general unbounded and
sign changing. The reaction f (z, x) is a Carathéodory function (that is, for all x ∈ R the mapping z −→ f (z, x) is measurable
and for a.a. z ∈ Ω , x −→ f (z, x) is continuous), which exhibits general growth conditions near +∞ and near 0+. As we
will see these conditions incorporate in our framework as special cases various parametric problems such as equidiffusive
logistic equations. We are interested in the existence and uniqueness of positive solutions.

Recently semilinear Neumann problems with unbounded and indefinite potential were studied by Papageorgiou and
Rădulescu [1]. They deal with equations in which the reaction f (z, x) exhibits an asymmetric behavior at +∞ and at −∞

(jumping nonlinearity) and they prove multiplicity theorems providing sign information for all the solutions. We mention
also the recent works of Mugnai and Papageorgiou [2], who examine equations driven by the p-Laplacian plus an indefinite
potential and of Papageorgiou and Smyrlis [3], who consider a special class of coercive semilinear equations.

2. Positive solutions

In the analysis of problem (1) we will use the Sobolev space H1(Ω) and the ordered Banach space C1(Ω). The positive
cone of the latter space is given by

C+ = {u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω}.
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This cone has a nonempty interior

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

The hypotheses on the potential function β(·) are the following.
H(β): β ∈ Ls(Ω) with s > N

2 and β+
∈ L∞(Ω)

By {λ̂n}n>1 we denote the distinct eigenvalues of the differential operator u → −∆u+ β(z)u, u ∈ H1(Ω). We know that
λ̂1 is simple and

λ̂1 = inf


ξ(u)
∥u∥2

2
: u ∈ H1(Ω), u ≠ 0


(2)

where ξ(u) = ∥Du∥2
2 +


Ω

β(z)u2dz for all u ∈ H1(Ω). The infimum in (2) is realized on the one-dimensional eigenspace
corresponding to λ̂1. From (2) it is clear that the elements of this eigenspace do not change sign. By û1 we denote the
positive L2-normalized (that is, ∥û1∥2 = 1) eigenfunction corresponding to λ̂1. The regularity results of Wang [4] imply
that û1 ∈ C+\{0} and in fact using H(β) and the maximum principle of Vazquez [5], we have û1 ∈ int C+. The next lemma
is a consequence of these properties (see Papageorgiou and Rădulescu [1]).

Lemma 1. If ϑ ∈ L∞(Ω) and ϑ(z) 6 λ̂1 a.e. in Ω , ϑ ≠ λ̂1, then there exists c0 > 0 such that

ξ(u) −


Ω

ϑ(z)u2dz > c0∥u∥2 for all u ∈ H1(Ω).

The hypotheses on the reaction f (z, x) are as follows.
H(f ) : f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω and

(i) |f (z, x)| 6 a(z)(1 + xr−1) for a.a. z ∈ Ω , all x > 0 with a ∈ L∞(Ω)+, 2 < r < 2∗
=

 2N
N − 2

if 3 6 N

+∞ if N = 1, 2
;

(ii) lim supx→+∞

f (z,x)
x 6 ϑ(z) uniformly for a.a. z ∈ Ω , with ϑ ∈ L∞(Ω), ϑ(z) 6 λ̂1 a.e in Ω , ϑ ≢ λ̂1;

(iii) lim infx→0+
f (z,x)

x > η(z) uniformly for a.a. z ∈ Ω , with η ∈ L∞(Ω), η(z) > λ̂1 a.e. in Ω , η ≢ λ̂1.

Remark 1. Since we are interested in positive solutions and the above hypotheses concern the positive semi-axis R+ =

[0, +∞), without any loss of generality we assume that f (z, x) = 0 for a.a. z ∈ Ω , all x 6 0. Note that according to
hypothesis H(f ) (i), f (z, ·) has subcritical growth. Finally hypotheses H(f ) (ii), (iii) imply that the quotient f (z,x)

x crosses at
least the principal eigenvalue λ̂1 as we move from 0+ to +∞.

From the spectral analysis of Papageorgiou and Rădulescu [1] we know that there exists γ0 > max{−λ̂1, 1} such that

ξ(u) + γ0∥u∥2
2 > c1∥u∥2 for all u ∈ H1(Ω), some c1 > 0. (3)

We introduce the Carathéodory function f̂ (z, x) =


0 if x 6 0
f (z, x) + γ0x if 0 < x and its primitive F̂(z, x) =

 x
0 f̂ (z, s)ds.

Proposition 2. If hypotheses H(β) and H(f ) hold, then problem (1) has at least one positive solution u0 ∈ int C+.

Proof. Let ϕ̂ : H1(Ω) → R be the C1-functional defined by

ϕ̂(u) =
1
2
ξ(u) +

γ0

2
∥u∥2

2 −


Ω

F̂(z, u)dz for all u ∈ H1(Ω).

Hypotheses H(f ) (i), (ii) imply that given ϵ > 0, we can find c2 = c2(ϵ) > 0 such that

F(z, x) 6
1
2
(ϑ(z) + ϵ)(x+)2 + c2 for a.a. z ∈ Ω, all x ∈ R (4)

(recall that for all x ∈ R, x±
= max{±x, 0}). Then

ϕ̂(u) >
1
2


ξ(u+) −


Ω

ϑ(z)(u+)2dz


−
ϵ

2
∥u+

∥
2
+

1
2
ξ(u−) +

γ0

2
∥u−

∥
2
2 − c2|Ω|N (see (4)),

where u±(·) = u(·)± and | · |N denotes the Lebesgue measure on RN . Using Lemma 1 and (3), we obtain

ϕ̂(u) >
c0 − ϵ

2
∥u+

∥
2
+

c1
2

∥u−
∥
2
− c2|Ω|N .

Choosing ϵ ∈ (0, c0), we see that ϕ̂ is coercive. Also, using the Sobolev embedding theorem, we check that ϕ̂ is sequen-
tially weakly lower semicontinuous. So, we can find u0 ∈ H1(Ω) such that

ϕ̂(u0) = inf[ϕ̂(u) : u ∈ H1(Ω)], (5)
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Hypothesis H(f )1 (iii) implies that given ϵ > 0, we can find δ = δ(ϵ) > 0 such that

F(z, x) >
1
2
(η(z) − ϵ)x2 for a.a. z ∈ Ω, all x ∈ [0, δ]. (6)

Let t ∈ (0, 1) be small such that tû1(z) ∈ (0, δ] for all z ∈ Ω (recall that û1 ∈ int C+). Then

ϕ̂(tû1) =
t2

2
ξ(û1) −


Ω

F(z, tû1)dz 6
t2

2


Ω

(λ̂1 − η(z))û2
1dz +

t2ϵ
2

(see (6) and recall that ∥û1∥2 = 1).

Note that µ̂ =


Ω
(η(z) − λ̂1)û2

1dz > 0 (see hypothesis H(f ) (iii)). Hence

ϕ̂(tû1) 6
t2

2
[−µ̂ + ϵ].

So, choosing ϵ ∈ (0, µ̂), we see that ϕ̂(tû1) < 0. Therefore

ϕ̂(u0) < 0 = ϕ̂(0) (see (5)); hence u0 ≠ 0.

From (5) we have ϕ̂′(u0) = 0 and so
Ω

(Du0,Dh)RN dz +


Ω

β(z)u0hdz + γ0


Ω

u0hdz =


Ω

f̂ (z, u0)hdz for all h ∈ H1(Ω). (7)

In (7) we choose h = −u−

0 ∈ H1(Ω). Then

ξ(u−

0 ) + γ0∥u−

0 ∥
2
2 = 0; hence u0 > 0, u0 ≠ 0 (see (3)).

Then from (7) and Green’s identity we obtain

−∆u0(z) + β(z)u0(z) = f (z, u0(z)) a.e. in Ω,
∂u0

∂n
= 0 on ∂Ω.

From Wang [4] we obtain u0 ∈ C+\{0}. Note that hypotheses H(f ) (i), (iii) imply that given ρ > 0, we can find ξρ > 0
such that f (z, x) + ξρx > 0 for a.a. z ∈ Ω , all x ∈ [0, ρ]. If ρ = ∥u0∥∞ and ξρ > 0 as above, then

−∆u0(z) + (β(z) + ξρ)u0(z) > 0 a.e. in Ω,

⇒ ∆u0(z) 6 (∥β+
∥∞ + ξρ)u0(z) a.e. in Ω,

⇒ u0 ∈ int C+ (see Vazquez [5]). �

If we strengthen the conditions on f (z, ·)we can assure uniqueness of the positive solution. The new stronger hypotheses
on the reaction f (z, x) are as follows.

H(f )′ : f : Ω × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ Ω , and hypotheses H(f )′ (i)–(iii) are
the same as the corresponding hypotheses H(f ) (i)–(iii)

(iv) for a.a. z ∈ Ω , x →
f (z,x)

x is decreasing and for all z ∈ Ω0 ⊆ Ω with |Ω0|N > 0, x →
f (z,x)

x is strictly decreasing on
(0, +∞).

Proposition 3. If hypotheses H(β) and H(f )′ hold, then problem (1) admits a unique positive solution u0 ∈ int C+.

Proof. From Proposition 2, we already have one solution u0 ∈ int C+. Let y be another positive solution of (1). As before we
can show that y ∈ int C+.

We consider the integral functional τ : L2(Ω) → R = R ∪ {+∞} defined by

τ(u) =


1
2
∥Du1/2

∥
2
2 +

1
2


Ω

β(z)udz if u > 0, u1/2
∈ H1(Ω)

+∞ otherwise.

From Lemma 1 of Diaz and Saa [6], we know that τ(·) is convex and lower semicontinuous. Since u0, y ∈ int C+, we see
that given any h ∈ C1(Ω) for |λ| 6 1 small we have

u2
0 + λh, y2 + λh ∈ domτ = {u ∈ H1(Ω) : τ(u) < +∞} (effective domain of τ).

Therefore τ is Gâteaux differentiable at u2
0 and at y2 in direction h. Moreover, using the chain rule, we have

τ ′(u2
0)(h) =

1
2


Ω

−∆u0

u0
hdz +

1
2


Ω

β(z)hdz

τ ′(y2)(h) =
1
2


Ω

−∆y
y

hdz +
1
2


Ω

β(z)hdz for all h ∈ H1(Ω)
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(recall that C1(Ω) is dense in H1(Ω)). The convexity of τ implies the monotonicity of τ ′. Therefore

0 6
1
2


Ω


f (z, u0)

u0
−

f (z, y)
y


(u2

0 − y2)dz 6 0,

⇒ u0 = y (see hypothesis H(f )′ (iv) and recall that u0, y ∈ int C+). �

3. Special cases

First consider the following logistic equation with equidiffusive reaction

− ∆u(z) + β(z)u(z) = λu(z) − h(z, u(z)) inΩ,
∂u
∂n

= 0 on ∂Ω. (8)

The hypotheses on the perturbation h(z, x) are as follows.
H(h)1 : h : Ω × R → R is a Carathéodory function such that h(z, 0) = 0 for a.a. z ∈ Ω and

(i) |h(z, x)| 6 a(z)(1 + xr−1) for a.a. z ∈ Ω , all x > 0, with a ∈ L∞(Ω) and 2 < r < 2∗;
(ii) limx→+∞

h(z,x)
x = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0+
h(z,x)

x = 0 uniformly for a.a. z ∈ Ω;
(iv) for a.a. z ∈ Ω , x →

h(z,x)
x is increasing and for all z ∈ Ω0 ⊆ Ω with |Ω0|N > 0, x →

h(z,x)
x is strictly increasing.

Remark 2. A typical perturbation h(z, x) satisfying hypotheses H(h)1 is h(z, x) = h(x) = xr−1 with 2 < r < 2∗, which
corresponds to the classical equidiffusive logistic equation.

Proposition 4. If hypotheses H(β) and H(f )1 hold and λ > λ̂1, then problem (8) admits a unique positive solution u0 ∈ int C+.

Now consider the following nonhomogeneous eigenvalue problem:

− ∆u(z) + β(z)u(z) = λu(z)q−1 in Ω,
∂u
∂n

= 0 on ∂Ω. (9)

Proposition 5. If hypotheses H(β) hold, q ∈ (2, 2∗) and λ > 0, then problem (9) has a unique positive solution u0 ∈ int C+.

Finally consider the following parametric Neumann problem:

− ∆u(z) + β(z)u(z) = λu(z) + h(z, u(z)) in Ω,
∂u
∂n

= 0 on ∂Ω. (10)

The hypotheses on the perturbation h(z, x) are as follows.
H(h)2 : h : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω , h(z, 0) = 0, h(z, x) > 0 for all x > 0 and

(i) h(z, x) 6 a(z)(1 + xp−1) for a.a. z ∈ Ω , all x > 0 with a ∈ L∞(Ω)+;
(ii) limx→+∞

h(z,x)
x = 0 uniformly for a.a. z ∈ Ω;

(iii) limx→0+
h(z,x)

x = +∞ uniformly for a.a. z ∈ Ω;
(iv) for a.a. z ∈ Ω , x →

h(z,x)
x is decreasing and for all z ∈ Ω0 ⊆ Ω with |Ω0|N > 0, x →

h(z,x)
x is strictly decreasing on

(0, +∞).

Proposition 6. If hypotheses H(β) and H(h)2 hold and λ < λ̂1, then problem (10) admits a unique positive solution u0 ∈ int C+.

In fact we can show that this upper bound λ̂1 is sharp.

Proposition 7. If hypotheses H(β) and H(h)2 hold and λ > λ̂1, then problem (10) has no positive solution.

Proof. Let λ > λ̂1 and suppose that problem (10) has a positive solution uλ. As in the proof of Proposition 2, we can show
that uλ ∈ int C+. Let

R(û1, uλ)(z) =
Dû1(z)

2 − |Duλ(z)|p−2

Duλ(z),D


û2
1

uλ


RN

.

From Picone’s identity (see, for example, Gasinski and Papageorgiou [7, p. 785]), we have

0 6


Ω

R(û1, uλ)dz = ∥Dû1∥
2
2 −


Ω

(−∆uλ)
û2
1

uλ

dz (by Green’s identity)

= ∥Dû1∥
2
2 −


Ω

(λ − β(z))û2
1dz −


Ω

h(z, uλ)
û2
1

uλ

dz

< (λ̂1 − λ) 6 0

a contradiction. �
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Remark 3. Analogous results can be obtained for nonlinear equations driven by the p-Laplacian.
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