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EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION\ast 
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Abstract. We study normalized solutions for the following Choquard equations with lower criti-
cal exponent and a local perturbation  - \Delta u+\lambda u = \gamma (I\alpha \ast | u| 

\alpha 
N

+1)| u| 
\alpha 
N

 - 1u+\mu | u| q - 2u in \BbbR N ,
\int 
\BbbR N

| u| 2dx = c2, where \gamma , \mu , c are given positive numbers and 2 < q \leq 2N
N - 2

. The frequency \lambda appears

as a real Lagrange parameter and is part of the unknowns. By introducing new arguments and un-
der different assumptions on q, c, \gamma , and \mu , we prove several nonexistence and existence results. In
particular, we consider the case q = 2N

N - 2
, which corresponds to equations involving double critical

exponents. We also describe some qualitative properties of the solutions with prescribed mass and
of the associated Lagrange multipliers \lambda .
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1. Introduction. In recent years, the normalized solutions for various classes of
local or nonlocal problems have been widely investigated, and there are many results,
both for their particular interest from a physical point of view and for their relevance
in models arising in nonlinear optics and Bose--Einstein condensation. We recall that
the Choquard equation was first introduced in the pioneering work of Fr\"ohlich [9] and
Pekar [29] for the modeling of quantum polaron:

 - \Delta u+ u =

\biggl( 
1

| x| 
\ast | u| 2

\biggr) 
u in \BbbR 3.(1.1)

As pointed out by Fr\"ohlich and Pekar, this model corresponds to the study of free
electrons in an ionic lattice interacting with phonons associated to deformations of
the lattice or with the polarization that it creates on the medium (interaction of an
electron with its own hole). In the approximation to Hartree--Fock theory of one
component plasma, Choquard used (1.1) to describe an electron trapped in its own
hole.
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NORMALIZED SOLUTIONS 3697

In general, the associated Schr\"odinger-type evolution equation

i\partial t\psi  - \Delta \psi = (W \ast | \psi | 2)\psi , (t, x) \in \BbbR \times \BbbR 3,(1.2)

is a model large system of nonrelativistic bosonic atoms and molecules under an
attractive interaction that is weaker and has a longer range than that of the nonlinear
Schr\"odinger equation, where the interaction potential W is formally Dirac's delta at
the origin [10]. Equation (1.2) arises as a mean-field limit of a bosonic system with
attractive two-body interactions which can be taken rigorously in many cases [10, 15].

The Choquard equation is also known as the Schr\"odinger--Newton equation in
models coupling the Schr\"odinger equation of quantum physics together with nonrela-
tivistic Newtonian gravity. The equation can also be derived from the Einstein--Klein--
Gordon and Einstein--Dirac system. Such a model was proposed for boson stars and
for the collapse of galaxy fluctuations of scalar field dark matter. We refer for details
to Elgart and Schlein [8] and Giulini and Gro{\ss}ardt [12]. Penrose [30, 31] proposed
(1.1) as a model of self-gravitating matter in which quantum state reduction was
understood as a gravitational phenomenon. As pointed out by Lieb [21], Choquard
used (1.1) to study steady states of the one component plasma approximation in the
Hartree--Fock theory.

Consider the Choquard-type equations with a local perturbation,

i\partial t\psi  - \Delta \psi = \gamma (I\alpha \ast | \psi | p)| \psi | p - 2\psi + \mu | \psi | q - 2\psi , (t, x) \in \BbbR \times \BbbR N ,(1.3)

where 2\alpha := N+\alpha 
N \leq p \leq 2\ast \alpha := N+\alpha 

N - 2 and 2 < q \leq 2\ast := 2N
N - 2 , the parameters \gamma , \mu \in \BbbR ,

I\alpha is the Riesz potential of order \alpha \in (0, N) defined by

I\alpha =
A(N,\alpha )

| x| N - \alpha 
with A(N,\alpha ) =

\Gamma (N - \alpha 
2 )

\pi N/22\alpha \Gamma (\alpha 2 )
for each x \in \BbbR N\setminus \{ 0\} ,

and \ast is the convolution product on \BbbR N .
An important topic on (1.3) is to study their standing wave solutions. A standing

wave solution of (1.3) is a solution of the form \psi (t, x) = e - i\lambda tu(x), where \lambda \in \BbbR and
u : \BbbR N \rightarrow \BbbC satisfies the stationary equation

 - \Delta u+ \lambda u = \gamma (I\alpha \ast | u| p)| u| p - 2u+ \mu | u| q - 2u in \BbbR N .(1.4)

There are two different ways to deal with (1.4) according to the role of \lambda :
(i) the frequency \lambda is a fixed and assigned parameter;
(ii) the frequency \lambda is an unknown of the problem.
For case (i), one can see that solutions of (1.4) can be obtained as critical points

of the functional defined in H1(\BbbR N ) by

J(u) =
1

2

\int 
\BbbR N

(| \nabla u| 2 + \lambda | u| 2)dx - \gamma 

2p

\int 
\BbbR N

(I\alpha \ast | u| p)| u| pdx - \mu 

q

\int 
\BbbR N

| u| qdx.

This case has attracted much attention in the last years, depending on p, q, \gamma , and \mu ;
see, for example, [2, 11, 20, 26, 27, 28, 35] and the references therein.

Alternatively, one can search for solutions to (1.4) with the frequency \lambda unknown.
In this case, the real parameter \lambda appears as a Lagrange multiplier, and L2-norms
of solutions are prescribed, which are usually called normalized solutions. This way
seems particularly meaningful from the physical point of view, since, in addition to
being a conserved quantity for (1.3) with the time dependent, the mass has often

D
ow

nl
oa

de
d 

06
/2

5/
22

 to
 2

22
.1

92
.3

.2
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3698 S. YAO, H. CHEN, V. D. R\u ADULESCU, AND J. SUN

a clear physical meaning. For example, it represents the power supply in nonlinear
optics or the total number of atoms in Bose--Einstein condensation. Moreover, this
way turns out to be useful also from the purely mathematical perspective, since it
gives a better insight into the properties of the stationary solutions for (1.3), such as
stability or instability [4, 6]. For these reasons, in this paper we focus on this issue.
More precisely, we are interested in finding solutions to the following constrained
nonlocal problem:\biggl\{ 

 - \Delta u+ \lambda u = \gamma (I\alpha \ast | u| p)| u| p - 2u+ \mu | u| q - 2u in \BbbR N ,\int 
\BbbR N | u| 2dx = c2,

(1.5)

where c > 0 is given.
From the mathematical point of view, problem (1.5) is nonlocal since the appear-

ance of the term (I\alpha \ast | u| p)| u| p - 2u indicates that (1.5) is not a pointwise identity.
This kind of problem has been paid much attention after the pioneering work of Lions
[23], in which an abstract functional analysis framework was introduced. Nowadays,
since physicists are interested in normalized solutions, mathematical researchers be-
gan to focus on solutions having a prescribed L2-norm, that is, solutions which satisfy
\| u\| L2 = c > 0 for a priori given c. To the best of our knowledge, the study of solutions
with prescribed norm was initiated by Lieb [21] and P.-L. Lions [24].

Solutions of problem (1.5) can be found by looking for critical points of the energy
functional Ep,q : H1(\BbbR N ) \rightarrow \BbbR given by

Ep,q(u) :=
1

2

\int 
\BbbR N

| \nabla u| 2dx - \gamma 

2p

\int 
\BbbR N

(I\alpha \ast | u| p)| u| pdx - \mu 

q

\int 
\BbbR N

| u| qdx

on the constraint

S(c) =

\biggl\{ 
u \in H1(\BbbR N ) | 

\int 
\BbbR N

| u| 2dx = c2
\biggr\} 
.

It is straightforward that Ep,q is a well-defined and C1 functional on S(c) for 2\alpha \leq 
p \leq 2\ast \alpha and 2 \leq q \leq 2\ast .

We note that the number and properties of the normalized solutions to problem
(1.5) are strongly affected by further assumptions on the exponents p, q and the pa-
rameters \gamma , \mu . For example, when the problem only involves Hartree nonlinearity, that
is, for \gamma = 1 and \mu = 0, then (1.4) becomes the following classical Choquard equation:

 - \Delta u+ \lambda u = (I\alpha \ast | u| p)| u| p - 2u in \BbbR N .(1.6)

If N = 3 and p = \alpha = 2, Lieb [21] proved the existence and uniqueness of normalized
solutions for (1.6) by using symmetrization techniques, and Lions [25] studied the
existence and stability issues of normalized solutions for (1.6). If N \geq 3 and p :=
N+\alpha +2

N < p < 2\ast \alpha , Li and Ye [16] concluded that (1.6) has a mountain-pass--type
normalized solution for each c > 0.

We need to point out that (1.6) has no solutions in H1(\BbbR N ) when either p \leq 2\alpha 
or p \geq 2\ast \alpha for fixed \lambda > 0 (see [26]), where p = 2\alpha and 2\ast \alpha are critical exponents
that come from the Hardy--Littlewood--Sobolev inequality (see Lemma 2.2). So it is
interesting to study normalized solutions of (1.6) with p = 2\alpha or 2\ast \alpha under a local
perturbation, such as problem (1.5). In two recent papers, Li [18, 19] considered
problem (1.5) with \gamma = 1, p = 2\ast \alpha , and 2 < q < 2\ast . He concluded that problem (1.5)
has one radial solution when q := 2 + 4

N < q < 2\ast and two radial solutions when
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NORMALIZED SOLUTIONS 3699

2 < q < q. Moreover, qualitative properties and stability of solutions are described.
Note that the upper critical exponent 2\ast \alpha plays a role similar to the Sobolev critical
exponent in the local semilinear equations. The results obtained in [18, 19] can be
regarded as a generalization of those in [13, 14, 33, 37], which studied normalized
solutions of the Schr\"odinger equation with mixed nonlinearities,

 - \Delta u+ \lambda u = | u| 2
\ast  - 2u+ \mu | u| q - 2u in \BbbR N ,

where N \geq 3, 2 < q < 2\ast , and \mu > 0. However, so far there seems to be no result
concerned with normalized solutions of the lower critical Choquard equations with
a local perturbation. To the best of our knowledge, it is completely different from
the case of the upper critical exponent, since the lower critical exponent 2\alpha seems to
be a new feature for the Choquard equation, which is related to a new phenomenon
of ``bubbling at infinity"" [27]. Inspired by this fact, in this paper we will study the
nonexistence, existence, and qualitative properties of solutions for problem (1.5) with
p = 2\alpha and 2 < q \leq 2\ast . The whole study can be considered as a counterpart of the
Brezis--Nirenberg problem for nonlocal elliptic equation in the context of normalized
solutions. Compared with the study developed if p = 2\ast \alpha , the new abstract setting
seems to be more challenging, and thus new methods and ideas need to be explored.
More details will be discussed in the next subsection.

1.1. Main results. Before stating our main results, we agree that when q = 2\ast 

is involved, we always assume that N \geq 3. For the other cases, we require N \geq 2.
Next, we give the definition of a ground state in the following sense.

Definition 1.1. We say that u is a ground state of problem (1.5) if it is a solution
of problem (1.5) having minimal energy among all the solutions:

E\prime 
p,q| S(c)(u) = 0 and Ep,q(u) = inf\{ Ep,q(v) | E\prime 

p,q| S(c)(v) = 0 and v \in S(c)\} .

First of all, we give the following result when the functional Ep,q is bounded from
below on S(c) and the minimization problem

\sigma (c) = inf
u\in S(c)

Ep,q(u)(1.7)

is achieved.

Theorem 1.2. Let \gamma > 0, p = 2\alpha , and 2 < q < q. Then there exists \mu 0 > 0 such
that for every \mu > \mu 0, the infimum

\sigma (c) <  - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha 

is achieved by u0 \in S(c) with the following properties:
(i) u0 is a real-valued positive function in \BbbR N , which is radially symmetric and

non-increasing;
(ii) u0 is a ground state of problem (1.5) with some \lambda c >

\gamma 
2\alpha 
S - 2\alpha 
\alpha c

2\alpha 
N .

Remark 1.3. By Theorem 1.2, the set of ground states

Z2\alpha ,q(c) := \{ u \in S(c) | E2\alpha ,q(u) = \sigma (c)\} 

is not empty and compact, up to translation, where E2\alpha ,q = Ep,q with p = 2\alpha . Hence,
if we are able to deduce the global well-posedness of solutions for the Cauchy problem
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3700 S. YAO, H. CHEN, V. D. R\u ADULESCU, AND J. SUN

of (1.3) in H1(\BbbR N ), then by using the strategy in [6], the set Z2\alpha ,q(c) is orbitally
stable. Namely, for every \varepsilon > 0, there exists \delta > 0 such that for any \psi 0 \in H1(\BbbR N )
with infv\in Z2\alpha ,q(c) \| \psi 0  - v\| H1(\BbbR N ) < \delta , we have

inf
v\in Z2\alpha ,q(c)

\| \psi (t, \cdot ) - v\| H1 < \varepsilon \forall t > 0,

where \psi (t, \cdot ) denotes the solution of (1.3) with initial datum \psi 0.

To prove that the minimum in (1.7) is achieved, we shall use the concentration-
compactness principle by Lions [25]. Specifically, it suffices to exclude the vanishing
and dichotomy of the minimizing sequence, respectively. Usually, the dichotomy can
be easily excluded by using the strict subadditivity inequality

\sigma (c) < \sigma (\eta ) + \sigma (c - \eta ) for any 0 < \eta < c.

However, it is difficult to exclude the vanishing by using common arguments because
of the presence of the lower critical nonlocal term

\int 
\BbbR N (I\alpha \ast | u| 2\alpha )| u| 2\alpha dx. In order

to overcome this difficulty, we need to make an estimate of \sigma (c) by controlling the
parameter \mu .

Next, we state the following nonexistence result when p = 2\alpha and q = q.

Theorem 1.4. Let \gamma > 0, p = 2\alpha , and q = q. Then for 0 < \mu < N+2
NSc4/N

, problem

(1.5) has no solution for any \lambda \in \BbbR .

We now turn to the case of p = 2\alpha and q < q \leq 2\ast such that the functional
Ep,q is unbounded from below on S(c). Then it will not be possible to find a global
minimizer. In order to seek for critical points of Ep,q restricted to S(c), we shall use
the Pohozaev manifold \scrM q(c) as a natural constraint of Ep,q that contains all the
critical points of Ep,q restricted to S(c). This manifold is defined by

\scrM q(c) := \{ u \in S(c) | Qq(u) = 0\} ,

where Qq(u) = 0 is the Pohozaev-type identity corresponding to (3). For more details,
we refer the reader to section 2. As we shall see, the functional Ep,q restricted to\scrM q(c)
is bounded from below.

Set

mq(c) := inf
u\in \scrM q(c)

Ep,q(u)(1.8)

and

c\ast :=

\Biggl( 
(N + \alpha ) (N (q  - 2) - 4)S

N+\alpha 
N

\alpha 

\gamma N2 (q  - 2)

\Biggr) N(N(q - 2) - 4)
2N(q - 2)\alpha +4Nq - 8(N+\alpha )

\cdot 
\biggl( 

2q

\mu NS (q  - 2)

\biggr) 2N
N(q - 2)\alpha +2Nq - 4(N+\alpha )

.(1.9)

We have the following result.

Theorem 1.5. Let \gamma > 0, p = 2\alpha , q < q < 2\ast , and 0 < c < c\ast . Then there exists
\mu > 0 such that for every \mu > \mu , problem (1.5) has a ground state \=u \in H1(\BbbR N ) for

D
ow

nl
oa

de
d 

06
/2

5/
22

 to
 2

22
.1

92
.3

.2
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NORMALIZED SOLUTIONS 3701

some \=\lambda > 0, which is real-valued, positive, radially symmetric and nonincreasing in
\BbbR N . Moreover, the following estimates hold:

E2\alpha ,q(\=u) = mq(c) \geq 
N(q  - 2) - 4

2N(q  - 2)

\biggl( 
2q

\mu NS(q  - 2)
c - 

2N - q(N - 2)
2

\biggr) 4
N(q - 2) - 4

 - \gamma 

22\alpha 
S
 - N+\alpha 

N
\alpha c22\alpha > 0

and

\=\lambda >
2N  - q(N  - 2)

N(q  - 2)

\biggl( 
2q

\mu NS(q  - 2)

\biggr) 4
N(q - 2) - 4

c - 
4(q - 2)

N(q - 2) - 4 .

To prove the above result, we shall apply the minimax method to E2\alpha ,q re-
stricted to \scrM q(c), introduced by Bartsch and Soave [3], to obtain a (PS)-sequence
\{ un\} \subset \scrM q(c) for E2\alpha ,q at level mq(c). However, the compactness of \{ un\} is a deli-
cate problem due to the absence of the nonlocal term in the Pohozaev-type identity
Qq(u) = 0, arising from the feature of the lower critical exponent 2\alpha . In view of this
fact, we introduce a method of adding mass term, which can effectively solve the weak
limit being not 0 and the strong convergence of \{ un\} .

Next, let us consider the double critical case, that is, p = 2\alpha and q = 2\ast . Setting

c\ast :=

\biggl( 
N + \alpha 

N\gamma 

\biggr) N
2\alpha 

S
N+\alpha 
2\alpha 

\alpha ,

we have following result.

Theorem 1.6. Let p = 2\alpha , q = 2\ast , 0 < c < min \{ c\ast , c\ast \} , and

\gamma \geq 

\Biggl[ 
\alpha NS

N+\alpha 
\alpha 

\alpha 

2SN/2(N + \alpha )

\Biggr] \alpha 
N

\mu 
\alpha (N - 2)

2N .(1.10)

Then there exists \~\mu \geq \mu such that for every \mu > \~\mu , problem (1.5) has a ground state
\~u \in H1(\BbbR N ) for some \~\lambda > 0, which is real-valued, positive, radially symmetric, and
nonincreasing in \BbbR N . Moreover, we have

E2\alpha ,2\ast (\~u) = m2\ast (c) \geq 
1

N

\Bigl( 
\mu  - 1S

N
N - 2

\Bigr) N - 2
2  - \gamma N

2(N + \alpha )
S
 - N+\alpha 

N
\alpha c22\alpha > 0

and

0 < \~\lambda \leq \gamma S
 - N+\alpha 

N
\alpha ,

where E2\alpha ,2\ast = Ep,q with p = 2\alpha and q = 2\ast .

In the proof of Theorem 1.6, due to the interaction of the double critical terms,
the method of adding mass term used in Theorem 1.5 is invalid for the case of q = 2\ast ,
although the existence of the (PS)-sequence for the functional E2\alpha ,2\ast can be proved.
Fortunately, with the help of the solutions obtained in Theorem 1.5, by the Sobolev
subcritical approximation method combined with the new estimate trick, we show
that m2\ast (c) is achieved in S(c).
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Remark 1.7. (i) In Theorems 1.2, 1.5, and 1.6, the parameter \mu is required to be
large enough. It is not clear to us if there is a solution when \mu > 0 is small. We
believe it would be interesting to investigate in that direction.

(ii) In Theorems 1.2 and 1.5, we do not require any assumption on the parameter
\gamma > 0 when 2 < q < 2\ast . However, for q = 2\ast we need the technical condition
(1.10) in Theorem 1.6 in order to decrease the energy level because of the
presence of the double critical terms.

(iii) It should be pointed out that the instability of the standing wave \psi (t, x) =
e - i\lambda tu(x) is open, where u is a ground state obtained in Theorems 1.5 and
1.6.

In order to explore the behavior of solutions as p \rightarrow 2+\alpha , we give the following
result.

Theorem 1.8. Let \gamma , \mu > 0. Assume that one of the three following conditions
holds:

(i) N \geq 2, 2\alpha < p < p, q < q < 2\ast ;
(ii) 3 \leq N \leq 5, 2\alpha < p < p, and q = 2\ast ;
(iii) N \geq 6, 2\alpha < p \leq N+\alpha  - 2

N - 2 , q = 2\ast , and \gamma > \gamma 0 for some \gamma 0 > 0.
Then there exists \^c > 0 such that for any 0 < c < \^c, problem (1.5) has two solutions
(u\pm , \lambda \pm ) \in H1(\BbbR N )\times \BbbR + satisfying Ep,q(u

+) < 0 < Ep,q(u
 - ). In particular, u+ is a

ground state of problem (1.5). Moreover, we have

\| \nabla u+\| 2 \rightarrow 0 and \| u+\| q \rightarrow 0 as p\rightarrow 2+\alpha .

The above theorem can be proved by using some ideas developed in [19, 33, 37, 40].

Remark 1.9. By Theorem 1.8, we find that the negative energy solution will dis-
appear as p\rightarrow 2+\alpha , which is consistent with the results obtained in Theorems 1.5 and
1.6.

Finally, we summarize some properties of the mappings \sigma (c) andmq (c) as follows.

Theorem 1.10. (i) Under the assumptions of Theorem 1.2, the mapping c \mapsto \rightarrow 
\sigma (c) is a continuous and strictly decreasing mapping.

(ii) Under the assumptions of Theorems 1.5 and 1.6, the mapping c \mapsto \rightarrow mq (c) is
continuous and strictly decreasing.

The paper is organized as follows. In section 2 we recall some classical inequalities,
and we present some preliminary results. In section 3 we treat the case 2 < q < q and
prove Theorem 1.2. In section 4, we give the proof of Theorem 1.4. In section 5, we
study the case q < q \leq 2\ast and prove Theorems 1.5 and 1.6. Finally, in section 6, we
give the proof of Theorem 1.10.

2. Preliminary results. For convenience, we set

A(u) =

\int 
\BbbR N

| \nabla u| 2dx, B(u) =

\int 
\BbbR N

(I\alpha \ast | u| p)| u| pdx

and

C(u) =

\int 
\BbbR N

| u| qdx, D(u) =

\int 
\BbbR N

| u| 2dx.

Then,

E2\alpha ,q(u) =
1

2
A(u) - \gamma 

22\alpha 
B(u) - \mu 

q
C(u).(2.1)
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Lemma 2.1 (Gagliardo--Nirenberg inequality [38]). Let r \in (2, 2\ast ) if N \geq 3.
Then there exists a sharp constant S(N, r) > 0 such that

\| u\| r \leq S
1/r\| \nabla u\| \beta 2\| u\| 

1 - \beta 
2 ,(2.2)

where \beta = N( 12  - 1
r ).

Lemma 2.2 (Hardy--Littlewood--Sobolev inequality [22]). Let N \geq 1, \alpha \in (0, N),

and s \in (1, N/\alpha ). Then for any \varphi \in Ls(\BbbR N ), it holds that I\alpha \ast \varphi \in L
Ns

N - \alpha s (\BbbR N ), and

\int 
\BbbR N

| I\alpha \ast \varphi | 
Ns

N - \alpha s dx \leq \=C

\biggl( \int 
\BbbR N

| \varphi | sdx
\biggr) N

N - \alpha s

,(2.3)

where the constant \=C > 0 depends only on N,\alpha , and s.

Remark 2.3. By the semigroup identity for the Riesz potential I\alpha = I\alpha /2 \ast I\alpha /2,
for p \in [2\alpha , 2

\ast 
\alpha ], the Hardy--Littlewood--Sobolev inequality (2.3) can be rewritten as

\int 
\BbbR N

(I\alpha \ast | u| p)| u| pdx =

\int 
\BbbR N

\bigm| \bigm| I\alpha /2 \ast | u| p\bigm| \bigm| 2 dx \leq \=C

\biggl( \int 
\BbbR N

| u| 
2Np
N+\alpha dx

\biggr) N+\alpha 
N

.(2.4)

For p = 2\alpha , this inequality can be restated as the following minimization problem:

S\alpha = inf

\biggl\{ \int 
\BbbR N

| u| 2dx | u \in H1(\BbbR N )\setminus \{ 0\} and

\int 
\BbbR N

(I\alpha \ast | u| 2\alpha )| u| 2\alpha dx = 1

\biggr\} 
> 0,

(2.5)

which is achieved by the function

V\varepsilon (x) = \=C

\biggl( 
\varepsilon 

\varepsilon 2 + | x - y| 2

\biggr) N
2

(2.6)

for some given constants \=C \in \BbbR , y \in \BbbR N , and \varepsilon \in (0,+\infty ) (see [22, Theorem 4.3]).

Lemma 2.4 (Sobolev inequality [39]). For N \geq 3, there exists an optimal con-
stant S > 0 depending only on the dimension N such that

S\| u\| 22\ast \leq \| \nabla u\| 22 \forall u \in D1,2(\BbbR N ),

where D1,2(\BbbR N ) denotes the completion of C\infty 
0 (\BbbR N ) with respect to the norm

\| u\| D1,2 := \| \nabla u\| 2.

Next, we show a splitting property for the functional B, which is similar to the
Brezis--Lieb-type lemma for nonlocal nonlinearities [1, 2].

Lemma 2.5. Let \{ un\} be a bounded sequence in H1(\BbbR N ). If un \rightarrow u a.e. in \BbbR N ,
then

B(un  - u) = B(un) - B(u) + o (1) .

We establish the following Pohozaev identity.
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Lemma 2.6. Let u be a weak solution to the equation

 - \Delta u+ \lambda u = \gamma (I\alpha \ast u2\alpha )| u| 2\alpha  - 2u+ \mu | u| q - 2u.

Then u satisfies the Pohozaev identity

N  - 2

2
A(u) +

\lambda N

2
D(u) =

\gamma N

2
B(u) +

\mu N

q
C(u).(2.7)

As a consequence it satisfies

A(u) - \mu N(q  - 2)

2q
C(u) = 0.(2.8)

Proof. The proof is similar to that of [26, Proposition 3.1]; we omit it here.

Following the idea of Soave [32] and Cingolani and Jeanjean [7], we will introduce a
natural constraint manifold\scrM q(c) that contains all the critical points of the functional
E2\alpha ,q restricted to S(c). For each u \in H1(\BbbR N )\setminus \{ 0\} and t > 0, we set

ut(x) := tN/2u(tx).

Then a direct calculation shows that \| ut\| 22 = \| u\| 22, A(ut) = t2A(u), B(ut) = B(u),

and C(ut) = t
N(q - 2)

2 C(u). Define the fibering map t \in (0,\infty ) \mapsto \rightarrow gu(t) := E2\alpha ,q(ut)
given by

gu(t) =
t2

2
A(u) - \gamma 

2p
B(u) - \mu t

N(q - 2)
2

q
C(u).

By calculating the first and second derivatives of gu(t), we have

g\prime u(t) = tA(u) - \mu N(q  - 2)

2q
t
N(q - 2) - 2

2 C(u)(2.9)

and

g\prime \prime u(t) = A(u) - \mu N(q  - 2)(N(q  - 2) - 2)

4q
t
N(q - 2) - 4

2 C(u).

Moreover, we notice that

d

dt
E2\alpha ,q(ut) = g\prime u(t) =

Qq(ut)

t
,

where

Qq(u) :=
d

dt
| t=1E2\alpha ,q(ut) = A(u) - \mu N(q  - 2)

2q
C(u).

Actually the condition Qq(u) = 0 corresponds to the Pohozaev identity (2.8). Then
we define the Pohozaev manifold by

\scrM q(c) := \{ u \in S(c) | Qq(u) = 0\} = \{ u \in S(c) | g\prime u(1) = 0\} ,

which appears as a natural constraint. We also recognize that for any u \in S(c),
the dilated function ut(x) = tN/2u(tx) belongs to the constraint manifold \scrM q(c) if
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and only if t \in \BbbR is a critical value of the fibering map t \in (0,\infty ) \mapsto \rightarrow gu(t), namely,
g\prime u(t) = 0. Thus, it is natural to split \scrM q(c) into three parts corresponding to local
minima, local maxima, and points of inflection. Following [36], we define

\scrM +
q (c) = \{ u \in S(c) | g\prime u(1) = 0, g\prime \prime u(1) > 0\} ;

\scrM  - 
q (c) = \{ u \in S(c) | g\prime u(1) = 0, g\prime \prime u(1) < 0\} ;

\scrM 0
q(c) = \{ u \in S(c) | g\prime u(1) = 0, g\prime \prime u(1) = 0\} .

Then for u \in \scrM q(c), we deduce that

g\prime \prime u(1) = A(u) - \mu N(q  - 2)(N(q  - 2) - 2)

4q
C(u)

= 2A(u) - \mu N2(q  - 2)2

4q
C(u)(2.10)

=
4 - N(q  - 2)

2
A(u).(2.11)

Furthermore, following the argument of Soave [32], we have the following lemma.

Lemma 2.7. Assume that \scrM 0
q(c) = \emptyset . Then \scrM q(c) is a smooth submanifold of

codimension 2 of H1(\BbbR N ) and a submanifold of codimension 1 in S(c).

Next, we shall give a general minimax theorem to establish the existence of a
Palais--Smale sequence.

Definition 2.8 ([34, Definition 3.1]). Let \Theta be a closed subset of a metric space
X. We say that a class \scrF of compact subsets of X is a homotopy-stable family with
closed boundary \Theta provided that

(i) every set in \scrF contains \Theta ;
(ii) for any set H \in \scrF and any \eta \in C([0, 1]\times X,X) satisfying \eta (s, x) = x for all

(s, x) \in (\{ 0\} \times X) \cup ([0, 1]\times \Theta ), we have that \eta (\{ 1\} \times H) \in \scrF .
Lemma 2.9 ([34, Theorem 3.2]). Let \varphi be a C1-functional on a complete con-

nected C1-Finsler manifold X (without boundary), and consider a homotopy-stable
family \scrF of compact subsets of X with a closed boundary \Theta . Set

d = d(\varphi ,\scrF ) = inf
H\in \scrF 

max
u\in H

\varphi (u)

and suppose that sup\varphi (\Theta ) < d. Then for any sequence of sets \{ Hn\} in \scrF such that
limn\rightarrow \infty supHn

\varphi = d, there exists a sequence \{ un\} in X such that (i) limn\rightarrow \infty \varphi (un) =
d; (ii) limn\rightarrow \infty \| \varphi \prime (un)\| = 0; (iii) limn\rightarrow \infty dist(un, Hn) = 0.
Moreover, if \varphi \prime is uniformly continuous, then un can be chosen to be in Hn for each
n.

3. The case 2 < \bfitq < \bfitq .

Lemma 3.1. Let \gamma , \mu > 0 and 2 < q < q. Then the following statements are true.
(i) The functional E2\alpha ,q is bounded below and coercive on S(c).
(ii) \sigma (c) < \sigma (\eta ) + \sigma (c - \eta ) for 0 < \eta < c, where \sigma (c) is defined as (1.7).

Proof. (i) By (2.1), (2.2), and (2.5) one has

E2\alpha ,q(u) =
1

2
A(u) - \gamma 

22\alpha 
B(u) - \mu 

q
C(u)

\geq 1

2
A(u) - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha  - \mu S

q
c

2N - q(N - 2)
2 A(u)

N(q - 2)
4 ,
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which implies that the functional E2\alpha ,q is bounded below and coercive on S(c).
(ii) Let \{ un\} \subset S(c) be a bounded minimizing sequence for \sigma (c). Then for any

\theta > 0 and u \in S(c), it holds that \theta u \in S(\theta 2c) and

E2\alpha ,q(\theta un) - \theta 2E2\alpha ,q(un) =
\theta 2  - \theta 22\alpha 

2p
\gamma B(un) +

\theta 2  - \theta q

q
\mu C(un).

If we choose \theta > 1, then it is clear that E2\alpha ,q(\theta un) < \theta 2E2\alpha ,q(un) by using the above
inequality. This implies that \sigma (\theta 2c) \leq \theta 2\sigma (c), where the equality holds if and only if
B(un) + C(un) \rightarrow 0 as n\rightarrow \infty . But this is not possible, since otherwise we find that

0 > \sigma (c) = lim
n\rightarrow \infty 

E2\alpha ,q(un) \geq lim inf
n\rightarrow \infty 

1

2
A(un) \geq 0.

Without loss of generality, we may assume that 0 < \eta < c - \eta ; then

\sigma (c) <
c

c - \eta 
\sigma (c - \eta ) = \sigma (c - \eta ) +

\eta 

c - \eta 
\sigma (c - \eta ) < \sigma (c - \eta ) + \sigma (\eta ).

We complete the proof.

Lemma 3.2. Assume that \gamma > 0 and 2 < q < q. Let \{ un\} \subset H1(\BbbR N ) be a
sequence such that E2\alpha ,q(un) \rightarrow \sigma (c) and \| un\| 2 \rightarrow c. Then there exists a constant
\mu 0 > 0 such that for every \mu > \mu 0, the sequence \{ un\} is relatively compact in H1(\BbbR N )
up to translations, that is, there exist a subsequence, still denoted by \{ un\} , a sequence
of points \{ yn\} \subset \BbbR N , and a function u0 \in S(c) such that un(\cdot + yn) \rightarrow u0 strongly in
H1(\BbbR N ).

Proof. First of all, we claim that there exists a constant \mu 0 > 0 such that for
every \mu > \mu 0,

\sigma (c) <  - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha .(3.1)

Indeed, let us fix a u \in S(c). Then there exists a constant \mu 0 > 0 sufficiently large
such that

1

2
A(u) +

\gamma 

22\alpha 
(S - 2\alpha 

\alpha c22\alpha  - B(u)) - \mu 0

q
C(u) < 0.

Thus for every \mu > \mu 0, we have

\sigma (c) \leq E2\alpha ,q(u) =
1

2
A(u) - \gamma 

22\alpha 
B(u) - \mu 

q
C(u)

=
1

2
A(u) +

\gamma 

22\alpha 
(S - 2\alpha 

\alpha c22\alpha  - B(u)) - \mu 

q
C(u) - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha 

<  - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha .

From Lemma 3.1 it follows that the sequence \{ un\} is bounded in H1(\BbbR N ). Then
according to the concentration-compactness principle [21], there exists a subsequence,
still denoted by \{ un\} , satisfying one of the following three possibilities:

(i) Vanishing:

lim
n\rightarrow \infty 

sup
y\in \BbbR N

\int 
BR(y)

| un| 2dx = 0 for R > 0.
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(ii) Dichotomy: there exists 0 < \eta < c and \{ u(1)n \} , \{ u(2)n \} bounded in H1(\BbbR N )
such that as n\rightarrow \infty ,

\| un - (u(1)n +u(2)n )\| r \rightarrow 0 for 2 \leq r < 2\ast , and dist(suppu(1)n , suppu(2)n ) \rightarrow +\infty ;

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR N

| u(1)n | 2dx - \eta 

\bigm| \bigm| \bigm| \bigm| \rightarrow 0 and

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR N

| u(2)n | 2dx - (c - \eta )

\bigm| \bigm| \bigm| \bigm| \rightarrow 0;

lim inf
n\rightarrow \infty 

\int 
\BbbR N

(| \nabla un| 2  - | \nabla u(1)n | 2  - | \nabla u(2)n | 2)dx \geq 0.

(iii) Compactness: there exists yn \in \BbbR N such that for all \varepsilon > 0, there exists R > 0,\int 
BR(yn)

| un| 2dx \geq c - \varepsilon .

We firstly verify that the vanishing cannot occur. Suppose the contrary. Then un \rightarrow 0
strongly in Ls(\BbbR N ) for 2 < s < 2\ast . Using this together with (2.1) and (2.5) gives

\sigma (c) + on(1) = E2\alpha ,q(un) =
1

2
A(un) - 

\gamma 

22\alpha 
B(un) - 

\mu 

q
C(un)

\geq 1

2
A(un) - 

\gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha + on(1)

\geq  - 1

22\alpha 
S - 2\alpha 
\alpha c22\alpha + on(1),

which contradicts (3.1).
Also dichotomy cannot occur, since otherwise

\sigma (c) = lim
n\rightarrow \infty 

E2\alpha ,q(un) \geq lim
n\rightarrow \infty 

E2\alpha ,q(u
(1)
n ) + lim

n\rightarrow \infty 
E2\alpha ,q(u

(2)
n ) \geq \sigma (\eta ) + \sigma (c - \eta ),

where we have used Lemma 2.5. This contradicts Lemma 3.1. So the compactness
holds, namely, there exist subsequences \{ un\} , \{ yn\} \subset \BbbR N , and u0 \in S(c) such that
un := un(\cdot + yn) \rightarrow u0 in Ls(\BbbR N ) for 2 \leq s < 2\ast , which implies that B(un) \rightarrow B(u0)
by (2.4). Hence, we have

\sigma (c) \leq E2\alpha ,q(u0) \leq lim inf
n\rightarrow \infty 

E2\alpha ,q(un) = lim inf
n\rightarrow \infty 

E2\alpha ,q(un) = \sigma (c).

This shows that u0 is a minimizer for \sigma (c). We complete the proof.

Now, we give the proof of Theorem 1.2. It follows from Lemma 3.2 that for
every \mu > \mu 0, there exists a global minimizer u0 for E2\alpha ,q on S(c). In other words,
the infimum \sigma (c) <  - \gamma 

22\alpha 
S - 2\alpha 
\alpha c22\alpha is achieved by u0 \in S(c) which is a ground state

of problem (1.5). Let | u0| \ast denote the Schwartz rearrangement of | u0| . Then

D(| u0| \ast ) = D(u0) = c2, A(| u0| \ast ) \leq A(u0), C(| u0| \ast ) = C(| u0| \ast ).(3.2)

By Riesz's rearrangement inequality (see [22, section 3.7]), we get

B(| u0| \ast ) \geq B(u0).(3.3)
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This implies that | u0| \ast \in S(c) and E2\alpha ,q(| u0| \ast ) \leq E2\alpha ,q(u0) = \sigma (c). By the definition
of \sigma (c), we know that \sigma (c) is achieved by the real-valued positive and radially sym-
metric nonincreasing function. Moreover, since u0 is a critical point of E2\alpha ,q restricted
to S(c), there exists a Lagrange multiplier \lambda c \in \BbbR such that E\prime 

2\alpha ,q(u0) + \lambda cu0 = 0.
Then we have

\lambda cc
2 =  - A(u0) + \gamma B(u0) + \mu C(u0)

=  - 2\sigma (c) +
\gamma (2\alpha  - 1)

2\alpha 
B(u0) +

\mu (q  - 2)

q
C(u0)

>  - 2\sigma (c),

which implies that

\lambda c >
\gamma 

2\alpha 
S - 2\alpha 
\alpha c2(2\alpha  - 1),

where we have used (3.1). We complete the proof.

4. The case \bfitq = \bfitq .

Proof of Theorem 1.4. Let u \in S(c) and t > 0. By (2.2) and (2.9) we have

g\prime u(t) = tA(u) - \mu N

(N + 2)
tC(u)

\geq tA(u) - \mu NS

(N + 2)
c

4
N tA(u)

=

\biggl[ 
1 - \mu NS

(N + 2)
c

4
N

\biggr] 
tA(u)

> 0 if \mu <
(N + 2)

NS
c - 

4
N .

This shows that the fiber map gu(t) is strictly increasing and so the functional E2\alpha ,q

has no critical point on S(c) for \mu < (N+2)

NS
c - 

4
N . In other words, problem (1.5) has no

solution for any \lambda \in \BbbR . We complete the proof of Theorem 1.4.

5. The case \bfitq < \bfitq \leq 2\ast . For the case of q < q \leq 2\ast , the functional E2\alpha ,q will
be no longer bounded from below on S(c), and so it will not be possible to obtain
a global minimizer. In this section, in order to find critical points of E2\alpha ,q, we shall
restrict it to a natural constraint manifold \scrM q(c) defined in section 2, on which E2\alpha ,q

is bounded below.

Lemma 5.1. Assume that \gamma , \mu > 0 and q < q \leq 2\ast . Then there exists a unique
t - (u) > 0 such that ut - (u) \in \scrM q(c) = \scrM  - 

q (c) and

E2\alpha ,q(ut - (u)) = sup
t>0

E2\alpha ,q(ut) > 0.

Proof. Clearly, \scrM q(c) = \scrM  - 
q (c) by (2.11). Fix u \in S(c). Let

h(t) :=
2q

\mu N(q  - 2)
A(u)t

4 - N(q - 2)
2 for t > 0.

Then ut \in \scrM q(c) if and only if h(t) = C(u). A direct calculation shows that
limt\rightarrow 0+ h(t) = \infty , limt\rightarrow +\infty h(t) = 0, and h(t) is decreasing on (0,+\infty ). This implies
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that there exists a unique t - (u) > 0 such that ut - (u) \in \scrM q(c). Moreover, we also
obtain that g\prime u(t) > 0 on (0, t - (u)) and g\prime u(t) < 0 on (t - (u),+\infty ), which indicates
that

E2\alpha ,q(ut - (u)) = sup
t>0

E2\alpha ,q(ut) > 0.

We complete the proof.

Lemma 5.2. Assume that \gamma , \mu > 0 and q < q \leq 2\ast . Then the functional E2\alpha ,q is
bounded below by a positive constant and coercive on \scrM q(c) for 0 < c < c\ast , where c\ast 
is as in (1.9).

Proof. Clearly, for u \in \scrM q(c) one has

A(u) - \mu N(q  - 2)

2q
C(u) = 0,(5.1)

which implies that

A(u) \geq 
\biggl( 

2q

\mu NS(q  - 2)
c - 

2N - q(N - 2)
2

\biggr) 4
N(q - 2) - 4

,(5.2)

where we have used Lemma 2.1. Then it follows from (2.1), (2.5), (5.1), and (5.2)
that

E2\alpha ,q(u) =
1

2
A(u) - \gamma 

22\alpha 
B(u) - \mu 

q
C(u)

=
N(q  - 2) - 4

2N(q  - 2)
A(u) - \gamma 

22\alpha 
B(u)

\geq N(q  - 2) - 4

2N(q  - 2)
A(u) - \gamma 

22\alpha 
S
 - N+\alpha 

N
\alpha c22\alpha 

\geq N(q  - 2) - 4

2N(q  - 2)

\biggl( 
2q

\mu NS(q  - 2)
c - 

2N - q(N - 2)
2

\biggr) 4
N(q - 2) - 4

 - \gamma 

22\alpha 
S
 - N+\alpha 

N
\alpha c22\alpha 

> 0,

provided that

c < c\ast =

\Biggl( 
(N + \alpha )(N(q  - 2) - 4)S

N+\alpha 
N

\alpha 

\gamma N2(q  - 2)

\Biggr) N(N(q - 2) - 4)
2N\alpha (q - 2)+4Nq - 8(N+\alpha )

\cdot 
\biggl( 

2q

\mu NS(q  - 2)

\biggr) 2N
N\alpha (q - 2)+2Nq - 4(N+\alpha )

.

We complete the proof.

We now work in the subspace of functions inH1(\BbbR N ) which are radially symmetric
with respect to 0, denoted by H1

r (\BbbR N ), and we define

Sr(c) := S(c) \cap H1
r (\BbbR N ) and\scrM r

q(c) := \scrM q(c) \cap H1
r (\BbbR N ).(5.3)

Lemma 5.3. Assume that \gamma , \mu > 0 and q < q \leq 2\ast . Then for 0 < c < c\ast , we have

mq(c) := inf
u\in \scrM q(c)

E2\alpha ,q(u) = inf
u\in \scrM r

q(c)
E2\alpha ,q(u) > 0.
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Proof. The proof follows the idea of [14]. Since \scrM r
q(c) \subset \scrM q(c), we have

inf
u\in \scrM q(c)

E2\alpha ,q(u) \leq inf
u\in \scrM r

q(c)
E2\alpha ,q(u).

Next, let us prove that infu\in \scrM q(c)E2\alpha ,q(u) \geq infu\in \scrM r
q(c)

E2\alpha ,q(u). By Lemma 5.1, we
have

inf
u\in \scrM r

q(c)
E2\alpha ,q(u) = inf

u\in S(c)
sup

0<t\leq t - (u)

E2\alpha ,q(ut).(5.4)

Let u \in S(c) and | u| \ast \in Sr(c) be the Schwartz rearrangement of | u| . Then by
(3.2) and (3.3), for all t > 0, we have

E2\alpha ,q((| u| \ast )t) =
t2

2
A(| u| \ast ) - \gamma 

22\alpha 
B(| u| \ast ) - \mu tN(q - 2)/2

q
C(| u| \ast )

\leq t2

2
A(u) - \gamma 

22\alpha 
B(u) - \mu tN(q - 2)/2

q
C(u)

= E2\alpha ,q(ut).(5.5)

Note that g\prime | u| \ast (0) = g\prime u(0) = 0 and g\prime \prime | u| \ast (t) \leq g\prime \prime u(t) for t > 0. This implies that

0 < t - (| u| \ast ) \leq t - (u). Hence, it follows from (5.5) that

sup
0<t\leq t - (| u| \ast )

E2\alpha ,q((| u| \ast )t) \leq sup
0<t\leq t - (u)

E2\alpha ,q(ut).

Using this, together with (5.4), leads to

inf
u\in \scrM q(c)

E2\alpha ,q(u) \geq inf
u\in \scrM r

q(c)
E2\alpha ,q(u),

implying that infu\in \scrM q(c)E2\alpha ,q(u) = infu\in \scrM r
q(c)

E2\alpha ,q(u) > 0, where we have also used
Lemma 5.2. We complete the proof.

Next, we establish the existence of a Palais--Smale sequence \{ un\} \subset \scrM r
q(c) for

E2\alpha ,q restricted to Sr(c) at level mq(c). Our arguments are inspired by [7]. Observe
that \Theta = \emptyset is admissible. Now we define the functional J : Sr(c) \mapsto \rightarrow \BbbR by

J(u) = E2\alpha ,q(ut - (u)).

Lemma 5.4. The map u \in Sr(c) \mapsto \rightarrow t - (u) \in \BbbR is of class C1.

Proof. By a direct application of the implicit function theorem on the C1 function
F : \BbbR \times Sr(c) \rightarrow \BbbR defined by F (t, u) = g\prime u(t), we easily reach the conclusion.

By the above lemma, we obtain that the functional J is of class C1.

Lemma 5.5. The map \Psi : TuSr(c) \rightarrow Tut - (u)
Sr(c) defined by \psi \rightarrow \psi t - (u) is an

isomorphism, where TuSr(c) denotes the tangent space to Sr(c) in u.

Proof. For \psi \in TuSr(c), we have\int 
\BbbR N

ut - (u)(x)\psi t - (u)(x)dx =

\int 
\BbbR N

(t - (u))N/2u(t - (u)x)(t - (u))N/2\psi (t - (u)x)dx

=

\int 
\BbbR N

u(y)\psi (y)dy = 0,
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NORMALIZED SOLUTIONS 3711

which implies that \psi t - (u) \in Tut - (u)
Sr(c), and thus the map \Psi is well defined. More-

over, for all \psi 1, \psi 2 \in TuSr(c) and all k \in \BbbR , it holds that

\Psi (\psi 1 + \psi 2) = (\psi 1 + \psi 2)t - (u)

= (t - (u))N/2(\psi 1(t
 - (u)x) + \psi 2(t

 - (u)x))

= (\psi 1)t - (u) + (\psi 2)t - (u)

= \Psi (\psi 1) + \Psi (\psi 2)

and \Psi (k\psi 1) = (k\psi 1)t - (u) = k(\psi 1)t - (u) = k\Psi (\psi 1). This shows that the map \Psi is
linear. Finally, let us claim that the map \Psi is a bijection. For all \psi 1, \psi 2 \in TuSr(c)
with \psi 1 \not = \psi 2, by the fact of t - u > 0, we have

\Psi (\psi 1) = (t - (u))N/2\psi 1(t
 - (u)x) \not = (t - (u))N/2\psi 2(t

 - (u)x) = \Psi (\psi 2).

Moreover, let \chi \in Tut - (u)
Sr(c). Clearly, ((t

 - (u)) - N/2\chi ( x
t - (u) ))t - (u) = \chi (x) and\int 

\BbbR N

(t - (u)) - N/2\chi 

\biggl( 
x

t - (u)

\biggr) 
u(x)dx =

\int 
\BbbR N

\chi (y)(t - (u))N/2u(t - (u)y)dy

=

\int 
\BbbR N

\chi (y)ut - (u)(y)dy = 0,

leading to (t - (u)) - N/2\chi ( x
t - (u) ) \in TuSr(c). So, \Psi is a bijection. We complete the

proof.

Lemma 5.6. It holds that

(J)\prime (u)[\psi ] = E\prime 
2\alpha ,q(ut - (u))[\psi t - (u)]

for any u \in Sr(c) and \psi \in TuSr(c).

Proof. The proof is similar to that of [7, Lemma 3.15]; we omit it here.

Lemma 5.7. Let \scrF be a homotopy-stable family of compact subsets of Sr(c) with
closed boundary \Theta , and let

e\scrF := inf
H\in \scrF 

max
u\in H

J(u).

Assume that \Theta is contained in a connected component of \scrM r
q(c) and

max\{ sup J(\Theta ), 0\} < e\scrF <\infty .

Then there exists a Palais--Smale sequence \{ un\} \subset \scrM r
q(c) for E2\alpha ,q restricted to Sr(c)

at level e\scrF .

Proof. Using Lemmas 5.5 and 5.6, similar to the arguments of [7, Lemma 3.16],
we easily obtain the conclusion.

In view of Lemma 5.3 we have

e\scrF = inf
H\in \scrF 

max
u\in H

J(u) = inf
u\in Sr(c)

J(u) = inf
u\in \scrM r

q(c)
E2\alpha ,q(u) = inf

u\in \scrM q(c)
E2\alpha ,q(u) = mq(c).

Then the following lemma follows directly from Lemma 5.7.
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Lemma 5.8. Assume that \gamma , \mu > 0 and q < q \leq 2\ast . Then for 0 < c < c\ast , there
exists a Palais--Smale sequence \{ un\} \subset \scrM r

q(c) for E2\alpha ,q restricted to Sr(c) at the level
mq(c) > 0.

Lemma 5.9. Assume that \gamma , \mu > 0 and q < q < 2\ast . Let \{ un\} \subset \scrM r
q(c) be a

bounded Palais--Smale sequence for E2\alpha ,q restricted to Sr(c) at level mq(c) > 0. Then
there exists a constant \mu > 0 such that for every \mu > \mu , up to a subsequence, un \rightarrow \=u
strongly in H1

r (\BbbR N ) for 0 < c < c\ast .

Proof. Since \{ un\} \subset \scrM r
q(c) is a bounded Palais--Smale sequence of E2\alpha ,q re-

stricted to Sr(c), there exists \=u \in H1
r (\BbbR N ) such that un \rightharpoonup \=u weakly in H1

r (\BbbR N ),
un \rightarrow \=u strongly in Lr(\BbbR N ) for 2 < r < 2\ast , and a.e. in \BbbR N . Moreover, by the
Lagrange multipliers rule, there exists \lambda n \in \BbbR such that for every \varphi \in H1

r (\BbbR N ),\int 
\BbbR N

(\nabla un\nabla \varphi + \lambda nun\varphi )dx - \gamma 

\int 
\BbbR N\times \BbbR N

u2\alpha n u2\alpha  - 2
n

| x - y| N - \alpha 
un\varphi dx

 - \mu 
\int 
\BbbR N

| un| q - 2un\varphi dx = o(1)\| \varphi \| ,

which implies that

\lambda nc
2 = \lambda nD(un) = \gamma B(un) + \mu C(un) - A(un) + o(1).(5.6)

This indicates that \{ \lambda n\} is bounded. Then we can assume that \lambda n \rightarrow \=\lambda \in \BbbR . It
follows from (5.6) and the fact of Qq(un) = o(1) that

\=\lambda c2 = lim
n\rightarrow \infty 

\lambda nc
2 = lim

n\rightarrow \infty 

\biggl[ 
\gamma B(un) +

2N  - q(N  - 2)

2q
\mu C(un)

\biggr] 
\geq 0,(5.7)

which shows that \=\lambda \geq 0. We now claim that \=\lambda \not = 0. Otherwise, it follows from
(5.7) that B(un) = C(un) = o(1), and together with Qq(un) = o(1), leading to
A(un) = o(1). Thus, we have E2\alpha ,q(un) = o(1), which contradicts mq(c) > 0. Hence,
\=\lambda > 0.

Next, we claim that \=u \not = 0. Otherwise, we have A(un) = C(un) = o(1), which
implies that

l := lim
n\rightarrow \infty 

\gamma B(un) = lim
n\rightarrow \infty 

\lambda nD(un) = \=\lambda c > 0,

where we have used (5.6). By (2.5) we deduce that l \geq \gamma  - 
N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha . Then we get

mq(c) +
\=\lambda 

2
c2 = lim

n\rightarrow \infty 

\biggl( 
E2\alpha ,q(un) +

\lambda n
2
D(un)

\biggr) 
= lim

n\rightarrow \infty 

\biggl( 
\lambda n
2
D(un) - 

\gamma 

22\alpha 
B(un)

\biggr) 
= lim

n\rightarrow \infty 

\alpha \gamma 

2(N + \alpha )
B(un)

\geq \alpha 

2(N + \alpha )
\gamma  - 

N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha .(5.8)

On the other hand, we use v\varepsilon := c V\varepsilon 

\| V\varepsilon \| 2
to estimate mq(c) +

\=\lambda 
2 c

2, where V\varepsilon is defined

as (2.6). We note that \| V\varepsilon \| 2 is a positive constant independent \varepsilon ,\int 
\BbbR N

| \nabla V\varepsilon | 2dx = \=C\varepsilon 2, and

\int 
\BbbR N

| V\varepsilon | qdx = \=C\varepsilon 
(q - 2)N

2 .
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NORMALIZED SOLUTIONS 3713

Clearly, \| v\varepsilon \| 2 = c. By Lemma 5.1, there exists a unique constant t - \varepsilon > 0 independent
of \varepsilon such that (v\varepsilon )t - \varepsilon \in \scrM q(c) and

E2\alpha ,q((v\varepsilon )t - \varepsilon ) = sup
t\geq 0

E2\alpha ,q((v\varepsilon )t),

leading to

mq(c) \leq sup
t\geq 0

E2\alpha ,q((v\varepsilon )t).(5.9)

Moreover, a direct calculation shows that

\=\lambda c2

2\| V\varepsilon \| 22

\int 
\BbbR N

| V\varepsilon | 2dx - \gamma c22\alpha 

22\alpha \| V\varepsilon \| 22\alpha 2

\int 
\BbbR N\times \BbbR N

| V\varepsilon | 2\alpha | V\varepsilon | 2\alpha 
| x - y| N - \alpha 

dxdy

=
\=\lambda c2

2\| V\varepsilon \| 22

\int 
\BbbR N

| V\varepsilon | 2dx - \gamma c22\alpha 

22\alpha \| V\varepsilon \| 22\alpha 2

S - 2\alpha 
\alpha 

\biggl( \int 
\BbbR N

| V\varepsilon | 2dx
\biggr) 2\alpha 

\leq \alpha 

2(N + \alpha )
\gamma  - 

N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha .(5.10)

Then it follows from (5.9) and (5.10) that there exists a constant \=\mu > 0 such that for
every \mu > \=\mu ,

mq(c) +
\=\lambda 

2
c2 \leq E2\alpha ,q((v\varepsilon )t - \varepsilon ) +

\=\lambda 

2
c2

= E2\alpha ,q((v\varepsilon )t - \varepsilon ) +
\=\lambda 

2

\int 
\BbbR N

| v\varepsilon | 2dx

=
(t - \varepsilon )

2

2

\int 
\BbbR N

| \nabla v\varepsilon | 2dx+
\=\lambda 

2

\int 
\BbbR N

| v\varepsilon | 2dx - \gamma 

22\alpha 

\int 
\BbbR N\times \BbbR N

| v\varepsilon | 2\alpha | v\varepsilon | 2\alpha 
| x - y| N - \alpha 

dxdy

 - \mu (t
 - 
\varepsilon )

(q - 2)N
2

q

\int 
\BbbR N

| v\varepsilon | qdx

=
(t - \varepsilon )

2c2

2\| V\varepsilon \| 22

\int 
\BbbR N

| \nabla V\varepsilon | 2dx+
\=\lambda c2

2\| V\varepsilon \| 22

\int 
\BbbR N

| V\varepsilon | 2dx

 - \gamma c22\alpha 

22\alpha \| V\varepsilon \| 22\alpha 2

\int 
\BbbR N\times \BbbR N

| V\varepsilon | 2\alpha | V\varepsilon | 2\alpha 
| x - y| N - \alpha 

dxdy  - \mu cq(t - \varepsilon )
(q - 2)N

2

q\| V\varepsilon \| q2

\int 
\BbbR N

| V\varepsilon | qdx.

<
c2C(t - \varepsilon )

2

2\| V\varepsilon \| 22
\varepsilon 2  - \mu cqC(t - \varepsilon )

(q - 2)N
2

q\| V\varepsilon \| q2
\varepsilon 

(q - 2)N
2 +

\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha 

<
\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha ,(5.11)

which contradicts (5.8). So \=u \not = 0.
By weak convergence, we have

 - \Delta \=u+ \=\lambda \=u = \gamma (I\alpha \ast | \=u| 2\alpha )| \=u| 2\alpha  - 2\=u+ \mu | \=u| q - 2\=u in\BbbR N ,

and so Q2\alpha ,q(\=u) = 0. Let vn := un  - \=u. Then it holds that

A(un) = A(\=u) +A(vn) + o(1)(5.12)
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and

B(un) = B(\=u) +B(vn) + o(1)

by Lemma 2.5. Since Qq(un) = o(1) and C(un) = C(\=u) + o(1), by (5.12) we deduce
that

A(\=u) +A(vn) =
\mu N(q  - 2)

2p
C(\=u) + o(1).

Note that Qq(\=u) = A(\=u) - \mu N(q - 2)
22\alpha 

C(\=u) = 0. Then A(vn) = o(1). Using this, together
with C(vn) = o(1) and

A(vn) + \lambda nD(vn) = \gamma B(vn) + \mu C(vn) + o(1),

gives

\=l := lim
n\rightarrow \infty 

\lambda nD(vn) = lim
n\rightarrow \infty 

\gamma B(vn),

implying that either \=l = 0 or \=l \geq \gamma  - 
N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha , where we have used (2.5). If \=l = 0,

clearly un \rightarrow \=u in H1(\BbbR N ). If \=l \geq \gamma  - 
N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha , then we have

mq(c) +
\=\lambda 

2
c2 = mq(c) +

1

2
lim
n\rightarrow \infty 

\lambda nD(un)

\geq mq(c) +
1

2
lim
n\rightarrow \infty 

\lambda nD(vn)

= E2\alpha ,q(\=u) + lim
n\rightarrow \infty 

\biggl( 
E2\alpha ,q(vn) +

\lambda n
2
D(vn)

\biggr) 
= E2\alpha ,q(\=u) + lim

n\rightarrow \infty 

\biggl( 
\lambda n
2
D(vn) - 

\gamma 

22\alpha 
B(vn)

\biggr) 
= E2\alpha ,q(\=u) + lim

n\rightarrow \infty 

\gamma \alpha 

2(N + \alpha )
B(vn)

\geq E2\alpha ,q(\=u) +
\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha (\lambda S\alpha )

N+\alpha 
\alpha 

>
\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha (\lambda S\alpha )

N+\alpha 
\alpha ,(5.13)

where we have used the fact of E2\alpha ,q(\=u) > 0. In fact, similar to the argument of
Lemma 5.2, by the fact that Qq(\=u) = 0 and \| \=u\| 2 \leq c, we easily obtain E2\alpha ,q(\=u) > 0
for 0 < c < c\ast . Finally, repeating the same argument as proving \=u \not = 0, we use v\varepsilon to
deduce that for every \mu > \=\mu ,

mq(c) +
\=\lambda 

2
c2 <

\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha 

\bigl( 
\=\lambda S\alpha 

\bigr) N+\alpha 
\alpha ,

contradicting (5.13). Therefore, un \rightarrow \=u in H1(\BbbR N ). The proof is complete.

Proof of Theorem 1.5. By Lemmas 5.2 and 5.8, for 0 < c < c\ast , there exists
a bounded Palais--Smale sequence \{ un\} \subset \scrM r

q(c) for E2\alpha ,q restricted to Sr(c) at
the level mq(c). Thus it follows from Lemma 5.9 that there exists a constant \=\mu > 0
such that for every \mu > \=\mu , up to a subsequence, un \rightarrow \=u strongly in H1(\BbbR N ) for
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0 < c < c\ast , and together with Lemma 5.3, showing that \=u is a ground state solution
of problem (1.5) for some \=\lambda > 0, which is radially symmetric. Let | u| \ast be the Schwartz
symmetrization rearrangement of | u| . By (3.2), we have Qq(| u| \ast ) \leq 0, and there exists
a unique t \in (0, 1] such that Qq((| u| \ast )t) = 0. Thus (| u| \ast )t \in \scrM q(c), and we have

E2\alpha ,q(| u| \ast ) =
\mu (N(q  - 2) - 4)t

N(q - 2)
2

4q
C(| u| \ast ) - \gamma 

22\alpha 
B(| u| \ast )

\leq \mu (N(q  - 2) - 4)

4q
C(u) - \gamma 

22\alpha 
B(u) = E2\alpha ,q(u) = mq(c).

By the definition of mq(c), we know that mq(c) is achieved by the real-valued positive
and radially symmetric nonincreasing function.

Moreover, it follows from (2.7), (2.8), and (5.2) that

\=\lambda c2 =  - A(\=u) + \gamma B(\=u) + \mu C(\=u)

=
2N  - q(N  - 2)

N(q  - 2)
A(\=u) + \gamma B(\=u)

>
2N  - q(N  - 2)

N(q  - 2)

\biggl( 
2q

\mu NS(q  - 2)
c - 

2N - q(N - 2)
2

\biggr) 4
N(q - 2) - 4

,

which implies that

\=\lambda >
2N  - q(N  - 2)

N(q  - 2)

\biggl( 
2q

\mu NS(q  - 2)

\biggr) 4
N(q - 2) - 4

c - 
4(q - 2)

N(q - 2) - 4 .

We complete the proof.

At the end of this section, we study the case of q = 2\ast . First of all, we give a
property on mq(c) as follows.

Lemma 5.10. Assume that \gamma , \mu > 0 and q < q < 2\ast . Then we have

m2\ast (c) \geq lim sup
q\rightarrow 2\ast 

mq(c) > 0.

Proof. The proof is similar to that of [17, Lemma 3.1]; we omit it here.

Lemma 5.11 ([5, Radial Lemma A.IV]). Let N \geq 3 and 1 \leq s < +\infty . If
u \in Ls(\BbbR N ) is a radial nonincreasing function (that is, 0 \leq u(x) \leq u(y) if | x| \geq | y| ),
then one has

| u(x)| \leq | x|  - N/s

\biggl( 
N

| SN - 1| 

\biggr) 1/s

\| u\| s if x \not = 0,

where | SN - 1| is the area of the unit sphere in \BbbR N .

Lemma 5.12. Assume that q = 2\ast , 0 < c < min \{ c\ast , c\ast \} , and

\gamma \geq 

\Biggl[ 
\alpha NS

N+\alpha 
\alpha 

\alpha 

2SN/2(N + \alpha )

\Biggr] \alpha 
N

\mu 
\alpha (N - 2)

2N .

Then there exists \~\mu \geq \=\mu such that for every \mu > \~\mu , the infimum m2\ast (c) > 0 is achieved
by \~u, where \=\mu is as in Lemma 5.9. In addition, there exists \~\lambda > 0 such that (\~u, \~\lambda ) is
a solution to problem (1.5).
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Proof. Let qn \rightarrow 2\ast  - as n \rightarrow \infty ; by Theorem 1.5 and Lemma 5.10, for every
\mu > \=\mu , there exists a sequence of positive and radially nonincreasing functions \{ un :=
uqn\} \subset \scrM r

qn(c) such that

E2\alpha ,qn(un) = mqn(c) \leq m2\ast (c) + 1,

which implies that \{ un\} is bounded. Then there exists \^u \in H1
r (\BbbR N ) such that un \rightharpoonup \^u

in H1
r (\BbbR N ), un \rightarrow \^u in Ls(\BbbR N ) for 2 < s < 2\ast , and un \rightarrow \^u a.e. on \BbbR N . Moreover, by

the Lagrange multipliers rule there exists \lambda n \in \BbbR such that for every \varphi \in H1(\BbbR N ),\int 
\BbbR N

\nabla un\nabla \varphi dx+ \lambda n

\int 
\BbbR N

un\varphi dx - \gamma 

\int 
\BbbR N

\int 
\BbbR N

u2\alpha n u2\alpha  - 2
n

| x - y| N - \alpha 
un\varphi dx

 - \mu 
\int 
\BbbR N

| un| qn - 2un\varphi dx = o(1)\| \varphi \| .(5.14)

In particular, it holds that

\lambda nc
2 =  - \| \nabla un\| 22 + \gamma 

\int 
\BbbR N

\int 
\BbbR N

u2\alpha n u2\alpha n
| x - y| N - \alpha 

dx+ \mu 

\int 
\BbbR N

| un| qndx+ o(1),

which implies that \{ \lambda n\} is bounded. So there exists \^\lambda \in \BbbR such that \lambda n \rightarrow \^\lambda as
n\rightarrow \infty . Since Qqn(un) = o(1), one has

\^\lambda c2 = lim
n\rightarrow \infty 

\lambda nc
2 = lim

n\rightarrow \infty 

\biggl[ 
\gamma B(un) +

2N  - qn(N  - 2)

2qn
\mu 

\int 
\BbbR N

| un| qndx
\biggr] 
\geq 0,

leading to \^\lambda \geq 0. If \^\lambda = 0, then we get

B(un) =

\int 
\BbbR N

| un| qndx = o(1),

and further A(un) = o(1). This shows that Eqn(un) = o(1), which contradicts

lim infn\rightarrow \infty mqn(c) > 0. Thus, \^\lambda > 0.
Since qn \rightarrow 2\ast  - as n \rightarrow \infty and \varphi \in Ls(\BbbR N ) for s \in (1,\infty ), by the Young and

H\"older inequalities and Lemma 5.11, there exists a constant C1 > 0 independent of n
such that \bigm| \bigm| | un| qn - 2un\varphi 

\bigm| \bigm| \leq C1(| un| 2 - 1 + | un| 2
\ast  - 1)| \varphi | 

\leq C1(| x| 
2 - N

2 (2 - 1) + | x| 
2 - N

2 (2\ast  - 1))| \varphi | \in L1(\BbbR N ),

and together with the Lebesgue dominated convergence theorem, leading to\int 
\BbbR N

| un| qn - 2un\varphi dx\rightarrow 
\int 
\BbbR N

| \^u| 2
\ast  - 2\^u\varphi dx as n\rightarrow \infty .

Combining this with (5.14), we have

o(1) =

\int 
\BbbR N

\nabla un\nabla \varphi dx+ \lambda n

\int 
\BbbR N

un\varphi dx - \gamma 

\int 
\BbbR N

\int 
\BbbR N

u2\alpha n u2\alpha  - 2
n

| x - y| N - \alpha 
un\varphi dx

 - \mu 
\int 
\BbbR N

| un| qn - 2un\varphi dx

\rightarrow 
\int 
\BbbR N

\nabla \^u\nabla \varphi dx+ \^\lambda 

\int 
\BbbR N

\^u\varphi dx - \gamma 

\int 
\BbbR N

\int 
\BbbR N

\^u2\alpha \^u2\alpha  - 2

| x - y| N - \alpha 
\^u\varphi dx

 - \mu 
\int 
\BbbR N

| \^u| 2
\ast  - 2\^u\varphi dx
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as n\rightarrow \infty . That is, \^u is a weak solution of

 - \Delta u+ \^\lambda u = \gamma (I\alpha \ast | u| 2\alpha )| u| 2\alpha  - 2u+ \mu | u| 2
\ast  - 2u \forall x \in \BbbR N .

Thus, Q2\ast (\^u) = 0.
Next, we claim that \^u \not = 0. Otherwise, by using Qqn(un) = 0 and the Young

inequality,

| un| qn \leq 2\ast  - qn
2\ast  - s

| un| s +
qn  - s

2\ast  - s
| un| 2

\ast 
for qn < s < 2\ast ,

we have \int 
\BbbR N

| \nabla un| 2dx =
\mu N(qn  - 2)

2qn

\int 
\BbbR N

| un| qndx

\leq \mu N(qn  - 2)(qn  - s)

2qn(2\ast  - s)

\int 
\BbbR N

| un| 2
\ast 
dx+ o(1)

\leq \mu N(qn  - 2)(qn  - s)

2qn(2\ast  - s)

\biggl( \int 
\BbbR N | \nabla un| 2dx

S

\biggr) N
N - 2

+ o(1)

\leq \mu 

\biggl( \int 
\BbbR N | \nabla un| 2dx

S

\biggr) N
N - 2

+ o(1),(5.15)

where we have also used the fact of
\int 
\BbbR N | un| sdx = o(1) for qn < s < 2\ast . Since

lim infn\rightarrow \infty 
\int 
\BbbR N | \nabla un| 2dx > 0, it follows from (5.15) that

lim sup
n\rightarrow \infty 

\int 
\BbbR N

| \nabla un| 2dx \geq \mu  - N - 2
2 S

N
2 .(5.16)

By Lemma 5.10, (5.16), and the fact of Qqn(un) = o(1), one has

m2\ast (c) \geq lim sup
n\rightarrow \infty 

mqn(c)

= lim sup
n\rightarrow \infty 

\biggl[ 
1

2
A(un) - 

\gamma 

22\alpha 
B(un) - 

2

N(qn  - 2)
A(un)

\biggr] 
= lim sup

n\rightarrow \infty 

\biggl[ \biggl( 
1

2
 - 2

N(qn  - 2)

\biggr) 
A(un) - 

\gamma 

22\alpha 
B(un)

\biggr] 
= lim sup

n\rightarrow \infty 

\biggl[ \biggl( 
1

2
 - 2

N(2\ast  - 2)

\biggr) 
A(un) - 

\gamma 

22\alpha 
B(un)

\biggr] 
\geq 1

N
A(un) - 

\gamma 

22\alpha 
B(un)

\geq 1

N
\mu  - N - 2

2 S
N
2  - \gamma 

22\alpha 
S
 - N+\alpha 

N
\alpha c22\alpha .

Moreover, using the similar estimate on (5.11), we get

m2\ast (c) <
\alpha 

2(N + \alpha )
\gamma  - 

N
\alpha S

N+\alpha 
\alpha 

\alpha  - 1

2
c2.

But since

\gamma \geq 

\Biggl( 
\mu 

N - 2
2 \alpha NS

N+\alpha 
\alpha 

\alpha 

2SN/2(N + \alpha )

\Biggr) \alpha 
N

and 0 < c \leq c\ast :=

\biggl( 
N + \alpha 

N\gamma 

\biggr) N
2\alpha 

S
N+\alpha 
2\alpha 

\alpha ,
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we have

1

N
\mu  - N - 2

2 S
N
2  - \gamma 

22\alpha 
S
 - N+\alpha 

N
\alpha c22\alpha \geq \alpha 

2(N + \alpha )
\gamma  - 

N
\alpha S

N+\alpha 
\alpha 

\alpha  - 1

2
c2,

which is a contradiction. So \^u \not = 0.
Now, let us prove that m2\ast (c) is achieved. Set

\int 
\BbbR N | \^u| 2dx = a2 \leq c2, and define

\~u(x) =
\Bigl( a
c

\Bigr) N - 2
2

\^u
\Bigl( a
c
x
\Bigr) 
.

A direct calculation shows that\int 
\BbbR N

| \~u| 2dx = c2, C(\~u) = C(\^u), A(\~u) = A(\^u),(5.17)

and

B(\~u) =

\int 
\BbbR N

(I\alpha \ast | \~u| 2\alpha )| \~u| 2\alpha dx =
\Bigl( a
c

\Bigr)  - 2(N+\alpha )
N

B(\^u) \geq B(\^u).

Clearly, \~u \in Sr(c). Moreover, using (5.17) and the fact of Q2\ast (\^u) = 0 gives

A(\~u) = A(\^u) =
\mu N(2\ast  - 2)

22\ast 
C(\^u) =

\mu N(2\ast  - 2)

22\ast 
C(\~u),

which implies that \~u \in \scrM r
2\ast (c).

Since

N  - 2

2
A(\^u) +

\^\lambda N

2

\int 
\BbbR N

| \^u| 2dx - \gamma N

2
B(\^u) - \mu N

2\ast 
C(\^u) = 0,

we have

N  - 2

2
A(\~u) +

\^\lambda N

2

\Bigl( a
c

\Bigr) 2 \int 
\BbbR N

| \~u| 2dx =
\gamma N

2

\Bigl( a
c

\Bigr) 2(N+\alpha )
N

B(\~u) +
\mu N

2\ast 
C(\~u).(5.18)

Then by Lemma 5.10 and (5.18) one has

m2\ast (c) \leq E2\alpha ,2\ast (\~u)

=
1

2
A(\~u) - \gamma N

2(N + \alpha )
B(\~u) - \mu 

2\ast 
C(\~u)

= - 
\^\lambda N

2(N  - 2)

\Bigl( a
c

\Bigr) 2 \int 
\BbbR N

| \~u| 2dx+
\gamma N

2(N  - 2)

\Bigl( a
c

\Bigr) 2(N+\alpha )
N

B(\~u)

+
\mu N

2\ast (N  - 2)
C(\~u) - \gamma N

2(N + \alpha )
B(\~u) - \mu 

2\ast 
C(\~u)

=
\gamma N

2

\Biggl( 
1

N  - 2
 - 1

N + \alpha 

\Bigl( a
c

\Bigr)  - 2(N+\alpha )
N

\Biggr) 
B(\^u) +

2\mu 

2\ast (N  - 2)
C(\^u)

 - 
\^\lambda N

2(N  - 2)

\int 
\BbbR N

| \^u| 2dx
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=
\gamma N

2

\biggl( 
1

N  - 2
 - 1

N + \alpha 

\biggr) 
B(\^u) +

2\mu 

2\ast (N  - 2)
C(\^u)

+
\gamma N

2(N + \alpha )

\Biggl( 
1 - 

\Bigl( a
c

\Bigr)  - 2(N+\alpha )
N

\Biggr) 
B(\^u) - 

\^\lambda N

2(N  - 2)

\int 
\BbbR N

| \^u| 2dx

\leq lim inf
n\rightarrow \infty 

\biggl[ 
\gamma N

2

\biggl( 
1

N  - 2
 - 1

N + \alpha 

\biggr) 
B(un) +

2\mu 

qn(N  - 2)

\int 
\BbbR N

| un| qndx
\biggr] 

+
\gamma N

2(N + \alpha )

\Biggl( 
1 - 

\Bigl( a
c

\Bigr)  - 2(N+\alpha )
N

\Biggr) 
B(\^u) - 

\^\lambda N

2(N  - 2)
a2.

Note that

E2\alpha ,qn(un) +
\lambda nN

2(N  - 2)

\int 
\BbbR N

| un| 2dx

=
1

2
A(un) - 

\gamma N

2(N + \alpha )
B(un) - 

\mu 

qn

\int 
\BbbR N

| un| qndx+
\lambda nN

2(N  - 2)

\int 
\BbbR N

| un| 2dx

=
\gamma N

2(N  - 2)
B(un) +

\mu N

qn(N  - 2)

\int 
\BbbR N

| un| qndx - \gamma N

2(N + \alpha )
B(un) - 

\mu 

qn

\int 
\BbbR N

| un| qndx

=
\gamma N

2

\biggl( 
1

N  - 2
 - 1

N + \alpha 

\biggr) 
B(un) +

\mu 

qn

\biggl( 
N

N  - 2
 - 1

\biggr) \int 
\BbbR N

| un| qndx

=
\gamma N

2

\biggl( 
1

N  - 2
 - 1

N + \alpha 

\biggr) 
B(un) +

2\mu 

qn(N  - 2)

\int 
\BbbR N

| un| qndx.

Thus we have

m2\ast (c) \leq E2\alpha ,2\ast (\~u)

\leq lim inf
n\rightarrow \infty 

E2\alpha ,qn(un)

+
\^\lambda N

2(N  - 2)

\bigl( 
c2  - a2

\bigr) 
 - \gamma N

2(N + \alpha )

\Biggl( \Bigl( a
c

\Bigr)  - 2(N+\alpha )
N  - 1

\Biggr) 
B(\^u)

= lim inf
n\rightarrow \infty 

mqn(c) +
\^\lambda N

2(N  - 2)

\bigl( 
c2  - a2

\bigr) 
 - \gamma N

2(N + \alpha )

\Biggl( \Bigl( a
c

\Bigr)  - 2(N+\alpha )
N  - 1

\Biggr) 
B(\^u)

\leq lim sup
n\rightarrow \infty 

mqn(c) \leq m2\ast (c),

provided that

\^\lambda N

2(N  - 2)

\bigl( 
c2  - a2

\bigr) 
 - \gamma N

2(N + \alpha )

\Biggl( \Bigl( a
c

\Bigr)  - 2(N+\alpha )
N  - 1

\Biggr) 
B(\^u) \leq 0.

If a = c, then it is clear that m2\ast (c) is achieved by \~u (in fact \~u = \^u here) for all \gamma > 0.
If a < c, then m2\ast (c) is achieved by \~u when

\gamma \geq 
\^\lambda 
\bigl( 
c2  - a2

\bigr) 
(N + \alpha )

(N  - 2)

\biggl( \bigl( 
a
c

\bigr)  - 2(N+\alpha )
N  - 1

\biggr) 
B(\^u)

.

Note that

\gamma \geq 

\Biggl( 
\alpha NS

N+\alpha 
\alpha 

\alpha 

2SN/2(N + \alpha )

\Biggr) \alpha 
N

\mu 
\alpha (N - 2)

2N .
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Then there exists \~\mu \geq \=\mu such that for every \mu > \~\mu , the infimum m2\ast (c) is achieved
by \~u.

Since the infimum m2\ast (c) is achieved by \~u, there exist \~\lambda and \eta such that

 - \Delta \~u+ \~\lambda \~u - \gamma (I\alpha \ast | \~u| 2\alpha )| \~u| 2\alpha  - 2\~u - \mu | \~u| 2
\ast  - 2\~u = \eta 

\Bigl[ 
 - 2\Delta \~u - 2\ast \mu | \~u| 2

\ast  - 2\~u
\Bigr] 
,(5.19)

namely,

 - (1 - 2\eta )\Delta \~u+ \~\lambda \~u = \gamma (I\alpha \ast | \~u| 2\alpha )| \~u| 2\alpha  - 2\~u+ \mu (1 - 2\ast \eta )| \~u| 2
\ast  - 2\~u.

Similar to Lemma 2.6, \~u satisfies the Pohozaev identity as follows:

(1 - 2\eta )A(\~u) - \mu (1 - 2\ast \eta )C(\~u) = 0.

Using this, together with Q2\ast (\~u) = A(\~u) - \mu C(\~u) = 0, we deduce that

\eta \mu (2\ast  - 2)C(\~u) = 0,

leading to \eta = 0. Moreover, it follows from (5.19) and Q2\ast (\~u) = 0 that

\~\lambda =
1

c2
[ - A(\~u) + \gamma B(\~u) + \mu C(\~u)] =

\gamma 

c2
B(\~u) > 0.(5.20)

The proof is complete.

Proof of Theorem 1.6. By Lemma 5.12, we obtain that \~u is a ground state
solution to problem (1.5) for some \~\lambda > 0. Moreover, by (5.20) one has

\~\lambda =
1

c2
[ - A(\~u) + \gamma B(\~u) + \mu C(\~u)] =

\gamma 

c2
B(\~u) \leq \gamma S

 - N+\alpha 
N

\alpha .

We complete the proof.

6. Qualitative properties of the mappings \bfitsigma (\bfitc ) and \bfitm \bfitq (\bfitc ). This section
is devoted to the proof of Theorem 1.10.

(i) Assume that cn \rightarrow c as n\rightarrow \infty . It follows from the definition of \sigma (c) that for
any \varepsilon > 0, there exists un \in S(cn) such that

E2\alpha ,q(un) \leq \sigma (c) + \varepsilon .(6.1)

Let vn := c
cn
un. Taking into account that vn \in S(c) and c

cn
\rightarrow 1, we have

\sigma (c) \leq E2\alpha ,q(vn) = E2\alpha ,q(un) + o(1).(6.2)

Combining (6.1) and (6.2), one has

\sigma (c) \leq \sigma (cn) + \varepsilon + o(1).

By reversing the argument we get

\sigma (cn) \leq \sigma (c) + \varepsilon + o(1).

Therefore, since \varepsilon > 0 is arbitrary, we deduce that \sigma (cn) \rightarrow \sigma (c) as n\rightarrow \infty .
By Lemma 3.1(ii), we deduce that the map c \mapsto \rightarrow \sigma (c) is strictly decreasing.
(ii) Similar to the argument of (i), we easily obtain that c \mapsto \rightarrow mq (c) is a continuous

mapping. Next, let us prove that the function c \mapsto \rightarrow mq (c) is strictly decreasing. Let
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0 < c1 < c2. According to Lemma 5.1 and the definition of mq (c), there exists
\{ un\} \subset \scrM q (c1) such that

E2\alpha ,q (un) = max
t>0

E2\alpha ,q ((un)t) \leq mq (c1) +
1

n
.

Let

wn :=

\biggl( 
c2
c1

\biggr) 2 - N
2

un

\Biggl( \biggl( 
c2
c1

\biggr)  - 1

x

\Biggr) 
.

Then we have

A(wn) = A(un), B(wn) =

\biggl( 
c2
c1

\biggr) 2(N+\alpha )
N

B(un)

and

C(wn) =

\biggl( 
c2
c1

\biggr) 2N - q(N - 2)
2

C(un), D(wn) = c22.

Moreover, by Lemma 5.1, there exists tn > 0 such that (wn)tn \in \scrM q (c2) and

E2\alpha ,q((wn)tn) = max
t>0

E2\alpha ,q((wn)t).

Hence, we have

mq (c2) \leq E2\alpha ,q((wn)tn)

= E2\alpha ,q((un)tn) - 
\gamma 

2p

\left(  \biggl( c2
c1

\biggr) 2(N+\alpha )
N

 - 1

\right)  B(un)

 - \mu (tn)
N(q - 2)

2

q

\left(  \biggl( c2
c1

\biggr) 2N - q(N - 2)
2

 - 1

\right)  C(un)

\leq mq (c1) +
1

n
 - \gamma 

2p

\left(  \biggl( c2
c1

\biggr) 2(N+\alpha )
N

 - 1

\right)  B(un)

 - \mu (tn)
N(q - 2)

2

q

\left(  \biggl( c2
c1

\biggr) 2N - q(N - 2)
2

 - 1

\right)  C(un),

which implies that mq (c2) < mq (c1). We complete the proof.
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