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In this paper, we investigate the problem of existence of solutions of quasi-
hemivariational inequalities. Some concepts of semicontinuity and hemicontinu-
ity on subsets for functions as well as for set-valued mappings are developed and
applied for solving quasi-hemivariational inequalities. Generalizations of some
old results on the existence of solutions of equilibrium problems are obtained and
applications to quasi-hemivariational inequalities are derived.
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1. Introduction

Let E be a real Banach space which is continuously embedded in L p(�; R
n), for some

1 < p < +∞ and n ≥ 1, where � is a bounded domain in R
m , m ≥ 1. Let i be the

canonical injection of E into L p(�; R
n).

The aim of this paper is to study the existence of solutions for the following quasi-
hemivariational inequality:

Find u ∈ E and u∗ ∈ A(u) such that〈
u∗, v

〉
E + h(u)J 0 (iu; iv) ≥ 〈Fu, v〉E ∀v ∈ E, (1.1)

where A : E ⇒ E∗ is a nonlinear set-valued mapping, F : E → E∗ is a nonlinear
operator, J : L p (�; R

n) → R is a locally Lipschitzian functional and h : E → R is a
given nonnegative functional.

We point out that if h = 0 in problem (1.1) then we obtain the standard case of
variational inequalities, see Lions and Stampacchia [1] and Kinderlehrer and Stampacchia
[2]. The setting corresponding to h ≡ 1 in (1.1) describes the hemivariational inequalities,
which were introduced by Panagiotopoulos [3,4]. These inequality problems appear as a
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1856 B. Alleche and V.D. Rădulescu

generalization of variational inequalities, but they are much more general than these ones, in
the sense that they are not equivalent to minimum problems but give rise to substationarity
problems. The general case when h is nonconstant corresponds to quasi-hemivariational
inequalities, which were first studied by Naniewicz and Panagiotopulos [5, Section 4.5],
in relationship with relevant models in mechanics and engineering. We refer to Rădulescu
[6], Wangkeeree and Preechasilp [7] for recent contributions to the qualitative analysis of
hemivariational and quasi-hemivariational inequalities.

The quasi-hemivariational inequality problem (1.1) has been recently studied in Costea
and Rădulescu [8]. For technical reasons, the authors considered the following quasi-
hemivariational inequality:

Find u ∈ C and u∗ ∈ A(u)such that〈
u∗, v − u

〉
E + h(u)J 0(iu; iv − iu) ≥ 〈Fu, v − u〉E ∀v ∈ C (1.2)

where C is a nonempty, closed and convex subset of E satisfying some additional conditions.
Several results on the existence of solutions of the quasi-hemivariational inequality problem
(1.2) have been obtained in two cases: (i) when C is a nonempty, convex and compact subset
of E ; and (ii) when C is a nonempty, convex, closed and bounded (then weakly compact)
subset of a reflexive Banach space. Characterizations and applications for solving the quasi-
hemivariational inequality problem (1.1) are derived.

Clearly, if C is a linear subspace and in particular, if C is the whole space E , then
the quasi-hemivariational inequality problem (1.2) is equivalent to the following quasi-
hemivariational inequality:

Find u ∈ Cand u∗ ∈ A(u) such that〈
u∗, v

〉
E + h(u)J 0(iu; iv) ≥ 〈Fu, v〉E ∀v ∈ C

which is exactly the formulation of the quasi-hemivariational inequality problem (1.1) with
E replaced by C .

In this paper, we follow a direct approach by studying the existence of solutions of
the quasi-hemivariational inequality problem (1.2) when C is a nonempty, closed and
convex subset of E . It follows that all the results obtained can be then applied to the
quasi-hemivariational inequality problem (1.1).

This paper is organized as follows. In the second section, we introduce some concepts
of continuity of functions and set-valued mappings and obtain some results and character-
izations.

In the third section, we introduce a coercivity condition on a compact or weakly compact
subset and use the concept of continuity on a subset for solving the quasi-hemivariational
inequality problem (1.2) when C is a nonempty, closed and convex subset of E .

In the last section of the paper, we obtain some results on the existence of solutions
of equilibrium problems by using the concept of continuity on a subset of equilibrium
bifunctions in their first or second variable. Applications for solving quasi-hemivariational
inequalities are given.

2. Notations and preliminary results

For a given Banach space (X, ‖.‖X ), we denote by X∗ its dual space and by 〈., .〉X (or
simply by 〈., .〉 if no confusion may arise), the duality pairing between X∗ and X .
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Optimization 1857

Recall that a function φ : X → R is called locally Lipschitzian if for every u ∈ X , there
exists a neighbourhood U of u and a constant Lu > 0 such that

|φ(w) − φ(v)| ≤ Lu‖w − v‖X ∀u ∈ U,∀v ∈ U.

If φ : X → R is locally Lipschitzian near u ∈ X , then the generalized directional derivative
of φ at u in the direction of v ∈ X , denoted by φ0(u, v), is defined by

φ0(u, v) = lim sup
w→u
λ↓0

φ (w + λu) − φ(w)

λ
.

Among several important properties of the generalized directional derivative of locally
Lipschitzian functions, we will make use in the present paper of the following properties
(for proofs and related properties, we refer to Clarke [9, Proposition 2.1.1]).

Suppose that φ : X → R is locally Lipschitzian near u ∈ X . Then,

(1) the function v �−→ φ0(u, v) is finite, positively homogeneous and subaddi-
tive;

(2) the function (u, v) �−→ φ0(u, v) is upper semicontinuous.

Before introducing some concepts of continuity we need in the paper, we recall here
some general results on convergence of sequences.

Let X be a Hausdorff topological space. Recall that a subset B of X is said to be
sequentially closed if whenever (xn)n is a sequence in B converging to x , then x ∈ B.
As well known, a space is called sequential if every sequentially closed subset is closed.
Every metric space and more generally, every Fréchet-Urysohn space is a sequential space.
A space X is called Fréchet-Urysohn space if whenever x is in the closure of a subset B of
X , there exists a sequence in B converging to x , see Engelking [10], Alleche and Calbrix
[11] for further details.

The weak topology of Banach spaces is not sequential in general. However, bounded
subsets of reflexive Banach spaces that endowed with the weak topology have the following
property: if a point x is in the weak closure of a bounded subset B of a reflexive Banach
space, then there exists a sequence in B weakly converging to x (see Denkowski et al.
[12, Proposition [3.6.23]). Thus, every bounded and weakly sequentially closed subset of a
reflexive Banach space is closed.

We say that a subset B has the Fréchet-Urysohn property if whenever x is in the closure
of B, there exists a sequence in B converging to x . Every subset of a Fréchet-Urysohn space
has the Fréchet-Urysohn property. Also there are some other interesting unbounded subsets
of Banach spaces which have the Fréchet-Urysohn property, see Dilworth [13].

In the sequel, for a subset B of X , we denote by

Exp(B) = {
x ∈ X | ∃ (xn)n , xn ∈ B,∀n, xn −→ x

}
,

the sequential explosion of B. Of course, Exp (B) is neither closed nor sequentially closed
in general.

Let x ∈ X . A function f : X → R is called
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1858 B. Alleche and V.D. Rădulescu

(1) sequentially upper semicontinuous at x if for every sequence (xn)n in X
converging to x , we have

f (x) ≥ lim sup
n→+∞

f (xn)

where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk).

(2) sequentially lower semicontinuous at x if − f is sequentially upper semi-
continuous at x , that is, for every sequence (xn)n of X converging to x , we
have

f (x) ≤ lim inf
n→+∞ f (xn)

where lim inf
n→+∞ f (xn) = sup

n
inf
k≥n

f (xk).

The function f is said to be sequentially upper (resp. sequentially lower) semicontinuous
on a subset S of X if it is sequentially upper (resp. sequentially lower) semicontinuous at
every point of S.

If sequences are replaced by generalized sequences (nets) in the above definition of
sequentially upper (resp. sequentially lower) semicontinuous function, we obtain the notion
of upper (resp. lower) semicontinuous function.

The following result shows how easy is to construct sequentially upper (resp. sequen-
tially lower) semicontinuous functions on a subset which are not sequentially upper (resp.
sequentially lower) semicontinuous on the whole space.

Proposition 2.1 Let f : X −→ R be a function and let S be a subset of X. If the restric-
tion f|U of f on an open subset U containing S is sequentially upper (resp. sequentially
lower) semicontinuous, then any extension of f|U to the space X is a sequentially upper
(resp. sequentially lower) semicontinuous function on S.

The following lemma provides us some properties of sequentially upper and sequentially
lower semicontinuous functions on a subset.

Proposition 2.2 Let f : X −→ R be a function, S a subset of X and a ∈ R.

(1) If f is sequentially upper semicontinuous on S, then

Exp ({x ∈ X | f (x) ≥ a}) ∩ S = {x ∈ S | f (x) ≥ a} .

Moreover, the trace on S of upper level sets of f are sequentially closed in S.
(2) If f is sequentially lower semicontinuous on S, then

Exp ({x ∈ X | f (x) ≤ a}) ∩ S = {x ∈ S | f (x) ≤ a} .

Moreover, the trace on S of lower level sets of f are sequentially closed in S.
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Optimization 1859

Proof The second statement being similar to the first, we prove only the case of the
sequential upper semicontinuity. Let

x∗ ∈ Exp ({x ∈ X | f (x) ≥ a}) ∩ S.

Let (xn)n be a sequence in Exp ({x ∈ X | f (x) ≥ a}) converging to x∗. Since x∗ ∈ S, then
by the sequential upper semicontinuity of f on S, we have

f
(
x∗) ≥ lim sup

n→+∞
f (xn) ≥ a.

Thus, x∗ ∈ {x ∈ S | f (x) ≥ a}. The converse holds from the fact that

{x ∈ S | f (x) ≥ a} = {x ∈ X | f (x) ≥ a} ∩ S,

which is obvious as well as the sequential closeness in S of the trace on S of upper level
sets of f . �

The notions of upper and lower hemicontinuity are generalizations of the notions of
sequential lower and sequential upper semicontinuity, respectively, when the space X
is a real topological Hausdorff vector space. Recall that f : X → R is called upper
hemicontinuous at x ∈ X if the restriction of f on any segment containing x is sequentially
upper semicontinuous at x . It is called lower hemicontinuous at x ∈ X if − f is upper
hemicontinuous at x .

The notions of upper and lower semicontinuity of set-valued mappings are the most
known generalizations of the notion of continuity of functions to set-valued mappings.

Let X and Y be Hausdorff topological spaces. Recall that a set-valued mapping T :
X ⇒ Y is said to be lower semicontinuous at x ∈ X , if for every open subset V of Y such
that V ∩ T (x) �= ∅, there exists an open neighbourhood U of x such that V ∩ T

(
x ′) �= ∅

for all x ′ ∈ U . Equivalently, T : X ⇒ Y is lower semicontinuous at x ∈ X provided
that T is continuous at x as a function from X to the hyperspace of subsets of Y endowed
with the lower Vietoris topology. If the lower Vietoris topology is replaced by the upper
Vietoris topology, then we obtain the definition of the upper semicontinuity of T at x , see
Papageorgiou and Kyritsi-Yiallourou [14].

T is said to be lower semicontinuous on a subset S of X if T is lower semicontinuous
at every point of S.

Here we introduce a generalization of lower semicontinuity of set-valued functions
when the space X is a real topological Hausdorff vector space. We say that a set-valued
mapping T : X ⇒ Y is lower quasi-hemicontinuous at x ∈ X , if whenever z ∈ X and (λn)n
a sequence in ]0, 1[ such that limn→+∞λn = 0, there exists a sequence

(
z∗

n

)
n converging

to some element x∗ of T (x) such that z∗
n ∈ T (x + λn (z − x)), for every n.

The set-valued function T will be said lower quasi-hemicontinuous on a subset S of X
if T is lower quasi-hemicontinuous at every point of S.

The following result shows that the notion of quasi-hemicontinuity of set-valued map-
pings is also a generalization of different other notions.

Proposition 2.3 Let T : X ⇒ Y be a set-valued mapping and suppose that one of the
following assumption hold:
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1860 B. Alleche and V.D. Rădulescu

(1) T is lower semicontinuous at x ∈ X;
(2) T has a continuous selection.

Then T is lower quasi-hemicontinuous at x.

Proof The second statement is obvious. The first comes from the fact that T is lower
semicontinuous at x ∈ X if and only if for every generalized sequence (xλ)λ∈� converging
to x , and for every x∗ ∈ T (x), there exists a generalized sequence

(
x∗
λ

)
λ∈�

converging to
x∗ such that x∗

λ ∈ T (xλ), for every λ ∈ �, see Papageorgiou and Kyritsi-Yiallourou [14,
Proposition 6.1.4]. �

Although the notion of semicontinuity of set-valued mappings is important for the
existence of continuous selections (Michael’s selection theorem), it is not essential. This
means that under additional conditions, different continuous set-valued mappings with
respect to other hyperspace topology may have continuous selections and then, they are
lower quasi-hemicontinuous. For further details on selection theory of set-valued mappings,
we refer to Papageorgiou and Kyritsi-Yiallourou [14], Aubin and Frankowska [15], Repovš
and Semenov [16].

As in Proposition 2.1, the following result shows how easily we construct lower quasi-
hemicontinuous set-valued mapping on a subset without being lower quasi-hemicontinuous
on the whole space.

Proposition 2.4 Let T : X ⇒ Y be a set-valued mapping and let S be a subset of X.
If the restriction T|U of T on an open and convex subset U containing S is lower quasi-
hemicontinuous, then any extension of T|U to the space X is a lower quasi-hemicontinuous
set-valued mapping on S.

A set-valued mapping T : E ⇒ 2E∗
is said to be relaxed α-monotone if there exists a

functional α : E → R such that for every u, v ∈ E , we have〈
v∗ − u∗, v − u

〉 ≥ α(v − u) ∀u∗ ∈ T (u),∀v∗ ∈ T (v).

3. Existence results for quasi-hemivariational inequalities
For any v ∈ C , we define the following set:

�(v) =
{

u ∈ C | inf
v∗∈A(v)

〈
v∗, v − u

〉+ h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉 ≥ α(v − u)

}
.

The following result should be compared with Theorems 3.1 and 3.2 in Costea and
Rădulescu [8]. It provides us a result on the existence of solutions of quasi-hemivariational
inequalities.

Theorem 3.1 Let C be a nonempty, closed and convex subset of the real Banach space
E which is continuously imbedded in L p (�; R

n). Suppose that the following assumptions
hold:
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Optimization 1861

(1) there exists a compact subset K of C and v0 ∈ K such that the following condition
holds: for every u ∈ C \ K , there exists v∗ ∈ A(v0) such that〈

v∗, v0 − u
〉+ h(u)J 0 (iu; iv0 − iu) − 〈Fu, v0 − u〉 − α (v0 − u) < 0;

(2) α : E → R is a functional such that for every u ∈ C, limn→+∞ α(λnu)
λn

= 0
whenever (λn)n is a sequence in ]0, 1[ such that limn→+∞λn = 0 and lim supn→+∞
α(un) ≥ α(u) whenever (un)n is a sequence in C converging to u;

(3) A is relaxed α-monotone and lower quasi-hemicontinuous on K with respect to the
weak* topology of E∗;

(4) h is a nonnegative sequentially lower semicontinuous functional on K ;
(5) F is an operator such that for every v ∈ C, u �→ 〈Fu, v − u〉 is sequentially lower

semicontinuous on K .

Then, the quasi-hemivariational inequality problem (1.2) has at least one solution.

Proof By using the relaxed α-monotonicity of A and the subadditivity of the function
v �→ J 0 (iu; iv), we obtain that the set-valued mapping v �→ �(v) is a KKM mapping.
To do this, let {v1, . . . , vn} ⊂ C and put u0 = ∑n

k=1 λkvk where λk ∈ ]0, 1[ for every
k = 1, . . . n and

∑n
k=1 λk = 1. Assume that u0 /∈ ⋃n

k=1 �(vk), then for every k = 1, . . . n,
we have

inf
v∗∈A(vk )

〈
v∗, vk − u0

〉+ h(u0)J 0 (iu0; ivk − iu0) − 〈Fu, vk − u0〉 < α (vk − u0).

For every k = 1, . . . n, choose v∗
k ∈ A (vk) such that〈

v∗
k , vk − u0

〉+ h(u0)J 0 (iu0; ivk − iu0) − 〈Fu, vk − u0〉 < α (vk − u0).

Since A is relaxed α-monotone, then for every u∗
0 ∈ A(u0), we have〈

v∗
k , vk − u0

〉+ h(u0)J 0 (iu0; ivk − iu0) − 〈Fu, vk − u0〉 < α (vk − u0)

≤ 〈
v∗

k − u∗
0, vk − u0

〉
.

Thus,〈
u∗

0, vk − u0
〉+ h(u0)J 0 (iu0; ivk − iu0) − 〈Fu, vk − u0〉 < 0 ∀u∗

0 ∈ A(u0).

Since the function v �→ J 0 (iu; iv) is subadditive, then for any u∗
0 ∈ A(u0), we have

0 = 〈
u∗

0, u0 − u0
〉+ h(u0)J 0 (iu0; iu0 − iu0) − 〈Fu, u0 − u0〉

=
〈

u∗
0,

n∑
k=1

λk (vk − u0)

〉
+ h(u0)J 0

(
iu0;

n∑
k=1

λk (ivk − iu0)

)

−
〈

Fu,

n∑
k=1

λk (vk − u0)

〉

≤
n∑

k=1

λk

(〈
u∗

0, vk − u0
〉+ h(u0)J 0 (iu0; ivk − iu0) − 〈Fu, vk − u0〉

)
< 0.
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1862 B. Alleche and V.D. Rădulescu

This is a contradiction and then the set-valued mapping v �→ �(v) is a KKM mapping.
Since �(v0) is contained in K which is compact, then by Ky Fan’s lemma [17], we have⋂

v∈C

�(v) �= ∅.

Now, we will prove that for every v ∈ C , we have

�(v) ∩ K = �(v) ∩ K .

To do this, let v ∈ C and u ∈ �(v) ∩ K . Let (un)n be a sequence in �(v) converging to u.
Let v∗ ∈ A(v) be arbitrary. We have for all n ≥ 1

α(v − un) ≤ 〈
v∗, v − un

〉+ h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉 .

Since u ∈ K , then

α(v − u) ≤ lim sup
n→+∞

α(v − un)

≤ lim sup
n→+∞

(〈
v∗, v − un

〉+ h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉
)

≤ 〈
v∗, v − u

〉+ h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉 .

Thus, u ∈ �(v) ∩ K .
Now, by using the fact that �(v0) is contained in K , we conclude that⋂

v∈C

�(v) =
⋂
v∈C

�(v),

and then, ⋂
v∈C

�(v) �= ∅.

Finally, let u0 ∈ ⋂v∈C �(v). This means that u0 ∈ K and for every w ∈ C , we have

inf
w∗∈A(w)

〈
w∗, w − u

〉+ h(u)J 0 (iu; iw − iu) − 〈Fu, w − u〉 ≥ α (w − u) .

Let v ∈ C be arbitrary and define wn = u0 + λn (v − u0) where (λn)n is a sequence in
]0, 1[ such that limn→+∞λn = 0. By lower quasi-hemicontinuity of A on K , let w∗

n ∈
A (wn) be such that w∗

n
w∗−→ u∗

0 ∈ A(u0). Since the function v �→ J 0 (iu; iv) is positively
homogeneous, we obtain

〈
w∗

n, v − u0
〉+ h(u0)J 0(iu0; iv − iu0) − 〈Fu0, v − u0〉 ≥ α(λn(v − u))

λn
.

Letting n go to +∞, we obtain that〈
u∗

0, v − u0
〉+ h(u0)J 0(iu0; iv − iu0) − 〈Fu0, v − u0〉 ≥ 0

which completes the proof. �
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Optimization 1863

The following result is a generalization of Theorem 3.2 in Costea and Rădulescu [8].
It provides us with a second result on the existence of solutions of quasi-hemivariational
inequalities.

Theorem 3.2 Let C be a nonempty, closed and convex subset of the real reflexive Banach
space E which is compactly imbedded in L p (�; R

n). Suppose that the following hypotheses
are fulfilled:

(1) there exist a weakly compact subset K of C and v0 ∈ K such that the following
condition holds: for every u ∈ C \ K , there exists v∗ ∈ A(v0) such that〈

v∗, v0 − u
〉+ h(u)J 0 (iu; iv0 − iu) − 〈Fu, v0 − u〉 − α (v0 − u) < 0;

(2) α : E → R is a functional such that for every u ∈ C, limn→+∞ α(λnu)
λn

= 0 when-
ever (λn)n is a sequence in ]0, 1[ such that limn→+∞λn = 0 and lim sup

n→+∞
α(un) ≥

α(u) whenever (un)n is a sequence in C weakly converging to u;
(3) A is relaxed α-monotone and lower quasi-hemicontinuous on K with respect to the

weak* topology of E∗;
(4) h is a nonnegative weakly sequentially lower semicontinuous functional on K ;
(5) F is an operator such that for every v ∈ C, u �→ 〈Fu, v − u〉 is weakly sequentially

lower semicontinuous on K .

Then the function v �→ �(v) is a KKM mapping and

Exp(�(v)) ∩ K = �(v) ∩ K ∀v ∈ C.

If, in addition, �(v) has the Fréchet-Urysohn property, for every v ∈ C, then the quasi-
hemivariational inequality problem (1.2) has at least one solution.

Proof By the same proof as in Theorem 3.1, we obtain that the set-valued mapping
v �→ �(v) is a KKM mapping.

Now, let v ∈ C and u ∈ Exp(�(v)) ∩ K . Let (un)n be a sequence in �(v) weakly
converging to u. Since the compact embedding i is compact, it maps weakly convergent
sequences into strongly convergent sequences (see for example, Renardy and Rogers [18,
Theorem 8.84]). Let v∗ ∈ A(v) be arbitrary. We have

α(v − un) ≤ 〈
v∗, v − un

〉+ h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉 ∀n.

Since u ∈ K , then

α(v − u) ≤ lim sup
n→+∞

α(v − un)

≤ lim sup
n→+∞

(〈
v∗, v − un

〉+ h(un)J 0 (iun; iv − iun) − 〈Fun, v − un〉
)

≤ 〈
v∗, v − u

〉+ h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉 .

Thus, u ∈ �(v) ∩ K .
Suppose now that �(v) has the Fréchet-Urysohn property, for every v ∈ C . Then

Exp(�(v)) = �(v) ∀v ∈ C
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1864 B. Alleche and V.D. Rădulescu

where the closure is taken with respect to the weak topology. Since the set-valued mapping
v �→ �(v) is a KKM mapping and since �(v0) is contained in K which is weakly compact,
then by Ky Fan’s lemma, we have ⋂

v∈C

Exp(�(v)) �= ∅.

By the same arguments as in the proof of Theorem 3.1, we conclude that⋂
v∈C

Exp(�(v)) =
⋂
v∈C

�(v),

and then, ⋂
v∈C

�(v) �= ∅.

Also, by a similar proof as in Theorem 3.1, we conclude that the quasi-hemivariational
problem (1.2) has at least one solution. �

4. Equilibrium problems vs. quasi-hemivariational inequality problems and
applications

Equilibrium problems are very general and they include as particular cases, Nash equi-
librium problems and convex minimization problems. Relevant applications in physics,
optimization and economics are described by models based on equilibrium problems.

Let C be a nonempty, closed and convex subset of a real topological Hausdorff vector
space X . An equilibrium problem in the sense of Blum, Muu and Oettli [19,20] (see
also Alleche [21,22], Bianchi and Schaible [23], Hadjisavvas and Schaible [24], and the
references therein) is a problem of the form:

Find u ∈ C such that �(u, v) ≥ 0 ∀v ∈ C (4.1)

where � : C × C → R is a bifunction such that � (u, u) ≥ 0, for every u ∈ C . Such a
bifunction is called an equilibrium bifunction.

We present in this section some results about the existence of solutions of equilibrium
problems and apply these results for solving quasi-hemivariational inequalities.

In the sequel, we define the following sets: for every v ∈ C , we put

�+(v) = {u ∈ C | �(u, v) ≥ 0}
and

�−(v) = {u ∈ C | �(v, u) ≤ 0} .

Recall that a function f : C → R is said to be

(1) semistrictly quasiconvex on C if, for every u1, u2 ∈ C such that f (u1) �= f (u2),
we have

f (λu1 + (1 − λ) u2) < max { f (u1) , f (u2)} ∀λ ∈ ]0, 1[ .
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Optimization 1865

(2) explicitly quasiconvex on C if it is quasiconvex and semistrictly quasiconvex (see
e.g. Avriel et al. [25]).

The following result extends the well-known Ky Fan’s minimax inequality theorem (see
Fan [26], Kassay [27], Konnov [28]) for sequentially upper semicontinuous bifunctions on
their first variable on a subset of a real Banach space.

Theorem 4.1 Let C be a nonempty, closed and convex subset of the real Banach space
E. Let � : C × C −→ R be an equilibrium bifunction and suppose that the following
assumptions hold:

(1) � is quasiconvex in its second variable on C;
(2) there exists a compact subset K of C and v0 ∈ K such that

�(u, v0) < 0 ∀u ∈ C \ K ;
(3) � is sequentially upper semicontinuous in its first variable on K .

Then the equilibrium problem (4.1) has a solution.

Proof Since � is an equilibrium bifunction, then �+(v) is nonempty and closed, for every
v ∈ C .

By quasiconvexity of � in its second variable, the mapping v �→ �+(v) is a KKM
mapping (see e.g. Alleche [22], Bianchi and Schaible [23], Fan [17,26], Kassay [27]), and
since �+(v0) is contained in the compact subset K , then by Ky Fan’s lemma, we have⋂

v∈C

�+(v) �= ∅.

On the other hand, we have ⋂
v∈C

�+(v) =
⋂
v∈C

(
�+(v) ∩ K

)
.

Since

Exp(�+(v)) = �+(v) ∀v ∈ C,

then by Proposition 2.2, we have

�+(v) ∩ K = �+(v) ∩ K ∀v ∈ C.

Thus, ⋂
v∈C

�+(v) =
⋂
v∈C

�+(v) �= ∅

which completes the proof. �

As well known in the literature, the equilibrium problem (4.1) can be also solved
when the bifunction � is not upper semicontinuous on its first variable. In this case, some
additional conditions are needed.
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1866 B. Alleche and V.D. Rădulescu

The bifunction � : C × C −→ R is said to be pseudomonotone on C if

�(u, v) ≥ 0 =⇒ �(v, u) ≤ 0, ∀u, v ∈ C.

The following result extends (under the settings of the real Banach space E) some results
of Alleche [22], Bianchi and Schaible [23] on the existence of solutions for pseudomontone
equilibrium problems.

Theorem 4.2 Let C be a nonempty, closed and convex subset of the real Banach space
E. Let � : C × C −→ R be an equilibrium bifunction and suppose that the following
assumptions hold:

(1) � is pseudomonotone on C;
(2) there exists a compact subset K of C and v0 ∈ K such that

�(u, v0) < 0 ∀u ∈ C \ K ;
(3) � is upper hemicontinuous in its first variable on K ;
(4) � is explicitly quasiconvex in its second variable on C;
(5) � is sequentially lower semicontinuous in its second variable on K .

Then, the equilibrium problem (4.1) has a solution.

Proof By the same proof as in Theorem 4.1, we obtain that⋂
v∈C

(�+(v) ∩ K ) =
⋂
v∈C

�+(v) �= ∅.

Since � is sequentially lower semicontinuous in its second variable on K , then by applying
Proposition 2.2, we have

�−(v) ∩ K = �−(v) ∩ K ∀v ∈ C.

From pseudo-monotonicity, we have �+(v) ⊂ �−(v), for every v ∈ C . It follows that⋂
v∈C

(
�+(v) ∩ K

)
⊂
⋂
v∈C

(
�−(v) ∩ K

)
.

By using the hemicontinuity of � in its first variable on K and the explicit quasi-convexity
(see Alleche [22, Lemma 2.4]), we have⋂

v∈C

(�−(v) ∩ K ) ⊂
⋂
v∈C

�+(v).

A combination of the above statements yields⋂
v∈C

�+(v) =
⋂
v∈C

�+(v).

This completes the proof. �

Of course, Theorems 4.1 and 4.2 remain true if the real Banach space E is replaced by a
real topological Hausdorff vector space such that the subset C is a Fréchet-Urysohn space.
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Optimization 1867

Now we apply the above theorems to derive results on the existence of solution of
quasi-hemivariational inequalities.

Define the equilibrium bifunction 	 : C × C → R by

	(u, v) = inf
v∗∈A(v)

〈
v∗, v − u

〉+ h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉 .

Although we are aware of the intrinsic properties of the generalized directional deriva-
tive, we do not know if 	 satisfies any condition of continuity or of convexity in its first or
second variable. In other words, even under assumptions of Theorems 3.1 and 3.2, it is not
clear whether 	 satisfies any condition of Theorem 4.1 or Theorem 4.2.

The following result provides us with a sufficient condition for solving the quasi-
hemivariational inequality problem (1.2). Note that the concept of relaxed α-monotonicity
is no longer needed.

Theorem 4.3 Let C be a nonempty, closed and convex subset of the real Banach space
E. Suppose that A is lower quasi-hemicontinuous on K with respect to the weak* topology
of E∗. If the equilibrium problem

find u ∈ C such that 	(u, v) ≥ 0 ∀v ∈ C

has a solution, then the quasi-hemivariational inequality problem (1.2) has a solution.

Let us point out that by a classical method, we can also define an equilibrium bifunction
	 : C × C → R as follows:

	(u, v) = sup
u∗∈A(u)

〈
u∗, v − u

〉+ h(u)J 0(iu; iv − iu) − 〈Fu, v − u〉 .

Clearly, any solution of the quasi-hemivariational inequality problem (1.2) is a solution of
the equilibrium problem

Find u ∈ C such that 	(u, v) ≥ 0 ∀v ∈ C. (4.2)

The converse does not hold easily as in Theorem 4.3 and it seems to need additional
conditions on the values of the set-valued mapping A.
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