Problem 11073, American Mathematical Monthly, 3/111 (2004)
 Proposed by Vicenţiu Rădulescu, University of Craiova, Romania

Let a and b be positive real numbers. Let f and g be functions from \mathbb{R} into \mathbb{R}, twice differentiable, with initial conditions $f(0)=a, f^{\prime}(0)=0, g(0)=0, g^{\prime}(0)=b$, and satisfying the differential equations

$$
f^{\prime \prime}=-f\left(1-f^{2}-g^{2}\right), \quad g^{\prime \prime}=-g\left(1-f^{2}-g^{2}\right) .
$$

(a) Show that there is a nontrivial polynomial function $E(X, Y)$ such that for all $a, b>0$, $E\left(f^{2}(t)+g^{2}(t), f^{\prime 2}(t)+g^{\prime 2}(t)\right)$ is independent of t.
(b) Show that if f and g are both periodic in t, with period T, and if at $t=0, f^{2}(t)+g^{2}(t)$ is not at a local minimum, then $a \leq 1, b^{2} \leq a^{2}\left(1-a^{2}\right)$, and $T>2 \pi$.
(c) Give an example of f and g satisfying the premises of part (b).
(d) Prove that there exist choices of a and b such that the resulting (f, g) is periodic, and $\min \left(f^{2}+g^{2}\right)<(1 / 2) \max \left(f^{2}+g^{2}\right)$.

Solution. (a) This statement is a kind of energy conservation law.
Let $r=\sqrt{f^{2}+g^{2}}$ and $s=\sqrt{f^{\prime 2}+g^{\prime 2}}$. Then

$$
\left(f^{2}+g^{2}\right)\left(1-(1 / 2)\left(f^{2}+g^{2}\right)\right)+\left(f^{\prime 2}+g^{\prime 2}\right)=r^{2}\left(1-r^{2} / 2\right)+s^{2}
$$

Define $E(X, Y)=X-X^{2} / 2+Y$. It follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(f^{2}(t)+g^{2}(t), f^{\prime 2}(t)+g^{\prime 2}(t)\right)=2\left[\left(f f^{\prime}+g g^{\prime}\right)\left(1-f^{2}-g^{2}\right)+\left(f^{\prime} f^{\prime \prime}+g^{\prime} g^{\prime \prime}\right)\right](t)
$$

Using now the differential equation fulfilled by f and g we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} E\left(f^{2}(t)+g^{2}(t), f^{\prime 2}(t)+g^{\prime 2}(t)\right)= & 2\left(f f^{\prime}+g g^{\prime}\right)\left(1-f^{2}-g^{2}\right)(t)- \\
& 2\left[f^{\prime} f\left(1-f^{2}-g^{2}\right)+g^{\prime} g\left(1-f^{2}-g^{2}\right)\right](t)=0,
\end{aligned}
$$

for any $t \in \mathbb{R}$. Hence

$$
E\left(f^{2}(t)+g^{2}(t), f^{\prime 2}(t)+g^{\prime 2}(t)\right) \equiv E\left(f^{2}(0)+g^{2}(0), f^{\prime 2}(0)+g^{\prime 2}(0)\right)=a^{2}-a^{4} / 2+b^{2}
$$

Alternative proof of (a). We multiply by f^{\prime} the differential equation $f^{\prime \prime}=-f(1-$ $f^{2}-g^{2}$) and then we integrate on $[0, t]$. Using the assumptions $f(0)=a$ and $f^{\prime}(0)=0$ we obtain

$$
f^{2}(t)-\frac{f^{4}(t)}{2}+f^{\prime 2}(t)-\int_{0}^{t} f(s) f^{\prime}(s) g^{2}(s) d s=a^{2}-\frac{a^{4}}{2}
$$

Similarly, using the differential equation satisfied by g we find

$$
g^{2}(t)-\frac{g^{4}(t)}{2}+g^{\prime 2}(t)-\int_{0}^{t} f^{2}(s) g(s) g^{\prime}(s) d s=b^{2}
$$

By addition we obtain, for any $t \in \mathbb{R}$,

$$
f^{2}(t)+g^{2}(t)-\frac{\left(f^{2}(t)+g^{2}(t)\right)^{2}}{2}+f^{\prime 2}(t)+g^{\prime 2}(t)=a^{2}-\frac{a^{4}}{2}+b^{2} .
$$

(b) We first prove that $a \leq 1$. Indeed, arguing by contradiction, let us assume the contrary. Set $u:=f^{2}+g^{2}$. The assumption $a>1$ enables us to choose $M>1$ such that

$$
\min \{u(x) ; x \in \mathbb{R}\}<M^{2}<a^{2}
$$

Let $I \subset \mathbb{R}$ be a bounded interval such that $u>M^{2}$ in I, and $u=M^{2}$ on ∂I. But

$$
u^{\prime \prime}=2 u(u-1)+2\left(f^{\prime 2}+g^{\prime 2}\right) \geq 2 u(u-1)>0 \quad \text { in } I .
$$

So, u is convex in I and $u=M^{2}$ on ∂I. Hence $u \leq M^{2}$, which contradicts the choice of I.
Applying Taylor's formula we have

$$
f(x)=a-\frac{a\left(1-a^{2}\right)}{2} x^{2}+O\left(x^{3}\right), \quad \text { as } x \rightarrow 0
$$

and

$$
g(x)=b x+O\left(x^{3}\right), \quad \text { as } x \rightarrow 0
$$

So

$$
u(x)=a^{2}+\left[b^{2}-a^{2}\left(1-a^{2}\right)\right] x^{2}+O\left(x^{3}\right), \quad \text { as } x \rightarrow 0 .
$$

Since $x=0$ is a local maximum point of u, it follows that $b^{2} \leq a^{2}\left(1-a^{2}\right)$.
An alternative proof of this statement is based on the fact that $u^{\prime \prime}(0) \leq 0$ (since $x=0$ is a local maximum point of u) combined with $u^{\prime \prime}(0)=2\left[b^{2}+a^{2}\left(a^{2}-1\right)\right]$.

The above arguments also show that $a<1$. Indeed, if $a=1$, then $u^{\prime \prime}(0)=2 b^{2}>0$, a contradiction with the fact that the origin is a local maximum point of u.

Let us now prove that $T>2 \pi$. We first notice that f (or g) cannot have the same sign on an unbounded interval. Indeed, in this case, $f^{\prime \prime}$ (or $g^{\prime \prime}$) would have the same sign. But, due to the periodicity, this is possible only for constant functions, which is impossible in our case.

Let x_{1}, x_{2} be two consecutive zeros of f. We can assume that $f>0$ in $\left(x_{1}, x_{2}\right)$, so that $f^{\prime}\left(x_{1}\right)>0$ and $f^{\prime}\left(x_{2}\right)<0$. Denote by x_{3} the smallest real number greater than x_{2} such that $f\left(x_{3}\right)=0$. Hence $f<0$ in $\left(x_{2}, x_{3}\right)$. If we prove that $x_{2}-x_{1}>\pi$, it will also follow that $x_{3}-x_{2}>2 \pi$ and there does not exist $x \in\left(x_{1}, x_{3}\right)$ such that $f(x)=0$ and $f^{\prime}(x)>0$. This implies that the principal period of f must be greater than 2π. For our purpose, we multiply by $\varphi(x):=\sin \frac{\pi\left(x-x_{1}\right)}{x_{2}-x_{1}}$ in $f^{\prime \prime}+f\left(1-f^{2}-g^{2}\right)=0$ and then we integrate on $\left[x_{1}, x_{2}\right]$. Hence

$$
\left(\frac{\pi}{x_{2}-x_{1}}\right)^{2} \int_{x_{1}}^{x_{2}} f(x) \varphi(x) d x=\int_{x_{1}}^{x_{2}} f(x)\left(1-f^{2}(x)-g^{2}(x)\right) \varphi(x) d x<\int_{x_{1}}^{x_{2}} f(x) \varphi(x) d x .
$$

It follows that $x_{2}-x_{1}>\pi$.
Alternative proof of (b). Define $u: \mathbb{R} \rightarrow[0, \infty)$ by $u(x)=f^{2}(x)+g^{2}(x), x \in \mathbb{R}$. Clearly, u is a T-periodic function of class $C^{2}(\mathbb{R})$, and

$$
\begin{equation*}
u^{\prime \prime}(x)=2\left(u(x)(u(x)-1)+\left(f^{\prime}(x)\right)^{2}+\left(g^{\prime}(x)\right)^{2}\right. \tag{1}
\end{equation*}
$$

for all real x. In particular, $u^{\prime \prime}(0)=2\left[a^{2}\left(a^{2}-1\right)+b^{2}\right]$. Since u has a local maximum at the origin, it follows that $u^{\prime \prime}(0) \leq 0$, which yields immediately $b^{2} \leq a^{2}\left(1-a^{2}\right)$ by the preceding. This establishes the first inequality in (ii).

The proof of the second is a bit more tricky, so let us first outline the strategy. The main idea consists in showing that the distance between two 'consecutive' zeros of f must exceed π. To be more precise, we shall prove:
Claim 1: If $x_{1}<x_{2}$ are real numbers such that $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, but $f(x) \neq 0$ for $x_{1}<x<x_{2}$, then $x_{2}-x_{1}>\pi$.

Therefore, if we are able to produce two disjoint open subintervals, say I and J, of an interval of length T, with the property that f does not vanish on $I \cup J$, but $f=0$ on $\partial I \cup \partial J$, then the length of each of these subintervals exceeds π, by Claim 1, and we are done: $T \geq$ length $I+$ length $J>\pi+\pi=2 \pi$.

The easiest way to produce such intervals consists in showing that f must take on values of either sign on each interval of length T. We shall prove:
Claim 2: The function f takes on values of either sign on each interval of length T.
Assuming this, let us see how it applies to produce the desired subintervals. First, let $I=(\alpha, \beta)$ be the connected component of the open set $\{x: f(x)>0\}$ which contains the origin (recall that $f(0)=a>0$). Then $f(\alpha)=f(\beta)=0$ by continuity of f and maximality of I. Next, by Claim 2, $f\left(x_{0}\right)<0$ for some $x_{0} \in[0, T]$. But since $f(T)=f(0)=a>0$, x_{0} must be an interior point of $[0, T]$. Now let $J=(\gamma, \delta)$ be the connected component of the open set $\{x: 0<x<T$ and $f(x)<0\}$ which contains x_{0}. Again, $f(\gamma)=f(\delta)=0$ by continuity of f and maximality of J. Finally, observe that $\beta \leq \gamma$ and $\delta \leq \alpha+T$ (here we use the T-periodicity of f), to conclude that I and J are indeed disjoint open subintervals of $[\alpha, \alpha+T]$, satisfying the required conditions.

So all it remains to prove are Claims 1 and 2 above. Both proofs rely upon
Claim 3: $u(x) \leq 1$ for all $x \in \mathbb{R}$.
Proof of Claim 3. Recall the inequality $b^{2} \leq a^{2}\left(1-a^{2}\right)$, proved in the first part. Since $b>0$, we deduce that $a^{2}<1$, so $u(0)=a^{2}<1$. Now we argue by reductio ad absurdum. Suppose, by contradiction, that $u\left(x_{0}\right)>1$ for some real x_{0}. Then $U=\{x: u(x)>1\}$ is an open non-empty set. Let K denote the connected component of U which contains x_{0}. Since u is periodic and $u(0)=a^{2}<1$, it follows that $\alpha=\inf K>-\infty$ and $\beta=\sup K<\infty$. Observe now that $u(\alpha)=u(\beta)=1$, by continuity of u and maximality of K, while $u(x)>1$ for $\alpha<x<\beta$. This leads to the following two contradictory facts: on the one hand, by virtue of (1),

$$
\begin{equation*}
u^{\prime \prime}(x) \geq 2 u(x)(u(x)-1)>0 \tag{2}
\end{equation*}
$$

for $\alpha<x<\beta$; on the other hand, since u is continuous, it must attain a maximum value on the compact set $[\alpha, \beta]$ at some interior point x_{1}, so $u^{\prime \prime}\left(x_{1}\right) \leq 0$ thus contradicting (2) at x_{1}. Consequently, $u(x) \leq 1$ for any $x \in \mathbb{R}$.
Proof of Claim 1. To make a choice, let $f(x)>0$ for $x_{1}<x<x_{2}$; in case when $f(x)<0$ for $x_{1}<x<x_{2}$, we merely replace f by $-f$ everywhere. Now set $\varphi(x)=$ $\sin \left(\pi\left(x-x_{1}\right) /\left(x_{2}-x_{1}\right)\right)$ for $x_{1} \leq x \leq x_{2}$, and note that $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=0$ and $\varphi(x)>0$
for $x_{1}<x<x_{2}$. Then

$$
\begin{array}{rlr}
\int_{x_{1}}^{x_{2}} f(x) \varphi(x) d x & >\int_{x_{1}}^{x_{2}} f(x)(1-u(x)) \varphi(x) d x & \text { (by Claim 3) } \\
& =-\int_{x_{1}}^{x_{2}} f^{\prime \prime}(x) \varphi(x) d x & \text { for } f^{\prime \prime}+f(1-u)=0 \\
& =\frac{\pi}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} f^{\prime}(x) \cos \frac{\pi\left(x-x_{1}\right)}{x_{2}-x_{1}} d x & \\
\text { for } \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)=0 \\
& =\left(\frac{\pi}{x_{2}-x_{1}}\right)^{2} \int_{x_{1}}^{x_{2}} f(x) \varphi(x) d x & \text { for } f\left(x_{1}\right)=f\left(x_{2}\right)=0,
\end{array}
$$

which shows that $x_{2}-x_{1}$ is indeed strictly greater than π.
Proof of Claim 2. Since f is T-periodic, there is no loss in considering the interval $[0, T]$. Clearly, f takes on positive values around the origin, for $f(0)=a>0$ by hypothesis. To prove that it also takes on negative values, we argue by reductio ad absurdum. Suppose, if possible, that $f(x) \geq 0$ for all $x \in[0, T]$. By Claim 3, it then follows that $f^{\prime \prime}(x)=$ $-f(x)(1-u(x)) \leq 0$ for all $x \in[0, T]$, that is, f^{\prime} is decreasing on $[0, T]$. But f^{\prime} is itself T-periodic, so it must be constant on $[0, T]$, which implies in turn that f must be constant on $[0, T]$, by T-periodicity. Thus, $f^{\prime \prime}$ vanishes on $[0, T]$, and since $f^{\prime \prime}+f\left(1-f^{2}-g^{2}\right)=0$, we deduce that g is itself constant $[0, T]$; that is, g^{\prime} vanishes on $[0, T]$ thus contradicting the hypothesis $g^{\prime}(0)=b>0$. We conclude that f must take on values of either sign on $[0, T]$.
(c) Choose $a, b>0$ such that $b^{2}=a^{2}\left(1-a^{2}\right)$. Define $f(x)=a \cos \frac{b x}{a}$ and $g(x)=a \sin \frac{b x}{a}$. It follows that $T=2 \pi a / b$. In particular, we observe that $T>2 \pi$.
(d) We shall prove the following more general result.

Fix arbitrarily $\delta>0$. Then there exist choices of a and b such that the resulting (f, g) is periodic, and $\min \left(f^{2}+g^{2}\right)<\delta \max \left(f^{2}+g^{2}\right)$.

Denote

$$
\Omega:=\left\{(a, b) \in(0,1] \times[0,1] ; \quad b^{2} \leq a^{2}\left(1-a^{2}\right)\right\} .
$$

Let $(a, b) \in \operatorname{Int} \Omega$ and set $v(x):=f(x)+i g(x)$. Since $v(0)=a \neq 0$, it follows that, for small x,

$$
v(x)=e^{i \varphi(x)} r(x), \quad r(x)=\sqrt{f^{2}(x)+g^{2}(x)},
$$

where $\varphi(0)=0$ and $r>0$. Then r satisfies

$$
\left\{\begin{array}{l}
-r^{\prime \prime}=r\left(1-r^{2}\right)-\frac{a^{2} b^{2}}{r^{3}} \tag{3}\\
r(0)=a, r^{\prime}(0)=0,
\end{array}\right.
$$

while φ is given by

$$
\varphi^{\prime}=\frac{a b}{r^{2}}, \quad \varphi(0)=0 .
$$

Hence, if the problem (3) has a global positive solution, it follows that v is global. Moreover, if r is periodic of period T_{0}, then

$$
v\left(n T_{0}+x\right)=e^{i n \varphi\left(T_{0}\right)} e^{i \varphi(x)} r(x), \quad \forall 0 \leq x<T_{0}, \forall n \in \mathbb{N},
$$

so that (3) gives a periodic solution if and only if $\varphi\left(T_{0}\right) \in \pi \mathbb{Q}$.

We prove in what follows the global existence. More precisely, if $(a, b) \in \operatorname{Int} \Omega$, then (3) has a global positive periodic solution. We first observe that the assumption made on (a, b) implies $r^{\prime \prime}(0)<0$. So, multiplying in (3) by r^{\prime}, we obtain, for small $x>0$,

$$
\begin{equation*}
r^{\prime 2}=-r^{2}+\frac{r^{4}}{2}-\frac{a^{2} b^{2}}{r^{2}}+a^{2}-\frac{a^{4}}{2}+b^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
r^{\prime}=-\sqrt{-r^{2}+\frac{r^{4}}{2}-\frac{a^{2} b^{2}}{r^{2}}+a^{2}-\frac{a^{4}}{2}+b^{2}} . \tag{5}
\end{equation*}
$$

Now, relation (4) implies that r and r^{\prime} are bounded as far as the solution exists and, moreover, that

$$
\inf \{r(x) ; \quad r \text { exists }\}>0
$$

It follows that r is a global solution.
Set

$$
t_{0}:=\sup \left\{x>0 ; \quad r^{\prime}(y)<0 \quad \text { for all } 0<y<x\right\} .
$$

Note that (5) is valid if $0<x<t_{0}$.
Let $0<c<a$ be the unique root of

$$
\psi(x):=\frac{x^{4}}{2}-x^{2}-\frac{a^{2} b^{2}}{x^{2}}+a^{2}-\frac{a^{4}}{2}+b^{2}=0 .
$$

Since $\psi(x)<0$ if $x \in(0, c)$ or if $x>a, x$ close to a, it follows from relation (4) that

$$
\begin{equation*}
c \leq r(x) \leq a \quad \text { for all } x \in \mathbb{R} \tag{6}
\end{equation*}
$$

Claim 4. We have $\lim _{x / t_{0}} r(x)=c$.
Proof of Claim 4. If $t_{0}<\infty$, it follows that $r^{\prime}\left(t_{0}\right)=0$. Now, relation (4) in conjunction with the definitions of t_{0} and c shows that $r\left(t_{0}\right)=c$. If $t_{0}=+\infty$, then we have $\lim _{x \rightarrow \infty} r(x) \geq c$. If $\lim _{x \rightarrow \infty} r(x)>c$, then there exists a constant $M>0$ such that $r^{\prime}(x) \leq-M$ for each $x>0$. The latest inequality contradicts (6) for large x.

For any $0<x<t_{0}$, relation (5) yields

$$
x=\int_{r(x)}^{a} \frac{d t}{\sqrt{-t^{2}+\frac{t^{4}}{2}-\frac{a^{2} b^{2}}{t^{2}}+a^{2}-\frac{a^{4}}{2}+b^{2}}} .
$$

Therefore

$$
t_{0}=\int_{c}^{a} \frac{d t}{\sqrt{-t^{2}+\frac{t^{4}}{2}-\frac{a^{2} b^{2}}{t^{2}}+a^{2}-\frac{a^{4}}{2}+b^{2}}}<\infty .
$$

It follows by a reflection argument that $r\left(2 t_{0}\right)=r(0)=a, r^{\prime}\left(2 t_{0}\right)=r^{\prime}(0)=0$, so that r is $\left(2 t_{0}\right)$-periodic. This concludes the proof of Claim 4.

Denote $\Psi(x):=2 x^{2} \psi(x)=x^{6}-2 x^{4}-2 a^{2} b^{2}+\left(2 a^{2}-a^{4}+2 b^{2}\right) x^{2}$. Taking into account Claim 4 and observing that $\Psi(0)<0$, it follows that it is enough to show that $\Psi(\varepsilon)>0$, for some $\varepsilon>0$ and for a convenient choice of $(a, b) \in \operatorname{Int} \Omega$. But

$$
\Psi(\varepsilon)>\varepsilon^{2}\left[\varepsilon^{4}-2 \varepsilon^{2}+a^{2}\left(2-a^{2}\right)\right]-2 a^{2} b^{2} .
$$

For $a=2^{-1 / 2}$ we obtain

$$
\Psi(\varepsilon)>\varepsilon^{2}\left[\varepsilon^{4}-2 \varepsilon^{2}+3 \cdot 4^{-1}\right]-b^{2}>\frac{\varepsilon^{2}}{2}-b^{2}>0,
$$

provided that $\varepsilon>0$ is sufficiently small and $b=\varepsilon / 2$. It is obvious that this choice of a and b guarantees $(a, b) \in \operatorname{Int} \Omega$.

