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Abstract In this paper, we study a discrete nonlinear boundary value problem that
involves a nonlinear term oscillating near the origin and a power-type nonlinearity u p.
By using variational methods, we establish the existence of a sequence of non-negative
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194 M. Mălin, V. D. Rădulescu

1 Introduction and preliminary results

Let n ≥ 2 be an integer number and denote Z[1, n] := {1, . . . , n}. The discrete
Laplace operator is defined by

�u(k) = ∇(∇u(k + 1)),

where ∇ is the backward difference operator, namely

∇u(k) = u(k) − u(k − 1) for all k ∈ Z[1, n].

In this paper, we are interested in the existence of solutions solutions u =
(u(1), . . . , u(n)) ∈ R

T+ of the following problem

{−�u(k) = λa(k)u(k)p + f (u(k)) for all k ∈ Z[1, n],
u(0) = u(n + 1) = 0,

(Pλ)

where a = (a(1), . . . , a(n)) ∈ R
n , f : [0,+∞) → R is continuous, p > 0 and

λ ∈ R.
This problem is in relationship with the study of the properties of solitons in photo-

refractive media, see Krolikowski et al. [6]. We also refer to Eisenberg et al. [3] for
the first experimental study of discrete spatial solitons in nonlinear waveguide arrays
with Kerr nonlinearity. Soon thereafter, waveguides with a negative diffraction were
obtained, which enabled defocusing of light and paved the way to the discovery of the
discrete diffraction-managed spatial solitons. We refer to Pankov et al. [14] for related
results and for the qualitative analysis of solutions of discrete nonlinear Schrödinger
equations with saturable nonlinearity.

A thorough qualitative analysis of nonlinear discrete problems by using variational
methods is developed in the recentworks byRădulescu [15] andRădulescu andRepovš
[16]. See also Molica Bisci and Repovš [7,8].

Problem (Pλ) is the discrete version of the semilinear elliptic equation studied in
[5]. Moreover, this problem was recently extended by Molica Bisci, Rădulescu and
Servadei [9,10] to general classes of quasilinear elliptic equations.

Motivated by the studies in [5,9], we focus in the present paper on the case of non-
linear difference equations. We are concerned in the study of the number of solutions
of problem (Pλ) and of their behavior in the case when f oscillates near the origin.
Usually, equations involving oscillatory nonlinearities give infinitely many distinct
solutions (see [11,12]), but the presence of an additional term may alter the situation.

Define the vector space

H = {v = (v(0), v(1), . . . , v(n), v(n + 1)) ∈ R
n+2 such that v(0) = v(n + 1) = 0}.

Then H is a n-dimensional Hilbert space (see [1]) with the inner product

〈u, v〉 =
n+1∑
k=1

∇u(k)∇v(k), ∀ u, v ∈ H.
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Infinitely many solutions for a nonlinear difference . . . 195

The associated norm is defined by

‖u‖ =
(
n+1∑
k=1

|∇u(k)|2
)1/2

.

For all u ∈ H we set

‖v‖∞ = max
k∈Z[1,n]

|v(k)|. (1.1)

Since H is finite-dimensional, the norms ‖ · ‖ and ‖ · ‖∞ are equivalent on H .

Definition 1.1 We say that u ∈ H is a weak solution for the problem (Pλ) if

n+1∑
k=1

∇u(k)∇v(k) − λ

n∑
k=1

a(k)u(k)pv(k) −
n∑

k=1

f (u(k))v(k) = 0, (1.2)

for all v ∈ H.

Remark 1.2 Note that (1.2) can be obtained by multiplying (Pλ) with v(k) for all
k ∈ Z[1, n] and summing up from k = 0 to k = n + 1. By taking into account that
v(0) = v(n + 1) = 0 and using some simple computations we deduce the variational
characterization of weak solutions from (1.2).

2 Main results

Throughout this paper, we assume that f : [0,+∞) → R is a continuous function

and we denote for all s ∈ (0,+∞), F(s) :=
s∫
0

f (t)dt.

We assume that f oscillates near the origin, namely the following conditions are
fulfilled:

( f 01 ) −∞ < lim inf
s→0+

F(s)
s2

; lim sup
s→0+

F(s)
s2

> 1
n ;

( f 02 ) l0 := lim inf
s→0+

f (s)
s < 0.

Example 2.1 Let α > 1, β ∈ R and γ > 0. Define f0 : [0,+∞) → R by

f0(s) =
{
0 if s = 0,
s(1 + α sin(βs−γ )) if s > 0,

Then f0 satisfies assumptions ( f 01 ) and ( f 02 ).

Remark 2.2 Hypotheses ( f 01 ) and ( f 02 ) imply that

f (0) = 0. (2.1)
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196 M. Mălin, V. D. Rădulescu

We point out that condition ( f 01 ) allows us to deduce some information about the
number of solutions for problem (Pλ), while ( f 02 ) yields the existence of the solutions.

The main results in this paper distinguish between the superlinear case p ≥ 1 and
the sublinear setting that corresponds to p ∈ (0, 1).

Theorem 2.3 Let a = (a(1), . . . , a(n)) ∈ R
n, λ ∈ R and p ≥ 1. Assume that

f ∈ C([0,+∞);R) satisfies conditions ( f 01 ) and ( f 02 ). If either

(i) p = 1, l0 ∈ (−∞, 0) and λa(k) < λ0 for all k ∈ Z[1, n] and some λ0 ∈ (0,−l0)
or

(ii) p = 1, l0 = −∞ and λ ∈ R is arbitrary or
(iii) p > 1 and λ ∈ R is arbitrary,

then there exists a sequence {ui }i in H of non-negative, distinct weak solutions of
problem (Pλ) such that

lim
i→+∞ ‖ui‖ = lim

i→+∞ ‖ui‖∞ = 0. (2.2)

Theorem 2.4 Let a = (a(1), . . . , a(n)) ∈ R
n, λ ∈ R and 0 < p < 1. Assume

that f ∈ C([0,+∞);R) satisfies conditions ( f 01 ) and ( f 02 ). Then, for every n ∈ N,
there exists �n > 0 such that problem (Pλ) has at least n distinct weak solutions
u1,λ, . . . , un,λ ∈ H such that

‖ui,λ‖ <
1

i
and ‖ui,λ‖∞ <

1

i
, for any i = 1, . . . , n, (2.3)

provided λ ∈ [−�n,�n].

3 An auxiliary problem

Consider the problem

{−�u(k) + c(k)u(k) = g(k, u(k)), k ∈ Z[1, n],
u(0) = u(n + 1) = 0 .

(Pc
g )

Here, we assume that c = (c(1), . . . , c(n)) ∈ R
n is such that

min
k∈Z[1,n]

c(k) > 0, (3.1)

while g : Z[1, n]×[0,+∞) → R is a Carathéodory function satisfying the following
conditions

g(k, 0) = 0 for every k ∈ Z[1, n]; (3.2)

there exists Mg > 0 such that

|g(k, s)| ≤ Mg for every k ∈ Z[1, n] and all s ≥ 0; (3.3)
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Infinitely many solutions for a nonlinear difference . . . 197

there exist δ and η, with 0 < δ < η such that

g(k, s) ≤ 0 for every k ∈ Z[1, n] and all s ∈ [δ, η]. (3.4)

We extend the function g by taking g(k, s) = 0 for every k ∈ Z[1, n] and s ≤ 0.

Definition 3.1 By a weak solution for problem (Pc
g ) we understand a vector u ∈ H

such that for all v ∈ H

n+1∑
k=1

∇u(k)∇v(k) +
n∑

k=1

c(k)u(k)v(k) −
n∑

k=1

g(k, u(k))v(k) = 0.

Let Ec,g : H → R be the energy functional associated to problem (Pc
g ), namely

Ec,g(u) = 1

2
‖u‖2 + 1

2

n∑
k=1

c(k)u(k)2 −
n∑

k=1

G(k, u(k)), u ∈ H, (3.5)

where G(k, s) :=
s∫
0
g(k, t)dt for any s ∈ R and k ∈ Z[1, n].

Then Ec,g is well-defined, of class C1(H ;R) and

〈E ′
c,g(u), v〉 = 〈u, v〉 +

n∑
k=1

c(k)u(k)v(k) −
n∑

k=1

g(k, u(k))v(k), ∀u, v ∈ H.

Thus, the weak solutions of (Pc
g ) coincide with the critical points of Ec,g .

Finally, we introduce the set W η defined as follows

W η := {u ∈ H : ‖u‖∞ ≤ η},

where η is a positive parameter given in (3.4).
Since g(k, 0) = 0 for every k ∈ Z[1, n] by (3.2), then u ≡ 0 is clearly a weak

solution of problem (Pc
g ).

Theorem 3.2 Assume that c = (c(1), . . . , c(n)) ∈ R
n satisfies (3.1) and that g :

Z[1, n] × [0,+∞) → R is a Carathéodory function satisfying (3.2), (3.3) and (3.4).
Then

(a) the functional Ec,g is bounded from below on W η attaining its infimum at some
ũ ∈ W η;
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198 M. Mălin, V. D. Rădulescu

(b) ũ(k) ∈ [0, δ] for every k ∈ Z[1, n], where δ is the positive parameter given in
(3.4);

(c) ũ is a non-negative weak solution of problem (Pc
g ).

Proof (a) Since the norms ‖ · ‖∞ and ‖ · ‖ are equivalent in the finite-dimensional
space H , the setW η is compact in H . Combining this fact with the continuity of Ec.g ,

we infer that Ec,g

∣∣∣
W η

attains its infimum at ũ ∈ W η.

(b) Let δ be as in assumption (3.4) and let M := {k ∈ Z[1, n] : ũ(k) /∈ [0, δ]}.
Hence, arguing by contradiction, we suppose that M �= ∅. Define the truncation
functionγ : R → Rbyγ (s) := min{s+, δ},where s+ = max{s, 0} and setw := γ ◦ũ.
Since γ (0) = 0, we have w(0) = w(n + 1) = 0, so w ∈ H . Besides, 0 ≤ w(k) ≤ δ

for every k ∈ Z[1, n]. By assumption (3.4) we know that δ < η, and so w ∈ W η . We
introduce the sets M− := {k ∈ M : ũ(k) < 0} and M+ := {k ∈ M : ũ(k) > δ}.
Thus, M = M− ∪ M+ and we have that

w(k) =
⎧⎨
⎩
ũ(k) for all k ∈ Z[1, n] \ M,

0 for all k ∈ M−,

δ for all k ∈ M+.

Moreover, we have

Ec,g(w) − Ec,g(ũ) = 1

2

(
‖w‖2 − ‖ũ‖2

)
+ 1

2

n∑
k=1

c(k)[(w(k))2 − (ũ(k))2]

−
n∑

k=1

[G(k, w(k)) − G(k, ũ(k))]

=: 1
2
J1 + 1

2
J2 − J3. (3.6)

Since γ is a Lipschitz function with Lipschitz constant 1, and w = γ ◦ ũ, we have

J1 = ‖w‖2 − ‖ũ‖2 =
n+1∑
k=1

[|∇w(k)|2 − |∇ũ(k)|2]

=
n+1∑
k=1

[
|w(k) − w(k − 1)|2 − |ũ(k) − ũ(k − 1)|2

]
≤ 0. (3.7)

Since mink∈Z[1,n] c(k) > 0 by (3.1), we have

J2 =
n∑

k=1

c(k)[(w(k))2 − (ũ(k))2] =
∑
k∈M

c(k)[(w(k))2 − (ũ(k))2]

= −
∑
k∈M−

c(k)(ũ(k))2 +
∑
k∈M+

c(k)[δ2 − (ũ(k))2] ≤ 0. (3.8)
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Infinitely many solutions for a nonlinear difference . . . 199

Next, we estimate J3. Due to the fact that g(k, s) = 0 for all s ≤ 0 and for every
k ∈ Z[1, n], we have

∑
k∈M−

[
G(k, w(k)) − G(k, ũ(k))

] = 0. (3.9)

Moreover, by the mean value theorem, for every k ∈ M+, there exists θ(k) ∈
[δ, ũ(k)] ⊂ [δ, η] such that

G(k, w(k)) − G(k, ũ(k)) = G(k, δ) − G(k, ũ(k)) = g(k, θ(k))(δ − ũ(k)).

Thus, taking into account hypothesis (3.4) and definition of M+, we have
∑
k∈M+

[
G(k, w(k)) − G(k, ũ(k))

] ≥ 0. (3.10)

Hence, by (3.9) and (3.10), we obtain

J3 =
∑
k∈M+

[
G(k, w(k)) − G(k, ũ(k))

] ≥ 0. (3.11)

Combining relations (3.7), (3.8), (3.11) with (3.6), we get

Ec,g(w) − Ec,g(ũ) ≤ 0. (3.12)

On the other hand, since w ∈ W η, it is easy to see that Ec,g(w) ≥ Ec,g(ũ) =
infu∈W η Ec,g(u). By this and (3.12) we get that every term in Ec,g(w) − Ec,g(ũ)

should be zero. In particular, from J2 and due to (3.1), we have

∑
k∈M−

c(k)(ũ(k))2 =
∑
k∈M+

c(k)[δ2 − (ũ(k))2] = 0,

which implies that

ũ(k) =
{
0 for every k ∈ M−
δ for every k ∈ M+.

In view of the definition of the sets M− and M+, we deduce that M− = M+ = ∅,
which contradicts M− ∪ M+ = M �= ∅.

(c) Fix v ∈ H arbitrarily and let ε0 := η−δ
‖v‖∞+1 > 0, where δ and η are given as in

(3.4).Moreover, let I : [−ε0, ε0] → Rbe the functiondefined as I (ε) := Ec,g(ũ+εv).

First of all, thanks to (b), for any ε ∈ [−ε0, ε0] we have

|ũ(k) + εv(k)| ≤ ũ(k) + η − δ

‖v‖∞ + 1
‖v‖∞ ≤ η,
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200 M. Mălin, V. D. Rădulescu

for every k ∈ Z[1, n]. Thus, ũ + εv ∈ W η. Consequently, due to (a), we have I (ε) ≥
I (0) for every ε ∈ [−ε0, ε0], that is, 0 is an interior minimum point for I . Then
I ′(0) = 0 and 〈E ′

c,g(ũ), v〉 = 0. Taking into account that v ∈ H is arbitrary and using
the definition of Ec,g , we obtain that ũ is a weak solution of problem (Pc

g ). Moreover,
due to (b), ũ is non-negative in Z[1, n]. ��

Theorem 3.2 does not guarantee that the solution ũ of problem (Pc
g ) is not the

trivial one. In spite of this, by Theorem 3.2 we will derive the existence of nontrivial
solutions for the original problem (Pλ), provided that the nonlinear term f is chosen
appropriately. Finally, we define the continuous truncation function τη : [0,+∞) →
R as follows

τη(s) := min{η, s} for every s ≥ 0, (3.13)

where η is the positive constant given in assumption (3.4).

4 Oscillation near the origin

In order to prove Theorems 2.3 and 2.4, we consider problem (Pc
g ), where c =

(c(1), . . . , c(n)) ∈ R
n fulfills (3.1) and g : Z[1, n]×[0,+∞) → R is a Carathéodory

function which satisfies the following assumptions

g(k, 0) = 0 for all k ∈ Z[1, n], and there exist

s > 0 and M > 0 such that max
s∈[0,s] |g(k, s)| ≤ M, for all k ∈ Z[1, n]; (4.1)

there exist two sequences {δi }i and {ηi }i with 0 < ηi+1 < δi < ηi such that

lim
i→+∞ ηi = 0 and g(k, s) ≤ 0 for every k ∈ Z[1, n] and all s ∈ [δi , ηi ], i ∈ N;

(4.2)

−∞ < lim inf
s→0+

G(k, s)

s2
and lim sup

s→0+

G(k, s)

s2
>

1

n
uniformly for all k ∈ Z[1, n].

(4.3)

Proof of Theorem 2.3 We first show that under suitable assumptions, problem (Pλ)

has infinitely many distinct weak solutions, provided that p ≥ 1. We will consider
separately the cases p = 1 and p > 1 and in both situations the strategy will consist
in using Theorem 3.2.

We start by proving assertion (i). In this setting we suppose that p = 1 and l0 ∈
(−∞, 0). Let λ ∈ R be such that λa(k) < λ0 for all k ∈ Z[1, n] and some 0 < λ0 <

−l0. Fix λ0 ∈ (λ0,−l0) and let

c(k) := λ0 − λa(k) and g(k, s) := f (s) + λ0s, (4.4)
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Infinitely many solutions for a nonlinear difference . . . 201

for all (k, s) ∈ Z[1, n] × [0,+∞). The first step consist in proving that the vector c
and the function g given in (4.4) satisfy the assumptions (3.1), (4.1), (4.2) and (4.3).
Note that c ∈ R

n and mink∈Z[1,n] c(k) > λ0 −λ0 > 0, which obviously implies (3.1).
By (2.1) we know that f (0) = 0. Thus, using the regularity of f , we obtain that g is a
continuous function in Z[1, n] × [0,+∞) and g(k, 0) = 0 for all k ∈ Z[1, n]. Next,
the continuity of s �→ g(·, s) and theWeierstrass theorem yield (4.1). Moreover, since
for any k ∈ Z[1, n] and s > 0 we have G(k, s)/s2 = λ0/2 + F(s)/s2, hypothesis
( f 01 ) immediately implies (4.3).

Next, we show that g satisfies (4.2). By ( f 02 ), there exists a sequence {si }i ⊂ (0, 1)

converging to 0 such that limi→+∞ f (si )
si

= l0. Since λ0 < −l0 by assumption, there

exists ε > 0 such that λ0 + ε < −l0. By this and the above relation we get that for
i ≥ i∗ ∈ N,

f (si ) < −λ0si . (4.5)

Thus we obtain that g(k, si ) = f (si ) + λ0si < 0. Consequently, by the continuity
of f , there is a neighborhood of si , say (δi , ηi ) and there are two sequences {δi }i ,
{ηi }i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi , limi→+∞ ηi = 0 and g(k, s) =
λ0s + f (s) ≤ 0 for any k ∈ Z[1, n] and all s ∈ [δi , ηi ] and i ≥ i∗. In this way,
hypothesis (4.2) is verified for g on every interval [δi , ηi ], i ∈ N. In the sequel, since
ηi → 0 as i → +∞, by (4.2), without any loss of generality, we may assume that

0 < δi < ηi < s, (4.6)

for i sufficiently large, where s > 0 is given by (4.1). For every i ∈ N, let gi :
Z[1, n] × [0,+∞) → R be the truncation function defined by

gi (k, s) := g(k, τηi (s)) and Gi (k, s) :=
∫ s

0
gi (k, t)dt, (4.7)

for every k ∈ Z[1, n] and s ≥ 0, where τηi is the function defined in (3.13) with
η = ηi . Let Ei : H → R be the energy functional associated with problem (Pc

gi ), that
is Ei := Ec,gi , where Ec,gi is the functional given in (3.5) with g = gi . We note that
the function gi verifies all the assumptions of Theorem 3.2 for i ∈ N large enough
with [δi , ηi ]. Indeed, thanks to the regularity of g, the continuity of τη and the fact
that g(k, 0) = 0 for all k ∈ Z[1, n], the function gi is Carathéodory and such that
gi (k, 0) = 0 for every k ∈ Z[1, n].Moreover, by (4.1), (4.6) and (4.7), gi satisfies (3.2)
and (3.3). Finally, condition (3.4) is satisfied thanks to (4.2). Hence, as a consequence
of Theorem 3.2, for every i ∈ N, there exists ui ∈ W ηi such that

min
u∈W ηi

Ei (u) = Ei (ui ); (4.8)

ui (k) ∈ [0, δi ] for every k ∈ Z[1, n]; (4.9)

ui is a non-negative weak solution of (Pc
gi ). (4.10)
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202 M. Mălin, V. D. Rădulescu

Using the definition of τη, relation (4.7) and the fact that 0 ≤ ui (k) ≤ δi <

ηi for every k ∈ Z[1, n], we have gi (k, ui (k)) = g(k, τηi (ui (k))) = g(k, ui (k))
for every k ∈ Z[1, n]. Thus, by the above relation and (4.10), ui is a non-negative
weak solution not only for (Pc

gi ) but also for problem (Pc
g ). In the sequel, we prove

that there are infinitely many distinct elements in the sequence {ui }i . In order to see
this, the first step consists in proving that

Ei (ui ) < 0 for i ∈ N large enough and (4.11)

lim
i→+∞ Ei (ui ) = 0. (4.12)

Due to ( f 01 ) and (4.4), we have that lim sups→0+ G(k,s)
s2

> λ0
2 + 1

n . In particular, there
exists a sequence {s̃i }i , with

0 < s̃i ≤ δi for all i ∈ N and (4.13)

G(k, s̃i ) >

(
1

n
+ λ0

2

)
s̃2i . (4.14)

Now, let us fix i ∈ N sufficiently large and let us define the function wi ∈ H by
wi (k) := s̃i for every k ∈ Z[1, n]. Then ‖wi‖∞ = s̃i ≤ δi < ηi < 1 by (4.2) and
(4.13). Hence, wi ∈ W ηi . This yields that for every k ∈ Z[1, n], we have

Gi (k, wi (k)) = Gi (k, s̃i ) =
∫ s̃i

0
gi (k, t)dt = G(k, s̃i ). (4.15)

By this and taking into account (3.1), (4.4), (4.14), (4.15), for i sufficiently large we
have

Ei (wi ) = 1

2

n+1∑
k=1

|∇wi (k − 1)|2 + 1

2

n∑
k=1

c(k)(wi (k))
2 −

n∑
k=1

Gi (k, wi (k))

< (s̃i )
2 + 1

2
λ0T (s̃i )

2 − n

(
1

n
+ λ0

2

)
(s̃i )

2 < 0.

Consequently, using also (4.8) for i sufficiently large, the above estimation and wi ∈
Ws̃i ⊂ W ηi show that

Ei (ui ) = min
u∈W ηi

Ei (u) ≤ Ei (wi ) < 0, (4.16)

which proves in particular (4.11). Next, we prove (4.12). For every i ∈ N sufficiently
large, by using the definition of Gi , the mean value theorem, (4.1), (4.2), (4.6), (4.7)
and (4.9), we have
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Ei (ui ) ≥ −
n∑

k=1

Gi (k, ui (k)) = −
n∑

k=1

G(k, ui (k))

≥ −
n∑

k=1

max
s∈[0,s] |g(k, s)|ui (k) ≥ −δi T M.

Since limi→+∞ δi = 0, the above estimate and (4.16) leads to (4.12).
Finally, it is easy to see that relation (2.2) is an immediate consequence of (4.9)

combinedwith limi→+∞ δi = 0, and to the fact that norms‖·‖∞ and‖·‖ are equivalent.
Thus, we get the existence of infinitely many distinct nontrivial non-negative solutions
{ui }i for problem (Pc

g ) satisfying condition (2.2). Due to the choice of c and g in (4.4)
and taking into account that p = 1, it is easy to see that ui is a weak solution of
problem (Pλ) and this ends the proof of assertion (i) in Theorem 2.3 in the case p = 1.

Now, let us consider assertion (ii). At this purpose, let p = 1, l0 = −∞ and λ ∈ R

be arbitrary fixed. In this setting we choose λ0 ∈ (λ0,−l0) and

c(k) := λ0 and g(k, s)= f (s)+(λa(k) + λ0)s for all (k, s) ∈ Z[1, n] × [0,+∞).

This case can be dealt with in a similar way as (i), using relation f (si ) < −(|λ| ·
‖a‖∞ + λ0)si , instead of f (si ) < −λ0si , for i large enough, and taking into account
that for every k ∈ Z[1, n] and s ≥ 0 one has g(k, s) = f (s) + (λa(k) + λ0)s ≤
f (s) + (|λ| · ‖a‖∞ + λ0)s.
Now, let us prove assertion (iii). At this purpose, let p > 1 and λ ∈ R be arbitrary

fixed. Let us also fix a number λ0 ∈ (0,−l0) and choose

c(k) := λ0 and g(k, s) := λa(k)s p + λ0s + f (s) (4.17)

for all (k, s) ∈ Z[1, n] × [0,+∞). Also in this setting our aim is to prove that c
and g given in (4.17) satisfy the conditions (3.1), (4.1), (4.2) and (4.3). Clearly, (3.1)
is satisfied and also thanks to ( f 01 ), ( f 02 ) we have g(k, 0) = 0 for all k ∈ Z[1, n].
Moreover, since a ∈ R

n the continuity of s �→ g(·, s) and the Weierstrass theorem

yield that (4.1) holds true. Furthermore, since p > 1 and G(k,s)
s2

= λ
a(k)
p+1 s

p−1 + λ0
2 +

F(s)
s2

, for all k ∈ Z[1, n] and s ∈ (0,+∞), hypothesis ( f 01 ) implies (4.3). In the
sequel, note that for all k ∈ Z[1, n] and every s ∈ [0,+∞), we have

g(k, s) ≤ |λ| · ‖a‖∞s p + λ0s + f (s). (4.18)

As a consequence of this and of ( f 02 ) we get

lim inf
s→0+

g(k, s)

s
≤ λ0 + l0 < 0, (4.19)

for all k ∈ Z[1, n], thanks to the choice of p. In particular, there exists a sequence
{si }i ⊂ (0, 1) converging to 0 as i → +∞ such that g(k, si ) < 0 for i ∈ N large
enough and for all k ∈ Z[1, n]. Thus, by using the continuity of s �→ g(·, s), there
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exist two sequences {δi }i , {ηi }i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi ,
limi→+∞ ηi = 0 and g(k, s) ≤ 0, for every k ∈ Z[1, n] and all s ∈ [δi , ηi ] and i ∈ N

large enough. Summarizing, we deduce that hypothesis (4.2) hold true.
Finally, an argument analogous to that used in (i) proves that problem (Pc

g ) is
equivalent to problem (Pλ) through the choice (4.17) and so, we get the existence of
infinitely many distinct nontrivial solutions {ui }i for problem (Pλ) satisfying (2.2).
This concludes the proof of Theorem 2.3. ��
Proof of Theorem 2.4 Let λ0 ∈ (0,−l0), where l0 < 0 is given in assumption ( f 02 )

and let us choose

c(k) := λ0 and g(k, s, λ) := λa(k)s p + λ0s + f (s), (4.20)

for all (k, s) ∈ Z[1, n] × [0,+∞), λ ∈ R. Note that for all k ∈ Z[1, n] and every
s ∈ [0,+∞), we have g(k, s, λ) ≤ |λ| · ‖a‖∞s p + λ0s + f (s). Next, on account
of ( f 02 ), there exists a sequence {si }i ⊂ (0, 1) converging to 0 as i → +∞ such
that f (si ) < −λ0si , for i ∈ N large enough. Consequently, we have g(k, si , 0) =
λ0si + f (si ) < 0, for i ∈ N large enough and for all k ∈ Z[1, n]. Thus, due to
the continuity of s �→ g(·, s, ·) we get that there exist three sequences {δi }i , {ηi }i ,
{λi }i ⊂ (0, 1) such that,

0 < ηi+1 < δi < si < ηi < 1, lim
i→+∞ ηi = 0, (4.21)

and for i ∈ N large enough,

g(k, s, λ) ≤ 0, for all k ∈ Z[1, n], λ ∈ [−λi , λi ] and s ∈ [δi , ηi ]. (4.22)

For any i ∈ N and λ ∈ [−λi , λi ], let gi : Z[1, n] × [0,+∞) × [−λi , λi ] → R be the
function defined by

gi (k, s, λ) := g(k, τηi (s), λ) (4.23)

and Gi (k, s, λ) :=
s∫
0
gi (k, t, λ)dt, for all k ∈ Z[1, n] and s ≥ 0. In the sequel, let us

prove that c given in (4.20) and gi satisfy all the assumptions of Theorem 3.2. Due to
relation (2.1), it is easy to see that gi satisfies condition (3.2). Also, the assumption
(3.1) is trivially verified. Moreover, the regularity of g and the continuity of τη show
that gi is a Carathéodory function. Also, thanks to (4.23), (3.13), the continuity of
s �→ g(·, s, ·) and the Weierstrass Theorem give that gi satisfies (3.3). Finally, (4.22)
and (4.23) yield (3.4) for i large enough. Hence, gi satisfies all the assumptions of
Theorem 3.2 for i large. Next, for any i ∈ N, let Ei,λ : H → R be the energy
associated with the problem (Pc

gi (·,·,λ)), that is,

Ei,λ := Ec,gi (·,·,λ), (4.24)
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where Ec,gi (·,·,λ) is the functional given in (3.5) with g = gi (·, ·, λ). So, Theorem 3.2
allows us to deduce that, for i ∈ N sufficiently large and λ ∈ [−λi , λi ], there exists
ui,λ ∈ W ηi such that

min
u∈W ηi

Ei,λ(u) = Ei,λ(ui,λ), (4.25)

ui,λ(k) ∈ [0, δi ] for all k ∈ Z[1, n] (4.26)

and

ui,λ is a non-negative weak solution of (Pc
gi (·,·,λ)). (4.27)

Since for i sufficiently large

0 ≤ ui,λ(k) ≤ δi < ηi , (4.28)

for all k ∈ Z[1, n] by (4.21) and (4.26), we get gi (k, ui,λ(k), λ) = g(k, ui,λ(k), λ).

Thus, using (4.20) we obviously have that ui,λ is a non-negative weak solution of (Pλ),
provided i is large and |λ| ≤ λi .

In the sequel, we prove that for any n ∈ N problem (Pλ) admits at least n distinct
solutions, for suitable values of λ. We first observe that due to the choice of c and gi
and (4.28), the functional Ei,λ is given by

Ei,λ(u) = Ei,0(u) − λ

n∑
k=1

a(k)
|u(k)|p+1

p + 1
, for any u ∈ H. (4.29)

For λ = 0, the function gi (·, ·, λ) = gi (·, ·, 0) verifies the hypotheses (3.1), (4.1),
(4.2) and (4.3). More precisely, gi (·, ·, 0) is exactly the function appearing in (4.7)
and Ei := Ei,0 is the energy functional associated with problem (Pc

gi (·,·,0)). Thus by
(4.25)–(4.27), the elements ui := ui,0 also verify

Ei (ui ) = min
u∈W ηi

Ei (u) ≤ Ei (wi ) < 0 for all i ∈ N, (4.30)

where wi ∈ W ηi is given in the proof of Theorem 2.3, see for instance (4.16).
In the sequel, let {θi }i be an increasing sequence with negative terms such that

limi→+∞ θi = 0. On account of (4.30), up to a subsequence, we may assume that

θi−1 < Ei (ui ) ≤ Ei (wi ) < θi , for i ≥ i∗, with i∗ ∈ N. (4.31)

Now, for any i ≥ i∗ let

λ′
i := (p + 1)(Ei (ui ) − θi−1)

(‖a‖∞ + 1)n
and λ

′′
i := (p + 1)(θi − Ei (wi ))

(‖a‖∞ + 1)n
. (4.32)
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Note that λ′
i and λ

′′
i are strictly positive, due to (4.31) and they are independent of λ.

Now, for any fixed n ∈ N, let

�n := min{λi∗+1, . . . , λi∗+n, λ
′
i∗+1, . . . , λ

′
i∗+n, λ

′′
i∗+1, . . . , λ

′′
i∗+n}.

On account of (4.31), �n > 0 and it is independent of λ. Moreover, if |λ| ≤ �n ,
then |λ| ≤ λi for any i = i∗ + 1, . . . , i∗ + n. Consequently, for any λ ∈ R with
|λ| ≤ �n , we have that ui,λ is a non-negative weak solution of problem (Pλ), for any
i = i∗ + 1, . . . , i∗ + n. In the sequel, we show that these solutions are distinct. For
this purpose, note that ui,λ ∈ W ηi by (4.28) and so for any λ ∈ R with |λ| ≤ �n we
have

Ei (ui ) = min
u∈W ηi

Ei (u) ≤ Ei (ui,λ). (4.33)

Thus by (4.29) and (4.33), for any λ with |λ| ≤ �n we obtain

Ei,λ(ui,λ) ≥ Ei (ui ) − |λ|
p + 1

‖a‖∞η
p+1
i n

≥ Ei (ui ) − λ′
i

p + 1
‖a‖∞n > θi−1, (4.34)

for any i = i∗+1, . . . , i∗+n, due to (4.21), (4.28), the choice of�n and the definition
of λ′

i . On the other hand, by (4.29), (4.30) and using the fact that ‖wi‖∞ = s̃i ≤ δi <

ηi < 1 (see the proof of Theorem 2.3), for any λ with |λ| ≤ �n we deduce that

Ei,λ(ui,λ) ≤ Ei (wi ) + |λ|
p + 1

‖a‖∞n

≤ Ei (wi ) + λ
′′
i

p + 1
‖a‖∞n < θi , (4.35)

for all i = i∗ + 1, . . . , i∗ + n, again thanks to the choice of �n and the definition
of λ

′′
i . In conclusion, by (4.34), (4.35) and the properties of {θi }i , we deduce that for

every i = i∗ + 1, . . . , i∗ + n and λ ∈ [−�n,�n], we have

θi−1 < Ei,λ(ui,λ) < θi < 0, (4.36)

which yields that E1,λ(u1,λ) < · · · < En,λ(un,λ) < 0. But ui,λ ∈ W η1 for every
i = i∗ +1, . . . , i∗ +n, so Ei,λ(ui,λ) = E1,λ(ui,λ), see relation (4.23). Therefore, from
above, we obtain that for every λ ∈ [−�n,�n], E1,λ(u1,λ) < · · · < E1,λ(un,λ) <

0 = E1,λ(0). These inequalities show that the elements u1,λ, . . . , un,λ are all distinct
and non-trivial, provided λ ∈ [−�n,�n].
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Finally, it remains to prove conclusion (2.3). For this, by (4.21), (4.28), (4.29),
(4.36) and the continuity of f we have that

1

2
‖ui,λ‖2 < θi + |λ|

p + 1
‖a‖∞δ

p+1
i n +

n∑
k=1

δi∫
0

| f (s)|ds

<
�n

p + 1
‖a‖∞δi n + n max

s∈[0,1] | f (s)|δi ,

for any i = i∗ +1, . . . , i∗ +n and |λ| ≤ �n . Hence, we obtain ‖ui,λ‖ ≤ c̃δ1/2i ,where

c̃ = 2−1
(

�n

p + 1
‖a‖∞n + n max

s∈[0,1] | f (s)|
)

> 0.

Since δi → 0 as i → +∞, without loss of generality, we may assume that

δi ≤ min{c̃−2, 1} 1
i2

, (4.37)

which gives that ‖ui,λ‖ ≤ 1
i , for any i = i∗ + 1, . . . , i∗ + n, provided |λ| ≤ �n .

In conclusion, by (4.28) and (4.37) we obtain that ‖ui,λ‖∞ ≤ 1
i2

< 1
i , for any

i = i∗ + 1, . . . , i∗ + n, with |λ| ≤ �n .
This concludes the proof of Theorem 2.4. ��
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15. Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal.
121, 336–369 (2015)
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