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1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following nonlinear

Robin problem with variable exponent:
⎧
⎪⎨

⎪⎩

−Δp(z)u(z) + ξ(z)u(z)p(z)−1 = λu(z)q(z)−1 − f(z, u(z)) in Ω,

∂u

∂np(z)
+ β(z)up(z)−1 = 0 on ∂Ω, λ > 0, u > 0.

⎫
⎪⎬

⎪⎭
(Pλ)

A feature of the present paper is that in this problem, the exponent of the differential operator is
variable, namely p : Ω �→ R is log-Hölder continuous and 1 < minΩ p. We point out that this regularity
assumption is necessary for related Sobolev embeddings (see Diening et al. [4, Section 8.3]); otherwise,
p(·) can be assumed only continuous. We denote by Δp(z) the anisotropic p-Laplacian differential operator
defined by

Δp(z)u = div (|Du|p(z)−2Du) for all u ∈ W 1,p(z)(Ω).

This operator is more difficult to deal with since, in contrast to the isotropic (constant exponent)
case, it is not homogeneous. In the reaction (right-hand side of problem (Pλ)), there is a parametric term
x �→ λxq(z)−1, x � 0 and a perturbation −f(z, x), with f(·, ·) being a Carathéodory function (that is,
for all x ∈ R, z �→ f(z, x) is measurable and for a.a. z ∈ Ω, x �→ f(z, x) is continuous). We assume that
for a.a. z ∈ Ω, f(z, ·) is (p+ − 1)-superlinear as x → +∞, with p+ = maxΩ p. So, the right-hand side of
problem (Pλ) is a generalized logistic reaction. If f(z, x) = xr(z)−1 with r ∈ C(Ω) and p+ < r− = minΩ r,
then we have a usual logistic reaction with variable exponents.

We mention that in the boundary condition, ∂u
∂np(z)

denotes the variable exponent conormal derivative

of u. This directional derivative is interpreted using the nonlinear Green’s identity and if u ∈ C1(Ω),
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then

∂u

∂np(z)
= |Du|p(z)−2 ∂u

∂n
,

with n(·) being the outward unit normal on ∂Ω.
Depending on the relation between the exponents q(·) and p(·), we have three types of logistic equa-

tions.

(a) If p+ < q−, then the equation is “superdiffusive.”
(b) If q+ < p−, then the equation is “subdiffusive.”
(c) If p(z) = q(z) for all z ∈ Ω, then the equation is “equidiffusive.”

In this paper, we study cases (a) and (b). Case (c) is difficult to deal with in the context of anisotropic
equations, because we do not have a satisfactory spectral analysis of the relevant differential operator. The
analysis developed in this paper reveals that cases (a) and (b) are different. More precisely, we show that
for the superdiffusive equation, we have multiple positive solutions and, in fact, we prove a bifurcation-
type result describing the changes in the set of positive solutions as the parameter λ > 0 moves. In
contrast, for the subdiffusive equation, we have uniqueness of the positive solution. The equidiffusive
equation is treated only for isotropic problems.

The mathematical analysis of nonlinear problems with variable exponent started after the seminal
contributions of Zhikov [37,38], in relationship with phenomena arising in nonlinear elasticity. In fact,
Zhikov intended to provide models for strongly anisotropic materials in the context of homogenization.
The analysis developed by Zhikov revealed to be important also in the study of duality theory and in the
context of the Lavrentiev phenomenon. In particular, Zhikov considered the following model functionals
in relationship with the Lavrentiev phenomenon:

M(u) :=
∫

Ω

c(z)|∇u(z)|2dz, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=
∫

Ω

|∇u(z)|p(z)dz, 1 < p(z) < ∞.
(1)

The functional M is well known, and there is a loss of ellipticity on the set {z ∈ Ω; c(z) = 0}. This
functional has been studied in the context of degenerate equations involving Muckenhoupt weights. The
functional V has also been the object of intensive interest nowadays, and a huge literature was developed
on it. The energy functional defined by V was used to build models for strongly anisotropic materials.
More precisely, in a material made of different components, the exponent p(z) dictates the geometry of
a composite that changes its hardening exponent according to the point.

In the past, nonlinear logistic equations were investigated only in the framework of equations with
differential operators which have constant exponents. We mention the works of Cardinali et al. [4], Dong
and Chen [7], Filippakis et al. [11], Papageorgiou et al. [19], Papageorgiou et al. [23], Takeuchi [31,32]
(superdiffusive problems), El Manouni et al. [8], Winkert [34] (nonhomogeneous Neumann problems), and
Ambrosetti and Lupo [2], Ambrosetti and Mancini [3], Kamin and Veron [15], D’Agùı et al. [5], Papageor-
giou and Papalini [17], Papageorgiou and Scapellato [22], Papageorgiou and Winkert [24], Papageorgiou
and Zhang [25], Rădulescu and Repovš [26], Struwe [28,29] (subdiffusive and equidiffusive equations).
Moreover, of the above works only the one by Papageorgiou et al. [23], considers Robin boundary value
problems. To the best of our knowledge, there are no works on anisotropic logistic equations.
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2. Mathematical background

The analysis of problem (Pλ), uses Lebesgue and Sobolev spaces with variable exponents. A comprehensive
presentation of these spaces can be found in the books of Diening et al. [6] and Rădulescu and Repovš
[27].

Let M(Ω) be the space of all Lebesgue measurable functions u : Ω �→ R. As always we identify two
such functions which differ only on a Lebesgue-null subset of Ω. Also, let E1 =

{
r ∈ C(Ω) : 1 < r−

}
. In

what follows for any r ∈ C(Ω), r− = minΩ r, r+ = maxΩ r. Given r ∈ E1, the variable exponent Lebesgue
space Lr(z)(Ω) is defined by

Lr(z)(Ω) =

⎧
⎨

⎩
u ∈ M(Ω) :

∫

Ω

|u|r(z)dz < +∞
⎫
⎬

⎭
.

This space is equipped with the so-called Luxemburg norm defined by

‖u‖r(z) = inf

⎧
⎨

⎩
λ > 0 :

∫

Ω

( |u|
λ

)r(z)

dz � 1

⎫
⎬

⎭
.

In the sequel, for simplicity we write ‖Du‖r(z) = ‖|Du|‖r(z).
Then, Lr(z)(Ω) is a Banach space, which is separable, reflexive (in fact, uniformly convex). Let r′ ∈ E1,

be defined by r′(z) = r(z)
r(z)−1 (that is, 1

r(z) + 1
r′(z) = 1 for all z ∈ Ω.) Then, we have Lr(z)(Ω)∗ = Lr′(z)(Ω)

and we have the following version of Hölder’s inequality
∫

Ω

|uh|dz �
(

1
r−

+
1
r′−

)

‖u‖r(z)‖h‖r′(z)

for all u ∈ Lr(z)(Ω), h ∈ Lr′(z)(Ω).
If r1, r2 ∈ E1 and r1 � r2, then Lr2(z)(Ω) ↪→ Lr1(z)(Ω) continuously.
Using the variable exponent Lebesgue spaces, we can define the corresponding variable exponent

Sobolev spaces. So, if r ∈ E1, then the variable exponent Sobolev space W 1,r(z)(Ω) is defined by

W 1,r(z)(Ω) =
{

u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)
}

,

with Du being the gradient of u(·) in the weak sense. The space W 1,r(z)(Ω) is equipped with the following
norm

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z)

for all u ∈ W 1,r(z)(Ω).
In the sequel, for simplicity we write ‖Du‖r(z) = ‖|Du|‖r(z).
The space W 1,r(z)(Ω) is a separable, reflexive (in fact, uniformly convex) Banach space.
Given r ∈ E1, we introduce the following critical exponents:

r∗(z) =

{
Nr(z)

N−r(z) if r(z) < N

+∞ if N � r(z)
for all z ∈ Ω,

r∂(z) =

{
(N−1)r(z)

N−r(z) if r(z) < N

+∞ if N � r(z)
for all z ∈ ∂Ω.
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Also, let σ(·) denote the (N − 1)-dimensional Hausdorff (surface) measure on Ω. If r ∈ C0,1(Ω) ∩ E1

and q ∈ C(Ω) with 1 � q−, then

W 1,r(z)(Ω) ↪→ Lq(z)(Ω) continuously if q(z) � r∗(z), z ∈ Ω,

W 1,r(z)(Ω) ↪→ Lq(z)(Ω) compactly if q(z) < r∗(z), z ∈ Ω.

Similarly, if r ∈ C0,1(Ω)∩E1 and q ∈ C(∂Ω) with 1 � minΩ q, then using the anisotropic trace theory
(see [6, Section 12.1]), we have

W 1,r(z)(Ω) ↪→ Lq(z)(∂Ω) continuously if q(z) � r∂(z), z ∈ Ω,

W 1,r(z)(Ω) ↪→ Lq(z)(∂Ω) compactly if q(z) < r∂(z), z ∈ Ω.

The following modular function is very useful in the study of the variable exponent spaces

ρr(u) =
∫

Ω

|u|r(z)dz for all u ∈ Lr(z)(Ω).

Also, for every u ∈ W 1,r(z)(Ω) we write ρr(Du) = ρr(|Du|).
This modular function is closely related to the Luxemburg norm.

Proposition 1. If r ∈ E1 and {un, u}n∈N
⊆ Lr(z)(Ω), then

(a) ‖u‖r(z) = θ ⇐⇒ ρr

(
u
θ

)
= 1;

(b) ‖u‖r(z) < 1 (resp. = 1, > 1) ⇐⇒ ρr(u) < 1 (resp. = 1, > 1);
(c) ‖u‖r(z) < 1 ⇒ ‖u‖r+

r(z) � ρr(u) � ‖u‖r−
r(z)

‖u‖r(z) > 1 ⇒ ‖u‖r−
r(z) � ρr(u) � ‖u‖r+

r(z);
(d) ‖un‖r(z) → 0 ⇐⇒ ρr(un) → 0;
(e) ‖un‖r(z) → +∞ ⇐⇒ ρr(un) → +∞.

Let Ar(z) : W 1,r(z)(Ω) �→ W 1,r(z)(Ω)∗ be the nonlinear operator defined by

〈Ar(z)(u), h〉 =
∫

Ω

|Du|p(z)−2(Du,Dh)RN dz

for all u, h ∈ W 1,r(z)(Ω).
The next proposition summarizes the main properties of this map (see Gasiński and Papageorgiou

[14] and Rădulescu and Repovš [27, p. 40]).

Proposition 2. The operator Ar(z) : W 1,r(z)(Ω) �→ W 1,r(z)(Ω)∗ is bounded (that is, maps bounded sets to
bounded sets), continuous, monotone (hence maximal monotone, too) and of type (S)+, that is, it has the
following property:

“If un
w−→ u in W 1,r(z)(Ω), lim sup

n→∞
〈Ar(z)(un), un − u〉 � 0, then un → u in W 1,r(z)(Ω).′′

We will also use the space C1(Ω). This is an ordered Banach space with positive (order) cone C+ ={
u ∈ C1(Ω) : u(z) � 0 for all z ∈ Ω

}
. This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

We will also use the following open cone in C1(Ω):

D+ =
{

u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣
∣
∣
u−1(0)∩∂Ω

< 0
}

.
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Also, if u, v ∈ int C+, we set

R(u, v)(z) = |Du(z)|p − |Dv(z)|p−2

(

Dv(z),D
(

up

vp−1

)

(z)
)

RN

.

From Allegretto and Huang [1], we know that

0 � R(u, v)(z) for all z ∈ Ω.

Suppose that X is a Banach space and ϕ ∈ C1(X). We set

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

Also, if u ∈ W 1,p(z)(Ω), then [u) = {h ∈ W 1,p(z)(Ω) : u � h}.
We say that ϕ(·) satisfies the “C-condition”, if it has the following property:

“Every sequence {un}n∈N
⊆ X such that {ϕ(un)}n∈N

is bounded,

(1 + ‖un‖X) ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.′′

For every u ∈ W 1,r(z)(Ω), we define

u+(·) = max {u(·), 0} , u−(·) = max {−u(·), 0} .

We have u+, u− ∈ W 1,r(z)(Ω), u = u+ − u−, |u| = u+ + u−.
Now let ξ ∈ L∞(Ω), β ∈ L∞(∂Ω), ξ � 0, β � 0 and ξ �≡ 0 or β �≡ 0. By γp : W 1,p(z)(Ω) �→ R we

denote the C1-functional defined by

γp(u) =
∫

Ω

1
p(z)

|Du|p(z)dz +
∫

Ω

ξ(z)
p(z)

|u|p(z)dz +
∫

∂Ω

β(z)
p(z)

|u|p(z)dσ

for all u ∈ W 1,p(z)(Ω).
We have

〈γ′
p(u), h〉 = 〈Ap(z)(u), h〉 +

∫

Ω

ξ(z)|u|p(z)−2uhdz +
∫

∂Ω

β(z)|u|p(z)−2uhdσ

for all u ∈ W 1,p(z)(Ω).
Also, let ρ0 : W 1,p(z)(Ω) �→ R be the C1-functional defined by

ρ0(u) = ρp(Du) +
∫

Ω

ξ(z)|u|p(z)dz +
∫

∂Ω

β(z)|u|p(z)dσ

for all u ∈ W 1,p(z)(Ω).
Finally, for notational simplicity, throughout the work, by ‖ · ‖ we denote the norm of the anisotropic

Sobolev space W 1,p(z)(Ω). Recall that

‖u‖ = ‖u‖p(z) + ‖Du‖p(z)

for all u ∈ W 1,p(z)(Ω).

Proposition 3. There exist ĉ0, ĉ > 0 such that

ĉ‖u‖p+ � γp(u) � ĉ0‖u‖p− if ‖u‖ � 1,

ĉ‖u‖p− � γp(u) � ĉ0‖u‖p+ if ‖u‖ � 1.
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Proof. Recall that we have assumed that ξ � 0, β � 0 and ξ �≡ 0 or β �≡ 0.
We first suppose that β �≡ 0. We define

‖u‖∂ = inf

⎧
⎨

⎩
λ > 0 :

∫

∂Ω

β(z)
∣
∣
∣
∣
u(z)
λ

∣
∣
∣
∣

p(z)

dσ � 1

⎫
⎬

⎭

and then, we introduce

|u| = ‖u‖∂ + ‖Du‖p(z) for all u ∈ W 1,p(z)(Ω).

Evidently, | · | is a norm on W 1,p(z)(Ω). We will show that | · | and ‖ · ‖ are equivalent norms on
W 1,p(z)(Ω).

Since W 1,p(z)(Ω) ↪→ Lp(z)(∂Ω) continuously, we can find c1 > 0 such that

‖u‖∂ � c1‖u‖ for all u ∈ W 1,p(z)(Ω),

⇒|u| � c2‖u‖ for some c2 > 0, all u ∈ W 1,p(z)(Ω). (2)

Next, we show that we can find c3 > 0 such that

‖u‖p(z) � c3|u| for all u ∈ W 1,p(z)(Ω). (3)

Arguing by contradiction, suppose that (3) is not true. We can find {un}n∈N
⊆ W 1,p(z)(Ω) such that

|un| � 1
n

‖un‖p(z) for all n ∈ N. (4)

We can always assume that

‖un‖p(z) = 1 for all n ∈ N. (5)

Then, from (4), we have

|un| → 0,

⇒ ‖un‖∂ → 0, ‖Dun‖p(z) → 0 as n → ∞. (6)

From (5) and (6), it follows that {un}n∈N
⊆ W 1,p(z)(Ω) is bounded. So, by passing to a suitable

subsequence if necessary, we may assume that

un
w−→ u in W 1,p(z)(Ω), un → u in Lp(z)(Ω). (7)

From (6) and (7), it follows that u = 0. Hence, we have

un → 0 in W 1,p(z)(Ω),

which contradicts (5). Therefore, (3) is true and so

‖u‖ � c4|u| for some c4 > 0, all u ∈ W 1,p(z)(Ω). (8)

From (2) and (8), we infer that

‖ · ‖ and | · | are equivalent norms on W 1,p(z)(Ω). (9)

Now let ξ �≡ 0 and define

‖u‖∗ = inf

⎧
⎨

⎩
λ > 0 :

∫

Ω

ξ(z)
∣
∣
∣
∣
u(z)
λ

∣
∣
∣
∣

p(z)

dz � 1

⎫
⎬

⎭
.

We set

|u|∗ = ‖u‖∗ + ‖Du‖p(z) for all u ∈ W 1,p(z)(Ω).
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This is also a norm of W 1,p(z)(Ω) and, as above, we show that

‖ · ‖ and | · |∗ are equivalent norms on W 1,p(z)(Ω). (10)

Finally, from (9) and (10), we see that we can find ĉ, ĉ0 > 0 such that

ĉ‖u‖p+ � 1
p+

ρ0(u) � γp(u) � 1
p−

ρ0(u) � ĉ0‖u‖p− if ‖u‖ � 1

ĉ‖u‖p− � 1
p+

ρ0(u) � γp(u) � 1
p−

ρ0(u) � ĉ0‖u‖p+ if 1 < ‖u‖.

This proof is now complete. �

3. Superdiffusive equation

In this section, we examine superdiffusive anisotropic logistic equations. As we already mentioned in
Introduction, in this case we have multiplicity of positive solutions.

The hypotheses on the data of problem (Pλ) are the following.
Ha

0 : p, q ∈ C0,1(Ω), 1 < p− � p+ < q− < q(z) < p∗(z) for all z ∈ Ω, ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with
0 < α < 1, ξ � 0, β � 0 and ξ �≡ 0 or β �≡ 0.

Remark 1. With these hypotheses, we incorporate in our framework Neumann problems. Just assume
β ≡ 0 (in which case, ξ �≡ 0).

The hypotheses on the perturbation f(z, x) are the following.
Ha

1 : f : Ω × R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) f(z, x) � a(z)
(
1 + xr(z)−1

)
for a.a. z ∈ Ω, all x � 0, with a ∈ L∞(Ω), r ∈ C(Ω), q(z) < r(z) < p∗(z)

for all z ∈ Ω;
(ii) limx→+∞

f(z,x)
xq(z)−1 = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0+
f(z,x)
xq(z)−1 = 0 uniformly for a.a. z ∈ Ω; moreover, for every ρ > 0 there exists mρ > 0 such

that f(z, x) � mρ for a.a. z ∈ Ω, all x � ρ;
(iv) for every ρ > 0 and every θ > 0, we can find ξ̂θ

ρ > 0 such that for a.a. z ∈ Ω and every 0 < λ � θ,
the function x �→ λxq(z)−1 − f(z, x) + ξ̂θ

λxp(z)−1 is nondecreasing on [0, ρ].

Remark 2. From hypotheses Ha
1(iii), it is clear that f(z, x) � 0 for a.a. z ∈ Ω, all x � 0. Also, since we

look for positive solutions and all the above hypotheses concern the positive semiaxis R+ = [0,+∞), we
may assume without any loss of generality that f(z, x) = 0 for a.a. z ∈ Ω, all x � 0. If r ∈ C(Ω) with
q(z) < r(z) < p∗(z) for all z ∈ Ω and f(z, x) = (x+)r(z)−1 for all z ∈ Ω, all x ∈ R, then hypotheses Ha

1

are satisfied. This choice of f(z, x) corresponds to the classical superdiffusive reaction.

We introduce the following two sets:

L = {λ > 0 : problem (Pλ) has a positive solution}
(this is the set of admissible parameters),

Sλ = set of positive solutions of problem (Pλ)

(this is the solution set of problem (Pλ)).

First we show the non-emptiness of the set L and determine the regularity properties of the elements
of Sλ. In what follows, F (z, x) =

∫ x

0
f(z, s)ds.

Proposition 4. If hypotheses Ha
0, Ha

1 hold, then L �= ∅ and for all λ > 0, Sλ ⊆ intC+.
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Proof. For every λ > 0, let ϕλ : W 1,p(z)(Ω) �→ R be the energy (Euler) functional for problem (Pλ)
defined by

ϕλ(u) = γp(u) +
∫

Ω

F (z, u+)dz −
∫

Ω

λ

q(z)
(u+)q(z)dz

for all u ∈ W 1,p(z)(Ω).
Then, ϕλ ∈ C1(W 1,p(z)(Ω)). Hypotheses Ha

1(i), (ii) imply that given η > 0 we can find c5 = c5(η) > 0
such that

f(z, x) � ηxq(z)−1 − c5x
r(z)−1 for a.a. z ∈ Ω, all x � 0,

⇒F (z, x) � η

q(z)
xq(z) − c5

r(z)
xr(z) for a.a. z ∈ Ω, all x � 0. (11)

Therefore, if u ∈ W 1,p(z)(Ω), ‖u‖ � 1, then

ϕλ(u) � γp(u) +
(

η

q+
− λ

q−

)

ρq(u) (see (11))

� ĉ‖u‖p− (choosing η >
λq+

q−
and using Proposition 3),

⇒ ϕλ(·) is coercive.

In addition, using the anisotropic Sobolev embedding theorem, we see that

ϕλ(·) is sequentially weakly lower semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find uλ ∈ W 1,p(z)(Ω) such that

ϕλ(uλ) = min
{

ϕλ(u) : u ∈ W 1,p(z)(Ω)
}

. (12)

Fix u ∈ C+ \ {0}. Then, from hypotheses Ha
0, we see that

ϕλ(u) � c6 − λc7 for some c6 = c6(u) > 0, c7 = c7(u) > 0.

Hence, for λ > 0 big we have

ϕλ(u) < 0,

⇒ϕλ(uλ) < 0 = ϕλ(0) (see (12)),
⇒uλ �= 0.

From (12), we have

ϕ′
λ(uλ) = 0,

⇒ 〈γ′
p(uλ), h〉 =

∫

Ω

(
λ(u+

λ )q(z)−1 − f(z, u+
λ )
)

hdz for all h ∈ W 1,p(z)(Ω). (13)

In (13), we use the test function h = −u−
λ ∈ W 1,p(z)(Ω) and obtain

ρ0(u−
λ ) =0,

⇒ ρp(Du−
λ ) � 0 and so u−

λ ≡ c � 0.

We have

min {cp+ , cp−}
⎛

⎝

∫

Ω

ξ(z)dz +
∫

∂Ω

β(z)dσ

⎞

⎠ � 0.
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On account of hypotheses Ha
0, we see that

∫

Ω

ξ(z)dz +
∫

∂Ω

β(z)dσ > 0.

So, it follows that c = 0 and we infer that uλ � 0, uλ �= 0.
From Winkert and Zacher [35] (see also Proposition 3.1 of Gasiński and Papageorgiou [14]), we have

that uλ ∈ L∞(Ω) and then Theorem 1.3 of Fan [9] (see also Corollary 3.1 of Tan and Fang [33]), implies
that uλ ∈ C+ \ {0}.

Hypotheses Ha
0(i), (iii) imply that we can find c8 > 0 such that

f(z, x) � −xp(z)−1 − c8x
r(z)−1 for a.a. z ∈ Ω, all x � 0.

By (13), it follows that

Δp(z)uλ � (‖ξ‖∞ + c9) u
p(z)−1
λ in Ω for some c9 = c9(‖uλ‖) > 0.

Then, from the anisotropic maximum principle of Zhang [36, Theorem 1.2], we have uλ ∈ intC+.
We have proved that for λ > 0 big enough we have λ ∈ L, hence L �= ∅. Moreover, the arguments in

the last part of the proof show that Sλ ⊆ intC+.
This proof is now complete. �
Let λ∗ = inf L.

Proposition 5. If hypotheses Ha
0, Ha

1 hold, then λ∗ > 0.

Proof. Suppose λ∗ = 0 and let {λn}n∈N ⊆ L such that λn ↓ 0. We can find un ∈ Sλn
⊆ int C+ for all

n ∈ N. On account of hypothesis Ha
1(ii), the sequence {un}n∈N ⊆ W 1,p(z)(Ω) is bounded and so we may

assume that

un
w−→ û in W 1,p(z)(Ω), un → û in Lr(z)(Ω). (14)

We have

〈γ′
p(un), h〉 =

∫

Ω

[
λnuq(z)−1

n − f(z, un)
]
hdz for all h ∈ W 1,p(z)(Ω), n ∈ N. (15)

We choose h = un − û ∈ W 1,p(z)(Ω), pass to the limit as n → ∞ and use (14). We obtain

lim
n→∞〈Ap(z)(un), un − û〉 = 0,

⇒ un → û in W 1,p(z)(Ω) (see Proposition 2).

Suppose that û = 0. Then, we may assume that ‖un‖ � 1 and ‖un‖q(z) � 1 for all n ∈ N. We have

ρ0(un) �
∫

Ω

[
λnuq(z)

n − f(z, un)un

]
dz,

⇒ ĉp+ ‖un‖p+ � λnρq(un) � λnc∗ ‖un‖q−

for some c∗ > 0, all n ∈ N (recall that W 1,p(z)(Ω) ↪→ Lq(z)(Ω)),

⇒ ĉp+

c∗ � λn ‖un‖q−−p+ ,

a contradiction since p+ < q−. So, û �= 0 and taking the limit as n → ∞ in (15), we have

〈γ′
p(û), h〉 = −

∫

Ω

f(z, û)hdz,

⇒ 0 � ρ0(û) = −
∫

Ω

f(z, û)ûdz < 0 (see hypothesis Ha
1(iii)),

a contradiction. Therefore, λ∗ > 0. �
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Next, we show that L is connected (an upper half line).

Proposition 6. If hypotheses Ha
0, Ha

1 hold, λ ∈ L and η ∈ (λ,+∞), then η ∈ L.

Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ int C+. We have

−Δp(z)uλ + ξ(z)up(z)−1
λ = λu

q(z)−1
λ − f(z, uλ)

< ηu
q(z)−1
λ − f(z, uλ) in Ω. (16)

We introduce the Carathéodory function gη : Ω × R �→ R defined by

gη(z, x) =

{
ηuλ(z)q(z)−1 − f(z, uλ(z)) if x � uλ(z)
ηxq(z)−1 − f(z, x) if uλ(z) < x.

(17)

We set Gη(z, x) =
∫ x

0
gη(z, s)ds and consider the C1-functional ψη : W 1,p(z)(Ω) �→ R defined by

ψη(u) = γp(u) −
∫

Ω

Gη(z, u)dz for all u ∈ W 1,p(z)(Ω).

Using (17) and Proposition 3, we see that

• ψη(·) is coercive.

• ψη(·) is sequentially weakly lower semicontinuous.

Therefore, we can find uη ∈ W 1,p(z)(Ω) such that

ψη(uη) = min
{

ψη(u) : u ∈ W 1,p(z)(Ω)
}

,

⇒〈ψ′
η(uη), h〉 = 0 for all h ∈ W 1,p(z)(Ω),

⇒〈γ′
p(uη), h〉 =

∫

Ω

gη(z, uη)h for all h ∈ W 1,p(z)(Ω). (18)

In (18) we choose h = (uλ − uη)+ ∈ W 1,p(z)(Ω). Then,

〈γ′
p(uη), (uλ − uη)+〉 =

∫

Ω

(
ηu

q(z)−1
λ − f(z, uλ)

)
(uλ − uη)+ dz (see (17))

>

∫

Ω

(
λu

q(z)−1
λ − f(z, uλ)

)
(uλ − uη)+ dz (see (16))

= 〈γ′
p(uλ), (uλ − uη)+〉 (since uλ ∈ Sλ),

⇒ uλ � uη. (19)

From (19), (17) and (18), it follows that uη ∈ Sη and so η ∈ L.
This proof is now complete. �

As a by-product of the above proof, we have the following corollary.

Corollary 7. If hypotheses Ha
0, Ha

1 hold, λ ∈ L, uλ ∈ Sλ ⊆ int C+ and η ∈ (λ,+∞), then η ∈ L and we
can find uη ∈ Sη ⊆ int C+ such that uλ � uη.

We can improve this corollary as follows.

Proposition 8. If hypotheses Ha
0, Ha

1 hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and η ∈ (λ,+∞), then η ∈ L and we
can find uη ∈ Sη ⊆ int C+ such that uλ − uη ∈ D+.
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Proof. From Corollary 7, we have that η ∈ L and there exists uη ∈ Sη ⊆ int C+ such that

uλ � uη. (20)

Let ρ = ‖uη‖∞ and ξ̂η
ρ > 0 be as postulated by hypothesis Ha

1(iv). We have

− Δp(z)uλ +
(
ξ(z) + ξ̂η

ρ

)
u

p(z)−1
λ

= λu
q(z)−1
λ − f(z, uλ) + ξ̂η

ρu
p(z)−1
λ

� λuq(z)−1
η − f(z, uη) + ξ̂η

ρup(z)−1
η (see (20) and hypothesis Ha

1(iv))

< ηuq(z)−1
η − f(z, uη) + ξ̂η

ρup(z)−1
η (since η > λ)

= − Δp(z)uη +
(
ξ(z) + ξ̂η

ρ

)
up(z)−1

η . (21)

Since uη ∈ int C+, we have

0 < c∗ � (η − λ)uη(z) for all z ∈ Ω.

So, using Proposition 2.5 of Papageorgiou et al. [20], we conclude that uη − uλ ∈ D+.
This proof is now complete. �

Next, we show that for λ > λ∗, we have multiple positive solutions. More precisely, we will show that
for λ > λ∗ problem (Pλ) has at least a pair of positive solutions.

Proposition 9. If hypotheses Ha
0, Ha

1 hold and λ > λ∗, then problem (Pλ) has at least two positive solutions

u0, û ∈ int C+.

Proof. Since λ > λ∗, we can find μ ∈ (λ∗, λ) ∩ L. Then, let uμ ∈ Sμ ⊆ int C+ and consider the
Carathéodory function kλ : Ω × R �→ R defined by

kλ(z, x) =

{
λuμ(z)q(z)−1 − f(z, uμ(z)) if x � uμ(z)
λxq(z)−1 − f(z, x) if uμ < x.

(22)

We set Kλ(z, x) =
∫ x

0
kλ(z, s)ds and consider the C1-functional Υλ : W 1,p(z)(Ω) �→ R defined by

Υλ(u) = γp(u) −
∫

Ω

Kλ(z, u)dz for all u ∈ W 1,p(z)(Ω).

As before (see the proof of Proposition 6), via the direct method of the calculus of variations, we can
find u0 ∈ W 1,p(z)(Ω) such that

Υλ(u0) = min
{

Υλ(u) : u ∈ W 1,p(z)(Ω)
}

, (23)

⇒ 〈Υ′
λ(u0), h〉 = 0 for all h ∈ W 1,p(z)(Ω). (24)

From (24), using h = (uμ − u0)
+ ∈ W 1,p(z)(Ω) and (22), we infer that uμ � u0 (see the proof of

Proposition 6). In fact arguing as in the proof Proposition 8 and using Proposition 2.5 of [20], we obtain

u0 − uμ ∈ D+. (25)

From (22), we see that

ϕ
∣
∣
[uμ)

= Υλ

∣
∣
[uμ)

+ d0 with d0 ∈ R. (26)
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From (26), (25) and (23), it follows that

u0 is a local C1(Ω)-minimizer of ϕλ,

⇒u0 is a local W 1,p(z)(Ω)-minimizer of ϕλ

(see Gasiński and Papageorgiou [14] and Tan and Fang [33]). (27)

On account of hypothesis Ha
1(iii), we can find δ > 0 such that

f(z, x) � −xq(z)−1 for a.a. z ∈ Ω, all 0 � x � δ,

⇒F (z.x) � − 1
q(z)

xq(z)−1 for a.a. z ∈ Ω, all 0 � x � δ. (28)

Let u ∈ C1(Ω) with ‖u‖C1(Ω) � δ. We can always choose δ ∈ (0, 1) small so that we also have that
‖u‖ � 1. Then,

ϕλ(u) � γp(u) − 1
q−

(1 + λ)ρq(u+) (see (28))

� ĉ‖u‖p+ − c10‖u‖q− for some c10 = c10(λ) > 0.

Since p+ < q−, we see that by taking δ > 0 even smaller if necessary we have

ϕλ(u) > 0 for all u ∈ C1(Ω) with 0 < ‖u‖C1(Ω) � δ,

⇒u = 0 is a local C1(Ω)-minimizer of ϕλ(·),
⇒u = 0 is a local W 1,p(z)(Ω)-minimizer of ϕλ(·) (see [14, 21]). (29)

We may assume that

0 = ϕλ(0) � ϕλ(u0).

The analysis is similar if the opposite inequality holds, using (29) instead of (27).
It is easy to see that Kϕλ

⊆ C+. Hence, we may assume that Kϕλ
is finite (otherwise we already have

whole sequence of distinct positive solutions in intC+ and so we are done). Then, from (27) and Theorem
5.7.6 of Papageorgiou et al. [21, p. 449], we can find ρ ∈ (0, 1) small such that

0 = ϕλ(0) � ϕλ(u0) < inf {ϕλ(u) : ‖u − u0‖ = ρ} = mλ. (30)

Recall that ϕλ(·) is coercive (see the proof of Proposition 4). Hence, ϕλ(·) satisfies the C-condition
(see [21, p. 369]). Then, this fact and (30) permit the use of the mountain pass theorem. So, we can find
û ∈ W 1,p(z)(Ω) such that

û ∈ Kϕλ
⊆ int C+ ∪ {0}, 0 = ϕλ(u0) � ϕλ(u0) < mλ � ϕ(û) (see (30)),

⇒ û ∈ int C+ is a second positive solution of problem (Pλ), û �= 0.

This proof is now complete. �

Next, we check the admissibility of the critical parameter λ∗.

Proposition 10. If hypotheses Ha
0, Ha

1 hold, then λ∗ ∈ L.

Proof. Let {λn}n∈N
⊆ (λ∗,+∞) and assume that λn ↓ λ∗. We can find un ∈ Sλn

⊆ intC+, n ∈ N. On
account of hypotheses Ha

1(ii), we have that {un}n∈N
⊆ W 1,p(z)(Ω) is bounded. Then, we can find c11 > 0

such that ‖un‖∞ � c11 for all n ∈ N (see Fan [9, Theorem 1.3] and Fukagai and Narukawa [13, Lemma
3.3.]), we can find θ ∈ (0, 1) and c12 > 0 such that

un ∈ C1,θ(Ω), ‖un‖C1,θ(Ω) � c12 for all n ∈ N.
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We know that C1,θ(Ω) ↪→ C1(Ω) compactly. So, by passing to a subsequence if necessary, we may
assume that

un → u∗ in C1(Ω). (31)

Suppose that u∗ = 0. We have

〈γ′
p(un), h〉 =

∫

Ω

(
λnuq(z)−1

n − f(z, un)
)

hdz for all h ∈ W 1,p(z)(Ω). (32)

In (32), we choose h = un ∈ W 1,p(z)(Ω) and obtain

ρ0(un) = λnρq(un) −
∫

Ω

f(z, un)undz,

⇒ p−γp(un) � λn‖un‖q− −
∫

Ω

f(z, un)undz

(see Proposition 3 and its proof, Proposition 1 and recall that u∗ = 0),

⇒ p−ĉ‖un‖p+ � λn‖un‖q− (since f � 0),

⇒ p−ĉ � λn‖un‖q−−p+ for all n ∈ N.

Passing to the limit as n → ∞ and since p+ < q−, we have a contradiction (see (31) and recall that
we have assumed that u∗ = 0). This proves that u∗ �= 0. We pass to the limit as n → ∞ in (32) and using
(31) we obtain

〈γ′
p(u∗), h〉 =

∫

Ω

(
λ∗u

q(z)−1
∗ − f(z, u∗)

)
hdz for all h ∈ W 1,p(z)(Ω),

⇒u∗ ∈ Sλ ⊆ intC+ and λ∗ ∈ L.

This proof is now complete. �

Therefore, we have proved that

L = [λ∗,+∞).

So, summarizing the situation for the superdiffusive anisotropic logistic equation, we can state the
following bifurcation-type result, which describes the changes in the set of positive solutions as the
parameter λ > 0 varies.

Theorem 11. If hypotheses Ha
0, Ha

1 hold, then there exists λ∗ > 0 such that
(a) for every λ > λ∗, problem (Pλ) has at least two positive solutions u0, û ∈ intC+, u0 �= û;
(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for every λ ∈ (0, λ∗), problem (Pλ) has no positive solution.

4. Subdiffusive equation

In this section, we examine the subdiffusive equation. As we already mentioned in Introduction, the
situation is different from the superdiffusive case and now we have uniqueness of the positive solution.

The hypotheses on the data of problem (Pλ) are the following:
Hb

0 : p, q ∈ C0,1(Ω), 1 < q− � q+ < p−, ξ ∈ C0,α(∂Ω) with 0 < α < 1, ξ � 0, β � 0 and ξ �≡ 0 or
β �≡ 0.

Hb
1 : f : Ω × R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and
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(i) 0 � f(z, x) � a(z)
(
1 + xr(z)−1

)
for a.a. z ∈ Ω, all x � 0, with a ∈ L∞(Ω) and p(z) < r(z) < p∗(z)

for all z ∈ Ω;
(ii) limx→+∞

f(z,x)
xp(z)−1 = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0+
f(z,x)
xq(z)−1 = 0 uniformly for a.a. z ∈ Ω;

(iv) for a.a. z ∈ Ω, the function x �→ f(z,x)

xq+−1 is nondecreasing on R̊+ = (0,+∞).

Remark 3. As in the superdiffusive case, we may assume that f(z, x) = 0 for a.a. z ∈ Ω, all x � 0. The
classical subdiffusive perturbation (x+)r(z)−1 with r ∈ C(Ω), p(z) < r(z) < p∗(z) for all z ∈ Ω satisfies
the above hypotheses.

The next theorem provides a complete picture for the positive solutions of the subdiffusive equation.

Theorem 12. If hypotheses Hb
0 , Hb

1 hold, then for every λ > 0 problem (Pλ) admits a unique positive
solution uλ ∈ intC+ and uλ → 0 in C1(Ω) as λ → 0+.

Proof. Let ϕλ : W 1,p(z)(Ω) �→ R be the energy functional of problem (Pλ) introduced in the proof of
Proposition 4. We know that ϕλ ∈ C1(W 1,p(z)(Ω)). Since we deal with the subdiffusive case, we have
q+ < p− (see hypotheses Hb

0). This fact in conjunction with hypothesis Hb
1(ii) and Proposition 3, implies

that

ϕλ(·) is coercive.

Also, the anisotropic Sobolev embedding theorem, implies that

ϕλ(·) is sequentially weakly lower semicontinuous.

Therefore, we can find uλ ∈ W 1,p(z)(Ω) such that

ϕλ(uλ) = min
{

ϕλ(u) : u ∈ W 1,p(z)(Ω)
}

. (33)

On account of hypothesis Hb
1(iii), given ε > 0, we can find δ = δ(ε) > 0 such that

F (z, x) � ε

q(z)
xq(z) for a.a. z ∈ Ω, all 0 � x � δ. (34)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that

tu(z) ∈ (0, δ] for all z ∈ Ω. (35)

Using (34) and (35), we have that

ϕλ(tu) � tp−

p−
ρ0(u) − tq+

q+
(λ − ε)ρq(u) (recall t ∈ (0, 1)).

Let ε ∈ (0, λ). Then,

ϕλ(tu) � c13t
p− − c14t

q+ for some c13 > 0 and c14 = c14(λ) > 0.

Since q+ < p−, choosing t ∈ (0, 1) even smaller if necessary, we have

ϕλ(tu) < 0,

⇒ϕλ(uλ) < 0 = ϕλ(0) (see (33)),
⇒uλ �= 0.

From (33) we have

ϕ′
λ(uλ) = 0,

⇒〈γ′
p(uλ), h〉 =

∫

Ω

(
λ(u+

λ )q(z)−1 − f(z, u+
λ )
)

hdz for all h ∈ W 1,p(z)(Ω). (36)
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In (36) we use test function h = −u−
λ ∈ W 1,p(z)(Ω). We obtain

ρ0(u−
λ ) = 0,

⇒ p+ĉ‖u−
λ ‖p+ � 0 if ‖u−

λ ‖ � 1

p+ĉ‖u−
λ ‖p− � 0 if ‖u−

λ ‖ � 1

(see the proof of Proposition 3).

Hence, we have uλ � 0, uλ �= 0. Moreover, as before using the anisotropic regularity theory (see Fan
[9]) and the anisotropic maximum principle (see Zhang [36]), we have that uλ ∈ int C+.

Next, we show the uniqueness of this positive solution. To this end, we introduce the integral functional
j : L1(Ω) �→ R = R ∪ {+∞} defined by

j(u) =

{
γp(u1/q+) if u � 0, u1/q+ ∈ W 1,p(z)(Ω)
+∞ otherwise.

Let dom j =
{
u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j(·)). From Theorem 2.2 of Takáč and

Giacomoni [30], we know that j(·) is convex.
Suppose that vλ ∈ W 1,p(z)(Ω) is another positive solution of problem (Pλ). Again we show that

vλ ∈ intC+. Then, Proposition 4.1.22 of Papageorgiou et al. [21, p. 274], implies that
uλ

vλ
∈ L∞(Ω) and

vλ

uλ
∈ L∞(Ω).

We set h = u
q+
λ − v

q+
λ ∈ W 1,p(z)(Ω). Then, for |t| < 1 small we have

u
q+
λ + th ∈ dom j and v

q+
λ + th ∈ dom j.

This fact and the convexity of j(·), imply that j(·) is Gateaux differentiable at u
q+
λ and at v

q+
λ in the

direction h. A direct calculation using Green’s identity gives

j′
λ(uq+

λ )(h) =
1
q+

∫

Ω

−Δp(z)uλ + ξ(z)up(z)−1
λ

u
q+−1
λ

hdz

=
1
q+

∫

Ω

λu
q(z)−1
λ − f(z, uλ)

u
q+−1
λ

hdz,

and

j′
λ(vq+

λ )(h) =
1
q+

∫

Ω

−Δp(z)vλ + ξ(z)vp(z)−1
λ

u
q+−1
λ

hdz

=
1
q+

∫

Ω

λv
q(z)−1
λ − f(z, vλ)

v
q+−1
λ

hdz.

The convexity of j(·) implies that j′(·) is monotone. Therefore,

0 � 1
q+

∫

Ω

λ

(
1

u
q+−q(z)
λ

− 1

v
q+−q(z)
λ

)

hdz

+
1
q+

∫

Ω

(
f(z, uλ)

u
q+−1
λ

− f(z, vλ)

v
q+−1
λ

)

hdz � 0,

⇒ uλ = vλ (see hypothesis Hb
1(iv)).

This proves the uniqueness of the positive solution uλ ∈ intC+.
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Finally, we determine the asymptotic behavior of uλ as λ → 0+. So, let λn ↓ 0 and set un = uλn
∈

int C+, n ∈ N be the uniqueness positive solution of problem (pλn
). We have

〈γ′
p(un), h〉 =

∫

Ω

(
λnuq(z)−1

n − f(z, un)
)

hdz (37)

for all h ∈ W 1,p(z)(Ω), all n ∈ N.
In (37), we choose h = un ∈ W 1,p(z)(Ω). We obtain

ρ0(un) � λ1ρq(un) for all n ∈ N (since f � 0, see Hb
1(i)),

⇒ p+ĉ‖un‖p− � λ1ρq(un) for all n ∈ N and for ‖un‖ � 1.

Since W 1,p(z)(Ω) ↪→ Lq(z)(Ω) and q+ < p−, it follows that

{un}n∈N
⊆ W 1,p(z)(Ω) is bounded.

Then as before, from the anisotropic regularity (see the proof of Proposition 10), we can find θ ∈ (0, 1)
and c15 > 0 such that

un ∈ C1,θ(Ω), ‖un‖C1,θ(Ω) � c15 for all n ∈ N. (38)

From (38) and the compact embedding of C1,θ(Ω) into C1(Ω) we see that of at least for a subsequence,
we have

un → û in C1(Ω) as n → ∞. (39)

Passing to the limit as n → ∞ in (37) and using (39), we obtain

〈γ′
p(û), h〉 = −

∫

Ω

f(z, û)hdz for all h ∈ W 1,p(z)(Ω).

Let h = û ∈ W 1,p(z)(Ω). Then,

ρ0(û) � 0 (since f � 0, û � 0),

⇒ û = 0 (see Proposition 3).

So, from (39) we conclude that

uλ → 0+ as λ → 0+.

This proof is now complete. �

5. Equidiffusive equation

In the equidiffusive case, we can only deal with the isotropic equation. The reason for this is that in the
anisotropic case, there is no satisfactory spectral analysis of the differential operator. More precisely, if
we set

λ̂1 = inf

⎧
⎪⎨

⎪⎩

γp(u)
∫

Ω

1
p(z) |u|p(z)dz

: u ∈ W 1,p(z)(Ω), u �= 0

⎫
⎪⎬

⎪⎭
,

then it can happen that λ̂1 = 0 even if ξ �≡ 0 or β �≡ 0 (see Fan [10]). We are not aware of any reasonable
conditions on the exponent p(·) (aside from being constant), which will guarantee that λ̂1 > 0. This
prevents us from dealing with the anisotropic equidiffusive equation.
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In contrast, in the isotropic case, if we have that ξ �≡ 0 or β �≡ 0 (as we have done throughout this
work), then λ̂1 > 0 and the analysis of the equidiffusive equation can proceed without problems. We show
that the situation is similar to the subdiffusive case and we have uniqueness of the positive solution.

The hypotheses on the data of problem (Pλ) are the following:
Hc

0 : q(z) = p(z) = p > 1 for all z ∈ Ω (isotropic problem), ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with 0 < α < 1,
ξ � 0, β � 0 and ξ �≡ 0 or β �≡ 0.

Hc
1 : f : Ω × R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 � f(z, x) � a(z)
(
1 + xr−1

)
for a.a. z ∈ Ω, all x � 0, with a ∈ L∞(Ω), p < r < p∗;

(ii) limx→+∞
f(z,x)
xp−1 = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0+
f(z,x)
xp−1 = 0 uniformly for a.a. z ∈ Ω;

(iv) for a.a. z ∈ Ω, the function x �→ f(z,x)
xp−1 is increasing on R̊+ = (0,+∞) and for a.a. z ∈ Ω and all

x > 0, we have 0 < f(z, x).

Remark 4. Again we can set f(z, x) = 0 for a.a. z ∈ Ω. Moreover, the classical perturbation f(z, x) =
f(x) = (x+)r−1 (p < r < p∗) satisfies the above hypotheses.

Consider the following nonlinear eigenvalue problem.
⎧
⎪⎨

⎪⎩

−Δpu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,

∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω.

⎫
⎪⎬

⎪⎭
(40)

We say that λ̂ ∈ R is “eigenvalue”, if for this λ̂ problem (40) admits a nontrivial solution û ∈ W 1,p(Ω),
known as an “eigenfunction” corresponding to λ̂. We know that under hypotheses Hc

0, problem (40)
admits a smallest eigenvalue λ̂1 > 0, which is simple, isolated and admits the following variational
characterization

λ̂1 = inf
{

γ̂p(u)
‖u‖p

p
: u ∈ W 1,p(Ω), u �= 0

}

> 0, (41)

with γ̂p(u) = ‖Du‖p
p +

∫

Ω

ξ(z)|u|pdz +
∫

∂Ω

β(z)|u|pdσ for all u ∈ W 1,p(Ω) (see Fragnelli et al. [12]). The

infimum in (41) is realized on the corresponding one-dimensional eigenspace, the elements of which have
fixed sign. By û1 we denote the positive, Lp-normalized eigenfunction corresponding to λ̂1. The nonlinear
regularity theory and the nonlinear maximum principle, imply that û1 ∈ intC+. We mention that for
every eigenvalue λ̂ > λ̂1, the corresponding eigenfunctions are nodal (sign-changing).

The isotropic equidiffusive case is very similar to the subdiffusive case, except that now the infimum of
the admissible parameter λ is λ̂1 > 0. The existence and uniqueness theorem for the isotropic equidiffusive
equation is the following:

Theorem 13. If hypotheses Hc
0, Hc

1 hold, then

(a) for every λ > λ̂1 problem (Pλ) has a unique positive solution uλ ∈ intC+ and uλ → 0 in C1(Ω) as
λ → 0+;

(b) for every λ ∈ (0, λ̂1] problem (Pλ) has no positive solution.

Proof. (a) Let λ > λ̂1 and let ϕλ ∈ C1(W 1,p(Ω)) be the energy functional for problem (Pλ) (see the proof
of Proposition 4). On account of hypothesis Hc

1(ii), we see that ϕλ(·) is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find uλ ∈ W 1,p(Ω) such that

ϕλ(uλ) = min
{
ϕλ(u) : u ∈ W 1,p(Ω)

}
. (42)
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On account of hypothesis Hc
1(iii) given ε > 0, we can find δ = δ(ε) > 0 such that

F (z, x) � ε

p
xp for a.a.z ∈ Ω, all 0 � x � δ. (43)

Choose t ∈ (0, 1) small so that 0 < tû1(z) � δ for all z ∈ Ω (recall that û1 ∈ intC+). Then, using (43)
we have

ϕλ(tû1) � tp

p

(
λ̂1 + ε − λ

)
(recall ‖û1‖p = 1).

Since λ > λ̂1, we choose ε ∈ (0, λ − λ̂1) and have

ϕλ(tû1) < 0,

⇒ϕλ(uλ) < 0 = ϕλ(0) (see (42)),
⇒uλ �= 0.

From (42) we have 〈ϕ′
λ(uλ), h〉 = 0 for all h ∈ W 1,p(Ω) and by choosing h = −u−

λ ∈ W 1,p(Ω), we see that
uλ � 0, uλ �= 0. From Proposition 2.10 of Papageorgiou and Rădulescu [18], we know that uλ ∈ L∞(Ω).
Then, Theorem 2 of Lieberman [16] implies that uλ ∈ C+ \{0}. Finally, the nonlinear maximum principle
implies that uλ ∈ int C+.

Next we check the uniqueness of uλ. So, suppose that vλ ∈ W 1,p(Ω) is another positive solution of
problem (Pλ). Again, we have vλ ∈ int C+. We have

∫

Ω

(

λ − f(z, uλ)
up−1

λ

)

(up
λ − vp

λ)dz

=
∫

Ω

(
λup−1

λ − f(z, uλ)
)

(uλ − vp
λ

up−1
λ

)dz

=
∫

Ω

(
−Δpuλ + ξ(z)up−1

λ

)
(uλ − vp

λ

up−1
λ

)dz

=
∫

Ω

|Duλ|p−2

(

Duλ,D

(

uλ − vp
λ

up−1
λ

))

RN

dz +
∫

∂Ω

β(z)(up
λ − vp

λ)dσ

+
∫

Ω

ξ(z)(up
λ − vp

λ)dz (using Green’s identity)

=‖Duλ|pp − ‖Dvλ‖p
p +

∫

Ω

R(vλ, uλ)dz +
∫

Ω

ξ(z)(up
λ − vp

λ)dz

+
∫

∂Ω

β(z)(up
λ − vp

λ)dσ (44)

(using the nonlinear Picone’s identity, see Allegretto and Huang [18]).
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Interchanging the roles of uλ and vλ in the above argument, we obtain
∫

Ω

(

λ − f(z, vλ)
vp−1

λ

)

(vp
λ − up

λ)dz

= ‖Dvλ|pp − ‖Duλ‖p
p +

∫

Ω

R(uλ, vλ)dz +
∫

Ω

ξ(z)(vp
λ − up

λ)dz

+
∫

∂Ω

β(z)(vp
λ − up

λ)dσ. (45)

Adding (44) and (45) and using hypothesis Hc
1(iv) and the fact that R � 0, we obtain uλ = vλ, which

proves the uniqueness of the positive solution uλ ∈ int C+ of problem (Pλ).
Now let λn ↓ λ̂1 and let un = uλn

∈ intC+ be the unique solution of problem (pλn
). As in the proof

of Theorem 12, we have

un → û in C1(Ω).

Then, in the limit as n → ∞ we have
⎧
⎪⎨

⎪⎩

−Δpû + ξ(z)ûp−1 = λ̂1û
p−1 − f(z, û) in Ω,

∂û

∂np
+ β(z)ûp−1 = 0 on ∂Ω, û � 0.

⎫
⎪⎬

⎪⎭
(46)

If û �= 0, then from (46) we have

γp(û) = λ̂1‖û‖p
p −

∫

Ω

f(z, û)ûdz < λ̂1‖û‖p
p (see hypothesis Hc

1(iv)).

This contradicts (41). Hence, û = 0 and we have

uλ → 0 in C1(Ω) as λ → 0+.

(b) Suppose 0 < λ � λ̂1. If λ is admissible, we can find uλ ∈ int C+ such that

〈1
p
γ̂′

p(uλ), h〉 =
∫

Ω

(
λup−1

λ − f(z, uλ)
)

hdz for all h ∈ W 1,p(Ω).

Let h = uλ ∈ W 1,p(Ω). We obtain

γ̂p(u) = λ‖uλ‖p
p +

∫

Ω

f(z, uλ)uλdz

⇒ 0 >
(
λ̂1 − λ

)
‖uλ‖p

p (see hypothesis Hc
1(iv)),

a contradiction. So λ ∈ (0, λ̂1] is not admissible.
This proof is now complete. �
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[21] Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs

in Mathematics, Springer Nature, Cham (2019)
[22] Papageorgiou, N.S., Scapellato, A.: Constant sign and nodal solutions for parametric (p, 2)-equations. Adv. Nonlinear

Anal. 9(1), 449–478 (2020)
[23] Papageorgiou, N.S., Vetro, C., Vetro, F.: On a Robin (p, q)-equation with logistic reaction. Opusc. Math. 39, 227–245

(2019)
[24] Papageorgiou, N.S., Winkert, P.: On parametric nonlinear Dirichlet problems with subdiffusive and equidiffusive reac-

tion. Adv. Nonlinear Stud. 14, 565–591 (2014)

http://creativecommons.org/licenses/by/4.0/


ZAMP Anisotropic Robin problems with logistic reaction Page 21 of 21    94 

[25] Papageorgiou, N.S., Zhang, C.: Noncoercive resonant (p, 2)-equations with concave terms. Adv. Nonlinear Anal. 9(1),
228–249 (2020)
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Faculty of Applied Mathematics
AGH University of Science and Technology
al. Mickiewicza 30
30-059 Kraków
Poland
e-mail: radulescu@inf.ucv.ro
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