Problem No. 11104, American Mathematical Monthly 8/111 (2004)
Proposed by Vicenţiu Rădulescu, Department of Mathematics, University of
Craiova, Romania. E-mail: vicentiu.radulescu@ucv.ro

Let a be a positive real number. Assume that f is a twice differentiable function from \mathbb{R} into \mathbb{R} such that $f(0)=a$ and satisfying the differential equation $f^{\prime \prime}=-f\left(1-f^{2}\right)$. Moreover, we suppose that f is periodic with principal period $T=T(a)$ and that f^{2} achieves its maximum at the origin.
(a) Prove that $a \leq 1$ and deduce that f is well defined on the real axis.
(b) Prove that $T>2 \pi$.
(c) Denote $t_{0}(a):=\sup \{t>0 ; f>0$ in $(0, t)\}$. Show that f is decreasing on $\left(0, t_{0}(a)\right)$ and express T in terms of $t_{0}(a)$.
(d) Prove that $a^{2}+\left(\frac{2 \pi}{T}\right)^{2}>1$.
(e) Show that the mapping $t_{0}:(0,1) \rightarrow \mathbb{R}$ is increasing and compute $\lim _{a \searrow 0} t_{0}(a)$ and $\lim _{a \nearrow 1} t_{0}(a)$.
(f) Deduce that for any $T>2 \pi$, there exists a unique periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ with principal period T such that $f^{\prime \prime}=-f\left(1-f^{2}\right)$ and f^{2} achieves its maximum at the origin.

Solution. (a) Arguing by contradiction, let us assume that $a>1$. Using the differential equation satisfied by f, it follows that $f^{\prime \prime}(0)>0$ which contradicts our hypothesis that f^{2} achieves its maximum at the origin. If $a=1$, we get only the trivial solution $f \equiv 1$. That is why we shall assume in what follows that $a \in(0,1)$. Multiplying by f^{\prime} in the differential equation satisfied by f and integrating, we find

$$
\begin{equation*}
f^{\prime 2}=-f^{2}+\frac{1}{2} f^{4}+a^{2}-\frac{1}{2} a^{4} . \tag{1}
\end{equation*}
$$

It follows that, as far as a function f with the required properties exists, we have $|f(x)| \leq a$ and $\left|f^{\prime}(x)\right| \leq\left(a^{2}-\frac{a^{4}}{2}\right)^{1 / 2}$, for all $x \in \mathbb{R}$. Hence f is globally defined.
(b) We first observe that f cannot be positive (resp, negative) on an infinite interval, provided that f is periodic. Indeed, in this case, f would be a periodic concave (resp., convex) function, that is, a constant function. But this is impossible, due to our choice of a.

Let x_{1}, x_{2} be two consecutive zeros of f. We may suppose that $f(x)>0$ if $x_{1}<x<x_{2}$, so that $f^{\prime}\left(x_{1}\right)>0$ and $f^{\prime}\left(x_{2}\right)<0$. If x_{3} denotes the smallest $x>x_{2}$ such that $f\left(x_{3}\right)=0$, it follows that $f(x)<0$, for any $x \in\left(x_{2}, x_{3}\right)$. If we prove that $x_{2}-x_{1}>\pi$, it will also follow that $x_{3}-x_{1}>2 \pi$ and that there is no $x \in\left(x_{1}, x_{3}\right)$ such that $f(x)=0$ and $f^{\prime}(x)>0$. This
means that the principal period of f must be greater than 2π. This will be done in the following auxiliary result.

Lemma 1. Let $\Psi: \mathbb{R} \rightarrow[0,1]$ be such that the set $\{x ; \Psi(x)=0$ or $\Psi(x)=1\}$ contains only isolated points. Let f be a real function such that $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, and $f>0$ in $\left(x_{1}, x_{2}\right)$. Assume that $-f^{\prime \prime}=f \Psi$ in $\left[x_{1}, x_{2}\right]$. Then $x_{2}-x_{1}>\pi$.

Proof of Lemma. We may assume that $x_{1}=0$. Multiplying by $\varphi(x):=\sin \frac{\pi x}{x_{2}}$ in the differential equation $-f^{\prime \prime}=f \Psi$ and integrating by parts, we obtain

$$
\int_{0}^{x_{2}} f \varphi d x>\int_{0}^{x_{2}} f \Psi \varphi d x=\frac{\pi^{2}}{x_{2}^{2}} \int_{0}^{x_{2}} f \varphi d x
$$

that is, $x_{2}>\pi$.
(c) Since $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)<0$, it follows that f decreases for small $x>0$. Moreover, $f^{\prime}(x)<0$ for $0<x<t_{0}(a)$. Indeed, suppose the contrary. Then, taking into account relation (1), we obtain the existence of some $\tau>0$ with $\tau<t_{0}(a)$ and such that $f(\tau)=a$. If we consider the smallest $\tau>0$ such that the above equality holds true, then $f(x)<a$ for any $0<x<\tau$. Since $f(0)=f(\tau)=a$, it follows that there exists some $0<t_{1}<\tau$ such that $f^{\prime}\left(t_{1}\right)=0$, which is the desired contradiction. Hence

$$
f^{\prime}=-\sqrt{a^{2}-\frac{a^{4}}{2}-f^{2}+\frac{f^{4}}{2}}<0 \quad \text { in } \quad\left(0, t_{0}(a)\right)
$$

It follows that, for any $0<x<t_{0}(a)$,

$$
\begin{equation*}
\int_{f(x)}^{a} \frac{d t}{\sqrt{\frac{1}{2} t^{4}-t^{2}+a^{2}-\frac{1}{2} a^{4}}}=x \tag{2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
t_{0}(a)=\int_{0}^{a} \frac{d t}{\sqrt{\frac{1}{2} t^{4}-t^{2}+a^{2}-\frac{1}{2} a^{4}}}=\int_{0}^{1} \frac{d \xi}{\sqrt{\left(1-\xi^{2}\right)\left[1-\frac{a^{2}}{2}\left(1+\xi^{2}\right)\right]}} \tag{3}
\end{equation*}
$$

Taking into account the differential equation satisfied by f we first deduce that

$$
\begin{equation*}
f\left(t_{0}(a)+x\right)=-f\left(t_{0}(a)-x\right) \tag{4}
\end{equation*}
$$

Indeed, both functions $g(x)=f\left(t_{0}(a)+x\right)$ and $h(x)=-f\left(t_{0}(a)-x\right)$ are solutions of the Sturm-Liouville problem

$$
\left\{\begin{array}{l}
z^{\prime \prime}=-z\left(1-z^{2}\right), \quad \text { in }\left(0, t_{0}(a)\right) \\
z(0)=0, z^{\prime}(0)=f^{\prime}\left(t_{0}(a)\right)
\end{array}\right.
$$

Using now the uniqueness of the solution to the above boundary value problem we deduce relation (4). Next, similar arguments imply $f\left(2 t_{0}(a)-x\right)=-f(x)$ and $f\left(4 t_{0}(a)+x\right)=f(x)$. It follows that f is periodic and its principal period is $T(a)=4 t_{0}(a)$.

We observe that (b) easily follows from the above results. Indeed, relation (3) yields

$$
t_{0}(a)>\int_{0}^{1}\left(1-\xi^{2}\right)^{-1 / 2} d \xi=\frac{\pi}{2}
$$

So, by $T(a)=4 t_{0}(a)$, we obtain (b).
We may give the following alternative proof in order to justify that f decreases on the interval $\left(0, t_{0}(a)\right)$. Using the differential equation $f^{\prime \prime}=-f\left(1-f^{2}\right)$ in conjunction with $f>0$ on $\left(0, t_{0}(a)\right)$ and $f^{2} \leq a^{2}<1$, it follows that $f^{\prime \prime}<0$ on $\left(0, t_{0}(a)\right)$. Hence f^{\prime} is decreasing on $\left(0, t_{0}(a)\right)$, that is, $f^{\prime}(x)<f^{\prime}(0)=0$ for any $x \in\left(0, t_{0}(a)\right)$.
(d) Since $T(a)=4 t_{0}(a)$, it is enough to show that $\sqrt{1-a^{2}} t_{0}(a)<\frac{\pi}{2}$. Relation (3) yields

$$
\sqrt{1-a^{2}} t_{0}(a)=\int_{0}^{1} \frac{\sqrt{1-a^{2}}}{\sqrt{\left(1-\xi^{2}\right)\left[1-\frac{a^{2}}{2}\left(1+\xi^{2}\right)\right]}} d \xi<\int_{0}^{1} \frac{1}{\sqrt{1-\xi^{2}}} d \xi=\frac{\pi}{2} .
$$

(e) Relation (3) implies that the mapping $a \longmapsto t_{0}(a)$ is increasing and $\lim _{a \backslash 0} t_{0}(a)=\frac{\pi}{2}$, $\lim _{a \nearrow 1} t_{0}(a)=+\infty$.
(f) Since $t_{0}^{\prime}(a)>0$, it follows that the mapping $T(a) \longmapsto a:=a(T)$ is analytic. Taking into account relation (2), we conclude the proof. Moreover, we have $\lim _{T \backslash 2 \pi} a(T)=0$ and $\lim _{T /+\infty} a(T)=1$.

