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Abstract: We consider a semilinear Robin problem driven by the Laplacian with a reaction which does not
satisfy a global growth condition, only a local one. Using variational methods coupled with truncation and
perturbation techniques and Morse theory, we prove two multiplicity theorems producing four and three
nontrivial solutions respectively, all with precise sign. Also, we show that our results incorporate as a spe-
cial case a semilinear parametric problem which has been considered primarily in the context of Dirichlet
problems.
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1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary àΩ. In this paper, we study the following semilinear
Robin problem:

−Δu(z) = f(z, u(z)) inΩ,
àu
àn

(z) + â(z)u(z) = 0 on àΩ. (1.1)

In this problem, n( ⋅ ) is the outward unit normal on àΩ and the reactionf(z, x) is a Carathéodory function
(that is, for all x ∈ ℝ, z Ü→ f(z, x) is measurable and for a.a. z ∈ Ω, x Ü→ f(z, x) is continuous). The interesting
feature of our analysis of problem (1.1) is that on the nonlinearity x Ü→ f(z, x) we do not impose any global
growth condition. Instead, we assume that f(z, ⋅ ) admits z-dependent zeros of constant sign. Using vari-
ational methods coupled with suitable truncation and perturbation techniques and Morse theory (critical
groups), we prove a multiplicity theorem producing four nontrivial solutions, all with sign information
(two of constant sign and two nodal (sign changing)). A second multiplicity theorem establishing three
nontrivial solutions is also proved.

Recently a similar problemwas investigated by Zhang, Li and Xue [20], who deal with a semilinear Robin
problem driven by the di�erential operator u Ü→ −Δu + áu with á > 0. Therefore their di�erentiable opera-
tor is coercive and this makes easier the use of the direct method. Also their reaction f is z-independent
(autonomous) and the zeros are constant functions. Their main multiplicity theorem (see [20, Theorem 1.1])
produces four nontrivial solutions, but without providing sign information for all of them. On the other
hand, we should mention that in [20] it is assumed that f ∈ C1(ℝ \ {0}) and so f�( ⋅ ) can have jump disconti-
nuities at x = 0. We should also mention the recent work of the authors [14] who studied a parametric Robin
problem driven by the p-Laplacian. They proved that if ë̂2 > 0 is the second eigenvalue of the negative
Robin p-Laplacian and ë > ë̂2 (ë > 0 being the parameter), then the problem has at least three nontrivial so-
lutions and in the semilinear case (p = 2) four nontrivial solutions, all with sign information. Our framework
here is more general and recovers as a special case the setting of [14] (see Section 5).

In the next section, for easy reference, we present the main mathematical tools which will be used in
this paper.
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2 Mathematical background
We start with critical point theory. LetX be a Banach space andX∗ be its topological dual. By ⟨⋅ , ⋅⟩we denote
the duality brackets for the pair (X∗, X). Let ÿ ∈ C1(X). We say that ÿ satis�es the Palais–Smale condition
(PS-condition for short) if the following holds:

Palais–Smale Condition. Every sequence {xn}n⩾1 ⊆ X such that {ÿ(xn)}n⩾1 ⊆ ℝ is bounded and ÿ�(xn) → 0
inX∗ as n → ∞, admits a strongly convergent subsequence.

This compactness-type condition on the functional ÿ compensates for the fact that the ambient space is not
in general locally compact. It leads to a deformation theorem, from which we can derive the minimax theory
for the critical values of ÿ. One result in this direction is the so-called “Mountain Pass Theorem”.

Theorem 2.1. Assume that X is a Banach space. Let ÿ ∈ C1(X) satisfy the PS-condition, and let x0, x1 ∈ X
with ‖x1 − x0‖ > r > 0 andmax{ÿ(x0), ÿ(x1)} < inf{ÿ(x) : ‖x − x0‖ = r} = mr. Set

c = inf
ã∈Ã
max
0⩽t⩽1

ÿ(ã(t)) where Ã = {ã ∈ C([0, 1], X) : ã(0) = x0, ã(1) = x1}.

Then c ⩾ mr and c is a critical value of ÿ.

In the analysis of problem (1.1), in addition to the Sobolev space H1(Ω), we will also use the Banach
space C1(Ω), which is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In what follows, by ‖ ⋅ ‖ we denote the norm ofH1(Ω). We have

‖u‖ = [‖u‖22 + ‖Du‖22]
1/2 for all u ∈ H1(Ω).

Let ò( ⋅ ) denote the (N − 1)-dimensional Hausdor� measure on àΩ. Then we can consider the Lebesgue
space L2(àΩ) and the Sobolev space of fractional order H

12 ,2(àΩ). From the trace theory, we know that there
exists a unique continuous linear map ã0 : H

1(Ω) → L2(àΩ), known as the trace map, such that

range ã0 = H
12 ,2(àΩ) and ker ã0 = H1

0 (Ω).

Consider a Carathéodory function f0 : Ω × ℝ → ℝ such that

|f0(z, x)| ⩽ a(z)(1 + |x|r−1) for a.a. z ∈ Ω and all x ∈ ℝ

with a ∈ L∞(Ω)+ and

1 < r < 2∗ =
{
{
{

2N
N−2 ifN ⩾ 3,

+∞ ifN = 1, 2.

We set F0(z, x) = ∫
x
0 f0(z, s)ds and consider the C1-functional ÷0 : H

1(Ω) → ℝ de�ned by

÷0(u) =
1
2
‖Du‖22 +

1
2
∫
àΩ

â(z)u(z)2dò − ∫
Ω

F0(z, u(z))dz for all u ∈ H1(Ω).

Hereafter, we assume the following for the boundary weight function â( ⋅ ):

HypothesisH(â). We have â ∈ C0,á(Ω) with 0 < á < 1 and â(z) ⩾ 0 for all z ∈ Ω, â ̸= 0.

The next result is a special case of a result in Papageorgiou and Rădulescu [14]. It is an outgrowth of the
regularity theory for Robin problems (see Lieberman [12]).
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Proposition 2.2. Assume that hypothesesH(â) holds and u0 ∈ H1(Ω) is a local C1(Ω)-minimizer of ÷0, that is,
there exists ý0 > 0 such that

÷0(u0) ⩽ ÷0(u0 + ℎ) for all ℎ ∈ C1(Ω) with ‖ℎ‖C1(Ω) ⩽ ý0.

Then u0 ∈ C1,ã(Ω) for some ã ∈ (0, 1) and u0 is a local H1(Ω)-minimizer of ÷0, that is, there exists ý1 > 0 such
that

÷0(u0) ⩽ ÷0(u0 + ℎ) for all ℎ ∈ H1(Ω) with ‖ℎ‖ ⩽ ý1.

Remark 1. We should point out that the �rst such result relating local minimizers was proved for the
spaceH1

0 (Ω) by Brezis and Nirenberg [6].

Next we recall some basic facts about the spectrum of the negative Robin Laplacian. So, we consider the
following linear eigenvalue problem:

−Δu(z) = ë̂u(z) inΩ,
àu
àn

(z) + â(z)u(z) = 0 on àΩ.

From the spectral theory for compact self-adjoint operators, we know that this eigenvalue problem has
a sequence of eigenvalues {ë̂k}k⩾1 such that ë̂k → +∞ as k → ∞ and this sequence exhausts the spectrum of
the negative Robin Laplacian.

We know that ë̂1 > 0 and it is simple (that is, the corresponding eigenspace is one-dimensional),

ë̂1 = inf{
‖Du‖22 + ∫àΩ â(z)u2dò

‖u‖22
: u ∈ H1(Ω), u ̸= 0}. (2.1)

The in�mum in (2.1) is realized on the one-dimensional eigenspace E(ë̂1) corresponding to ë̂1 > 0. It is clear
from (2.1) that the elements of this eigenspace do not change sign. By û1 we denote the L2-normalized (that
is, ‖û1‖2 = 1) nonnegative eigenfunction corresponding to ë̂1 > 0. The regularity theory of Lieberman [12] and
the maximum principle of Vazquez [18] imply û1 ∈ intC+. We mention that ë̂1 > 0 is the only eigenvalue with
eigenfunctions of constant sign. All the other eigenvalues have nodal eigenfunctions.

For every integer k ⩾ 1, by E(ë̂k)we denote the eigenspace corresponding to the eigenvalue ë̂k. From the
regularity theory (see Lieberman [12]), we have

E(ë̂k) ⊆ C1(Ω) for all k ⩾ 1.

Moreover, these spaces have the so-called unique continuation property (UCP for short), namely, if u ∈ E(ë̂k)
vanishes on a set of positive Lebesgue measure, then u(z) = 0 for all z ∈ Ω. We set

Hm =
m
⨁
k=1

E(ë̂k) and Ĥm = H
⊥
m = ⨁

k⩾m+1
E(ë̂k).

Using these spaces we have the following variational characterizations of the higher eigenvalues (m ⩾ 2):

ë̂m = max{
‖Du‖22 + ∫àΩ â(z)u2dò

‖u‖22
: u ∈ Hm, u ̸= 0} = min{

‖Dû‖22 + ∫àΩ â(z)û2dò

‖û‖22
: û ∈ Ĥm−1, û ̸= 0}. (2.2)

Both the maximum and the minimum in (2.2) are realized on E(ë̂m).
The next lemma is an easy consequence of the UCP (see also Gasinski and Papageorgiou [10]). In what

follows, we set î(u) = ‖Du‖22 + ∫àΩ â(z)u2dò for all u ∈ H1(Ω).

Lemma 2.3. The following statements hold.
(a) If ú ∈ L∞(Ω) and ú(z) ⩽ ë̂m+1 for a.a. z ∈ Ω, ú ̸= ë̂m+1,m ⩾ 0, then there exists î0 > 0 such that

î(u) − ∫
Ω

ú(z)u2dz ⩾ î0‖u‖
2 for all u ∈ Ĥm (Ĥ0 = H1(Ω)).

(b) If ú ∈ L∞(Ω) and ú(z) ⩽ ë̂m for a.a. z ∈ Ω, ú ̸= ë̂m,m ⩾ 1, then there exists î1 > 0 such that

î(u) − ∫
Ω

ú(z)u2dz ⩽ −î1‖u‖
2 for all u ∈ Hm.
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LetX be a Banach space and let ÿ ∈ C1(X), c ∈ ℝ. We introduce the following sets:

ÿc = {x ∈ X : ÿ(x) ⩽ c}, Kÿ = {x ∈ X : ÿ�(x) = 0} and Kc
ÿ = {x ∈ Kÿ : ÿ(x) = c}.

Let (Y1, Y2) be a topological pair such thatY2 ⊆ Y1 ⊆ X. For every integer k ⩾ 0 byHk(Y1, Y2)we denote the
kth relative singular homology group with integer coe�cients for the pair (Y1, Y2). Recall that Hk(Y1, Y2) = 0
for k < 0. The critical groups of ÿ at an isolated x ∈ Kc

ÿ are de�ned by

Ck(ÿ, x) = Hk(ÿ
c ∩ U, ÿc ∩ U \ {x}) for all k ⩾ 0,

where U is a neighborhood of x such that Kÿ ∩ ÿc ∩ U = {x}. The excision property of singular homology im-
plies that the abovede�nitionof critical groups is independent of theparticular choice of theneighborhoodU.

Suppose that ÿ ∈ C1(X) satis�es the PS-condition and inf ÿ(Kÿ) > −∞. Let c < inf ÿ(Kÿ). The critical
groups of ÿ at in�nity are de�ned by

Ck(ÿ,∞) = Hk(X, ÿc) for all integers k ⩾ 0.

The Second Deformation Theorem (see, for example, Gasinski and Papageorgiou [10, p. 628]) implies that the
above de�nition of critical groups at in�nity is independent of the particular choice of the level c < inf ÿ(Kÿ).

Suppose thatKÿ is �nite. We de�ne

M(t, x) = ∑
k⩾0
rankCk(ÿ, x)t

k for all t ∈ ℝ and all x ∈ Kÿ,

P(t,∞) = ∑
k⩾0
rankCk(ÿ,∞)tk for all t ∈ ℝ.

Then the Morse relation says
∑
x∈Kÿ M(t, x) = P(t,∞) + (1 + t)Q(t), (2.3)

where Q(t) = ∑k⩾0 âkt
k is a formal series in t ∈ ℝ with nonnegative integer coe�cients.

Suppose that X = H is a Hilbert space, x ∈ H, U is a neighborhood of x and ÿ ∈ C2(U). If x ∈ Kÿ, then
the Morse index of ÿ at x, denoted by ì = ì(x), is de�ned as the supremum of the dimensions of the vector
subspaces of H for which ÿ��(x) is negative de�nite. The nullity of ÿ at x, denoted by í = í(x), is de�ned to
be the dimension of the subspace kerÿ��(x).

Suppose that H = V ⊕ Y with dimV < +∞. We say that ÿ ∈ C1(X) has a “local linking at 0” with respect
to the decomposition (V, Y) if we can �nd ý > 0 such that

ÿ(v) ⩽ 0 for all v ∈ V with ‖v‖ ⩽ ý,

ÿ(y) ⩾ 0 for all y ∈ Y with ‖y‖ ⩽ ý.

From [17, Proposition 2.3], we have the following result.

Proposition 2.4. If H is a Hilbert space, U is a neighborhood of u = 0, ÿ ∈ C2(U), u = 0 is an isolated critical
point of ÿ, ÿ��(0) is a Fredholm operator and ÿ has a local linking at 0 with respect to the decomposition (V, Y)
with H = V ⊕ Y, d = dimV < +∞, then Ck(ÿ, 0) = äk,ìℤ for all k ⩾ 0 if d = ì with ì the Morse index of ÿ at 0,
and Ck(ÿ, 0) = äk,ì+íℤ for all k ⩾ 0 if d = ì + í with í the nullity of ÿ at 0.

In the sequel, A : H1(Ω) → H1(Ω)∗ denotes the bounded linear operator de�ned by

⟨A(u), y⟩ = ∫
Ω

(Du, Dy)ℝNdz for all u, y ∈ H1(Ω).

Moreover, if x ∈ ℝ, then we set x± = max{0,±x}. For u ∈ H1(Ω), we de�ne

u±( ⋅ ) = u( ⋅ )±.

We know that
u± ∈ H1(Ω), u = u+ − u−, |u| = u+ + u−.
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Also, given a measurable function ℎ : Ω × ℝ → ℝ (for example a Carathéodory function), we set

Nℎ(u)( ⋅ ) = ℎ( ⋅ , u( ⋅ )) for all u ∈ H1(Ω)

(the Nemytskii operator corresponding to ℎ( ⋅ , ⋅ )). In what follows, by ‖ ⋅ ‖p we denote the norm of the
Lebesgue space Lp(Ω) or of Lp(Ω,ℝN). Finally, by | ⋅ |N we denote the Lebesgue measure onℝN.

3 Constant sign solutions
In this section we establish the existence of solutions constant sign for problem. To this end, we introduce
the following conditions on the reaction f(z, x) :

HypothesisH1. Assume that f : Ω × ℝ → ℝ is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and
(i) for every ý > 0, there exists aý ∈ L∞(Ω)+ such that

|f(z, x)| ⩽ aý(z) for a.a. z ∈ Ω and all x ∈ [−ý, ý],

(ii) there exist functions w± ∈ H1(Ω) ∩ L∞(Ω) such that

w−(z) ⩽ c− < 0 < c+ ⩽ w+(z) for a.a. z ∈ Ω,

f(z, w+(z)) ⩽ 0 ⩽ f(z, w−(z)) a.e. inΩ,

A(w−) + â( ⋅ )u− ⩽ 0 ⩽ A(w+) + â( ⋅ )u+ inH1(Ω)∗,

(iii) there exist an integerm ⩾ 2 and ä0 > 0 such that

ë̂mx
2 ⩽ f(z, x)x for a.a. z ∈ Ω and all x ∈ [−ä0, ä0].

Remark 2. Note that the above hypotheses do not impose any growth restriction on f(z, ⋅ ) near ±∞.
Hypotheses H1 (ii)–(iii) imply that near zero, f(z, ⋅ ) exhibits an oscillatory behavior. Evidently, hypothe-
sisH1 (ii) is satis�ed if we can �nd î− < 0 < î+ such that

f(z, î+) ⩽ 0 ⩽ f(z, î−) a.e. inΩ.

Hypothesis H1 (iii) permits for resonance to occur asymptotically at zero but it also incorporates reactions
which are concave near zero. Clearly, in H1 (iii) we can always assume that ä0 ∈ (0,min{c+,−c−, 1}). As we
will see in the proof of the next proposition, hypotheses H1 (i) and (iii) imply that given ý > 0, r > 2, we can
�nd ̂î > 0 such that

f(z, x)x + ̂îxr ⩾ 0 for a.a. z ∈ Ω and all x ∈ [−ý, ý].

For the boundary weight function â( ⋅ ), we keep the hypothesisH(â) introduced in Section 2.

Proposition 3.1. Assume that hypothesesH(â) andH1 hold. Then problem (1.1) admits at least two nontrivial
constant sign solutions

u0 ∈ intC+ and v0 ∈ − intC+.

Proof. First we produce a positive solution. To this end, we introduce the following truncation-perturbation
of f(z, ⋅ ):

g+(z, x) =
{{{
{{{
{

0 if x < 0,

f(z, x) + x if 0 ⩽ x ⩽ w+(z),

f(z, w+(z)) + w+(z) if w+(z) < x.

(3.1)

This is a Carathéodory function. We set

G+(z, x) =
x

∫
0

g+(z, s)ds
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and consider the C1-functional ÿ+ : H1(Ω) → ℝ de�ned by

ÿ+(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

G+(z, u(z))dz for all u ∈ H1(Ω),

where

î(u) = ‖Du‖22 + ∫
àΩ

â(z)u(z)2dò for all u ∈ H1(Ω).

As before, for the sake of notational simplicity, we drop the use of the trace map ã0 to denote the restriction
of a Sobolev function on àΩ.

From (3.1) it is clear that ÿ+ is coercive. Also, using the Sobolev Embedding Theorem, we show easily
that ÿ+ is sequentially weakly lower semicontinuous. So, by theWeierstrass Theorem,we can �nd u0 ∈ H1(Ω)
such that

ÿ+(u0) = inf{ÿ+(u) : u ∈ H1(Ω)}. (3.2)

Let t ∈ (0, 1) be small such that tû1(z) ∈ (0, ä0] for all z ∈ Ω (recall that û1 ∈ intC+). We have

ÿ+(tû1) =
t2

2
î(û1) − ∫

Ω

F(z, tû1)dz (see (3.1))

⩽
t2

2
[ë̂1 − ë̂m] (seeH1 (iii) and recall ‖û1‖2 = 1)

< 0 (sincem ⩾ 2),

which implies ÿ+(u0) < 0 = ÿ+(0) (see (3.2)), hence u0 ̸= 0. From (3.2) we have ÿ�
+(u0) = 0, which shows

⟨A(u0), ℎ⟩ + ∫
àΩ

â(z)u0ℎdò + ∫
Ω

u0ℎdz = ∫
Ω

g+(z, u0)ℎdz for all ℎ ∈ H1(Ω). (3.3)

In (3.3), �rst we choose ℎ = −u−0 ∈ H1(Ω). Then

‖Du−0 ‖
2
2 + ‖u−0 ‖

2
2 ⩽ 0 (seeH(â) and (3.1)),

hence u0 ⩾ 0, u0 ̸= 0. Next, in (3.3) we choose (u0 − w+)
+ ∈ H1(Ω). Then

⟨A(u0), (u0 − w+)
+⟩ + ∫

àΩ

â(z)u0(u0 − w+)
+dò + ∫

Ω

u0(u0 − w+)
+dz

= ∫
Ω

[f(z, w+) + w+](u0 − w+)
+dz (see (3.1))

⩽ ⟨A(w+), (u0 − w+)
+⟩ + ∫

àΩ

â(z)w+(u0 − w+)
+dò + ∫

Ω

w+(u0 − w+)
+dz (seeH1 (ii))

and thus

⟨A(u0 − w+), (u0 − w+)
+⟩ + ∫

Ω

[u0 − w+](u0 − w+)
+dz ⩽ 0

showing ‖(u0 − w+)
+‖2 ⩽ 0, hence u0 ⩽ w+. So, we have proved that

u0 ∈ [0, w+] = {u ∈ H1(Ω) : 0 ⩽ u(z) ⩽ w+(z) for a.a. z ∈ Ω}, u0 ̸= 0. (3.4)

Because of (3.1) and (3.4), (3.3) becomes

⟨A(u0), ℎ⟩ + ∫
àΩ

â(z)u0ℎdò = ∫
Ω

f(z, u0)ℎdz for all ℎ ∈ H1(Ω). (3.5)

Authenticated | vicentiu.radulescu@math.cnrs.fr author's copy
Download Date | 7/10/15 7:22 PM



N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for semilinear Robin problems | 209

From Green’s identity (see, for example, Gasinski and Papageorgiou [10, p. 211]), we have

⟨A(u0), ℎ⟩ = ⟨−Δu0, ℎ⟩ + ⟨
àu0
àn

, ℎ⟩
àΩ

for all ℎ ∈ H1(Ω), (3.6)

with ⟨⋅ , ⋅⟩àΩ denoting the duality brackets for the pair (H− 12 ,2(àΩ),H
12 ,2(àΩ)). We know that

Δu0 = divDu0 ∈ H−1(Ω) = H1
0 (Ω)∗

(see, for example, Gasinski and Papageorgiou [10, p. 212]). Hence from (3.5) and (3.6) it follows that

⟨−Δu0, ℎ⟩ = ∫
Ω

f(z, u0)ℎdz for all ℎ ∈ H1
0 (Ω) ⊆ H1(Ω)

and thus

−Δu0(z) = f(z, u0(z)) a.e. inΩ.

Then from (3.5) and (3.6) it follows that

⟨
àu0
àn

+ â(z)u, ℎ⟩
àΩ

= 0 for all ℎ ∈ H1(Ω).

Recall that the trace map is surjective onH
12 ,2(àΩ). Hence

àu0
àn

+ â(z)u0 = 0 on àΩ.

Therefore u0 is a nontrivial positive solution of (1.1) such that 0 ⩽ u0 ⩽ w+. From the regularity result of
Lieberman [12], we have u0 ∈ C+ \ {0}. HypothesesH1 (i) and (iii) imply that we can �nd c1 > 0 such that

f(z, x)x ⩾ ë̂mx
2 − c1|x|

r for a.a. z ∈ Ω and all |x| ⩽ ý0 = max{‖w+‖∞, ‖w−‖∞},

with r > 2. Then we have

−Δpu0(z) + c1u0(z)
r−1 = f(z, u0(z)) + c1u0(z)

r−1 ⩾ 0 a.e. inΩ,

which implies

Δu0(z) ⩽ c1‖u0‖
r−2u0(z) ⩽ c1ý

r−2
0 u0(z) a.e. inΩ,

hence (see Vazquez [18])
u0 ∈ intC+.

To produce a negative solution, we introduce the following Carathéodory function:

g−(z, x) =
{{{
{{{
{

f(z, w−(z)) + w−(z) if x < w−(z),

f(z, x) + x if w−(z) ⩽ x ⩽ w+(z),

0 if 0 < x.

We set

G−(z, x) =
x

∫
0

g−(z, s)ds

and consider the C1-functional ÿ− : H1(Ω) → ℝ de�ned by

ÿ−(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

G−(z, u(z))dz for all u ∈ H1(Ω).

Reasoning as above, using this time the functional ÿ−, we produce a negative solution

v0 ∈ [w−, 0] ∩ (− intC+).
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Next we show that in fact we can produce extremal solutions of constant sign namely the smallest positive
solution and the biggest negative solution. To this end, we introduce the following solution sets:

S+ = {u ∈ H1(Ω) : u ̸= 0, u ∈ [0, w+], u is a solution of (1.1)},
S− = {v ∈ H1(Ω) : v ̸= 0, v ∈ [w−, 0], v is a solution of (1.1)}.

We introduce the following Carathéodory function:

g(z, x) =
{{{
{{{
{

f(z, w−(z)) + w−(z) if x < w−(z),

f(z, x) + x if w−(z) ⩽ x ⩽ w+(z),

f(z, w+(z)) + w+(z) if w+(z) < x.

(3.7)

From (3.7) and hypothesesH1 (i) and (iii), we see that given r ∈ (2, 2∗) we can �nd c2 > 0 big such that

g(z, x)x ⩾ (ë̂m + 1)x2 − c2|x|
r for a.a. z ∈ Ω and all x ∈ ℝ. (3.8)

This unilateral growth estimate for g(z, ⋅ ) leads to the following auxiliary Robin problem:

−Δu(z) = ë̂mu(z) − c2|u(z)|
r−2u(z) inΩ,

àu
àn

(z) + â(z)u = 0 on àΩ. (3.9)

For this auxiliary problem, we have the following existence and uniqueness result.

Proposition 3.2. Assume that hypothesis H(â) holds. Then problem (3.9) has a unique positive solution
ũ ∈ intC+ and since (3.9) is odd, ̃v = −ũ ∈ − intC+ is the unique negative solution of (3.9).

Proof. First we establish the existence of a positive solution for problem (3.9). To this end, let ó+ : H1(Ω) → ℝ
be the C1-functional de�ned by

ó+(u) =
1
2
î(u) +

1
2
‖u‖22 −

ë̂m
2

‖u+‖22 −
1
2
‖u+‖22 +

c2
r
‖u+‖rr for all u ∈ H1(Ω).

Since r > 2, it is clear that ó+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
�nd ũ ∈ H1(Ω) such that

ó+(ũ) = inf{ó+(u) : u ∈ H1(Ω)}. (3.10)

For t ∈ (0, 1) we have

ó+(tû1) =
t2

2
î(û1) +

c2t
r

r
‖û1‖

r
r −

ë̂mt
2

2
‖û1‖

2
2 =

t2

2
[ë̂1 − ë̂m] +

c2t
r

2
‖û1‖

r
r (recall that ‖û1‖2 = 1).

Since ë̂m > ë̂1 (recall m ⩾ 2) and r > 2, choosing t ∈ (0, 1) small we have ó+(tû1) < 0 and so ó+(ũ) < 0 = ó+(0)
(see (3.10)), hence ũ ̸= 0. From (3.10), we have ó�+(ũ) = 0, which implies

⟨A(ũ), ℎ⟩ + ∫
àΩ

â(z)ũℎdò + ∫
Ω

ũℎdz = ∫
Ω

(ë̂m + 1)ũ+ℎdz − c2 ∫
Ω

(ũ+)r−1ℎdz for all ℎ ∈ H1(Ω). (3.11)

If in (3.11) we choose ℎ = −ũ− ∈ H1(Ω), then we obtain ũ ⩾ 0, ũ ̸= 0. Hence

⟨A(ũ), ℎ⟩ + ∫
àΩ

â(z)ũℎdò = ë̂m ∫
Ω

ũℎdz − c2 ∫
Ω

ũr−1ℎdz for all ℎ ∈ H1(Ω). (3.12)

From (3.12) as in the proof of Proposition 3.1, via Green’s identity, we obtain

−Δũ(z) = ë̂mũ(z) − c2ũ(z)
r−1 a.e. inΩ,

àũ
àn

+ â(z)ũ = 0 on àΩ.

So ũ is a positive solution for the auxiliary problem (3.9). From Winkert [19] we know that ũ ∈ L∞(Ω). Then
applying the regularity result of Lieberman [12, p. 320], we have that ũ ∈ C+ \ {0}. Also, we have

Δũ(z) ⩽ c2‖ũ‖
r−2
∞ ũ(z) a.e. inΩ

and thus ũ ∈ intC+ (see Vazquez [18]).
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Next we prove the uniqueness of this positive solution. To this end, we introduce the integral func-
tional ã+ : L1(Ω) → ℝ = ℝ ∪ {+∞} de�ned by

ã+(u) =
{
{
{

1
2 ‖Du1/2‖22 +

1
2 ∫àΩ â(z)u(z)dò if u ⩾ 0, u1/2 ∈ H1(Ω),

+∞ otherwise.

From Benguria, Brezis and Lieb [5], we have that ã+ is convex. Also, via Fatou’s lemma, we check that ã+ is
lower semicontinuous.

Let u be a positive solution of the auxiliary problem (3.9). From the �rst part of the proof, we have
that u ∈ intC+. Hence u2 ∈ dom ã+ and if ℎ ∈ C1(Ω), then for t ∈ (−1, 1)with |t| small, wehave u2 + tℎ ∈ dom ã+.
So the Gâteaux derivative of ã+ at u in the direction ℎ exists. Moreover, via the chain rule, we have

ã�+(u
2)(ℎ) = ⟨A(u),

ℎ
u
⟩ + ∫

àΩ

â(z)ℎdò

= ⟨−Δu,
ℎ
u
⟩ + ∫

àΩ

[
àu
àn

+ â(z)u]ℎdò (by Green’s identity)

= ∫
Ω

[ë̂m − c2u
r−2]ℎdz (since u is a solution of (3.9)).

Similarly, if v ∈ H1(Ω) is another positive solution of (3.9), then v ∈ intC+ and we have

ã�+(v
2)(ℎ) = ∫

Ω

[ë̂m − c1v
r−2]ℎdz.

The convexity of ã+ implies the monotonicity of ã�+. Therefore

0 ⩽ c1 ∫
Ω

[vr−2 − ur−2](u2 − v2)dz ⩽ 0,

hence u = v and this proves the uniqueness of ũ ∈ intC+.
Since problem (3.9) is odd, ̃v = −ũ ∈ − intC+ is the unique negative solution of (3.9).

Proposition 3.3. Assume that hypothesesH(â) andH1 hold. Then ũ ⩽ u for all u ∈ S+ and v ⩽ ̃v for all v ∈ S−.

Proof. Let u ∈ S+ and consider the following Carathéodory function:

k+(z, x) =
{{{
{{{
{

0 if x < 0,

(ë̂m + 1)x − c2x
r−1 if 0 ⩽ u(z) ⩽ x,

(ë̂m + 1)u(z) − c2u(z)
r−1 if u(z) < x.

(3.13)

We set

K+(z, x) =
x

∫
0

k+(z, s)ds

and consider the C1-functional ì+ : H1(Ω) → ℝ de�ned by

ì+(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

K+(z, u(z))dz for all u ∈ H1(Ω).

It is clear from (3.13) that ì+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
�nd ũ∗ ∈ H1(Ω) such that

ì+(ũ∗) = inf{ì+(u) : u ∈ H1(Ω)}. (3.14)

As before (see the proof of Proposition 3.1), using hypothesis H1 (iii), for t ∈ (0, 1) small we have ì+(tû1) < 0,
which implies ì+(ũ∗) < 0 = ì+(0) (see (3.14)), hence ũ∗ ̸= 0. From (3.14) we have ì�

+(ũ∗) = 0 and so

⟨A(ũ∗), ℎ⟩ + ∫
àΩ

â(z)ũ∗ℎdò + ∫
Ω

ũ∗ℎdz = ∫
Ω

k+(z, ũ∗)ℎdz for all ℎ ∈ H1(Ω). (3.15)
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In (3.15), �rstwe choose ℎ = −ũ−∗ ∈ H1(Ω). Then ũ∗ ⩾ 0, ũ∗ ̸= 0. Also, in (3.15)we choose ℎ = (ũ∗ − u)+ ∈ H1(Ω).
Then

⟨A(ũ∗), (ũ∗ − u)+⟩ + ∫
àΩ

â(z)ũ∗(ũ∗ − u)+dò + ∫
Ω

ũ∗(ũ∗ − u)+dz

= ∫
Ω

[(ë̂m + 1)u − c2u
r−1](ũ∗ − u)+dz (see (3.13))

⩽ ∫
Ω

g(z, u)(ũ∗ − u)+dz + ∫
àΩ

â(z)ũ∗(ũ∗ − u)+dò (see (3.8) andH(â))

= ∫
Ω

f(z, u)(ũ∗ − u)+dz + ∫
àΩ

â(z)ũ∗(ũ∗ − u)+dò + ∫
Ω

u(ũ∗ − u)+dz (see (3.7) and recall u ⩽ w+)

= ⟨A(u), (ũ∗ − u)+⟩ + ∫
àΩ

â(z)ũ∗(ũ∗ − u)+dò + ∫
Ω

u(ũ∗ − u)+dz (since u ∈ S+),

which shows
⟨A(ũ∗) − A(u), (ũ∗ − u)+⟩ + ∫

Ω

(ũ∗ − u)(ũ∗ − u)+dz ⩽ 0

implying ‖(ũ∗ − u)+‖2 ⩽ 0, hence ũ∗ ⩽ u. So we have proved that

ũ∗ ∈ [0, u] = {y ∈ H1(Ω) : 0 ⩽ y(z) ⩽ u(z) a.e. inΩ}, ũ∗ ̸= 0. (3.16)

From (3.13) and (3.16), we see that (3.15) becomes

⟨A(ũ∗), ℎ⟩ + ∫
àΩ

â(z)ũ∗ℎdò = ∫
Ω

[ë̂mũ∗ − c2ũ
r−1
∗ ]ℎdz for all ℎ ∈ H1(Ω). (3.17)

From (3.17), as in the proof of Proposition 3.1, via Green’s identity, we obtain

−Δũ∗(z) = ë̂mũ∗(z) − c2ũ∗(z)
r−1 a.e. inΩ,

àũ∗
àn

+ â(z)ũ∗ = 0 on àΩ.

It follows that ũ∗ = ũ ∈ intC+ (see Proposition 3.2), thus ũ ⩽ u (see (3.16)). Similarly we show that v ⩽ ̃v for
all v ∈ S−.

Now we are ready to produce extremal nontrivial constant sign solutions for problem (1.1).

Proposition 3.4. Assume that hypotheses H(â) and H1 hold. Then problem (1.1) admits a smallest positive
solution u∗ ∈ intC+ and a biggest negative solution v∗ ∈ − intC+

Proof. From Dunford and Schwartz [9, p. 336], we know that we can �nd {un}n⩾1 ⊆ C such that

inf S+ = inf
n⩾1

un.

We have
−Δun(z) = f(z, un(z)) a.e. inΩ,

àun
àn

+ â(z)un = 0 on àΩ, un ∈ intC+, n ⩾ 1. (3.18)

From Lieberman [12, p. 320], we know that we can �nd ç ∈ (0, 1) andM1 > 0 such that

un ∈ C1,ç(Ω) and ‖un‖C1,ç(Ω) ⩽ M1 for all n ⩾ 1.

By virtue of the compact embedding of C1,ç(Ω) into C1(Ω) and by passing to a subsequence if necessary,
we may assume that

un → u∗ in C1(Ω). (3.19)

From (3.18) and Green’s identity, we have

⟨A(un), ℎ⟩ + ∫
àΩ

â(z)unℎdò = ∫
Ω

f(z, un)ℎdz,
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which implies
⟨A(u∗), ℎ⟩ + ∫

àΩ

â(z)u∗ℎdò = ∫
Ω

f(z, u∗)ℎdz (see (3.19)),

hence
⟨−Δu∗, ℎ⟩ + ⟨

àu∗
àn

+ â(z)u∗, ℎ⟩
àΩ

= ∫
Ω

f(z, u∗)ℎdz (using again Green’s identity). (3.20)

From (3.20) as in the proof of Proposition 3.1, we obtain

−Δu∗(z) = f(z, u∗(z)) a.e. inΩ,
àu∗
àn

+ â(z)u∗ = 0 on àΩ. (3.21)

Moreover, from Proposition 3.3, we have ũ ⩽ un for all n ⩾ 1, which implies ũ ⩽ u∗ (see (3.19)), hence u∗ ̸= 0
and so u∗ ∈ S+ (see (3.21)). Evidently u∗ = inf S+.

Similarly, working with the set S− we produce v∗ ∈ − intC+ (v∗ ⩽ ̃v) the biggest negative solution of
problem (1.1).

Remark 3. Suppose that instead ofH1 (iii) we assume that

ë̂mx
2 ⩽ f(z, x)x ⩽ ̂ç(z)x2 for a.a. z ∈ Ω and all |x| ⩽ ä0, (3.22)

with ̂ç ∈ L∞(Ω)+. Evidently (3.22), in contrast to H1 (iii), excludes from consideration reactions which are
concave near zero. Using (3.22) the proof of the nontriviality of u∗ is much easier and we do not need to
go through Propositions 3.2 and 3.3. Indeed, as before we argue by contradiction and assume that u = 0.
We set yn = un

‖un‖ , n ⩾ 1. Then ‖yn‖ = 1, yn ⩾ 0 for all n ⩾ 1 and so we may assume that

{
{
{

yn
w
→ y inH1(Ω),

yn → y in L2(Ω),
as n → ∞ with y ⩾ 0. (3.23)

From the proof of Proposition 3.4, we have

⟨A(yn), ℎ⟩ + ∫
àΩ

â(z)ynℎdò = ∫
Ω

f(z, un)
‖un‖

ℎdz for all n ⩾ 1. (3.24)

By virtue of (3.22) andH1 (i), we see that {f( ⋅ ,un( ⋅ ))‖un‖ }n⩾1 ⊆ L2(Ω) is bounded. So, we may assume that

f( ⋅ , un( ⋅ ))
‖un‖

w
→ ç0y in L2(Ω) with ë̂m ⩽ ç0(z) ⩽ ̂ç(z) a.e. inΩ (see (3.22)). (3.25)

In (3.24) we choose ℎ = yn − y ∈ H1(Ω), pass to the limit as n → ∞ and use (3.23) and (3.25). Then we obtain

lim
n→∞

⟨A(yn), yn − y⟩ = 0,

which implies ‖Dyn‖2 → ‖Dy‖2 and so

yn → y inH1(Ω) (by the Kadec–Klee property, see (3.23)), hence ‖y‖ = 1. (3.26)

So, if in (3.24) we pass to the limit as n → ∞ and use (3.25) and (3.26), then

⟨A(y), ℎ⟩ + ∫
àΩ

â(z)yℎdò = ∫
Ω

ç0ydz for all ℎ ∈ H1(Ω) (recall that the trace map is continuous). (3.27)

From (3.27) it follows that

−Δy(z) = ç0(z)y(z) a.e. inΩ,
ày
àn

+ â(z)y = 0 on àΩ, y ⩾ 0, y ̸= 0,

a contradiction to the fact that ç0(z) ⩾ ë̂m a.e. inΩ, withm ⩾ 2 (see Section 2).
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4 Nodal solutions
In this section, we produce nodal (that is, sign changing) solutions for problem (1.1). To do this, we need to
strengthen our hypotheses on the reaction f(z, x). So, we assume the following:

HypothesisH2. Assume that f : Ω × ℝ → ℝ is measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, ⋅ ) ∈ C1(ℝ) and
(i) for every ý > 0, there exists aý ∈ L∞(Ω)+ such that |f�

x(z, x)| ⩽ aý(z) for a.a. z ∈ Ω and all |x| ⩽ ý,
(ii) there exist functions w± ∈ H1(Ω) ∩ L∞(Ω) such that

w−(z) ⩽ c− < 0 < c+ ⩽ w+(z) for a.a. z ∈ Ω,

f(z, w+(z)) ⩽ 0 ⩽ f(z, w−(z)) for a.a. z ∈ Ω,

A(w−) + â( ⋅ )w− ⩽ 0 ⩽ A(w+) + â( ⋅ )w+ inH1(Ω)∗,

(iii) there exist an integerm ⩾ 2 and ä0 > 0 such that

ë̂mx
2 ⩽ f(z, x)x ⩽ ̂ç(z)x2 for a.a. z ∈ Ω and all |x| ⩽ ä0

with ̂ç ∈ L∞(Ω)+, ̂ç(z) ⩽ ë̂m+1 a.e. inΩ, ̂ç ̸= ë̂m+1 and

f�
x(z, 0) = limx→0

f(z, x)
x

uniformly for a.a. z ∈ Ω.

Remark 4. It is clear from hypothesisH2 (iii) that

ë̂m ⩽ f�
x(z, 0) ⩽ ̂ç(z) for a.a. z ∈ Ω. (4.1)

We observe, by hypotheses H2 (i) and (iii) and the di�erentiability of f(z, ⋅ ), that if ý = max{‖w+‖∞, ‖w−‖∞},
then we can �nd î0 > 0 such that for a.a. z ∈ Ω, x Ü→ f(z, x) + î0x is nondecreasing on [−ý0, ý0].

Let g(z, x) be the Carathéodory function introduced in (3.7). Let

G(z, x) =
x

∫
0

g(z, s)ds

and consider the functional ÿ : H1(Ω) → ℝ de�ned by

ÿ(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

G(z, u(z))dz for all u ∈ H1(Ω).

Recall that
î(u) = ‖Du‖22 + ∫

àΩ

â(z)u(z)2dò for all u ∈ H1(Ω).

We have that ÿ ∈ C2−0(H1(Ω)).

Proposition 4.1. Assume that hypotheses H(â) and H2 hold. Then we have Ck(ÿ, 0) = äk, dmℤ for all k ⩾ 0
with dm = dim⨁m

i=1 E(ë̂i).

Proof. Let ÷ : H1(Ω) → ℝ be the C2-functional de�ned by

÷(u) =
1
2
î(u) −

1
2
∫
Ω

f�
x(z, 0)u(z)

2dz for all u ∈ H1(Ω).

Note that by virtue of hypothesisH2 (iii), given ù > 0, we can �nd ä = ä(ù) > 0 such that

−ùx ⩽ f(z, x) − f�
x(z, 0)x ⩽ ùx for a.a. z ∈ Ω and all |x| ⩽ ä,

that is,
−
ù
2
x2 ⩽ F(z, x) −

1
2
f�
x(z, 0)x

2 ⩽
ù
2
x2 for a.a. z ∈ Ω and all |x| ⩽ ä.
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So, if Bc
ä = {u ∈ C1(Ω) : ‖u‖C1(Ω) ⩽ ä}, then

‖ÿ − ÷‖C1(Bcä) ⩽ ù.

Choosing ù > 0 su�ciently small andusing the continuity of the critical groupswith respect to theC1-topology
(see Chang [7, p. 336]), we have

Ck(ÿ|C1(Ω), 0) = Ck(÷|C1(Ω), 0) for all k ⩾ 0. (4.2)

But from Palais [13] and Bartsch [4], we know that

Ck(ÿ|C1(Ω), 0) = Ck(ÿ, 0) and Ck(÷
!!!!C1(Ω), 0) = Ck(÷, 0) for all k ⩾ 0. (4.3)

From (4.2) and (4.3) it follows that

Ck(ÿ, 0) = Ck(÷, 0) for all k ⩾ 0. (4.4)

LetH = ⨁m
k=1 E(ë̂k) and Ĥ = ⨁k⩾m+1 E(ë̂k) = H

⊥. We have the orthogonal direct sum decomposition

H1(Ω) = H ⊕ Ĥ.

Then for u ∈ H we have

÷(u) =
1
2
î(u) −

1
2
∫
Ω

f�
x(z, 0)u

2dz
(4.1)
⩽

1
2
î(u) −

ë̂m
2

‖u‖22
(2.2)
⩽ 0.

Also, if û ∈ Ĥ, then
÷(u) =

1
2
î(u) −

1
2
∫
Ω

f�
x(z, 0)u

2dz

⩾
1
2
î(u) −

1
2
∫
Ω

̂ç(z)u2dz (see (4.1))

⩾
î0
2
‖u‖2 for some î0 > 0 (see Lemma 2.3).

So,we can apply Proposition 2.4 and infer thatCk(÷, 0) = äk, dmℤ for all k ⩾ 0withdm = dim⨁m
k=1 E(ë̂k), which

implies Ck(ÿ, 0) = äk, dmℤ for all k ⩾ 0 (see (4.4)).

Using this result, we can produce nodal solutions. In what follows, u∗ ∈ intC+ and v∗ ∈ − intC+ are the two
extremal constant sign solutions produced in Proposition 3.4.

Proposition 4.2. Assume that hypothesesH(â) andH2 hold. Then problem (1.1) has at least two nodal solutions

y0, ̂y ∈ intC1(Ω)[v∗, u∗].

Proof. Using the extremal constant sign solutions u∗ ∈ intC+ and v∗ ∈ − intC+ produced in Proposition 3.4,
we introduce the following Carathéodory function

ℎ(z, x) =
{{{
{{{
{

f(z, v∗(z)) + v∗(z) if x < v∗(z),

f(z, x) + x if v∗(z) ⩽ x ⩽ u∗(z),

f(z, u∗(z)) + u∗(z) if u∗(z) < x.

(4.5)

LetH(z, x) = ∫
x
0 ℎ(z, s)ds and consider a C1-functional ó : H1(Ω) → ℝ de�ned by

ó(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

H(z, u(z))dz for all u ∈ H1(Ω),

where
î(u) = ‖Du‖22 + ∫

àΩ

â(z)u(z)2dò for all u ∈ H1(Ω).
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Also, we consider the positive and negative truncations of ℎ(z, ⋅ ), namely the Carathéodory function

ℎ±(z, x) = ℎ(z,±x±).

LetH±(z, x) = ∫
x
0 ℎ±(z, x)ds and introduce the C1-functionals ó± : H1(Ω) → ℝ de�ned by

ó±(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

H±(z, u(z))dz for all u ∈ H1(Ω).

As in the proof of Proposition 3.1, we can check that

Kó ⊆ [v∗, u∗], Kó+ ⊆ [0, u∗], Kó− ⊆ [v∗, 0].

The extremality of u∗ and v∗ implies that

Kó ⊆ [v∗, u∗], Kó+ = {0, u∗}, Kó− = {0, v∗}. (4.6)

Claim 1. The functions u∗ ∈ intC+ and v∗ ∈ − intC+ are local minimizers of ó.

From (4.5) it is clear that ó is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can
�nd u∗ ∈ H1(Ω) such that

ó+(u∗) = inf{ó+(u) : u ∈ H1(Ω)}. (4.7)

As in the proof of Proposition 3.1, using hypothesis H2 (iii) and the fact that û1 ∈ intC+, for t ∈ (0, 1) small,
we have ó+(tû1) < 0 and so

ó+(u∗) < 0 = ó+(0) (see (4.7)), hence u∗ ̸= 0. (4.8)

From (4.7) we have u∗ ∈ Kó+ = {0, u∗} (see (4.6)), hence u∗ = u∗ (see (4.8)). Since ó|C+ = ó+|C+ and u∗ ∈ intC+,
it follows that u∗ is a local C1(Ω)-minimizer of ó, hence by Proposition 2.2 it is also a local H1(Ω)-minimizer
of ó. Similarly, for v∗ ∈ − intC+ using this time the functional ó−. This proves the claim.

Without any loss of generality, we may assume that ó(v∗) ⩽ ó(u∗) (the analysis is similar if the opposite
inequality holds). By virtue of the claim, we can �nd ý ∈ (0, 1) small such that

ó(v∗) ⩽ ó(u∗) < inf{ó(u) : ‖u − u∗‖ = ý} = mý, ‖v∗ − u∗‖ > ý (4.9)

(see Aizicovici, Papageorgiou and Staicu [1, proof of Proposition 29]). The functional ó is coercive (see (4.5))
and so it satis�es the PS-condition. This fact and (4.9) permit the use of Theorem 2.1 (the Mountain Pass
Theorem). So, we can �nd y0 ∈ H1(Ω) such that

y0 ∈ Kó ⊆ [v∗, u∗] (see (4.6)) and mý ⩽ ó(y0). (4.10)

From (4.9) and (4.10) it follows that y0 ∉ {v∗, u∗} and ó�(y0) = 0. We have

⟨A(y0), v⟩ + ∫
àΩ

â(z)y0vdò + ∫
Ω

y0vdz = ∫
Ω

ℎ(z, y0)vdz for all v ∈ H1(Ω). (4.11)

From (4.5), (4.10), (4.11) as before, we infer that y0 ∈ [v∗, u∗] ∩ C1(Ω) is a solution of (1.1). Since y0 is a critical
point of ó of mountain pass-type, we have

C1(ó, y0) ̸= 0. (4.12)

On the other hand, since ó|[v∗ ,u∗] = ÿ|[v∗ ,u∗] (see (4.5)) and v∗ ∈ − intC+, u∗ ∈ intC+, we have

Ck(ó, 0) = Ck(ÿ, 0) for all k ⩾ 0 (see the proof of Proposition 4.1),

hence
Ck(ó, 0) = äk, dmℤ for all k ⩾ 0 (see Proposition 4.1). (4.13)

Comparing (4.12) and (4.13) and since dm ⩾ 2 (recall m ⩾ 2), we infer y0 ̸= 0. Because y0 ∈ [v∗, u∗] \ {v∗, u∗},
by virtue of the extremality of v∗ and u∗, we conclude that y0 ∈ C1(Ω) is nodal.
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To produce a second nodal solution, we will use Morse theory. This requires that we improve (4.12)
and compute the critical groups of ó exactly. We assume that Kó = {0, u∗, v∗, y0} (otherwise we already have
a second nodal solution of (1.1) and so we are done, see (4.6)). Note that because of the truncations at u∗(z)
and v∗(z), the functional ó is not C2, it belongs to C2−0(H1(Ω)). So, we cannot apply directly the results of
Morse theory for critical points of mountain pass-type. For this reason, we proceed as follows. We have

−Δy0(z) = f(z, y0(z)) a.e. inΩ,
ày0
àn

+ â(z)y0 = 0 on àΩ.

Recall that u∗, v∗ ∈ [w−, w+] and let î0 > 0 such that for a.a. z ∈ Ω, the function x Ü→ f(z, x) + î0x is nonde-
creasing on [−ý0, ý0] with ý0 = max{‖w+‖∞, ‖w−‖∞} (see the remark after hypothesesH2). Then we have

−Δy0(z) + î0y0(z) = f(z, y0(z)) + î0y0(z)

⩽ f(z, u∗(z)) + î0u∗(z) (since y0 ⩽ u∗)
= −Δu∗(z) + î0u∗(z) a.e. inΩ,

which shows Δ(u∗ − y0)(z) ⩽ î0(u∗ − y0)(z) a.e. in Ω, hence u∗ − y0 ∈ intC+ (see Vazquez [18]). Similarly,
we show that y0 − v∗ ∈ intC+, hence y0 ∈ intC1(Ω)[v∗, u∗].

Let 0 < ù < min{minΩ(u∗ − y0),minΩ(y0 − v∗)} and consider the multifunction Lù : Ω → 2C
1(ℝ) de�ned by

Lù(z) = {ú ∈ C1(ℝ) : ‖ℎ(z, ⋅ ) − ú‖C(ℝ) ⩽ ù, ℎ(z, x) = ú(x) for |x − u∗(z)| ⩾ ù, |x − v∗(z)| ⩾ ù}.

Since ℎ(z, ⋅ ) need not be di�erentiable at v∗(z) and u∗(z), by a smooth modi�cation of ℎ(z, ⋅ ) near v∗(z)
and u∗(z), we see that Lù(z) ̸= 0 for all z ∈ Ω. ClearlyGr Lù ∈ L(Ω) × B(C1(ℝ)), withL(Ω) being the Lebesgue
ò-�eld of Ω and B(C1(ℝ)) the Borel ò-�eld of C1(ℝ). Since C1(ℝ) is a separable Fréchet space, we can apply
the Yankov–von Neumann–Aumann Selection Theorem (see Hu and Papageorgiou [11, pp. 158–159]) and
obtain a Borel measurable map ̂ú : Ω → C1(ℝ) such that ̂ú(z) ∈ Lù(z) for a.a. z ∈ Ω. We set ℎ̂(z, x) = ̂ú(z)(x)
for all x ∈ ℝ. Then ℎ̂( ⋅ , ⋅ ) is jointly measurable and for a.a. z ∈ Ω, ℎ̂(z, ⋅ ) ∈ C1(ℝ). We set

Ĥ(z, x) =
x

∫
0

ℎ̂(z, x)ds

and consider the functional ̂ó : H1(Ω) → ℝ de�ned by

̂ó(u) =
1
2
î(u) +

1
2
‖u‖22 − ∫

Ω

Ĥ(z, u(z))dz for all u ∈ H1(Ω).

Evidently ̂ó ∈ C2(H1(Ω)) and y0 ∈ K ̂ó. Choosing ù > 0 small, by virtue of the continuity of the critical groups
in the C1-topology, we have

Ck(ó, y0) = Ck( ̂ó, y0) for all k ⩾ 0, (4.14)

which implies C1( ̂ó, y0) ̸= 0 (see (4.12)), hence Ck( ̂ó, y0) = äk,1ℤ for all k ⩾ 0 (see Bartsch [4]), and so

Ck(ó, y0) = äk,1ℤ for all k ⩾ 0 (see (4.14)). (4.15)

By virtue of the claim, we have

Ck(ó, u∗) = Ck(ó, v∗) = äk,0ℤ for all k ⩾ 0. (4.16)

Moreover, since ó is coercive (see (4.5)), we have

Ck(ó,∞) = äk,0ℤ for all k ⩾ 0. (4.17)

Recall thatKó = {0, u∗, v∗, y0}. From (4.13), (4.15), (4.16), (4.17) and theMorse relation (see (2.3))with t = −1, we
have (−1)dm + 2(−1)0 + (−1)1 = (−1)0 and so (−1)dm = 0, a contradiction. So, we can �nd ̂y ∈ Kó \ {0, u∗, v∗, y0}.
Then ̂y ∈ [v∗, u∗] ∩ C1(Ω) (see (4.6)) and so it is the second nodal solution of (1.1). As we did for y0, we show
that ̂y ∈ intC1(Ω)[v∗, u∗].
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Summarizing the situation for problem (1.1), we can state the following multiplicity theorem.

Theorem 4.3. Assume that hypothesesH(â) andH2 hold. Then problem (1.1) has at least four nontrivial solu-
tions

u0 ∈ intC+, v0 ∈ − intC+ and y0, ̂y ∈ intC1(Ω)[v0, u0] nodal.

A careful reading of the above proof leads to another multiplicity theorem producing three nontrivial solu-
tions all with sign information and without imposing any di�erentiability condition on the reaction f(z, ⋅ ).

So, the new hypotheses on the reaction f(z, x) are the following:

HypothesisH3. Assume that f : Ω × ℝ → ℝ is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and
(i) for every ý > 0, there exists aý ∈ L∞(Ω)+ such that |f(z, x)| ⩽ aý(z) for a.a. z ∈ Ω, all |x| ⩽ ý,
(ii) there exist functions w± ∈ H1(Ω) ∩ L∞(Ω) such that

w−(z) ⩽ c− < 0 < c+ ⩽ w+(z) for a.e. z ∈ Ω,

f(z, w+(z)) ⩽ 0 ⩽ f(z, w−(z)) for a.e. z ∈ Ω,

A(w−) + â( ⋅ )w− ⩽ 0 ⩽ A(w+) + â( ⋅ )w+ inH1(Ω)∗,

(iii) there exist an integerm ⩾ 2 and functions ç, ̂ç ∈ L∞(Ω)+ such that

ë̂m ⩽ ç(z) ⩽ ̂ç(z) ⩽ ë̂m+1 a.e. inΩ, ç ̸= ë̂m, ̂ç ̸= ë̂m+1

and
ç(z) ⩽ lim inf

x→0

f(z, x)
x

⩽ lim sup
x→0

f(z, x)
x

⩽ ̂ç(z) uniformly for a.a. z ∈ Ω,

(iv) if ý0 = max{‖w+‖∞, ‖w−‖∞}, then there exists î0 > 0 such that for a.a. z ∈ Ω, the function x Ü→ f(z, x) + î0x
is nondecreasing on [−ý0, ý0].

Remark 5. Now, in contrast to the previous setting, we do not allow resonance at zero, only nonuniform
nonresonance.

In this case, hypothesisH3 (iii), the homotopy invariance of critical groups and the results of Dancer [8] imply
thatCdm (ó, 0) ̸= 0 andC1(ó, 0) = 0, with ó as in the proof of Proposition 4.2 and with dm = dim⨁m

k=1 E(ë̂k) ⩾ 2.
Then the argument in the proof of Proposition 4.2 remains valid and we have.

Theorem 4.4. Assume that hypothesesH(â) andH1 hold. Then problem (1.1) has at least three nontrivial solu-
tions

u0 ∈ intC+, v0 ∈ − intC+ and y0 ∈ intC1(Ω)[v0, u0] nodal.

5 Parametric equations
We consider the following parametric semilinear Robin problem:

−Δu(z) = ëu(z) − f(z, u(z)) inΩ,
àu
àn

(z) + â(z)u(z) = 0 on àΩ. (Pë)

Here ë > 0 is a parameter and f(z, x) is a Carathéodory perturbation. The precise conditions on the nonlin-
earity f(z, x) are the following:

HypothesisH4. Assume that f : Ω × ℝ → ℝ is a measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0,
f(z, ⋅ ) ∈ C1(ℝ) and
(i) for every ý > 0, there exists aý ∈ L∞(Ω)+ such that |f�

x(z, x)| ⩽ aý(z) for a.a. z ∈ Ω and all |x| ⩽ ý,
(ii) limx→±∞

f(z,x)
x = +∞ uniformly for a.a. z ∈ Ω,

(iii) limx→0
f(z,x)

x = 0 uniformly for a.a. z ∈ Ω,
(iv) there exists ̂ä > 0 such that f(z, x)x ⩾ 0 for a.a. z ∈ Ω and all |x| ⩽ ̂ä.
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Remark 6. The above hypotheses imply that given ý > 0, we can �nd îý > 0 such that for a.a. z ∈ Ω the
function x Ü→ (ë + îý)x − f(z, x) is nondecreasing on [−ý, ý].

Theorem 5.1. Assume that hypotheses H(â) and H4 hold and ë > ë̂2. Then problem (Pë) admits at least four
nontrivial solutions

u0 ∈ intC+, v0 ∈ − intC+ and y0, ̂y ∈ intC1(Ω)[v0, u0] nodal.

Proof. HypothesisH4 (ii) implies that given ú > 0, we can �ndM = M(ú) > 0 such that

f(z, x) ⩾ úx for a.a. z ∈ Ω and all x ⩾ M.

Since û1 ∈ intC+, for t > 0 large we will have tû1(z) ⩾ M for all z ∈ Ω. Then

f(z, tû1(z)) ⩾ ú(tû1(z)) for a.a. z ∈ Ω. (5.1)

We have
−Δ(tû1)(z) = ë̂1(tû1)(z) a.e. inΩ,

à(tû1)
àn

+ â(z)(tû1) = 0 on àΩ. (5.2)

For every ℎ ∈ H1(Ω), ℎ ⩾ 0, we have
⟨−Δ(tû1), ℎ⟩ = ∫

Ω

ë̂1(tû1)ℎdz

and so
⟨A(tû1), ℎ⟩ − ⟨

à(tû1)
àn

, ℎ⟩
àΩ

= ∫
Ω

ë̂1(tû1)ℎdz (by Green’s identity),

hence
⟨A(tû1), ℎ⟩ + ∫

àΩ

â(z)(tû1)dò = ∫
Ω

ë̂1(tû1)ℎdz (see (5.2)). (5.3)

Choosing ú = ë − ë̂1 > 0, from (5.1) and (5.3), we have

∫
Ω

[ë(tû1) − f(z, tû1)]ℎdz ⩽ ∫
Ω

ë̂1(tû1)ℎdz = ⟨A(tû1), ℎ⟩ + ∫
àΩ

â(z)(tû1)ℎdò for all ℎ ∈ H1(Ω) with ℎ ⩾ 0.

Then w+ = tû1 ∈ intC+ satis�es hypothesis H2 (ii). Similarly, we produce w− = −tû1 ∈ − intC+ which also
satis�es hypothesisH2 (ii).

Finally note that by virtue of hypothesisH4 (iii) given ù > 0, we can �nd ä = ä(ù) ∈ (0, ̂ä] (seeH4 (iv)) such
that

|f(z, x)| ⩽ ù|x| for a.a. z ∈ Ω and all |x| ⩽ ä0. (5.4)

Then for a.a. z ∈ Ω and all |x| ⩽ ä0, we have

ëx2 − f(z, x)x ⩾ (ë − ù)x2.

Choosing ù ∈ (0, ë − ë̂2], we see that

ëx2 − f(z, x)x ⩾ ë̂2x
2 for a.a. z ∈ Ω and all |x| ⩽ ä0.

Also by hypothesisH4 (iv) we have

ëx2 − f(z, x)x ⩽ ëx2 for a.a. z ∈ Ω and all |x| ⩽ ä0.

So, we have satis�ed hypothesis H2 (iii). Therefore, we are within the framework of Theorem 4.4. Applying
that theorem, we produce four nontrivial solutions

u0 ∈ intC+, v0 ∈ − intC+ and y0, ̂y ∈ intC1(Ω)[v0, u0] nodal.

Remark 7. Theorem 5.1 above extends Papageorgiou and Rădulescu [14, Theorem 14], since here we do not
impose a global growth condition on f�

x(z, ⋅ ) (seeH4 (i)). Moreover, it extends analogous results for the semi-
linear Dirichlet problem by Ambrosetti and Lupo [2], Ambrosetti and Mancini [3] and Struwe [15, 16], where
the authors produce only three nontrivial solutions, without obtaining nodal solutions.
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