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Abstract. In this paper we study a class of quasilinear elliptic equations with double phase energy and reaction term
depending on the gradient. The main feature is that the associated functional is driven by the Baouendi–Grushin operator
with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic
regions. We first establish some new qualitative properties of a differential operator introduced recently by Bahrouni et al.
(Nonlinearity 32(7):2481–2495, 2019). Next, under quite general assumptions on the convection term, we prove the existence
of stationary waves by applying the theory of pseudomonotone operators. The analysis carried out in this paper is motivated
by patterns arising in the theory of transonic flows.
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1. Introduction

Let Ω ⊂ R
N , N > 1, be a bounded domain with smooth boundary ∂Ω and let n,m be nonnegative

integers such that N = n+m. This means that RN = R
n ×R

m and so z ∈ Ω can be written as z = (x, y)
with x ∈ R

n and y ∈ R
m.

We consider the following double phase problem with convection term

−ΔG(x,y)u + A(x, y)(|u|G(x,y)−1 + |u|G(x,y)−3)u = f ((x, y), u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

with

A(x, y) = |∇xG(x, y)| + |x|γ |∇yG(x, y)| for all (x, y) ∈ Ω.

Here, G : Ω → (1,∞) is supposed to be a continuous function and ΔG(x,y) stands for the Baouendi–
Grushin operator with variable coefficient, which is defined by

ΔG(x,y)u = div
(∇G(x,y)u

)

=
n∑

i=1

(
|∇x|G(x,y)−2uxi

)

xi

+ |x|γ
m∑

i=1

(
|∇y|G(x,y)−2uyi

)

yi

,

where

∇G(x,y)u = A(x)
[ |∇x|G(x,y)−2 ∇xu
|x|γ |∇y|G(x,y)−2 ∇yu

]
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and

A(x) =
[

In 0n,m

0m,n |x|γIm

]
∈ MN×N (R),

where In is the identity matrix of size n × n, On,m is the zero matrix of size n × m, and MN×N stands
for the class of N × N -matrices with real-valued entries. From the representation above it is clear that
ΔG(x,y) is degenerate along the m-dimensional subspace M := {0} × R

m of RN .
The differential operator ΔG(x,y) generalizes the degenerate operator

∂2

∂x2
+ x2r ∂2

∂y2
(r ∈ N)

introduced by Baouendi [7] and Grushin [17]. The Baouendi–Grushin operator can be viewed as the
Tricomi operator for transonic flow restricted to subsonic regions. On the other hand, a second-order
differential operator T in divergence form on the plane can be written as an operator whose principal
part is a Baouendi–Grushin-type operator, provided that the principal part of T is nonnegative and its
quadratic form does not vanish at any point, see Franchi and Tesi [15].

In the right-hand side of problem (1.1) we have a nonlinearity f : Ω × R × R
N → R which is a

Carathéodory function, that is, f(·, s, ξ) is measurable for all (s, ξ) ∈ R×R
N and f((x, y), ·, ·) is continuous

for a.a. (x, y) ∈ Ω.
Problem (1.1) is strictly connected with the analysis of nonlinear patterns and stationary waves for

transonic flow models. We refer to the pioneering work of Morawetz [20–22] on the theory of transonic
fluid flow—referring to partial differential equations that possess both elliptic and hyperbolic regions—
and this remains the most fundamental mathematical work on this subject. The flow is supersonic in the
elliptic region, while a shock wave is created at the boundary between the elliptic and hyperbolic regions.
In the 1950s, Morawetz used functional–analytic methods to study boundary value problems for such
transonic problems.

The variable coefficient G(x, y) describes the geometry of a composite realized by using two materials
with corresponding behaviour described by |∇xu|G(x,y) and |∇yu|G(x,y). Then in the region {z ∈ Ω : x �=
0} the material described by the second integrand is present. In the opposite case, the material described
by the first integrand is the only one that creates the composite.

The main goal of our paper is to prove the existence of at least one weak solution of problem (1.1)
under very general conditions on the nonlinearity f : Ω×R×R

N → R. The novelty of our paper is the fact
that we combine a double phase operator driven by the Baouendi–Grushin operator with variable growth
and a right-hand side which depends on the gradient of the solution. Such function is called convection
term.

It is well known that the Caffarelli–Kohn–Nirenberg inequality is a powerful inequality and it is needed
in several ways in the study of partial differential equations. We refer to the works of Adimurthi et al. [2],
Baroni et al. [8], Colasuonno and Pucci [12], Colombo and Mingione [13] for relevant applications of the
Caffarelli–Kohn–Nirenberg inequality. For recent contributions to the study of double-phase problems we
refer to Beck and Mingione [9], Papageorgiou et al. [24,25], and Zhang and Rădulescu [31].

The following Caffarelli–Kohn–Nirenberg inequality [10] establishes that for given p ∈ (1, N) and real
numbers a, b and q such that

−∞ < a <
N − p

p
, a ≤ b ≤ a + 1, q =

Np

N − p(1 + a − b)
,

there exists a positive constant Ca,b such that for all u ∈ C1
c (Ω)

(∫

Ω

|x|−bq|u|q dx

)p/q

≤ Ca,b

∫

Ω

|x|−ap|∇u|p dx.
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This inequality was extensively studied, see for example Abdellaoui and Peral [1], Adimurthi et al.
[2], Bahrouni et al. [4,5], Catrina and Wang [11], and the references therein. In particular, Bahrouni et
al. [5] proved a new version of a Caffarelli–Kohn–Nirenberg inequality with variable exponent for the
Baouendi–Grushin operator ΔG. More precisely, the following weighted inequality has been proved.

Theorem 1.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all (x, y) ∈ Ω. Then
there exists a positive constant β such that for all u ∈ C1

c (Ω)
∫

Ω

(1 + |x|γ) |u|G(x,y) dxdy

≤ β

∫

Ω

(
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

)
dxdy

+ β

∫

Ω

|u|G(x,y)−1
(
1 + u2

)
(|∇xG(x, y)| + |x|γ |∇yG(x, y)|) dxdy.

The paper is organized as follows. In Sect. 2 we present the basic properties of variable Lebesgue and
Sobolev spaces and state the main tools which will be used later; see Rădulescu and Repovš [29] for more
details. New properties concerning the Baouendi–Grushin operator will be discussed in Sect. 3, and in the
last section we state and prove our main result concerning the existence of a weak solution to problem
(1.1).

2. Terminology and the abstract setting

In this section we recall some basic definitions and properties of the needed function spaces. We refer to
the works of Bahrouni and Repovš [6], Hájek et al. [18], Musielak [23], Rădulescu [27,28], Rădulescu and
Repovš [29] and the references therein. Consider the set

C+(Ω) =
{

p ∈ C(Ω)
∣
∣
∣
∣ p(x) > 1 for all x ∈ Ω

}

and define for any p ∈ C+(Ω)

p+ := sup
x∈Ω

p(x) and p− := inf
x∈Ω

p(x).

Then 1 < p− ≤ p+ < ∞ for each p ∈ C+(Ω). The variable exponent Lebesgue space Lp(·)(Ω) is defined
by

Lp(·)(Ω) =
{

u : Ω → R

∣
∣
∣
∣ u is measurable and

∫

Ω

|u(x)|p(x) dx < ∞
}

equipped with the Luxemburg norm

‖u‖p(·) = inf

{

μ > 0
∣
∣
∣
∣

∫

Ω

∣
∣
∣
∣
u(x)
μ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

.

It is known that Lp(·)(Ω) is a reflexive Banach space. Moreover, continuous functions with compact
support are dense in Lp(·)(Ω).

Denote by q(·) the conjugate of p(·), that is, 1/p(x) + 1/q(x) = 1 for all x ∈ Ω. If u ∈ Lp(·)(Ω) and
v ∈ Lq(·)(Ω), then we have the following Hölder-type inequality

∣
∣
∣
∣

∫

Ω

uv dx

∣
∣
∣
∣ ≤
(

1
p− +

1
q−

)
‖u‖p(·)‖v‖q(·).
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More generally, if pj ∈ C+(Ω) for j = 1, 2, 3 and

1
p1(x)

+
1

p2(x)
+

1
p3(x)

= 1 for all x ∈ Ω,

then we obtain for all u ∈ Lp1(·)(Ω), v ∈ Lp2(·)(Ω) and w ∈ Lp3(·)(Ω) that
∣
∣
∣
∣
∣
∣

∫

Ω

uvw dx

∣
∣
∣
∣
∣
∣
≤
(

1
p−
1

+
1

p−
2

+
1

p−
3

)
‖u‖p1(·)‖v‖p2(·)‖w‖p3(·).

Moreover, for p1 ≤ p2 in Ω, then there exists the continuous embedding Lp2(·)(Ω) ↪→ Lp1(·)(Ω).
The following two propositions will be useful in the sequel.

Proposition 2.1. Let

ρ1(u) =
∫

Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

Then the following holds:

(i) ‖u‖p(·) < 1 (resp.,= 1;> 1) if and only if ρ1(u) < 1 (resp.,= 1;> 1);

(ii) ‖u‖p(·) > 1 implies ‖u‖p−

p(·) ≤ ρ1(u) ≤ ‖u‖p+

p(·);

(iii) ‖u‖p(·) < 1 implies ‖u‖p+

p(·) ≤ ρ1(u) ≤ ‖u‖p−

p(·).

Proposition 2.2. Let

ρ1(u) =
∫

Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

If u, un ∈ Lp(·)(Ω) and n ∈ N, then the following statements are equivalent:

(i) limn→+∞ ‖un − u‖p(·) = 0;
(ii) limn→+∞ ρ1(un − u) = 0;
(iii) un(x) → u(x) in Ω and limn→+∞ ρ1(un) = ρ1(u).

By W 1,p(·)(Ω) we denote the variable exponent Sobolev space

W 1,p(·)(Ω) =
{

u ∈ Lp(·)(Ω)
∣
∣ |∇u| ∈ Lp(·)(Ω)

}

equipped with the norm

‖u‖1,p(·) = ‖∇u‖p(·) + ‖u‖p(·)

Then W 1,p(·)(Ω) is a reflexive and separable Banach space.
Our main existence result will be based on the following surjectivity result, see Gasinski and Papa-

georgiou [16]. First, we give the definition of pseudomonotonicity.

Definition 2.3. Let X be a reflexive Banach space, X∗ its dual space and denote by 〈·, ·〉 its duality pairing.
Let A : X → X∗, then A is called pseudomonotone if un

w→ u in X and lim supn→∞〈A(un), un − u〉 ≤ 0
imply Aun

w→ u and 〈Aun, un〉 → 〈Au, u〉.
Theorem 2.4. Let X be a real, reflexive Banach space, and let A : X → X∗ be a pseudomonotone, bounded,
and coercive operator, and b ∈ X∗. Then the problem Au = b has at least one solution.
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3. Properties of the double phase operator and the corresponding function space

In this section we recall and prove new results concerning the Baouendi–Grushin operator introduced in
Sect. 1.

Based on Theorem 1.1, we denote by W the closure of C1
c (Ω) with respect to the norm

‖u‖ = ‖∇xu‖G(·,·) +
∥
∥
∥|x| γ

G(·,·) ∇yu
∥
∥
∥

G(·,·)

+
∥
∥
∥u (|∇xG(x, y)| + |x|γ |∇yG(x, y)|) 1

G(x,y)+1

∥
∥
∥

G(·,·)+1

+
∥
∥
∥u (|∇xG(x, y)| + |x|γ |∇yG(x, y)|) 1

G(x,y)−1

∥
∥
∥

G(·,·)−1
.

Note that the norm ‖ · ‖ on W is equivalent to

‖u‖W

= inf
{

μ ≥ 0
∣
∣
∣
∣ ρ

(
u

μ

)
≤ 1
}

= inf

⎧
⎨

⎩
μ ≥ 0

∣
∣
∣
∣

∫

Ω

1
G(x, y)

[∣
∣
∣
∣∇x

(
u

μ

)∣∣
∣
∣

G(x,y)

+ |x|γ
∣
∣
∣
∣∇y

(
u

μ

)∣∣
∣
∣

G(x,y)
]

dxdy

+
∫

Ω

A(x, y)

⎡

⎢
⎣

∣
∣
∣uμ
∣
∣
∣
G(x,y)+1

G(x, y) + 1
+

∣
∣
∣uμ
∣
∣
∣
G(x,y)−1

G(x, y) − 1

⎤

⎥
⎦ dxdy ≤ 1

⎫
⎪⎬

⎪⎭
.

(3.1)

From now on we denote the duality pairing between W and its dual space W∗ by 〈·, ·〉W . Furthermore,
we set

G+ := sup
(x,y)∈Ω

G(x, y) and G− := inf
(x,y)∈Ω

G(x, y).

The following compactness property was proved by Bahrouni et al. [5].

Lemma 3.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N) for all (x, y) ∈ Ω.
Furthermore, suppose that s ∈ (1, G−) and 0 < γ < N(G−−s)

s . Then W is compactly embedded in Ls(Ω).

Now, we define ρ : W → R by

ρ (u) =
∫

Ω

1
G(x, y)

[
|∇x(u)|G(x,y) + |x|γ |∇y(u)|G(x,y)

]
dxdy

+
∫

Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+

|u|G(x,y)−1

G(x, y) − 1

]

dxdy.

The following lemma will be helpful in later treatments.

Lemma 3.2. Let u ∈ W, then the following holds:

(i) For u �= 0 we have: ‖u‖W = a if and only if ρ(u
a ) = 1;

(ii) ‖u‖W < 1 implies ‖u‖G++1
W ≤ ρ(u) ≤ ‖u‖G−−1

W ;
(iii) ‖u‖W > 1 implies ‖u‖G−−1

W ≤ ρ(u).
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Proof. (i) For every fixed u ∈ W, the mapping λ → ρ(λu) is a continuous, convex, even function, which
is strictly increasing in [0,+∞). Thus, by the definition of ρ and the equivalent norm given in (3.1),
we have

‖u‖W = a ⇐⇒ ρ
(u

a

)
= 1.

(ii) Let u ∈ W be such that ‖u‖W < 1, then

‖∇xu‖G(·,·) < 1,
∥
∥
∥|x| γ

G(x,y) ∇yu
∥
∥
∥

G(·,·)
< 1,

∥
∥
∥u(|∇xG(x, y)| + |x|γ |∇yG(x, y)|) 1

G(x,y)+1

∥
∥
∥

G(·,·)+1
< 1,

∥
∥
∥u(|∇xG(x, y)| + |x|γ |∇yG(x, y)|) 1

G(x,y)−1

∥
∥
∥

G(·,·)−1
< 1.

So, by Proposition 2.1, we get the desired result.
(iii) Let u ∈ W be such that ‖u‖W > 1. By (i), we obtain

ρ

(
u

‖u‖W

)
=
∫

Ω

1
G(x, y)

[∣
∣
∣
∣∇x

(
u

‖u‖W

)∣∣
∣
∣

G(x,y)

+ |x|γ
∣
∣
∣
∣∇y

(
u

‖u‖W

)∣∣
∣
∣

G(x,y)
]

dxdy

+
∫

Ω

A(x, y)

⎡

⎢
⎣

∣
∣
∣ u
‖u‖W

∣
∣
∣
G(x,y)+1

G(x, y) + 1
+

∣
∣
∣ u
‖u‖W

∣
∣
∣
G(x,y)−1

G(x, y) − 1

⎤

⎥
⎦ dxdy = 1.

Then, by the mean value theorem, there exist (x1, y1), (x2, y2), (x3, y3) ∈ Ω depending on u,G and
Ω such that

1 =
1

‖u‖G(x1,y1)
W

∫

Ω

1
G(x, y)

[
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

]
dxdy

+
1

‖u‖G(x2,y2)+1
W

∫

Ω

A(x, y)
|u|G(x,y)+1

G(x, y) + 1
dxdy

+
1

‖u‖G(x3,y3)−1
W

∫

Ω

A(x, y)
|u|G(x,y)−1

G(x, y) − 1
dxdy.

Since ‖u‖W > 1, it follows that

1 ≤ 1

‖u‖G−−1
W

⎡

⎣
∫

Ω

1
G(x, y)

[
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

]
dxdy

⎤

⎦

+
1

‖u‖G−−1
W

⎡

⎣
∫

Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+

|u|G(x,y)−1

G(x, y) − 1

]

dxdy

⎤

⎦ .

This finishes the proof. �

Lemma 3.3. Assume that the assumptions of Lemma 3.1 are fulfilled. Then the following properties hold.
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(i) The functional ρ is of class C1, and for all u, v ∈ W we have

〈ρ′(u), v〉W =
∫

Ω

[
|∇xu|G(x,y)−2 ∇xu∇xv + |x|γ |∇yu|G(x,y)−2 ∇yu∇yv

]
dxdy

+
∫

Ω

A(x, y) |u|G(x,y)−3 (u2 + 1)uv dxdy.

(ii) The function ρ′ : W → W∗ is coercive, that is, 〈ρ′(u),u〉W
‖u‖W

→ +∞ as ‖u‖W → +∞.

Proof. (i) This follows directly from the definition of ρ : W → R.
(ii) By Lemma 3.2, for ‖u‖W > 1, we obtain

〈ρ′(u), u〉W ≥ ρ(u) ≥ ‖u‖G−−1
W .

Then

〈ρ′(u), u〉W
‖u‖W

≥ ‖u‖G−−2
W → +∞

as ‖u‖W → +∞ since G ∈ (2, N) and so G− > 2.
�

Lemma 3.4. Let the conditions of Lemma 3.1 be satisfied. Then there exists λ1 > 0 such that

λ1 = inf
u∈W

‖u‖W>1

ρ(u)

‖u‖G−−1
G−−1

.

Proof. By Lemma 3.1 there exists C > 0 such that

‖u‖W ≥ C‖u‖G−−1 for all u ∈ W.

On the other hand, by Lemma 3.2, for ‖u‖W > 1 we have

ρ(u) ≥ ‖u‖G−−1
W .

Combining the above inequalities we obtain

ρ(u) ≥ CG−−1‖u‖G−−1
G−−1 for all u ∈ W with ‖u‖W > 1.

The proof is now complete. �

Lemma 3.5. Assume that the conditions of Lemma 3.1 hold. Then the double phase operator ρ′ : W → W∗

has the following properties:

(i) ρ′ is a continuous, bounded (that is, it maps bounded sets to bounded sets), and strictly monotone
operator.

(ii) ρ′ is a mapping of type (S+), that is, if un ⇀ u in W and lim sup
n→+∞

〈ρ′(un), un − u〉W ≤ 0, then

un → u in W.
(iii) ρ′ is a homeomorphism.
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Proof. (i) From Lemma 3.3 it is clear that ρ′ is continuous. Next, we are going to prove that ρ′ maps
bounded sets to bounded sets. By Young’s inequality, we obtain

〈ρ′(u), v〉W

=
∫

Ω

[
|∇xu|G(x,y)−2 ∇xu∇xv + |x|γ |∇yu|G(x,y)−2 ∇yu∇yv

]
dxdy

+
∫

Ω

A(x, y) |u|G(x,y)−3 (u2 + 1)uv dxdy

≤ (G+ − 1)
∫

Ω

1
G(x, y)

[
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

]
dxdy

+
∫

Ω

1
G(x, y)

[
|∇xv|G(x,y) + |x|γ |∇yv|G(x,y)

]
dxdy

+ G+

∫

Ω

A(x, y)
|u|G(x,y)+1

G(x, y) + 1
dxdy +

∫

Ω

A(x, y)
|v|G(x,y)+1

G(x, y) + 1
dxdy

+ (G+ − 2)
∫

Ω

A(x, y)
|u|G(x,y)−1

G(x, y) − 1
dxdy +

∫

Ω

A(x, y)
|v|G(x,y)−1

G(x, y) − 1
dxdy

≤ G+ρ(u) + ρ(v).

Hence, from Lemma 3.2, we get

‖ρ′(u)‖ = sup
‖v‖≤1

|〈ρ′(u), v〉W | ≤ G+ρ(u) + 3,

which implies that ρ′ maps bounded sets to bounded sets.
The strict monotonicity of ρ′ is a direct consequence of the well-known Simon inequalities [30,
formula (2.2)]

|x − y|p ≤ cp

(
|x|p−2

x − |y|p−2
y
)

· (x − y) if p ≥ 2, (3.2)

|x − y|p ≤ Cp

[(
|x|p−2

x − |y|p−2
y
)

· (x − y)
] p

2

× (|x|p + |y|p)
2−p

p if p ∈ (1, 2), (3.3)

for all x, y ∈ R
N , where cp and Cp are positive constants depending only on p, see Lindqvist [19,

p. 71], Filippucci et al. [14, p. 713], and Pucci et al. [26, p. 14].
(ii) Let {un}n≥1 ⊆ W be a sequence such that

un ⇀ u in W and lim sup
n→+∞

〈ρ′(un), un − u〉W ≤ 0.

Then, from (i), we deduce that

lim
n→+∞〈ρ′(un), un − u〉W = 0. (3.4)

In view of (3.2) and (3.3), the sequence {∇un}n≥1 converges in measure to ∇u in Ω. Then there is
a subsequence, still denoted by {∇un}n≥1, that converges to ∇u a.e. in Ω.
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First, we have

〈ρ′(un), un − u〉W

=
∫

Ω

[
|∇xun|G(x,y)−2 ∇xun∇x(un − u)

+ |x|γ |∇yun|G(x,y)−2 ∇yun∇y(un − u)
]

dxdy

+
∫

Ω

A(x, y) |un|G(x,y)−3 (u2
n + 1)un(un − u) dxdy

=
∫

Ω

[
|∇xun|G(x,y) + |x|γ |∇yun|G(x,y)

]
dxdy

+
∫

Ω

A(x, y) |un|G(x,y)−1 (u2
n + 1) dxdy

−
∫

Ω

[
|∇xun|G(x,y)−2 ∇xun∇xu + |x|γ |∇yun|G(x,y)−2 ∇yun∇yu

]
dxdy

−
∫

Ω

A(x, y) |un|G(x,y)−3 (u2
n + 1)unu dxdy.

Then, by applying Young’s inequality to the right-hand side of the last equation, we obtain

〈ρ′(un), un − u〉W

≥
∫

Ω

[
|∇xun|G(x,y) + |x|γ |∇yun|G(x,y)

]
dxdy

+
∫

Ω

A(x, y) |un|G(x,y)−1 (u2
n + 1) dxdy

−
∫

Ω

G(x, y) − 1
G(x, y)

[
|∇xun|G(x,y) + |x|γ |∇yun|G(x,y)

]
dxdy

−
∫

Ω

1
G(x, y)

[
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

]
dxdy

−
∫

Ω

A(x, y)
G(x, y)

G(x, y) + 1
|un|G(x,y)+1 dxdy

−
∫

Ω

A(x, y)
1

G(x, y) + 1
|u|G(x,y)+1 dxdy

−
∫

Ω

A(x, y)
G(x, y) − 2
G(x, y) − 1

|un|G(x,y)−1 dxdy

−
∫

Ω

A(x, y)
1

G(x, y) − 1
|u|G(x,y)−1 dxdy

≥ ρ(un) − ρ(u).
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This finally gives

〈ρ′(un), un − u〉W ≥ ρ(un) − ρ(u). (3.5)

Combining (3.4) and (3.5) leads to

lim
n→+∞ ρ(un) ≤ ρ(u).

On the other hand, it follows from Fatou’s lemma that

lim inf
n→+∞ ρ(un) ≥ ρ(u).

Thus, we have that

lim
n→+∞ ρ(un) = ρ(u),

which implies that the family of continuous functions
{

1
G(x, y)

[
|∇xun|G(x,y) + |x|γ |∇yun|G(x,y)

]

+A(x, y)

[
|un|G(x,y)+1

G(x, y) + 1
+

|un|G(x,y)−1

G(x, y) − 1

]}

n≥1

turns out to be equicontinuous on Ω. Since

1
G(x, y)

|∇x(un − u)|G(x,y) +
1

G(x, y)
|x|γ |∇y(un − u)|G(x,y)

+ A(x, y)

[
|un − u|G(x,y)+1

G(x, y) + 1
+

|un − u|G(x,y)−1

G(x, y) − 1

]

≤ C

G(x, y)

(
|∇xun|G(x,y) + |∇xu|G(x,y)

)

+
C

G(x, y)

(
|∇yun|G(x,y) + |∇yu|G(x,y)

)

+ CA(x, y)

(
|un|G(x,y)+1

G(x, y) + 1
+

|u|G(x,y)+1

G(x, y) + 1

)

+ CA(x, y)

(
|un|G(x,y)−1

G(x, y) − 1
+

|u|G(x,y)−1

G(x, y) − 1

)

,

with positive C, the integrals of the family
{

1
G(x, y)

|∇x(un − u)|G(x,y) +
1

G(x, y)
|x|γ |∇y(un − u)|G(x,y)

+A(x, y)

[
|un − u|G(x,y)+1

G(x, y) + 1
+

|un − u|G(x,y)−1

G(x, y) − 1

]}

n≥1

are also equicontinuous on Ω and therefore

lim
n→+∞ ρ(un − u) = 0.

It follows, by Proposition 2.2, that

un → u in W.
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(iii) By strict monotonicity, ρ′ is an injection. On the other hand, using Lemma 3.3 and the Minty–
Browder theorem, ρ′ is a surjection. Hence ρ′ has an inverse mapping (ρ′)−1 : W∗ → W. Therefore,
in order to complete the proof of (iii), it suffices to prove that (ρ′)−1 is continuous. If fn, f ∈
W∗, fn → f, letting un = (ρ′)−1(fn), u = (ρ′)−1(f), then ρ′(un) = fn, ρ′(u) = f . Note that {un}n≥1

is bounded in W. Without loss of generality, we can assume that un ⇀ u0 in W. We conclude from
fn → f that

lim
n→+∞〈ρ′(un) − ρ′(u0), un − u0〉W = lim

n→+∞〈fn − f, un − u0〉W = 0.

Since ρ′ is of type (S+), we know that un → u0 in W and so un → u in W.
�

4. Existence of a solution

We suppose the following hypotheses on the reaction term in (1.1).

(H) f : Ω ×R×R
N → R is a Carathéodory function with f((x, y), 0, 0) �= 0 for a. a. (x, y) ∈ Ω such that

the following holds:
(i) there exists a ∈ L∞(Ω × R

N ) such that

|f((x, y), s, ξ)| ≤ a((x, y), ξ)
(
1 + |s|G−−1

)

for a. a. all (x, y) ∈ Ω, for all s ∈ R and for all ξ ∈ R
N ;

(ii) there exists ϑ ∈ (0, λ1) such that

lim sup
s→+∞

f((x, y), s, ξ)
sG−−1

≤ ϑ uniformly for a. a. (x, y) ∈ Ω

and for all ξ ∈ R
N with λ1 given in Lemma 3.4.

We say that u ∈ W is a weak solution of problem (1.1) if
∫

Ω

[
|∇xu|G(x,y)−2 ∇xu∇xϕ + |x|γ |∇yu|G(x,y)−2 ∇yu∇yϕ

]
dxdy

+
∫

Ω

A(x, y) |u|G(x,y)−3 (u2 + 1)uϕ dxdy

=
∫

Ω

f((x, y), u,∇u)v dxdy.

is satisfied for all ϕ ∈ W \ {0}.
Now we are in the position to state our main existence result.

Theorem 4.1. Suppose that conditions (H)(i), (ii) are fulfilled. Moreover, assume that G is a function
of class C1 and that G(x, y) ∈ (2, N) for all (x, y) ∈ Ω. Furthermore, suppose that s ∈ (1, G−) and
0 < γ < N(G−−s)

s . Then problem (1.1) admits at least one nontrivial weak solution.

Proof. Let Nf : W ⊆ LG−−1 → L(G−−1)′ ⊆ W∗ be the Nemytskij operator corresponding to the nonlin-
earity f : Ω × R × R

N → R which is compact by Lemma 3.1. Now we define the operator I : W → W∗

by

I(u) = ρ′(u) − Nf (u).
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Because of the growth condition H(i) and Lemma 3.5(i) we know that I : W → W∗ maps bounded sets
into bounded sets. Let us now prove that I is pseudomonotone in the sense of Definition 2.3. To this end,
let {un}n≥1 ⊆ W be a sequence such that

un ⇀ u in W and lim sup
n→+∞

〈I(un), un − u〉W ≤ 0. (4.1)

Recall that

〈I(un), un − u〉 = 〈ρ′(un), un − u〉 −
∫

Ω

f((x, y), un,∇un)(un − u) dxdy. (4.2)

By Lemma 3.1 we know that

un → u in LG−−1(Ω)

since G− − 1 < G−. Moreover, hypothesis H(i) implies that

{Nf (un)}n≥1 ⊆ L(G−−1)′
(Ω) is bounded.

From these facts it is clear that∫

Ω

f((x, y), un,∇un)(un − u) dxdy → 0 as n → +∞. (4.3)

Therefore, passing to the limit in (4.2) and using (4.1) as well as (4.3) leads to

lim sup
n→+∞

〈ρ′(un), un − u〉 = lim sup
n→+∞

〈I(un), un − u〉 ≤ 0. (4.4)

From Lemma 3.5 we know that ρ′ fulfills the (S+)-property and so we conclude, in view of (4.1) and
(4.4), that

un → u in W.

Thus, because of the continuity of I : W → W∗, we have I(un) → I(u) in W∗ which proves that I is
pseudomonotone.

Next, we have to show that the operator I : W → W∗ is coercive, that is,

lim
‖u‖W→∞

〈I(u), u〉W
‖u‖W

= ∞.

Note that hypothesis (H)(ii) implies that for a given ε > 0 there exists M = M(ε) > 1 such that

f(x, s, ξ)s ≤ (ϑ + ε)sG−−1 (4.5)

for a. a.x ∈ Ω, for all s ≥ M and for all ξ ∈ R
N .

Let u ∈ W be such that ‖u‖ > M > 1. Applying Lemma 3.3, (4.5), Lemmas 3.4 and 3.2(iii) we get

〈I(u), u〉 = 〈ρ′(u), u〉 −
∫

Ω

f((x, y), u,∇u)u dxdy

≥ ρ(u) − (ϑ + ε)
∫

Ω

|u|G−−1 dxdy

= ρ(u) − (ϑ + ε)‖u‖G−−1
G−−1

≥
(

1 − ϑ + ε

λ1

)
ρ(u)

≥
(

1 − ϑ + ε

λ1

)
‖u‖G−−1

W .

Choosing ε ∈ (0, λ1 − ϑ) proves that I : W → W∗ is coercive.
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To sum up, we have shown that the operator I : W → W∗ is bounded, pseudomonotone and coercive.
Therefore, the main theorem on pseudomonotone operators, see Theorem 2.4, provides u ∈ W, u �= 0
(since f(x, 0, 0) �= 0), such that I(u) = 0. By the definition of I, the function u turns out to be a nontrivial
weak solution of problem (1.1) which completes the proof. �

Concluding remarks, perspectives, and open problems

(i) The mathematical analysis carried out in this paper considers the unbalanced energy

W � u →
∫

Ω

1
G(x, y)

[
|∇x(u)|G(x,y) + |x|γ |∇y(u)|G(x,y)

]
dxdy

with the associated differential operator

ΔG(x,y)u =
n∑

i=1

(
|∇x|G(x,y)−2uxi

)

xi

+ |x|γ
m∑

i=1

(
|∇y|G(x,y)−2uyi

)

yi

.

It appears to be worth to further investigate patterns described by the variational integral
∫

Ω

(
|∇xu|G(x,y) + |x|γ |∇yu|G(x,y)

)
dz (4.6)

with corresponding anisotropic Baouendi–Grushin operator

divx

(
G(x, y) |∇x|G(x,y)−2∇x

)
+ divy

(
G(x, y) |x|γ |∇y|G(x,y)−2 ∇y

)
.

(ii) We remark that since both ρ and the energy functional defined in (4.6) have a degenerate action on
the set where the gradient vanishes, it is a natural question to study what happens if the integrand
is modified in such a way that, if |∇u| is also small, there exists an imbalance between the two terms
of every integrand.

(iii) The compactness property established in Lemma 3.1 plays a key role in the proof of several crucial
properties such as: coercivity of ρ′ (Lemma 3.3), existence of a principal eigenvalue associated
with the Rayleigh quotient (Lemma 3.4), as well as in the proof of the main result established in
Theorem 4.1. This compactness property is established in a subcritical setting, which corresponds to
the hypothesis s < G−, where s describes the growth of the right-hand side of problem (1.1). In fact,
Theorem 4.1 remains true if s is replaced with a variable coefficient s(x), provided that s+ < G−.
We do not have any knowledge about the behaviour in the almost critical case that arises in the
following situation: there exists x0 ∈ Ω such that s(x0) = G− and s(x) < G− for all x ∈ Ω \ {x0}.

(iv) It is worth noting that the study of nonlinear boundary value problems involving the magnetic
Baouendi–Grushin operator [3] are of real interest for mathematical physics patterns. This operator
is

GA := −(∇G + iβA0)2 for − 1
2

≤ β ≤ 1
2

,

where

A0 = (A1,A2,A3,A4) =
(

−∂yd

d
,
∂xd

d
,−2y

∂td

d
, 2x

∂td

d

)
,

∇G = (∂x, ∂y, 2x∂t, 2y∂t),

with z = (x, y), |z| =
√

x2 + y2, and d(z, t) = (|z|4 + t2)1/4 is the Kaplan distance.
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[5] Bahrouni, A., Rădulescu, V.D., Repovš, D.D.: Double phase transonic flow problems with variable growth: nonlinear
patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)
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[29] Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. CRC Press, Boca Raton (2015)
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