Resonant ($p, 2$)-equations with asymmetric reaction

Nikolaos S. Papageorgiou
National Technical University
Department of Mathematics Zografou Campus, Athens 15780, Greece
npapg@math.ntua.gr
Vicenţiu D. Rădulescu
Department of Mathematics, Faculty of Science King Abdulaziz University, Jeddah, Saudi Arabia
Institute of Mathematics "Simion Stoilow" of the Romanian Academy P.O. Box 1-764, 014700 Bucharest, Romania
vicentiu.radulescu@imar.ro

Received 8 November 2013
Accepted 26 November 2013
Published 21 April 2014

Abstract

We consider a nonlinear, nonhomogeneous Dirichlet problem driven by the sum of a p-Laplacian and a Laplacian, $2<p<\infty((p, 2)$-equation $)$ and with a reaction which exhibits asymmetric behavior at $+\infty$ and at $-\infty$ and is resonant. Using variational methods together with Morse theoretic arguments, we prove the existence of two and three nontrivial solutions.

Keywords: ($p, 2$)-Equation; resonance; nonlinear regularity; critical groups; Picone's identity.

Mathematics Subject Classification 2010: 35B34, 35J20, 35J60, 58E05

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$ and let $p>2$ be a real number.

In this paper we study the following nonlinear nonhomogeneous elliptic equation ($(p, 2)$-equation):

$$
\begin{equation*}
-\Delta_{p} u(z)-\Delta u(z)=f(z, u(z)) \quad \text { in } \Omega,\left.u\right|_{\partial \Omega}=0 \tag{1.1}
\end{equation*}
$$

Here Δ_{p} denotes the p-Laplacian differential operator defined by

$$
\Delta_{p} u=\operatorname{div}\left(\|D u\|^{p-2} D u\right) \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Also $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory reaction (that is, for all $x \in \mathbb{R}$, the mapping $z \mapsto f(z, x)$ is measurable and for a.a. $z \in \Omega, x \mapsto f(z, x)$ is continuous). The aim
of this work is to prove a multiplicity theorem (in particular, a three solutions theorem), when the reaction $f(z, \cdot)$ is ($p-1$)-linear near $\pm \infty$, but exhibits asymmetric behavior at $+\infty$ and at $-\infty$. More precisely, we assume that the quotient $\frac{f(z, x)}{\mid x^{p-2} x}$ crosses the principal eigenvalue $\hat{\lambda}_{1}(p)>0$ of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$ as $x \in \mathbb{R}$ moves from $-\infty$ to $+\infty$. Another interesting feature of our framework is that we allow for resonance to occur at both $+\infty$ and $-\infty$. At $+\infty$ the resonance can occur with respect to the principal eigenvalue $\hat{\lambda}_{1}(p)>0$, while at $-\infty$ with respect to the second eigenvalue $\hat{\lambda}_{2}(p)>\hat{\lambda}_{1}(p)$.

Problems with an asymmetric nonlinearity were studied by Chabrowski and Yang [5], Chang [6], de Paiva and Massa [11], de Paiva and Presoto [12], Motreanu, Motreanu and Papageorgiou [18], Perera [25] (for semilinear Dirichlet problems), by Motreanu, Motreanu and the first author [19] (for nonlinear equations driven by the Dirichlet p-Laplacian) and by the authors [21] (for semilinear Neumann problems with an indefinite and unbounded potential). None of the aforementioned works permits resonance.

We mention that $(p, 2)$-equations (that is, equations driven by the sum of a p-Laplacian and a Laplacian, with $2<p<\infty)$ arise in mathematical physics (see [4] (quantum physics) and [7] (plasma physics)). Recently some existence and multiplicity results for such equations were proved by Cingolani and Degiovanni [9], Cingolani and Vannella [10], the authors [22, 23], and Sun [28]. However, none of the aforementioned works treats the asymmetric resonant case. We also refer to the recent book by Ciarlet [8] for the rigorous qualitative analysis of many models described by nonlinear partial differential equations.

Our approach combines variational methods based on the critical point theory with Morse theoretic arguments (critical groups). In the next section, for the convenience of the reader, we recall the main mathematical tools that will be used in the sequel.

2. Mathematical Background

Let X be a Banach space and X^{*} be its topological dual. By $\langle\cdot, \cdot\rangle$ we denote the duality brackets for the pair $\left(X^{*}, X\right)$. Given $\varphi \in C^{1}(X)$, we say that φ satisfies the "Cerami condition" (the " C-condition" for short) if the following property holds:
"Every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that $\left\{\varphi\left(x_{n}\right)\right\}_{n \geq 1} \subseteq \mathbb{R}$ is bounded and

$$
\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \quad \text { in } X^{*} \text { as } n \rightarrow \infty
$$

admits a strongly convergent subsequence."
This is a compactness-type condition on the functional φ, which is more general than the usual Palais-Smale condition. Both conditions compensate for the fact that the ambient space X need not be locally compact. Using the C-condition, we can have the following minimax characterization of certain critical values of φ. The
result is know in the literature as the "mountain pass theorem" (see, for example, [13, 27]).

Theorem 2.1. Let X be a Banach space. Assume that $\varphi \in C^{1}(X)$ satisfies the C-condition, $x_{0}, x_{1} \in X$ with $\left\|x_{1}-x_{0}\right\|>\rho>0$,

$$
\max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\}<\inf \left\{\varphi(x):\left\|x-x_{0}\right\|=\rho\right\}=\eta_{\rho},
$$

and $c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \varphi(\gamma(t))$, where $\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{1, p}(\Omega)\right): \gamma(0)=\right.$ $\left.x_{0}, \gamma(1)=x_{1}\right\}$. Then $c \geq \eta_{\rho}$ and c is a critical value of φ.

In the analysis of problem (1.1), in addition to the Sobolev space $W_{0}^{1, p}(\Omega)$, we will also use the Banach space $C_{0}^{1}(\bar{\Omega})$ defined by

$$
C_{0}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}):\left.u\right|_{\partial \Omega}=0\right\} .
$$

This is an ordered Banach space with positive cone

$$
C_{+}=\left\{u \in C_{0}^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega, \frac{\partial u}{\partial n}(z)<0 \text { for all } z \in \partial \Omega\right\}
$$

Here $n(\cdot)$ denotes the outward unit normal on $\partial \Omega$.
Suppose that $f_{0}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with subcritical growth in the $x \in \mathbb{R}$ variable, that is,

$$
\left|f_{0}(z, x)\right| \leq a(z)\left(1+|z|^{r-1}\right) \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R}
$$

with

$$
a \in L^{\infty}(\Omega)_{+}, \quad 1<r<p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } p<N \\ +\infty & \text { if } p \geq N\end{cases}
$$

We set $F_{0}(z, x)=\int_{0}^{x} f_{0}(z, s) d s$ and consider the C^{1}-functional $\varphi_{0}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{0}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F_{0}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

The next proposition is a special case of a more general result due to Aizicovici, the first author and Staicu [2] and it relates local $C_{0}^{1}(\bar{\Omega})$ and $W_{0}^{1, p}(\Omega)$-minimizers of φ_{0}. The result is essentially a consequence of the nonlinear regularity theory (see $[15,17])$.

Proposition 2.2. Let $\hat{u} \in W_{0}^{1, p}(\Omega)$ be a local $C_{0}^{1}(\bar{\Omega})$-minimizer of φ_{0}, that is, there exists $\rho_{0}>0$ such that

$$
\varphi_{0}(\hat{u}) \leq \varphi_{0}(\hat{u}+h) \quad \text { for all } h \in C_{0}^{1}(\bar{\Omega}), \quad\|h\|_{C_{0}^{1}(\bar{\Omega})} \leq \rho_{0} .
$$

Then $\hat{u} \in C_{0}^{1, \beta}(\bar{\Omega})$ with $\beta \in(0,1)$ and it is also a local $W_{0}^{1, p}(\Omega)$-minimizer of φ_{0}, that is, there exists $\rho_{1}>0$ such that

$$
\varphi_{0}(\hat{u}) \leq \varphi_{0}(\hat{u}+h) \quad \text { for all } h \in W_{0}^{1, p}(\Omega), \quad\|h\| \leq \rho_{1}
$$

In the above result and in the sequel we denote by $\|\cdot\|$ the norm of $W_{0}^{1, p}(\Omega)$. Using Poincaré's inequality, we have

$$
\|u\|=\|D u\|_{p} \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Note that by $\|\cdot\|$ we also denote the norm in \mathbb{R}^{N}. However, no confusion is possible since it will always be clear from the context which norm is used.

For every $x \in \mathbb{R}$, we set $x^{ \pm}=\max \{0, \pm x\}$. Then for $u \in W_{0}^{1, p}(\Omega)$ we can define $u^{ \pm}(\cdot)=u(\cdot)^{ \pm}$. We know that

$$
u^{ \pm} \in W_{0}^{1, p}(\Omega), \quad u=u^{+}-u^{-} \quad \text { and } \quad|u|=u^{+}+u^{-} .
$$

Given a measurable function $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ (for example, a Carathéodory function), we set

$$
N_{h}(u)(\cdot)=h(\cdot, u(\cdot)) \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

This is the Nemytskii map corresponding to h.
For every $r \in(1, \infty)$, let $A_{r}: W_{0}^{1, r}(\Omega) \rightarrow W^{-1, r^{\prime}}(\Omega)=W_{0}^{1, r}(\Omega)^{*}\left(\frac{1}{r}+\frac{1}{r^{\prime}}=1\right)$ be the nonlinear map defined by

$$
\begin{equation*}
\left\langle A_{r}(u), v\right\rangle=\int_{\Omega}\|D u\|^{r-2}(D u, D v)_{\mathbb{R}^{N}} d z \quad \text { for all } u, v \in W_{0}^{1, r}(\Omega) \tag{2.1}
\end{equation*}
$$

If $r=2$, then we write $A_{2}=A \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$. The next proposition summarizes the basic properties of this map (see, for example, [13]).

Proposition 2.3. The nonlinear map $A_{r}: W_{0}^{1, r}(\Omega) \rightarrow W^{-1, r^{\prime}}(\Omega)$ defined by (2.1) is bounded (that is, maps bounded sets to bounded sets), continuous, strictly monotone (strongly monotone if $r \geq 2$) hence maximal monotone too and of type $(S)_{+}$, that is, if $u_{n} \xrightarrow{w} u$ in $W_{0}^{1, p}(\Omega)$ and $\lim \sup _{n \rightarrow \infty}\left\langle A_{r}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0$, then $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$.

Next we recall some basic facts about the spectrum of the Dirichlet r-Laplace operator. So, let $m \in L^{\infty}(\Omega), m \geq 0, m \neq 0$ and consider the following nonlinear weighted eigenvalue problem:

$$
\begin{equation*}
-\Delta_{r} u(z)=\hat{\lambda} m(z)|u(z)|^{r-2} u(z) \quad \text { in } \Omega,\left.u\right|_{\partial \Omega}=0 . \tag{2.2}
\end{equation*}
$$

A number $\hat{\lambda} \in \mathbb{R}$ is an eigenvalue if problem (2.2) admits a nontrivial solution \hat{u}, which is an eigenfunction corresponding to $\hat{\lambda}$. Problem (2.2) admits a smallest eigenvalue denoted by $\hat{\lambda}_{1}(r, m)$. The following facts are known about this first
eigenvalue:

- $\hat{\lambda}_{1}(r, m)>0$;
- $\hat{\lambda}_{1}(r, m)$ is isolated, that is, we can find $\epsilon>0$ such that the interval $\left(\hat{\lambda}_{1}(r, m), \hat{\lambda}_{1}(r, m)+\epsilon\right)$ contains no eigenvalues;
- $\hat{\lambda}_{1}(r, m)$ is simple, that is, if \hat{u}_{1}, \hat{u}_{2} are eigenfunctions corresponding to $\hat{\lambda}_{1}(r, m)$ then $\hat{u}_{1}=\xi \hat{u}_{2}$ for some $\xi \neq 0$;
- $\hat{\lambda}_{1}(r, m)>0$ admits the following variational characterization:

$$
\begin{equation*}
\hat{\lambda}_{1}(r, m)=\inf \left\{\frac{\|D u\|_{r}^{r}}{\int_{\Omega} m(z)|u|^{r} d z}: u \in W_{0}^{1, r}(\Omega), u \neq 0\right\} \tag{2.3}
\end{equation*}
$$

The infimum in (2.3) is attained on the one-dimensional eigenspace corresponding to $\hat{\lambda}_{1}(r, m)>0$. It is clear from (2.3) that the elements of this onedimensional eigenspace do not change sign. In what follows by $\hat{u}_{1}(r, m)$ we denote the positive L^{r}-normalized (that is, $\left\|\hat{u}_{1}(r, m)\right\|_{r}=1$) eigenfunction corresponding to $\hat{\lambda}_{1}(r, m)>0$. The nonlinear regularity theory and the nonlinear maximum principle (see, for example, [13, pp. 737-738]) imply that $\hat{u}_{1}(r, m) \in \operatorname{int} C_{+}$. The first eigenvalue $\hat{\lambda}_{1}(r, m)>0$, as a function of the weight m, exhibits the following strict monotonicity property.

Proposition 2.4. Assume that $m, \hat{m} \in L^{\infty}(\Omega)_{+} \backslash\{0\}, m(z) \leq \hat{m}(z)$ a.e. in $\Omega, m \neq$ \hat{m}. Then $\hat{\lambda}_{1}(r, \hat{m})<\hat{\lambda}_{1}(r, m)$.

If $\sigma(r, m)$ denotes the set of eigenvalues of (2.2), then $\sigma(r, m)$ is closed. This fact and since $\hat{\lambda}_{1}(r, m)>0$ is isolated, imply that the second eigenvalue is welldefined by

$$
\hat{\lambda}_{2}^{*}(r, m)=\inf \left\{\hat{\lambda}: \hat{\lambda} \in \sigma(r, m), \hat{\lambda}>\hat{\lambda}_{1}(r, m)\right\} .
$$

The Ljusternik-Schnirelmann minimax scheme produces a whole strictly increasing sequence $\left\{\hat{\lambda}_{k}(r, m)\right\}_{k \geq 1}$ of eigenvalues such that $\hat{\lambda}_{k}(r, m) \rightarrow+\infty$. We know that $\hat{\lambda}_{2}^{*}(r, m)=\hat{\lambda}_{2}(r, m)$, that is, the second eigenvalue and the second LjusternikSchnirelmann eigenvalue coincide. However, we do not know if the LjusternikSchnirelmann sequence exhausts the spectral set $\sigma(r, m)$. This is the case if $r=2$ (linear eigenvalue problem) or if $N=1$ (ordinary differential equation). We point out that $\hat{\lambda}_{1}(r, m)>0$ is the only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have nodal (that is, sign changing) eigenfunctions.

When $r=2$, the eigenvalue problem is linear and so we can define the eigenspace for every eigenvalue. By $E\left(\hat{\lambda}_{k}(2, m)\right.$) (for all $k \geq 1$) we denote the eigenspace corresponding to the eigenvalue $\hat{\lambda}_{k}(2, m)$. The elements of this eigenspace have the "unique continuation property", namely if $u \in E\left(\hat{\lambda}_{k}(2, m)\right)$ and u vanishes on a set of positive Lebesgue measure, then $u \equiv 0$. The regularity theory implies that $E\left(\hat{\lambda}_{k}(2, m)\right) \subseteq C_{0}^{1}(\bar{\Omega}), k \geq 1$. Also, we have the following orthogonal direct sum
decomposition

$$
H_{0}^{1}(\Omega)=\overline{\bigoplus_{k \geq 1} E\left(\hat{\lambda}_{k}(2, m)\right)}
$$

If $m \equiv 1$, then we write $\hat{\lambda}_{1}(r, m)=\hat{\lambda}_{1}(r), \hat{\lambda}_{2}(r, m)=\hat{\lambda}_{2}(r)$, and $\hat{u}_{1}(r, m)=\hat{u}_{1}(r)$.
As a straightforward consequence of (2.3) and of the fact that $\hat{u}_{1}(r) \in \operatorname{int} C_{+}$, we have the following easy lemma (see [20, p. 356]).

Lemma 2.5. If $\vartheta \in L^{\infty}(\Omega), \vartheta(z) \leq \hat{\lambda}_{1}(p)$ a.e. in Ω and $\vartheta \neq \hat{\lambda}_{1}(p)$, then there exists $c_{0}>0$ such that

$$
\|D u\|_{p}^{p}-\int_{\Omega} \vartheta(z)|u|^{p} d z \geq c_{0}\|u\|^{p} \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

We conclude this section by recalling some basic facts from Morse theory (critical groups) which we will use in the sequel. So, let $\left(Y_{1}, Y_{2}\right)$ be a topological pair such that $Y_{2} \subseteq Y_{1} \subseteq X$. For every integer $k \geq 0$ we denote by $H_{k}\left(Y_{1}, Y_{2}\right)$ the k th relative singular homology group with integer coefficients for the pair $\left(Y_{1}, Y_{2}\right)$.

Given $\varphi \in C^{1}(X)$ and $c \in \mathbb{R}$, we introduce the following sets:

$$
\begin{gathered}
\varphi^{c}=\{x \in X: \varphi(x) \leq c\}, \quad K_{\varphi}=\left\{x \in X: \varphi^{\prime}(x)=0\right\}, \\
K_{\varphi}^{c}=\left\{x \in K_{\varphi}: \varphi(x)=c\right\} .
\end{gathered}
$$

Let $x \in X$ be an isolated critical point of φ with $\varphi(x)=c$ (that is, $x \in K_{\varphi}^{c}$). Then the critical groups of φ at x are defined by

$$
C_{k}(\varphi, x)=H_{k}\left(\varphi^{c} \cap U, \varphi^{c} \cap U \backslash\{x\}\right) \quad \text { for all } k \geq 0
$$

where U is a neighborhood of x such that $K_{\varphi} \cap \varphi^{c} \cap U=\{x\}$. The excision property of singular homology theory implies that the above definition of critical groups is independent of the particular choice of the neighborhood U.

Suppose that $\varphi \in C^{1}(X)$ satisfies the C-condition and $\inf \varphi\left(K_{\varphi}\right)>-\infty$. Let $c<\inf \varphi\left(K_{\varphi}\right)$. The critical groups of φ at infinity are defined by

$$
C_{k}(\varphi, \infty)=H_{k}\left(X, \varphi^{c}\right) \quad \text { for all } k \geq 0
$$

The second deformation theorem (see, for example, [13, p. 628]) implies that the above definition of critical groups at infinity is independent of the particular choice of the level $c<\inf \varphi\left(K_{\varphi}\right)$.

Suppose that K_{φ} is finite. We set

$$
\begin{aligned}
& M(t, x)=\sum_{k \geq 0} \operatorname{rank} C_{k}(\varphi, x) t^{k} \quad \text { for all } t \in \mathbb{R}, \text { all } x \in K_{\varphi} \\
& P(t, \infty)=\sum_{k \geq 0} \operatorname{rank} C_{k}(\varphi, \infty) t^{k} \quad \text { for all } t \in \mathbb{R} .
\end{aligned}
$$

The Morse relation says that

$$
\begin{equation*}
\sum_{x \in K_{\varphi}} M(t, x)=P(t, \infty)+(1+t) Q(t) \tag{2.4}
\end{equation*}
$$

where $Q(t)=\sum_{k \geq 0} \beta_{k} t^{k}$ is a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients.

The next proposition is a useful tool in the computation of critical groups at infinity and it extends an earlier result for Hilbert spaces by Liang and Su [16].

Proposition 2.6. Let X be a Banach space and assume that $(t, x) \mapsto h_{t}(x)$ is a $C^{1}([0,1] \times X)$-function which maps bounded sets to bounded sets, the maps $x \mapsto$ $\left(h_{t}\right)^{\prime}(x)$ and $t \mapsto \partial_{t} h_{t}(x)$ are both locally Lipschitz, h_{0} and h_{1} satisfy the C-condition

$$
\left|\partial_{t} h_{t}(x)\right| \leq c_{1}\left(\|u\|_{X}^{q}+\|u\|_{X}^{p}\right) \quad \text { for all } x \in X
$$

with $c_{1}>0,1<q<p<\infty$, and there exist $\gamma_{0} \in \mathbb{R}$ and $\delta_{0}>0$ such that

$$
h_{t}(x) \leq \gamma_{0} \Rightarrow\left(1+\|x\|_{X}\right)\left\|\left(h_{t}\right)^{\prime}(x)\right\|_{X^{*}} \geq \delta_{0}\left(\|x\|_{X}^{q}+\|x\|_{X}^{p}\right) \quad \text { for all } t \in[0,1] .
$$

Then $C_{k}\left(h_{0}, \infty\right)=C_{k}\left(h_{1}, \infty\right)$ for all $k \geq 0$.
Proof. Since $h \in C^{1}([0,1] \times X)$, we know that it admits a pseudo-gradient vector field $\hat{v}_{t}(x)$ (see, for example, [13, p. 616]). From the construction of the pseudogradient vector field we deduce that

$$
\hat{v}_{t}(x)=\left(\partial_{t} h_{t}(x), v_{t}(x)\right),
$$

with $(t, x) \mapsto v_{t}(x)$ locally Lipschitz and for all $t \in[0,1], v_{t}(\cdot)$ is the pseudo-gradient vector field corresponding to $h_{t}(\cdot)$. So, for all $t \in[0,1]$ and all $x \in X$, we have

$$
\begin{equation*}
\left\|\left(h_{t}\right)^{\prime}(x)\right\|_{X^{*}}^{2} \leq\left\langle\left(h_{t}\right)^{\prime}(x), v_{t}(x)\right\rangle \quad \text { and } \quad\left\|v_{t}(x)\right\|_{X} \leq 2\left\|\left(h_{t}\right)^{\prime}(x)\right\|_{X^{*}} . \tag{2.5}
\end{equation*}
$$

Given $t \in[0,1]$, we consider the map $w_{t}: X \rightarrow X$ defined by

$$
w_{t}(x)=-\frac{\left|\partial_{t} h_{t}(x)\right|}{\left\|\left(h_{t}\right)^{\prime}(x)\right\|_{X^{*}}^{2}} v_{t}(x) \quad \text { for all } x \in X
$$

Evidently, $[t, x] \mapsto w_{t}(x)$ is well-defined and locally Lipschitz. Let $\gamma \leq \gamma_{0}$ be such that

$$
h_{0}^{\gamma} \neq \emptyset \quad \text { or } \quad h_{1}^{\gamma} \neq \emptyset .
$$

If we cannot find such a $\gamma \leq \gamma_{0}$, then $C_{k}(h, \infty)=C_{k}(h, \infty)=\delta_{k, 0} \mathbb{Z}$ for all $k \geq 0$.
Assume that $h_{0}^{\gamma} \neq \emptyset$ and let $y \in h_{0}^{\gamma}$. We consider the following abstract Cauchy problem

$$
\begin{equation*}
\frac{d \sigma}{d t}=w_{t}(\sigma) \text { on }[0,1], \quad \sigma(0)=y \tag{2.6}
\end{equation*}
$$

Problem (2.6) admits a local flow $\sigma(t, y)$ (see, for example, [13, p. 618]). In what follows, for notational simplicity, we drop y from the description of σ. Using the
chain rule, we have

$$
\begin{aligned}
\frac{d}{d t} h_{t}(\sigma) & =\left\langle\left(h_{t}\right)^{\prime}(\sigma), \frac{d \sigma}{d t}\right\rangle+\partial_{t} h_{t}(\sigma) \\
& =\left\langle\left(h_{t}\right)^{\prime}(\sigma), \frac{-\left|\partial_{t} h_{t}(\sigma)\right|}{\left\|\left(h_{t}\right)^{\prime}(\sigma)\right\|_{X^{*}}^{2}} v_{t}(\sigma)\right\rangle+\partial_{t} h_{t}(\sigma) \\
& \leq-\left|\partial_{t} h_{t}(\sigma)\right|+\partial_{t} h_{t}(\sigma) \quad(\text { see }(2.5)) \\
& \leq 0 \\
\Rightarrow t & \mapsto h_{t}(\sigma) \text { is nonincreasing. }
\end{aligned}
$$

Hence for $t \geq 0$ small, we have

$$
\begin{align*}
& h_{t}(\sigma(t)) \leq h_{0}(\sigma(0))=h_{0}(y) \leq \gamma \leq \gamma_{0} \\
\Rightarrow & \left(1+\|\sigma(t)\|_{X}\right)\left\|\left(h_{t}\right)^{\prime}(\sigma(t))\right\|_{X^{*}} \geq \delta_{0}\left(\|\sigma(t)\|_{X}^{q}+\|\sigma(t)\|_{X}^{p}\right) . \tag{2.7}
\end{align*}
$$

Then

$$
\begin{align*}
\left|w_{t}(\sigma(t))\right| & \leq \frac{\left|\partial_{t} h_{t}(\sigma(t))\right|}{\left\|\left(h_{t}\right)^{\prime}(\sigma(t))\right\|_{X^{*}}^{2}}\left\|v_{t}(\sigma(t))\right\|_{X} \\
& \leq \frac{C_{1}\left(\|\sigma(t)\|_{X}^{q}+\|\sigma(t)\|_{X}^{p}\right)}{\left\|\left(h_{t}\right)^{\prime}(\sigma(t))\right\|_{X^{*}}^{2}} 2\left\|\left(h_{t}\right)^{\prime}(x)\right\|_{X^{\tau}} \quad(\text { see }(2.5)) \\
& \leq \frac{C_{1}\left(\|\sigma(t)\|_{X}^{q}+\|\sigma(t)\|_{X}^{p}\right)}{\delta_{0}\left(\|\sigma(t)\|_{X}^{q}+\|\sigma(t)\|_{X}^{p}\right)}\left(1+\|\sigma(t)\|_{X}\right) \quad(\text { see }(2.7)) \tag{2.7}\\
& =\frac{C_{1}}{\delta_{0}}\left(1+\|\sigma(t)\|_{X}\right) \quad \text { for all } t \in[0,1] \text { small. }
\end{align*}
$$

This means that the flow in (2.6) is global on $[0,1]$.
Then $\sigma(t, \cdot)$ is a homeomorphism of h_{0}^{γ} onto a subset D_{0} of h_{1}^{γ}. Also, reversing the time $t \rightarrow 1-t$ and using the corresponding global flow $\sigma_{*}(\cdot, v)$ (here $v \in h_{1}^{\gamma}$), we deduce that h_{1}^{γ} is homeomorphic to a subset D_{1} of h_{0}^{γ}.

Let

$$
\eta(t, y)=\sigma_{*}(t, \sigma(1, y)) \quad \text { for all }(t, y) \in[0,1] \times h_{0}^{\gamma}
$$

Then we have

$$
\begin{equation*}
\eta(0, \cdot) \text { is homotopy equivalent to }\left.\operatorname{id}\right|_{D_{0}}(\cdot) \text { and } \eta(1, \cdot)=\left(\sigma_{*}\right)_{1} \circ \sigma_{1}(\cdot) . \tag{2.8}
\end{equation*}
$$

Similarly, if

$$
\eta_{*}(t, v)=\sigma\left(t, \sigma_{*}(1, v)\right) \quad \text { for all }(t, v) \in[0,1] \times h_{1}^{\gamma}
$$

then

$$
\begin{equation*}
\eta_{*}(0, \cdot) \text { is homotopy equivalent to id }\left.\right|_{D_{1}}(\cdot) \text { and } \eta_{*}(1, \cdot)=\sigma_{1} \circ\left(\sigma_{*}\right)_{1}(\cdot) \tag{2.9}
\end{equation*}
$$

Recall that D_{0} and H_{0}^{γ} are homeomorphic. Similarly D_{1} and h_{1}^{γ} are homeomorphic. Combining these facts with (2.8) and (2.9), we infer that the level sets h_{0}^{γ} and h_{1}^{γ}
are homotopy equivalent. Therefore

$$
\begin{aligned}
H_{k}\left(X, h_{0}^{\gamma}\right) & =H_{k}\left(X, h_{1}^{\gamma}\right) \quad \text { for all } k \geq 0 \quad(\text { see }[14, \mathrm{p} .387]) \\
\Rightarrow C_{k}\left(h_{0}, \infty\right) & =C_{k}(h, \infty) \quad \text { for all } k \geq 0
\end{aligned}
$$

This completes the proof.

3. Two Nontrivial Solutions

In this section we establish the existence of two nontrivial solutions for problem (1.1) without imposing any differentiability condition on $f(z, \cdot)$.

First we produce a positive solution. To this end, we impose the following conditions on the reaction $f(z, x)$:
$\underline{H_{1}}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) $|f(z, x)| \leq a(z)\left(1+|x|^{p-1}\right)$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$ with $a \in L^{\infty}(\Omega)_{+}$;
(ii) $\lim \sup _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}} \leq \hat{\lambda}_{1}(p)$ uniformly for a.a. $z \in \Omega$ and if $F(z, x)=$ $\int_{0}^{x} f(z, s) d s$, then

$$
\lim _{x \rightarrow+\infty}[f(z, x) x-p F(z, x)]=+\infty \quad \text { uniformly for a.a. } z \in \Omega
$$

(iii) there exists a function $\eta \in L^{\infty}(\Omega)_{+}$such that

$$
\begin{aligned}
\hat{\lambda}_{1}(p) & \leq \eta(z) \text { for a.a. } z \in \Omega, \quad \hat{\lambda}_{1}(p) \neq \eta \quad \text { and } \\
\eta(z) & \leq \liminf _{x \rightarrow-\infty} \frac{f(z, x)}{|x|^{p-2} x} \leq \limsup _{x \rightarrow-\infty} \frac{f(z, x)}{|x|^{p-2} x} \leq \hat{\lambda}_{2}(p) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iv) there exist functions $\beta, \hat{\beta} \in L^{\infty}(\Omega)_{+}$such that

$$
\begin{aligned}
\hat{\lambda}_{1}(2) & \leq \beta(z) \text { for a.a. } z \in \Omega, \quad \hat{\lambda}_{1}(2) \neq \beta \quad \text { and } \\
\beta(z) & \leq \liminf _{x \rightarrow 0} \frac{f(z, x)}{x} \leq \limsup _{x \rightarrow 0} \frac{f(z, x)}{x} \leq \hat{\beta}(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(v) $f(z, x) x-p F(z, x) \geq 0$ for a.a. $z \in \Omega$, all $x \leq 0$, and $f(z, \cdot)$ is lower locally Lipschitz on $[0,+\infty)$.

Let $\varphi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be the energy functional for problem (1.1) defined by

$$
\varphi(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Proposition 3.1. Assume that hypotheses H_{1} hold. Then the functional φ satisfies the C-condition.

Proof. Let $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ be such that

$$
\begin{gather*}
\left|\varphi\left(u_{n}\right)\right| \leq M_{1} \quad \text { for all } n \geq 1, \text { some } M_{1}>0 \tag{3.1}\\
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } W^{-1, p^{\prime}}(\Omega) \text { as } n \rightarrow \infty . \tag{3.2}
\end{gather*}
$$

From (3.2) we have

$$
\begin{align*}
& \left|\left\langle A_{p}\left(u_{n}\right), h\right\rangle-\int_{\Omega} f\left(z, u_{n}\right) h d z\right| \\
& \quad \leq \frac{\epsilon_{n}\|h\|}{1+\left\|u_{n}\right\|} \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \text { with } \epsilon_{n} \rightarrow 0^{+} \tag{3.3}
\end{align*}
$$

In (3.3) we choose $h=u_{n}^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{equation*}
\left|\left\|D u_{n}^{+}\right\|_{p}^{p}+\left\|D u_{n}^{+}\right\|_{2}^{2}-\int_{\Omega} f\left(z, u_{n}^{+}\right) u_{n}^{+} d z\right| \leq \epsilon_{n} \quad \text { for all } n \geq 1 \tag{3.4}
\end{equation*}
$$

Using (3.4) we will show that the sequence $\left\{u_{n}^{+}\right\}_{n \geq 1} \subset W_{0}^{1, p}(\Omega)$ is bounded. Arguing indirectly, suppose that the sequence is not bounded in $W_{0}^{1, p}(\Omega)$. Then by passing to a subsequence if necessary, we may assume that $\left\|u_{n}^{+}\right\| \rightarrow \infty$. Let $y_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|}, n \geq 1$. Then $\left\|y_{n}\right\|=1$ and $y_{n} \geq 0$ for all $n \geq 1$. We may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{p}(\Omega) . \tag{3.5}
\end{equation*}
$$

From (3.4), we have

$$
\begin{equation*}
\left\|D y_{n}\right\|_{p}^{p} \leq \frac{\epsilon_{n}}{\left\|u_{n}^{+}\right\|^{p}}+\int_{\Omega} \frac{f\left(z, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p-1}} y_{n} d z \quad \text { for all } n \geq 1 \tag{3.6}
\end{equation*}
$$

From hypothesis $H_{1}(\mathrm{i})$ it is clear that

$$
\left\{\frac{N_{f}\left(u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded. }
$$

So, we may assume that

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p-1}} \xrightarrow{w} g \quad \text { in } L^{p^{\prime}}(\Omega) \text { as } n \rightarrow \infty . \tag{3.7}
\end{equation*}
$$

Using hypothesis $H_{1}(\mathrm{ii})$, as in [1], we show that

$$
\begin{align*}
& g(z)=\vartheta(z) y(z)^{p-1} \quad \text { for a.a. } z \in \Omega, \text { with } \vartheta \in L^{\infty}(\Omega), \tag{3.8}\\
& \vartheta(z) \leq \hat{\lambda}_{1}(p) \text { a.e. in } \Omega .
\end{align*}
$$

Hence, if in (3.6) we pass to the limit as $n \rightarrow \infty$ and use (3.5), (3.7), (3.8) we obtain

$$
\begin{equation*}
\|D y\|-\int_{\Omega} \vartheta(z) y^{p} d z \leq 0 \tag{3.9}
\end{equation*}
$$

If $\vartheta \neq \hat{\lambda}_{1}(p)$, then from (3.9) and Lemma 2.5 , we have

$$
c_{0}\|y\|^{p} \leq 0, \quad \text { hence } y=0
$$

Then from (3.6) it follows that $D y_{n} \rightarrow 0$ in $L^{p}\left(\Omega, \mathbb{R}^{N}\right)$ and so $y_{n} \rightarrow 0$ in $W_{0}^{1, p}(\Omega)$, a contradiction to the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$.

Next suppose that $\vartheta(z)=\hat{\lambda}_{1}(p)$ a.e. in Ω. Then from (3.9) and (2.3) we have

$$
\begin{aligned}
& \|D y\|_{p}^{p}=\hat{\lambda}_{1}(p)\|y\|_{p}^{p} \\
\Rightarrow & y=\xi \hat{u}_{1}(p) \quad \text { for some } \xi>0 \quad(\text { see }(2.3))
\end{aligned}
$$

Since $y \in \operatorname{int} C_{+}$, we have $u_{n}^{+}(z) \rightarrow+\infty$ for a.a. $z \in \Omega$ and so by virtue of hypothesis H_{1} (ii) we have

$$
\begin{align*}
& f\left(z, u_{n}^{+}(z)\right) u_{n}^{+}(z)-p F\left(z, u_{n}^{+}(z)\right) \rightarrow \infty \quad \text { for a.a. } z \in \Omega \\
\Rightarrow & \int_{\Omega}\left[f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right] d z \rightarrow+\infty \quad \text { (by Fatou's lemma). } \tag{3.10}
\end{align*}
$$

On the other hand, from (3.1) we have

$$
\begin{equation*}
\left\|D u_{n}\right\|_{p}^{p}+\frac{p}{2}\left\|D u_{n}\right\|_{2}^{2}-\int_{\Omega} p F\left(z, u_{n}\right) d z \leq p M_{1} \quad \text { for all } n \geq 1 \tag{3.11}
\end{equation*}
$$

Also from (3.3) with $h=u_{n} \in W_{0}^{1, p}(\Omega)$, we obtain

$$
\begin{equation*}
-\left\|D u_{n}\right\|_{p}^{p}-\left\|D u_{n}\right\|_{2}^{2}+\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \leq \epsilon_{n} \quad \text { for all } n \geq 1 \tag{3.12}
\end{equation*}
$$

Adding (3.11) and (3.12) we have

$$
\begin{align*}
& \left(\frac{p}{2}-1\right)\left\|D u_{n}\right\|_{2}^{2}+\int_{\Omega}\left[f\left(z, u_{n}\right) u_{n}-p F\left(z, u_{n}\right)\right] d z \\
& \leq M_{2} \quad \text { for some } M_{2}>0, \text { all } n \geq 1 \\
\Rightarrow & \int_{\Omega}\left[f\left(z, u_{n}\right) u_{n}-p F\left(z, u_{n}\right)\right] d z \leq M_{2} \quad \text { for all } n \geq 1 \quad(\text { recall } p>2) \\
\Rightarrow & \int_{\Omega}\left[f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right] d z+\int_{\Omega}\left[f\left(z,-u_{n}^{-}\right)\left(-u_{n}^{-}\right)-p F\left(z,-u_{n}^{-}\right)\right] d z \\
& \leq M_{2} \text { for all } n \geq 1 \\
\Rightarrow & \int_{\Omega}\left[f\left(z, u_{n}^{+}\right) u_{n}^{+}-p F\left(z, u_{n}^{+}\right)\right] d z \leq M_{2} \quad \text { for all } n \geq 1\left(\text { see } H_{1}(v)\right) \tag{3.13}
\end{align*}
$$

Comparing (3.10) and (3.13), we reach a contradiction which proves that

$$
\begin{equation*}
\left\{u_{n}^{+}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded. } \tag{3.14}
\end{equation*}
$$

Next we show that $\left\{u_{n}^{-}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ is bounded. Again we argue by contradiction. So, assume that $\left\|u_{n}^{-}\right\| \rightarrow \infty$ and let $v_{n}=\frac{u_{n}^{-}}{\left\|u_{n}^{-}\right\|} n \geq 1$. Then $\left\|v_{n}\right\|=1, v_{n} \geq 0$
for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
v_{n} \xrightarrow{w} v \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad v_{n} \rightarrow v \text { in } L^{p}(\Omega), v \geq 0 . \tag{3.15}
\end{equation*}
$$

From (3.3) and (3.14), we have

$$
\begin{align*}
& \quad\left|\left\langle A_{p}\left(-u_{n}^{-}\right), h\right\rangle+\left\langle A\left(-u_{n}^{-}\right), h\right\rangle-\int_{\Omega} f\left(z,-u_{n}^{-}\right) h d z\right| \\
& \quad \leq M_{3}\|h\| \quad \text { for some } M_{3}>0, \text { all } n \geq 1 \\
& \Rightarrow\left|\left\langle A_{p}\left(-v_{n}\right), h\right\rangle+\frac{1}{\left\|u_{n}^{-}\right\|^{p-2}}\left\langle A\left(-v_{n}\right), h\right\rangle-\int_{\Omega} \frac{f\left(z,-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}} h d z\right| \\
& \quad \leq \frac{M_{3}\|h\|}{\left\|u_{n}^{-}\right\|^{p-1}} \quad \text { for all } n \geq 1 . \tag{3.16}
\end{align*}
$$

Hypothesis $H_{1}(\mathrm{i})$ implies that

$$
\left\{\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded. }
$$

Passing to a subsequence if necessary and using hypothesis H_{1} (iii) we have

$$
\begin{array}{r}
\frac{N_{f}\left(-u_{n}^{-}\right)}{\left\|u_{n}^{-}\right\|^{p-1}} \xrightarrow{w}-\hat{\eta} v^{p-1} \text { in } L^{p^{\prime}}(\Omega) \text { with } \eta(z) \leq \hat{\eta}(z) \leq \hat{\lambda}_{2}(p) \\
\text { for a.a. } z \in \Omega . \tag{3.17}
\end{array}
$$

In (3.16) we choose $h=v-v_{n} \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (3.15) and (3.17). Since $p>2$, we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle A_{p}\left(-v_{n}\right), v-v_{n}\right\rangle=0 \\
\Rightarrow & v_{n} \rightarrow v \text { in } W_{0}^{1, p}(\Omega) \quad(\text { see Proposition 2.3), } \quad \text { hence }\|v\|=1, \quad v \geq 0 . \tag{3.18}
\end{align*}
$$

Therefore, if in (3.16) we pass to the limit as $n \rightarrow \infty$ and use (3.17) and (3.18) and the fact that $p>2$, we deduce that

$$
\begin{align*}
& \left\langle A_{p}(-v), h\right\rangle=\int_{\Omega}-\hat{\eta} v^{p-1} h d z \quad \text { for all } h \in W_{0}^{1, p}(\Omega) \\
\Rightarrow & A_{p}(v)=\hat{\eta} v^{p-1} \\
\Rightarrow & -\Delta_{p} v(z)=\hat{\eta}(z) v(z)^{p-1} \quad \text { a.e. in } \Omega,\left.v\right|_{\partial \Omega}=0 . \tag{3.19}
\end{align*}
$$

From Proposition 2.4, we have

$$
\hat{\lambda}_{1}(p, \hat{\eta})<\hat{\lambda}_{1}\left(p, \hat{\lambda}_{1}(p)\right)=1
$$

So, from (3.19) it follows that v must be nodal, which contradicts (3.18). This proves that

$$
\begin{aligned}
& \left\{u_{n}^{-}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded } \\
\Rightarrow & \left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega) \text { is bounded } \quad(\text { see }(3.14)) .
\end{aligned}
$$

Hence, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad u_{n} \rightarrow u \text { in } L^{p}(\Omega) . \tag{3.20}
\end{equation*}
$$

In (3.3) we choose $h=u_{n}-u \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (3.20). Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A\left(u_{n}\right), u_{n}-u\right\rangle\right]=0 \\
\Rightarrow & \limsup _{n \rightarrow \infty}\left[\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle+\left\langle A(u), u_{n}-u\right\rangle\right] \leq 0 \quad \text { (since } A \text { is monotone) } \\
\Rightarrow & \limsup _{n \rightarrow \infty}\left\langle A_{p}\left(u_{n}\right), u_{n}-u\right\rangle \leq 0 \\
\Rightarrow & \left.u_{n} \rightarrow u \quad \text { in } W_{0}^{1, p}(\Omega) \quad \text { (see Proposition } 2.3\right) .
\end{aligned}
$$

This proves that φ satisfies the C-condition.

We consider the positive truncation of $f(z, \cdot)$ defined by

$$
f_{+}(z, x)=f\left(z, x^{+}\right)
$$

This is a Carathéodory function. We set $F_{+}(z, x)=\int_{0}^{x} f_{+}(z, s) d s$ and consider the C^{1}-functional $\varphi_{+}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{+}(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\int_{\Omega} F_{+}(z, u(z)) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
$$

Proposition 3.2. Assume that hypotheses H_{1} hold. Then the functional φ_{+}is coercive.

Proof. We argue indirectly. So, suppose that φ_{+}is not coercive. Then we can find $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ and $M_{4}>0$ such that

$$
\left\|u_{n}\right\| \rightarrow \infty \text { as } n \rightarrow \infty \quad \text { and } \quad \varphi_{+}\left(u_{n}\right) \leq M_{4} \text { for all } n \geq 1
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}, n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{p}(\Omega) . \tag{3.21}
\end{equation*}
$$

We have

$$
\begin{align*}
& \frac{1}{p}\left\|D u_{n}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}\right\|_{2}^{2}-\int_{\Omega} F_{+}\left(z, u_{n}\right) d z \leq M_{4} \quad \text { for all } n \geq 1 \\
\Rightarrow & \frac{1}{p}\left\|D y_{n}\right\|_{p}^{p}+\frac{1}{2\left\|u_{n}\right\|^{p-2}}\left\|D y_{n}\right\|_{2}^{2}-\int_{\Omega} \frac{F_{+}\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z \leq \frac{M_{4}}{\left\|u_{n}\right\|^{p}} \quad \text { for all } n \geq 1 . \tag{3.22}
\end{align*}
$$

Hypothesis H_{1} (ii) implies that given $\epsilon>0$, we can find $M_{5}=M_{5}(\epsilon)>0$ such that

$$
\begin{aligned}
& f(z, x) \leq\left(\hat{\lambda}_{1}(p)+\epsilon\right) x^{p-1} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M_{5} \\
\Rightarrow & F(z, x) \leq \frac{1}{p}\left(\hat{\lambda}_{1}(p)+\epsilon\right) x^{p} \quad \text { for a.a. } x \in \Omega, \text { all } x \geq M_{5} \\
\Rightarrow & \frac{p F(z, x)}{x^{p}} \leq \hat{\lambda}_{1}(p)+\epsilon \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M_{5} \\
\Rightarrow & \limsup _{x \rightarrow+\infty} \frac{p F(z, x)}{x^{p}} \leq \hat{\lambda}_{1}(p)+\epsilon \quad \text { uniformly for a.a. } z \in \Omega .
\end{aligned}
$$

Since $\epsilon>0$, is arbitrary, we let $\epsilon \downarrow 0$ to conclude that

$$
\begin{equation*}
\limsup _{x \rightarrow+\infty} \frac{p F_{+}(z, x)}{x^{p}} \leq \hat{\lambda}_{1}(p) \quad \text { uniformly for a.a. } z \in \Omega . \tag{3.23}
\end{equation*}
$$

Hypothesis $H_{1}(\mathrm{i})$ implies that

$$
\Rightarrow\left\{\frac{F_{+}\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p}}\right\}_{n \geq 1} \subseteq L^{1}(\Omega) \quad \text { uniformly integrable. }
$$

Then from the Dunford-Pettis theorem and using (3.23), at least for a subsequence, we have

$$
\begin{array}{r}
\frac{F_{+}\left(\cdot, u_{n}(\cdot)\right)}{\left\|u_{n}\right\|^{p}} \xrightarrow{w} \frac{1}{p} \vartheta\left(y^{+}\right)^{p} \quad \text { in } L^{1}(\Omega) \text { with } \vartheta \in L^{\infty}(\Omega), \\
\vartheta(z) \leq \hat{\lambda}_{1}(p) \text { a.a. in } \Omega . \tag{3.24}
\end{array}
$$

We return to (3.22), pass to the limit as $n \rightarrow \infty$ and use (3.21) and (3.24). Since $2<p$, we obtain

$$
\begin{align*}
& \frac{1}{p}\|D y\|_{p}^{p} \leq \frac{1}{p} \int_{\Omega} \vartheta\left(y^{+}\right)^{p} d z \tag{3.25}\\
\Rightarrow & \left\|D y^{+}\right\|_{p}^{p} \leq \int_{\Omega} \vartheta\left(y^{+}\right)^{p} d z . \tag{3.26}
\end{align*}
$$

If $\vartheta \neq \hat{\lambda}_{1}(p)$, then from (3.26) and Lemma 2.5, we have

$$
c_{0}\left\|y^{+}\right\|^{p} \leq 0, \quad \text { hence } y \leq 0 .
$$

Then from (3.25) it follows that $y=0$ and this from (3.22) implies that

$$
\begin{aligned}
& D y_{n} \rightarrow 0 \quad \text { in } L^{p}\left(\Omega, \mathbb{R}^{N}\right) \\
\Rightarrow & y_{n} \rightarrow 0 \quad \text { in } W_{0}^{1, p}(\Omega)
\end{aligned}
$$

This contradicts the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$.
Next we assume that $\vartheta(z)=\hat{\lambda}_{1}(p)$ a.e. in Ω. In this case from (3.26), we have $y^{+}=\xi \hat{u}_{1}(p)$ with $\xi \geq 0$. If $\xi=0$, then as above we reach a contradiction. So, we
assume that $\xi>0$. We have

$$
\begin{equation*}
u_{n}^{+}(z) \rightarrow+\infty \quad \text { for a.a. } z \in \Omega \tag{3.27}
\end{equation*}
$$

By virtue of hypothesis H_{1} (ii), given $\xi>0$, we can find $M_{6}=M_{6}(\xi)>0$ such that

$$
\begin{equation*}
f(z, x) x-p F(z, x) \geq \xi \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M_{6} . \tag{3.28}
\end{equation*}
$$

For a.a. $z \in \Omega$ and all $x \geq M_{6}$, we have

$$
\begin{align*}
& \frac{d}{d x} \frac{F(z, x)}{x^{p}}=\frac{f(z, x) x^{p}-p F(z, x) x^{p-1}}{x^{2 p}} \\
&=\frac{f(z, x) x-p F(z, x)}{x^{p+1}} \\
& \geq \frac{\xi}{x^{p+1}} \quad(\text { see }(3.28)) \\
& \Rightarrow \frac{F(z, x)}{v^{p}}-\frac{F(z, x)}{x^{p}} \geq-\frac{\xi}{p}\left[\frac{1}{v^{p}}-\frac{1}{x^{p}}\right] \quad \text { for a.a. } z \in \Omega, \text { all } v \geq x \geq M_{6} . \tag{3.29}
\end{align*}
$$

So, if in (3.29) we let $v \rightarrow+\infty$ and use (3.23), we obtain

$$
\begin{aligned}
& \frac{\hat{\lambda}_{1}(p)}{p}-\frac{F(z, x)}{x^{p}} \geq \frac{\xi}{p} \frac{1}{x^{p}} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M_{6} \\
\Rightarrow & \frac{\hat{\lambda}_{1}(p)}{p} x^{p}-F(z, x) \geq \frac{\xi}{p} \quad \text { for a.a. } z \in \Omega, \text { all } x \geq M_{6} \\
\Rightarrow & \lim _{x \rightarrow+\infty}\left[\frac{\hat{\lambda}_{1}(p)}{p} x^{p}-F(z, x)\right] \geq \frac{\xi}{p} \quad \text { uniformly for a.a. } z \in \Omega .
\end{aligned}
$$

But $\xi>0$ is arbitrary. So, we conclude that

$$
\lim _{x \rightarrow+\infty}\left[\frac{\hat{\lambda}_{1}(p)}{p} x^{p}-F(z, x)\right]=+\infty \quad \text { uniformly for a.a. } z \in \Omega .
$$

Thus, using (3.27), we have

$$
\begin{align*}
& \frac{\hat{\lambda}_{1}(p)}{p} u_{n}^{+}(z)^{p}-F\left(z, u_{n}^{+}(z)\right) \rightarrow+\infty \quad \text { for a.a. } z \in \Omega \\
\Rightarrow & \int_{\Omega}\left[\frac{\hat{\lambda}_{1}(p)}{p} u_{n}^{+}(z)^{p}-F_{+}\left(z, u_{n}^{+}(z)\right)\right] d z \rightarrow+\infty \quad \text { (by Fatou's Lemma). } \tag{3.30}
\end{align*}
$$

Recall that

$$
\begin{align*}
& \frac{1}{p}\left\|D u_{n}\right\|_{p}^{p}+\frac{1}{2}\left\|D u_{n}\right\|_{2}^{2}-\int_{\Omega} F_{+}\left(z, u_{n}^{+}\right) d z \leq M_{4} \quad \text { for all } n \geq 1 \\
& \quad \int_{\Omega}\left[\frac{\hat{\lambda}_{1}(p)}{p}\left(u_{n}^{+}\right)^{p}-F_{+}\left(z, u_{n}^{+}\right)\right] d z \leq M_{4} \quad \text { for all } n \geq 1 \quad(\text { see }(2.3)) . \tag{3.31}
\end{align*}
$$

Comparing (3.30) and (3.31), we have a contradiction which proves that φ_{+}is coercive.

Now we can produce a first solution for problem (1.1) which is positive.
Proposition 3.3. Assume that hypotheses H_{1} hold. Then problem (1.1) admits a positive solution $u_{0} \in \operatorname{int} C_{+}$which is a local minimizer of the energy functional φ.

Proof. From Proposition 3.2, we know that φ_{+}is coercive. Also, using the Sobolev embedding theorem, we see that φ_{+}is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\varphi_{+}\left(u_{0}\right)=\inf \left\{\varphi_{+}(u): u \in W_{0}^{1, p}(\Omega)\right\} \tag{3.32}
\end{equation*}
$$

Hypothesis H_{1} (iv) implies that given $\epsilon>0$, we can find $\delta=\delta(\epsilon)>0$ such that

$$
\begin{equation*}
F(z, x) \geq \frac{1}{2}(\beta(z)-\epsilon) x^{2} \quad \text { for a.a. } z \in \Omega, \text { all }|x| \leq \delta \tag{3.33}
\end{equation*}
$$

Since $\hat{u}_{1}(2) \in \operatorname{int} C_{+}$, for $\lambda \in(0,1)$ small, we have $\lambda \hat{u}_{1}(2)(z) \in[0, \delta]$ for all $z \in \bar{\Omega}$. Then

$$
\begin{aligned}
\varphi_{+}\left(\lambda \hat{u}_{1}(2)\right)= & \frac{\lambda^{p}}{p}\left\|D \hat{u}_{1}(2)\right\|_{p}^{p}+\frac{\lambda^{2}}{2} \hat{\lambda}_{1}(2)-\int_{\Omega} F_{+}\left(z, \lambda \hat{u}_{1}(2)\right) d z \\
\leq & \frac{\lambda^{p}}{p}\left\|D \hat{u}_{1}(2)\right\|_{p}^{p} \\
& -\frac{\lambda^{2}}{2}\left[\int_{\Omega}\left(\beta(z)-\hat{\lambda}_{1}(2)\right) \hat{u}_{1}(2)^{2} d z+\epsilon \hat{\lambda}_{1}(2)\right] \quad(\text { see }(3.33)) .
\end{aligned}
$$

The hypothesis on $\beta(\cdot)$ (see $H_{1}($ iv $\left.)\right)$ and since $\hat{u}_{1}(2) \in \operatorname{int} C_{+}$, imply that

$$
\xi_{*}=\int_{\Omega}\left(\beta(z)-\hat{\lambda}_{1}(2)\right) \hat{u}_{1}(2)^{2} d z>0
$$

So, if we choose $\epsilon \in\left(0, \xi_{*} / \hat{\lambda}_{1}(2)\right)$, then

$$
\begin{aligned}
& \varphi_{+}\left(\lambda \hat{u}_{1}(2)\right)<0 \\
\Rightarrow & \varphi_{+}\left(u_{0}\right)<0=\varphi_{+}(0)(\text { see }(3.32)), \quad \text { hence } u_{0} \neq 0 .
\end{aligned}
$$

From (3.32) we have

$$
\begin{align*}
& \varphi_{+}^{\prime}\left(u_{0}\right)=0 \\
\Rightarrow & A_{p}\left(u_{n}\right)+A\left(u_{n}\right)=N_{f}\left(u_{0}\right) \tag{3.34}
\end{align*}
$$

On (3.34) we act with $-u_{n}^{-} \in W_{0}^{1, p}(\Omega)$. We obtain

$$
\left\|D u_{n}^{-}\right\|_{p}^{p}+\left\|D u_{n}^{-}\right\|_{2}^{2}=0, \quad \text { hence } u_{0} \geq 0, \quad u_{0} \neq 0
$$

Then from (3.34) we have

$$
-\Delta_{p} u_{0}(z)-\Delta u_{0}(z)=f\left(z, u_{0}(z)\right) \text { a.e. in } \Omega,\left.\quad u_{0}\right|_{\partial \Omega}=0 .
$$

From [15, p. 286], we know that $u_{0} \in L^{\infty}(\Omega)$. Then Theorem 2.1 of [17] implies that $u_{0} \in C_{+} \backslash\{0\}$.

Evidently hypotheses H_{1} (i), (iv) imply that for every $\rho>0$, we can find $\hat{\xi}_{\rho}>0$ such that $f(z, x) x+\xi_{\rho}|x|^{p} \geq 0$ for a.a. $z \in \Omega$, all $|x| \leq \rho$. Let $\rho=\left\|u_{0}\right\|_{\infty}$ and let $\hat{\xi}_{\rho}>0$ as just mentioned. We have

$$
\begin{align*}
& -\Delta_{p} u_{0}(z)-\Delta u_{0}(z)+\hat{\xi}_{\rho} u_{0}(z)^{p-1}=f\left(z, u_{0}(z)\right)+\hat{\xi}_{\rho} u_{0}(z)^{p-1} \geq 0 \quad \text { for a.a. } z \in \Omega \\
\Rightarrow & \Delta_{p} u_{0}(z)+\Delta u_{0}(z) \leq \xi_{\rho} u_{0}(z)^{p-1} \quad \text { for a.a. } z \in \Omega . \tag{3.35}
\end{align*}
$$

Let $a: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be the C^{1}-map defined by

$$
a(y)=\|y\|^{p-2} y+y \quad(\text { recall } p>2)
$$

We have $\operatorname{div} a(D u)=\Delta_{p} u+\Delta u$ for all $u \in W_{0}^{1, p}(\Omega)$ and

$$
\begin{aligned}
& \nabla a(y)=\|y\|^{p-2}\left(I+(p-2) \frac{y \otimes y}{\|y\|^{2}}\right)+I \quad \text { for all } y \in \mathbb{R}^{N} \\
\Rightarrow & (\nabla a(y) \xi, \xi)_{\mathbb{R}^{N}} \geq\|\xi\|^{2} \quad \text { for all } y, \xi \in \mathbb{R}^{N} .
\end{aligned}
$$

Then the tangency principle of [26, p. 35] implies that

$$
u_{0}(z)>0 \quad \text { for all } z \in \Omega
$$

So, from (3.35) and the boundary point theorem of [26, p. 120], we conclude that $u_{0} \in \operatorname{int} C_{+}$.

Note that $\left.\varphi\right|_{C_{+}}=\left.\varphi_{+}\right|_{C_{+}}$. So, $u_{0} \in \operatorname{int} C_{+}$is a local $C_{0}^{1}(\bar{\Omega})$-minimizer of φ. Invoking Proposition 2.2, we conclude that u_{0} is a local $W_{0}^{1, p}(\Omega)$-minimizer of φ.

To produce a second nontrivial solution, we need to restrict the behavior of $f(z, \cdot)$ near zero. More precisely, the new hypotheses on the reaction $f(z, x)$ are the following.
$\underline{H_{2}}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$, hypotheses H_{2} (i), (ii), (iii), (v) are the same as the corresponding hypotheses H_{1} (i), (ii), (iii), (v) and
(iv) there exist an integer $m \geq 2$ and functions $\beta, \hat{\beta} \in L^{\infty}(\Omega)_{+}$such that

$$
\begin{aligned}
& \hat{\lambda}_{m}(2) \leq \beta(z) \leq \hat{\beta}(z) \leq \hat{\lambda}_{m+1}(2) \text { a.e. in } \Omega \\
& \hat{\lambda}_{m}(2) \neq \beta, \quad \hat{\lambda}_{m+1}(2) \neq \hat{\beta} \quad \text { and } \\
& \beta(z) \leq \liminf _{x \rightarrow 0} \frac{f(z, x)}{x} \leq \limsup _{x \rightarrow 0} \frac{f(z, x)}{x} \leq \hat{\beta}(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

Theorem 3.4. Assume that hypotheses H_{2} hold. Then problem (1.1) admits at least two nontrivial solutions

$$
u_{0} \in \operatorname{int} C_{+} \quad \text { and } \quad \hat{u} \in C_{0}^{1}(\bar{\Omega}), \quad u_{0} \neq \hat{u} .
$$

Proof. From Proposition 3.3 we already have one nontrivial solution $u_{0} \in \operatorname{int} C_{+}$, which is a local minimizer of φ. Hence as in [1] (see the proof of Proposition 29), we can find $\rho \in(0,1)$ small such that

$$
\begin{equation*}
\varphi\left(u_{0}\right)<\inf \left\{\varphi(u):\left\|u-u_{0}\right\|=\rho\right\}=m_{\rho} . \tag{3.36}
\end{equation*}
$$

Hypothesis H_{2} (iii) implies that

$$
\begin{equation*}
\varphi\left(t \hat{u}_{1}(p)\right) \rightarrow-\infty \quad \text { as } t \rightarrow-\infty . \tag{3.37}
\end{equation*}
$$

Recall that φ satisfies the C-condition (see Proposition 3.1). This fact, together with (3.36) and (3.37), permits the use of Theorem 2.1 (the mountain pass theorem). So, we can find $\hat{u} \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\hat{u} \in K_{\varphi} \quad \text { and } \quad \varphi\left(u_{0}\right)<m_{\rho} \leq \varphi(\hat{u}) . \tag{3.38}
\end{equation*}
$$

From (3.38) it is clear that $\hat{u} \neq u_{0}$ and it is a solution of problem (1.1). We need to show that $\hat{u} \neq 0$.

Since \hat{u} is a critical point of φ of mountain pass type, we have

$$
\begin{equation*}
C_{1}(\varphi, \hat{u}) \neq 0 . \tag{3.39}
\end{equation*}
$$

Claim 1. $C_{k}(\varphi, 0)=\delta_{k, d_{m}} \mathbb{Z}$ for all $k \geq 0$, with $d_{m}=\operatorname{dim} \bigoplus_{i=1}^{m} E\left(\hat{\lambda}_{i}(2)\right)$.
Let $\mu \in\left(\hat{\lambda}_{m}, \hat{\lambda}_{m+1}\right)$ and consider the C^{2}-functional $\psi: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\psi(u)=\frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-\frac{\mu}{2}\|D u\|_{2}^{2} \quad \text { for all } u \in W_{0}^{1, p}(\Omega) .
$$

Evidently ψ is coercive (recall that $p>2$) and so it satisfies the C-condition.
We consider the homotopy $h:[0,1] \times W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
h(t, u)=(1-t) \varphi(u)+t \psi(u) \quad \text { for all }(t, u) \in[0,1] \times W_{0}^{1, p}(\Omega) .
$$

Suppose that we can find $\left\{t_{n}\right\}_{n \geq 1} \subseteq[0,1]$ and $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ such that

$$
\begin{gather*}
t_{n} \rightarrow t \text { in }[0,1], \quad u_{n} \rightarrow 0 \text { in } W_{0}^{1, p}(\Omega) \text { and } \tag{3.40}\\
h_{u}^{\prime}\left(t_{n}, u_{n}\right)=0 \text { for all } n \geq 1
\end{gather*}
$$

We have

$$
\begin{equation*}
A_{p}\left(u_{n}\right)+A\left(u_{n}\right)=\left(1-t_{n}\right) N_{f}\left(u_{n}\right)+t_{n} \mu u_{n} \quad \text { for all } n \geq 1 \tag{3.41}
\end{equation*}
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|} n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{2}(\Omega) . \tag{3.42}
\end{equation*}
$$

From (3.41) we have

$$
\begin{equation*}
\left\|u_{n}\right\|^{p-2} A_{p}\left(y_{n}\right)+A\left(y_{n}\right)=\left(1-t_{n}\right) \frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|}+t_{n} \mu y_{n} \quad \text { for all } n \geq 1 \tag{3.43}
\end{equation*}
$$

Evidently $\left\{\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|}\right\}_{n \geq 1} \subseteq L^{2}(\Omega)$ is bounded (see $H_{2}(\mathrm{i})$, (iv)) and by virtue of hypothesis H_{2} (iv) and (3.40), we have (at least for a subsequence)

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|} \xrightarrow{w} g y \text { in } L^{2}(\Omega) \quad \text { with } \beta(z) \leq g(z) \leq \hat{\beta}(z) \text { a.e. in } \Omega . \tag{3.44}
\end{equation*}
$$

Since A_{p} is bounded (see Proposition 2.3) and $A \in \mathcal{L}\left(H_{0}^{1}(\Omega), H^{-1}(\Omega)\right)$, if in (3.43) we pass to the limit as $n \rightarrow \infty$ and use (3.42) and (3.44), we obtain

$$
\begin{align*}
& A(y)=[(1-t) g+t \mu] y \\
\Rightarrow & -\Delta y(z)=[(1-t) g(z)+t \mu] y(z) \quad \text { a.e. in } \Omega,\left.y\right|_{\partial \Omega}=0 . \tag{3.45}
\end{align*}
$$

Note that

$$
\begin{gathered}
\hat{\lambda}_{m}(2) \leq(1-t) g(z)+t \mu=g_{t}(z) \leq \hat{\lambda}_{m+1}(2) \text { a.e. in } \Omega, \\
\hat{\lambda}_{m}(2) \neq g_{t}, \quad \hat{\lambda}_{m+1}(2) \neq g_{t} .
\end{gathered}
$$

By virtue of the unique continuation property, we have

$$
\hat{\lambda}_{m}\left(2, g_{t}\right)<\hat{\lambda}_{m}\left(2, \hat{\lambda}_{m}(2)\right)=1 \quad \text { and } \quad 1=\hat{\lambda}_{m+1}\left(2, \hat{\lambda}_{m+1}(2)\right)<\hat{\lambda}_{m+1}\left(2, g_{t}\right)
$$

Then from (3.45) it follows that $y=0$.
From (3.43), we have

$$
\begin{aligned}
& -\left\|u_{n}\right\|^{p-2} \Delta_{p} y_{n}(z)-\Delta y_{n}(z) \\
& \quad=\left(1-t_{n}\right) \frac{f\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|}+t_{n} \mu y_{n}(z) \quad \text { a.e. in } \Omega,\left.y_{n}\right|_{\partial \Omega}=0 .
\end{aligned}
$$

From [15], we know that we can find $M_{7}>0$ such that

$$
\left\|y_{n}\right\|_{\infty} \leq M_{7} .
$$

Then the regularity result of [17] implies that we can find $\gamma \in(0,1)$ and $M_{8}>0$ such that

$$
y_{n} \in C_{0}^{1, \gamma}(\bar{\Omega}) \text { and }\left\|y_{n}\right\|_{C_{0}^{1, \gamma}(\bar{\Omega})} \leq M_{8} \quad \text { for all } n \geq 1
$$

Exploiting the compact embedding of $C_{0}^{1, \gamma}(\bar{\Omega})$ into $C_{0}^{1}(\bar{\Omega})$, we have

$$
\begin{aligned}
y_{n} \rightarrow 0 & \text { in } C_{0}^{1}(\bar{\Omega}) \quad(\text { see }(3.42) \text { and recall } y=0) \\
\Rightarrow y_{n} \rightarrow 0 & \text { in } W_{0}^{1, p}(\Omega)
\end{aligned}
$$

which contradicts the fact that $\left\|y_{n}\right\|=1$ for all $n \geq 1$. This implies that (3.40) cannot happen. Then the homotopy invariance property of critical groups implies that

$$
C_{k}(\varphi, 0)=C_{k}(\psi, 0) \quad \text { for all } k \geq 0
$$

But since $\mu \in\left(\hat{\lambda}_{m}(2), \hat{\lambda}_{m+1}(2)\right)$, by Theorem 1 of [10] we deduce that

$$
C_{k}(\psi, 0)=\delta_{k, d_{m}} \mathbb{Z} \quad \text { for all } k \geq 0
$$

This proves the claim.
From (3.39) and the claim, we conclude that $\hat{u} \neq 0$. Then \hat{u} is the second nontrivial solution of (1.1) and by the nonlinear regularity theory (see $[15,17]$), we have $\hat{u} \in C_{0}^{1}(\bar{\Omega})$.

4. Three Solutions Theorem

In this section, we produce a third nontrivial solution for problem (1.1) (three solutions theorem). To do this we need to improve the regularity of $f(z, \cdot)$ and also avoid complete resonance at $+\infty$. So, the new hypotheses on the reaction $f(z, x)$ are the following:
$\underline{H_{3}}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function such that for a.a. $z \in \Omega, f(z, 0)=$ $0, f(z, \cdot) \in C^{1}(\mathbb{R})$ and
(i) $\left|f_{x}^{\prime}(z, x)\right| \leq a(z)\left(1+|x|^{p-2}\right)$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in L^{\infty}(\Omega)_{+}$;
(ii) there exists a function $\vartheta \in L^{\infty}(\Omega)_{+}$such that $\vartheta(z) \leq \hat{\lambda}_{1}(p)$ a.e. in $\Omega, \vartheta \neq \hat{\lambda}_{1}(p)$ and

$$
\limsup _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}} \leq \vartheta(z) \quad \text { uniformly for a.a. } z \in \Omega
$$

(iii) there exists a function $\eta \in L^{\infty}(\Omega)_{+}$such that

$$
\begin{aligned}
\hat{\lambda}_{1}(p) & \leq \eta(z) \text { for a.a. } z \in \Omega, \quad \hat{\lambda}_{1}(p) \neq \eta \quad \text { and } \\
\eta(z) & \leq \liminf _{x \rightarrow-\infty} \frac{f(z, x)}{|x|^{p-2} x} \leq \limsup _{x \rightarrow-\infty} \frac{f(z, x)}{|x|^{p-2} x} \leq \hat{\lambda}_{2}(p) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iv) there exists integer $m \geq 2$ such that

$$
\begin{aligned}
& f_{x}^{\prime}(z, 0) \in\left[\hat{\lambda}_{m}(2), \hat{\lambda}_{m+1}(2)\right] \text { a.e. in } \Omega, \\
& f_{x}^{\prime}(\cdot, 0) \neq \hat{\lambda}_{m}(2), \quad f_{x}^{\prime}(\cdot, 0) \neq \hat{\lambda}_{m+1}(2)
\end{aligned}
$$

(v) $f(z, x) x-p F(z, x) \geq 0$ for a.a. $z \in \Omega$, all $x \leq 0$.

Remark 4.1. Now at $+\infty$ we allow only nonuniform nonresonance with respect to the principal eigenvalue $\hat{\lambda}_{1}(p)>0$ (see hypothesis $H_{3}(\mathrm{ii})$). The reason for this is the computation of the critical groups of φ at infinity based on Proposition 2.6 (see Proposition 4.2 below).

Proposition 4.2. Assume that hypotheses H_{3} hold. Then $C_{k}(\varphi, \infty)=0$ for all $k \geq 0$.

Proof. Let $\beta \in L^{\infty}(\Omega)_{+}, \beta \neq 0$ and $\mu \in\left(\hat{\lambda}_{1}(p), \hat{\lambda}_{2}(p)\right)$. We consider the following one-parameter family of C^{1}-functionals defined by

$$
\begin{aligned}
h_{t}(u)= & \frac{1}{p}\|D u\|_{p}^{p}+\frac{1}{2}\|D u\|_{2}^{2}-t \int_{\Omega} F(z, u(z)) d z \\
& -\frac{1-t}{p} \mu\left\|u^{-}\right\|_{p}^{p}+(1-t) \int_{\Omega} \beta(z) u(z) d z \quad \text { for all }(t, u) \in[0,1] \times W_{0}^{1, p}(\Omega) .
\end{aligned}
$$

We have

$$
\begin{aligned}
& h_{0}(u)=\psi(u)=\frac{1}{p}\|D u\|_{p}^{p}-\frac{\mu}{p}\left\|u^{-}\right\|_{p}^{p}+\int_{\Omega} \beta(z) u(z) d z \quad \text { for all } u \in W_{0}^{1, p}(\Omega), \\
& h_{1}(u)=\varphi(u) \quad \text { for all } u \in W_{0}^{1, p}(\Omega)
\end{aligned}
$$

Since $\mu \in\left(\hat{\lambda}_{1}(p), \hat{\lambda}_{2}(p)\right)$, we can easily check that ψ satisfies the C-condition. Also, from Proposition 3.1 we know that φ satisfies the C-condition.

Claim 2. There exist $\gamma_{0} \in \mathbb{R}$ and $\delta_{0}>0$ such that

$$
h_{t}(u) \leq \gamma_{0} \Rightarrow(1+\|u\|)\left\|\left(h_{t}\right)^{\prime}(u)\right\|_{*} \geq \delta_{0}\left(\|u\|^{2}+\|u\|^{p}\right) \quad \text { for all } t \in[0,1)
$$

We proceed by contradiction. So, suppose that the claim is not true. Since the function $(t, u) \mapsto h_{t}(u)$ maps bounded sets to bounded sets, we can find $\left\{t_{n}\right\}_{n \geq 1} \subseteq$ $[0,1]$ and $\left\{u_{n}\right\}_{n \geq 1} \subseteq W_{0}^{1, p}(\Omega)$ such that

$$
\begin{align*}
& t_{n} \rightarrow t, \quad\left\|u_{n}\right\| \rightarrow \infty, \quad h_{t_{n}}\left(u_{n}\right) \rightarrow-\infty \quad \text { and } \\
& \left(1+\left\|u_{n}\right\|\right)\left\|\left(h_{t_{n}}\right)^{\prime}\left(u_{n}\right)\right\|_{*} \leq \frac{1}{n}\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|^{p}\right) \quad \text { for all } n \geq 1 \tag{4.1}
\end{align*}
$$

Let $y_{n}=\frac{u_{n}}{\left\|u_{n}\right\|} n \geq 1$. Then $\left\|y_{n}\right\|=1$ for all $n \geq 1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W_{0}^{1, p}(\Omega) \quad \text { and } \quad y_{n} \rightarrow y \text { in } L^{p}(\Omega) . \tag{4.2}
\end{equation*}
$$

From (4.1) we have

$$
\begin{align*}
& \mid\left\langle A_{p}\left(u_{n}\right), v\right\rangle+\left\langle A\left(u_{n}\right), v\right\rangle-t_{n} \int_{\Omega} f\left(z, u_{n}\right) v d z+\left(1-t_{n}\right) \mu \int_{\Omega}\left(u_{n}^{-}\right)^{p-1} v d z \\
& \quad+\left(1-t_{n}\right) \int_{\Omega} \beta(z) v d z \left\lvert\, \leq \frac{1}{n} \frac{\|v\|}{1+\left\|u_{n}\right\|}\left(\left\|u_{n}\right\|^{2}+\left\|u_{n}\right\|^{p}\right)\right. \\
& \Rightarrow \left\lvert\,\left\langle A_{p}\left(y_{n}\right), v\right\rangle+\frac{1}{\left\|u_{n}\right\|^{p-2}}\left\langle A\left(y_{n}\right), v\right\rangle-t_{n} \int_{\Omega} \frac{f\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p-1}} v d z\right. \\
& \left.\quad+\left(1-t_{n}\right) \mu \int_{\Omega}\left(y_{n}^{-}\right)^{p-1} v d z+\frac{1-t_{n}}{\left\|u_{n}\right\|^{p-1}} \int_{\Omega} \beta(z) v d z \right\rvert\, \leq \frac{\|v\|}{n} \quad \text { for all } n \geq 1 \tag{4.3}
\end{align*}
$$

In (4.3) we choose $v=y_{n}-y \in W_{0}^{1, p}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (4.2). Since $p>2$, we obtain

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\langle A_{p}\left(y_{n}\right), y_{n}-y\right\rangle=0 \\
\Rightarrow & y_{n} \rightarrow y \quad \text { in } W_{0}^{1, p}(\Omega) \text { and so }\|y\|=1 . \tag{4.4}
\end{align*}
$$

Hypotheses $H_{3}(\mathrm{i})$, (iv) imply that

$$
\begin{aligned}
&|f(z, x)| \leq c_{1}\left(|x|+|x|^{p-1}\right) \\
& \leq c_{2}\left(1+|x|^{p-1}\right) \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \\
&\text { and some } \left.c_{2}>0 \text { (recall } p>2\right) \\
& \Rightarrow\left\{\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}\right\}_{n \geq 1} \subseteq L^{p^{\prime}}(\Omega) \text { is bounded. }
\end{aligned}
$$

Hence we may assume that

$$
\begin{equation*}
\frac{N_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|^{p-1}} \stackrel{w}{\longrightarrow} g \quad \text { in } L^{p^{\prime}}(\Omega) . \tag{4.5}
\end{equation*}
$$

Hypotheses $H_{3}(i i)$, (iii) imply that

$$
\begin{equation*}
g(z)=\tilde{\vartheta}(z) y^{+}(z)^{p-1}-\tilde{\xi}(z) y^{-}(z)^{p-1} \quad \text { for a.a. } z \in \Omega . \tag{4.6}
\end{equation*}
$$

So, if we return to (4.3), pass to the limit as $n \rightarrow \infty$ and use (4.4), (4.5), (4.6), we obtain

$$
\begin{align*}
\left\langle A_{p}(y), v\right\rangle= & t \int_{\Omega} \tilde{\vartheta}(z)\left(y^{+}\right)^{p-1} v d z \\
& -\int_{\Omega}[t \tilde{\xi}(z)+(1-t) \mu]\left(y^{-}\right)^{p-1} v d z \quad \text { for all } v \in W_{0}^{1, p}(\Omega) \\
\Rightarrow & A_{p}(y)=t \tilde{\vartheta}\left(y^{+}\right)^{p-1}-\tilde{\xi}_{t}\left(y^{-}\right)^{p-1} \quad \text { where } \tilde{\xi}_{t}=t \tilde{\xi}+(1-t) \mu, \tag{4.7}\\
\Rightarrow- & -\Delta_{p} y(z)=t \tilde{\vartheta}(z) y^{+}(z)^{p-1}-\tilde{\xi}_{t}(z) y^{-}(z)^{p-1} \quad \text { a.e. in } \Omega,\left.y\right|_{\partial \Omega}=0 . \tag{4.8}
\end{align*}
$$

On (4.7) first we act with $y^{+} \in W_{0}^{1, p}(\Omega)$. Then

$$
\begin{aligned}
& \left\|D y^{+}\right\|_{p}^{p}=t \int_{\Omega} \tilde{\vartheta}(z)\left(y^{+}\right)^{p} d z \leq \int_{\Omega} \vartheta(z)\left(y^{+}\right)^{p} d z \\
\Rightarrow & c_{0}\left\|D y^{+}\right\|_{p}^{p} \leq 0 \quad\left(\text { see Lemma 2.5), hence } y^{+}=0 .\right.
\end{aligned}
$$

From (4.8) and since $\tilde{\xi}_{t}(z) \in\left[\eta(z), \hat{\lambda}_{2}(p)\right]$ a.e. in Ω, it follows that y^{-}must be nodal, a contradiction. This proves the claim.

Invoking Proposition 2.6, we infer that

$$
\begin{equation*}
C_{k}(\varphi, \infty)=C_{k}(\psi, \infty) \quad \text { for all } k \geq 0 \tag{4.9}
\end{equation*}
$$

Now let $u \in K_{\psi}$. Then

$$
\begin{equation*}
A_{p}(u)=-\mu\left(u^{-}\right)^{p-1}-\beta \tag{4.10}
\end{equation*}
$$

On (4.10) we act with $u^{+} \in W_{0}^{1, p}(\Omega)$ and obtain

$$
\begin{aligned}
& \left\|D u^{+}\right\|_{p}^{p}=-\int_{\Omega} \beta(z) u^{+} d z \leq 0 \\
\Rightarrow & u^{+}=0, \quad \text { hence } u \leq 0
\end{aligned}
$$

Equation (4.10) becomes

$$
\begin{aligned}
& A_{p}(u)=\mu|u|^{p-2} u-\beta \\
\Rightarrow & -\Delta_{p} u(z)=\mu|u(z)|^{p-2} u(z)-\beta(z) \text { a.e. in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 .
\end{aligned}
$$

The nonlinear regularity theory implies that $u \in\left(-C_{+}\right) \backslash\{0\}$. Moreover, as before from the tangency principle and the boundary point theorem of [26, pp. 35 and 120], we have

$$
u \in-\operatorname{int} C_{+} .
$$

Let $v \in \operatorname{int} C_{+}$and consider the function

$$
R(v,-u)(z)=\|D v(z)\|^{p}-\|D(-u)(z)\|^{p}\left(D(-u)(z), D\left(\frac{v^{p}}{(-u)^{p-1}}\right)(z)\right)_{\mathbb{R}^{N}}
$$

From the nonlinear Picone's identity of [3], we have

$$
\begin{align*}
0 & \leq \int_{\Omega} R(v-u) d z \\
& =\|D v\|_{p}^{p}-\int_{\Omega}-\Delta_{p}(-u) \frac{v^{p}}{(-u)^{p-1}} d z \quad \text { (by Green's theorem) } \\
& =\|D v\|_{p}^{p}-\int_{\Omega} \mu(-u)^{p-1} \frac{v^{p}}{(-u)^{p-1}} d z-\int_{\Omega} \beta \frac{v^{p}}{(-u)^{p-1}} d z \quad(\text { see }(4.11)) \\
& \leq\|D v\|_{p}^{p}-\mu\|v\|_{p}^{p} . \tag{4.11}
\end{align*}
$$

Choose $v=\hat{u}_{1}(p) \in \operatorname{int} C_{+}$, to reach a contradiction (recall that $\left.\mu \in\left(\hat{\lambda}_{1}(p), \hat{\lambda}_{2}(p)\right)\right)$. Hence $K_{\psi}=\emptyset$ and so we have

$$
\begin{aligned}
C_{k}(\psi, \infty)=0 & \text { for all } k \geq 0 \\
\Rightarrow C_{k}(\varphi, \infty)=0 & \text { for all } k \geq 0 \quad(\text { see }(4.9)) .
\end{aligned}
$$

This completes the proof.
Now we are ready for the three solutions theorem.
Theorem 4.3. Assume that hypotheses H_{3} hold. Then problem (1.1) has at least three nontrivial solutions

$$
u_{0} \in \operatorname{int} C_{+} \quad \text { and } \quad \hat{u}, \tilde{u} \in C_{0}^{1}(\bar{\Omega}) \backslash\{0\} .
$$

Proof. From Theorem 3.4, we already have two nontrivial solutions

$$
u_{0} \in \operatorname{int} C_{+} \quad \text { and } \quad \hat{u} \in C_{0}^{1}(\bar{\Omega}) \backslash\{0\} .
$$

From Proposition 3.3 we know that u_{0} is a local minimizer of the energy functional φ. Therefore

$$
\begin{equation*}
C_{k}\left(\varphi, u_{0}\right)=\delta_{k, 0} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{4.12}
\end{equation*}
$$

From the proof of Theorem 3.4, we know that \hat{u} is a critical point φ of mountain pass type. Then from [22, 24], we have

$$
\begin{equation*}
C_{k}(\varphi, \hat{u})=\delta_{k, 1} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{4.13}
\end{equation*}
$$

From the proof of the Theorem 3.4 (see the claim), we have

$$
\begin{equation*}
C_{k}(\varphi, 0)=\delta_{k, d_{m}} \mathbb{Z} \quad \text { for all } k \geq 0 \tag{4.14}
\end{equation*}
$$

Finally, Proposition 4.2 implies that

$$
\begin{equation*}
C_{k}(\varphi, \infty)=0 \quad \text { for all } k \geq 0 \tag{4.15}
\end{equation*}
$$

Suppose that $K_{\varphi}=\left\{0, u_{0}, \hat{u}\right\}$. Then from (4.12)-(4.15) and the Morse relation (see (2.4)) with $t=-1$, we have

$$
\begin{aligned}
& (-1)^{d_{m}}+(-1)^{0}+(-1)^{1}=0 \\
\Rightarrow & (-1)^{d_{m}}=0, \quad \text { a contradiction. }
\end{aligned}
$$

So, we can find $\tilde{u} \in K_{\varphi}, \tilde{u} \notin\left\{0, u_{0}, \hat{u}\right\}$. Then \tilde{u} is the third nontrivial solution of (1.1) and $\tilde{u} \in C_{0}^{1}(\bar{\Omega})$ (nonlinear regularity).

Remark 4.4. It is an interesting open problem if this three solutions theorem remains valid when we allow complete resonance at $+\infty$.

Acknowledgments

V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.

References

[1] S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (2008), no. 915, vi+70 pp.
[2] S. Aizicovici, N. S. Papageorgiou and V. Staicu, On p-superlinear equations with a nonhomogeneous differential operator, (NoDEA) Nonlinear Differential Equations Appl. 20 (2013) 151-175.
[3] W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal. 32 (1998) 819-830.
[4] V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Dirrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000) 297-324.
[5] J. Chabrowski and J. Yang, On the Neumann problem with combined nonlinearities, Ann. Polon. Math. 85 (2005) 239-250.
[6] X. Chang, Multiplicity of solutions for semilinear elliptic problems with combined nonlinearities, Commun. Contemp. Math. 13 (2011) 389-405.
[7] L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian, Commun. Pure Appl. Anal. 4 (2005) 9-22.
[8] P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications (SIAM, Philadelphia, PA, 2013).
[9] S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplacian equations with right-hand side having p-linear growth, Commun. Partial Differential Equations 30 (2005) 1191-1203.
[10] S. Cingolani and G. Vannella, Critical groups computations on a class of Sobolev Banach spaces via Morse index, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 271-292.
[11] F. O. de Paiva and E. Massa, Multiple solutions for some elliptic equations with a nonlinearity concave near the origin, Nonlinear Anal. 66 (2007) 2940-2946.
[12] F. O. de Paiva and A. E. Presoto, Semilinear elliptic problems with asymmetric nonlinearities, J. Math. Anal. Appl. 409 (2014) 254-262.
[13] L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis (Chapman \& Hall/CRC, Boca Raton, 2006).
[14] A. Granas and J. Dugundji, Fixed Point Theory (Springer, New York, 2003).
[15] O. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations (Academic Press, New York, 1968).
[16] Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl. 354 (2009) 147-158.
[17] G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988) 1203-1219.
[18] D. Motreanu, V. Motreanu and N. S. Papageorgiou, Multiple solutions for Dirichlet problems which are superlinear at $+\infty$ and (sub-)linear at $-\infty$, Commun. Appl. Nonlinear Anal. 13 (2009) 341-358.
[19] D. Motreanu, V. Motreanu and N. S. Papageorgiou, On p-Laplacian equations with concave terms and asymmetric perturbations, Proc. Roy. Soc. Edinburgh, Sect. A 141 (2011) 171-192.
[20] N. S. Papageorgiou and S. Kyritsi, Handbook of Applied Analysis (Springer, New York, 2009).
[21] N. S. Papageorgiou and V. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, in Recent Trends in Nonlinear Partial Differential Equations II: Stationary Problems, Contemporary Mathematics, Vol. 595 (American Mathematical Society, 2013), pp. 293-315.
[22] N. S. Papageorgiou and V. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim. (2013); DOI: 10.1007/s00245-013-9227-z.
[23] N. S. Papageorgiou and V. Rădulescu, Solutions with sign information for nonlinear nonhomogeneous elliptic equations, to appear in Topol. Methods. Nonlinear Anal.
[24] N. S. Papageorgiou and G. Smyrlis, On nonlinear nonhomogeneous resonant Dirichlet equations, Pacific J. Math. 264 (2013) 421-453.
[25] K. Perera, Multiplicity results for some elliptic problems with concave nonlinearities, J. Differential Equations 140 (1997) 133-141.
[26] P. Pucci and J. Serrin, The Maximum Principle (Birkhäuser, Basel, 2007).
[27] V. Rădulescu, Qualitative Analysis of Nonlinear Partial Differential Equations (Hindawi Publishing Corporation, New York, 2006).
[28] M. Sun, Multiplicity of solutions for a class of quasilinear elliptic equations at resonance, J. Math. Anal. Appl. 386 (2012) 661-668.

