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a b s t r a c t

This paper is dedicated to show the existence of ground state solution for a
magnetic Choquard equation with critical exponential growth. By introducing
a Moser type function involving magnetic potential and applying analytical
techniques, we surmount the obstacles brought from the magnetic potential which
makes it a complex-valued problem and the critical exponential growth nonlinearity
which makes it difficult to show the non-vanishing of Cerami sequence. Our
methods can be applied to related magnetic elliptic equations.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we are concerned with the following magnetic Choquard equation with critical exponential
growth:

− (∇ + iA(x))2u+ V (x)u =
(

1
|x|µ

∗ F (|u|)
)
f(|u|)

|u|
u, in R2, (1.1)

where 0 < µ < 2, i is the imaginary unit, V : R2 → R is an electric potential, A ∈ L2
loc(R2,R2) is a

magnetic potential and F (t) =
∫ t

0 f(s)ds. The magnetic field B := curl A = (Bjk), 1 ≤ j, k ≤ 2, where
Bjk := ∂jAk − ∂kAj . Functions V , A and f satisfy the following basic assumptions respectively:

(VA) V ∈ C(R2 → R) with infx∈R2 V (x) > 0, A ∈ L∞(B(0, ρ),R2) where ρ > 0 is a constant, and B(x),
V (x) are 1-periodic in x1, x2;
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(F1) f ∈ C(R,R), and there exists α0 > 0 such that

lim
|t|→∞

f(t)
eαt2 = 0 (+∞), for all α > α0 (α < α0);

(F2) f(t) = o(|t|(2−µ)/2) as |t| → 0.

Due to the relevance in semiconductor theory, condensed matter physics and plasma physics, the research
n magnetic elliptic equations aroused great interests to scholars recently, see [1–7] and the references therein.
or the magnetic Choquard equation (1.1), most of them are concerned with the case that the nonlinearity

s of polynomial growth. By using Nehari manifold method and Ljusternik–Schnirelmann theory, Bueno–
amani–Pereira [3] showed the existence of ground state solutions and multiple solutions for Eq. (1.1).
hen f(u) = |u|p−1(2 < p < ∞), Ji–Rădulescu [4] proved that the above equation has at least 2k −1 multi-

ump solutions if the zero set of V has several isolated connected components Ω1, . . . , Ωk such that the
nterior of Ωj is non-empty and ∂Ωj is smooth. Nevertheless, compared with the case that the nonlinearity
s of polynomial growth in [3,4], dealing with Eq. (1.1) with exponential growth is much more difficult since
t causes great obstacles in proving that the Cerami sequence is non-vanishing and showing that the weak
imit of Cerami sequence is a solution of the original equation. As far as we know, there is no related results
n this case. This is a basic research motivation of the present paper.

On the other hand, for the real-valued Choquard equation with critical exponential growth

− ∆u+ V (x)u = (Iα ∗ F (u))f(u), x ∈ R2, (1.2)

y applying the critical point theorem established by Bartolo–Benci–Fortunato [8] and developing a direct
pproach, Qin–Tang [9] proved the existence of nontrivial solution for the above equation. Whereas, due
o the existence of magnetic potential A, Eq. (1.1) cannot be changed into a real-valued problem, so the
ethods dealing with Eq. (1.2) cannot be applied to the complex-valued problem (1.1). Consequently, both

he critical exponential growth nonlinearity and magnetic potential enforce the implementation of new tricks
nd techniques.

Define f̃(t)
{

= f(t)/t, if t ̸= 0,
= 0, if t = 0. Under the assumptions (F1) and (F2), we can write problem (1.1) in

he form
− (∇ + iA(x))2u+ V (x)u =

(
1

|x|µ
∗ F (|u|)

)
f̃(|u|)u, in R2, (1.3)

and the corresponding energy functional can be defined by

I(u) = 1
2

∫
R2

[|∇Au|2 + V (x)|u|2]dx− 1
2

∫
R2

(
1

|x|µ
∗ F (|u|)

)
F (|u|)dx,

where ∇Au := ∇u+ iA(x)u. Before stating our result, we introduce several mild assumptions on f .

(F3) there exists β > 2 such that 2tf(t) ≥ βF (t) > 0, ∀ t ∈ R\{0};
(F4) f(t) is nondecreasing in (0,∞);
(F5) there exist K0 > 0 and t0 > 0 such that F (t) ≤ K0|f(t)|, ∀ |t| ≥ t0;
(F6) limt→∞

f(t)
eα0t2 = γ > (4 − µ)

√
(2 − µ)(3 − µ)/4πρ4−µ, where ρ satisfies (4 − µ)(Vρ + 4ϑ2)ρ2 < 4 with

Vρ = maxB(0,ρ) V (x) and ϑ := esssupB(0,ρ) |A(x)|.

ur main result is stated as follows.

heorem 1.1. Assume that (VA), (F1)-(F6) are satisfied. Then Eq. (1.1) has a ground state solution.
2
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Remark 1.2. By establishing an energy estimate inequality involving convolution terms and using
on-Nehari manifold method developed in [10], we weaken the strict monotonicity condition

(WN) f(t)/t is strictly increasing if t > 0 and strictly decreasing in t < 0,

hich is used in [3,4] to (F4). Furthermore, we introduce a Moser type function involving the magnetic
otential, with which we show that the minimax level associated with problem (1.1) is less than the threshold
y subtle estimates, and then we prove successfully that the Cerami sequence does not vanish. Our results
omplement and generalize the previous ones in the literature and our methods can be applied to related
agnetic elliptic equations with critical exponential growth.
Throughout this paper, we denote the open ball centered at x with radius R by B(x,R). The norm of

s(R2,C)(1 ≤ s < ∞) is denoted by ∥ · ∥s and Ci(i = 1, 2, . . . , n) are different positive numbers in different
laces. For x ∈ C, we use Re(x) and x̄ to denote the real part and the complex conjecture of x, respectively.

. Variational settings and preliminaries

Consider the space HA := {u ∈ L2(R2,C) : ∇Au ∈ L2(R2,C)} endowed with the scalar product
⟨u, v⟩ = Re

∫
R2 [∇Au∇Av + V (x)uv̄]dx, and then ∥u∥ = ⟨u, u⟩1/2. By the diamagnetic inequality (see [11])

|∇|u|(x)| ≤ |∇u+ iAu|, a.e. on R2, for any u ∈ HA, we have |u| ∈ H1(R2,R), and then the embedding
HA ↪→ Ls(R2,C) is continuous for 2 ≤ s < ∞ and locally compact for 1 ≤ s < ∞.

The Trudinger–Moser inequality is a crucial tool to deal with the exponential growth nonlinearity which
is established firstly by Cao [12] and read as follows.

Lemma 2.1. If u ∈ H1(R2), ∥∇u∥2 ≤ 1, ∥u∥2 ≤ M and α < 4π, then there exists a constant C(M,α) > 0
such that ∫

R2

(
eαu2

− 1
)
dx ≤ C(M,α).

By virtue of (F1) and (F2), for any ε > 0, α > α0 and fixed q > 1, there exists Cε > 0 such that

|f(t)| ≤ ε|t|(2−µ)/2 + Cε|t|q−1
(
eαt2−1

)
and |F (t)| ≤ ε|t|(4−µ)/2 + Cε|t|q

(
eαt2−1

)
, (2.1)

which, together with Lemma 2.1 and the Hardy–Littlewood–Sobolev inequality (see [11]), implies I ∈
C1(HA,R) and for any u, v ∈ HA

⟨I ′(u), v⟩ = Re

[∫
R2

[∇Au∇Av + V (x)uv̄]dx−
∫
R2

∫
R2

F (|u(y)|)f̃(|u(x)|)u(x)v̄(x)
|x− y|µ

dxdy

]
.

From now on, we always assume that (VA) and (F1)-(F6) are satisfied.

Lemma 2.2. For any u ∈ HA and t ≥ 0, there holds

I(u) ≥ I(tu) + 1 − t2

2 ⟨I ′(u), u⟩. (2.2)

Proof. Apparently, (2.2) holds when u = 0. Next we assume u ̸= 0. Note that

I(u) − I(tu) − 1 − t2

2 ⟨I ′(u), u⟩ =
∫
R2

∫
R2

1
|x− y|µ

[
1 − t2

2 F (|u(y)|)f(|u(x)|)|u(x)|

+1
2F (|tu(y)|)F (|tu(x)|) − 1

2F (|u(y)|)F (|u(x)|)
]
dxdy.
3
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Define a function h(t) : R → R as follows.

h(t) =
∫
R2

∫
R2

(1 − t2)F (|tu(y)|)f(|u(x)|)|u(x)| + F (|tu(y)|)F (|tu(x)|) − F (|u(y)|)F (|u(x)|)
2|x− y|µ

dxdy.

y (F4), F (t)/t is non-decreasing in (0,∞) and f(t)t ≥ F (t) ≥ 0, ∀ t ∈ R, which yields

h′(t) =
∫
R2

∫
R2

t|u(x)||u(y)|
|x− y|µ

{
F (|tu(y)|)

|tu(y)| [f(|tu(x)|) − f(|u(x)|)]

+f(|u(x)|)
[
F (|tu(y)|)

|tu(y)| − F (|u(y)|)
|u(y)|

]}
dxdy

{
≥ 0, t ≥ 1,
< 0, 0 < t < 1.

his implies h(t) ≥ h(1) = 0. Therefore, we have that (2.2) holds. □

emma 2.3. There exist a constant c∗ ∈ (0,m], and a sequence {un} ⊂ HA such that

I(un) → c∗, ∥I ′(un)∥(1 + ∥un∥) → 0, (2.3)

here m := infN I and N := {u ∈ HA\{0} : ⟨I ′(u), u⟩ = 0}.

roof. It follows from (2.1) and Sobolev imbedding theorem that for any u ∈ HA with ∥u∥ <
√

(2 − µ)π/α,
here holds∫

R2
F (|u|)4/4−µdx ≤

∫
R2

[
|u|(4−µ)/2 + C1|u|q

(
eα|u|2 − 1

)]4/(4−µ)
dx

≤ C2

⎧⎨⎩∥u∥2
2 + ∥u∥4q/(4−µ)

2q

[∫
R2

(
e4α(2−µ)−1∥u∥2(|u|/∥u∥)2

− 1
)
dx

] 2−µ
4−µ

⎫⎬⎭ ,

hich, together with the Hardy–Littlewood–Sobolev inequality and Lemma (2.1), implies∫
R2

∫
R2

F (|u(x)|)F (|u(y)|)
|x− y|µ

dxdy ≤ C3

[∫
R2

|F (|u|)|4/(4−µ)dx

](4−µ)/2
≤ C4(∥u∥4−µ

2 + ∥u∥2q
2q). (2.4)

Therefore, by (2.4), one has

I(u) ≥ 1
2∥u∥2 − C5∥u∥4−µ − C6∥u∥2q, ∀ ∥u∥ <

√
(2 − µ)π/α,

hich yields that there exists small ρ0 > 0 such that I(u) > 0 on Sρ0 := {u ∈ HA : ∥u∥ = ρ0}. By virtue
f (F1), we can derive that there exists v ∈ HA with ∥v∥ > ρ0 such that I(v) < 0. Then Mountain Pass
heorem implies there exists {un} ⊂ HA such that I(un) → c > 0 and ∥I ′(un)∥(1 + ∥un∥) → 0 as n → ∞.
he rest part is similar to [10], so we omit here. □

Through a standard argument, we can derive the following lemma.

emma 2.4. For any u ∈ HA\{0}, there exists tu > 0 such that tuu ∈ N .

. Proof of Theorem 1.1

Inspired by [2,13], we define a Moser type function involving the magnetic potential wn(x) = eiϕ(x)un(x),

where ϕ(x) = A(0) · x =
∑2

j=1 Aj(0)xj and un(x) =

⎧⎪⎪⎨⎪⎪⎩
√

log n√
2π

, 0 ≤ |x| ≤ ρ/n,
log(ρ/|x|)√

2π log n
, ρ/n ≤ |x| ≤ ρ, with ρ < 2[(4 − µ)(Vρ +
0, |x| ≥ ρ.

4
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4ϑ2)]−1/2. Note that |z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2) for any z1, z2 ∈ C and ∇eiϕ(x) = ieiϕ(x)∇ϕ(x) =
eiϕ(x)A(0), then we have∫

R2

⏐⏐⏐∇A(eiϕ(x)un)
⏐⏐⏐2
dx =

∫
R2

⏐⏐⏐∇(eiϕ(x)un) + iA(x)eiϕ(x)un

⏐⏐⏐2
dx

=
∫
R2

⏐⏐⏐∇(eiϕ(x)un)
⏐⏐⏐2
dx+

∫
R2

⏐⏐⏐A(x)eiϕ(x)un

⏐⏐⏐2
dx− 2Re

∫
R2

∇(eiϕ(x)un) · iA(x)eiϕ(x)undx.

=
∫
R2

(|A(0)|2u2
n + |∇un|2)dx+

∫
R2

|A(x)|2|un|2dx+ 2
∫
R2
A(x) ·A(0)u2

ndx

≤
∫

B(0,ρ)
|∇un|2dx+ 4ϑ2

∫
B(0,ρ)

u2
ndx < ∞,

rom which we can deduce that wn ∈ HA. Moreover, via an elementary computation, one has∫
B(0,ρ)

|wn|2dx = ρ2
(

1
4 logn − 1

4n2 logn − 1
2n2

)
:= ρ2τn > 0, for n ≥ 2.

Hence we have

∥wn∥2 =
∫
R2

[⏐⏐⏐∇A

(
eiϕ(x)un

)⏐⏐⏐2
+ V (x)

⏐⏐⏐eiϕ(x)un

⏐⏐⏐2
]
dx

≤
∫

B(0,ρ)
|∇un|2dx+ 4ϑ2

∫
B(0,ρ)

u2
ndx+

∫
B(0,ρ)

V (x)u2
ndx ≤ 1 + (Vρ + 4ϑ2)ρ2τn.

Lemma 3.1. There exists k ∈ N such that maxt≥0 I(twk) < (4−µ)π
2α0

.

roof. By virtue of (F6), we can obtain that there exist ε > 0 and tε > 0 such that

tF (x, t) ≥ γ − ε

2α0
eα0t2

, ∀ x ∈ R2, |t| ≥ tε, and (γ − ε)2

1 + ε
>

(2 − µ)(3 − µ)(4 − µ)2

4πρ4−µ
. (3.1)

n the following part, we discuss three cases, where the inequalities hold for n ∈ N large enough.

ase (i): t ∈
[
0,

√
(4 − µ)π/2α0

]
. It follows from (F3) that

I(twn) = t2

2 ∥wn∥2 − 1
2

∫
R2

∫
R2

F (|twn(x)|2)F (|twn(y)|2)
|x− y|µ

dxdy

≤ 1 + (Vρ + 4ϑ2)ρ2τn

2 t2 ≤ (4 − µ)π
4α0

+ (4 − µ)(Vρ + 4ϑ2)πρ2

16α0 logn <
(4 − µ)π

2α0
.

ase (ii): t ∈
[√

(4 − µ)π/2α0,
√

(4 − µ)(1 + ε)π/α0

]
. Since |twn| ≥ tε for x ∈ B(0, ρ/n), by virtue of (3.1)

and [14, (2.21)], one has

I(twn) = t2

2 ∥wn∥2 − 1
2

∫
R2

∫
R2

F (|twn(x)|)F (|twn(y)|)
|x− y|µ

dxdy

≤ 1 + (Vρ + 4ϑ2)ρ2τn

2 t2 − π(γ − ε)2

2α2
0t

2 logne
α0π−1t2 log n

∫
B(0,ρ/n)

dx

∫
B(0,ρ/n)

1
|x− y|µ

dy

≤ 1 + (Vρ + 4ϑ2)ρ2τn

2 t2 − 2π2ρ4−µ(γ − ε)2

α0(1 + ε)(2 − µ)(3 − µ)(4 − µ)2n4−µ logne
α0π−1t2 log n.
5
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Let tn ∈ [0,∞) such that φ′(tn) = 0, which means

t2n = (4 − µ)π
α0

×
[
1 + log[1 + (Vρ + 4ϑ2)ρ2τn] + log[(1 + ε)(2 − µ)(3 − µ)(4 − µ)2] − log[4πρ4−µ(γ − ε)2]

(4 − µ) logn

]
.

Hence φn(t) achieves its maximum at tn, that is for each n ∈ N,

φn(t) ≤ φn(tn) = 1 + (Vρ + 4ϑ2)ρ2τn

2 t2n − π[1 + (Vρ + 4ϑ2)ρ2τn]
2α0 logn , ∀ t > 0. (3.2)

sing (3.1), we have

1 + (Vρ + 4ϑ2)ρ2τn

2 t2n

≤ (4 − µ)π
2α0

⎡⎣1 + (Vρ + 4ϑ2)ρ2τn +
log (1+ε)(2−µ)(3−µ)(4−µ)2

4πρ4−µ(γ−ε)2

(4 − µ) logn

⎤⎦ +O

(
1

log2 n

)

≤ (4 − µ)π
2α0

(
1 + (Vρ + 4ϑ2)ρ2

4 logn

)
+O

(
1

log2 n

)
. (3.3)

ombining (3.2) with (3.3), we derive

I(twn) ≤ φn(tn) ≤ (4 − µ)π
2α0

(
1 + (Vρ + 4ϑ2)ρ2

4 logn

)
− π[1 + (Vρ + 4ϑ2)ρ2τn]

2α0 logn +O

(
1

log2 n

)
≤ (4 − µ)π

2α0

[
1 − 4 − (4 − µ)(Vρ + 4ϑ2)ρ2

4(4 − µ) logn

]
+O

(
1

log2 n

)
<

(4 − µ)π
2α0

.

ase (iii): t ∈ [
√

(4 − µ)(1 + ε)π/α0,∞]. Similarly, we have |twn| ≥ tε for x ∈ B(0, ρ/n) and

I(twn) ≤ 1 + (Vρ + 4ϑ2)ρ2τn

2 t2 − 2π3ρ4−µ(γ − ε)2

α2
0(2 − µ)(3 − µ)(4 − µ) lognt2 e

(4−µ) log n
[

α0
(4−µ)π

t2−1
]

≤ π(4 − µ)(1 + ε)[1 + (Vρ + 4ϑ2)ρ2τn]
2α0

− 2π2ρ4−µ(γ − ε)2n(4−µ)ε

α0(1 + ε)(2 − µ)(3 − µ)(4 − µ)2 logn <
(4 − µ)π

2α0
,

here at the second inequality, we use the fact that the function

ψn(t) := 1 + (Vρ + 4ϑ2)ρ2τn

2 t2 − 2π3ρ4−µ(γ − ε)2

α2
0(2 − µ)(3 − µ)(4 − µ) lognt2 e

(4−µ) log n
[

α0
(4−µ)π

t2−1
]

is decreasing on [
√

(4 − µ)(1 + ε)π/α0,∞] since its stagnation point of ψn(t) tends to
√

(4 − µ)π/α0 as
→ ∞ and the last inequality can be deduced due to n(4−µ)ε

log n → ∞ as n → ∞. The proof is now
complete. □

Proof of Theorem 1.1. In view of Lemma 2.3 and (F3), there exists a sequence {un} ∈ HA satisfying
(2.3) and ∥un∥ ≤ C7. If δ := limn→∞ supy∈R2

∫
B(y,1) |un|2dx = 0, then Lions’ concentration compactness

lemma implies un → 0 in Ls(R2) for s ∈ (2,∞). Through a similar argument in [9], we have∫
R2

∫
R2

F (|un(x)|)F (|un(y)|)
|x− y|µ

dxdy = o(1) and
∫
R2

∫
|un|≤1

F (|un(y)|)f(|un(x)|)|un(x)|
|x− y|µ

dxdy = o(1),

which, together with Lemmas 2.4 and 3.1, shows that there exists ε̃ > 0 such that ∥un∥2 = 2c∗ + o(1) :=
(4−µ)π (1 − 3ε̃) + o(1). Choose q ∈ (1, 2) such that (1 + ε̃)(1 − 3ε̃)q < 1 − ε̃. Then it follows from Lemma 2.1,
2α0

6
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(F1), Cauchy–Schwarz type inequality (see [15]) and Hardy–Littlewood–Sobolev inequality that∫
R2

∫
|un|≥1

F (|un(y)|)f(|un(x)|)|un(x)|
|x− y|µ

dxdy

≤
[∫

R2

∫
R2

F (|un(x)|)F (|un(y)|)
|x− y|µ

dxdy

] 1
2

[∫
R2

[|x|µ ∗ (f(|un|)|un|χ|un|≥1)]f(|un|)|un|χ|un|≥1dx

] 1
2

≤ C8

[∫
|un|≥1

|f(|un|)
4q

4−µ dx

] 4−µ
4q

[∫
|un|≥1

|un|
4q

(q−1)(4−µ) dx

] (4−µ)(q−1)
4q

≤ C9∥un∥ 4q
(4−µ)(q−1)

= o(1),

which, together with (2.3), implies

c∗ + o(1) = I(un) − 1
2 ⟨I ′(un), un⟩ = 1

2

∫
R2

∫
R2

F (|un(y)|)[f(|un(x)|)|un(x)| − F (|un(x)|)]
|x− y|µ

dxdy = o(1).

This contradiction shows that δ > 0. Hence there exists {yn} ∈ R2 such that
∫

B(yn,1) |un|2 > δ
2 . By

irtue of (VA), we define a translation T : HA × Z2 → HA by setting (Tzu)(x) = u(x + z)eiφz(x), where
z ∈ H1

loc(R2) satisfying A(x + z) − A(x) = ∇φz(x). Then T is well defined and isometry (see [16]).
efine vn = T[yn]un, where [x] denotes the largest integer not exceeding x. By (VA) and (2.3), we have

B(0,1+
√

2) |vn|2dx > δ
2 , I(vn) → c∗ and ∥I ′(vn)∥(1 + ∥vn∥) → 0. The boundedness of {vn} can be yielded

y (F3) and there exists v ∈ HA such that vn ⇀ v in HA and vn → v in Ls
loc(R2) for s ∈ [2,∞). By using a

ame argument in [9], we have I ′(v) = 0 with v ̸= 0 which shows I(v) ≥ m. From (F4), we can get

m ≥ c∗ = lim
n→∞

[
I(vn) − 1

2 ⟨I ′(vn), vn⟩
]

= lim
n→∞

1
2

[∫
R2

∫
R2

F (|vn(y)|)[f(|vn(x)|)|vn(x)| − F (|vn(x)|)]
|x− y|µ

dxdy

]
≥ 1

2

[∫
R2

∫
R2

F (|v(y)|)[f(|v(x)|)|v(x)| − F (|v(x)|)]
|x− y|µ

dxdy

]
= I(v) − 1

2 ⟨I ′(v), v⟩ = I(v).

herefore, I(v) = m = infN I. The proof is now complete. □
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