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Abstract. This article is concerned with the qualitative analysis of weak solutions to nonlinear stationary Schrödinger-type
equations of the form

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂xiai(x, ∂xiu) + b(x)|u|P+
+ −2u = λf(x, u) in Ω,

u = 0 on ∂Ω,

without the Ambrosetti–Rabinowitz growth condition. Our arguments rely on the existence of a Cerami sequence by using
a variant of the mountain-pass theorem due to Schechter.
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1. Introduction

In quantum mechanics, the Schrödinger equation is a partial differential equation that describes how the
quantum state of a quantum system changes with time. It was formulated in late 1925, and published in
1926, by the Austrian physicist Schrödinger [31]. In classical mechanics, Newton’s second law (F = ma) is
used to make a mathematical prediction as to what path a given system will take following a set of known
initial conditions. In quantum mechanics, the analogue of Newton’s law is Schrödinger’s equation for a
quantum system (usually atoms, molecules, and subatomic particles whether free, bound, or localized).
It is not a simple algebraic equation, but in general a linear partial differential equation, describing the
time-evolution of the system’s wave function (also called a “state function”). The nonlinear Schrödinger
equation also describes various phenomena arising in the theory of Heisenberg ferromagnets and magnons,
self-channeling of a high-power ultra-short laser in matter, condensed matter theory, dissipative quantum
mechanics, electromagnetic fields, plasma physics (e.g., the Kurihara superfluid film equation). We also
refer to the pioneering paper by Gamow [13] who was particularly interested in the tunneling effect, which
lead to the construction of the electronic microscope and the correct study of the alpha radioactivity.
The notion of “solution” used by him was not explicitly mentioned in the paper, but it is coherent with
the notion of weak solution introduced several years later by other authors such as Leray, Sobolev and
Schwartz. We refer to Ablowitz et al. [1], Cazenave [9], Sulem [32] for a modern overview and relevant
applications. Recent contributions to the analysis of nonlinear Schrödinger equations may be found in
[14,16,22].

Our main purpose is to consider the nonlinear Schrödinger equation in a new setting corresponding
to anisotropic spaces of Sobolev-type. More precisely, the standard linear Laplace operator Δ is replaced
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with the non-homogeneous differential operator
∑N

i=1 ∂xi
ai(x, ∂xi

u). This is an anisotropic operator with
a complicated structure, in which different space directions have different roles.

2. Abstract setting

In the present paper, we are interested in the study of the anisotropic nonlinear problem
⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂xi
ai(x, ∂xi

u) + b(x)|u|P+
+ −2u = λf(x, u) in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω ⊂ R
N (N ≥ 3) is a bounded domain with smooth boundary. We assume that λ is a positive

parameter, b ∈ L∞(Ω), f : Ω ×R → R, the functions ai(x, t) : Ω ×R → R are of the type |t|pi(x)−2t with
pi(x) ∈ C(Ω), pi(x) > 1 and min pi(x) > 1 for all i = 1, . . . , N . Let P+

+ = maxi∈{1,...,N} supx∈Ω pi(x)
and assume that P+

+ ≥ 2 (see also the basic assumption (3.2)). We denote by ai(x, η) the continuous
derivative with respect to η of the mapping Ai : Ω ×R → R, Ai = Ai(x, η), that is, ai(x, η) = ∂

∂η Ai(x, η)
for all i ∈ {1, . . . , N}.

The study of this kind of nonlinear problems described by non-homogeneous differential operators has
been an interesting topic in relationship with several relevant applications, such as electro-rheological
fluids (see Ružička [29]). The first major discovery in electro-rheological fluids was due to Willis Winslow
in 1949. These fluids have the interesting property that their viscosity depends on the electric field in the
fluid. Winslow noticed that in such fluids (for instance, lithium polymethacrylate) viscosity in an electrical
field is inversely proportional to the strength of the field. The field induces string-like formations in the
fluid, which are parallel to the field. They can raise the viscosity by as much as five orders of magnitude.
This phenomenon is known as the Winslow effect. We refer to the monograph [27] for more details.

Throughout this paper, we assume that the following hypotheses are fulfilled for all i = 1, . . . , N :

(A0) Ai(x, 0) = 0 for a.e. x ∈ Ω.
(A1) The mapping ai is continuous and satisfies the growth condition

|ai(x, η)| ≤ 1 + |η|pi(x)−1,

for all x ∈ Ω and η ∈ R.
(A2) The inequalities

|η|pi(x) ≤ ai(x, η)η ≤ pi(x)Ai(x, η)

hold for all x ∈ Ω and η ∈ R.
(A3) There exists ki > 0 such that

Ai

(

x,
η + ξ

2

)

≤ 1
2
Ai(x, η) +

1
2
Ai(x, ξ) − ki|η − ξ|pi(x),

for all x ∈ Ω and η, ξ ∈ R, with equality if and only if η = ξ.
(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.
(f1) f : Ω × R → R is a Carathéodory function and

lim
t→0

f(x, t)

|t|P+
+ −1

= 0

uniformly in x ∈ Ω.
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(f2) f satisfies the subcritical growth condition

|f(x, t)| ≤ a + b|t|q(x)−1 ∀(x, t) ∈ Ω × R,

where a and b are positive constants and q(x) is a continuous function such that P+
+ < q− ≤ q+ <

P ∗
−, (P ∗

− is defined in (3.3) while q− and q+ are defined as in (2.2)).

(f3) lim|t|→+∞
F (x, t)

|t|P+
+

= +∞, uniformly in x ∈ Ω, where F (x, t) :=
t∫

0

f(x, s) ds.

(f4) There exists a constant C∗ > 0 such that

G(x, t) ≤ G(x, s) + C∗,

for each x ∈ Ω, 0 < t < s or s < t < 0, where G(x, t) := tf(x, t) − F (x, t).
The differential operator in problem (2.1) is the anisotropic −→p (x)–Laplace type operator (where−→p (x) = (p1(x), . . . , pN (x)) because, if we take

ai(x, η) = |η|pi(x)−2η,

for all i ∈ {1, . . . , N}, then Ai(x, η) = 1
pi(x) |η|pi(x) for all i ∈ {1, . . . , N}, that is,

Δ−→p (x)(u) =
N∑

i=1

∂xi

(
|∂xi

u|pi(x)−2∂xi
u
)
.

Obviously, there are many other operators deriving from
∑N

i=1 ∂xi
ai(x, ∂xi

u). Indeed, if

ai(x, η) = (1 + |η|2) pi(x)−2
2 η, for all i ∈ {1, . . . , N},

then we have Ai(x, η) = 1
pi(x) [(1 + |η|2) pi(x)

2 − 1] for all i ∈ {1, . . . , N} and we obtain the anisotropic
variable mean curvature operator

N∑

i=1

∂xi

[
(1 + |∂xi

u|2) pi(x)−2
2 ∂xi

u
]
.

Anisotropic type problems have received specific attention in recent decades. We refer to [3–8] and
[12,17,21,24,26,28]. In a recent paper [10], the authors have studied the following anisotropic quasilinear
elliptic problem

⎧
⎪⎨

⎪⎩

−
N∑

i=1

∂xi

(
|∂xi

u|pi(x)−2∂xi
u
)

= f(x, u) in Ω,

u = 0 on ∂Ω,

with non-standard growth conditions. By using variational methods, they obtained existence and multi-
plicity results. Our results in the present paper extend to a general abstract setting the existence property
obtained in [10].

Now, we recall some definitions and basic properties of the variable exponent Lebesgue and Sobolev
spaces Lp(x)(Ω) and W 1,p(x)(Ω), where Ω is a bounded domain in R

N . We will also introduce an adequate
functional space where problems of type (2.1) can be studied. Such a space will be called an anisotropic
variable exponent Sobolev space, and it can be characterized as a functional space of Sobolev’s type in
which different space directions have different roles.

For any Ω ⊂ R
N , we set

C+(Ω) = {h(x) ∈ C(Ω) : 1 < min
x∈Ω

h(x) < max
x∈Ω

h(x) < ∞},

and we define h+ = sup{h(x) : x ∈ Ω}, h− = inf{h(x) : x ∈ Ω}. (2.2)
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For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{

u : u is a measurable real-valued function and
∫

Ω

|u(x)|p(x) dx < ∞
}

,

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{

μ > 0 :
∫

Ω

∣
∣
∣
∣
u(x)
μ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

As established by Kováčik and Rákosńık [19], (Lp(x)(Ω), | · |p(x)) is a Banach space.

Proposition 2.1. (see Edmunds and Rákosńık [11]) For all p(x) ∈ C+(Ω), we have the following properties:
(i) The space (Lp(x)(Ω), | · |p(x)) is a separable, uniformly convex Banach space and its dual space is
Lq(x)(Ω), where 1

p(x) + 1
q(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have

∣
∣
∣

∫

Ω

uv dx
∣
∣
∣ ≤

(
1

p− +
1
q−

)

|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

(ii) If p1(x), p2(x) ∈ C+(Ω), p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) ↪→ Lp1(x)(Ω) and the embedding is
continuous.

Proposition 2.2. (see Rădulescu and Repovš [27]) For all u ∈ Lp(x)(Ω), (un) ⊂ Lp(x)(Ω), we have

(1) |u|p(x) < 1 (respectively = 1; > 1) ⇐⇒
∫

Ω

|u|p(x) dx < 1 (respectively = 1; > 1);

(2) for u �= 0, |u|p(x) = λ ⇐⇒
∫

Ω

∣
∣
∣
u

λ

∣
∣
∣
p(x)

dx = 1;

(3) if |u|p(x) > 1, then |u|p−

p(x) ≤
∫

Ω

|u|p(x) dx ≤ |u|p+

p(x);

(4) if |u|p(x) < 1, then |u|p+

p(x) ≤
∫

Ω

|u|p(x) dx ≤ |u|p−

p(x);

(5) |un|p(x) → 0 (respectively → ∞) ⇐⇒
∫

Ω

|un|p(x) dx → 0 (respectively → ∞).

The Sobolev space with variable exponent W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∂xi
u ∈ Lp(x)(Ω), i ∈ {1, . . . , N}}.

Then, W 1,p(x)(Ω) is a Banach space equipped with the norm

‖u‖p(x) = |u(x)|p(x) + |∇u(x)|p(x).

As shown by Zhikov [33], smooth functions are in general not dense in W 1,p(x)(Ω). This property is
related to the Lavrentiev phenomenon, which asserts that there are variational problems for which the
infimum over the smooth functions is strictly greater than the infimum over all functions that satisfy the
same boundary conditions. An equivalent formulation asserts that a Lagrangian L exhibits the Lavrentiev
phenomenon if the infimum taken over the set of absolutely continuous trajectories AC[0, 1] is strictly
lower than the infimum taken over the set of Lipschitzian trajectories Lip[0, 1], with fixed boundary
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conditions. We refer to [27, pp. 12–13] for more details. Zhikov [33] also established that if the exponent
variable p in C+(Ω) is logarithmic Hölder continuous, that is, there exists M > 0 such that

|p(x) − p(y)| ≤ −M

log(|x − y|) for all x, y ∈ Ω such that |x − y| ≤ 1
2
,

then smooth functions are dense in W 1,p(x)(Ω). The Sobolev space with zero boundary values W
1,p(x)
0 (Ω)

is defined as the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖p(x). Of course, also the norms ‖u‖p(x) =

|∇u|p(x) and ‖u‖p(x) =
∑N

i=1 |∂xi
u|p(x) are equivalent norms in W

1,p(x)
0 (Ω). Note that when s ∈ C+(Ω)

and s(x) < p∗(x) for all x ∈ Ω, where p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = ∞ if p(x) ≥ N , then the

embedding W
1,p(x)
0 (Ω) ↪→ Ls(x)(Ω) is compact. Details, extensions and further references can be found

in [15,19].
Finally, we introduce a natural generalization of the function space W

1,p(x)
0 (Ω), which will enable us to

study with sufficient accuracy problem (2.1). For this purpose, let us denote by −→p : Ω → R
N the vectorial

function −→p (x) = (p1(x), p2(x), . . . , pN (x)) with pi ∈ C+(Ω), i ∈ {1, . . . , N}. We define W
1,−→p (x)
0 (Ω), the

anisotropic variable exponent Sobolev space, as the closure of C∞
0 (Ω), with respect to the norm

‖u‖ =
N∑

i=1

|∂xi
u|pi(x). (2.3)

As it was pointed out in [25], W
1,−→p (x)
0 (Ω) is a reflexive Banach space.

The above definition shows that the anisotropic variable exponent Sobolev space W
1,−→p (x)
0 (Ω) is a

function space of Sobolev’s type in which different space directions have different roles.
As pointed out in [27], the function spaces with variable exponent have some striking properties, such

as:
(i) If 1 < p− ≤ p+ < ∞ and p : Ω → [1,∞) is smooth, then the formula

∫

Ω

|u(x)|pdx = p

∞∫

0

tp−1 |{x ∈ Ω; |u(x)| > t}|dt

has no variable exponent analogue.
(ii) Variable exponent Lebesgue spaces do not have the mean continuity property. More precisely, if

p is continuous and nonconstant in an open ball B, then there exists a function u ∈ Lp(x)(B) such that
u(x + h) �∈ Lp(x)(B) for all h ∈ R

N with arbitrary small norm.
(iii) The function spaces with variable exponent are never translation invariant. The use of convolution

is also limited, for instance the Young inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

holds if and only if p is constant.
We refer to the books [2,24,27] for related results and complements.

3. Notations and auxiliary results

A central role in our analysis will be played by the vectors
−→
P +,

−→
P − ∈ R

N and by the positive numbers
P+

+ , P+
− , P−

+ , P−
− defined as follows (see (2.2) for notations):

−→
P + = (p+

1 , p+
2 , . . . , p+

N ),
−→
P − = (p−

1 , p−
2 , . . . , p−

N ),
P+

+ = max{p+
1 , p+

2 , . . . , p+
N}, P+

− = max{p−
1 , p−

2 , . . . , p−
N},

P−
+ = min{p+

1 , p+
2 , . . . , p+

N}, P−
− = min{p−

1 , p−
2 , . . . , p−

N}.

(3.1)
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Throughout this paper, we assume that
N∑

i=1

1
p−

i

> 1. (3.2)

By [27, Theorem 1, p. 13], this condition ensures that the anisotropic space W
1,−→p (x)
0 (Ω) is embedded into

some Lebesgue space Lr(Ω). If hypothesis (3.2) is no longer fulfilled, then one has embeddings into Orlicz
or Hölder spaces.

Define P ∗
− ∈ R

+ and P−,∞ ∈ R
+ by

P ∗
− =

N
∑N

i=1
1

p−
i

− 1
, P−,∞ = max{P+

− , P ∗
−}. (3.3)

It should be noticed that if p−
i = p then P ∗

− gives the usual Sobolev conjugate p∗.

Now we recall a theorem concerning the embedding of the anisotropic Sobolev space W
1,−→p (x)
0 (Ω) into

the Lebesgue space with variable exponent Lq(x)(Ω).

Proposition 3.1. (see [20]) Let Ω ⊂ R
N (N ≥ 3) be a bounded domain with smooth boundary. Assume

that relation (3.2) is satisfied and that q ∈ C(Ω) verifies

1 < q(x) < P−,∞, for all x ∈ Ω.

Then, the embedding

W
1,−→p (x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact.

It should be noticed that, due to the condition P+
+ < P ∗

− imposed by (f2), we have

P−,∞ = max{P+
− , P ∗

−} = P ∗
−. (3.4)

We give some definitions and results stated in a general Banach space X. Of course, in our setting,
X = W

1,−→p (x)
0 (Ω).

Definition 3.2. Let (X, ‖ · ‖X) be a real Banach space with its dual space (X∗, ‖ · ‖X∗) and I ∈ C1(X,R).
For c ∈ R, we say that I satisfies the Cerami condition at level c if for any sequence (un) ⊂ X with

I(un) → c, ‖I ′(un)‖X∗(1 + ‖un‖X) → 0 as n → ∞, (3.5)

there is a subsequence (un) such that (un) converges strongly in X. Any sequence (un) ⊂ X for which
(3.5) holds true is called a Cerami sequence at level c.

The following version of the mountain-pass theorem, which can be found in [30], gives us the existence
of a Cerami sequence at the mountain-pass level.

Lemma 3.3. Let X be a real Banach space, I ∈ C1(X,R) satisfies the Cerami condition at level c for any
c ∈ R, I(0) = 0 and

(i) there are constants ρ, α > 0 such that I|∂Bρ
≥ α;

(ii) there exists e ∈ X \ Bρ such that I(e) ≤ 0.
Then,

c0 = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) ≥ α (3.6)

is a critical value of I where

Γ =
{
γ ∈ C0([0, 1],X) : γ(0) = 0, γ(1) = e

}
.
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We refer to the survey paper by Pucci and Rădulescu [23] for various applications of the mountain-pass
theorem.

In the present paper, we choose X = W
1,−→p (x)
0 (Ω). In order to associate a variational framework with

problem (2.1) and to associate an energy functional, we introduce Λi : X → R, i ∈ {1, . . . , N}, defined
on W

1,−→p (x)
0 (Ω) by setting

Λi(u) =
∫

Ω

Ai(x, ∂xi
u) dx.

for all u ∈ X.

Proposition 3.4. (see [18]) For i ∈ {1, . . . , N},
(i) Λi is well defined on X,

(ii) Λi ∈ C1(X,R) and

〈Λ′
i(u), ϕ〉 =

∫

Ω

ai(x, ∂xi
u)∂xi

ϕ dx,

for all u, ϕ ∈ X. In addition, Λ′
i is a continuous, bounded and strictly monotone operator.

(iii) Λi is weakly lower semi-continuous.

Denote by Λ : X → R the functional

Λ(u) =
N∑

i=1

Λi(u) =
∫

Ω

N∑

i=1

Ai(x, ∂xi
u) dx.

Note that, by (A2) and since pi(x) ≤ P+
+ , we have

Λ(u) ≥ 1
P+

+

N∑

i=1

∫

Ω

|∂xi
u|pi(x)dx. (3.7)

We recall the following result concerning the functional Λ and which establishes that Λ fulfills the
Kadec-Klee property.

Lemma 3.5. (see [21]) Assume that hypotheses (A1) and (A3) hold. Let (un) be a sequence that weakly
converges to u in X and

lim sup
n→∞

〈Λ′(un), un〉 = lim sup
n→∞

∫

Ω

N∑

i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u) dx ≤ 0.

Then, (un) strongly converges to u in X.

In the sequel, we use ci, to denote a generic nonnegative or positive constant (the exact value may
change from line to line).

4. Main result

This section is devoted to the statement and to the proof of our main results. Given λ > 0, let us define
the energy functional Iλ : X → R by

Iλ(u) =
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
u) +

b(x)
P+

+

|u|P+
+ − λF (x, u)

}
dx.
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We recall that F (x, t) =
t∫

0

f(x, s)ds and A(x, η) =
η∫

0

ai(x, z)dz.

By hypotheses (A0), (A1), (f1) and (f2), the functional Iλ associated with problem (2.1) is well defined
and of C1 class on X. Moreover, by Proposition 3.4 (ii) we have

〈I ′
λ(u), ϕ〉 =

∫

Ω

{ N∑

i=1

ai(x, ∂xi
u)∂xi

ϕ + b(x)|u|P+
+ −2uϕ − λf(x, u)ϕ

}
dx,

for all u, ϕ ∈ X. Thus, weak solutions of problem (2.1) are exactly the critical points of the functional
Iλ, so by means of Lemma 3.3, we intend to establish the existence of critical points in order to deduce
the existence of weak solutions.

Our main result is the following existence property.

Theorem 4.1. Assume that hypotheses (A0)–(A3), (f1)–(f4) and (B) are fulfilled. Then, problem (2.1)
has a weak solution.

For the proof of Theorem 4.1, we show that the energy functional Iλ satisfies hypotheses of Lemma 3.3.
To this end, we proceed with the following auxiliary result, which establishes that Iλ satisfies the geo-
metrical configuration required by Lemma 3.3.

Lemma 4.2. If the conditions (A0), (A2), (B) and (f1)–(f3) hold, then

(a) there exist ρ, α > 0 such that Iλ(u) ≥ α > 0 for any u ∈ X with ‖u‖ = ρ.
(b) there exists e ∈ X with ‖e‖ > ρ such that Iλ(e) < 0.

Proof. (a) By hypothesis (B), we get

1
P+

+

∫

Ω

b(x)|u|P+
+ dx ≥ b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

≥ 0 (4.1)

for all u ∈ X. Since P+
+ < q− ≤ q+ < P ∗

−, it follows that the embeddings X ↪→ LP+
+ (Ω) and X ↪→ Lq(x)(Ω)

are continuous. Thus, there exist positive constants c1 and c2 such that

‖u‖
L

P
+
+ (Ω)

≤ c1‖u‖, ‖u‖Lq(x)(Ω) ≤ c2‖u‖. (4.2)

In view of (f1) and (f2), we see that for any ε > 0, there exists c3 > 0 such that

|F (x, t)| ≤ ε|t|P+
+ + c3|t|q(x) (4.3)

for any (x, t) ∈ Ω × R. Fix ε > 0 small enough to get

1

P+
+ NP+

+ −1
− λεc1 > 0.

Next, we focus our attention on the case when u ∈ X and ‖u‖ < 1. Then, by taking into account
(2.3), we have |∂xi

u|pi(x) < 1, i ∈ {1, . . . , N} and by Proposition 2.2, we obtain

N∑

i=1

∫

Ω

|∂xi
u|pi(x)dx ≥

N∑

i=1

|∂xi
u|p

+
i

pi(x) ≥
N∑

i=1

|∂xi
u|P

+
+

pi(x)

≥ N
(∑N

i=1 |∂xi
u|pi(x)

N

)P+
+

=
‖u‖P+

+

NP+
+ −1

.

(4.4)
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Considering (4.1)–(4.4), thanks to (A2) we can write

Iλ(u) =
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
u) +

b(x)
P+

+

|u|P+
+ − λF (x, u)

}
dx

≥ 1
P+

+

N∑

i=1

∫

Ω

|∂xi
u|pi(x)dx +

b0

P+
+

|u|P
+
+

L
P

+
+ (Ω)

− λ

∫

Ω

F (x, u) dx

≥ 1

P+
+ NP+

+ −1
‖u‖P+

+ − λε

∫

Ω

|u|P+
+ dx − λc3

∫

Ω

|u|q(x) dx

≥ 1

P+
+ NP+

+ −1
‖u‖P+

+ − λεc
P+

+
1 ‖u‖P+

+ − λc3c
q−
2 ‖u‖q−

≥
(

1

P+
+ NP+

+ −1
− λεc1

)

‖u‖P+
+ − λc4‖u‖q−

.

Since q− > P+
+ , we can choose α > 0 and ρ > 0 small enough such that Iλ(u) ≥ α > 0 for all u ∈ X with

‖u‖ = ρ. This proves (a).
(b) By (f3), for all M > 0 there exists c5 = c(M) depending on M , such that

|F (x, t)| ≥ M |t|P+
+ − c5 (4.5)

for any x ∈ Ω and t ∈ R. From (A0) and (A1), we have

Ai(x, η) =

1∫

0

ai(x, tη) η dt ≤ |η| +
1

pi(x)
|η|pi(x), (4.6)

for all x ∈ Ω and η ∈ R.
Take ϕ ∈ X with ϕ > 0 on Ω. Using (4.5) and (4.6) for t > 1, we have

Iλ(tϕ) =
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
tϕ) +

b(x)
P+

+

|tϕ|P+
+ − λF (x, tϕ)

}
dx

≤
N∑

i=1

∫

Ω

(

|∂xi
tϕ| +

|∂xi
tϕ|pi(x)

pi(x)

)

dx +
1

P+
+

∫

Ω

b(x)|tϕ|P+
+ dx − λM

∫

Ω

|tϕ|P+
+ dx

+ c5|Ω|

≤ tP
+
+

⎡

⎣
N∑

i=1

∫

Ω

(

|∂xi
ϕ| +

|∂xi
ϕ|pi(x)

P−
−

)

dx +
1

P+
+

∫

Ω

b(x)|ϕ|P+
+ dx − λM

∫

Ω

|ϕ|P+
+ dx

⎤

⎦

+ c5|Ω|.
If M is chosen large enough to have

N∑

i=1

∫

Ω

(

|∂xi
ϕ| +

|∂xi
ϕ|pi(x)

P−
−

)

dx +
1

P+
+

∫

Ω

b(x)|ϕ|P+
+ dx − λM

∫

Ω

|ϕ|P+
+ dx < 0,

then

lim
t→+∞ Iλ(tϕ) = −∞.

Take e = t0ϕ with t0 large enough that Iλ(t0ϕ) < 0. This proves (b). �

Lemma 4.3. Let (un) be a Cerami sequence for the functional Iλ. If (A0)–(A2) and (f1)–(f3) hold, then
(un) is bounded.
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Proof. Fix c > 0 and assume that (un) ⊂ X is a Cerami sequence at level c for Iλ(u) (see Definition 3.2).
Then, (3.5) shows that

c = Iλ(un) + o(1), 〈I ′
λ(un), un〉 = o(‖un‖) (4.7)

where o(1) → 0 as n → ∞.
Suppose by the contrary, that

‖un‖ → +∞ as n → +∞. (4.8)

Let wn(x) =
un(x)
‖un‖ , then (wn) ⊂ X with ‖wn‖ = 1. Therefore, up to a subsequence, we have wn ⇀ w

weakly in X. Since Ω is bounded, using the Sobolev embedding theorem (Proposition 3.1), see also
assumption on q(x) given in (f2) and equality (3.4), we get

⎧
⎨

⎩

wn(x) → w(x) a.e. in Ω,
wn → w strongly in Lq(x)(Ω),
wn → w strongly in LP+

+ (Ω).
(4.9)

We claim that w(x) = 0 a.e. in Ω. For this goal, set Ω�= = {x ∈ Ω : w(x) �= 0} and show that
|Ω�=| = 0. Considering (4.9), we have |un(x)| = |wn(x)|‖un‖ → +∞, as n → +∞ for all x ∈ Ω�=. Taking
into account (f3), we see that

lim
n→+∞

F (x, un(x))

|un(x)|P+
+

= +∞ a.e. in Ω�=.

In particular, since wn → w �= 0 a.e. in Ω�=, we deduce

lim
n→+∞

F (x, un(x))

|un(x)|P+
+

|wn(x)|P+
+ = +∞ a.e. in Ω�=. (4.10)

Now, we prove that F (x, t) is bounded from below ∀(x, t) ∈ Ω×R. Indeed, by (f3), there exists n0 > 0
such that

F (x, t)

|t|P+
+

> 1 for all x ∈ Ω and t ∈ R with |t| ≥ n0.

On the other hand, F (x, t) is continuous on Ω × [−n0, n0], then there exists c6 > 0 such that

|F (x, t)| ≤ c6

for any (x, t) ∈ Ω × [−n0, n0]. Thus, we see that there exists a constant c7 (not necessarily positive) such
that

F (x, t) ≥ c7 for all (x, t) ∈ Ω × R.

Therefore, by (4.8) for n large enough

F (x, un(x)) − c7

‖un‖P+
+

≥ 0 ∀x ∈ Ω.

This means that
F (x, un(x))

|un(x)|P+
+

|wn(x)|P+
+ − c7

‖un‖P+
+

≥ 0. (4.11)

For each i ∈ {1, 2, . . . , N} and n, we define

αi,n =

{
P+

+ if |∂xi
un|pi(x) < 1,

P−
− if |∂xi

un|pi(x) > 1.
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Using Proposition 2.2 and Jensen’s inequality (applied to the convex function h : R+ → R
+, h(t) =

|t|P −
− , P−

− > 1) or the generalized mean inequality, for n large enough we have

N∑

i=1

∫

Ω

|∂xi
un|pi(x)dx ≥

N∑

i=1

|∂xi
un|αi,n

pi(x)

=
N∑

i=1

|∂xi
un|P

−
−

pi(x) −
∑

{i: αi,n=P+
+ }

(
|∂xi

un|P
−
−

pi(x) − |∂xi
un|P

+
+

pi(x)

)

≥ N

(∑N
i=1 |∂xi

un|pi(x)

N

)P −
−

− N

=
‖un‖P −

−

NP −
− −1

− N.

(4.12)

We point out that in the second inequality we used the fact that if αi,n = P+
+ , then |∂xi

un| ≤ 1 and so

0 ≤ |∂xi
un|P −

− − |∂xi
un|P+

+ ≤ 1.

Using (4.1), (4.7), (4.12), (A2) and (B) for sufficiently large n,

c = Iλ(un) + o(1)

=
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
un) +

b(x)
P+

+

|un|P+
+ − λF (x, un)

}
dx + o(1)

≥ 1
P+

+

N∑

i=1

∫

Ω

|∂xi
un|pi(x) dx +

b0

P+
+

|un|P
+
+

L
P

+
+ (Ω)

dx − λ

∫

Ω

F (x, un) dx + o(1)

≥ 1

P+
+ NP −

− −1
‖un‖P −

− − N

P+
+

− λ

∫

Ω

F (x, un) dx + o(1).

So

λ

∫

Ω

F (x, un) dx ≥ 1

P+
+ NP −

− −1
‖un‖P −

− − c − N

P+
+

+ o(1) → +∞,

thus
∫

Ω

F (x, un) dx → +∞. (4.13)

Similarly, for each i ∈ {1, 2, . . . , N} and n ∈ N we define

βi,n =

{
P−

− if |∂xi
un|pi(x) < 1,

P+
+ if |∂xi

un|pi(x) > 1.
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Using Proposition 2.2, for n large enough we have

N∑

i=1

∫

Ω

|∂xi
un|pi(x) dx ≤

N∑

i=1

|∂xi
un|βi,n

pi(x)

=
N∑

i=1

|∂xi
un|P

+
+

pi(x) −
∑

{i: βi,n=P −
− }

(
|∂xi

un|P
+
+

pi(x) − |∂xi
un|P

−
−

pi(x)

)

≤
(

N∑

i=1

|∂xi
un|pi(x)

)P+
+

+ N

= ‖un‖P+
+ + N.

(4.14)

Also, from (4.6), (4.7) and (4.14), b ∈ L∞ and since ∂xi
un ∈ Lpi(x) ↪→ L1 we deduce that

∫

Ω

|∂xi
un|dx ≤

∫

Ω

|∂xi
un|pi(x) dx and therefore, by (4.14) we have

N∑

i=1

∫

Ω

|∂xi
un| ≤ (‖un‖P+

+ + N).

We deduce that

c = Iλ(un) + o(1)

=
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
un) +

b(x)
P+

+

|un|P+
+ − λF (x, un)

}
dx + o(1)

≤
N∑

i=1

∫

Ω

(
|∂xi

un| +
|∂xi

un|pi(x)

pi(x)

)
dx +

1
P+

+

∫

Ω

b(x)|un|P+
+ dx − λ

∫

Ω

F (x, un) dx + o(1)

≤
(
c8 +

1
P−

−

) (
‖un‖P+

+ + N
)

+
c9

P+
+

‖un‖P+
+ − λ

∫

Ω

F (x, un) dx + o(1)

≤ c10‖un‖P+
+ + c11N − λ

∫

Ω

F (x, un) dx + o(1),

or

‖un‖P+
+ ≥ λ

c10

∫

Ω

F (x, un) dx +
c

c10
− c11N

c10
− o(1) (4.15)

for n large enough.
If |Ω�=| �= 0, using relations (4.10), (4.11), (4.15) and Fatou’s lemma, by (4.8) we have

+ ∞ = (+∞) |Ω�=| =
∫

Ω �=

lim inf
n→+∞

(
F (x, un)

|un|P+
+

|wn|P+
+ − c7

‖un‖P+
+

)

dx

≤ lim inf
n→+∞

∫

Ω �=

(
F (x, un)

|un|P+
+

|wn|P+
+ − c7

‖un‖P+
+

)

dx

≤ lim inf
n→+∞

∫

Ω

(
F (x, un)

|un|P+
+

|wn|P+
+ − c7

‖un‖P+
+

)

dx
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= lim inf
n→+∞

∫

Ω

F (x, un)

‖un‖P+
+

dx − lim sup
n→+∞

∫

Ω

c7

‖un‖P+
+

dx

= lim inf
n→+∞

∫

Ω

F (x, un)

‖un‖P+
+

dx − lim sup
n→+∞

c7|Ω|
‖un‖P+

+

= lim inf
n→+∞

∫

Ω

F (x, un)

‖un‖P+
+

dx

≤ lim inf
n→+∞

∫

Ω

F (x, un) dx

λ
c10

∫

Ω

F (x, un) + c
c10

− c11N
c10

− o(1)
. (4.16)

Due to (4.13), the right-hand side of the above inequality goes to c10
λ , and hence we deduce that

c10

λ
≥ +∞, which is a contradiction. This shows that, as claimed, |Ω�=| = 0. Hence w(x) = 0 a.e. in Ω.

Since Iλ(tun) is continuous in t ∈ [0, 1], there exists tn ∈ [0, 1] such that

Iλ(tnun) = max
t∈[0,1]

Iλ(tun). (4.17)

Clearly, tn > 0 and we can write Iλ(tnun) ≥ c12 > 0 = Iλ(0), by Lemma 4.2 (a). When tn < 1, we have
d
dt

Iλ(tun)|t=tn
= 0, which gives 〈I ′

λ(tnun), tnun〉 = 0. If tn = 1, by (4.7) we get 〈I ′
λ(un), un〉 = o(1). So,

if tn makes (4.17) hold true, then
〈I ′

λ(tnun), tnun〉 = o(1). (4.18)
Let (rk) be a sequence of real positive numbers such that rk > 1 for any k and limn→+∞ rk = +∞.

Since ‖un‖ → +∞ as n → +∞, we can choose (rk) such that 0 < rk

‖un‖ < 1 for large n. For fixed k, using
(f2) we deduce that

F (x, rkwn) ≤ a|rkwn| +
b

q
|rkwn|q(x).

Next, by (4.9) (since we have proved that w ≡ 0) we obtain

lim
n→+∞

∫

Ω

F (x, rkwn) dx = 0. (4.19)

Therefore, considering (3.7) and (B), we have

Iλ(tnun) ≥ Iλ

( rk

‖un‖un

)

= Iλ(rkwn)

=
∫

Ω

{ N∑

i=1

Ai(x, ∂xi
rkwn) +

b(x)
P+

+

|rkwn|P+
+ − λF (x, rkwn)

}
dx

≥ 1
P+

+

N∑

i=1

∫

Ω

|∂xi
rkwn|pi(x) dx +

b0

P+
+

|rkwn|P
+
+

L
P

+
+ (Ω)

− λ

∫

Ω

F (x, rkwn) dx

≥ r
P −

−
k

P+
+ NP −

− −1
− N

P+
+

− λ

∫

Ω

F (x, rkwn) dx,

where the last inequality follows by replacing un with rkwn in (4.12) since ‖rkwn‖ = rk‖wn‖ = rk. So,
by (4.19), we get

lim
n→+∞ Iλ(tnun) = +∞. (4.20)
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Putting together (4.6) and (f4), for tn ∈ (0, 1] such that (H) holds, we get by (4.18)

Iλ(tnun) = Iλ(tnun) − 〈I ′
λ(tnun), tnun〉 + o(1)

=
∫

Ω

{
N∑

i=1

Ai(x, ∂xi
tnun) +

b(x)
P+

+

|tnun|P+
+ − λF (x, tnun)

}

dx

−
∫

Ω

[
N∑

i=1

ai(x, ∂xi
tnun)∂xi

(tnun) + b(x)|tnun|P+
+ − λf(x, tnun)tnun

]

dx + o(1)

≤
N∑

i=1

∫

Ω

(

|∂xi
tnun| +

|∂xi
tnun|pi(x)

pi(x)

)

dx +

(
1

P+
+

− 1

) ∫

Ω

b(x)|tnun|P+
+ dx

−
∫

Ω

N∑

i=1

ai(x, ∂xi
tnun)∂xi

(tnun) dx + λ

∫

Ω

G(x, tnun) dx + o(1)

≤
N∑

i=1

∫

Ω

(

|∂xi
un| +

|∂xi
un|pi(x)

pi(x)

)

dx +

(
1

P+
+

− 1

) ∫

Ω

b(x)|tnun|P+
+ dx

−
∫

Ω

N∑

i=1

ai(x, ∂xi
tnun)∂xi

(tnun) dx + λ

∫

Ω

(
G(x, un) + C∗

)
dx + o(1).

We deduce that
Iλ(tnun) ≤ Iλ(un) − 〈I ′

λ(un), un〉 + O(1) + o(1)
= O(1) as n → +∞, by (4.7). (4.21)

From (4.20) and (4.21), we get a contradiction. Therefore, we have proved that (un) is bounded. �
Proposition 4.4. If (A0)–(A2) and (f1)–(f3) hold true, then the functional Iλ satisfies the Cerami condi-
tion at any level c.

Proof. By taking into account Lemma 4.3 and the fact that X is reflexive, any Cerami sequence (un)
yields to the existence of u0 ∈ X such that, up to a subsequence, still denote by (un),

⎧
⎨

⎩

un ⇀ u0 weakly in X,
un → u0 strongly in Lq(x)(Ω),
un → u0 strongly in LP+

+ (Ω).
(4.22)

We deduce in what follows that the convergence is strong in X. To this aim, we check the assumptions
in Lemma 3.5. Let us first remark that, by (4.7) we have

lim
n→∞〈I ′

λ(un), un − u0〉 = 0.

More precisely,

lim
n→∞

∫

Ω

[ N∑

i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u0)

+ b(x)|un|P+
+ −2un(un − u0) − λf(x, un)(un − u0)

]
dx = 0. (4.23)

By using condition (f2), (4.22) and the Hölder-type inequality stated in Proposition 2.1, we can write
∣
∣
∣

∫

Ω

f(x, un)(un − u0) dx
∣
∣
∣ ≤

∫

Ω

|f(x, un)||un − u0|dx

≤ c12

(
a + b

∥
∥
∥|un|q(x)−1

∥
∥
∥

L
q(x)

q(x)−1 (Ω)

)
‖un − u0‖Lq(x)(Ω)

→ 0 as n → +∞,
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so we deduce
lim

n→+∞

∫

Ω

f(x, un)(un − u0) dx = 0. (4.24)

Next, using (B) and Hölder’s inequality we have
∣
∣
∣

∫

Ω

b(x)|un|P+
+ −2un(un − u0) dx

∣
∣
∣ ≤ ‖b‖L∞(Ω)

∥
∥
∥|un|P+

+ −2un

∥
∥
∥

L

P
+
+

P
+
+ −1

(Ω)

‖un − u0‖
L

P
+
+ (Ω)

,

and, so by (4.22) we get

lim
n→+∞

∫

Ω

b(x)|un|P+
+ −2un(un − u0) dx = 0. (4.25)

Combining relations (4.23)–(4.25), we obtain

lim
n→∞

∫

Ω

N∑

i=1

ai(x, ∂xi
un)(∂xi

un − ∂xi
u0)dx = 0,

and, so by Lemma 3.5, we deduce that (un) converges strongly to u0 in X. Thus, the functional Iλ satisfies
the Cerami condition at level c. �

4.1. Proof of Theorem 4.1

Lemma 4.2 and Proposition 4.4 guarantee that Lemma 3.3 applies to the functional Iλ. Therefore, the
real number c0 given in (3.6) is a critical level for Iλ to which corresponds at least a nontrivial weak
solution to problem (2.1).
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