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Abstract We study an elliptic Robin problem driven by the negative Laplacian plus
an indefinite and unbounded potential and with a reaction of arbitrary growth which
exhibits z-dependent zeros of constant sign.We provemultiplicity theorems producing
three or four nontrivial solutions, all with precise sign information. As a particular case
we consider a generalized equidiffusive logistic equation with potential.
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1 Introduction

Let � ⊆ R
N be a bounded with a C2-boundary ∂�. In this paper, we study the

following Robin problem
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92 N. S. Papageorgiou, V. Rădulescu

− �u(z) + ξ(z)u(z) = f (z, u(z)) in �,
∂u

∂n
+ β(z)u = 0 on ∂�. (1)

Here ξ ∈ Ls(�) with s > N and in general it is sign changing. Also, β ∈
W 1,∞(∂�), β � 0. When β ≡ 0, then we have the Neumann problem. The reac-
tion f (z, x) is a Carathéodory function (that is, for all x ∈ R, z �−→ f (z, x) is
measurable and for almost all z ∈ �, x �−→ f (z, x) is continuous). The interesting
feature of our work here, is that we do not impose any global growth condition on
x �−→ f (z, x). Instead, we assume that f (z, ·) admits z-dependent zeros of constant
sign. Our aim is to prove a multiplicity theorem providing precise sign information
for all the solutions. Using variational methods based on the critical point theory,
together with suitable truncation and perturbation techniques and Morse theory (crit-
ical groups), we prove two multiplicity theorems producing three nontrivial solutions
(two of constant sign and the third nodal (sign changing)). The twomultiplicity results
differ on the behavior of the reaction f (z, ·) near zero. Subsequently, by improving
the regularity condition on x �−→ f (z, x) and using tools from Morse theory, we
prove a third multiplicity theorem, producing four nontrivial solutions, two of con-
stant sign and two nodal. Our work here extends the semilinear part of the recent work
of Papageorgiou and Rădulescu [23].

Semilinear equations with indefinite and bounded potential, were studied recently
under different conditions on the reaction and under different boundary conditions.
We mention the works of Kyritsi and Papageorgiou [13], Papageorgiou and Papalini
[21] (Dirichlet problems), and Papageorgiou and Rădulescu [22,24], Papageorgiou
and Smyrlis [25] (Neumann problems).

None of the aforementioned works addresses the general boundary condition used
in this paper (which incorporates as a special case the Neumann problem for β ≡ 0)
and all assumed that the reaction term f (z, ·) has subcritical polynomial growth. In
contrast here, the behavior of f (z, ·) near ±∞ is irrelevant and instead we assume a
kind of oscillatory behavior near zero for the nonlinearity x �−→ f (z, x) − ξ(z)x , by
requiring the presence of z-dependent zeros for the function. In this way we can focus
our analysis on an interval [−ρ, ρ] ignoring the structure of the reaction termoutside it.

2 Mathematical background

In this section, we briefly review the main mathematical tools which we will use in
this paper.

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ satisfies the
“Palais–Smale condition” (the PS-condition for short), if the following is true:

“Every sequence {un}n�1 ⊆ X such that {ϕ(un)}n�1 ⊆ R is bounded and

ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.
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Robin problems with indefinite, unbounded potential... 93

This is a compactness-type condition on the functional ϕ, which leads to a defor-
mation theorem, from which one can derive the minimax theory for the critical values
of ϕ. A basic result in that theory, is the so-called “mountain pass theorem”.

Theorem 1 Assume that ϕ ∈ C1(X) satisfies the PS-condition, u0, u1 ∈ X, ||u1 −
u0|| > r > 0

max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ||u − u0|| = r ] = mr

and c = infγ∈
 max0�t�1 ϕ(γ (t)) with 
 = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) =
u1}. Then c � mρ and c is critical value of ϕ.

In the study of problem (1) we will use the Sobolev space H1(�), the Banach space
C1(�) and the Lebesgue spaces L p(∂�) (1 � p � ∞). By || · || we denote the norm
of the Sobolev space H1(�), defined by

||u| = [||u||22 + ||Du||22]1/2 for all u ∈ H1(�).

The space C1(�) is an ordered Banach space with positive cone

C+ = {u ∈ C1(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.

The Lebesgue spaces L p(∂�) (1 � p � ∞) are defined as follows. On ∂� we
consider the (N−1)-dimensional Hausdorff (surface) measure σ0(·). Then using σ0(·)
we can introduce the spaces L p(∂�) (1 � p � ∞) in the usual way. From the trace
theorem, we know that there exists a unique continuous linear map γ0 : H1(�) →
L2(∂�), known as the “trace map”, such that γ0(u) = u|∂� for all u ∈ C1(�). This
map is compact into Lη(∂�) for 1 � η <

2(N−1)
N−2 . Moreover, we know that

im γ0 = H
1
2 ,2(∂�) and ker γ0 = H1

0 (�)

(for details see, for example, Gasinski and Papageorgiou [10]). In what follows, for
the sake of notational simplicity, we drop the use of the trace map γ0. Every Sobolev
function defined on ∂� is understood in the sense of traces.

For x ∈ R, we set x± = max{±x, 0}. Then given u ∈ H1(�), we set u±(·) =
u(·)±. We know that

u± ∈ H1(�), |u| = u+ + u− and u = u+ − u−.

Wewill also use some aspects of the spectrumof−�u+ξ(z)uwithRobin boundary
condition. So, we consider the following eigenvalue problem

− �u(z) + ξ(z)u(z) = λ̂u(z) in �,
∂u

∂n
+ β(z)u = 0 on ∂�. (2)
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94 N. S. Papageorgiou, V. Rădulescu

This eigenvalue problem was studied for the Neumann boundary condition (that
is, β ≡ 0), in Papageorgiou and Rădulescu [22] and Papageorgiou and Smyrlis [25].
For the p-Laplacian and Neumann boundary condition, it was investigated byMugnai
and Papageorgiou [18] and for the p-Laplacian with Robin boundary condition and
ξ ≡ 0 by Papageorgiou and Rădulescu [23]. An analogous study can be conducted

for problem (2) and leads to similar results. More, precisely, assume that ξ ∈ L
N
2 (�)

if N � 3, ξ ∈ Lr (�) for r > 1 when N = 2 and ξ ∈ L1(�) when N = 1, β ∈
W 1,∞(∂�), β � 0 and let σ : H1(�) → R be the functional defined by

σ(u) = ||Du||22 +
∫

�

ξ(z)u2dz +
∫

∂�

β(z)u2dσ0 for all u ∈ H1(�).

Then the eigenvalue problem (2) admits a smallest eigenvalue λ̂1(β) > −∞ given
by

λ̂1(β) = inf

[
σ(u)

||u||22
: u ∈ H1(�), u �= 0

]
. (3)

So, we can find μ > max{−λ̂1(β), 1} such that

σ(u) + μ||u||22 � c0||u||2 for all u ∈ H1(�), with c0 > 0. (4)

Using (4) and the spectral theorem for compact self-adjoint operators, exactly as
in [22,25], we have a sequence {λ̂k(β)}k�1 such that λ̂k(β) → +∞ as k → ∞
which are all the eigenvalues of (2). Let E(λ̂k(β)) be the corresponding eigenspace.
If ξ ∈ Ls(�) with s > N , then using the regularity result of Wang [29], we have
that E(λ̂k(β)) ⊆ C1(�). For the eigenvalues λ̂k(β) k � 2, we have the following
variational characterization

λ̂k(β) = inf

[
σ(u)

||u||22
: u ∈ ⊕

i�k
E(λ̂i (β)), u �= 0

]

= sup

[
σ(u)

||u||22
: u ∈ k⊕

i=1
E(λ̂i (β)), u �= 0

]
, k � 2. (5)

In both (3) and (5) the infimum(and the case of (5) also the supremum), is realized on
the corresponding eigenspace E(λ̂k(β)). The first eigenvalue λ̂1(β) is simple (that is,
dim E(λ̂1(β) = 1), Krein–Rutman theorem) and from (3) it is clear that the nontrivial
elements of E(λ̂1(β)) do not change sign. All the other eigenvalues have nodal (sign
changing) eigenfunctions. By û1(β) ∈ H1(�) we denote the L2-normalized (that
is, ||û1(β)||2 = 1) positive eigenfunction corresponding to λ̂1(β). If ξ ∈ Ls(�)

with s > N , then û1(β) ∈ C+\{0} (see Wang [29]). Moreover, using the Harnack
inequality of Pucci and Serrin [26, p. 163], we have u1(z) > 0 for all z ∈ �. Also,
if ξ+ ∈ L∞(�), then by the Hopf theorem (see, for example, Pucci and Serrin [26,
p. 120]), we have û1(β) ∈ intC+. Finally when ξ ∈ Ls(�) with s > N

2 , then all the

eigenspaces E(λ̂k(β)) have the “unique continuation property” (UCP for short), that
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Robin problems with indefinite, unbounded potential... 95

is, if u ∈ E(λ̂k(β)) and vanishes on a set of positive measure, then u ≡ 0 (see de
Figueiredo and Gossez [7]).

For the second eigenvalue λ̂2(β), in addition to the variational characterization (5)
we have a minimax expression (see [18,23]) which we will need in the sequel. So, let

∂BL2

1 = {u ∈ L2(�) : ||u||2 = 1} and M = H1(�) ∩ ∂BL2

1 .

Proposition 2 We have λ̂2(β) = inf
γ̂∈
̂

max−1�t�1 σ(γ̂ (t)), where


̂ = {γ̂ ∈ C([−1, 1], M) : γ̂ (−1) = −û1(β), γ̂ (1) = û1(β)}.

Let f0 : � × R → R be a Carathéodory function such that

| f0(z, x)| � a0(z)(1 + |x |r−1) for almost all z ∈ �, all x ∈ R,

with a0 ∈ L∞(�)+ and

1 < r < 2∗ =
{ 2N

N−2 if N � 3
+∞ if N = 1, 2.

We set F0(z, x) = ∫ x
0 f0(z, s)ds and consider the C1-functional ϕ0 : H1(�) → R

defined by

ϕ0(u) = 1

2
σ(u) −

∫
�

F0(z, u)dz for all u ∈ H1(�).

Next we recall some basic definitions and facts fromMorse theory (critical groups),
which we will use in the sequel.

Let X be a Banach space and ϕ ∈ C1(X), c ∈ R. We introduce the following sets:

ϕc={u ∈ X : ϕ(u)�c}, Kϕ ={u ∈ X : ϕ′(u)=0} and Kc
ϕ ={u ∈ Kϕ : ϕ(u)=c}.

Let (Y1,Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X . For every integer k � 0
by Hk(Y1,Y2)we denote the kth-relative singular homology group for the pair (Y1,Y2)
with integer coefficients. Recall that for k < 0, Hk(Y1,Y2) = 0. Consider an isolated
critical point u0 ∈ Kc

ϕ . Then the critical groups of ϕ at u0 are defined by

Ck(ϕ, u0) = Hk(ϕ
c ∩U, ϕc ∩U\{u0}) for every integer k � 0.

HereU is a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The excision prop-
erty of singular homology implies that this definition of critical groups is independent
of the choice of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞. Let
c < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕc) for all k ∈ N0.
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96 N. S. Papageorgiou, V. Rădulescu

The second deformation theorem (see, for example, Gasinski and Papageogiou [10,
p. 628]), implies that the above definition of critical groups at infinity, is independent
of the choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We introduce the following quantities:

M(t, u) =
∑
k�0

rankCk(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P(t,∞) =
∑
k�0

rankCk(ϕ,∞)tk for all t ∈ R.

The “Morse relation” says that

∑
u∈Kϕ

M(t, u) = P(t,∞) + (1 + t)Q(t), (6)

where Q(t) = ∑
k�0 βk tk is a formal series in t ∈ R with nonnegative integer

coefficients βk .
Suppose that X = Y ⊕V with dim Y < ∞ and ϕ ∈ C1(X). We say that ϕ ∈ C1(X)

has a “local linking” at the origin, if we can find ρ > 0 such that

ϕ(y) � 0 for all y ∈ Y, ||y||X � ρ

ϕ(v) > 0 for all v ∈ V, 0 < ||v||X � ρ.

In that case, we know that

CdY (ϕ, 0) �= 0, where dY = dim Y.

ByC2−0(X)wedenote theC1(X)-functionalswhose derivative is locallyLipschitz.
The so-called “shifting theorem” which is known to hold for C2-functionals, was
extended to C2−0 functionals by Li et al. [14]. We present a particular case of their
result suitable for our purposes. Let f0 : � × R → R be a measurable function such
that for almost all z ∈ �, f0(z, ·) ∈ C2−0(R). Set F0(z, x) = ∫ x

0 f0(z, s)ds and
consider the functional ϕ0 : H1(�) → R defined by

ϕ0(u) = 1

2
σ(u) −

∫
�

F0(z, u)dz for all u ∈ H1(�).

Then ϕ0 ∈ C2−0(H1(�)). Let X = C1(�) and suppose that u ∈ X is a critical
point of ϕ0. Then ϕ′

0 ∈ C1(D, H1(�)) and ϕ′′
0 (u) ∈ L(X, H1(�)), with D an X -

neighborhood of u. The Morse index μ(u) of u is the dimension of the maximal
subspace of X on which ϕ′′

0 (u) is negative definite. The nullity of u, denoted by ν(u),
is the dimension of the kernel of ϕ′′

0 (u). The extended shifting theorem of Li, Li and
Liu [14] says:
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Robin problems with indefinite, unbounded potential... 97

Proposition 3 If ξ ∈ L
N
2 (�), β ∈ L∞(∂�) and u ∈ Kϕ has finite Morse index

μ = μ(u) and nullity ν = ν(u), then either

(a) Ck(ϕ0, u) = 0 for k � μ and k � μ + ν, or
(b) Ck(ϕ0, u) = δk,μZ for all k � 0, or
(c) Ck(ϕ, u) = δk,μ+νZ for all k � 0.

Finally by A ∈ L(H1(�), H1(�)∗) we denote the operator

〈A(u), y〉 =
∫

�

(Du, Dy)RN dz for all u, y ∈ H1(�).

Recall that a Banach space X has the “Kadec–Klee property”, if the following is
true:

“un
w→ u in X and ||un||X → ||u||X ⇒ un → u in X ′′.

We know that locally uniformly convex Banach spaces, in particular Hilbert spaces,
have the Kadec–Klee property.

3 Three nontrivial solutions

In this section, we prove two multiplicity theorems producing three nontrivial solu-
tions, two of constant sign and the third nodal. The two multiplicity results differ on
the conditions on f (z, ·) near zero. In the first, it is assumed that f (z, ·) is superlinear
near zero, while in the second f (z, ·) is linear near zero.

First let us state our conditions on the data of problem (1).
H(ξ) : ξ ∈ Ls(�) with s > N and ξ+ ∈ L∞(�)+. H(β) : β ∈ W 1,∞(∂�), β �

0.
For the first multiplicity theorem, our hypotheses on the reaction f (z, x) are the

following:
H1 : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for almost

all z ∈ � and

(i) there exist functions w± ∈ H1(�) ∩ C(�) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ �,

f (z, w+(z))−ξ(z)w+(z) � 0 � f (z, w−(z))−ξ(z)w−(z) for almost all z ∈ �,

A(w−) � 0 � A(w+) in H1(�)∗;
(ii) if ρ = max{||w+||∞, ||w−||∞}, then there exists aρ ∈ L∞(�)+ such that

| f (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;
(iii) if F(z, x) = ∫ x

0 f (z, s)ds, then there exist δ ∈ (0,min{c±, 1}) and q ∈ (1, 2)
such that

c1|x |q � f (z, x)x � qF(z, x) for almost all z ∈ �, all |x | � δ.
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98 N. S. Papageorgiou, V. Rădulescu

Remark 1 Note that no global condition is imposed on f (z, ·). In fact the behavior
of f (z, ·) beyond w±(z) is irrelevant. Hypothesis H1(i) is satisfied if for example we
have

lim
x→±∞

f (z, x)

x
= −∞ uniformly for almost all z ∈ �.

Hypothesis H1(i i i) implies the presence of a concave term near zero.
By hypotheses H1(i), (i i) and since q < 2, we have

f (z, x)x � c2x
2 − c3|x |r for almost all z ∈ �, all x ∈ [−ρ, ρ] (7)

with c2 > λ̂1(β), c3 > 0, r ∈ (2, 2∗) and ρ = max[||w+||∞, ||w−||∞]. We choose
the unilateral growth condition (7) (instead of the more natural one involving a term
with |x |q due tohypothesisH1(i i i)), because it canbeused also in the secondmultiplic-
ity theorem and also facilitates our arguments in the existence results of Proposition 6.

Motivated from (7), we can consider the following auxiliary Robin problems

{−�u(z) + ξ(z)u = c2u(z) − c3|u(z)|r−2u(z) in �,
∂u

∂n
+ β(z)u = 0 on ∂�.

}
(8)

Proposition 4 If hypotheses H(ξ) and H(β) hold, then problem (8) admits a unique
positive solution ū ∈ int C+ and since (8) is odd, v̄ = −ū ∈ −int C+ is the unique
negative solution.

Proof Let ψ : H1(�) → R be the C1-functional defined by

ψ(u) = 1

2
σ(u) + μ

2
||u||22 − c2 + μ

2
||u+||22 + c3

r
||u+||rr for all u ∈ H1(�)

� c0
2

||u−||2 + 1

2
σ(u+) + c3

r
||u+||rr − c2

μ
||u+||22 (see (4)). (9)

Recall that 2 < r . Then using Young’s inequality with ε > 0, we have

c2
2

||u+||22 � ĉ||u+||2r � cε + ε||u+||rr for some ĉ, cε > 0.

Using this estimate in (9)with ε ∈ (0, c3
r ) and because of hypothesis H(ξ) and since

r > 2, we see that ψ is coercive. Moreover, using the Sobolev embedding theorem
and the trace theorem, we see that ψ is sequentially weakly lower semicontinuous.
So, we can find ū ∈ H1(�) such that

ψ(ū) = inf[ψ(u) : u ∈ H1(�)]. (10)
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Robin problems with indefinite, unbounded potential... 99

Let t > 0 and û1(β) ∈ intC+ is the L2-normalized principal eigenfunction of (2).
We have

ψ(t û1(β)) = t2

2
(λ̂1(β) − c2) + tr c3

r
||û1(β)||rr (see (3)).

Since c2 > λ̂1(β) and r > 2, for t ∈ (0, 1) small we have

ψ(t û1(β)) < 0,

⇒ ψ(ū) < 0 = ψ(0) (see (10)), hence ū �= 0.

From (10), we have

ψ ′(ū) = 0,

⇒ 〈A(ū, h)〉 +
∫

�

(ξ(z) + μ)ūhdz +
∫

∂�

β(z)ūhdσ0 = (c2 + μ)

∫
�

ū+hdz

−c3

∫
�

(ū+)r−1hdz for all h ∈ H1(�). (11)

In (11), we choose h = −ū− ∈ H1(�). Then

σ(ū−) + μ||ū−||22 = 0,

⇒ c0||ū−||2 � 0 see (4),

⇒ ū � 0, ū �= 0.

Then relation (11) becomes, for all h ∈ H1(�),

〈A(ū), h〉 +
∫

�

ξ(z)ūhdz +
∫

∂�

β(z)ūhdσ0 =
∫

�

(c2ū − c3ū
r−1)hdz,

⇒ ū is a positive solution of (8).

From the regularity result of Wang [29, Section 5] and the strong maximum prin-
ciple, we have ū ∈ intC+.

Next we show the uniqueness of this positive solutions. So, let ȳ be another positive
solution of (8). As above, we show that ȳ ∈ intC+. From Lemma 3.3 of Filippakis et
al. [8], we know that there exists t > 0 such that

t ȳ � ū.

Consider the biggest such real number and assume that t ∈ (0, 1) (if t = 1,
then ū � ȳ). Note that there exists η̄ > 0 such that x �−→ (c2 + η̄)x − c3xr−1 is
nondecreasing on [0, ρ]. We have

−�(t ȳ) + (ξ(z) + η̄)(t ȳ)

= t[−�ȳ + (ξ(z) + η̄)ȳ]
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100 N. S. Papageorgiou, V. Rădulescu

= t[(c2 + η̄)ȳ − c3 ȳ
r−1] (since ȳ ∈ intC+ is a solution of (8))

< (c2 + η̄)(t ȳ) − c3(t ȳ)
r−1 (since t ∈ (0, 1) and 2 < r)

� (c2 + η̄)ū − c3ū
r−1 (since t ȳ � ū)

= −�ū + (ξ(z) + η̄)ū (since ū ∈ intC+ is a solution of (8)),

⇒ −�(ū − t ȳ) + (ξ(z) + η̄)(ū − t ȳ) � 0,

⇒ �(ū − t ȳ) � (||ξ+||∞ + η̄)(ū − t ȳ) (see hypothesis H(ξ)),

⇒ ū − t ȳ ∈ intC+ (by the strong maximum principle).

This contradicts the maximality of t > 0. Hence t � 1 and so

ȳ � ū.

Interchanging the roles of ū and ȳ in the above argument, we can also have

ū � ȳ,

⇒ ū = ȳ.

This proves the uniqueness of the positive solutions ū ∈ intC+ of (8). Since
(8) is odd, it follows that v̄ = −ū ∈ −intC+ is the unique negative solution of
problem (8). ��
Remark 2 To prove the uniqueness of the positive solution ū ∈ intC+ of (8), one can
alternatively use Picone’s identity (see, for example, Gasinski and Papageorgiou [10,
p. 783]).

Now let

S+ = {u ∈ H1(�) : u ∈ [0, w+], u �= 0, u is a solution of (1)}
S− = {v ∈ H1(�) : v ∈ [w−, 0], v �= 0, v is a solution of (1)}.

Eventually we will establish the nonemptiness of the sets S+ and S−. For the
moment, we establish some a priori bounds for the elements of S+ and S−.
Proposition 5 If hypotheses H(ξ), H(β) and H1 hold, then ū � u for all u ∈ S+
and v � v̄ for all v ∈ S−.
Proof Let u ∈ S+ and consider the following Carathéodory function

g+(z, x) =
⎧⎨
⎩
0 if x < 0
(c2 + μ)x − c3xr−1 if 0 � x � u(z)
(c2 + μ)u(z) − c3u(z)r−1 if u(z) < x .

(12)

Let G+(z, x) = ∫ x
0 g+(z, s)ds and consider the C1-functional ψ+ : H1(�) → R

defined by

ψ+(u) = 1

2
σ(u) + μ

2
||u||22 −

∫
�

G+(z, u)dz for all u ∈ H1(�).
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From (4) and (11), we see that ψ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find ū∗ ∈ H1(�) such that

ψ+(ū∗) = inf[ψ+(u) : u ∈ H1(�)]. (13)

As in the proof of Proposition 4 and because 2 < r and c2 > λ̂1(β), we have

ψ+(ū∗) < 0 = ψ+(0), hence ū∗ �= 0.

From (13) we have

ψ ′+(ū∗) = 0,

⇒ 〈A(ū∗), h〉+
∫

�

(ξ(z)+μ)ū∗hdz +
∫

∂�

β(z)ū∗hdσ0 =
∫

�

g+(z, ū∗)hdz

for all h ∈ H1(�). (14)

In (14) first we choose h = −ū−∗ ∈ H1(�). Then

σ(ū−∗ ) + μ||ū−∗ ||22 = 0,

⇒ c0||ū−∗ ||2 � 0 (see (4)),

⇒ ū∗ � 0, ū∗ �= 0.

Next, in (14) we choose h = (ū∗ − u)+ ∈ H1(�). We have

〈A(ū∗), (ū∗ − u)+〉 +
∫

�

(ξ(z) + μ)ū∗(ū∗ − u)+dz +
∫

∂�

β(z)ū∗(ū∗ − u)+dσ0

=
∫

�

[(c2 + μ)u − c3u
r−1](ū∗ − u)+dz (see (11))

�
∫

�

[ f (z, u) + μu](ū∗ − u)+dz (see (7))

= 〈A(u), (ū∗ − u)+〉 +
∫

�

(ξ(z) + μ)u(ū∗ − u)+dz +
∫

∂�

β(z)u(ū∗ − u)+dσ

(since u ∈ S+)

⇒ σ((ū∗ − u)+) + μ||(ū∗ − u)+||22 � 0,

⇒ c0||(ū∗ − u)+||2 � 0 (see (4)),

⇒ ū∗ � u.

So, we have proved that

ū∗ ∈ [0, u]={y ∈ H1(�) : 0 � y(z) � u(z) for almost all z ∈ �}, ū∗ �= 0. (15)
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Using (12) and (15), Eq. (14) becomes

〈A(ū∗), h〉 +
∫

�

ξ(z)ū∗hdz +
∫

∂�

β(z)ū∗hdσ0 =
∫

�

(c2ū∗ − c3ū
r−1∗ )hdz

for all h ∈ H1(�),

⇒ ū∗ is a positive solution of problem (8),

⇒ ū∗ = ū ∈ intC+ (see Proposition 4),

⇒ ū � u for all u ∈ S+.

For the a priori bound on the negative solutions, given v ∈ S, we consider the
Carathéodory function

g−(z, x) =
⎧⎨
⎩
c2v(z) − c3|v(z)|r−2v(z) if x < v(z)
c2x − c3|x |r−2x if v(z) � x � 0
0 if 0 < x .

We set G−(z, x) = ∫ x
0 g−(z, s)ds and consider the C1-functional ψ− : H1(�) →

R defined by

ψ−(u) = 1

2
σ(u) + μ

2
||u||22 −

∫
�

G−(z, u)dz for all u ∈ H1(�).

Working as above, this time with the functional ψ−, we show that

v � v̄ for all v ∈ S−.

The proof is now complete. ��
Remark 3 These a priori bounds will be useful in producing extremal constant sign
solutions which will lead to nodal solutions.

Proposition 6 If hypotheses H(ξ), H(β) and H1 hold, then problem (1) has at least
two solutions of constant sign

u0 ∈ int C+ and v0 ∈ −int C+.

Proof First we produce the positive solution.
So, let f̂+(z, x) be the Carathéodory function defined by

f̂+(z, x) =
⎧⎨
⎩
0 if x < 0
f (z, x) + μx if 0 � x � w+(z)
f (z, w+(z)) + μw+(z) if w+(z) < x .

(16)

We set F̂+(z, x) = ∫ x
0 f̂+(z, s)ds and consider the C1-functional ϕ̂+ : H1(�) →

R defined by

ϕ̂+(u) = 1

2
σ(u) + μ

2
||u|22 −

∫
�

F̂+(z, u)dz for all u ∈ H1(�).
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From (4) and (16), it is clear that ϕ̂+ is coercive. Moreover, using the Sobolev
embedding theorem and the trace theorem, we see that ϕ̂+ is sequentially weakly
lower semicontinuous. So, by the Weierstrass theorem, we can find u0 ∈ H1(�) such
that

ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ H1(�)]. (17)

As before (see the proof of Proposition 4) for t ∈ (0, 1) small such that t ū1(β)(z) �
δ, since q < 2 < r , we have

ϕ̂+(t û1(β)) < 0,

⇒ ϕ̂+(u0) < 0 = ϕ̂+(0) (see (17)), hence u0 �= 0.

From (17) we have

ϕ̂′+(u0) = 0,

⇒ 〈A(u0), h〉 +
∫

�

(ξ(z) + μ)u0hdz +
∫

∂�

β(z)u0hdσ0 =
∫

�

f̂+(z, u0)hdz

for all h ∈ H1(�). (18)

In (18), first we choose h = −u−
0 ∈ H1(�). Then

σ(u−
0 ) + μ||u−

0 ||22 = 0,

⇒ c0||u−
0 ||2 � 0 (see (4)), hence u0 � 0, u0 �= 0.

Next in (17) we choose h = (u0 − w+)+ ∈ H1(�). Then

〈A(u0), (u0 − w+)+〉 +
∫

�

(ξ(z) + μ)u0(u0 − w+)+dz

+
∫

∂�

β(z)u0(u0 − w+)+dσ0

=
∫

�

[ f (z, w+) + μw+](u0 − w+)+dz (see (16)),

�
〈
A(w+), (u0 − w+)+

〉 +
∫

�

(ξ(z) + μ)w+(u0 − w+)+dz

+
∫

∂�

β(z)u0(u0 − w+)+dσ0 (see hypotheses H1(i))

⇒ σ((u0 − w+)+) + μ||(u0 − w+)+||22 � 0,

⇒ c0||(u0 − w+)+||2 � 0 (see (4)),

⇒ u0 � w+.
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So, we have proved that

u0 ∈ [0, w+] = {u ∈ H1(�) : 0 � u(z) � w+(z) for almost all z ∈ �}. (19)

Because of (16) and (19), equation (18) becomes

〈A(u0), h〉 +
∫

�

ξ(z)u0hdz +
∫

∂�

β(z)u0hdσ0 =
∫

�

f (z, u0)hdz

for all h ∈ H1(�),

⇒ u0 is a positive solution of problem (1) (see Papageorgiou and Rădulescu [23]).

We set

k0(z) =
⎧⎨
⎩

f (z, u0(z))

u0(z)
if u0(z) �= 0

0 if u0(z) = 0.

From (19), Proposition 5 and hypothesis H1(i), we see that k0 ∈ L∞(�). We have

{−�u0(z) = (k0(z) − ξ(z))u0(z) in �,
∂u0
∂n

+ β(z)u0 = 0 on ∂�.

}
(20)

Note that k0 − ξ ∈ Ls(�) (see hypothesis H(ξ)). Then Lemma 5.1 in Wang [29]
implies that u0 ∈ L∞(�) and so �u0 ∈ Ls(�). Then Lemma 5.2. of Wang [29]
implies that u0 ∈ W 2,s(�). Since s > N (see hypothesis H(ξ)), from the Sobolev
embedding theorem, we have

W 2,s(�) ↪→ C1+α(�) with α = 1 − N

s
> 0,

⇒ u0 ∈ C+\{0}.
Hypotheses H1(i i), (i i i) imply that there exists η+ > 0 such that

f (z, x) + η+x � 0 for almost all z ∈ �, all x ∈ [0, ρ]. (21)

Then we have

−�u0(z) + (ξ(z) + η+)u0(z) � 0 for almost all z ∈ � (see (21)),

⇒ �u0(z) � (||ξ+||∞ + η+)u0(z) for almost all z ∈ � (see hypothesis H(ξ)),

⇒ u0 ∈ intC+ (by the strong maximum principle).

To produce the negative solution, we consider the Carathéodory function

f̂−(z, x) =
⎧⎨
⎩

f (z, w−(z)) + μw−(z) if x < w−(z)
f (z, x) + μx if w−(z) � x � 0
0 if 0 < x .

(22)
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We set F̂−(z, x) = ∫ x
0 f̂−(z, s)ds and consider the C1-functional ϕ̂− : H1(�) →

R defined by

ϕ̂−(u) = 1

2
σ(u) + μ

2
||u||22 −

∫
�

F̂−(z, u)dz for all u ∈ H1(�).

Reasoning as in the first part of the proof, using this time (22) and the functional
ϕ̂−, we produce a negative solution v0 ∈ −intC+. ��
Remark 4 So, from this proposition and its proof, we have

∅ �= S+ ⊆ [0, w+] ∩ intC+ and ∅ �= S− ⊆ [w−, 0] ∩ (−intC+).

As in Filippakis and Papageorgiou [9] (see also Motreanu et al. [17, p. 421]), we
can show that the set S+ is downward directed (that is, if u1, u2 ∈ S+, then we can
find u ∈ S+ such that u � u1, u � u2) and the set S− is upward directed (that is, if
v1, v2 ∈ S−, then we can find v ∈ S− such that v1 � v, v2 � v). Moreover, since
both sets are bounded, the infimum of S+ and the supremum of S− can be taken over
countable sets (see Dunford and Schwartz [6, p. 336] and Hu and Papageorgiou [12,
p. 178]).

Next we will produce extremal constant sign solutions, that is, the smallest positive
solution u∗ ∈ intC+ and the biggest negative solution v∗ ∈ −intC+. Subsequently
these extremal constant sign solutions will lead to the existence of a nodal solution.

Proposition 7 If hypotheses H(ξ), H(β)and H1 hold, then problem (1)has a smallest
positive solution u∗ ∈ int C+ and a biggest negative solution v∗ ∈ −int C+.

Proof From Dunford and Schwartz [6, p. 336] and Hu and Papageorgiou [12, p. 178],
we know that we can find {un}n�1 ⊆ S+ such that

inf S+ = inf
n�1

un .

We have for all n � 1 and for all h ∈ H1(�)

〈A(un), h〉 +
∫

�

ξ(z)unhdz +
∫

∂�

β(z)unhdσ =
∫

�

f (z, un)hdz . (23)

In (23) we choose h = un ∈ H1(�). Then

σ(un) � c4 for all n � 1 and some c4 > 0

(recall 0 � un � w+ for all n � 1 and see hypothesis H1(i i))

⇒ σ(un) + μ||un||22 � c5 for some c5 > 0, all n � 1,

⇒ c0||un||2 � c5 for all n � 1 (see (4)),

⇒ {un}n�1 ⊆ H1(�) is bounded.
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So, we may assume that

un
w→ u∗ in H1(�) and un → u∗ in L

2s
s−1 (�) and in L2(∂�). (24)

Passing to the limit as n → ∞ in (23) and using (24), we obtain

〈A(u∗), h〉+
∫

�

ξ(z)u∗hdz+
∫

∂�

β(z)u∗hdσ0 =
∫

�

f (z, u∗)hdz for all h ∈ H1(�).

(25)
From Proposition 5, we know that

ū � un for all n � 1,

⇒ ū � u∗. (26)

From (25) and (26), it follows that

u∗ ∈ S+ and u∗ = inf S+ (see Papageorgiou and Rădulescu [23]),

⇒ u∗ ∈ intC+ is the smallest positive solution of problem (1).

Similarly we produce

v∗ ∈ S− with v∗ = sup S−,

the biggest negative solution of problem (1). ��
Using these extremal constant solutions, we can produce nodal (sign changing)

solutions. To this end,we consider the following truncation-perturbation of the reaction
f (z, ·):

k(z, x) =
⎧⎨
⎩

f (z, w−(z)) + μw−(z) if x < w−(z)
f (z, x) + μx if w−(z) � x � w+(z)
f (z, w+(z)) + μw+(z) if w+(z) < x .

(27)

This is a Carathéodory function. Let K (z, x) = ∫ x
0 k(z, s)ds and consider the

C1-functional ϑ : H1(�) → R defined by

ϑ(u) = 1

2
σ(u) + μ

2
||u||22 −

∫
�

K (z, u)dz for all u ∈ H1(�).

Next we compute the critical groups of ϑ at the origin. Our result extends that
of Moroz [16], who did a similar computation but under stronger hypotheses on the
function f (z, x) and for the space H1

0 (�). In the space H1
0 (�) the Poincaré inequality

simplifies the argument.

Proposition 8 If hypotheses H(ξ), H(β) and H1 hold and the critical set Kϑ is finite,
then Ck(ϑ, 0) = 0 for all k � 0.
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Proof From hypothesis H1(i i i) and (27), we have

K (z, x) � c1
q

|x |q − c6|x |r for almost all z ∈ �, all x ∈ R, with c6 > 0. (28)

Let u ∈ H1(�) and t ∈ (0, 1). Then

ϑ(tu) = t2

2
σ(u) + μt2

2
||u||22 −

∫
�

K (z, tu)dz

� t2

2
σ(u) + μt2

2
||u||22 − c1tq

q
||u||qq + c6t

r ||u||rr (see (28)). (29)

Since 1 < q < 2 < r , from (29) it follows that we can find t∗ = t∗(u) ∈ (0, 1)
small such that

ϑ(tu) < 0 for all t ∈ (0, t∗). (30)

Let u ∈ H1(�) with 0 < ||u|| � 1 and ϑ(u) = 0. Then

d

dt
ϑ(tu)|t=1 = 〈ϑ ′(u), u〉 (by the chain rule)

= 〈A(u), u〉 +
∫

�

(ξ(z) + μ)u2dz +
∫

∂�

β(z)u2dσ0 −
∫

�

k(z, u)udz

=
(
1 − q

2

)
σ(u) +

∫
�

[qK (z, u) − k(z, u)u]dz +
(
1 − q

2

)
μ||u||22

(since ϑ(u) = 0) (31)

Hypotheses H1(i i), (i i i) imply that

qK (z, x) − k(z, x)x � −c7|x |r for almost all z ∈ �, all x ∈ R. (32)

Using (32) in (31), we obtain

d

dt
ϑ(u)|t=1 �

(
1 − q

2

)
(σ (u) + μ||u||22) − c8||u||r for some c8 > 0

� c9||u||2 − c8||u||r with c9 =
(
1 − q

2

)
c0>0 (recall q < 2). (33)

Since 2 < r , from (33) we see that we can find ρ ∈ (0, 1) small such that

d

dt
ϑ(tu)|t=1 > 0 for all u ∈ H1(�) with 0 < ||u|| � ρ, ϑ(u) = 0. (34)

We fix u ∈ H1(�) with 0 < ||u|| � ρ and ϕ(u) = 0. We claim that

ϑ(tu) � 0 for all t ∈ [0, 1]. (35)
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We argue by contradiction. So, suppose that we can find t0 ∈ (0, 1) such that
ϑ(t0u) > 0. Since ϑ(u) = 0 and ϑ(·) is continuous, from Bolzano’s theoremwe have

t∗ = min{t ∈ [t0, 1] : ϑ(tu) = 0} > t0 > 0.

Then
ϑ(tu) > 0 for all t ∈ [t0, t∗). (36)

We set v = t∗u. Then 0 < ||v|| � ||u|| � ρ and ϑ(v) = 0. Then from (34) we
have

d

dt
ϑ(tv)|t=1 > 0. (37)

From (36) we have

ϑ(v) = ϑ(t∗u) = 0 < ϑ(tu) for all t ∈ [t0, t∗),
⇒ d

dt
ϑ(tv)|t=1 = t∗

d

dt
ϑ(tu)|t=t∗ = t∗ lim

t→t−∗

ϑ(tu)

t − t∗
� 0. (38)

Comparing (37) and (38), we reach a contradiction. This proves (35) for all u ∈
H1(�) with 0 < ||u|| � ρ and ϑ(u) = 0.

Also, we have

ϑ(tu) < 0 for all t ∈ (0, 1) and all u ∈ H1(�), 0 < ||u|| � ρ, ϑ(u) < 0. (39)

Indeed, note that due to the continuity of ϑ , we can find s ∈ (0, 1) such that

ϑ(tu) < 0 for all t ∈ (1 − s, 1] .

Suppose that there exists t0 ∈ (0, 1 − s] such that ϑ(t0u) = 0 and ϑ(tu) < 0 for
all t ∈ (t0, 1]. Let u0 = t0u. Then 0 < ||u0|| � ρ and ϑ(u0) = 0. So, from (34) we
have

d

dt
ϑ(tu0)|t=1 > 0 (40)

On the other hand, we have

ϑ(tu) = ϑ(tu) − ϑ(t0u) < 0 for all t ∈ (t0, 1],
⇒ d

dt
ϑ(tu)|t=t0 = d

dt
ϑ(tu0)|t=1 � 0,

which contradicts (40). Therefore (39) holds.
We can always choose ρ ∈ (0, 1) small such that Kϑ ∩ Bρ = {0}. Let h : [0, 1] ×

(ϑ0 ∩ Bρ) → ϑ0 ∩ Bρ be the deformation defined by

h(t, u) = (1 − t)u for all t ∈ [0, 1], all u ∈ ϑ0 ∩ Bρ.

From (35) and (39), we see that this deformation is well-defined. Moreover, with
this deformation we show that
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ϑ0 ∩ Bρ is contractible in itself. (41)

Let u ∈ Bρ with ϑ(u) > 0. We claim that there exists unique t (u) ∈ (0, 1) such
that

ϑ(t (u)u) = 0. (42)

From (30) and using Bolzano’s theorem, we see that such a t (u) ∈ (0, 1) exists.
So, we have to show the uniqueness of t (u). Arguing by contradiction suppose we can
find 0 < t1 = t (u)1 < t2 = t (u)2 < 1 such that ϑ(t1u) = ϑ(t2u) = 0.

From (35), we have

ϑ(t t2u) � 0 for all t ∈ [0, 1],
⇒ t1

t2
∈ (0, 1) is a maximizer of t �−→ ϑ(t t2u),

⇒ t1
t2

d

dt
ϑ(t t2, u)|t= t1

t2
= d

dt
ϑ(t t1u)|t=1 = 0,

which contradicts (34). This proves the uniqueness of t (u) ∈ (0, 1) in (42). We have

ϑ(tu) < 0 for all t ∈ (0, t (u)) and ϑ(tu) > 0 for all t ∈ (t (u), 1] .

We consider the function η1 : Bρ\{0} → (0, 1] defined by

η1(u) =
{
1 if u ∈ Bρ\{0}, ϑ(u) � 0
t (u) if u ∈ Bρ\{0}, ϑ(u) > 0.

It is straightforward to check that η1 is continuous. Then consider the map η2 :
Bρ\{0} → (ϑ0 ∩ Bρ)\{0} defined by

η2(u) =
{
u if u ∈ Bρ\{0}, ϑ(u) � 0
η1(u)u if u ∈ Bρ\{0}, ϑ(u) > 0.

Then η2 is continuous and

η2|(ϑ0∩Bρ)\{0} = id|(ϑ0∩Bρ)\{0}.

So, we have that (ϑ0 ∩ Bρ)\{0} is a retract of Bρ\{0} and the latter is contractible.
Therefore (ϑ0 ∩ Bρ)\{0} is contractible. This fact, (41) and Proposition 4.9 and 4.10
of Granas and Dugundji [11, p. 389], imply

Hk(ϑ
0 ∩ Bρ, (ϑ0 ∩ Bρ)\{0}) = 0 for all k � 0,

⇒ Ck(ϑ, 0) = 0 for all k � 0.

The proof is now complete. ��
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Now we are ready to produce nodal solutions. In what follows, u∗ ∈ intC+ and
v∗ ∈ −intC+ are the extremal constant sign solutions of problem (1) produced in
Proposition 7.

Proposition 9 If hypotheses H(ξ), H(β) and H1 hold, then problem (1) admits a
nodal solution

y0 ∈ [v∗, u∗] ∩ C1(�).

Proof Let u∗ ∈ intC+ and v∗ ∈ −intC+ be the two extremal constant sign solutions
of (1) produced in Proposition 7. We introduce the following truncation-perturbation
of the reaction f (z, ·):

τ(z, x) =
⎧⎨
⎩

f (z, v∗(z)) + μv∗(z) if x < v∗(z)
f (z, x) + μx if v∗(z) � x � u∗(z)
f (z, u∗(z)) + μu∗(z) if u∗(z) < x .

(43)

This is a Carathéodory function. Let T (z, x) = ∫ x
0 τ(z, s)ds and consider the

C1-functional ψ : H1(�) → R defined by

ψ(u) = 1

2
τ(u) + μ

2
||u||22 −

∫
�

T (z, u)dz for all u ∈ H1(�).

In addition, we consider the positive and negative truncation of τ(z, ·), that is, the
Carathéodory functions

τ±(z, x) = τ(z,±x±).

We set T±(z, x) = ∫ x
0 τ±(z, s)ds and consider the C1-functionals ψ± : H1(�) →

R defined by

ψ±(u) = 1

2
σ(u) + μ

2
||u||22 −

∫
�

T±(z, u)dz for all u ∈ H1(�).

Claim 1 We have

Kψ ⊆ [v∗, u∗], Kψ+ = {0, u∗}, Kψ− = {0, v∗}.

Let u ∈ Kψ . Then we have

ψ ′(u) = 0 ⇒ 〈A(u), h〉 +
∫

�

(ξ(z) + μ)uhdz +
∫

∂�

β(z)uhdσ0

=
∫

�

τ(z, u)hdz, ∀ h ∈ H1(�). (44)
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In (44) we choose h = (u − u∗)+ ∈ H1(�). Then

〈A(u), (u − u∗)+〉 +
∫

�

(ξ(z) + μ)u(u − u∗)+dz +
∫

∂�

β(z)u(u − u∗)+dσ0

=
∫

�

[ f (z, u∗) + μu∗](u − u∗)+dz (see (43))

=〈A(u∗), (u − u∗)+〉+
∫

�

(ξ(z)+μ)u∗(u − u∗)+dz+
∫

∂�

β(z)u∗(u − u∗)+dσ0

(recall that u∗ ∈ S+)

⇒ σ((u − u∗)+) + μ||(u − u∗)+||22 = 0,

⇒ c0||(u − u∗)+||2 � 0 (see (4)),

⇒ u � u∗.

Similarly, choosing h = (v∗ − u)+ ∈ H1(�) in (44), we show that

v∗ � x,

⇒ Kψ ⊆ [v∗, u∗] (since u ∈ Kψ is arbitrary).

In a similar fashion, we show that

Kψ+ ⊆ [0, u∗] and Kψ− ⊆ [v∗, 0].

The extremality of the constant sign solutions u∗ ∈ intC+ and v∗ ∈ −intC+
implies that

Kψ+ = {0, u∗} and Kψ− = {0, v∗}.

This proves Claim 1.

Claim 2 u∗ ∈ int C+ and v∗ ∈ −int C+ are local minimizers of ψ .

From (4) and (39), it is clear that ψ+ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we ca find û∗ ∈ H1(�) such that

ψ+(û∗) = inf[ψ+(u) : u ∈ H1(�)]. (45)

Using hypothesis H1(i i i) and since q < 2 < r , we see that for t ∈ (0, 1) small we
have

ψ+(t û1(β)) < 0,

⇒ ψ+(û∗) < 0 = ψ+(0) (see (45)), hence û∗ �= 0.

From (45) we have

û∗ ∈ Kψ+\{0},
⇒ û∗ = u∗ ∈ intC+ (see Claim 1).
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Note that ψ |C+ = ψ+|C+ . So, u∗ ∈ intC+ is a local C1(�)-minimizer of ψ .
Then using Proposition 3 in Papageorgiou and Rădulescu [23] (generalized version
of the classical result established by Brezis and Nirenberg [4]), u0 is also a local
H1(�)-minimizer of ψ .

Similarly for v∗ ∈ −intC+ using this time the functional ψ−.
This proves Claim 2.
Due to (43) and the extremality of u∗ ∈ intC+ and v∗ ∈ −intC+, every nontrivial

critical point of ψ distinct from u∗ and v∗ is necessarily a nodal solution of (1) (see
Claim 1). So, we may assume that Kϕ is finite. Also, without any loss of generality, we
may assume that ψ(v∗) � ψ(u∗) (the reasoning is similar if the opposite inequality
holds). By Claim 2, u∗ ∈ intC+ is a local minimizers ofψ . So, we can find ρ ∈ (0, 1)
small such that

ψ(v∗) � ψ(u∗) < inf[ψ(u) : ||u − u∗|| = ρ] = mρ, ||v∗ − u∗|| > ρ (46)

(see Aizicovici et al. [1], proof of Proposition 29). Recall that ψ is coercive. So,
it satisfies the PS-condition. This fact and (46) permit the use of Theorem 1 (the
mountain pass theorem). So, we can find y0 ∈ H1(�) such that

y0 ∈ Kψ ⊆ [v∗, u∗] (see Claim 1) and mρ � ψ(y0). (47)

From (46) and (47), we see that y0 /∈ {v∗, u∗}. Therefore, if we can show that
y0 �= 0, then y0 is a nodal solution of (1). Since y0 is a critical point of ψ of mountain
pass type, we have

C1(ψ, y0) �= 0 (see Chang [5, p. 89]). (48)

On the other hand, from Proposition 8, we know that

Ck(ψ, 0) = 0 for all k � 0. (49)

Comparing (48) and (49), we conclude that y0 �= 0. So, y0 is a nodal solution of
(1) and as before y0 ∈ C1(�). ��

In fact we can improve the conclusion of Proposition 9, proved we strengthen a
little the conditions on f (z, ·). So, now we assume the following:

H2 : f : � ×R → R is Carathéodory function such that f (z, 0) = 0, hypotheses
H2(i), (i i), (i i i) are the same as the corresponding hypotheses H1(i), (i i), (i i i) and

(iv) there exists ϑ̂ > 0 such that for almost all z ∈ �, x �−→ f (z, x) + ϑ̂x is
nondecreasing on [−ρ, ρ].

Remark 5 Evidently this extra condition on f (z, ·) is satisfied if for example, for
almost all z ∈ �, f (z, ·) ∈ C1(R) and f ′

x (z, ·) is L∞(�)-bounded on [−ρ, ρ].
Proposition 10 If hypotheses H(ξ), H(β) and H2 hold, then problem (1) admits a
nodal solution

y0 ∈ intC1(�)[v∗, u∗].
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Proof From Proposition 9, we already have a nodal solution y0 ∈ [v∗, u∗] ∩ C1(�).
Let ϑ̂ > 0 be as postulated by hypothesis H2(iv). Then

−�y0(z) + (ξ(z) + ϑ̂)y0(z)

= f (z, u∗(z)) + ϑ̂ y0(z)

� f (z, u∗(z)) + ϑ̂u∗(z) (since y0 � x∗, see hypothesis H2(iv))

= −�u∗(z) + (ξ(z) + ϑ̂)u∗(z) (since u∗ ∈ S+),

⇒ �(u∗ − y0)(z) � (||ξ+||∞ + ϕ̂)(u∗ − y0)(z) for almost all z ∈ �

(see hypothesis H(ξ)),

⇒ u∗ − y0 ∈ intC+ (by the strong maximum principle).

In a similar fashion, we show that

y0 − v∗ ∈ intC+.

Therefore finally we have y0 ∈ intC1(�)[v∗, u∗]. ��
Now we can formulate our first multiplicity result.

Theorem 11 Assume that hypotheses H(ξ), H(β) and H1 hold. Then problem (1)
admits at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ [v0, u0] ∩ C1(�) nodal.

Moreover, if hypotheses H2 hold, then y0 ∈ intC1(�)[v0, u0].
Next we modify the behavior of f (z, ·) near zero and assume that f (z, ·) is linear

near zero. In this way we change the geometry of the problem. Nevertheless, for the
new setting we prove again a three solutions theorem proving sign information for all
the solutions.

The new hypotheses on the reaction f (z, x) are the following:
H3 : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for almost

all z ∈ � and

(i) there exist functions w± ∈ H1(�) ∩ C(�) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ �,

f (z, w+(z))−ξ(z)w+(z) � 0� f (z, w−(z))−ξ(z)w−(z) for almost all z ∈ �,

A(w−) � 0 � A(w+) in H1(�)∗;

(ii) if ρ = max{||w+||∞, ||w−||∞}, then there exists aρ ∈ L∞(�)+ such that

| f (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;
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(iii) there exist functions η, η̂ ∈ L∞(�) such that

λ̂1(β)�η(z) for almost all z ∈ �, strictly on a set of positive measure,

η(z)� lim inf
x→0

f (z, x)

x
� lim sup

x→0

f (z, x)

x
� η̂(z) uniformly for almost all z ∈ �.

Under this new geometry near zero for the reaction f (z, ·), the previous results on
the existence of constant sign solutions remain valid with very minor changes in their
proofs. So, we have:

Proposition 12 If hypotheses H(ξ), H(β) and H3 hold, then problem (1) has at least
two solutions of constant sign

u0 ∈ int C+ and v0 ∈ −int C+.

Proof The proof is similar to that of Proposition 6. Again we consider the C1-
functional ϕ̂+ (see the proof of Proposition 6) and use the direct method. The only
thing that differs in the present proof, is how we show that

ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ H1(�)] < 0 = ϕ̂+(0). (50)

By virtue of hypothesis H3(i i i), given ε > 0, we can find δ = δ(ε) ∈ (0, c+] such
that

f (z, x) � (η(z) − ε)x for almost all z ∈ �, all x ∈ [0, δ],
⇒ F(z, x) � 1

2
(η(z) − ε)x2 for almost all z ∈ �, all x ∈ [0, δ]. (51)

For t ∈ (0, 1) small such that t û1(β)(z) ∈ (0, δ] for all z ∈ �. Then

ϕ̂+(t û1(β)) � t2

2
σ(û1(β)) − t2

2

∫
�

η(z)û1(β)2dz + t2ε

2
||û1(β)||22 (see (51))

= t2

2

(∫
�

[λ̂1(β) − η(z)]û1(β)2dz + ε

)

(recall that ||û1(β)||2 = 1).

Since û1(β) ∈ intC+, we have

I =
∫

�

(η(z) − λ̂1(β))û1(β)2dz > 0.

Then

ϕ̂1(t û1(β)) � t2

2
[−I + ε].
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So, choosing ε ∈ (0, I), we infer that

ϕ̂+(t û1(β)) < 0,

⇒ ϕ̂+(u0) < 0 = ϕ̂+(0) (see (50)), hence u0 �= 0.

Then as in proof of Proposition 6, we show that u0 ∈ intC+ is a solution of problem
(1).

Similarly, working with the functional ϕ̂− (see the proof of Proposition 6), we
produce a negative solution v0 ∈ −intC+. ��

In the present setting, we see that given ε > 0, we can find c10 = c10(ε) > 0 such
that

f (z, x)x � (η(z) − ε)x2 − c10|x |r for almost all z ∈ �, all x ∈ [−ρ, ρ]. (52)

This leads to the following auxiliary problem

{−�u(z) + ξ(z)u(z) = (η(z) − ε)u(z) − c10|u(z)|r−2u(z) in �,
∂u

∂n
+ β(z)u = 0 on ∂�.

}
(53)

With essentially identical proofs to those of Propositions 4 and 5, we have the
following result.

Proposition 13 If hypotheses H(ξ), H(β) and H3 hold, then problem (53) admits a
unique positive solution ū ∈ int C+, a unique negative solution v̄ = −ū ∈ −int C+
and

ū � u for all u ∈ S+ and v � v̄ for all v ∈ S−.

As in Proposition 7, using this time Proposition 13, we generate extremal constant
sign solutions.

Proposition 14 If hypotheses H(ξ), H(β) and H3 hold, then problem (1) admits
extremal constant sign solutions, that is, there exists a smallest positive solution u∗ ∈
int C+ and a biggest negative solution v∗ ∈ −int C+.

Then we can produce a nodal solution. To do this we need to strengthen further the
condition on f (z, ·) near zero, without altering the geometry of the problem.

So, the new hypotheses on f (z, x), are the following:
H4 : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for

almost all z ∈ �, hypotheses H3(i), (i i) are the same as the corresponding hypotheses
H3(i), (i i) and

(iii) there exist functions η, η̂ ∈ L∞(�) such that

λ̂2(β) < η(z) for almost all z ∈ �,

η(z) � lim inf
x→0

f (z, x)

x
� lim sup

x→0

f (z, x)

x
� η̂(z) uniformly for almost all z ∈ �.
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Proposition 15 If hypotheses H(ξ), H(β) and H4 hold, then problem (1) admits a
nodal solution

y0 ∈ [v∗, u∗] ∩ C1(�).

Proof We use the extremal constant sign solutions u∗ ∈ intC+ and v∗ ∈ −intC+
produced in Proposition 15 and argue as in the proof of Proposition 9. Then via the
mountain pass theorem (see Theorem 1), we produce a solution

y0 ∈ [v∗, u∗] ∩ C1(�), y0 �= {v∗, u∗}.

We need to show that y0 �= 0 to conclude that y0 is nodal.
From Theorem 1, we have

mρ � inf
γ∈


max
0�t�1

ψ(γ (t)) = ψ(y0), (54)

where 
 = {γ ∈ C([0, 1], H1(�)) : γ (0) = v∗, γ (1) = u∗} (see also (46). Accord-
ing to (54), in order to establish the nontriviality of y0 and therefore conclude that y0
is nodal, it suffices to produce a path γ∗ ∈ 
 such that ψ |γ∗ < 0 = ψ(0). To this end,
we consider the following Banach manifolds

M = H1(�) ∩ ∂BL2

1 and Mc = M ∩ C1(�).

Here ∂BL2

1 = {u ∈ L2(�) : ||u||2 = 1}. Evidently Mc is dense in M . We introduce
the following sets of paths


̂ = {γ̂ ∈ C([−1, 1], M) : γ̂ (−1) = −û1(β), γ̂ (1) = û1(β)}

̂c = {γ̂ ∈ C([−1, 1], Mc) : γ̂ (−1) = −û1(β), γ̂ (1) = û1(β)}

(recall that û1(β) ∈ intC+).

Claim 3 
̂c is dense in 
̂.

Let γ̂ ∈ 
̂ and ε > 0. We consider the multifunction Rε : [−1, 1] → 2C
1(�)

defined by

Rε(t) =
{ {u ∈ C1(�) : ||u − γ̂ (t)|| < ε} if − 1 < t < 1

{±û1(β)} if t = ±1.

Evidently Rε(·) has nonempty and convex values. In addition

Rε(t) is open for all t ∈ (−1, 1),

Rε(±1) are singletons.

From Papageorgiou and Kyritsi [20, p. 458], we have that the multifunction Rε(·)
is lower semicontinuous. So, we can apply Theorem 3.1”’ of Michael [15] (see also
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Hu and Papageorgiou [12, p. 97]) and find a continuous path γ̂ε : [−1, 1] → C1(�)

such that

γ̂ε(t) ∈ Rε(t) for all t ∈ [−1, 1].

Let εn = 1
n and let γ̂n = γ̂εn , n � 1 be as above. We have

||γ̂n(t) − γ̂ (t)|| <
1

n
for all t ∈ [−1, 1], all n � 1. (55)

Since γ̂ (t) ∈ ∂BL2

1 for all t ∈ [−1, 1], from (55) we see that n � 1 big, we have
||γ̂n(t)||2 �= 0 for all t ∈ [−1, 1]. So, we may assume that ||γ̂n(t)||2 �= 0 for all
t ∈ [−1, 1], all n � 1. We set

γ̂ 0
n (t) = γ̂n(t)

||γn(t)||2 for all t ∈ [−1, 1], all n � 1. (56)

We have γ̂ 0
n ∈ C([−1, 1], Mc) and γ̂ 0

n (±û1(β)) = ±û1(β). From (55) and (56)
we have

||γ̂ 0
n (t) − γ̂ (t)|| � ||γ̂ 0

n (t) − γ̂n(t)|| + ||γ̂n(t) − γ̂ (t)||
� |1 − ||γ̂n(t)||2|

||γ̂n(t)||2 ||γ̂n(t)|| + 1

n
(see (55)). (57)

We have

max
−1�t�1

|1 − ||γ̂n(t)||2| = max
−1�t�1

|||γ̂ (t)||2 − ||γ̂n(t)||2| (recall γ̂ (t) ∈ ∂BL1

1

for all t ∈ [−1, 1])
� max

−1�t�1
||γ̂ (t) − γ̂n(t)||2 (by the triangle inequality)

� max
−1�t�1

||γ̂ (t) − γ̂n(t)|| � 1

n
for all n � 1 (see (55)).

(58)

From (57) and (58) it follows that

γ̂ 0
n → γ̂ in C([−1, 1], M) as n → ∞,

⇒ 
̂c is dense in 
̂.

This proves Claim 3.
Invoking Proposition 2 and the Claim 3, given δ0 > 0, we can find γ̂0 ∈ 
̂c such

that
max

−1�t�1
σ(γ̂0(t)) � λ̂2(β) + δ0. (59)
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Since γ̂0 ∈ 
̂c and u∗ ∈ intC+, v∗ ∈ −intC+, we can find ϑ ∈ (0, 1) small such
that

ϑγ̂0(t) ∈ [v∗, u∗] and ϑ |γ̂0(t)(z)|, ϑ |Dγ̂0(t)(z)| � δ (60)

for all t ∈ [−1, 1], all z ∈ �.

Here for the first inclusion in (60) we have used Lemma 3.3 of Filippakis et
al. [8] and δ > 0 is as in (51). Of course we can always take δ > 0 such that
δ � min{min� u∗,min� v∗}. We have

ψ(ϑγ̂0(t)) = ϑ2

2
σ(γ̂0(t)) + μϑ2

2
||γ̂0(t)||22 −

∫
�

T (z, ϑγ̂0(z))dz

= ϑ2

2
σ(γ̂0(t)) −

∫
�

F(z, ϑγ̂0(t))dz (see (43) and (60))

� ϑ2

2
σ(γ̂0(t)) − ϑ2

2

∫
�

η(z)γ̂0(t)
2dz + ϑ2ε

2
(see (51) and (60) and recall that ||γ̂0(t)||2 = 1 for all t ∈ [−1, 1])

� ϑ2

2

[∫
�

(λ̂2(β) − η(z))γ̂0(t)
2dz + ε

]
for all t ∈ [−1, 1]. (61)

From hypothesis H4(i i i), we have

I =
∫

�

[η(z) − λ̂2(β)]γ̂0(t)2dz > 0.

So, choosing ε ∈ (0, I] from (61), we have

ψ(ϑγ̂0(t)) < 0 for all t ∈ [−1, 1].

We set γ̂ = ϑγ̂0. Then this is a continuous path in H1(�) joining −ϑ û1(β) and
ϑ û1(β) and

ψ |γ̂ < 0. (62)

Next we produce a continuous path in H1(�) joining ϑ û1(β) and u∗ and along
which the functional ψ is negative. To this end, recall that

τ = ψ+(u∗) = inf
H1(�)+

ψ+ < 0 = ψ+(0), (63)

Kψ+ = {0, u∗} (see Claim 1 in the proof of Proposition 9), (64)

ψ+ satisfies the PS-condition (being coercive, see (4) and (43)).
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So, we can apply the second deformation theorem (see Gasinski and Papageorgiou
[10, p. 628]) and produce a deformation h : [0, 1] × (ψ0+\K 0

ψ+) → ψ0+ such that

h(0, u) = u for all u ∈ ψ0+\K 0
ψ+ , (65)

h(1, ψ0+\K 0
ψ+) ⊆ ψτ+ = {u∗} (see (63) and (64)) (66)

ψ+(h(t, u))�ψ+(h(s, u)) for all s, t ∈ [0, 1], s� t, all u ∈ ψ0+\K 0
ψ+ . (67)

We have

ψ+(ϑ û1(β)) = ψ(ϑ û1(β)) = ψ(γ̂ (1)) < 0 (see (62)), (68)

⇒ ϑ û1(β) ∈ ψ0+\K 0
ψ+ .

Therefore we can define

γ̂+(t) = h(t, ϑ û1(β))+ for all t ∈ [0, 1]. (69)

We have

γ̂+(0) = h(0, ϑ û1(β))+ = ϑ û1(β) (see (65) and recall that û1(β) ∈ intC+),

γ̂+(1) = h(1, ϑ û1(β))+ = u∗ (see (66) and recall that u∗ ∈ intC+),

ψ+(γ̂+(t)) � ψ+(ϑ û1(β)) < 0 for all t ∈ [0, 1] (see (67) and (68)).

So, γ̂+ is a continuous path in H1(�) joining ϑ û1(β) and u∗ and such that

ψ+|γ̂+ < 0.

From (69) we see that γ̂+(t)(z) � 0 for almost all z ∈ �, all t ∈ [0, 1]. Hence

ψ |γ̂+ < 0. (70)

Similarly, we produce another continuous path γ̂− in H1(�) which joins −ϑ û1(β)

and v∗ and such that
ψ |γ̂− < 0. (71)

We concatenate γ̂−, γ̂ , γ̂+ and generate γ∗ ∈ 
 such that

ψ |γ∗ < 0 (see (62), (70), (71)),

⇒ y0 �= 0 and so y0 ∈ [v∗, u∗] ∩ C1(�) is a nodal solution of (1).

This completes the proof. ��
Again, if we strengthen the conditions on f (z, ·), we can improve the conclusion

of the above proposition.
The new conditions on the reaction f (z, x), are the following:
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H5 : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for almost
all z ∈ �, hypotheses H5(i), (i i), (i i i) are the same as the corresponding hypotheses
H4(i), (i i), (i i i) and

(iv) there exists ϑ̂ > 0 such that for almost all z ∈ �, the mapping x → f (z, x)+ ϑ̂x
is nondecreasing on [−ρ, ρ].

This is a mild extra requirement on the reaction f (z, ·) and it is satisfied if for exam-
ple f (z, ·) is differentiable and f ′

x (z, ·) is L∞-bounded on [−ρ, ρ]. This hypothesis
leads to strong comparison results for v∗, y0, u∗. Indeed we have

−�u∗(z) + (ξ(z) + ϑ̂)u∗(z) = f (z, u∗(z)) + ϑ̂u∗(z) for a.a. z ∈ �,

−�y0(z) + (ξ(z) + ϑ̂)y0(z) = f (z, y0(z)) + ϑ̂ y0(z) for a.a. z ∈ �,

�⇒ �(u∗ − y0)(z) � (ξ(z) + ϑ̂)(u∗ − y0)(z) for a.a. z ∈ �,

�⇒ �(u∗ − y0)(z) � (‖ξ‖∞ + ϑ̂)(u∗ − y0)(z) for a.a. z ∈ �,

�⇒ u∗ − y0 ∈ intC+.

Similarly, we show that y0 − v∗ ∈ intC+.
Therefore we can improve the conclusion of Proposition 15. We will need this

stronger result in Sect. 4.

Proposition 16 If hypotheses H(ξ), H(β) and H4 hold, then problem (1) admits a
nodal solution

y0 ∈ intC1(�)[v∗, u∗].

So, now we can formulate our second multiplicity theorem.

Theorem 17 If hypotheses H(ξ), H(β) and H5 hold, then problem (1) admits at least
three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ [v0, u0] ∩ C1(�) nodal.

Moreover, if hypotheses H4 hold, then y0 ∈ intC1(�)[v0, u0].
Note that in this multiplicity result at zero we avoid any interaction with λ̂2(β) (see

hypothesis H4(i i i)). We can allow partial interaction (nonuniform nonresonance) at
the expense of strengthening the behavior of f (z, ·) near x = 0.

So, we impose the following conditions on the reaction f (z, x).
H6 : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for almost

all z ∈ � and

(i) there exist functions w± ∈ H1(�) ∩ C(�) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ �,

f (z, w+(z))−ξ(z)w+(z)�0� f (z, w−(z))−ξ(z)w−(z) for almost all z ∈ �

A(w−) � 0 � A(w+) in H1(�)∗;
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(ii) if ρ = max{||w+||∞, ||w−||∞}, then there exists aρ ∈ L∞(�)+ such that

| f (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;

(iii) f (z, ·) is locally Lipschitz and differentiable at x = 0 and

η(z) � f ′
x (z, 0) = lim

x→0

f (z, x)

x
uniformly for almost all z ∈ �

with η ∈ L∞(�), η(z) � λ̂2(β) for almost all z ∈ � and the inequality is strict
on a set of positive measure.

So,we see fromhypothesis H6(i i i) that nowat zerowe allowpartial interactionwith
λ̂2(β) (nonuniform nonresonance), while in hypothesis H4(i i i) we required uniform
nonresonance (recall that in that hypothesis we had η(z) > λ̂2(β) for a.a. z ∈ �). The
proof now changes and uses tools from Morse theory.

Proposition 18 If hypotheses H(ξ), H(β) and H6 hold, then problem (1) admits a
nodal solution

y0 ∈ [v∗, u∗] ∩ C1(�).

Proof In this case there is a C1(�)-neighborhood D of u = 0 such that ψ ′ ∈
C1(D, H1(�)) and ψ ′′(0) ∈ L(C1(�), H1(�)). Using hypothesis H6(i i i), we see
that we can find δ ∈ (0, 1) small such that

ψ(u) � 0 for all u ∈ 2⊕
i=1

E(λ̂i (β)), ||u|| � δ.

On the other hand from (7) we see that we can have

ψ(u) > 0 for all u ∈ ⊕
i�3

E(λ̂i (β)), ||u|| � δ.

So, ψ has a local linking at u = 0, hence

Cd2(ψ, 0) �= 0 with d2 = dim
2⊕

i=1
E(λ̂i (β)) � 2.

Invoking Proposition 3, we infer that

C1(ψ, 0) = 0. (72)

On the other hand, from the proof of Proposition 9 (see (48)), we have

C1(ψ, y0) �= 0 (73)

Comparing (72) and (73), we conclude that y0 �= 0 and so y0 ∈ [v∗, u∗] ∩ C1(�)

is a nodal solution for problem (1). ��
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4 Four nontrivial solutions

In this section we improve the regularity on f (z, ·) and using Morse theory we are
able to produce a second nodal solution, for a total of four nontrivial solutions all with
precise sign information.

The new hypotheses on the reaction f (z, x) are the following.
H7 : f : � × R → R is a measurable function such that for almost all z ∈ �

f (z, 0) = 0, f (z, ·) ∈ C1(R) and

(i) there exist functions w± ∈ H1(�) ∩ C(�) such that

w−(z) � c− < 0 < c+ � w+(z) for all z ∈ �,

f (z, w+(z))−ξ(z)w+(z)�0 � f (z, w−(z))−ξ(z)w−(z) for almost all z ∈ �,

A(w−) � 0 � A(w+) in H1(�)∗;

(ii) if ρ = max{||w+||∞, ||w−||∞}, then there exists aρ ∈ L∞(�)+ such that

| f ′
x (z, x)| � aρ(z) for almost all z ∈ �, |x | � ρ;

(iii) there exist an integer m � 2 and δ0 > 0 such that λ̂m(β)x2 � f (z, x)x for
almost all z ∈ �, all |x | � δ0 if m = 2, then the inequality is strict on a set of
positive measure and f ′

x (z, 0) = limx→0
f (z,x)
x � λ̂m+1(β) uniformly for almost

all z ∈ � and the inequality is strict on a set of positive measure.

Remark 6 From hypothesis H7(i i) and the mean value theorem, we see that we can
find ϑ̂ > 0 such that for almost all z ∈ �, the mapping x �−→ f (z, x) + ϑ̂x
is nondecreasing on [−ρ, ρ]. We know that Morse theory is more effective in the
framework ofC2-functionals. For this reasonwe strengthened the regularity of f (z, ·).
Theorem 19 If hypotheses H(ξ), H(β) and H7 hold, then problem (1) admits at least
four nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0, ŷ ∈ intC1(�)[v0, u0] nodal.

Proof From Theorem 17 and Proposition 18, we know that there are at least three
nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ intCC1(�)[v0, u0] nodal.

Let ψ be the functional introduced in the proof of Proposition 15. We have that
ψ ∈ C2−0(H1(�)). Hypothesis H7(i i i) implies that given ε > 0, we can find δ =
δ(ε) (−, δ0] such that

F(z, x) � 1

2
( f ′

x (z, 0) + ε)x2 for almost all z ∈ �, all |x | � δ. (74)
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Without any loss of generality,wemayassume that δ0 � min{min� u∗,min�(−v∗)}
(recall that u∗ ∈ intC+ and v∗ ∈ −intC+). Let Ĥm = ⊕i�m+1E(λ̂i (β)) and let
u ∈ C1(�) ∩ Ĥm with ||u||C1(�) � δ. Then

ψ(u) = 1

2
σ(u) −

∫
�

F(z, u)dz (see (43))

� 1

2
σ(u) − 1

2

∫
�

f ′
x (z, 0)u

2dz − ε

2
||u||22 (see (74))

� 1

2

(
c11 − ε

λ̂1(β)

)
||u||2 for some c11 > 0 (75)

(see hypothesis H7(i i i) and (3)).

Also, if H̄m = m⊕i=1E(λ̂i (β)) and u ∈ C1(�) ∩ H̄m with ||u||C1(�) � 0, then

ψ(u) � 1

2
σ(u) − λ̂m(β)

2
||u||22 � 0 (see hypothesis H7(i i i) and (5)). (76)

From (75) and (76) it follows that ψ has a local linking at the origin and so

Cdm (ψ |c1(�), 0) �= 0 with dm = dim H̄m . (77)

From Palais [19] (see also Chang [5, p. 14]), we have

Ck(ψ |C1(�), 0) �= 0 = Ck(ψ, 0) for all k � 0,

⇒ Cdm (ψ, 0) �= 0 (see (77)).

Since μ(0) = dim Hm−1 and ν(0) = dim E(λ̂m(β)), from Proposition 3 we have

Ck(ψ, 0) = δk,dmZ for all k � 0. (78)

Suppose that Kψ = {0, u0, v0, y0}. We can always assume that u0 and v0 are the
extremal constant solutions (that is, u0 = u∗ ∈ intC+ and v0 = v∗ ∈ −intC+, see
Proposition 7). From the proof of Proposition 15 (see Claim 2), we know that u0 and
v0 are local minimizers of ψ . Hence

Ck(ψ, u0) = Ck(ψ, v0) = δk,0Z for all k � 0. (79)

Recall that y0 is a critical point of ψ of mountain pass type (see the proof of
Proposition 15). So, from Theorem 2.7 of Li et al. [14], we have

Ck(ψ, y0) = δk,1Z for all k � 0. (80)

Finally recall that ψ is coercive (see (4)) and (43). Hence

Ck(ψ,∞) = δk,0Z for all k � 0. (81)
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From (78), (79), (80), (81) and the Morse relation with t = −1 (see (6)), we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists ŷ ∈ Kψ, ŷ /∈ {0, u0, v0, y0}. We have

ŷ ∈ [v0, u0] ∩ C1(�) (see Claim 1 in the proof of Proposition 15).

Therefore ŷ is a nodal solution of (1). Moreover, as before (see the proof of Propo-
sition 16), using the strong maximum principle, we show that ŷ ∈ intC1(�)[v0, u0].��

5 A special case

Consider the following Robin problem:

{−�u(z) + ξ(z)u(z) = λu(z) − g(z, u(z)) in �,
∂u

∂n
+ β(z)u(z) = 0 on ∂�, λ ∈ R

}
(82)

The hypotheses on the perturbation g(z, x) are the following:
H8 : g : � × R → R is a Carathéodory function such that g(z, 0) = 0 for almost

all z ∈ � and

(i) for every ρ > 0, there exists aρ ∈ L∞(�)+ such that

| f (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;

(ii) limx→+∞ g(z,x)
x = +∞ uniformly for almost all z ∈ �;

(iii) limx→0
g(z,x)

x = 0 uniformly for almost all z ∈ �;

(iv) for every ρ > 0, there exists ϑ̂ρ > 0 such that for almost all z ∈ �, x �−→
ϑ̂ρx − g(z, x) is nondecreasing on [−ρ, ρ].

Remark 7 If g(z, x) = g(z) = |x |r−2x with r > 2, then we have the equidiffusive
logistic equation with an indefinite and unbounded potential.

Using Theorem 17, we have:

Theorem 20 If hypotheses H(ξ), H(β) and H8(i), (i i), (i i i) hold and λ > λ̂2(β),
then problem (82) has at least three nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0 ∈ [v0, u0] ∩ C1(�) nodal.

Moreover, if in addition hypothesis H8(iv) holds, then

y0 ∈ intC1(�)[v0, u0].
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Remark 8 Such a multiplicity result, was first proved by Ambrosetti and Mancini [3]
with subsequent improvements by Ambrosetti and Lupo [2] and Struwe [27,28], for
the Dirichlet problem, with ξ ≡ 0 and with stronger conditions on the perturbation
g. None of the aforementioned works produced a nodal solution. The extension to
Neumann problems (that is, β ≡ 0) with a potential term, was proved by Papageorgiou
and Smyrlis [25]. The extension to p-Laplacian equations with ξ ≡ 0 and Robin
boundary condition, can be found in the recent work of Papageorgiou and Rădulescu
[23].

By strengthening the regularity on f (z, ·), we can improve Theorem 20 by produc-
ing a second nodal solution.

The new hypotheses on the reaction f (z, x) are the following:
H9 : g : � × R → R is a measurable function such that for almost all z ∈ �

g(z, 0) = 0, g(z, ·) ∈ C1(R) and

(i) for every ρ > 0, there exists aρ ∈ L∞(�)+ such that

|g′
x (z, x)| � aρ(z) for almost all z ∈ �, all |x | � ρ;

(ii) limx→±∞ g(z,x)
x = +∞ uniformly for almost all z ∈ �;

(iii) g′
x (z, 0) = limx→0

g(z,x)
x = 0 uniformly for almost all z ∈ �.

Using Theorem 19, we have:

Theorem 21 If hypotheses H(ξ), H(β) and H9 hold and λ > λ̂2(β), then problem
(82) admits at least four nontrivial solutions

u0 ∈ int C+, v0 ∈ −int C+ and y0, ŷ ∈ intC1(�)[v0, u0] nodal.

Remark 9 This theorem extends Theorem 14 of Papageorgiou and Rădulescu [23],
where ξ ≡ 0 and the conditions on the perturbation g(z, x) are a little stronger.
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