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Let a be a positive real number. Assume that f is a twice differentiable function from
R into R such that f(0) = a and satisfying the differential equation f ′′ = −f(1 − f2).
Moreover, we suppose that f is periodic with principal period T = T (a) and that f2 achieves
its maximum at the origin.

(a) Prove that a ≤ 1 and deduce that f is well defined on the real axis.

(b) Prove that T > 2π.

(c) Denote t0(a) := sup{t > 0; f > 0 in (0, t)}. Show that f is decreasing on (0, t0(a))
and express T in terms of t0(a).

(d) Prove that a2 +
(

2π

T

)2

> 1.

(e) Show that the mapping t0 : (0, 1) → R is increasing and compute lim
a↘0

t0(a) and

lim
a↗1

t0(a).

(f) Deduce that for any T > 2π, there exists a unique periodic function f : R → R with
principal period T such that f ′′ = −f(1 − f2) and f2 achieves its maximum at the
origin.

Solution. (a) Arguing by contradiction, let us assume that a > 1. Using the differen-
tial equation satisfied by f , it follows that f ′′(0) > 0 which contradicts our hypothesis that
f2 achieves its maximum at the origin. If a = 1, we get only the trivial solution f ≡ 1.
That is why we shall assume in what follows that a ∈ (0, 1). Multiplying by f ′ in the
differential equation satisfied by f and integrating, we find

f ′2 = −f2 +
1
2

f4 + a2 − 1
2
a4 . (1)

It follows that, as far as a function f with the required properties exists, we have |f(x)| ≤ a

and |f ′(x)| ≤
(
a2 − a4

2

)1/2
, for all x ∈ R. Hence f is globally defined.

(b) We first observe that f cannot be positive (resp, negative) on an infinite interval,
provided that f is periodic. Indeed, in this case, f would be a periodic concave (resp.,
convex) function, that is, a constant function. But this is impossible, due to our choice
of a.

Let x1, x2 be two consecutive zeros of f . We may suppose that f(x) > 0 if x1 < x < x2,
so that f ′(x1) > 0 and f ′(x2) < 0. If x3 denotes the smallest x > x2 such that f(x3) = 0, it
follows that f(x) < 0, for any x ∈ (x2, x3). If we prove that x2 − x1 > π, it will also follow
that x3− x1 > 2π and that there is no x ∈ (x1, x3) such that f(x) = 0 and f ′(x) > 0. This
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means that the principal period of f must be greater than 2π. This will be done in the
following auxiliary result.

Lemma 1. Let Ψ : R→ [0, 1] be such that the set {x; Ψ(x) = 0 or Ψ(x) = 1} contains
only isolated points. Let f be a real function such that f(x1) = f(x2) = 0, and f > 0 in
(x1, x2). Assume that −f ′′ = fΨ in [x1, x2]. Then x2 − x1 > π.

Proof of Lemma. We may assume that x1 = 0. Multiplying by ϕ(x) := sin πx
x2

in the
differential equation −f ′′ = fΨ and integrating by parts, we obtain

∫ x2

0
fϕdx >

∫ x2

0
fΨϕdx =

π2

x2
2

∫ x2

0
fϕdx ,

that is, x2 > π.

(c) Since f ′(0) = 0 and f ′′(0) < 0, it follows that f decreases for small x > 0. Moreover,
f ′(x) < 0 for 0 < x < t0(a). Indeed, suppose the contrary. Then, taking into account
relation (1), we obtain the existence of some τ > 0 with τ < t0(a) and such that f(τ) = a.
If we consider the smallest τ > 0 such that the above equality holds true, then f(x) < a
for any 0 < x < τ . Since f(0) = f(τ) = a, it follows that there exists some 0 < t1 < τ such
that f ′(t1) = 0, which is the desired contradiction. Hence

f ′ = −
√

a2 − a4

2
− f2 +

f4

2
< 0 in (0, t0(a)) .

It follows that, for any 0 < x < t0(a),
∫ a

f(x)

dt√
1
2 t4 − t2 + a2 − 1

2a4
= x , (2)

which yields

t0(a) =
∫ a

0

dt√
1
2 t4 − t2 + a2 − 1

2a4
=

∫ 1

0

dξ√
(1− ξ2)[1− a2

2 (1 + ξ2)]
. (3)

Taking into account the differential equation satisfied by f we first deduce that

f(t0(a) + x) = −f(t0(a)− x) . (4)

Indeed, both functions g(x) = f(t0(a) + x) and h(x) = −f(t0(a) − x) are solutions of the
Sturm-Liouville problem

{
z′′ = −z(1− z2), in (0, t0(a))
z(0) = 0, z′(0) = f ′(t0(a)) .

Using now the uniqueness of the solution to the above boundary value problem we deduce
relation (4). Next, similar arguments imply f(2t0(a)−x) = −f(x) and f(4t0(a)+x) = f(x).
It follows that f is periodic and its principal period is T (a) = 4t0(a).

We observe that (b) easily follows from the above results. Indeed, relation (3) yields

t0(a) >

∫ 1

0
(1− ξ2)−1/2dξ =

π

2
.
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So, by T (a) = 4t0(a), we obtain (b).

We may give the following alternative proof in order to justify that f decreases on the
interval (0, t0(a)). Using the differential equation f ′′ = −f(1 − f2) in conjunction with
f > 0 on (0, t0(a)) and f2 ≤ a2 < 1, it follows that f ′′ < 0 on (0, t0(a)). Hence f ′ is
decreasing on (0, t0(a)), that is, f ′(x) < f ′(0) = 0 for any x ∈ (0, t0(a)).

(d) Since T (a) = 4t0(a), it is enough to show that
√

1− a2 t0(a) < π
2 . Relation (3)

yields

√
1− a2 t0(a) =

∫ 1

0

√
1− a2

√
(1− ξ2)[1− a2

2 (1 + ξ2)]
dξ <

∫ 1

0

1√
1− ξ2

dξ =
π

2
.

(e) Relation (3) implies that the mapping a 7−→ t0(a) is increasing and lima↘0 t0(a) = π
2 ,

lima↗1 t0(a) = +∞.

(f) Since t′0(a) > 0, it follows that the mapping T (a) 7−→ a := a(T ) is analytic. Taking
into account relation (2), we conclude the proof. Moreover, we have limT↘2π a(T ) = 0 and
limT↗+∞ a(T ) = 1.
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