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Abstract. We study the degenerate elliptic equation

−div(a(x)∇u) + b(x)u = K(x)|u|p−2u + g(x) in R
N ,

where N ≥ 2 and 2 < p < 2∗. We assume that a 6≡ 0 is a continuous,

bounded and nonnegative function, while b and K are positive and es-
sentially bounded in R

N . Under some assumptions on a, b and K, which
control the location of zeros of a and the behaviour of a, b and K at infinity
we prove that if the perturbation g is sufficiently small then the above prob-
lem has at least two distinct solutions in an appropriate weighted Sobolev
space. The proof relies essentially on the Ekeland Variational Principle [3]

and on the Mountain Pass Theorem without the Palais–Smale condition,
established in Brezis–Nirenberg [4], combined with a weighted variant of
the Brezis–Lieb Lemma [5], in order to overcome the lack of compactness.

1. Introduction

Perturbations of semilinear elliptic equations and of inequality value prob-

lems have been intensively studied in the last two decades. We start with the
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elementary example

(1)

{
−∆u = |u|p−2u in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N (N ≥ 2) and 2 < p < 2∗. Here 2∗

denotes the critical Sobolev exponent, that is, 2∗ = 2N/(N − 2), if N ≥ 3, and
2∗ = ∞, if N = 2. A classical result, based on a Z2 symmetric version of the

Mountain Pass Theorem (see Ambrosetti–Rabinowitz [1]), implies that problem

(1) has infinitely many solutions in H10 (Ω). A natural question is to see what

happens if the above problem is affected by a certain perturbation. Consider the

problem

(2)

{
−∆u = |u|p−2u+ g(x) in Ω,
u = 0 on ∂Ω.

Bahri–Berestycki [3] and Struwe [14] have showed independently that there exists

p0 < 2
∗ such that for any g ∈ L2(Ω), problem (2) still has infinitely many

solutions, provided 2 < p < p0. Moreover, Bahri [2] has shown that for any

2 < p < p0 there is a dense open set of g ∈ H−1(Ω) for which problem (2)
possesses infinitely many solutions.

Our aim is to study a perturbation problem, but from another point of vue.

More exactly, we will analyse the effect of a small perturbation g in the degen-

erate semilinear elliptic problem

(3) −div(a(x)∇u) + b(x)u = K(x)|u|p−2u+ g(x) in R
N ,

where N ≥ 2 and 2 < p < 2∗. Suppose that a ∈ C(RN ) and b, K ∈ L∞(RN )
satisfy the hypotheses:

(A1) There exists R0 > 0 such that

{x : a(x) = 0} ⊂ B(0, R0) and 1/a ∈ Lq(B(0, R0))

for some q > Np/(2N + 2p−Np),
(A2) lim|x|→∞ a(x) = a(∞) ∈ R+ and 0 ≤ a(x) ≤ a(∞) in R

N ,

(B) ess lim|x|→∞ b(x) = b(∞) ∈ R+ and there exists b1 > 0 such that b1 ≤
b(x) ≤ b(∞) a.e. in R

N ,

(K) ess lim|x|→∞K(x) = K(∞) ∈ R+ and K(x) ≥ K(∞) a.e. in R
N ,

(M) meas({x ∈ R
N : b(x) < b(∞)} ∪ {x ∈ R

N : K(x) > K(∞)}) > 0.
The degeneracy hypothesis (A1) is inspired by condition (A-1) introduced

in Murthy–Stampacchia [11]. In light of Proposition 1, assumption (A1) should

be seen as a “subcritically” condition. Our framework includes degeneracies a

that behave like a(x) ∼ |x|α near the origin, with 0 < α < 2N/(p + 2 − N).
For the treatment of supercritical degeneracies on bounded domains we refer to
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Passaseo [12], where several nonexistence results are proven. The full strength

of condition (A2) will appear in the proof of Proposition 2. This assumption is

taken over from Chabrowski [7] and it will be used in this paper only to check

that the hypotheses of [7, Theorem 1] are fulfilled in our situation.

Let H1a,b(R
N ) be the Sobolev space defined as the completion of C∞0 (R

N )

with respect to the norm

‖u‖2a,b =
∫

RN

(a(x)|∇u|2 + b(x)u2) dx.

We denote by ‖ · ‖−1 the norm of H−1a,b (RN ) which is the dual space of H1a,b(RN ),
i.e. H−1a,b (R

N ) = (H1a,b(R
N ))∗. Throughout this work we suppose that g ∈

H−1a,b (R
N ) \ {0}.

Definition 1. We say that u ∈ H1a,b(RN ) is a weak solution of (3) if
∫

RN

(a(x)∇u · ∇v + b(x)uv) dx−
∫

RN

K(x)|u|p−2uv dx−
∫

RN

g(x)v dx = 0,

for all v ∈ C∞0 (RN ).

We are concerned in this paper with the study of the degenerate semilinear

elliptic equation (3), in other words it is assumed that a vanishes in at least one

point in R
N . The main result asserts that if ‖g‖−1 is sufficiently small then prob-

lem (3) possesses at least two solutions. We overcome the lack of compactness

of our problem by applying a variant of the Mountain Pass Theorem without

the Palais–Smale condition (see Brezis–Nirenberg [6, Theorem 2.2], combined

with a generalization of the Brezis–Lieb lemma [5, Theorem 1]. We also point

out that the study of degenerate elliptic boundary value problems was initiated

in Mikhlin [9], [10] and many papers have been devoted in the past decades

to the study of several questions related to these problems. We refer only to

Murthy–Stampacchia [11], Stredulinsky [13], Passaseo [12] and the references

therein.

Taking into account our hypothesis (A2), the continuity of a implies that

meas{x ∈ R
N : a(x) < a(∞)} > 0. On the other hand, combining the hypotheses

(A1) and (A2) with the continuity of a we obtain that infRN\B(0,R0) a(x) > 0.

According to these comments we see that if a, K ∈ C(RN ) satisfy (A1), (A2)
and (K) then all the assumptions of Lemma 1 and Theorem 1 in [7] are fulfilled.

In virtue of these results, Chabrowski [7] established the existence of a weak

solution to problem (3) in the case g ≡ 0 and b ≡ λ > 0. We prove in this
paper that if we perturbe the problem studied in Chabrowski’s paper such that

the perturbation does not exceed some level, then equation (3) has at least two

distinct solutions. More precisely, if g is small then there is a local minimum near

the origin, while the second solution is obtained as a mountain pass. Assumptions
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(B), (K) and (M) will be used to deduce the existence of the mountain pass

solution, while the existence of a simple solution (the local minimum) will follow

without these stronger hypotheses. Results of this type have been originally

proven in Tarantello [15], but in a different framework. More precisely, Tarantello

considered the non-degenerate (a ≡ 1) problem (3) in a bounded domain, and
for p = 2∗ (N ≥ 3), b ≡ 0, K ≡ 1 it is showed that (3) has at least two distinct
solutions, provided that g 6≡ 0 is sufficiently “small” in a suitable sense.
Our main result is the following.

Theorem 1. Assume conditions (A1), (A2), (B), (K) and (M) are fulfilled.

Then there exists C > 0 such that problem (3) has at least two solutions, for any

g 6≡ 0 satisfying ‖g‖−1 < C.

2. Auxiliary results

Weak solutions of (3) correspond to the critical points of the energy functional

J(u) =
1

2

∫

RN

(a(x)|∇u|2 + b(x)u2) dx− 1
p

∫

RN

K(x)|u|p dx−
∫

RN

g(x)u dx,

where u ∈ H1a,b(RN ). It is easy to observe that the boundedness of a and b
implies that H1(RN ) is continuously embedded in H1a,b(R

N ). Our first result

shows that H1a,b(R
N ) is continuously embedded in Lp(RN ). Using this fact and

(K) we conclude that the functional J is well defined.

Proposition 1. There exists a positive constant Cp > 0 such that, for any

u ∈ H1a,b(RN ),

(∫

RN

|u|p dx
)1/p

≤ Cp
(∫

RN

(a(x)|∇u|2 + b(x)u2) dx
)1/2
.

Proof. We follow the method used in the proof of Proposition 2.1 in Pas-

saseo [12] (see also Chabrowski [7]). In view of our hypotheses (A1) and (A2),

we may assume, by taking R0 large enough, that

(4) {x : a(x) = 0} ⊂ B(0, R0 − 1) and inf
RN\B(0,R0−1)

a(x) > 0.

Choosing q appearing in (A1), we define r = 2q/(q + 1). We see that our hypoth-

esis q > Np/(2N + 2p−Np) implies p < Nr/(N − r), where 1 < r < 2 ≤ N .
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So, by the Sobolev embedding theorem, W 1,r0 (B(0, R0)) is continuously embed-

ded in Lp(B(0, R0)). Using this fact, (A1) and Hölder’s inequality we find

(5)

(∫

B(0,R0)

|u|p dx
)1/p

≤ C1
(∫

B(0,R0)

|∇u|r dx
)1/r

= C1

(∫

B(0,R0)

1

a(x)q/(q+1)
|∇u|ra(x)q/(q+1) dx

)1/r

≤ C1
(∫

B(0,R0)

1

a(x)q
dx

)1/2q(∫

B(0,R0)

a(x)|∇u|2 dx
)1/2

≤ C2
(∫

B(0,R0)

(a(x)|∇u|2 + b(x)u2) dx
)1/2
.

Let ΨR0−1 ∈ C1(RN ) be such that ΨR0−1 = 1 in R
N \ B(0, R0), ΨR0−1 =

0 on B(0, R0 − 1) and 0 ≤ ΨR0−1 ≤ 1 in R
N . The continuous embedding

H1(RN ) ⊂ Lp(RN ) and relation (4) imply
(∫

RN\B(0,R0)

|u|p dx
)1/p

=

(∫

RN\B(0,R0)

|uΨR0−1|p dx
)1/p

(6)

≤
(∫

RN

|uΨR0−1|p dx
)1/p

≤ C3
(∫

RN

(|∇(uΨR0−1)|2 + |uΨR0−1|2) dx
)1/2

≤ C4
(∫

RN

(|∇ΨR0−1|2u2 + |ΨR0−1|2|∇u|2 + |ΨR0−1|2u2) dx
)1/2

≤ C5
(∫

RN\B(0,R0−1)

(|∇u|2 + u2) dx
)1/2

≤ C6
(∫

RN\B(0,R0−1)

(a(x)|∇u|2 + b(x)u2) dx
)1/2
,

where Ci with i = 1, . . . , 6 are some positive constants. From (5), (6) and the

elementary inequality

(a+ b)1/p ≤ C(p)(a1/p + b1/p) for all a, b > 0

we obtain
(∫

RN

|u|p dx
)1/p

≤ C(p)
[(∫

B(0,R0)

|u|p dx
)1/p
+

(∫

RN\B(0,R0)

|u|p dx
)1/p]

≤ Cp
(∫

RN

(a(x)|∇u|2 + b(x)u2) dx
)1/2
,

for some positive constants C(p) and Cp depending only on p. This completes

our proof. �
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In this paper we denote by “⇀” the weak convergence and by “→” the strong
convergence, in an arbitrary Banach space X.

Remark 1. Let {un} be a sequence that converges weakly to some u0 in
H1a,b(R

N ). Since {un} is bounded in H1a,b(RN ) we see easily that {un} restricted
to R

N \ B(0, R0) is bounded in H1(RN \ B(0, R0)). It also follows from the
proof of Proposition 1 that the sequence {un} restricted to B(0, R0) is bounded
in W 1,r0 (B(0, R0)), p < Nr/(N − r). Therefore, we may assume (up to a subse-
quence) that

(7) un → u0 in Lploc(RN ) and un → u0 a.e. in R
N .

Remark 2. If we examine carefully the proof of Proposition 1 we see that it

holds in order to conclude that H1a,b(R
N ) is continuously embedded in Ls(RN ),

for every 2 ≤ s ≤ p. If {un} is a bounded sequence in H1a,b(RN ), then using the
fact that H1a,b(R

N ) is a reflexive space and Remark 1 we can assume (passing

eventually to subsequences) that

(8) un ⇀ u0 in H
1
a,b(R

N ), un → u0 in Lsloc(RN ), 2 ≤ s ≤ p
and un → u0 a.e. in R

N .

We define the functionals I : H1a,b(R
N )→ R and I∞ : H

1
a,b(R

N )→ R by

I(u) =
1

2

∫

RN

(a(x)|∇u|2 + b(x)u2) dx− 1
p

∫

RN

K(x)|u|p dx,

I∞(u) =
1

2

∫

RN

(a(x)|∇u|2 + b(∞)u2) dx− 1
p

∫

RN

K(∞)|u|p dx.

A simple calculation shows that J , I, I∞ ∈ C1(H1a,b(RN ),R) and their derivatives
are given by

〈J ′(u), v〉 =
∫

RN

(a(x)∇u · ∇v + b(x)uv) dx

−
∫

RN

K(x)|u|p−2uv dx−
∫

RN

g(x)v dx,

〈I ′(u), v〉 =
∫

RN

(a(x)∇u · ∇v + b(x)uv) dx−
∫

RN

K(x)|u|p−2uv dx,

〈I ′∞(u), v〉 =
∫

RN

(a(x)∇u · ∇v + b(∞)uv) dx−
∫

RN

K(∞)|u|p−2uv dx,

for all u, v ∈ H1a,b(RN ). We have denoted by 〈 · , · 〉 the duality pairing between
H1a,b(R

N ) and H−1a,b (R
N ).

Definition 2. If F is a C1 functional on some Banach space X and c is

a real number, we say that a sequence {un} in X is a (PS)c sequence of F if
F (un)→ c and F ′(un)→ 0 in X∗.
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We now prove that the weak limit (if exists) of any (PS)c sequence of J is a

solution of problem (3).

Lemma 1. Let {un} ⊂ H1a,b(RN ) be a (PS)c sequence of J for some c ∈ R.

Assume that {un} converges weakly to some u0 in H1a,b(RN ). Then J ′(u0) = 0
i.e. u0 is a weak solution of problem (3).

Proof. Consider an arbitrary function ζ ∈ C∞0 (RN ) and set Ω = supp ζ.
Obviously J ′(un)→ 0 in H−1a,b (RN ) implies 〈J ′(un), ζ〉 → 0 as n→∞, that is

(9) lim
n→∞

(∫

Ω

(a(x)∇un · ∇ζ + b(x)unζ) dx

−
∫

Ω

K(x)|un|p−2unζ dx−
∫

Ω

g(x)ζ dx

)
= 0.

Since un ⇀ u0 in H
1
a,b(R

N ) it follows that

(10) lim
n→∞

∫

Ω

(a(x)∇un · ∇ζ + b(x)unζ) dx =
∫

Ω

(a(x)∇u0 · ∇ζ + b(x)u0ζ) dx.

The boundedness of {un} in H1a,b(RN ) and Proposition 1 show that {|un|p−2un}
is a bounded sequence in Lp/(p−1)(RN ). Combining this with the convergence

|un|p−2un → |u0|p−2u0 a.e. in R
N (which is a consequence of (7)) we deduce that

|u0|p−2u0 is the weak limit of the sequence |un|p−2un in Lp/(p−1)(RN ). So

lim
n→∞

∫

Ω

K(x)|un|p−2unζ dx =
∫

Ω

K(x)|u0|p−2u0ζ dx.

From (9), (10) and (11) we deduce that
∫

Ω

(a(x)∇u0 · ∇ζ + b(x)u0ζ) dx−
∫

Ω

K(x)|u0|p−2u0ζ dx−
∫

Ω

g(x)ζ dx = 0.

By density, this equality holds for any ζ ∈ H1a,b(RN ) which means that J ′(u0) =
0. The proof of our lemma is complete. �

Brezis and Lieb established in [5, Theorem 1] a subtle refinement of Fatou’s

lemma. Our next result is a weighted variant of the Brezis–Lieb lemma.

Lemma 2. Let {un} be a sequence which is weakly convergent to u0 in
H1a,b(R

N ). Then

lim
n→∞

∫

RN

K(x)

(
|un|p − |un − u0|p

)
dx =

∫

RN

K(x)|u0|p dx.

Proof. From Proposition 1 and the boundedness of {un} in H1a,b(RN ) we
obtain that {un} is a bounded sequence in Lp(RN ). For a given ε > 0 we choose
Rε > 0 such that

(12)

∫

|x|>Rε

K(x)|u0|p dx < ε.
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We have

(13)

∣∣∣∣
∫

RN

K(x)(|un|p − |u0|p − |un − u0|p) dx
∣∣∣∣

=

∣∣∣∣
∫

|x|≤Rε

K(x)(|un|p − |u0|p) dx−
∫

|x|≤Rε

K(x)|un − u0|p dx

−
∫

|x|>Rε

K(x)|u0|p dx+
∫

|x|>Rε

K(x)(|un|p − |un − u0|p) dx
∣∣∣∣

≤
∣∣∣∣
∫

|x|≤Rε

K(x)(|un|p − |u0|p) dx
∣∣∣∣+
∫

|x|≤Rε

K(x)|un − u0|p dx

+

∫

|x|>Rε

K(x)|u0|p dx+
∫

|x|>Rε

pK(x)|θu0 + (un − u0)|p−1|u0| dx,

where 0 ≤ θ(x) ≤ 1. From (12) and Hölder’s inequality we find

(14)

∫

|x|>Rε

K(x)|θu0 + (un − u0)|p−1|u0| dx

≤ c
∫

|x|>Rε

K(x)(|u0|p + |un − u0|p−1|u0|) dx

≤ c
[ ∫

|x|>Rε

K(x)|u0|p dx

+

(∫

|x|>Rε

K(x)|un − u0|p dx
)(p−1)/p(∫

|x|>Rε

K(x)|u0|p dx
)1/p]

< c̃(ε+ ε1/p)

for some constants c, c̃ > 0 independent of n and ε. Now, by (7),

(15)

lim
n→∞

∫

|x|≤Rε

K(x)(|un|p − |u0|p) dx = 0,

lim
n→∞

∫

|x|≤Rε

K(x)|un − u0|p dx = 0.

From (12)–(15) it follows that

lim sup
n→∞

∣∣∣∣
∫

RN

K(x)(|un|p − |u0|p − |un − u0|p) dx
∣∣∣∣ ≤ (p c̃+ 1)(ε+ ε1/p).

Since ε > 0 is arbitrary we deduce that

lim
n→∞

(∫

RN

K(x)|un|p dx−
∫

RN

K(x)|u0|p dx−
∫

RN

K(x)|un − u0|p dx
)
= 0,

which concludes our proof. �
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Lemma 3. Let {vn} ⊂ H1a,b(RN ) be a sequence converging weakly to 0 in
H1a,b(R

N ). Then

lim
n→∞
[I(vn)− I∞(vn)] = 0,(16)

lim
n→∞
[〈I ′(vn), vn〉 − 〈I ′∞(vn), vn〉] = 0.(17)

Proof. A simple computation yields

I(vn) = I∞(vn)−
1

2

∫

RN

(b(∞)− b(x))v2n dx

− 1
p

∫

RN

(K(x)−K(∞))|vn|p dx.

〈I ′(vn), vn〉 = 〈I ′∞(vn), vn〉 −
∫

RN

(b(∞)− b(x))v2n dx

−
∫

RN

(K(x)−K(∞))|vn|p dx.

Let ε > 0 be a positive number. The assumption (K) implies that there exists

Rε > 0 such that

|K(x)−K(∞)| = K(x)−K(∞) < ε for a.e. x ∈ R
N with |x| > Rε.

Using this fact we obtain
∫

RN

(K(x)−K(∞))|vn|p dx

=

∫

|x|≤Rε

(K(x)−K(∞))|vn|p dx+
∫

|x|>Rε

(K(x)−K(∞))|vn|p dx

≤ (‖K‖∞ −K(∞))
∫

|x|≤Rε

|vn|p dx+ ε
(∫

|x|>Rε

|vn|p dx
)
.

Since vn ⇀ 0 in H
1
a,b(R

N ), it follows by Proposition 1 that {vn} is bounded in
Lp(RN ). On the other hand, in virtue of (7), we have that vn → 0 in Lploc(RN ).
Then letting n→∞ we see that

lim sup
n→∞

∫

RN

(K(x)−K(∞))|vn|p dx ≤ Cε

for some constant C > 0 independent of n and ε. It follows that

lim
n→∞

∫

RN

(K(x)−K(∞))|vn|p dx = 0.

To prove (16) and (17) we need only to show that

(18) lim
n→∞

∫

RN

(b(∞)− b(x))v2n dx = 0.
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To this end, notice that for any R > 0 we have
∫

RN

(b(∞)− b(x))v2n dx(19)

=

∫

|x|≤R

(b(∞)− b(x))v2n dx+
∫

|x|>R

(b(∞)− b(x))v2n dx

≤ (b(∞)− b1)
∫

|x|≤R

v2n dx+

∫

|x|>R

(b(∞)− b(x))v2n dx.

From (B) we have that for any ε > 0 we can choose Rε > 0 such that

(20) |b(∞)− b(x)| = b(∞)− b(x) < ε for a.e. x ∈ R
N with |x| > Rε.

But, from Remark 2, we know that H1a,b(R
N ) is continuously embedded in

L2(RN ) and, by (8), vn → 0 in L2loc(RN ). Therefore, using (19) and (20) we
deduce the existence of a positive number M , independent of n and ε, such that

lim sup
n→∞

∫

RN

(b(∞)− b(x))v2n dx ≤Mε.

Since ε > 0 is arbitrary, it follows that (18) is true. �

Lemma 4. For any 0 < ε < 1 there exist R = R(ε) > 0 and C = C(ε) > 0

such that for all g with ‖g‖−1 < C, there exists a (PS)c0 sequence of J(u)
with c0 = c0(R) = infu∈BR J(u), where BR = {u ∈ H1a,b(RN ) : ‖u‖a,b ≤ R}.
Moreover, c0(R) is achieved by some u0 ∈ H1a,b(RN ) with J ′(u0) = 0.

Proof. Fix 0 < ε < 1. Then for any u ∈ H1a,b(RN ), by (K) and Young’s
inequality we have

J(u) =
1

2
‖u‖2a,b −

1

p

∫

RN

K(x)|u|p dx−
∫

RN

g(x)u dx

≥ 1
2
‖u‖2a,b −

‖K‖∞
p
‖u‖p
Lp(RN )

− ‖u‖a,b‖g‖−1

≥ 1
2
‖u‖2a,b −

‖K‖∞
p
Cp0‖u‖pa,b −

(
ε2

2
‖u‖2a,b +

1

2ε2
‖g‖2−1

)

=

(
1

2
− ε

2

2

)
‖u‖2a,b −

‖K‖∞
p
Cp0‖u‖pa,b −

1

2ε2
‖g‖2−1,

where C0 > 0 is a positive constant given by Proposition 1. The above estimate

shows the existence of R = R(ε) > 0, C = C(ε) > 0 and δ = δ(R) > 0 such that

J(u) |∂BR≥ δ > 0 for all g with ‖g‖−1 ≤ C. For example, we can take

R(ε) =

(
1− ε2
‖K‖∞Cp0

)1/(p−2)
, C(ε) =

√
Mε, δ(R) =

M

2
,

where M =M(R) =

(
1

2
− 1
p

)
‖K‖∞Cp0Rp.
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Define c0 = c0(R) = infu∈BR J(u). So, c0 ≤ J(0) = 0. The set BR becomes a
complete metric space with respect to the distance

dist (u, v) = ‖u− v‖a,b for any u, v ∈ BR.

On the other hand, J is lower semi-continuous and bounded from below on BR.

So, by Ekeland’s Variational Principle [8, Theorem 1.1], for any positive integer

n there exists un with

c0 ≤ J(un) ≤ c0 +
1

n
,(21)

J(w) ≥ J(un)−
1

n
‖un − w‖a,b for all w ∈ BR.(22)

We claim that ‖un‖a,b < R for n large enough. Indeed, if ‖un‖a,b = R for
infinitely many n, we may assume, without loss of generality, that ‖un‖a,b = R
for all n ≥ 1. It follows that J(un) ≥ δ > 0. Combining this with (tz) and
letting n→∞, we have 0 ≥ c0 ≥ δ > 0 which is a contradiction.
We now prove that J ′(un) → 0 in H−1a,b (RN ). Indeed, for any u ∈ H1a,b(RN )

with ‖u‖a,b = 1, let wn = un+tu. For a fixed n, we have ‖wn‖a,b ≤ ‖un‖a,b+t <
R, where t > 0 is small enough. Using (22) we obtain

J(un + tu) ≥ J(un)−
t

n
‖u‖a,b

that is
J(un + tu)− J(un)

t
≥ − 1
n
‖u‖a,b = −

1

n
.

Letting t ↘ 0, we deduce that 〈J ′(un), u〉 ≥ −1/n and a similar argument for
t↗ 0 produces |〈J ′(un), u〉| ≤ 1/n for any u ∈ H1a,b(RN ) with ‖u‖a,b = 1. So,

‖J ′(un)‖−1 = sup
u∈H1a,b(R

N )

‖u‖a,b=1

|〈J ′(un), u〉| ≤
1

n
→ 0 as n→∞.

We have obtained the existence of a (PS)c0 sequence, i.e. a sequence {un} ⊂
H1a,b(R

N ) with

J(un)→ c0 and J ′(un)→ 0 in H−1a,b (RN ).

But ‖un‖a,b ≤ R, for the fixed R, shows that {un} converges weakly (up to a
subsequence) in H1a,b(R

N ). Therefore (7), (23) and Lemma 1 imply that, for

some u0 ∈ H1a,b(RN )

un ⇀ u0 in H
1
a,b(R

N ), un → u0 a.e. in R
N(24)

J ′(u0) = 0.(25)
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We prove that J(u0) = c0. By (23) and (24) we have

o(1) = 〈J ′(un), un〉

=

∫

RN

(a(x)|∇un|2 + b(x)u2n) dx−
∫

RN

K(x)|un|p dx−
∫

RN

g(x)un dx.

Therefore

J(un) =

(
1

2
− 1
p

)∫

RN

K(x)|un|p dx−
1

2

∫

RN

g(x)un dx+ o(1).

By (23)–(25) and Fatou’s lemma we have

c0 = lim inf
n→∞

J(un) ≥
(
1

2
− 1
p

)∫

RN

K(x)|u0|p dx−
1

2

∫

RN

g(x)u0 dx = J(u0).

Since u0 ∈ BR, it follows that J(u0) = c0. �

3. Proof of Theorem 1

Set

S = {u ∈ H1a,b(RN ) \ {0} : 〈I ′∞(u), u〉 = 0}.
We first justify that S 6≡ ∅. Indeed, fix u0 ∈ H1a,b(RN ) \ {0} and set, for any
λ > 0,

Ψ(λ) = 〈I ′∞(λu0), λu0〉.
It follows that

Ψ(λ) = λ2
(∫

RN

(
a(x)|∇u0|2 + b(∞)u20

)
dx− λp−2

∫

RN

K(∞)|u0|p dx
)
.

Our hypotheses imply that Ψ(λ) < 0 for λ large enough and Ψ(λ) > 0 for λ

sufficiently close to zero.

It follows that there exists λ0 ∈ (0,∞) such that Ψ(λ0) = 0. This means
that λ0u0 ∈ S.

Proposition 2. Let J∞ = inf{I∞(u) : u ∈ S}. Then there exists u ∈
H1a,b(R

N ) such that

J∞ = I∞(u) = sup
t≥0
I∞(tu).

Proof. We consider the constrained minimization problem

(27)

m = inf

{∫

RN

(a(x)|∇u|2 + b(∞)u2) dx : u ∈ H1a,b(RN ),
∫

RN

K(∞)|u|p dx = 1
}
.

For every ϕ ∈ H1a,b(RN ) \ {0} let

f(t) = I∞(tϕ) =
t2

2

∫

RN

(a(x)|∇u|2 + b(∞)u2) dx− t
p

p

∫

RN

K(∞)|ϕ|p dx.
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We have

f ′(t) = t

∫

RN

(a(x)|∇u|2 + b(∞)u2) dx− tp−1
∫

RN

K(∞)|ϕ|p dx,

which vanishes for

t(ϕ) =

{∫
RN
(a(x)|∇u|2 + b(∞)u2) dx∫

RN
K(∞)|ϕ|p dx

}1/(p−2)
.

Hence

f(t(ϕ)) = I∞(t(ϕ)ϕ) = sup
t≥0
I∞(tϕ)

=

(
1

2
− 1
p

){∫
RN
(a(x)|∇u|2 + b(∞)u2) dx
(
∫

RN
K(∞)|ϕ|p dx)2/p

}p/(p−2)
.

It follows that

inf
ϕ∈H1

a,b
(RN )\{0}

sup
t≥0
I∞(tϕ) =

(
1

2
− 1
p

)
mp/(p−2).

We easily observe that for every u ∈ S we have t(u) = 1 which implies I∞(u) =
supt≥0 I∞(tu).

Let {un} ⊂ H1a,b(RN ) be a minimizing sequence for problem (27), i.e.,

lim
n→∞

∫

RN

(a(x)|∇un|2 + b(∞)u2n) dx = m and

∫

RN

K(∞)|un|p dx = 1.

Then vn = m
1/(p−2)un satisfies

(i) I∞(vn)→ (1/2− 1/p)mp/(p−2) as n→∞,
(ii) I ′∞(vn)→ 0 in H−1a,b (RN ) as n→∞.
Now, using (B) we get that the minimizing sequence {un} is bounded in

H1a,b(R
N ) and, by Remark 2, we find u ∈ H1a,b(RN ) such that (up to a subse-

quence) un ⇀ u in H
1
a,b(R

N ) and un → u in Lploc(RN ). Our hypotheses (A1)
and (A2) allow us to apply Lemma 1 and Theorem 1 in [7] in order to find that

u 6≡ 0 and u is a solution of problem (27). Letting u = m1/(p−2)u, we see that
u ∈ S and I∞(u) = (1/2− 1/p)mp/(p−2). We obtain

J∞ = inf
u∈S
I∞(u) = inf

u∈S
sup
t≥0
I∞(tu)

≥ inf
u∈H1

a,b
(RN )\{0}

sup
t≥0
I∞(tu) =

(
1

2
− 1
p

)
mp/(p−2) = I∞(u)

which concludes our proof. �
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Proposition 3. Assume {un} is a (PS)c sequence of J that converges weakly
to u0 in H

1
a,b(R

N ). Then either {un} converges strongly in H1a,b(RN ), or c ≥
J(u0) + J∞.

Proof. Since {un} is a (PS)c sequence and un ⇀ u0 in H1a,b(RN ) we have

(28) J(un) = c+ o(1) and 〈J ′(un), un〉 = o(1).

Set vn = un − u0. Then vn ⇀ 0 in H1a,b(RN ) which implies
∫

RN

(a(x)∇vn∇u0 + b(x)vnu0) dx→ 0 as n→∞,
∫

RN

g(x)vn dx→ 0 as n→∞.

We rewrite the above relations as

(29)
‖un‖2a,b = ‖u0‖2a,b + ‖vn‖2a,b + o(1),
J(vn) = I(vn) + o(1).

From (28), (29), Lemmas 1 and 2 it follows that

(30)

o(1) + c = J(un) = J(u0) + J(vn) + o(1) = J(u0) + I(vn) + o(1),

o(1) = 〈J ′(un), un〉
= 〈J ′(u0), u0〉+ 〈J ′(vn), vn〉+ o(1) = 〈I ′(vn), vn〉+ o(1).

If vn → 0 in H1a,b(RN ), then

un → u0 in H1a,b(RN ) and J(u0) = lim
n→∞
J(un) = c.

If vn 6→ 0 in H1a,b(RN ), then combining this with the fact that vn ⇀ 0 in
H1a,b(R

N ) we may assume that ‖vn‖a,b → l > 0. Then (30) and Lemma 3 imply

c = J(u0) + I∞(vn) + o(1)(31)

µn = 〈I ′∞(vn), vn〉 =
∫

RN

(a(x)|∇vn|2 + b(∞)v2n) dx(32)

−
∫

RN

K(∞)|vn|p dx = αn − βn,

where

lim
n→∞
µn = 0,

αn =

∫

RN

(a(x)|∇vn|2 + b(∞)v2n) dx ≥ ‖vn‖2a,b,

βn =

∫

RN

K(∞)|vn|p dx ≥ 0.
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In virtue of (31), it remains to show that I∞(vn) ≥ J∞ + o(1). For t > 0, we
have

〈I ′∞(tvn), tvn〉 = t2
∫

RN

(a(x)|∇vn|2 + b(∞)v2n) dx− tp
∫

RN

K(∞)|vn|p dx.

If we prove the existence of a sequence {tn} with tn > 0, tn → 1 and

〈I ′∞(tnvn), tnvn〉 = 0,

then

I∞(vn) = I∞(tnvn) +
1− t2n
2
αn −

1− tpn
p
K(∞)‖vn‖pLp(RN )

= I∞(tnvn) + o(1) ≥ J∞ + o(1)

and the conclusion follows. To do this, let t = 1 + δ with |δ| small enough and
using (32) we obtain

〈I ′∞(tvn), tvn〉 = (1 + δ)2αn − (1 + δ)pβn = (1 + δ)2αn − (1 + δ)p(αn − µn)
= αn(2δ − pδ + o(δ)) + (1 + δ)pµn
= αn(2− p)δ + αno(δ) + (1 + δ)pµn.

Since αn → l ≥ l2 > 0, limn→∞ µn = 0 and p > 2 then, for n large enough, we
can define δ+n = 2|µn|/αn(p− 2) and δ−n = −2|µn|/αn(p− 2) which satisfy the
following properties

(33)
δ+n ↘ 0 and 〈I ′∞((1 + δ+n )vn), (1 + δ+n )vn〉 < 0,
δ−n ↗ 0 and 〈I ′∞((1 + δ−n )vn), (1 + δ−n )vn〉 > 0.

From (33) we deduce the existence of tn ∈ (1 + δ−n , 1 + δ+n ) such that

tn → 1 and 〈I ′∞(tnvn), tnvn〉 = 0.

This concludes our proof. �

Let u ∈ H1a,b(RN ) be such that (*) holds. We can find t > 0 such that

I(tu) < 0 if t ≥ t,
J(tu) < 0 if t ≥ t and ‖g‖−1 ≤ 1.

We put

P = {γ ∈ C([0, 1], H1a,b(RN )) : γ(0) = 0, γ(1) = tu},(34)

cg = inf
γ∈P
sup
u∈γ
J(u).(35)
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Proposition 4. There exist R0 > 0, C = C(R0) > 0 and δR0 > 0 such that

for all g with ‖g‖−1 < C we have J |∂BR0 ≥ δR0 and cg < c0 + J∞ , where cg is
given by (35) and c0 = infu∈BR0

J(u).

Proof. By our hypothesis (M) and the definition of I we can assume that

I(tu) < I∞(tu) for all t > 0. A simple computation implies that there exists

t0 ∈ (0, t) such that

sup
t≥0
I(tu) = I(t0u) < I∞(t0u) ≤ sup

t≥0
I∞(tu) = J∞.

Then there exists an ε0 ∈ (0, 1) such that

(36) sup
t≥0
I(tu) < J∞ − ε0.

For this ε0, we get the existence of R0 = R0(ε0) and C1 = C1(ε0) = C1(R0) such

that for all g with ‖g‖−1 < C1 the conclusion of Lemma 4 holds. Moreover, in
virtue of its proof, there exists δR0 > 0 such that J |∂BR0 ≥ δR0 , provided that
‖g‖−1 < C1. Taking C2 = min {C1, ε0

√
ε0} we find

(37) c0 = inf
u∈BR0

J(u) ≥ − 1
2ε20
‖g‖2−1 > −

ε0
2
for all g with ‖g‖−1 < C2.

If ‖g‖−1 < ε0/2t‖u‖a,b, then for u ∈ γ0 = {ttu : 0 ≤ t ≤ 1} we have

|J(u)− I(u)| =
∣∣∣∣
∫

RN

g(x)u dx

∣∣∣∣ ≤ t
∣∣∣∣
∫

RN

g(x)u dx

∣∣∣∣ ≤ t ‖u‖a,b‖g‖−1 <
ε0
2
.

So, if ‖g‖−1 < C = min{C2, ε0/2t‖u‖a,b} then for all g with ‖g‖−1 < C we
obtain

J(u) < I(u) +
ε0
2
for u ∈ γ0,

and from (34), (36), (37) it follows that

cg = inf
γ∈P
sup
u∈γ
J(u) ≤ sup

u∈γ0

J(u)

≤ sup
u∈γ0

I(u) +
ε0
2
≤ sup
t≥0
I(tu) +

ε0
2
< J∞ −

ε0
2
< J∞ + c0. �

Proof of Theorem 1 concluded. Consider R0 > 0, C = C(R0) > 0 and

δR0 > 0 given by Proposition 4 and, in view of its proof, we have that for all g

with ‖g‖−1 < C the conclusion of Lemma 4 is also true. Therefore, we obtain
the existence of a solution u0 ∈ H1a,b(RN ) of (unu) such that J(u0) = c0.
On the other hand, it follows from the Mountain Pass Theorem without the

Palais–Smale condition [6, Theorem 2.2] that there is a (PS)cg sequence {un} of
J(u), that is

J(un) = cg + o(1) and J
′(un)→ 0 in H−1a,b (RN ).
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This implies

cg + o(1) +
1

p
‖J ′(un)‖−1‖un‖a,b ≥ J(un)−

1

p
〈J ′(un), un〉

≥
(
1

2
− 1
p

)
‖un‖2a,b −

(
1− 1
p

)
‖g‖−1‖un‖a,b.

Hence {un} is a bounded sequence in H1a,b(RN ) and, passing to a subsequence,
we may assume that un ⇀ u1 in H

1
a,b(R

N ) for some u1 ∈ H1a,b(RN ). So, by
Lemma 1, u1 is a weak solution of (3).

We prove in what follows that J(u0) 6= J(u1). Indeed, by Proposition 3,
either un → u1 in H1a,b(RN ) which gives

J(u1) = lim
n→∞
J(un) = cg > 0 ≥ c0 = J(u0)

and the conclusion follows, or

cg = lim
n→∞
J(un) ≥ J(u1) + J∞.

If we suppose that J(u1) = J(u0) = c0, then cg ≥ c0 + J∞ which contradicts
Proposition 4. This concludes our proof. �
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