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Abstract. We study a nonlinear Robin problem driven by the p-Laplacian and with a reaction term depending on the gra-
dient (convection term). Using the theory of nonlinear operators of monotone-type and the asymptotic analysis of a suitable
perturbation of the original equation, we show the existence of a positive smooth solution.
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1. Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we deal with the following

nonlinear Robin problem with gradient dependence:

{−�pu(z) = f (z, u(z), Du(z)) in �,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂�.

}
(1)

In this problem, �p denotes the p-Laplacian differential operator defined by

�pu = div
(|Du|p−2Du

)
for all u ∈ W 1,p(�), 1 < p < ∞.

The reaction term f (z, x, y) is gradient dependent (a convection term) and it is a Carathéodory func-
tion (that is, for all (x, y) ∈ R × R

N the mapping z �→ f (z, x, y) is measurable and for almost all
z ∈ � the map (x, y) �→ f (z, x, y) is continuous). In the boundary condition, ∂u

∂np
denotes the conormal

derivative defined by extension of the map

C1(�) � u �→ |Du|p−2 ∂u

∂n
= |Du|p−2(Du, n)RN ,
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with n(·) being the outward unit normal on ∂�. The boundary coefficient β(·) is nonnegative and it can
be identically zero, in which case we recover the Neumann problem.

We are looking for positive solutions of problem (1). The presence of the gradient in the reaction term
precludes the use of variational methods. In this paper, our approach is based on the nonlinear operator
theory and on the asymptotic analysis of a perturbation of problem (1).

Positive solutions for elliptic problems with convection were obtained by de Figueiredo, Girardi and
Matzeu [2], Girardi and Matzeu [6] (semilinear equations driven by the Dirichlet Laplacian), Ruiz [13],
Faraci, Motreanu and Puglisi [3], and Huy, Quan and Khanh [7] (nonlinear Dirichlet problems). For Neu-
mann problems we refer to the works of Gasinski and Papageorgiou [5], and Papageorgiou, Rădulescu
and Repovš [12], where the differential operator is of the form div(a(u)Du). In all the above works,
the method of proof is different and it is based either on the fixed point theory (the Leray–Schauder
alternative principle), on the iterative techniques, or on the method of upper-lower solutions.

2. Mathematical background and hypotheses

Let X be a reflexive Banach space. We denote by X∗ its topological dual and by 〈·, ·〉 the duality brack-
ets for the dual pair (X, X∗). Suppose that V : X → X∗ is a nonlinear operator which is bounded (that is,
it maps bounded sets to bounded sets) and everywhere defined. We say that V (·) is “pseudomonotone”,
if the following property holds:

un
w→ u in X, V (un)

w→ u∗ in X∗ and lim sup
n→∞

〈
V (un), un − u

〉
� 0 ⇒

u∗ = V (u) and
〈
V (un), un

〉 → 〈
V (u), u

〉
.

Pseudomonotonicity is preserved by addition and any maximal monotone everywhere defined opera-
tor is pseudomonotone. Moreover, as is the case of maximal operators, pseudomonotone maps exhibit
remarkable surjectivity properties.

Proposition 1. If V : X → X∗ is pseudomonotone and strongly coercive (that is, 〈V (u),u〉
‖u‖ → +∞ as

‖u‖ → ∞), then V is surjective.

From the above remarks we see that if A : X → X∗ is maximal monotone everywhere defined and
K : X → X∗ is completely continuous (that is, if un

w→ u in X, then K(un) → K(u) in X∗), then
u → V (u) = A(u) + K(u) is pseudomonotone.

A nonlinear operator A : X → X∗ is said to be of type (S)+, if the following property holds:

un
w→ u in X and lim sup

n→∞

〈
A(un), un − u

〉
� 0 ⇒ un → u in X.

For further details on these notions and related issues, we refer to Gasinski and Papageorgiou [4].
In the analysis of problem (1) we will use the Sobolev space W 1,p(�), the Banach space C1(�) and

the boundary Lebesgue space Lp(∂�).
We denote by ‖ · ‖ the norm of the Sobolev space W 1,p(�) defined by

‖u‖ = [‖u‖p
p + ‖Du‖p

p

]1/p
for all u ∈ W 1,p(�).
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The Banach space C1(�) is an ordered Banach space with positive (order) cone defined by

C+ = {
u ∈ C1(�) : u(z) � 0 for all z ∈ �

}
.

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n

∣∣∣∣
∂�∩u−1(0)

< 0 if ∂� ∩ u−1(0) �= ∅
}
.

This interior contains the open set

D+ = {
u ∈ C+ : u(z) > 0 for all z ∈ �

}
.

In fact, D+ is the interior of C+ when C1(�) is endowed with the C(�)-norm topology.
On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using this measure

on ∂� we can define in the usual way the “boundary” Lebesgue spaces Lq(�) (1 � q � ∞). From the
theory of Sobolev spaces, we know that there exists a unique continuous linear map γ0 : W 1,p(�) →
Lp(∂�), known as the “trace map”, such that γ0(u) = u|∂� for all u ∈ W 1,p(�) ∩ C(�). So, the trace
operator extends the notion of “boundary values” to all Sobolev functions. We have

im γ0 = W
1
p′ ,p(∂�)

(
1

p
+ 1

p′ = 1

)
and ker γ0 = W

1,p

0 (�).

The trace map is compact into Lq(∂�) for all q ∈ [1,
(N−1)p

N−p
) if p < N and for all q � 1 if N � p.

In the sequel, for the sake of notational simplicity, we drop the use of the trace map γ0. All restrictions
of Sobolev functions on ∂� are understood in the sense of traces.

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear operator defined by

〈
A(u), h

〉 =
∫

�

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W 1,p(�).

Proposition 2. The operator A : W 1,p(�) → W 1,p(�)∗ is bounded, continuous, monotone (hence also
maximal monotone) and of type (S)+.

Given x ∈ R, we define x± = max{±x, 0}. Then for u ∈ W 1,p(�) we set u±(·) = u(·)±. We have

u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u−.

Given a measurable function g : �×R×R
N → R (for example, a Carathéodory function), we denote

by Ng(·) the Nemitsky (superposition) map defined by

Ng(u)(·) = g
(·, u(·), Du(·)) for all u ∈ W 1,p(�).

Evidently, z �→ Ng(u)(z) is measurable. We denote by | · |N the Lebesgue measure on R
N .
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Consider the following nonlinear eigenvalue problem{
−�pu(z) = λ̂|u(z)|p−2u(z) in �,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂�.

}
(2)

We make the following hypothesis concerning the boundary coefficient β(·).
H(β): β ∈ C0,α(∂�) with α ∈ (0, 1) and β(z) � 0 for all z ∈ ∂�.

Remark 1. If β ≡ 0, then we recover the Neumann boundary condition.

An “eigenvalue” is a real number λ̂ for which problem (2) admits a nontrivial solution û ∈ W 1,p(�),
known as the “eigenfunction” corresponding to the eigenvalue λ̂. From Papageorgiou and Rădulescu
[11] (see also Winkert [14]), we have that

û ∈ L∞(�).

So, we can apply Theorem 2 of Lieberman [8] and infer that

û ∈ C1(�).

From Papageorgiou and Rădulescu [10] we know that problem (2) admits a smallest eigenvalue λ̂1 ∈ R

with the following properties:

• λ̂1 � 0, in fact λ̂1 = 0 if β ≡ 0 (Neumann problem) and λ̂1 > 0 if β �≡ 0.
• λ̂1 is isolated in the spectrum σ̂ (p) of (2) (that is, we can find ε > 0 such that (λ̂1, λ̂1 +ε)∩ σ̂ (p) =

∅).
• λ̂1 is simple (that is, if û, v̂ ∈ C1(�) are eigenfunctions corresponding to λ̂1, then û = ξ v̂ for some

ξ ∈ R\{0}).
•

λ̂1 = inf

{‖Du‖p
p + ∫

∂�
β(z)|u|p dσ

‖u‖p
p

: u ∈ W 1,p(�), u �= 0

}
. (3)

The infimum in (3) is realized on the corresponding one-dimensional eigenspace. From the above
property it follows that the elements of this eigenspace do not change sign. Let û1 be the Lp-normalized
(that is, ‖û1‖p = 1) positive eigenfunction corresponding to λ̂1. We know that û1 ∈ C+. In fact, the
nonlinear strong maximum principle (see, for example, Gasinski and Papageorgiou [4, p. 738]), implies
that û1 ∈ D+. An eigenfunction û corresponding to an eigenvalue λ̂ �= λ̂1, is necessary nodal (that
is, sign changing). For more on the spectrum of (2) we refer to Papageorgiou and Rădulescu [11]. The
next lemma is an easy consequence of the above properties of the eigenpair (λ̂1, û1) (see Mugnai and
Papageorgiou [9, Lemma 4.11]).

Lemma 3. If ϑ ∈ L∞(�), ϑ(z) � λ̂1 for almost all z ∈ �, ϑ �≡ λ̂1, then there exists c0 > 0 such that

‖Du‖p
p +

∫
∂�

β(z)|u|p dσ −
∫

�

ϑ(z)|u|p dz � c0‖u‖p

for all u ∈ W 1,p(�).
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Our hypotheses on the reaction term f (z, x, y) are the following:

H(f ): f : � × R × R
N → R is a Carathéodory function such that f (z, 0, y) = 0 for almost all

z ∈ �, for all y ∈ R
N , and

(i) |f (z, x, y)| � a(z)[1 + xp−1 + |y|p−1] for almost all z ∈ �, all x � 0, all y ∈ R
N , with

a ∈ L∞(�);
(ii) there exists a function ϑ ∈ L∞(�) such that

ϑ(z) � λ̂1 for almost all z ∈ �, ϑ �≡ λ̂1,

lim sup
x→+∞

f (z, x, y)

xp−1
� ϑ(z) uniformly for almost all z ∈ �, and all y ∈ R

N ;

(iii) for every M > 0, there exists ηM ∈ L∞(�) such that ηM(z) � λ̂1 almost everywhere in
�, ηM �≡ λ̂1 and

lim inf
x→0+

f (z, x, y)

xp−1
� ηM(z) uniformly for almost all z ∈ �, and all |y| � M.

Remark 2. Since we are looking for positive solutions and the above hypotheses concern only the
positive semiaxis R+ = [0, +∞), we may assume without loss of generality that

f (z, x, y) = 0 for almost all z ∈ �, all x � 0, and all y ∈ R
N. (4)

Example 1. The following function satisfies hypotheses H(f ) (for the sake of simplicity we drop the
z-dependence):

f (x, y) =
{

ηxp−1 + xr−1|y|p−1 if 0 � x � 1

ϑxp−1 + (η − ϑ)xq−1 + xτ−1|y|p−1 if 1 < x

with 1 < τ , q < p < r < ∞ and ϑ < λ̂1 < η.

3. Positive solution

We introduce the following perturbation of f (z, x, y):

f̂ (z, x, y) = f (z, x, y) + (
x+)p−1

.

Also, let ε > 0 and e ∈ D+. We consider the following auxiliary Robin problem:

{
−�pu(z) + |u(z)|p−2u(z) = f̂ (z, u(z), Du(z)) + εe(z) in �,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂�.

}
(5)

Proposition 4. If hypotheses H(β), H(f ) hold and ε > 0, then problem (5) has a solution uε ∈ D+.
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Proof. Let Nf̂ be the Nemitsky map corresponding to the function f̂ (z, x, y). We have Nf̂ :
W 1,p(�) → Lp′

(�)( 1
p

+ 1
p′ = 1) (see hypothesis H(f )(i)). By Krasnoselskii’s theorem (see, for exam-

ple, Gasinski and Papageorgiou [4, Theorem 3.4.4, p. 407]) we deduce that

Nf̂ (·) is continuous. (6)

Also let ψp : W 1,p(�) → Lp′
(�) be defined by

ψp(u)(·) = ∣∣u(·)∣∣p−2
u(·).

This map is bounded, continuous, monotone, hence also maximal monotone (recall that also
Lp′

(�) ↪→ W 1,p(�)∗).
Finally, let Â : W 1,p(�) → W 1,p(�)∗ be defined by

〈
Â(u), h

〉 = 〈
A(u), h

〉 + ∫
∂�

β(z)|u|p−2uh dσ,

where, as before,

〈
A(u), h

〉 =
∫

�

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W 1,p(�).

Evidently, Â(·) is bounded, continuous, monotone, hence also maximal monotone.
We introduce the operator V : W 1,p(�) → W 1,p(�)∗ defined by

V (u) = Â(u) + ψp(u) − Nf̂ (u) − εe.

Clearly, V (·) is bounded.

Claim 1. V (·) is pseudomonotone.

We need to show that the properties

un
w→ u in W 1,p(�) and lim sup

n→∞

〈
V (un), un − u

〉
� 0 (7)

imply that

V (un)
w→ V (u) in W 1,p(�)∗ and

〈
V (un), un

〉 → 〈
V (u), u

〉
.

We have〈
V (un), un − u

〉
= 〈

Â(un), un − u
〉 + ∫

�

|un|p−2un(un − u) dz −
∫

�

f̂ (z, un, Dun)(un − u) dz

− ε

∫
�

e(un − u) dz. (8)
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Note that since W 1,p(�) ↪→ Lp(�) compactly, we have

un → u in Lp(�). (9)

Also, we have

{|un|p−2un

}
n�1 ⊆ Lp′

(�) is bounded.

Hence, because of Hölder’s inequality and (9), we have

∫
�

|un|p−2un(un − u) dz → 0 as n → ∞. (10)

Also, hypothesis H(f )(i) implies that

{
Nf̂ (un)

}
n�1 ⊆ Lp′

(�) is bounded.

Therefore we also have∫
�

f̂ (z, un, Dun)(un − u) dz → 0 as n → ∞. (11)

Finally, we clearly have

∫
�

e(un − u) dz → 0 as n → ∞ (
see (9)

)
. (12)

Thus, if in (8) we pass to the limit as n → ∞ and use (7), (10), (11), and (12) we obtain

lim sup
n→∞

〈
Â(un), un − u

〉
� 0.

By the compactness of the trace map, we have

∫
∂�

β(z)|un|p−2un(un − u) dσ → 0

⇒ lim sup
n→∞

〈
A(un), un − u

〉
� 0

⇒ un → u in W 1,p(�) (see Proposition 2).

On account of this convergence, we have

ψp(un) → ψp(u) and Nf̂ (un) → Nf̂ (u) in Lp′
(�) as n → ∞ (

see (6)
)
,

Â(un) → Â(u) in W 1,p(�)∗ as n → ∞.
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So, we can finally assert that

V (un) → V (u) in W 1,p(�)∗ and
〈
V (un), un

〉 → 〈
V (u), u

〉
⇒ V (·) is pseudomonotone.

This proves the claim.
For all u ∈ W 1,p(�) we have〈

V (u), u
〉

= ‖Du‖p
p +

∫
∂�

β(z)|u|p dσ + ∥∥u−∥∥p

p
−

∫
�

f (z, u, Du)u dz − ε

∫
�

eu dz. (13)

Hypotheses H(f )(i), (ii) imply that given ε > 0, we can find c1 = c1(ε) > 0 such that

f (z, x, y)x �
(
ϑ(z) + ε

)
xp + c1 for almost all z ∈ �, all x � 0, and all y ∈ R

N. (14)

Using (14) in (13), we obtain〈
V (u), u

〉
�

∥∥Du−∥∥p

p
+ ∥∥u−∥∥p

p
+ ∥∥Du+∥∥p

p
+

∫
∂�

β(z)
(
u+)p

dσ −
∫

�

ϑ(z)
(
u+)p

dz − ε
∥∥u+∥∥p

− c2‖u‖ − c1|�|N for some c2 > 0

⇒ 〈
V (u), u

〉
�

∥∥u−∥∥p + (c0 − ε)
∥∥u+∥∥p − c2‖u‖ − c1|�|N (see Lemma 3).

Choosing ε ∈ (0, c0), we see that〈
V (u), u

〉
� c3‖u‖p − c4 for some c3, c4 > 0

⇒ V (·) is strongly coercive (recall that p > 1). (15)

Then the claim and (15) permit the use of Proposition 1. So, we can find uε ∈ W 1,p(�), uε �= 0 (since
e �= 0) such that

V (uε) = 0 in W 1,p(�)∗

⇒ 〈
A(uε), h

〉 + ∫
∂�

β(z)|uε|p−2uεh dσ −
∫

�

(
u−

ε

)p−1
h dz

=
∫

�

f (z, uε, Duε)h dz + ε

∫
�

eh dz for all h ∈ W 1,p(�). (16)

In (16) we choose h = −u−
ε ∈ W 1,p(�) and use (4) and hypothesis H(β). Then∥∥Du−

ε

∥∥p

p
+ ∥∥u−

ε

∥∥p

p
� 0 (recall that e ∈ D+)

⇒ uε � 0, uε �= 0.
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Then from (16) we have

〈
A(uε), h

〉 + ∫
∂�

β(z)up−1
ε h dσ

=
∫

�

f (z, uε, Duε)h dz + ε

∫
�

eh dz for all h ∈ W 1,p(�)

⇒ −�puε(z) = f
(
z, uε(z), Duε(z)

) + εe(z) for almost all z ∈ �,

∂uε

∂np

+ β(z)up−1
ε = 0 on ∂� (see Papageorgiou and Rădulescu [10]). (17)

By Winkert [14] and Papageorgiou and Rădulescu [11], we have

uε ∈ L∞(�).

Applying Theorem 2 of Lieberman [8], we obtain

uε ∈ C+\{0}.

Let M = ‖uε‖C1(�). Hypotheses H(f )(i), (iii) imply that we can find ξ̂M > 0 such that

f (z, x, y) + ξ̂Mxp−1 � 0

for almost all z ∈ �, all x ∈ [0, M], and all |y| � M .
Using this in (17), we have

�puε(z) � ξ̂Muε(z)
p−1 for almost all z ∈ �

⇒ uε ∈ D+

(by the nonlinear strong maximum principle, see [4, p. 738]). �

Next, we show that for some μ ∈ (0, 1) and all 0 < ε � 1, we have that uε ∈ C1,μ(�) and

{uε}0<ε�1 ⊆ C1,μ(�) is bounded.

Using this fact and letting ε → 0+, we will generate a positive solution for problem (1).

Proposition 5. If hypotheses H(β), H(f ) hold, then there exist μ ∈ (0, 1) and c∗ > 0 such that for all
0 < ε � 1 we have

uε ∈ C1,μ(�) and ‖uε‖C1,μ(�) � c∗.
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Proof. Let ε ∈ (0, 1] and let uε ∈ D+ be a solution of (5) produced in Proposition 4. We have

〈
A(uε), h

〉 + ∫
∂�

β(z)up−1
ε h dσ

=
∫

�

f (z, uε, Duε)h dz + ε

∫
�

eh dz for all h ∈ W 1,p(�). (18)

Hypothesis H(f )(ii) implies that given ε > 0, we can find M1 = M1(ε) > 0 such that

f (z, x, y)x �
(
ϑ(z) + ε

)
xp for almost all z ∈ �, all x � M1, and all y ∈ R

N. (19)

Also, hypothesis H(f )(i) implies that

f (z, x, y)x � c5
(
1 + |y|p−1

)
for almost all z ∈ �,

all 0 � x � M1, all y ∈ R
N, and some c5 > 0. (20)

Then from (19), (20) and since ϑ ∈ L∞(�), it follows that

f (z, x, y)x �
(
ϑ(z) + ε

)
xp + c6|y|p−1 + c6 for almost all z ∈ �,

all x � 0, all y ∈ R
N, and for some c5 > 0. (21)

In (18) we choose h = uε ∈ W 1,p(�). We obtain

‖Duε‖p
p +

∫
∂�

β(z)up
ε dσ �

∫
�

[
ϑ(z) + ε

]
up

ε dz + c7
[‖Duε‖p−1

p + ‖uε‖ + 1
]

for some c7 > 0

⇒ ‖Duε‖p
p +

∫
∂�

β(z)up
ε dσ −

∫
�

ϑ(z)up
ε dz − ε‖uε‖p � c8

[‖uε‖p−1 + 1
]

for some c8 > 0

⇒ [c0 − ε]‖uε‖p � c8
[‖uε‖p−1 + 1

]
(see Lemma 3).

Choosing ε ∈ (0, c0), we infer that

{uε}0<ε�1 ⊆ W 1,p(�) is bounded. (22)

From (18) we have

{−�puε(z) = f (z, uε(z), Duε(z)) + εe(z) for almost all z ∈ �,
∂uε

∂np
+ β(z)up−1

ε = 0 on ∂�

}
(23)

(see Papageorgiou and Rădulescu [10]).
From (22), (23) and Winkert [14] (see also Papageorgiou and Rădulescu [11]), we see that we can find

c9 > 0 such that

‖uε‖∞ � c9 for all 0 < ε � 1.
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Invoking Theorem 2 of Lieberman [8], we know that there exist μ ∈ (0, 1) and c∗ > 0 such that

uε ∈ C1,μ(�) and ‖uε‖C1,μ(�) � c∗ for all ε ∈ (0, 1].

This completes the proof. �

Now letting ε → 0+, we will produce a positive solution for problem (1).

Theorem 6. If hypotheses H(β), H(f ) hold, then problem (1) has a positive solution û ∈ D+.

Proof. Let {εn}n�1 ⊆ (0, 1] and assume that εn → 0+. We set un = uεn
for all n ∈ N. On account

of Proposition 5 and since C1,μ(�) is embedded compactly into C1(�), by passing to a subsequence if
necessary, we may assume that

un → û in C1(�) as n → ∞. (24)

Suppose that û = 0. Let M = supn�1 ‖un‖C1(�). Hypothesis H(f )(iii) implies that given ε > 0, we
can find δ = δ(ε) > 0 such that

f (z, x, y) �
[
ηM(z) − ε

]
xp−1 for almost all z ∈ �, all 0 � x � δ, and all |y| � M. (25)

Consider the function

R(û1, un)(z) = ∣∣Dû1(z)
∣∣p − ∣∣Dun(z)

∣∣p−2
(

Dun(z), D

(
û

p

1

u
p−1
n

)
(z)

)
RN

.

From the nonlinear Picone’s identity of Allegretto and Huang [1], we have

0 �
∫

�

R(û1, un) dz

= ‖Dû1‖p
p −

∫
�

|Dun|p−2

(
Dun, D

(
û

p

1

u
p−1
n

))
RN

dz

= ‖Dû1‖p
p −

∫
�

(−�pun)

(
û

p

1

u
p−1
n

)
dz +

∫
∂�

β(z)up−1
n

û
p

1

u
p−1
n

dσ

(
by the nonlinear Green’s identity, see Gasinski and Papageorgiou [4, p. 211]

)
= ‖Dû1‖p

p +
∫

∂�

β(z)û
p−1
1 dσ −

∫
�

f (z, un, Dun)
û

p

1

u
p−1
n

dz − εn

∫
�

e
û

p

1

u
p−1
n

dz

(
see (23) with uε replaced by un

)
� λ̂1 −

∫
�

ηM(z)up−1
n

û
p

1

u
p−1
n

dz + ε for all n � n0

(
see (25), (24) and recall that û = 0 and ‖û1‖p = 1

)
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= λ̂1 −
∫

�

ηM(z)û
p

1 dz + ε

=
∫

�

[
λ̂1 − η(z)

]
û

p

1 dz + ε for all n � n0
(
recall that ‖û1‖p = 1

)
. (26)

Let ξ ∗ = ∫
�
[ηM(z) − λ̂1]ûp

1 dz. Since û1 ∈ D+, hypothesis H(f )(iii) implies that

ξ ∗ > 0.

Then from (26) and by choosing ε ∈ (0, ξ ∗) we have

0 � R(û1, un) < 0 for all n � n0,

a contradiction. So, û �= 0. Therefore, û � 0 is a positive solution of (1) and as before, via the nonlinear
strong maximum principle, we have û ∈ D+. �
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