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Abstract
We consider a nonlinear Dirichlet problem driven by the sum of a p-Laplacian and of a q-
Laplacian, 1 < p < q , (a (p, q)-equation). The reaction is parametric (eigenvalue problem)
and exhibits the competing effects of a strongly singular term and of (p − 1)-superlinear
Carathéodory perturbation. We show that when the parameter (eigenvalue) is small, then the
problem has at least two positive bounded solutions which are bounded away from zero on
compact sets.

Keywords Purely singular problem · Regularization · Nonlinear maximum principle ·
Multiple positive solutions · Superlinear perturbation
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study the

following singular eigenvalue problem
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{
−�pu(z) − �qu(z) = λ

(
u(z)−η + f (z, u(z)

)
in �,

u|∂� = 0, 1 < q < p < N , 2 ≤ p, λ > 0, u > 0.

}
(Pλ)

If r ∈ (1,∞), by �r we denote the r -Laplace differential operator defined by

�r u = div
(|Du|r−2Du

)
for all u ∈ W 1,r

0 (�).

The equation in (Pλ) is driven by the sum of two such operators and so the differential
operator in (Pλ) (left-hand side) is not homogeneous. In the parametric reaction (right-hand
side with λ > 0 being the parameter (eigenvalue)), we have the competing effects of a
singular term u → u−η with η > 1 and of a Carathéodory perturbation (that is, for all x ∈ R,
the mapping z → f (z, x) is measurable and for a.a. z ∈ �, the function x → f (z, x) is
continuous), which is (p − 1)-superlinear as x → +∞, but without satisfying the usual in
such cases Ambrosetti-Rabinowitz condition (the AR-condition for short).

Since the exponent of the singular term is η > 1, we have what is called in the literature
“a strong singularity” and so the problem is more difficult. When the singularity is “weak”
(that is, 0 < η < 1), then we can have global existence and multiplicity results. We refer
to the recent works of Bai, Papageorgiou & Zeng [1], Papageorgiou, Rădulescu & Repovš
[14] (isotropic problems), Liu-Motreanu-Zeng [11] Papageorgiou, Rădulescu & Zhang [16]
(anisotropic problems) and the references therein. Finally, we mention the recent works
on double phase obstacle problems by Zeng-Bai-Gasinski-Winkert [22], Zeng-Rădulescu-
Winkert [23].

Strongly singular equations are more complicated and of course have not been examined
so systematically. Their study was initiated with the seminal paper of Lazer &McKenna [9],
who considered semilinear equations driven by the Dirichlet Laplacian and proved that the
solution is not C1(�̄) if η > 1 and it belongs to the Sobolev apace H1

0 (�) if and only if
η < 3. So, when dealing with strongly singular problems, we can not expect good regularity
properties for the solutions and this then eliminates from consideration important analytical
tools which are available for weakly singular equations (see [14] and [16]). After the work
of Lazer and McKenna, further contributions on strongly singular equations were made by
Boccardo & Orsina [2], Diaz, Hernandez & Rakotoson [5], Sun [21] (semilinear equations),
Chu & Gao [3], Cong & Han [4] (equations driven by the p-Laplacian) and Papageorgiou,
Rădulescu & Zhang [15] (double phase equations). These works prove existence but not
multiplicity theorems. Here under a compatibility condition relating the exponents η and
p, we prove the existence of at least two bounded weak solutions when λ > 0 is small
(continuous spectrum).

2 Mathematical background and hypotheses

The main space in the study of problem (Pλ) is the Sobolev space W 1,p
0 (�). On account of

the Poincaré inequality, the norm ‖ · ‖ of W 1,p
0 (�) is given by

‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�).

At some point we will also use the space C1
0 (�̄) = {

u ∈ C1(�̄) : u|∂� = 0
}
. This is an

ordered Banach space with positive (order) cone

C+ = {
u ∈ C1

0(�̄) : u(z) ≥ 0 for all z ∈ �̄
}
.
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This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ �,

∂u

∂n

∣∣∣∣
∂�

< 0

}

with ∂u
∂n = (Du, n)RN and n(·) is the outward unit normal on ∂�.

Define the nonlinear operator

V : W 1,p
0 (�) → W−1,p′

(�) = W 1,p
0 (�)∗

(
1

p
+ 1

p′ = 1

)

by

〈V (u), h〉 =
∫

�

[|Du|p−2 + |Du|q−2] (Du, Dh)RN dz for all u, h ∈ W 1,p
0 (�).

This operator has the following properties (see Gasinski & Papageorgiou [6], Problem
2.192).

Proposition 1 The operator V (·) is bounded (that is, maps bounded sets to bounded sets),
continuous, strictly monotone (thus maximal monotone too) and has the (S)+-property, that
is

“un
w−→ u in W 1,p

0 (�) and lim sup
n→∞

〈V (un), un − u〉 ≤ 0 imply that un → u in W 1,p
0 (�).”

If u : � → R is a measurable function, then for every z ∈ � we define u+(z) =
max{u(z), 0} and u−(z) = max{−u(z), 0}. We know that u = u+ − u−, |u| = u+ + u− and
if u ∈ W 1,p

0 (�), then u± ∈ W 1,p
0 (�).

If g : �×R → R is a Carathéodory function, then g(·, ·) is jointly measurable (see Papa-
georgiou & Winkert [17, p.106]). In particular then g(·, ·) is superpositionally measurable,
that is, if u : � → R is measurable, then so is z → g(z, u(z)). By Ng(·) we denote the
corresponding Nemytski (superposition) map defined by Ng(u)(·) = g(·, u(·)) which maps
measurable functions to measurable ones.

Finally, by p∗ we denote the critical Sobolev exponent corresponding to p. Since p < N ,
we have p∗ = Np

N−p .
Now we introduce the hypotheses on the data of problem (Pλ).

H : f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ � and

(i) 0 ≤ f (z, x) ≤ a(z)[1 + xr−1] for a.a. z ∈ �, all x ≥ 0, with a ∈ L∞(�), p < r < p∗;
(ii) if F(z, x) = ∫ x

0 f (z, s)ds, then limx→+∞ F(z,x)
x p = +∞ uniformly for a.a. z ∈ � and

there exists μ ∈
(
(r − p) Np , p∗

)
such that

0 < β0 ≤ lim inf
x→+∞

f (z, x)x − pF(z, x)

xμ
uniformly for a.a. z ∈ �;

(iii) limx→0+ f (z,x)
xq−1 = 0 uniformly for a.a. z ∈ �.

Remark 1 Since we look for positive solutions and the above hypotheses concern the positive
semiaxis R+ = [0,+∞), without any loss of generality we may assume that f (z, x) = 0
for a.a. z ∈ �, x ≤ 0. Hypothesis H (ii) implies that

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for a.a. z ∈ �.
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So, the perturbation of the singular term, is (p − 1)-superlinear but need not satisfy the
AR-condition (see Rădulescu [19, p. 80]), which is common in the literature when dealing
with superlinear problems. The following function f (x) satisfies hypotheses H but fails to
satisfy the AR-condition. For the sake of simplicity we drop the z-dependence

f (x) =
{

(x+)τ−1 if x ≤ 1

x p−1 ln x + xθ−1 if 1 < x
, q < τ, θ ≤ p.

As we already mentioned in the Introduction, to deal with the strongly singularity, we will
need a compatibility condition between the exponents η and p.

Ĥ : η <
3p∗+1
2p∗+1 = 3Np+N−p

2Np+N−p .

Remark 2 Note that 3N+N−p
2N+N−p < 3

2 ≤ 2 − 1
p (recall that 2 ≤ p).

We mention that, as usual, by a “(weak) solution” of (Pλ), we mean a function u ∈
W 1,p

0 (�) such that

u−1h ∈ L1(�) for all h ∈ W 1,p
0 (�),

〈V (u), h〉 =
∫

�

[λu−η + f (z, u)]h dz for all h ∈ W 1,p
0 (�).

3 A purely singular problem

In this section, we deal with the following purely singular problem{
−�pu(z) − �qu(z) = λu(z)−η in �,

u
∣∣
∂�

= 0, λ > 0, u > 0.

}
(1)

We want to produce a weak solution of (1), that is, we want to find u ∈ W 1,p
0 (�) such

that

u−ηh ∈ L1(�) for all h ∈ W 1,p
0 (�),

〈V (u), h〉 =
∫

�

λu−ηh dz for all h ∈ W 1,p
0 (�).

To solve (1), first we consider a regularization of it. So, given ε > 0, we consider the
following Dirichlet problem{

−�pu(z) − �qu(z) = λ [u(z) + ε]−η in �,

u
∣∣
∂�

= 0, λ > 0, u > 0.

}
(2)

Proposition 2 For every λ > 0 and ε > 0, problem (2) has a unique positive solution
ūε ∈ intC+ and the map ε → ūε is nonincreasing from R̊+ = (0,+∞) into C1

0(�̄).

Proof Let g ∈ L p(�) and consider the following Dirichlet problem

−�pu(z) − �qu(z) = λ

[|g(z)| + ε]η in �, u
∣∣
∂�

= 0.
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Note that λ
[|g(·)|+ε]η ∈ L∞(�) and recall that the operator V (·) is maximal monotone (see

Proposition 1). Also, we have

〈V (u), u〉 ≥ ‖u‖p for all u ∈ W 1,p
0 (�),

⇒ V (·) is coercive.
A maximal monotone and coercive operator is surjective (see Papageorgiou, Rădulescu

& Repovš [13, p.135]). So, we can find ug ∈ W 1,p
0 (�)\{0} such that

V (ug) = λ

[|g| + ε]η . (3)

On account of the strict monotonicity of V (·) ( see Proposition 1), this solution ug is

unique. On (3) we act with −u−
g ∈ W 1,p

0 (�) and obtain

‖Du−
g ‖p

p ≤ 0,

⇒ ug ≥ 0, ug �= 0.

From Theorem 7.1 of Ladyzhenskaya & Uraltseva [8, p.286]), we have that ug ∈ L∞(�)

and then using the nonlinear regularity theoremofLieberman [10],we infer thatug ∈ C+\{0}.
We have

−�pug − �qug = λ

[|g| + ε]η in �,

⇒ �pug + �qug ≤ 0 in �.

Invoking the nonlinear Hopf maximum principle of Pucci & Serrin [18, p.120], we con-
clude that

ug ∈ intC+.

Let s : L p(�) → W 1,p
0 (�) be the solution map for problem (1) defined by s(g) = ug .

Evidently s(·) is continuous. Also acting on (3) with s(g) = ug ∈ W 1,p
0 (�), we have

‖Dug‖p
p + ‖Dug‖qq =

∫
�

λug
[|g| + ε]η dz,

⇒ ‖ug‖p ≤ λ

εη
c1‖ug‖ for some c1 > 0,

⇒ ‖ug‖p−1 ≤ λ

εη
c1 for all g ∈ L p(�).

Hence we have that

s(L p(�)) ⊆ W 1,p
0 (�) is bounded.

The compact embedding of W 1,p
0 (�) into L p(�) (Sobolev embedding theorem), implies

that

s(L p(�)) ⊆ L p(�) is compact.
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32 Page 6 of 17 N. S. Papageorgiou et al.

Invoking the Schauder-Tychonov fixed point theorem (see Theorem 4.8.3 of [13, p.357]),
we can find ūε ∈ W 1,p

0 (�) such that

s(ūε) = ūε,

⇒ −�pūε − �q ūε = λ

[ūε + ε]η in �.

As before the nonlinear regularity theory and the nonlinear maximum principle, imply
that

ūε ∈ intC+.

We show that this solution of (2) is in fact unique. Indeed, suppose that v̄ε ∈ W 1,p
0 (�) is

another positive solution of (2). Again we show that v̄ε ∈ intC+. We have

〈V (ūε), (ūε − v̄ε)
+〉 =

∫
�

λ

[ūε + ε]η (ūε − v̄ε)
+dz, (4)

〈V (v̄ε), (ūε − v̄ε)
+〉 =

∫
�

λ

[v̄ε + ε]η (ūε − v̄ε)
+dz. (5)

We subtract (5) from (4) and obtain

0 ≤ 〈V (ūε) − V (v̄ε), (ūε − v̄ε)
+〉 = λ

∫
�

[
1

[ūε + ε]η − 1

[v̄ε + ε]η
]

(ūε − v̄ε)
+dz ≤ 0

⇒ ūε ≤ v̄ε (see Proposition 1).

Interchanging the roles of ūε and v̄ε in the above argument we also have v̄ε ≤ ūε, to
conclude that ūε = v̄ε .

This proves the uniqueness of the solution ūε ∈ intC+ of problem (2).
Next we show that the map ε → ūε is nonincreasing from R̊+ = (0,∞) into C+\{0}.

So, let 0 < ε′ < ε. We have

− �pūε′ − �q ūε′ = λ
[
ūε′ + ε′]−η ≥ λ [ūε′ + ε]−η in �. (6)

We introduce the Carathéodory function kε(z, x) defined by

kε(z, x) =
{

λ[x+ + ε]−η if x ≤ ūε′(z)

λ[ūε′(z) + ε]−η if ūε′(z) < x .
(7)

We set Kε(z, x) = ∫ x
0 kε(z, s)ds and consider the C1-functional ψε : W 1,p

0 (�) → R

defined by

ψε(u) = 1

p
‖Du‖p

p + 1

q
‖Du‖qq −

∫
�

kε(z, u)dz for all u ∈ W 1,p
0 (�).

It is clear from (7) that ψε(·) is coercive. Also using the Sobolev embedding theorem,
we see thatψε(·) is sequentially weakly lower semicontinuous. Then theWeierstrass-Tonelli
theorem implies the existence of ũε ∈ W 1,p

0 (�) such that

ψε(ũε) = inf
[
ψε(u) : u ∈ W 1,p

0 (�)
]
,

⇒ 〈ψ ′
ε(ũε), h〉 = 0 for all h ∈ W 1,p

0 (�). (8)
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In (8) first we use the test function h = −ũ−
ε ∈ W 1,p

0 (�). Then

‖Dũ−
ε ‖p ≤ 0,

⇒ ũε ≥ 0.

Also, in (8) we choose h = [
ũε − ūε′

]+ ∈ W 1,p
0 (�). Then

〈V (ũε), (ũε − ūε′)+〉 =
∫

�

λ

[ūε′ + ε]η (ũε − ūε′)+ dz (see (7))

≤ 〈V (ūε′), (ũε − ūε′)+〉 (see (6)),

⇒ ũε ≤ ūε′ , (see Proposition 1).

So, we have proved that
ũε ∈ [0, ūε′ ]. (9)

From (9), (7) and (8) it follows that

ũε = ūε,

⇒ ūε ≤ ūε, (see (9)),

⇒ ε → ūε is nonincreasing from R̊+ = (0,∞) into C+\{0}.
The proof is now complete. ��

Now we will pass to the limit as ε → 0+ in order to produce a solution for problem (1).

Proposition 3 If 1 < η < 2− 1
p , then problem (1) admits a unique solution ū ∈ W 1,p

0 (�) ∩
L∞(�), and for every K ⊆ � compact we have 0 < cK ≤ ū(z) for a.a. z ∈ K.

Proof Let εn → 0+ and let ūn = ūεn ∈ intC+ be the unique positive solution of the
corresponding regularized problem (2) with ε = εn , n ∈ N. (see Proposition 2). We know
that

{ūn}n∈N ⊆ intC+ is nondecreasing (recall that ūn = ūεn and εn ↘ 0). (10)

For every n ∈ N we have

〈V (ūn), h〉 =
∫

�

λh

[ūn + εn]η dz for all h ∈ W 1,p
0 (�). (11)

Using the test function h = ūn ∈ W 1,p
0 (�), we obtain

‖Dūn‖p
p ≤

∫
�

λ

ūη−1
n

dz ≤
∫

�

λ

ūη−1
1

dz for all n ∈ N (see (10)). (12)

By hypotheses η < 2 and so η − 1 < 1. Since ū1 ∈ intC+ from the Lemma (and its
proof) in Lazer & McKenna [9], we have

1

ūη−1
1

∈ L1(�).

Then from (12) we have

‖ūn‖p ≤ λc2 for some c2 > 0, all n ∈ N.

Therefore {ūn}n∈N ⊆ W 1,p
0 (�) is bounded, and so we may assume that

ūn
w−→ ū in W 1,p

0 (�), ūn → ū in L p(�), ūn(z) → ū(z) for a.a. z ∈ �. (13)
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32 Page 8 of 17 N. S. Papageorgiou et al.

Note that ∣∣∣∣
∫

�

λ(ūn − ū)

[ūn + εn]η dz

∣∣∣∣ ≤
∫

�

λn |ūn − ū|
ūη
1

dz

≤
∫

�

λū1−η
1

|ūn − ū|
ū1

dz. (14)

From Lemmas 14 and 16 of Gilbarg & Trudinger [7, p.355], we know that there exists
δ > 0 such that if d̂(·) = d(·, ∂�) on �̄, then d̂ ∈ C2(�δ), where �δ = {z ∈ �̄ : d̂(z) < δ}.
It follows that d̂ ∈ C+\{0}. Since ū1 ∈ intC+, using Proposition 4.1.22 of Papageorgiou,
Rădulescu & Repovš [13, p.274], we can find c3 > 0 such that c3d̂ ≤ ū1. We have

λ

∫
�

ū1−η
1

|ūn − ū|
ū1

dz

≤ λ

c3

∫
�

ū1−η
1

|ūn − ū|
d̂

dz. (15)

Using Hardy’s inequality, we have that

|ūn − ū|
d̂

∈ L p(�). (16)

Since by hypothesis η < 2 − 1
p , we have (η − 1)p′ < 1 and so using once again the

Lemma of Lazer & McKenna [9], we have

ū1−η
1 ∈ L p′

(�). (17)

From (15), (16), (17) and Hölder’s inequality, we have

λ

∫
�

ū1−η
1

|ūn − ū|
ū1

dz ≤ λ

c3
‖ū−1‖η−1

(η−1)p′ ‖ ūn − ū

d̂
‖p. (18)

Note that ( |ūn − ū|
d̂

)p

=
(
ūn − ū

d̂

)p

≤
(
2ū

d̂

)p

∈ L1(�). (19)

We have used (12) and Hardy’s inequality which says that ū
d̂

∈ L p(�).

From (13) we have

|(ūn − ū)(z)|
d̂(z)

→ 0 for a.a. z ∈ �, as n → ∞. (20)

Then (19), (20) and the Lebesgue dominated convergence theorem imply that∥∥∥∥ ūn − ū

d̂

∥∥∥∥
p

→ 0 as n → ∞,

⇒
∫

�

λ|ūn − ū|
[ūn + εn]η dz → 0 as n → ∞ (see (18), (14)). (21)

Therefore, if in (11) we use the test function h = ūn − ū ∈ W 1,p
0 (�), passing to the limit

as n → ∞ and using (21), we obtain

lim
n→∞〈V (ūn), ūn − ū〉 = 0,

⇒ ūn → ū in W 1,p
0 (�) (see Proposition 1), ū1 ≤ ū. (22)
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We know that

〈V (ūn), h〉 =
∫

�

λh

[ūn + εn]η dz for all h ∈ W 1,p
0 (�), all n ∈ N. (23)

For every n ∈ N, we have

|h|
[ūn + εn]η ≤ |h|

ūη
1

(see (10)). (24)

As above, via Hardy’s and Hölder’s inequalities, we have

|h|
ūη
1

∈ L1(�). (25)

Moreover, from (13) we have

h(z)

(ūn + εn)(z)η
→ h(z)

ū(z)η
for a.a. z ∈ �. (26)

Then (24), (25), (26) and the Lebesgue dominated convergence theorem imply that∫
�

λh

[ūn + εn]η dz →
∫

�

λh

ūη
1

dz. (27)

If in (23) we pass to the limit as n → ∞ and use (22) and (27) we obtain

〈V (ū), h〉 =
∫

�

λh

ūη
dz for all h ∈ W 1,p

0 (�), ū1 ≤ u (see (22)),

h

ūη
∈ L1(�) for all h ∈ W 1,p

0 (�) (see (25)).

We conclude that ū ∈ W 1,p
0 (�) is a positive solution of problem (1). As before, exploiting

the strict monotonicity of the operator V (·) (see Proposition 1) and the fact that the map
x → x−η, x > 0, is strictly decreasing, we infer that ū ∈ W 1,p

0 (�) is unique. Moreover, on
account of the fact that ū1 ≤ ū (see (22)), since ū1 ∈ intC+, we have that for all K ⊆ �

compact

0 < cK ≤ ū(z) for a.a. z ∈ K .

Finally let k > 1 and set ξk(t) = [t − k]+. This is a Lipschitz function and so ξk(un) ∈
W 1,p

0 (�) for all n ∈ N (see [13, p.22]). In (23) we choose as test function h = ξk(ūn) ∈
W 1,p

0 (�). We obtain

‖Dξk(ūn)‖p
p ≤

∫
�

λξk(ūn)

[ūn + εn]η dz,

⇒ ‖Dξk(ūn)‖p
p ≤ λ

∫
�

ξk(ūn)dz (recall the definition of ξk(·)).

From the estimate as in the proof of Proposition 2.10 of Papageorgiou & Rădulescu [12]
(see also Stampacchia [20], Theorems 4.1, 4.2), we obtain

‖ūn‖∞ ≤ c4 for some c4 > 0, all n ∈ N,

⇒ ū ∈ L∞(�) (see (22)).

The proof is now complete. ��

123
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4 Multiplicity theorem

In this section, using the results of Section 3, we prove a multiplicity result for the positive
solutions of problem (Pλ) when λ > 0 is small. To the best of our knowledge, this is the first
multiplicity theorem for strongly singular (p, q)- equations.

To this end, we introduce the Carathéodory function k̂λ(z, x) defined by

k̂λ(z, x) =
{

λū(z)−η if x ≤ ū(z)

λx−η if ū(z) < x .
(28)

We set Kλ(z, x) = ∫ x
0 kλ(z, s)ds and consider the functional γ̂λ : W 1,p

0 (�) → R defined
by

γ̂λ(u) =
∫

�

K̂λ(z, u)dz for all u ∈ W 1,p
0 (�).

In what follows byC1
w(W 1,p

0 (�))we denote the space of all functions γ : W 1,p
0 (�) → R

which are differentiable and the derivative u → γ ′(u) is continuous from W 1,p
0 (�) with the

norm topology into W−1,p′
(�) = W 1,p

0 (�)∗
(
1
p + 1

p′ = 1
)
with the weak topology.

Lemma 4 If 1 < η < 2 − 1
p and λ > 0, then γ̂λ ∈ C1

w(W 1,p
0 (�)) and γ̂ ′

λ(u) = Nk̂λ
(u) for

all u ∈ W 1,p
0 (�).

Proof Let t ∈ R\{0} and h ∈ C∞
c (�). We have

1

t

[
γ̂λ(u + th) − γ̂λ(u)

]
= 1

t

∫
�

[
K̂λ(z, u + th) − K̂λ(z, u)

]
dz

=
∫

�

[∫ 1

0
k̂λ(z, u + sth)ds

]
h dz. (29)

Note that ∫ 1

0
k̂λ(z, u + sth)ds → k̂λ(z, u) for a.a. z ∈ �, as t → 0. (30)

Also we have:

• on {u < ū}, for |t | < 1 small we have

|̂kλ(z, u + sth)| = λū−η ≤ λū−η
1 (see (28) and recall h ∈ C∞

c (�), ū1 ≤ ū);
• on {ū < u}, for |t | < 1 small we have

|̂kλ(z, u + sth)| = λ(u + sth)−η ≤ λū−η
1 (see (28) and recall h ∈ C∞

c (�), ū1 ≤ ū).

By continuity we also have that

|̂kλ(z, ū + sth)| ≤ λū−η
1 .
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We already know that h
ūη
1

∈ L1(�) (see (25)). So, using the Lebesgue dominated conver-

gence theorem, we have

lim
t→0

1

t

[
γ̂λ(u + th) − γ̂λ(u)

]
= λ

∫
�

[max{u, ū}]−ηh dz

= λ

∫
�

k̂λ(z, u)h dz for all h ∈ C∞
c (�) (see (29), (30)),

⇒ γ̂ ′
λ(u)(h) =

∫
�

k̂λ(z, u)h dz for all h ∈ C∞
c (�).

The density of C∞
c (�) in W 1,p

0 (�) implies that

γ̂ ′
λ(u)(h) =

∫
�

k̂λ(z, u)h dz for all h ∈ W 1,p
0 (�).

Let un → u in W 1,p
0 (�). We have

|〈γ̂ ′
λ(un) − γ̂ ′

λ(u), h〉| =
∣∣∣∣
∫

�

[̂kλ(z, un) − k̂λ(z, un)]h dz
∣∣∣∣ . (31)

Note that

|̂kλ(z, un) − k̂λ(z, u)| ≤ 2ū−η
1 .

Moreover, at least for a subsequence, we have

k̂λ(z, un) → k̂λ(z, u) for a.a. z ∈ �, as n → ∞.

Then from (31) and using the Lebesgue dominated convergence theorem, we have

〈γ̂ ′
λ(un) − γ̂ ′

λ(u), h〉 → 0 for all h ∈ W 1,p
0 (�),

⇒ γ̂ ′
λ(un)

w−→ γ̂ ′
λ(u) in W−1,p′

(�) = W 1,p
0 (�)∗,

⇒ γ̂λ ∈ C1
w(W 1,p

0 (�)) and γ ′
λ(u) = Nk̂λ

(u).

The proof is complete. ��
Now we are ready to state and prove the multiplicity theorem.

Theorem 5 If hypotheses H, Ĥ hold, then for λ > 0 small, problem (Pλ) has at least two
positive solutions u0, û ∈ W 1,p

0 (�) ∩ L∞(�) and for all K ⊆ � compact we have

0 < cK ≤ u0(z), û(z) for a.a. z ∈ K .

Proof With ū ∈ W 1,p
0 (�) ∩ L∞(�) being the unique positive solution of problem (1) (see

Proposition 3), we introduce the Carathéodory function k(z, x) defined by

k(z, x) =
{
ū(z)−η + f (z, ū(z)) if x ≤ ū(z)

x−η + f (z, x) if ū(z) < x .
(32)

We set K (z, x) = ∫ x
0 k(z, s)ds and consider the functional ϕλ : W 1,p

0 (�) → R defined
by

ϕλ(u) = 1

p
‖Du‖p

p + 1

q
‖Du‖qq −

∫
�

λK (z, u)dx for all u ∈ W 1,p
0 (�).
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Using Lemma 4, we have that ϕλ ∈ C1
w(W 1,p

0 (�)). For every u ∈ W 1,p
0 (�), we have∫

�

K (z, u)dz =
∫

{u≤ū}
[ū−η + f (z, ū)]u dz +

∫
ū<u

[ū1−η + f (z, ū)ū]dz

+ 1

1 − η

∫
{u<ū}

[u1−η − ū1−η] dz +
∫

{ū<u}
[F(z, u) − F(z, ū)] dz. (33)

We estimate the terms in the right-hand side of (33). First we deal with the first two
summands. We have ∣∣∣∣

∫
{u≤ū}

ū−ηu dz +
∫
ū<u

ū1−ηdz

∣∣∣∣
≤

∫
�

ū−η|u|dz

≤
∫

�

ū1−η |u|
ū1

dz (see (22)). (34)

As before (see the proof of Proposition 3), using Hardy’s and Hölder’s inequalities, we
have ∣∣∣∣

∫
�

ū1−η
1

u

ū1
dz

∣∣∣∣ ≤ c5‖u
d̂

‖p for some c5 > 0

≤ c6‖Du‖p for some c6 > 0. (35)

We use (35) in (34) and obtain∣∣∣∣
∫

{u≤ū}
ū−ηu dz +

∫
{ū<u}

ū1−η dz

∣∣∣∣ ≤ c6‖u‖. (36)

On account of hypothesis H (i), we have∣∣∣∣
∫

{u≤ū}
f (z, ū)u dz +

∫
{ū<u}

f (z, ū)ū dz

∣∣∣∣
≤

∫
�

f (z, ū)|u| dz ≤ c7‖u‖ for some c7 > 0. (37)

From (36) and (37) it follows that∣∣∣∣
∫

{u≤ū}
[λū−η + f (z, ū)]u dz +

∫
{ū<u}

[λū1−η + f (z, ū)ū] dz
∣∣∣∣ ≤ c8‖u‖

for some c8 > 0. (38)

Next we estimate the third summand in the right-hand side of (33). We have∣∣∣∣ 1

1 − η

∫
{ū<u}

[u1−η − ū1−η] dz
∣∣∣∣

= 1

η − 1

∫
{ū<u}

[
1

ūη−1 − 1

uη−1

]
dz (recall that η > 1)

= 1

η − 1

∫
{ū<u}

uη−1−ūη−1

(ūu)η−1 dz

≤ 1

η − 1

∫
{ū<u}

(
u

ū21

)η−1

dz (see (22)). (39)

123



Strongly singular nonhomogeneous eigenvalue problem Page 13 of 17 32

From hypothesis Ĥ we have η < 3
2 ⇒ 2(η − 1) < 1. Therefore, if ξ ∈

(
1, 1

2(η−1)

)
, then

using the Lemma of Lazer & McKenna [9] (recall that ū1 ∈ intC+), we have

ū−2(η−1)
1 ∈ Lξ (�). (40)

Since by hypothesis Ĥ , η <
3p∗+1
2p∗+1 , we have

p∗
p∗+1−η

< 1
2(η−1) and so if we restrict further

ξ ∈
[

p∗
p∗+1−η

, 1
2(η−1)

)
, then we have

(η − 1)ξ ′ = (η − 1)
ξ

ξ − 1
≤ p∗.

Therefore by the Sobolev embedding theorem, we have

uη−1 ∈ Lξ ′
(�). (41)

We return to (39) and use (40), (41) and Hölder’s inequality. We have

1

η − 1

∫
{ū<u}

(
u

ū21

)η−1

dz

≤ 1

η − 1

∫
�

(
|u|
ū21

)η−1

dz

≤
[∫

�

|u|(η−1)ξ ′
dz

] 1
ξ ′ [∫

�

ū−2(η−1)ξ
1 dz

] 1
ξ

≤ c9‖u‖η−1
(η−1)ξ ′ for some c9 > 0 (recall ū1 ∈ intC+ and 2(η − 1)ξ < 1)

≤ c10‖u‖η−1 for some c10 > 0 (recall that (η − 1)ξ ′ ≤ p∗).

Thus we have the following estimate for the third summand of the right-hand side of (33)∣∣∣∣ 1

1 − η

∫
{ū<u}

[
u1−η − ū1−η

]
dz

∣∣∣∣ ≤ c10‖u‖η−1 (see (39)). (42)

Finally we examine the fourth summand in the right-hand side of (33). On account of
hypotheses H (i), (iii), given ε > 0, we can find c11 = c11(ε) > 0 such that

0 ≤ F(z, x) ≤ ε

q
|x |q + c11|x |r for a.a. z ∈ �, all x ∈ R. (43)

So, we have

0 ≤
∫

{ū<u}
[F(z, u) − F(z, ū)] dz

≤
∫

{ū<u}
F(z, u) dz (since F ≥ 0, see hypotheses H(i))

≤ ε

q
‖u‖qq + c12‖u‖r for some c12 > 0

≤ ε

λ̂1(q)
‖Du‖qq + c12‖u‖r (44)

with λ̂1(q) > 0 being the principle eigenvalue of (−�q ,W
1,q
0 (�)).
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Using (38), (42) and (44), we have

ϕλ(u) ≥ 1

p
‖u‖p + 1

q

[
1 − λε

λ̂1(q)

]
‖Du‖qq

− c14λ
[‖u‖η−1 + ‖u‖ + ‖u‖r−1] for some c14 > 0.

Note that η − 1 < 1 < r . So, we have

‖u‖ ≤ ‖u‖1−η + ‖u‖r . (45)

Choose ε ∈
(
0, λ̂1(q)

λ

)
. We have 1 − λε

λ̂1(q)
> 0 and so

ϕλ(u) ≥ 1

p
‖u‖p − 2c14λ

[‖u‖η−1 + ‖u‖r ] (see (45))

≥
[
1

p
− 2c14λ

(‖u‖η−1−p + ‖u‖r−p)] ‖u‖p. (46)

Let ξ(t) = tη−1−p + tr−p , t > 0. Evidently ξ ∈ C1(0,∞) and since η−1 < 1 < p < r ,
we have

ξ(t) → +∞ as t → 0+ and as t → +∞.

Therefore we can find t0 > 0 such that

ξ(t0) = min{ξ(t) : t > 0},
⇒ ξ ′(t0) = 0,

⇒ (p + 1 − η)tη−2−p
0 = (r − p)tr−p−1

0 ,

⇒ t0 =
(
p + 1 − η

r − p

) 1
r+1−η

.

Then for u ∈ W 1,p
0 (�) with ‖u‖ = t0 from (46)

ϕλ(u) ≥
[
1

p
− 2c14λξ(t0)

]
t p0 .

We see that we can find λ∗ > 0 such that

ϕλ(u) ≥ cλ > 0 for all ‖u‖ = t0, all λ ∈ (0, λ∗). (47)

We introduce the closed ball B̄0 = {u ∈ W 1,p
0 : ‖u‖ ≤ t0} and consider the following

minimization problem
inf

[
ϕλ(u) : u ∈ B̄0

] = mλ. (48)

The Eberlein-Smulian theorem says that B̄0 is sequentially weakly compact. Also, using
the Sobolev embedding theorem we see that ϕλ(·) is sequentially weakly lower semicontin-
uous. So, by the Weierstrass-Tonelli theorem, we can find u0 ∈ W 1,p

0 (�) such that

ϕλ(u0) = mλ (see (48)). (49)

For t ∈ (0, 1), we have

ϕλ(t ū) ≤ t p

p
‖Dū‖p

p + tq

q
‖Dū‖qq − λt

∫
�

ū1−η dz (see (32) and recall f ≥ 0, see H(i)).
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We know that 0 ≤ ū1−η ≤ ū1−η
1 ∈ L1(�) (see (22)). Moreover, since t ∈ (0, 1) and

q < p, we obtain

ϕλ(t ū) ≤ c15t
q − λc16t for some c15, c16 > 0.

Recalling that q > 1, if we choose t ∈ (0, 1), we have

ϕλ(t ū) < 0, t ū ∈ B̄0,

⇒ ϕλ(u0) < 0 = ϕλ(0) (see (48)),

⇒ u0 �= 0. (50)

Then (47) and (50) imply that

0 < ‖u0‖ < t0, that is, u0 ∈ B0\{0},
⇒ ϕ′

λ(u0) = 0 (see (48), (49) and recall ϕλ ∈ C1
w(W 1,p

0 (�))),

⇒ 〈V (u0), h〉 = λ

∫
�

k(z, u0)h dz (51)

for all h ∈ W 1,p
0 (�) (see Lemma 4). In (51) we choose h = [ū− u0]+ ∈ W 1,p

0 (�). We have

〈V (u0), (ū − u0)
+〉 =

∫
�

[λū−η + f (z, ū)](ū − u0)
+ dz (see (32))

≥
∫

�

λū−η(ū − u0)
+ dz (since f ≥ 0, see H(i))

= 〈V (ū), (ū − u0)
+〉 (see Proposition 3)

⇒ ū ≤ u0 (see Proposition 1). (52)

From (52), (32) and (51), we see that u0 ∈ W 1,p
0 (�) is a positive solution of (Pλ) (for

λ ∈ (0, λ∗)) and ū1 ≤ ū ≤ u0. Then as before we have

u0 ∈ W 1,p
0 (�) ∩ L∞(�),

0 < cK ≤ u0(z) for a.a. z ∈ �, all K ⊆ � compact.

From the previous arguments we know that

ϕλ(0) = 0 < cλ ≤ ϕλ(u) for all ‖u‖ = t0. (53)

On account of hypotheses H (ii), if u ∈ intC+, then

ϕλ(tu) → −∞ as t → +∞. (54)

Also, from the claim in the proof of Proposition 4 of Papageorgiou, Rădulescu & Zhang
[16], we know that

ϕλ(·) satisfies the C-condition. (55)

Then (53), (54) and (55) permit the use of the mountain pass theorem. So, we can find
û ∈ W 1,p

0 (�) such that

û ∈ Kϕλ = {u ∈ W 1,p
0 (�) : ϕ′

λ(u) = 0}
⊆ [ū) ∩ L∞(�) = {u ∈ W 1,p

0 (�) ∩ L∞(�) : ū(z) ≤ u(z), a.e.}.
ϕλ(u0) < 0 = ϕλ(0) < cλ ≤ ϕλ(̂u).
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Therefore û /∈ {0, u0} is a positive solution of (Pλ) (for λ ∈ (0, λ∗)) and, moreover,
0 < cK ≤ û(z) for a.a. z ∈ K , all K ⊆ � compact. ��
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