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a b s t r a c t

This paper deals with the study of combined effects of logarithmic and critical
nonlinearities for the following class of fractional p-Kirchhoff equations:{

M([u]ps,p)(−∆)s
pu = λ|u|q−2u ln |u|2 + |u|p

∗
s −2u in Ω ,

u = 0 in RN \ Ω ,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary, N > sp with
s ∈ (0, 1), p ≥ 2, p∗

s = Np/(N −ps) is the fractional critical Sobolev exponent, and
λ is a positive parameter. The main result establishes the existence of nontrivial
solutions in the case of high perturbations of the logarithmic nonlinearity (large
values of λ). The features of this paper are the following: (i) the presence of a
logarithmic nonlinearity; (ii) the lack of compactness due to the critical term;
(iii) our analysis includes the degenerate case, which corresponds to the Kirchhoff
term M vanishing at zero.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction and the main result

Consider the following fractional p-Kirchhoff equations with logarithmic and critical nonlinearity:{
M([u]ps,p)(−∆)s

pu = λ|u|q−2
u ln |u|2 + |u|p

∗
s−2

u in Ω ,

u = 0 in RN \ Ω ,
(1.1)
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where Ω ⊂ RN is a bounded domain with Lipschitz boundary, N > sp with s ∈ (0, 1), p ≥ 2, p∗
s =

Np/(N −ps) is the fractional critical Sobolev exponent, pσ < q < p∗
s and σ will be given by condition (M2),

λ is a positive parameter, and
[u]ps,p =

∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy.

ere, (−∆)s
p is the fractional p-Laplace operator which, up to a normalization constant, is defined as

(−∆)s
pφ(x) = 2 lim

ε→0+

∫
RN \Bε(x)

|φ(x) − φ(y)|p−2(φ(x) − φ(y))
|x − y|N+ps

dy, x ∈ RN ,

for all φ ∈ C∞
0 (RN ). Henceforward, Bε(x) denotes the open ball of RN centered at x ∈ RN with radius

ε > 0. The Kirchhoff function M : R+
0 → R+

0 is assumed to be continuous, nondecreasing and satisfying

M1) For any τ > 0, there exists m0 = m0(τ) > 0 such that M(t) ≥ m0 for all t ≥ τ .
M2) There exists σ ∈ [1, p∗

s/p) such that σM̂(t) ≥ M(t)t for all t ≥ 0, where M̂(t) =
∫ t

0 M(s)ds.
M3) There exists m1 > 0 such that M(t) ≥ m1tσ−1 for all t ∈ R+ and M(0) = 0.

An example is given by M(t) = a + b tσ−1 for t ∈ R+
0 , where a ∈ R+

0 , b ∈ R+
0 and a + b > 0. When M is of

this type, problem (1.1) is said to be non-degenerate if a > 0, while it is called degenerate if a = 0.
Clearly, assumptions (M1)–(M3) cover the degenerate case. It is worth mentioning that the degenerate

case is rather interesting and is treated in well-known papers in Kirchhoff theory, see [1]. In [2], condition
(M3) was applied to investigate the existence of entire solutions for the stationary Kirchhoff type equations
driven by the fractional p-Laplace operator in RN . In the literature on degenerate Kirchhoff problems,
the transverse oscillations of a stretched string, with nonlocal flexural rigidity, depend continuously on the
Sobolev deflection norm of u via M(∥u∥2

s). From a physical point of view, the fact that M(0) = 0 means
that the base tension of the string is zero, a very realistic model. Non-degenerate Kirchhoff-type problems
are treated in [3] while the degenerate case is considered in [4–6]. We also refer to [7] for logarithmic Hartree
problems. There are very few papers that deal with the existence and multiplicity of solutions for fractional
problems involving logarithmic nonlinearity. Xiang, Hu and Yang [8] considered the following Kirchhoff
problems in the non-degenerate case:{

M([u]ps,p)(−∆)s
pu = h(x)|u|θp−2

u ln |u| + λ|u|q−2
u x ∈ Ω ,

u = 0 x ∈ RN \ Ω ,

where s ∈ (0, 1), 1 < p < N/s, Ω is a bounded domain in RN with Lipschitz boundary, q ∈ (1, p∗
s) and

h is a sign-changing function. When λ is sufficiently small (that is, low perturbations), they obtained two
nonnegative local least energy solutions by using Nehari manifold analysis. However, to the best of our
knowledge, there are no results concerning the existence of solutions for fractional p-Kirchhoff equations
with logarithmic and critical nonlinearity in the degenerate case.

Our main result establishes the existence of solutions in the case of high perturbations of the logarithmic
nonlinearity.

Theorem 1.1. Let the conditions (M1)–(M3) be satisfied. Then there exists λ∗ > 0 such that for any λ ≥ λ∗

problem (1.1) has a nontrivial solution.

Finally, we point out the lack of compactness of Sobolev embedding due to the presence of the critical
nonlinearity. That is why we use the Concentration–compactness principle to prove that the (PS)c condition
holds. In addition, we would like to stress that the extension from the case p = 2 to the case 1 < p < ∞
is not trivial. We believe that this paper is the first contribution to study the existence of solutions for the
fractional p-Kirchhoff equations with logarithmic and critical nonlinearity in the degenerate case.
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2. Auxiliary results and proof of Theorem 1.1

Let Sr denote the best constant for the compact embedding W s,p
0 (Ω) ↪→ Lr(Ω) (p < r < p∗

s), hence
r|u|r ≤ ∥u∥ for all u ∈ W s,p

0 (Ω). If S is the best constant for the embedding W s,p
0 (Ω) ↪→ Lp∗

s (Ω), then

S = inf
u∈W

s,p
0 (Ω)\{0}

∫∫
R2N

|u(x)−u(y)|p

|x−y|N+ps dxdy(∫
Ω

|u|p
∗
s dx

) p
p∗

s

. (2.1)

For each λ > 0, we define the C1-functional Jλ : W s,p
0 (Ω) → R by

Jλ(u) = 1
p

M̂
(
[u]ps,p

)
+ 2λ

q2

∫
Ω

|u|qdx − λ

q

∫
Ω

|u|q ln |u|2dx − 1
p∗

s

∫
Ω

|u|p
∗
s dx.

Since pσ < q < p∗
s, we have limt→0

|t|q−1 ln |t|2

|t|pσ−1 = 0 and limt→∞
|t|q−1 ln |t|2

|t|r−1 = 0 for all r ∈ (q, p∗
s). Then for

ny ε > 0, there exists Cε > 0 such that

|t|q−1 ln |t|2 ≤ ε|t|pσ−1 + Cε|t|r−1
. (2.2)

On the one hand, the Vitali convergence theorem yields

lim
n→∞

∫
Ω

|un|q ln |un|2dx →
∫
Ω

|u|q ln |u|2dx. (2.3)

On the other hand, since un → u in Lq(Ω), we have

lim
n→∞

∫
Ω

|un|qdx →
∫
Ω

|u|qdx. (2.4)

In order to prove the Palais–Smale condition, we use the fractional version of Lions’ Concentration–
ompactness principle [9] in the framework of fractional Sobolev spaces, see [10, Theorem 2.5].

emma 2.1. Assume that hypotheses (M1)–(M3) hold. Then the functional Jλ satisfies the (PS)c condition

or c ∈

(
0,
(

1
q − 1

p∗
s

)
(m1Sθ)

p∗
s

p∗
s−pθ

)
.

roof. If infn≥1 ∥un∥ = 0, then there exists a subsequence of {un}n still denoted by {un}n such that
n → 0 in W s,p

0 (Ω) as n → ∞. Thus, we assume that d := infn≥1 ∥un∥ > 0. Let {un}n be a (PS)c sequence.
hen Jλ(un) → c and J ′

λ(un) → 0 as n → ∞. It follows from (M1) and (M3) that

c + o(1)∥un∥ = Jλ(un) − 1
q

⟨J ′
λ(un), un⟩

≥
(

1
pσ

− 1
q

)
m1∥u∥pσ + 2λ

q2

∫
Ω

|u|qdx +
(

1
q

− 1
p∗

s

)∫
Ω

|u|p
∗
s dx

≥
(

1
pσ

− 1
q

)
m1∥u∥pσ. (2.5)

hus, by 2 ≤ p < pσ, we deduce that {un}n is bounded in W s,p
0 (Ω). Passing to the limit in (2.5) we obtain

≥ 0. So, up to a subsequence, un ⇀ u in W s,p
0 (Ω). We claim that∫

Ω

|un|p
∗
s dx →

∫
Ω

|u|p
∗
s dx as n → ∞. (2.6)

n fact, it follows from [10, Theorem 2.5] that either un → u in L
p∗

s
loc(Ω) or ν = |u|p

∗
s +

∑
j∈Λ δxj

νj , as
→ ∞, where Λ is a countable set, {ν } ⊂ [0, ∞), {x } ⊂ Ω . Take ϕ ∈ C∞(Ω) such that 0 ≤ ϕ ≤ 1;
j j j j 0

3
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ϕ ≡ 1 in B(xj , ρ), ϕ(x) = 0 in Ω \ B(xj , 2ρ). For any ρ > 0, define ϕj
ρ = ϕ

(
x−xj

ρ

)
, where j ∈ Λ. It follows

that {unϕj
ρ}n is bounded in W s,p

0 (Ω) since {un}n is bounded in W s,p
0 (Ω). Then ⟨J ′

λ(un), unϕj
ρ⟩ → 0, which

implies

M
(
[un]ps,p

) ∫∫
R2N

|un(x) − un(y)|pϕj
ρ(y)

|x − y|N+ps
dxdy + M

(
[un]ps,p

)
Lp(un, unϕj

ρ)

= λ

∫
Ω

|un|qϕj
ρ ln |u|2dx +

∫
Ω

|u|p
∗
s ϕj

ρ dx + on(1), (2.7)

where

Lp(un, unϕj
ρ) =

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))un(x)(ϕj
ρ(x) − ϕj

ρ(y))
|x − y|N+ps

dxdy.

It is easy to verify that ∫∫
R2N

|un(x) − un(y)|p ϕj
ρ(y)

|x − y|N+ps
dxdy →

∫
RN

ϕj
ρdµ

as n → ∞ and
∫
RN ϕj

ρdµ → µ({xj}) as ρ → 0. Note that the Hölder inequality implies

⏐⏐M (
[un]ps,p

)
Lp(un, unϕj

ρ)
⏐⏐ ≤ C

∫∫
R2N

|un(x) − un(y)|p−1|ϕj
ρ(x) − ϕj

ρ(y) ∥ un(x)|
|x − y|N+ps

dxdy

≤ C

(∫∫
R2N

|un(x)|p|ϕj
ρ(x) − ϕj

ρ(y)|p

|x − y|N+ps
dxdy

)1/p

. (2.8)

With the same arguments as in the proof of Lemma 3.4 in [11], we have

lim
ρ→0

lim
n→∞

∫∫
R2N

|un(x)|p|ϕj
ρ(x) − ϕj

ρ(y)|p

|x − y|N+ps
dxdy = 0. (2.9)

It follows that
lim
ρ→0

lim
n→∞

M
(
[un]ps,p

)
Lp(un, unϕj

ρ) = 0. (2.10)

Note that by (M3), we have

M
(
[un]ps,p

) ∫∫
R2N

|un(x) − un(y)|pϕj
ρ(y)

|x − y|N+ps
dxdy ≥ m1

(∫∫
R2N

|un(x) − un(y)|pϕj
ρ(y)

|x − y|N+ps
dxdy

)θ

.

Letting ρ → 0 in (2.7) and using the standard theory of Radon measures, we conclude that νj ≥ m1µθ
j .

sing [10, Theorem 2.5] we have that νj = 0 or (m1Sθ)
p∗

s
p∗

s−pθ ≤ νj for all j ∈ Λ. Let us assume that

(m1Sθ)
p∗

s
p∗

s−pθ ≤ νj0 for some j0 ∈ Λ. Thus, it follows that

c = lim
n→∞

(
Jλ(un) − 1

q
⟨J ′

λ(un), un⟩
)

≥
(

1
q

− 1
p∗

s

)∫
Ω

|un|p
∗
s dx

≥
(

1
q

− 1
p∗

s

)∫
Ω

ϕj0
ρ |un|p

∗
s dx ≥

(
1
q

− 1
p∗

s

)
νj0 >

(
1
q

− 1
p∗

s

)
(m1Sθ)

p∗
s

p∗
s−pθ .

This is impossible. Then Λ = ∅, and hence (2.6) holds.
Now, we are ready to show that {un} converges strongly to u in W s,p

0 (Ω) as n → ∞. Indeed, using (2.3),
he weak lower semicontinuity of the norm and the Brezis–Lieb lemma [12], we obtain

on(1) = J ′
λ(un)un = M

(
[un]ps,p

)
[un]ps,p − λ

∫
Ω

|un|q ln |un|2dx −
∫
Ω

|un|p
∗
s dx

≥ M
(
[u]ps,p

)
[un − u]ps,p + M

(
[u]ps,p

)
[u]ps,p − λ

∫
|u|q ln |u|2dx −

∫
|u|p

∗
s dx
Ω Ω

4
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≥ m0[un − u]ps,p + M
(
[u]ps,p

)
[u]ps,p − λ

∫
Ω

|u|q ln |u|2dx −
∫
Ω

|u|p
∗
s dx

≥ m0∥un − u∥p + J ′
λ(u)u + on(1),

since J ′
λ(u) = 0. Thus, {un} converges strongly to u in W s,p

0 (Ω). This completes the proof. □

emma 2.2. The functional Jλ has a mountain pass geometry.

Proof. From (M3), (2.2) and Sobolev embedding inequality, we have

Jλ(u) ≥ m1

pσ
∥u∥pσ − λ

q
ε

∫
Ω

|u|pσ
dx − λ

q
Cε

∫
Ω

|u|rdx − 1
p∗

s

∫
Ω

|u|p
∗
s dx

≥
(

m1

pσ
− λ

q
εC1

)
∥u∥pσ − λ

q
CεC2∥u∥r − 1

p∗
s

C3∥u∥p∗
s ,

here C1, C2 and C3 are some positive constants. Choose ε > 0 such that
(

m1
pσ − λ

q εC1

)
> 0. Since r, p∗

s > p,
here exists ρ, α > 0 such that Jλ(u) ≥ α for ∥u∥ = ρ and λ > 0. We first observe that

2τ q − qτ q ln |τ |2 ≤ 2 for all τ ∈ (0, ∞). (2.11)

n the other hand, by integrating (M2), we obtain

M̂(s) ≤ M̂(s0)
sσ

0
sσ = C0sσ for all s ≥ s0 > 0. (2.12)

Let ν ∈ W s,p
0 (Ω) with ν ̸= 0. Thus Jλ(tν) ≤ C0

p tpσ∥ν∥pσ + 2λ
q2 |Ω | − 1

p∗
s
tp∗

s |ν|p
∗
s

p∗
s
. By p∗

s > p
σ , we deduce that

λ(t0ν) < 0 and t0∥ν∥ > ρ for t0 large enough. Set ω = t0ν. This completes the proof. □

Next, we claim that

cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) <

(
1
q

− 1
p∗

s

)
(m1Sθ)

p∗
s

p∗
s−pθ . (2.13)

Assuming that (2.13) holds true, then Lemmas 2.1, 2.2 and the mountain pass theorem give the existence
of nontrivial critical points of Jλ. To prove (2.13), we choose v0 ∈ W s,p

0 (Ω) such that ∥v0∥ = 1 and
limt→∞ Jλ(tv0) = −∞. Then supt≥0 Jλ(tv0) = Jλ(tλv0) for some tλ > 0. Hence tλ satisfies

M (tp
λ) tp

λ = λ

∫
Ω

|tλv0|q ln |tλv0|2dx + t
p∗

s
λ

∫
Ω

|v0|p
∗
s dx. (2.14)

Furthermore, by (2.12), (2.14) and (M2), we obtain σC0tpσ
λ ≥ σM̂(tλ) ≥ M (tp

λ) tp
λ ≥ t

p∗
s

λ

∫
Ω

|v0|p
∗
s dx, hence

{tλ}λ is bounded since p
σ < p∗

s.
We claim that tλ → 0 as λ → ∞. Arguing by contradiction, we can assume that there exists t0 > 0

nd a sequence λn with λn → ∞ such that tλn → t0 as n → ∞. By Lebesgue’s dominated convergence
heorem, we have limn→∞

∫
Ω

|tλnv0|q ln |tλnv0|2dx →
∫
Ω

|t0v0|q ln |t0v0|2dx as n → ∞. It follows that
n

∫
Ω

|t0v0|q ln |t0v0|2dx → ∞ as n → ∞. Hence, (2.14) implies that M (tp
λ) tp

λ = ∞ which is absurd.
herefore, tλ → 0 as λn → ∞. Furthermore, we deduce from (2.14) that limλ→∞ λ

∫
Ω

|tλv0|q ln |tλv0|2dx =
and limλ→∞ λ

∫
Ω

|tλv0|qdx = 0. From this, tλ → 0 as λ → ∞ and the definition of Jλ, we get
imλ→∞

(
supt≥0 Jλ(tv0)

)
= limλ→∞ Jλ(tλv0) = 0. Then there exists λ∗ > 0 such that for any λ ≥ λ∗, we

ave supt≥0 Jλ(tv0) <
(

1
q − 1

p∗
s

)
(m1Sθ)

p∗
s

p∗
s−pθ . If we take ω = Tv0, with T large enough to verify Jλ(ω) < 0,

hen we obtain cλ ≤ maxt∈[0,1] Jλ(γ(t)) by taking γ(t) = tTv0. Therefore, our claim (2.13) holds true for λ

arge enough. The proof of Theorem 1.1 is now complete. □
5
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