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Ground state solutions

1. Introduction

In this paper, we are concerned with the following magnetic Choquard equation with critical exponential
growth:

—(V +iA(x)?u+ V(z)u = (1 *F(|u|)> f(|u‘)u, in R?, (1.1)

|z Jul

where 0 < g < 2, i is the imaginary unit, V : R? — R is an electric potential, A € L? (R? R?) is a

magnetic potential and F(t) = fot f(s)ds. The magnetic field B := curl A = (Bji), 1 < j,k < 2, where
Bji, == 0;Ar — 0 A;. Functions V, A and f satisfy the following basic assumptions respectively:

(VA) V € C(R? — R) with inf g2 V(2) > 0, A € L>=(B(0, p),R?) where p > 0 is a constant, and B(z),
V(z) are 1-periodic in z7, z2;
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(F1) f € C(R,R), and there exists ag > 0 such that
ft)

[t] =00 eat?

=0 (4+00), for all @ > ap (a0 < ap);

(F2) f(t) = o(|t|* /%) as |t| — 0.

Due to the relevance in semiconductor theory, condensed matter physics and plasma physics, the research
on magnetic elliptic equations aroused great interests to scholars recently, see [1-7] and the references therein.
For the magnetic Choquard equation (1.1), most of them are concerned with the case that the nonlinearity
is of polynomial growth. By using Nehari manifold method and Ljusternik—Schnirelmann theory, Bueno—
Mamani—Pereira [3] showed the existence of ground state solutions and multiple solutions for Eq. (1.1).
When f(u) = |ul’""(2 < p < o0), Ji-Ridulescu [4] proved that the above equation has at least 2F — 1 multi-
bump solutions if the zero set of V' has several isolated connected components {21, ..., {2, such that the
interior of {2; is non-empty and 02; is smooth. Nevertheless, compared with the case that the nonlinearity
is of polynomial growth in [3,4], dealing with Eq. (1.1) with exponential growth is much more difficult since
it causes great obstacles in proving that the Cerami sequence is non-vanishing and showing that the weak
limit of Cerami sequence is a solution of the original equation. As far as we know, there is no related results
in this case. This is a basic research motivation of the present paper.

On the other hand, for the real-valued Choquard equation with critical exponential growth

— Au+V(z)u= (I, * F(u)f(u), z € R?, (1.2)

by applying the critical point theorem established by Bartolo-Benci—Fortunato [8] and developing a direct
approach, Qin—Tang [9] proved the existence of nontrivial solution for the above equation. Whereas, due
to the existence of magnetic potential A, Eq. (1.1) cannot be changed into a real-valued problem, so the
methods dealing with Eq. (1.2) cannot be applied to the complex-valued problem (1.1). Consequently, both
the critical exponential growth nonlinearity and magnetic potential enforce the implementation of new tricks
and techniques.

Define f(t) zg(t)/t’ i i i 8’ Under the assumptions (F1) and (F2), we can write problem (1.1) in

the form

] 1 = .
— (V4 iA(x)?u+V(z)u = (W * F(|u|)> F(u|)u, in R?, (1.3)
and the corresponding energy functional can be defined by

) = [ 19ad® + ve@llide 5 [ (oo P ) Fu

where V qu := Vu + i A(x)u. Before stating our result, we introduce several mild assumptions on f.

(F3) there exists 5 > 2 such that 2tf(¢t) > SF(t) > 0, V t € R\{0};

(F4) f(t) is nondecreasing in (0, c0);

(F5) there exist Ko > 0 and to > 0 such that F(t) < Ko|f(t)|, ¥V || > to;

(F6) lim, , efa(Ttt)Q =7> (4—p)/ (2 — p)(3 — p)/4rpi=+, where p satisfies (4 — p)(V, + 49?)p? < 4 with

V, = maxp(,p) V(z) and ¥ = esssuppq ,) |A(2)].

Our main result is stated as follows.

Theorem 1.1. Assume that (VA), (F1)-(F6) are satisfied. Then Eq. (1.1) has a ground state solution.
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Remark 1.2. By establishing an energy estimate inequality involving convolution terms and using
non-Nehari manifold method developed in [10], we weaken the strict monotonicity condition

(WN) f(¢)/t is strictly increasing if ¢ > 0 and strictly decreasing in t < 0,

which is used in [3,4] to (F4). Furthermore, we introduce a Moser type function involving the magnetic
potential, with which we show that the minimax level associated with problem (1.1) is less than the threshold
by subtle estimates, and then we prove successfully that the Cerami sequence does not vanish. Our results
complement and generalize the previous ones in the literature and our methods can be applied to related
magnetic elliptic equations with critical exponential growth.

Throughout this paper, we denote the open ball centered at x with radius R by B(z, R). The norm of
L¥(R?,C)(1 < s < 00) is denoted by || - ||s and C;(i = 1,2,...,n) are different positive numbers in different
places. For 2 € C, we use Re(z) and Z to denote the real part and the complex conjecture of x, respectively.

2. Variational settings and preliminaries

Consider the space Hy = {u € L*(R?,C) : Vau € L?*(R%* C)} endowed with the scalar product
(u,v) = Re [2[VauVav + V(z)ut]dz, and then ||u| = (u,u)'/?. By the diamagnetic inequality (see [11])
|V|u|(z)| < |Vu+iAul, a.e. on R?, for any u € Ha, we have |u| € H'(R? R), and then the embedding
Hp — LS(RQ7 C) is continuous for 2 < s < oo and locally compact for 1 < s < 0.

The Trudinger—Moser inequality is a crucial tool to deal with the exponential growth nonlinearity which
is established firstly by Cao [12] and read as follows.

Lemma 2.1. Ifu € HY(R?), |[Vulls <1, |Julls < M and o < 4, then there exists a constant C(M, ) > 0
such that
/ (em‘g - 1) dx < C(M, ).
R2

By virtue of (F1) and (F2), for any € > 0, @ > a9 and fixed ¢ > 1, there exists C. > 0 such that
O] < et®2 4 o™ (e771)  and [F@) < et 4 c? (271), )

which, together with Lemma 2.1 and the Hardy-Littlewood—Sobolev inequality (see [11]), implies I €
C'(H4,R) and for any u,v € Hy

DS (ju(@)u(z)o(z)

|z —y|"

(I'(u), v) = Re URQ YV AuV a0 + V(2)ut)de — /RQ /RQ F(ju( dxdy} .

From now on, we always assume that (VA) and (F1)-(F6) are satisfied.

Lemma 2.2. For anyu € Hy and t > 0, there holds

1 —¢2
2

I(u) > I(tu) + (I'(u), u). (2.2)

Proof. Apparently, (2.2) holds when u = 0. Next we assume u # 0. Note that

1—1¢2

42
)~ 1600 - 255 = [ PR QD@ luto)
5 Pt F(u()]) 3 F(lu)DF(luo)]) | drdy.

3



L. Wen and V.D. Rddulescu Applied Mathematics Letters 132 (2022) 108153

Define a function h(t) : R — R as follows.

/ / 1—252 F(ltuy )|)f(|u(x)|)|u(1’)|+F(|tu(y)|)F(\fu($)|)—F(|U(y)|)F(\u($)|)dxdy
R2 JR2 20z —y|" .
By (F4), F(t)/t is non-decreasing in (0,00) and f(t)t > F(t) > 0, V t € R, which yields
thu(@)llu)| { () i
0= [, [ EEED o) - p(ute
(tul) _ EQuD] jogn 12021
o) | - S dy{< 0,0<t<1.
This implies h(t) > h(1) = 0. Therefore, we have that (2.2) holds. O
Lemma 2.3. There exist a constant ¢, € (0,m], and a sequence {u,} C Ha such that
I(un) = car [ (un)[[(1 + [unl)) = 0, (2.3)

where m = infar I and N := {u € Ha\{0} : (I'(u),u) = 0}.

Proof. Tt follows from (2.1) and Sobolev imbedding theorem that for any u € H4 with |lu|| < /(2 — p)7/a,
there holds
2—p

1/(4-p)
/ F(|u\)4/4_“dl‘ S/ [|u\(4 w)/ +Cl|u\q (ealu\2 _ 1)} e
R2 R2
4q/(4— a(2—w) " w2 (Jul/ JulD? R
< G [lul3 + [lulld2/@ [/RQ (et 1wl /1 _ 1) dx] 7

which, together with the Hardy-Littlewood—Sobolev inequality and Lemma (2.1), implies

\u F(lu(y)]) PR e 2
drdy < Cy | [ |F(jul)] dz < Calllulls™ + lufl2).  (2.4)
R2 JR2 R2

yl“
Therefore, by (2.4), one has

1 _
I(u) = Slull* = Csllull™" = Csllull*®, ¥ [lull < V(2= p)m/a,

which yields that there exists small po > 0 such that I(u) > 0 on S,, = {u € Ha : ||u|| = po}. By virtue
of (F1), we can derive that there exists v € Hy with ||v]| > po such that I(v) < 0. Then Mountain Pass
Theorem implies there exists {u,} C Ha such that I(u,) — ¢ > 0 and ||I'(un)||(1 + ||un|]) = 0 as n — oo.
The rest part is similar to [10], so we omit here. [

Through a standard argument, we can derive the following lemma.
Lemma 2.4. For any u € Hy\{0}, there exists t, > 0 such that t,u € N.

3. Proof of Theorem 1.1

Inspired by [2,13], we define a Moser type function involving the magnetic potential w, (z) = e*¢®)u,, (z),

VIER 0 < 2| < p/n,

Var
where ¢(z) = A(0) - = Y7_, A;(0)z; and u,(z) = 1\/% p/n < |z| < p, with p < 2[(4 — pu)(V, +
0, |lz| > p.
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49%)]71/2, Note that |21 + 22|> = |21]* + |22|° + 2Re(2173) for any 21, 2, € C and Vei®®@) = i@V ¢(z) =
ie'?(®) A(0), then we have

A 2
/ VA(ewu)un)‘ dz:/
R2

R2

, 2 , 2 -

=/ V(ew(g”)un)’ dx—i—/ A(;v)e“i’(”’)un’ dz —2Re | V(e*@u,) - iA(x)ei¢@)u, dz.
R2 R2

R2
= [ (AP VunP)do [ (4@ o2 [ () AO)Eds
R2 R2 R2

< / |V, |*de + 4192/ uldx < oo,
B(0,p) B(0,p)

from which we can deduce that w,, € H 4. Moreover, via an elementary computation, one has

. , 2
V(e @u,) + z'A(x)eW(m)un‘ dx

1 1 1

2 2 2

nl dx = — — = n > 0, fi > 2.
/B(o,p) hon["dz = p <4logn 4n2logn 2n2> P orn

Hence we have

funl = [ [[9a () [+ v

< / |V, |*dz + 4192/ uide + / V(z)uZde < 1+ (V, + 49%)p*7,.
B(0,p) B(0,p) B(0,p)

. 2
e’¢($)un‘ } dx

< (4— ,U.)TI"

Lemma 3.1. There exists k € N such that max;>o I (twy,) o

Proof. By virtue of (F6), we can obtain that there exist € > 0 and ¢, > 0 such that

T Ce v eR2 |t >t., ang 087 =B -p—w?

tF(x,t) >
(@,1) 2 20y 1+e 4rpi—n

(3.1)

In the following part, we discuss three cases, where the inequalities hold for n € N large enough.

Case (i): t € [O, V(4 - u)w/QaO}. It follows from (F3) that

1w = S 4 [, [ PRI WD ,,,,

L V4o 5 (- (A=) (V, +49%)mp? (4w
< t* < + <
2 4oy 16 logn 20

Case (ii): t € {\/(4 — W)T/200, /(4 — ) (1 + s)w/ao]. Since [tw,| > t. for x € B(0, p/n), by virtue of (3.1)
and [14, (2.21)], one has

e I

yl"
2
§1+(V +4’l9 PTntQ 7T(22 ) 220 _1t210gn/ dx/ 1 B
2 205t% logn B(0,p/n) B(0,p/n) 1T — Y|
< + (Vp + 4192)p27'n 2 2772p4_“(7 — 5)2 agr 2 logn
= 2 a0l + )2 — )@ — ) (A — pPni#logn |

5
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Let t,, € [0, 00) such that ¢'(t,) = 0, which means

ti _ (4 —p)m
)]
| og[t + (Vj + 49%) 7] + log[(1 +€)(2 = 0) (8 = p)(4 = p)?] — log[dmp" (v — €)’]

1
(4—p)logn

Hence ¢,,(t) achieves its maximum at ¢, that is for each n € N,

1+ (V,+ 492)p?1, 2 71+ (V, + 492)p*7,]

n(t) < on(ty, . , Vi>0. 3.2
onlt) < pultn) g , T > (32)
Using (3.1), we have
1+ (V, +49%)p?7, .2
2 n
(142) 2= ) (3= ) (4— 1)
(4—pr 2y 2 log AmptTH(y—e)? ( 1 >
< —— |1+ (V,+ 49 n + +0
- 2 v o (4—p)logn log®n
4— 49%)p? 1
cUopr () Wt 40y g ). (3.3)
20 4logn log® n

Combining (3.2) with (3.3), we derive

M—uh(Hj%+m%ﬁ>_ﬂﬂﬂw+wﬁﬁm+0< 1)

I(twy,) < @n(tn) <

20 4logn 20 logn log?n
4— 4— (4= p)(V, + 49%)p? 1 4—
cUoprl A-U-p, 4707 : PECDLy
2aq 4(4 — p)logn log”n 2w

Case (iii): t € [\/(4 — p)(1 + €)7 /v, 00]. Similarly, we have [tw,| > t. for x € B(0, p/n) and

2y 2 3 4—pu(n _ )2 a
I(twy) < L+ (Vp +407)p 1 5 - 2m°p (v —€) 26(4—;0 logn[ﬁfg—l}
2 ag(2 = p)(3 — p)(4 — p)lognt
) s L/ Vi Ve S s e o A A C
- 209 ap(l+e)(2—pu)(3—p)(4—p)?logn 29
where at the second inequality, we use the fact that the function
wn(t) — 1+ (V;J +24192)p27n 2 2773[)4—#(7 — 8)2 6(4*10 log”[(4fz)ﬁt2*1]

ag(2 — p)(3 — p)(4 — p) log nt?

is decreasing on [v/(4 — u)(1 + €)7/ap, oc] since its stagnation point of v, (¢) tends to /(4 — u)w/ag as

4—p)e
n — oo and the last inequality can be deduced due to ”(logl: — o0 as n — oo. The proof is now

complete. [J

Proof of Theorem 1.1. In view of Lemma 2.3 and (F3), there exists a sequence {u,} € Hy4 satisfying
(2.3) and |Jup || < Cr. If § := limy, 00 SUP,cp2 fB(y 1 lun|?dz = 0, then Lions’ concentration compactness

lemma implies u, — 0 in L*(R?) for s € (2,00). Through a similar argument in [9], we have

[ E D gy oty g [ [ O G untel g, o
R2 JR2 |z R2 J|up|<1 7

—yl" |z —y|*

which, together with Lemmas 2.4 and 3.1, shows that there exists £ > 0 such that ||u,|* = 2c. + o(1) ==

%(1 —3&)+0(1). Choose ¢ € (1,2) such that (14+£&)(1 —3&)qg < 1—¢&. Then it follows from Lemma 2.1,

6
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(F1), Cauchy—Schwarz type inequality (see [15]) and Hardy-Littlewood—Sobolev inequality that

[ P il ,,,
R2 J|up|>1

|z —y|"

[N

F(Jun () ) F(fun()])
= [/ e

! dxdy} ) [ / el 5 ()l X )L (D X 2160

(4—p)(g—1)
1

4q 4_L1 4q q
/ | (Jun]) T d / 1 | T i < Collunll 1 = o).
|up|>1 |un|>1 (4—p)(g—1)

which, together with (2.3), implies

< Cg

DL (@) Dlun (@)] = F(un@D] 3 00— 1),

|z —y|"

e +0(1) = I(uy) — %<I,(Un),un> _ %/}RQ 5 F(lun(y

This contradiction shows that § > 0. Hence there exists {y,} € R? such that fB(yn 1 lun|? > . By
virtue of (VA), we define a translation T : Ha x Z? — H, by setting (T,u)(z) = u(z + 2)e?*(®), where
v, € H} (R?) satisfying A(z + z) — A(z) = Vg,(z). Then T is well defined and isometry (see [16]).

Define v, = Ty, un, where [z] denotes the largest integer not exceeding x. By (VA) and (2.3), we have
fB(O 1+v3) o) *dz > g, I(vn) — ¢ and | I'(v,)||(1 + [|vn]]) — 0. The boundedness of {v,} can be yielded
by (F3) and there exists v € Hy4 such that v, = v in H4 and v, — v in L], .(R?) for s € [2,00). By using a
same argument in [9], we have I'(v) = 0 with v # 0 which shows I(v) > m. From (F4), we can get

m> e, = lim [I(vn) — ;<I’(vn),vn>}

i [ [ El e ) = Pl

n—reo R2 JR2 |z —yl*

L[] FQD @@l = Flot) o1 o Lo
=5 1L L L dady| = 100) = 37 0).0) = 1)

Therefore, I(v) = m = infar I. The proof is now complete. O
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