Infinitely many nodal solutions for semilinear Robin problems with an indefinite linear part

Nikolaos S. Papageorgiou ${ }^{\text {a }}$, Vicenţiu D. Rădulescu ${ }^{\text {b,c,* }}$
${ }^{\text {a }}$ National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
${ }^{\text {b }}$ Department of Mathematics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
c Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700
Bucharest, Romania

A R T I C L E I N F O

Article history:

Received 14 July 2016
Received in revised form 17 August 2016
Accepted 17 August 2016
Available online 26 August 2016

Keywords:

Indefinite potential
Regularity theory
Nodal solutions
Carathéodory reaction
Superlinear near zero
Robin boundary condition

Abstract

We consider a semilinear Robin problem driven by the Laplacian plus an indefinite potential and with a Carathéodory reaction $f(z, x)$ with no growth restriction on the x-variable. We only assume that $f(z, \cdot)$ is odd and superlinear near zero. Using a variant of the symmetric mountain pass theorem, we show that the problem has a whole sequence of distinct smooth nodal solutions converging to the trivial one. © 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$. In this paper, we study the following semilinear Robin problem:

$$
\left\{\begin{array}{ll}
-\Delta u(z)+\xi(z) u(z)=f(z, u(z)) & \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial n}+\beta(z) u=0 \quad \text { in } \partial \Omega
\end{array}\right\}
$$

In this problem, $\xi \in L^{s}(\Omega)(s>N)$ is an indefinite (that is, sign-changing) potential function and the reaction term $f(z, x)$ is a Carathéodory function (that is, for all $x \in \mathbb{R}, z \mapsto f(z, x)$ is measurable and for almost all $z \in \Omega, x \mapsto f(z, x)$ is continuous $)$. No global growth condition is imposed on $f(z, \cdot)$, which can

[^0]be arbitrary near $\pm \infty$. The only conditions on $f(z, \cdot)$ concern its behavior near zero and we require that it is superlinear there. In the boundary condition, $\frac{\partial u}{\partial n}$ is the usual normal derivative defined by extension of the linear map
$$
u \mapsto \frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}} \quad \text { for all } u \in C^{1}(\bar{\Omega}),
$$
with $n(\cdot)$ being the outward unit normal on $\partial \Omega$. The boundary coefficient $\beta(\cdot)$ belongs to $W^{1, \infty}(\partial \Omega)$ and we assume that $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.

We are looking for nodal (that is, sign-changing) solutions of problem (1). Using an abstract multiplicity result of Heinz [1], Wang [2] and Kajikiya [3], we show that problem (1) admits a whole sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq H^{1}(\Omega)$ of distinct nodal solutions such that

$$
u_{n} \in C^{1}(\bar{\Omega}) \text { for all } n \in \mathbb{N} \text { and } u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) .
$$

Recently multiplicity results for semilinear elliptic problems with indefinite linear part were proved by Castro, Cossio and Vélez [4], Papageorgiou and Papalini [5], Qin, Tang and Tang [6], Wu and An [7], Zhang and Liu [8], Zhang, Tang and Zhang [9] (Dirichlet problems), Papageorgiou and Rădulescu [10,11] (Neumann problems) and Papageorgiou and Rădulescu [12] (Robin problems). None of the aforementioned works produces a whole sequence of nodal solutions and all impose a subcritical growth condition on the reaction term $f(z, \cdot)$. We mention also the very recent work of Papageorgiou and Rădulescu [13], which deals with nonlinear nonhomogeneous Robin problems with no potential term (that is, $\xi \equiv 0$) and a reaction term $f(z, x)$ of arbitrary growth in $x \in \mathbb{R}$. The authors of [13] produce a sequence of nodal solutions but under more restrictive conditions on $f(z, \cdot)$.

2. Mathematical background

Let X be a Banach space. By X^{*} we denote its topological dual and by $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X^{*}, X\right)$. Given $\varphi \in C^{1}(X, \mathbb{R})$, we say that φ satisfies the "Palais-Smale condition" (the "PS-condition" for short), if the following property holds:
"Every sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that $\left\{\varphi\left(u_{n}\right)\right\}_{n \geqslant 1} \subseteq \mathbb{R}$ is bounded and

$$
\varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } X^{*} \text { as } n \rightarrow \infty
$$

admits a strongly convergent subsequence".
As we already mentioned, our main tool is the following abstract multiplicity theorem of Heinz [1], Wang [2] and Kajikiya [3]. The result is a variant of the classical symmetric mountain pass theorem (see, for example, Gasinski and Papageorgiou [14, p. 688]).

Theorem 1. Assume that X is a Banach space, $\varphi \in C^{1}(X, \mathbb{R})$ satisfies the $P S$-condition, it is even, bounded below, $\varphi(0)=0$ and for every $n \in \mathbb{N}$, there exist an n-dimensional subspace $V_{n} \subseteq X$ and $\rho_{n}>0$ such that

$$
\sup \left[\varphi(u): u \in V_{n},\|u\|=\rho_{n}\right]<0 \quad \text { for all } n \in \mathbb{N}
$$

Then we can find a sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that

$$
\varphi^{\prime}\left(u_{n}\right)=0 \quad \text { for all } n \in \mathbb{N} \text { and } u_{n} \rightarrow 0 \text { in } X .
$$

The analysis of problem (1) involves the Sobolev space $H^{1}(\Omega)$, the Banach space $C^{1}(\bar{\Omega})$ and the Lebesgue "boundary" spaces $L^{p}(\partial \Omega)(1 \leqslant p \leqslant \infty)$.

The Sobolev space $H^{1}(\Omega)$ is a Hilbert space with inner product

$$
(u, v)_{H^{1}(\Omega)}=\int_{\Omega} u v d z+\int_{\Omega}(D u, D v)_{\mathbb{R}^{N}} d z \quad \text { for all } u, v \in H^{1}(\Omega)
$$

and corresponding norm

$$
\|u\|=\left[\|u\|_{2}^{2}+\|D u\|_{2}^{2}\right]^{1 / 2} \quad \text { for all } u \in H^{1}(\Omega)
$$

The Banach space $C^{1}(\bar{\Omega})$ is an ordered Banach space with positive cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geqslant 0 \quad \text { for all } z \in \Omega\right\} .
$$

This cone has a nonempty interior given by

$$
D_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \bar{\Omega}\right\} .
$$

On $\partial \Omega$ we consider the ($N-1$)-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure, we can define in the usual way the Lebesgue spaces $L^{p}(\partial \Omega)(1 \leqslant p \leqslant \infty)$. From the theory of Sobolev spaces, we know that there exists a unique continuous linear map $\gamma_{0}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ known as "trace map", such that

$$
\gamma_{0}(u)=\left.u\right|_{\partial \Omega} \quad \text { for all } u \in H^{1}(\Omega) \cap C(\bar{\Omega})
$$

We know that

$$
\operatorname{im} \gamma_{0}=H^{\frac{1}{2}, 2}(\partial \Omega) \quad \text { and } \quad \operatorname{ker} \gamma_{0}=H_{0}^{1}(\Omega)
$$

Moreover, the trace map γ_{0} is compact into $L^{p}(\partial \Omega)$ for all $p \in\left[1, \frac{2 N-2}{N-2}\right)$ if $N \geqslant 3$ and into $L^{p}(\partial \Omega)$ for all $p \geqslant 1$ if $N=1,2$. In the sequel for notational economy, we drop the use of the trace map γ_{0}. All restrictions of Sobolev functions on $\partial \Omega$ are understood in the sense of traces.

Consider the following linear eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta u(z)+\xi(z) u(z)=\hat{\lambda} u(z) \quad \text { in } \Omega, \tag{2}\\
\frac{\partial u}{\partial n}+\beta(z) u=0 \quad \text { on } \partial \Omega .
\end{array}\right\}
$$

We assume that

- $\xi \in L^{\frac{N}{2}}(\Omega)$ if $N \geqslant 3, \xi \in L^{p}(\Omega)$ with $p \in(1,+\infty)$ if $N=2$ and $\xi \in L^{1}(\Omega)$ if $N=1$;
- $\beta \in W^{1, \infty}(\partial \Omega)$ and $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.

Let $\gamma: H^{1}(\Omega) \rightarrow \mathbb{R}$ be the C^{1}-functional defined by

$$
\gamma(u)=\|D u\|_{2}^{2}+\int_{\Omega} \xi(z) u^{2} d z+\int_{\partial \Omega} \beta(z) u^{2} d \sigma \quad \text { for all } u \in H^{1}(\Omega)
$$

From Papageorgiou and Rădulescu [10,12], we know that there exists $\mu>0$ such that

$$
\begin{equation*}
\gamma(u)+\mu\|u\|^{2} \geqslant c_{0}\|u\|_{2}^{2} \quad \text { for all } u \in H^{1}(\Omega), \text { some } c_{0}>0 \tag{3}
\end{equation*}
$$

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we produce the spectrum of (2) which consists of a sequence $\left\{\hat{\lambda}_{k}\right\}_{k \geqslant 1}$ of distinct eigenvalues such that $\hat{\lambda}_{k} \rightarrow+\infty$. By
$E\left(\hat{\lambda}_{k}\right)(k \in \mathbb{N})$ we denote the corresponding eigenspace and we have the following orthogonal direct sum decomposition

$$
H^{1}(\Omega)=\overline{\oplus_{k \geqslant 1}^{\oplus} E\left(\hat{\lambda}_{k}\right)} .
$$

Concerning the first eigenvalue $\hat{\lambda}_{1}$, we have

$$
\begin{align*}
& \text { - } \hat{\lambda}_{1} \text {, is simple (that is, } \operatorname{dim} E\left(\hat{\lambda}_{1}\right)=1 \text {); } \\
& \text { - } \hat{\lambda}_{1}=\inf \left[\frac{\gamma(u)}{\|u\|_{2}^{2}}: u \in H^{1}(\Omega), u \neq 0\right] \text {. } \tag{4}
\end{align*}
$$

The infimum in (4) is realized on $E\left(\hat{\lambda}_{1}\right)$. From the above properties, it is clear that the elements of $E\left(\hat{\lambda}_{1}\right)$ do not change sign. Let \hat{u}_{1} denote the L^{2}-normalized (that is, $\left\|\hat{u}_{1}\right\|_{2}=1$) positive eigenfunction corresponding to $\hat{\lambda}_{1}$. If $\xi \in L^{s}(\Omega)$ with $s>N$, then the regularity theory of Wang [15] implies that $\hat{u}_{1} \in C_{+} \backslash\{0\}$. In fact, if $\xi^{+} \in L^{\infty}(\Omega)$ then the strong maximum principle implies that $\hat{u}_{1} \in D_{+}$. We mention that $\hat{\lambda}_{1}$ is the only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign-changing) eigenfunctions.

We conclude this section, by introducing some notation which we will use in sequel.
By $A \in \mathcal{L}\left(H^{1}(\Omega), H^{1}(\Omega)^{*}\right)$ we denote the linear operator defined by

$$
\langle A(u), h\rangle=\int_{\Omega}(D u, D h)_{\mathbb{R}^{N}} d z \quad \text { for all } u, h \in H^{1}(\Omega)
$$

For $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$. Then for $u \in H^{1}(\Omega)$ we define

$$
u^{ \pm}(\cdot)=v(\cdot)^{ \pm}
$$

We know that

$$
u^{ \pm} \in H^{1}(\Omega), \quad|u|=u^{+}+u^{-}, \quad u=u^{+}-u^{-} .
$$

3. Nodal solutions

The hypotheses on the data of problem (1), are the following:
$H(\xi): \xi \in L^{s}(\Omega)$ with $s>N$ and $\xi^{+} \in L^{\infty}(\Omega)$.
$H(\beta): \beta \in W^{1, \infty}(\partial \Omega)$ and $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.
Remark 1. When $\beta=0$, we recover the Neumann problem.
$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for almost all $z \in \Omega, f(z, 0)=0, f(z, \cdot)$ is odd on $[-c, c]$ with $c>0$ and
(i) for every $M>0$, there exists $a_{M} \in L^{\infty}(\Omega)$ such that

$$
|f(z, x)| \leqslant a_{M}(z) \quad \text { for almost all } z \in \Omega, \text { all }|x| \leqslant M
$$

(ii) $\lim _{x \rightarrow 0} \frac{f(z, x)}{x}=+\infty$ uniformly for almost all $z \in \Omega$.

Remark 2. We stress that no global growth condition is imposed on $f(z, \cdot)$. Also note that $f(z, \cdot)$ is superlinear near zero (presence of a concave term near zero). Note that the function $f(x)=x(1-\ln |x|)$ for $|x| \leqslant c$ satisfies hypotheses $H(f)$, but does not fit in the framework of Papageorgiou and Rădulescu [16].

Hypothesis $H(f)$ (ii) implies that given $\eta>\left|\hat{\lambda}_{1}\right|$, we can find $c_{0} \in(0, c]$ such that

$$
\begin{equation*}
f(z, x) x \geqslant \eta x^{2} \quad \text { for almost all } z \in \Omega, \text { all }|x| \leqslant c_{0} . \tag{5}
\end{equation*}
$$

Recall that $\hat{u}_{1} \in D_{+}$. Hence we can find $t>0$ such that $t \hat{u}_{1} \leqslant c_{0}$. Let $\tau>0$ be the maximum such positive real. Let $\hat{\mu}>\max \left\{\left\|\xi^{+}\right\|_{\infty}, \mu\right\}$ (see hypothesis $H(\xi)$ and (3)). We introduce the Carathéodory function $\hat{f}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\hat{f}(z, x)= \begin{cases}f\left(z,-\tau \hat{u}_{1}(z)\right)-\hat{\mu}\left(\tau \hat{u}_{1}(z)\right) & \text { if } x<\tau \hat{u}_{1}(z) \tag{6}\\ f(z, x)+\hat{\mu} x & \text { if }|x| \leqslant \tau \hat{u}_{1}(z) \\ f\left(z, \tau \hat{u}_{1}(z)\right)+\hat{\mu}\left(\tau \hat{u}_{1}(z)\right) & \text { if } \tau \hat{u}_{1}(z)<x .\end{cases}
$$

We set $\hat{F}(z, x)=\int_{0}^{x} \hat{f}(z, s) d s$ and consider the C^{1}-functional $\hat{\varphi}: H^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\hat{\varphi}(u)=\frac{1}{2} \gamma(u)+\frac{\hat{\mu}}{2}\|u\|_{2}^{2}-\int_{\Omega} \hat{F}(z, u) d z \quad \text { for all } u \in H^{1}(\Omega) .
$$

From hypothesis $H(f)$, the choice of $\hat{\mu}>0$ and (3), (6) we infer that $\hat{\varphi}$ has the following properties.
Proposition 2. If hypotheses $H(\xi), H(\beta), H(f)$ hold, then $\hat{\varphi}$ is even, $\hat{\varphi}(0)=0$ and $\hat{\varphi}(\cdot)$ is coercive.
From Proposition 2 and Papageorgiou and Winkert [17, Proposition 2.13], we infer that:
Corollary 3. If hypotheses $H(\xi), H(\beta), H(f)$ hold, then $\hat{\varphi}$ is bounded from below and satisfies the PScondition.

Let $\hat{\varphi}_{ \pm}: H^{1}(\Omega) \rightarrow \mathbb{R}$ be the positive and negative truncations of $\hat{\varphi}$, that is

$$
\hat{\varphi}_{ \pm}(u)=\frac{1}{2} \gamma(u)+\frac{\hat{\mu}}{2}\|u\|_{2}^{2}-\int_{\Omega} \hat{F}\left(z, \pm u^{ \pm}\right) d z \quad \text { for all } u \in H^{1}(\Omega) .
$$

We know that $\hat{\varphi}_{ \pm} \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$. We introduce the critical sets of the functionals $\hat{\varphi}, \hat{\varphi}_{ \pm}$, that is, the sets

$$
\begin{aligned}
& K_{\hat{\varphi}}=\left\{u \in H^{1}(\Omega): \hat{\varphi}^{\prime}(u)=0\right\}, \\
& K_{\hat{\varphi}_{ \pm}}=\left\{u \in H^{1}(\Omega): \hat{\varphi}_{ \pm}^{\prime}(u)=0\right\} .
\end{aligned}
$$

From the regularity theory of Wang [15], we have

$$
\begin{equation*}
K_{\hat{\varphi}} \subseteq C^{1}(\bar{\Omega}) . \tag{7}
\end{equation*}
$$

Similarly, using the regularity theory of Wang [15] and the strong maximum principle, we have

$$
\begin{equation*}
K_{\hat{\varphi}_{+}} \subseteq D_{+} \cup\{0\} \quad \text { and } \quad K_{\hat{\varphi}_{-}} \subseteq\left(-D_{+}\right) \cup\{0\} . \tag{8}
\end{equation*}
$$

Proposition 4. If hypotheses $H(\xi), H(\beta), H(f)$ hold, then there exists $M>0$ such that

$$
-M \leqslant u(z) \leqslant M \quad \text { for all } z \in \bar{\Omega}, \text { all } u \in K_{\hat{\varphi}} .
$$

Proof. From (6) we see that we can find $M>0$ such that

$$
\begin{equation*}
|\hat{f}(z, x)| \leqslant(\xi(z)+\hat{\mu}) M \quad \text { for almost all } z \in \Omega, \text { all } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

(recall that $\hat{\mu}>\max \left\{\left\|\xi^{+}\right\|_{\infty}, \mu\right\}$).

Let $u \in K_{\hat{\varphi}}$. Then we have

$$
\begin{aligned}
\langle A(u), h\rangle+\int_{\Omega}(\xi(z)+\hat{\mu}) u h d z+\int_{\partial \Omega} \beta(z) u h d \sigma & =\int_{\Omega} \hat{f}(z, u) h d z \\
& \leqslant \int_{\Omega}|\hat{f}(z, u)||h| d z \\
& \leqslant \int_{\Omega}(\xi(z)+\hat{\mu}) M|h| d z \quad \text { for all } h \in H^{1}(\Omega) \text { (see (9)). }
\end{aligned}
$$

Choose $h=(u-M)^{+} \in H^{1}(\Omega)$. Then

$$
\begin{aligned}
& \left\langle A(u),(u-M)^{+}\right\rangle+\int_{\Omega}(\xi(z)+\hat{\mu}) u(u-M)^{+} d z+\int_{\partial \Omega} \beta(z) u(u-M)^{+} d \sigma \\
& \quad \leqslant \int_{\Omega}(\xi(z)+\hat{\mu}) M(u-M)^{+} d z+\int_{\partial \Omega} \beta(z) M(u-M)^{+} d \sigma(\text { see hypothesis } H(\beta)), \\
& \quad \Rightarrow\left\langle A(u)-A(M),(u-M)^{+}\right\rangle+\int_{\Omega}(\xi(z)+\hat{\mu})(u-M)(u-M)^{+} d z+\int_{\partial \Omega} \beta(z)(u-M)(u-M)^{+} d \sigma \leqslant 0, \\
& \quad \Rightarrow\left\|D(u-M)^{+}\right\|_{2}^{2}+\int_{\Omega}(\xi(z)+\hat{\mu})\left((u-M)^{+}\right)^{2} d z+\int_{\partial \Omega} \beta(z)\left((u-M)^{+}\right)^{2} d \sigma \leqslant 0, \\
& \quad \Rightarrow u \leqslant M
\end{aligned}
$$

Similarly, choosing $h=(-M-u)^{+} \in H^{1}(\Omega)$, we obtain

$$
\begin{aligned}
& -M \leqslant u, \\
& \Rightarrow u \in[-M, M] \cap C^{1}(\bar{\Omega})(\text { see }(7)) .
\end{aligned}
$$

Proposition 5. If hypotheses $H(\xi), H(\beta), H(f)$ hold, then
(a) $\tau \hat{\mu}_{1} \leqslant u$ for all $u \in K_{\hat{\varphi}_{+}} \backslash\{0\}$;
(b) $v \leqslant-\tau \hat{u}_{1}$ for all $v \in K_{\hat{\varphi}_{-}} \backslash\{0\}$.

Proof.

(a) Let $u \in K_{\hat{\varphi}_{+}} \backslash\{0\}$ and consider the set

$$
\mathcal{S}_{u}=\left\{t>0: t \hat{u}_{1} \leqslant u\right\} .
$$

Since $u \in D_{+}$(see (8)), we infer that

$$
\mathcal{S}_{u} \neq \varnothing .
$$

Let $t^{*}=\sup \mathcal{S}_{u}$ and suppose that $t^{*}<\tau$. Set

$$
\Omega_{+}^{1}=\left\{0<u \leqslant \tau \hat{u}_{1}\right\} \quad \text { and } \quad \Omega_{+}^{2}=\left\{u>\tau \hat{u}_{1}\right\} .
$$

We have

$$
\begin{align*}
& \hat{f}(z, u) \geqslant(\eta+\hat{\mu}) u>\left(\left|\hat{\lambda}_{1}\right|+\hat{\mu}\right) u \geqslant\left(\left|\hat{\lambda}_{1}\right|+\hat{\mu}\right)\left(t^{*} \hat{u}_{1}\right) \\
& \quad \text { for almost all } z \in \Omega_{+}^{1}\left(\text { see }(6) \text { and recall } t^{*}<\tau\right) \tag{10}\\
& \hat{f}(z, u)=f\left(z, \tau \hat{u}_{1}\right)+\hat{\mu}\left(\tau u_{1}\right) \text { (see (6)) } \\
& \geqslant(\eta+\hat{\mu})\left(\tau \hat{\mu}_{1}\right)(\text { see }(5) \text { and recall the definition of } \tau) \\
&>\left(\left|\hat{\lambda}_{1}\right|+\hat{\mu}\right)\left(t^{*} \hat{u}_{1}\right) \quad \text { for almost all } z \in \Omega_{+}^{2}\left(\text { recall } t^{*}<\tau\right) . \tag{11}
\end{align*}
$$

Then

$$
\begin{aligned}
&\langle A(u), h\rangle+\int_{\Omega}(\xi(z)+\hat{\mu}) u h d z+\int_{\partial \Omega} \beta(z) u h d \sigma=\int_{\Omega} \hat{f}(z, u) h d z \quad \text { for all } h \in H^{1}(\Omega) \\
& \Rightarrow-\Delta u(z)+(\xi(z)+\hat{\mu}) u(z)= \hat{f}(z, u(z)) \\
&>\left(\left|\hat{\lambda}_{1}\right|+\hat{\mu}\right)\left(t^{*} \hat{u}_{1}(z)\right)(\text { see }(10),(11)) \\
& \geqslant-\Delta\left(t^{*} \hat{u}_{1}(z)\right)+(\xi(z)+\hat{\mu})\left(t^{*} \hat{u}_{1}(z)\right) \quad \text { for almost all } z \in \Omega \\
&(\operatorname{see}(10),(11)) \\
& \Rightarrow \Delta\left(u-t^{*} \hat{u}_{1}\right)(z) \leqslant\left(\left\|\xi^{+}\right\|_{\infty}+\hat{\mu}\right)\left(u-t^{*} \hat{u}_{1}\right)(z) \quad \text { for almost all } z \in \Omega \\
& \quad\left(\text { see hypothesis } H(\xi) \text { and recall that } t^{*}<\tau\right) \\
& \Rightarrow u-t^{*} \hat{u}_{1} \in D_{+} \quad \quad \text { (by the strong maximum principle). } .
\end{aligned}
$$

This contradicts the maximality of t^{*}. Therefore

$$
\begin{aligned}
& \tau \leqslant t^{*} \\
& \Rightarrow \tau \hat{u}_{1} \leqslant u \quad \text { for all } u \in K_{\hat{\varphi}_{+}} .
\end{aligned}
$$

(b) Similarly we show that

$$
v \leqslant-\tau \hat{u}_{1} \quad \text { for all } v \in K_{\hat{\varphi}_{-}} .
$$

With the next proposition we satisfy the geometry of Theorem 1 .
Proposition 6. If hypotheses $H(\xi)$, $H(\beta)$, $H(f)$ hotd, and V_{n} is an n-dimensional subspace of $H^{1}(\Omega)$, then we can find $\rho_{n} \in(0,1)$ small such that

$$
\sup \left[\hat{\varphi}(u): u \in V_{n},\|u\|=\rho_{n}\right]<0 .
$$

Proof. All norms on V_{n} are equivalent. So, we can find $\rho_{n} \in(0,1)$ small such that

$$
\begin{equation*}
u \in V_{n},\|u\| \leqslant \rho_{n} \Rightarrow|u(z)| \leqslant m_{*} \quad \text { for almost all } z \in \Omega \tag{12}
\end{equation*}
$$

with $m_{*}=\min _{\bar{\Omega}} \tau \hat{u}_{1}$ (recall that $\hat{u}_{1} \in D_{+}$). So, for $u \in V_{n}$, with $\|u\| \leqslant \rho_{n}$, we have

$$
\hat{\varphi}(u) \leqslant \hat{c}\|u\|^{2}-\eta\|u\|_{2}^{2} \quad \text { for some } \hat{c}>0
$$

(see hypothesis $H(\xi), H(\beta)$, (5) and (12))
$\leqslant \hat{c}-\eta \hat{c}_{1}\|u\|^{2} \quad$ for some $\hat{c}_{1}>0$
(since all norms on V_{n} are equivalent).
Then choosing $\eta>\left|\hat{\lambda}_{1}\right|$ even bigger if necessary (so that $\eta>\frac{\hat{c}_{1}}{\hat{c}}$), we see that

$$
\sup \left[\hat{\varphi}(u): u \in V_{n},\|u\|=\rho_{n}\right]<0
$$

Now we are ready for the main result of this paper, which shows that problem (1) admits a whole sequence of distinct nodal smooth solutions which converge to the trivial solution.

Theorem 7. If hypotheses $H(\xi), H(\beta), H(f)$ hold, then problem (1) has a sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq H^{1}(\Omega)$ of nodal solutions such that

$$
u_{n} \in C^{1}(\bar{\Omega}) \quad \text { for all } n \in \mathbb{N} \text { and } u_{n} \rightarrow 0 \text { in } C^{1}(\bar{\Omega}) .
$$

Proof. Proposition 2, Corollary 3 and Proposition 6 permit the use of Theorem 1. So, we can find

$$
\begin{equation*}
\left\{u_{n}\right\}_{n \geqslant 1} \subseteq K_{\hat{\varphi}} \quad \text { such that } u_{n} \rightarrow 0 \text { in } H^{1}(\Omega) . \tag{13}
\end{equation*}
$$

Recall that $K_{\hat{\varphi}} \subseteq C^{1}(\bar{\Omega})$ (see (7)). So, we have $u_{n} \in C^{1}(\bar{\Omega})$.
Proposition 4 and the regularity theory of Wang [15] imply that there exist $\alpha \in(0,1)$ and $\hat{c}_{2}>0$ such that

$$
\begin{equation*}
u_{n} \in C^{1, \alpha}(\bar{\Omega}) \quad \text { and } \quad\left\|u_{n}\right\|_{C^{1, \alpha}(\bar{\Omega})} \leqslant \hat{c}_{2} \quad \text { for all } n \in \mathbb{N} \tag{14}
\end{equation*}
$$

Then from (13), (14) and the compact embedding of $C^{1, \alpha}(\bar{\Omega})$ into $C^{1}(\bar{\Omega})$, we have that

$$
u_{n} \rightarrow 0 \quad \text { in } C^{1}(\bar{\Omega}) .
$$

So, we will have

$$
\begin{equation*}
u_{n} \in\left[-\tau \hat{u}_{1}, \tau \hat{u}_{1}\right] \backslash\left\{ \pm \tau \hat{u}_{1}\right\} \quad \text { for all } n \geqslant n_{0} . \tag{15}
\end{equation*}
$$

From Proposition 5 and (6), (15), it follows that

$$
\left\{u_{n}\right\}_{n \geqslant n_{0}} \subseteq C^{1}(\bar{\Omega}) \text { are nodal solutions of (1) }
$$

and we have

$$
u_{n} \rightarrow 0 \quad \text { in } C^{1}(\bar{\Omega}) .
$$

Acknowledgment

V. Rădulescu was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0195.

References

[1] H.-P. Heinz, Free Ljusternik-Schnirelmann theory and the bifurcation diagrams for certain singular nonlinear problems, J. Differential Equations 66 (1987) 263-300.
[2] Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001) 15-33.
[3] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005) 352-370.
[4] A. Castro, J. Cossio, C. Vélez, Existence of seven solutions for an asymptotically linear Dirichlet problem without symmetries, Ann. Mat. Pura Appl. 192 (2013) 607-619.
[5] N.S. Papageorgiou, F. Papalini, Seven solutions with sign information for sublinear equations with unbounded and indefinite potential and no symmetries, Israel J. Math. 201 (2014) 761-796.
[6] D. Qin, X. Tang, J. Zhang, Multiple solutions for semilinear elliptic equations with sign-changing potential and nonlinearity, Electron. J. Differential Equations 2013 (207) (2013) 1-9.
[7] Y. Wu., T. An., Infinitely many solutions for a class of semilinear elliptic equations, J. Math. Anal. Appl. 414 (2014) 285-295.
[8] D. Zhang, C. Liu, Multiple solutions for a class of semilinear elliptic equations with general potentials, Nonlinear Anal. 75 (2012) 5473-5481.
[9] W. Zhang, X. Tang, J. Zhang, Infinitely many solutions for elliptic boundary value problems with sign-changing potential, Electron. J. Differential Equations 2014 (53) (2014) 1-11.
[10] N.S. Papageorgiou, V.D. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, in: Recent Trends in Nonlinear Partial Differential Equations. II. Stationary Problems, in: Contemp. Math., vol. 595, Amer. Math. Soc., Providence, RI, 2013, pp. 293-315.
[11] N.S. Papageorgiou, V.D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with indefinite and unbounded potential, Trans. Amer. Math. Soc. 367 (2015) 8723-8756.
[12] N.S. Papageorgiou, V.D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut. 29 (2016) 91-126.
[13] N.S. Papageorgiou, V.D. Rădulescu, Infinitely many nodal solutions for nonlinear nonhomogeneous Robin problems, Adv. Nonlinear Stud. 16 (2016) 287-300.
[14] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[15] X. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991) 283-310.
[16] N.S. Papageorgiou, V.D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014) 2449-2479.
[17] N.S. Papageorgiou, P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014) 565-592.

[^0]: * Corresponding author at: Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania.

 E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro (V.D. Rădulescu).

