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Abstract. In this paper, we are concerned with the multiplicity of solutions
for a fourth-order impulsive differential equation with Dirichlet boundary
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1. Introduction

In this paper, we consider the fourth-order boundary value problem with two
control parameters and impulsive effects
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(iv)(t) + Au′′(t) + Bu(t) = λf(t, u(t)) + μg(t, u(t)), t �= tj , t ∈ [0, 1],

Δ(u′′(tj)) = I1j(u′(tj)), j = 1, 2, . . . , n,

−Δ(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . , n,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

(1.1)

where A and B are two real constants, f, g : [0, 1] × R → R are continuous,
I1j , I2j ∈ C(R; R) for 1 ≤ j ≤ n, 0 = t0 < t1 < t2 < · · · < tn < tn+1 = 1, the
operator Δ is defined as Δ(u(tj)) := u(t+j ) − u(t−j ), where u(t+j ) and u(t−j )
denote the right and the left limits, respectively, of u at tj , and λ > 0 and
μ ≥ 0 are referred to as control parameters.
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Many dynamical systems describing models in applied sciences have an
impulsive dynamical behaviour due to abrupt changes at certain instants dur-
ing the evolution process. The rigorous mathematical description of these
phenomena leads to impulsive differential equations; they describe various
processes of the real world described by models that are subject to sudden
changes in their states. Essentially, impulsive differential equations correspond
to a smooth evolution that may change instantaneously or even abruptly, as
happens in various applications that describe mechanical or natural phenom-
ena. These changes correspond to impulses in the smooth system, such as for
example in the model of a mechanical clock. Impulsive differential equations
also study models in physics, population dynamics, ecology, industrial robot-
ics, biotechnology, economics, optimal control, chaos theory. Associated with
this development, a theory of impulsive differential equations has been given
extensive attention. For an introduction of the basic theory of impulsive dif-
ferential equations in R

n, see [2,11,19]. Some classical tools have been used to
study such problems in the literature, such as the coincidence degree theory of
Mawhin, the method of upper and lower solutions with the monotone iterative
technique, and some fixed point theorems in cones (see [8,12,17]). Recently, the
existence and multiplicity of solutions for impulsive boundary value problems
by using variational methods and critical point theory has been considered
and here we cite the papers [14,20–24].

Motivated by the above facts, in this paper, our aim is to study the
existence of solutions for fourth-order impulsive boundary value problem (1.1).
By employing a three critical point theorem which we recall in the next section
(Theorem 2.1), we establish the exact collections of the parameters λ and μ,
for which problem (1.1) admits at least three solutions; see Theorem 3.1.

2. Abstract Setting

The original three critical point theorem is due to Pucci and Serrin [15,16] and
establishes that if X is a real Banach space and a function f : X → R is of
class C1, satisfies the Palais–Smale condition, and has two local minima, then
f has at least three distinct critical points. This result has been extended in
the framework of problems depending on a real parameter by Ricceri [18], who
also established a precise range of the parameter that guarantees the existence
of at least three critical points.

Our main tool is a three critical point theorem that we recall here in a
convenient form. We also refer the reader to the recent papers [1,5–7,13] where
an analogous variational approach has been developed on studying different
elliptic problems.

Theorem 2.1 ([4, Theorem 3.6]). Let X be a reflexive real Banach space; Φ :
X → R be a coercive, continuously Gâteaux differentiable and sequentially
weakly lower semicontinuous functional whose Gâteaux derivative admits a
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continuous inverse on X∗; Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact such that

Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x ∈ X, with r < Φ(x), such that

(a1)
supΦ(x)≤r Ψ(x)

r < Ψ(x)
Φ(x) ;

(a2) for each λ ∈ Λr :=]Φ(x)
Ψ(x) ,

r
supΦ(x)≤r Ψ(x) [ the functional Iλ := Φ − λΨ is

coercive.

Then, for each λ ∈ Λr the functional Iλ has at least three distinct critical
points in X.

Here and in the sequel, we suppose that A and B satisfy the following
condition:

A ≤ 0 ≤ B. (2.1)

Define

H1
0 ([0, 1]) := {u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = u(1) = 0},

H2([0, 1]) := {u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1])}.

Take X := H2([0, 1]) ∩ H1
0 ([0, 1]) and define

‖u‖X :=

⎛

⎝

1∫

0

(|u′′(t)|2 − A|u′(t)|2 + B|u(t)|2) dt

⎞

⎠

1/2

, u ∈ X. (2.2)

Since A and B satisfy (2.1), it is straightforward to verify that (2.2) defines a
norm for the Sobolev space X and this norm is equivalent to the usual norm
defined as follows:

‖u‖ :=

⎛

⎝

1∫

0

|u′′(t)|2 dt

⎞

⎠

1/2

It follows from (2.1) that ‖u‖ ≤ ‖u‖X . For the norm in C1([0, 1]),

‖u‖∞ := max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}

,

we have the following relation.

Lemma 2.2 ([24, Lemma 2.1]). Let M1 := 1+1/π. Then ‖u‖∞ ≤ M1‖u‖X for
all u ∈ X.

Throughout the sequel, f, g : [0, 1] × R → R are continuous functions,
and λ > 0 and μ ≥ 0 are real parameters. Put



374 G. A. Afrouzi et al. Results. Math.

F (t, ξ) :=

ξ∫

0

f(t, x) dx and G(t, ξ) :=

ξ∫

0

g(t, x) dx,

for all (t, ξ) ∈ [0, 1] × R.
Moreover, set Gc :=

∫ 1

0
max|ξ|≤c G(t, ξ) dt for all c > 0 and Gd :=

inf [0,1]×[0,d] G for all d > 0. Clearly, Gc ≥ 0 and Gd ≤ 0.
We say that u ∈ C([0, 1]) is a classical solution of problem (1.1), if it

satisfies the equation in (1.1) a.e. on [0, 1] \ {t1, t2, . . . , tn}, the limits u′′(t+j ),
u′′(t−j ), u′′′(t+j ) and u′′′(t−j ), 1 ≤ j ≤ n, exist, satisfy two impulsive conditions
in (1.1) and the boundary condition u(0) = u(1) = u′′(0) = u′′(1) = 0.

A weak solution of problem (1.1) is a function u ∈ X such that the
equality

1∫

0

(u′′(t)v′′(t) − Au′(t)v′(t) + Bu(t)v(t)) dt

= −
n∑

j=1

I2j(u(tj))v(tj) −
n∑

j=1

I1j(u′(tj))v′(tj)

+λ

1∫

0

f(t, u(t))v(t) dt + μ

1∫

0

g(t, u(t))v(t) dt

holds for all v ∈ X.
We consider the functional Iλ : X → R, defined by

Iλ(u) := Φ(u) − λΨ(u), u ∈ X, (2.3)

where

Φ(u) :=
1
2
‖u‖X +

n∑

j=1

u′(tj)∫

0

I1j(s) ds +
n∑

j=1

u(tj)∫

0

I2j(s) ds (2.4)

and

Ψ(u) :=

1∫

0

F (t, u(t)) dt +
μ

λ

1∫

0

G(t, u(t)) dt. (2.5)

It is clear that Iλ is differentiable at any u ∈ X and

I ′
λ(u)(v) =

1∫

0

(
u′′(t)v′′(t) − Au′(t)v′(t) + Bu(t)v(t)

)
dt +

n∑

j=1

I2j(u(tj))v(tj)

+
n∑

j=1

I1j(u′(tj))v′(tj) − λ

1∫

0

f(t, u(t))v(t) dt − μ

1∫

0

g(t, u(t))v(t) dt
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for any v ∈ X. Hence, a critical point of Iλ gives a weak solution of problem
(1.1).

Lemma 2.3 ([24, Lemma 2.2]). If u ∈ X is a weak solution of problem (1.1),
then u is also a classical solution of problem (1.1).

We assume throughout, and without further mention, that the following
conditions hold:

(H1) Assume that {t1, t2, . . . , tn} ⊆ [14 , 3
4 ];

(H2) Assume that there exist two positive constants k1 and k2 such that for
each u ∈ X,

0 ≤
n∑

j=1

u′(tj)∫

0

I1j(s) ds ≤ k1 max
j∈{1,2,...,n}

|u′(tj)|2

and

0 ≤
n∑

j=1

u(tj)∫

0

I2j(s) ds ≤ k2 max
j∈{1,2,...,n}

|u(tj)|2.

Also put k0 := 2,048
(

3
8 − 9

10·44 A + 79
14·48 B

)
and k3 := k0 + k2. These constants

will be used in some of our hypotheses in the next section.
In conclusion, we cite a recent monograph by Kristály et al. [10] as a

general reference on variational methods adopted here.

3. Main Result and Proof

In this section, we present our main results on the existence of at least three
classical solutions for the problem (1.1).

In order to introduce our first result, we fix c, d > 0 such that

k3d
2

∫ 3/4

1/4
F (t, d) dt

<
c2

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

and pick

λ ∈ Λ :=

⎛

⎝
k3d

2

∫ 3/4

1/4
F (t, d) dt

,
c2

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

⎞

⎠ . (3.1)

Set

δ := min

⎧
⎨

⎩

c2 − 2λM2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

2M2
1 Gc

,
k3d

2 − λ
∫ 3/4

1/4
F (t, d) dt

Gd

⎫
⎬

⎭
(3.2)
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and

δ := min

⎧
⎨

⎩
δ,

1

max
{

0, 4M2
1 lim sup|ξ|→+∞

supt∈[0,1] G(t,ξ)

ξ2

}

⎫
⎬

⎭
, (3.3)

where we read r/0 = +∞. For instance, δ = +∞ when
lim sup|ξ|→+∞

supt∈[0,1] G(t,ξ)

ξ2 ≤ 0 and Gd = Gc = 0.
With the above notations we are able to prove the following multiplicity

property.

Theorem 3.1. Assume that there exist two positive constants c, d, with c <√
2k0M1d, such that

(A1) F (t, ξ) ≥ 0, for each (t, ξ) ∈ ([0, 1
4 ] ∪ [34 , 1]) × [0, d];

(A2)
∫ 1
0 max|ξ|≤c F (t,ξ) dt

c2 <
∫ 3/4
1/4 F (t,d) dt

2k3(M1d)2 ;

(A3) lim sup|ξ|→+∞
supt∈[0,1] F (t,ξ)

ξ2 <
∫ 1
0 max|ξ|≤c F (t,ξ) dt

2c2 .

Then, for every λ ∈ Λ, where Λ is given by (3.1), and for every continuous
function g : [0, 1] × R → R such that

lim sup
|ξ|→+∞

supt∈[0,1] G(t, ξ)
ξ2

< +∞,

there exists δ > 0 given by (3.3) such that, for each μ ∈ [0, δ), problem (1.1)
admits at least three classical solutions.

Proof. Fix λ, g and μ as in the conclusion. By Lemma 2.3, it suffices to show
that the functional Iλ defined in (2.3) has at least three critical points in X. We
prove this by verifying the conditions given in Theorem 2.1. Note that Φ defined
in (2.4) is a nonnegative Gâteaux differentiable, coercive, and sequentially
weakly lower semicontinuous functional, and its Gâteaux derivative admits
a continuous inverse on X∗. Moreover, Ψ defined in (2.5) is a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact. We
will verify (a1) and (a2) of Theorem 2.1.

Let w be the function defined by

w(t) :=

⎧
⎪⎨

⎪⎩

64d(t3 − 3
4 t2 + 3

16 t), t ∈ [0, 1/4)
d, t ∈ [1/4, 3/4]
64d(−t3 + 9

4 t2 − 27
16 t + 7

16 ), t ∈ (3/4, 1],

and put r := c2

2M2
1
. Clearly, w ∈ X and from the condition (H2) one has

Φ(w) ≥ 1
2
‖w‖2

X = 2,048
(

3
8

− 9
10 · 44

A +
79

14 · 48
B

)

d2 = k0d
2 > r.
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Also, by using condition (A1), since 0 ≤ w(t) ≤ d for each t ∈ [0, 1], we infer

Ψ(w) =

1∫

0

F (t, w(t)) dt +
μ

λ

1∫

0

G(t, w(t)) dt

≥
3/4∫

1/4

F (t, d) dt +
μ

λ

1∫

0

G(t, w(t)) dt

≥
3/4∫

1/4

F (t, d) dt +
μ

λ
Gd.

For all u ∈ X satisfying Φ(u) ≤ r, by Lemma 2.2, we obtain

‖u‖2
∞ ≤ M2

1 ‖u‖2
X ≤ 2M2

1 Φ(u) ≤ 2M2
1 r = c2.

Therefore

supΦ(u)≤r Ψ(u)
r

≤
∫ 1

0
max|ξ|≤c F (t, ξ) dt + μ

λ

∫ 1

0
max|ξ|≤c G(t, ξ) dt

c2

2M2
1

= 2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

c2
+ 2M2

1

μ

λ

Gc

c2
.

From this, if Gc = 0, we deduce that

supΦ(u)≤r Ψ(u)
r

<
1
λ

, (3.4)

while, if Gc > 0, it turns out to be true bearing in mind that

μ <
c2 − 2λM2

1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

2M2
1 Gc

.

On the other hand, taking into account (H2), we have

Φ(w) = 2,048
(

3
8

− 9
10 · 44

A +
79

14 · 48
B

)

d2 +
m∑

j=1

d∫

0

I2j(s) ds

≤ k0d
2 + k2d2 = k3d

2,

and so,

Ψ(w)
Φ(w)

≥
∫ 3/4

1/4
F (t, d) dt + μ

λGd

k3d2

=

∫ 3/4

1/4
F (t, d) dt

k3d2
+

μ

λ

Gd

k3d2
.
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Hence, if Gd = 0, we find

Ψ(w)
Φ(w)

>
1
λ

, (3.5)

while, if Gd < 0, the same relation holds since

μ <
k3d

2 − λ
∫ 3/4

1/4
F (t, d) dt

Gd
.

Therefore, from (3.4) and (3.5), condition (a1) of Theorem 2.1 is verified.
Now, in order to prove the coercivity of the functional Iλ, first we assume

that

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)
ξ2

> 0.

Therefore, fix

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)
ξ2

< ε <

∫ 1

0
max|ξ|≤c F (t, ξ) dt

c2
.

From (A3), there is a function hε ∈ L1([0, 1]) such that

F (t, ξ) ≤ εξ2 + hε(t),

for each t ∈ [0, 1] and ξ ∈ R. Taking (2.3) into account and since λ <
c2

2M2
1
∫ 1
0 max|ξ|≤c F (t,ξ) dt

, it follows that

λ

1∫

0

F (t, u(t)) dt ≤ λ

⎛

⎝ε

1∫

0

(u(t))2 dt +

1∫

0

hε(t) dt

⎞

⎠

<
c2

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

⎛

⎝ε

1∫

0

(u(t))2 dt +

1∫

0

hε(t) dt

⎞

⎠

≤ c2

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

(
εM2

1 ‖u‖2
X + ‖hε‖L1([0,1])

)
,

(3.6)

for each u ∈ X. Moreover, since μ < δ, we obtain

lim sup
|ξ|→+∞

supt∈[0,1] G(t, ξ)
ξ2

<
1

4μM2
1

.

Thus, there is a function hμ ∈ L1([0, 1]) such that

G(t, ξ) ≤ 1
4μM2

1

ξ2 + hμ(t),
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for each t ∈ [0, 1] and ξ ∈ R. Thus, taking again Lemma 2.2 into account, it
follows that

1∫

0

G(t, u(t)) dt ≤ 1
4μM2

1

1∫

0

(u(t))2 dt +

1∫

0

hμ(t) dt

≤ 1
4μ

‖u‖2
X + ‖hμ‖L1([0,1]), (3.7)

for each u ∈ X. Finally, putting together (3.6) and (3.7), we have

Iλ(u) = Φ(u) − λΨ(u)

≥ 1
2
‖u‖2

X − c2

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

(εM2
1 ‖u‖2

X + ‖hε‖L1([0,1]))

−1
4
‖u‖2

X − μ‖hμ‖L1([0,1])

=
1
2

(
1
2

− c2

∫ 1

0
max|ξ|≤c F (t, ξ) dt

ε

)

‖u‖2
X − c2‖hε‖L1([0,1])

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

−μ‖hμ‖L1([0,1]).

On the other hand, if

lim sup
|ξ|→+∞

supt∈[0,1] F (t, ξ)
ξ2

≤ 0,

there exists a function hε ∈ L1([0, 1]) such that F (t, ξ) ≤ hε(t) for each t ∈
[0, 1] and ξ ∈ R, and arguing as before we obtain

Iλ(u) ≥ 1
4
‖u‖2

X − c2‖hε‖L1([0,1])

2M2
1

∫ 1

0
max|ξ|≤c F (t, ξ) dt

− μ‖hμ‖L1([0,1]).

Both cases lead to the coercivity of Iλ and condition (a2) of Theorem 2.1 is
verified.

Since, from (3.4) and (3.5),

λ ∈ Λ ⊆
]

Φ(w)
Ψ(w)

,
r

supΦ(u)≤r Ψ(u)

[

,

Theorem 2.1 ensures the existence of at least three critical points for the func-
tional Iλ and the proof is complete. �

The technical approach used to prove the previous result uses some ideas
from [3]. In the cited work, the existence of at least three classical solutions
for a perturbed two-point boundary value problem has been investigated un-
der suitable conditions on the potentials F and G; see also [9], where analo-
gous variational approaches have been developed to study a perturbed mixed
boundary value problem.
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4. Particular Cases and An Example

A particular case of Theorem 3.1 is the following multiplicity property.

Theorem 4.1. Let α ∈ L1([0, 1]) be a nonnegative and non-zero function.
Further, let h : R → R be a nonnegative continuous function. Put α0 :=
∫ 3/4

1/4
α(t) dt and H(ξ) :=

∫ ξ

0
h(x) dx for all ξ ∈ R, and assume that there exist

two positive constants c, d, with c < 16
√

6M1d, such that

(A4) H(c)
c2 < α0

2(768+k2)M2
1 ‖α‖L1([0,1])

H(d)
d2 ;

(A5) lim sup|ξ|→+∞
H(ξ)

ξ2 ≤ 0.

Then, for each parameter λ belonging to

Λ :=
(

768 + k2

α0

d2

H(d)
,

1
2M2

1 ‖α‖L1([0,1])

c2

H(c)

)

,

and for every continuous function g : [0, 1] × R → R such that

lim sup
|ξ|→+∞

supt∈[0,1] G(t, ξ)
ξ2

< +∞,

there exists

δ := min
{

c2 − 2λM2
1 ‖α‖L1([0,1])H(c)
2M2

1 Gc
,
(768 + k2)d2 − λα0H(d)

Gd

}

such that, for each

μ ∈
⎡

⎣0,min

⎧
⎨

⎩
δ,

1

max
{

0, 4M2
1 lim sup|ξ|→+∞

supt∈[0,1] G(t,ξ)

ξ2

}

⎫
⎬

⎭

⎞

⎠ ,

the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(iv)(t) = λα(t)h(u(t)) + μg(t, u(t)), t �= tj , t ∈ [0, 1],

Δ(u′′(tj)) = I1j(u′(tj)), j = 1, 2, . . . , n,

−Δ(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . , n,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

(4.1)

admits at least three classical solutions.

A direct consequence of the previous multiplicity property reads as fol-
lows.

Corollary 4.2. Let α ∈ L1([0, 1]) be a nonnegative and non-zero function. More-
over, let h : R → R be a nonnegative (not identically zero) and continuous
function such that

lim inf
ξ→0+

h(ξ)
ξ

= lim sup
|ξ|→+∞

h(ξ)
ξ

= 0. (4.2)
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Then, for each

λ >
768 + k2

α0
inf
d∈S

d2

H(d)
,

where S := {d > 0 : H(d) > 0}, the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(iv)(t) = λα(t)h(u(t)), t �= tj , t ∈ [0, 1],

Δ(u′′(tj)) = I1j(u′(tj)), j = 1, 2, . . . , n,

−Δ(u′′′(tj)) = I2j(u(tj)), j = 1, 2, . . . , n,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

admits at least three classical solutions.

Proof. Fix λ > 768+k2
α0

infd∈S
d2

H(d) . Then, there exists d > 0 such that H(d) >

0 and λ > (768+k2)d
2

α0H(d)
. By using condition (4.2) we obtain

lim inf
ξ→0+

H(ξ)
ξ2

= 0.

Therefore, we can find a positive constant c such that c < 16
√

6M1d and

H(c)
c2 < min

{
α0H(d)

(768 + k2)(M1d)2
,

1
2λM2

1 ‖α‖L1([0,1])

}

.

Hence

λ ∈
(

768 + k2

α0

d
2

H(d)
,

1
2M2

1 ‖α‖L1([0,1])

c2

H(c)

)

.

All the hypotheses of Theorem 4.1 are satisfied and problem (4.1) admits at
least three distinct classical solutions. The proof is complete. �

In conclusion we present a concrete example of application of Corollary
4.2.

Example 4.3. Consider the following problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(iv)(t) = λe16th(u(t)), t ∈ [0, 1] \ { 1
2},

Δ(u′′(t1)) = 2u′(t1), t1 = 1
2 ,

−Δ(u′′′(t1)) = 4u(t1), t1 = 1
2 ,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

(4.3)

where h : R → R is defined by

h(x) :=

{
x2, |x| ≤ 1,
1
x2 , |x| > 1.
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Here, I11(s) = 2s and I21(s) = 4s for all s ∈ R. It is easy to verify that (H2)
is satisfied with k1 = 1 and k2 = 2. Direct calculations give

lim inf
ξ→0+

h(ξ)
ξ

= lim
ξ→0+

ξ = 0,

lim sup
|ξ|→+∞

h(ξ)
ξ

= lim
|ξ|→+∞

1
ξ3

= 0.

Also we have

inf
d∈S

d2

H(d)
= inf

0<d≤1

3
d

= 3.

Put α(t) = e16t for all t ∈ R. Therefore,

α0 =

3/4∫

1/4

α(t) dt =
1
16

(e12 − e4).

From Corollary 4.2, for each parameter λ > 36,960
e12−e4 , problem (4.3) admits at

least three classical solutions. In particular, the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(iv)(t) = e16th(u(t)), t ∈ [0, 1] \ { 1
2},

Δ(u′′(t1)) = 2u′(t1), t1 = 1
2 ,

−Δ(u′′′(t1)) = 4u(t1), t1 = 1
2 ,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

admits at least three classical solutions.
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