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1 Motivation and previous results

In this paper I will report on some results contained in the recent papers [1, 2, 3, 4, 5, 6] that are
closely related either to the study of blow-up boundary solutions or to elliptic partial differential
equations involving singular nonlinearities. I refer to the book [7] for a comprehensive study of
such problems and further related results.

Let Ω ⊂ RN be an open bounded set with smooth boundary. We are interested in the study
of the following classes of nonlinear elliptic problems.

I. Logistic equation 



∆u = Φ(x, u,∇u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω.

(1.1)
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II. Lane-Emden-Fowler equation




−∆u = Ψ(x, u,∇u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where Φ is smooth, but Ψ may have singularities.
Example: Let Φ(u,∇u) = up, with p > 1. Then v = u−1 satisfies (1.2) for Ψ(v,∇v) =

v2−p − 2v−1 |∇v|2.
We recall the following classical results:

♦ 1916, Bieberbach [8]: Φ(x, u,∇u) = exp(u), N = 2: u(x) = log(d(x)−2) + O(1) as x → ∂Ω

♦ 1943, Rademacher [9]: Φ(x, u,∇u) = exp(u), N = 3 (Lazer and McKenna [10] studied the
case of an arbitrary dimension N)

♦ 1957, Keller & Osserman [11, 12]: Φ(x, u,∇u) = f(u), where f ∈ C1[0,∞), f ′(s) ≥ 0 for
s ≥ 0, f(0) = 0 and f(s) > 0 if s > 0. Then problem (1.1) has a solution if and only if

∫ ∞

1

dt√
F (t)

< ∞, where F (t) =
∫ t

0
f(s) ds.

♦ 1974, Loewner and Nirenberg [13]: f(u) = u(N+2)/(N−2), N > 2
1) Existence of solutions

M. Crandall, P. H. Rabinowitz, and L. Tartar proved in [14] that the BVP




−∆u− u−α = −u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has a solution, for any α > 0.

2) Non-existence results

M. Coclite and G. Palmieri showed in [15] that the problem




−∆u + u−α = u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

has no solution, provided 0 < α < 1 and λ1 ≥ 1 (that is, if Ω is “small”), where λ1 denotes the
first eigenvalue of (−∆) in H1

0 (Ω).
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3) Multiplicity and uniqueness

Problems of this type become difficult even in simple cases. In his PhD thesis (2001), J. Shi
studied the existence of radial symmetric solutions of the problem





∆u + λ(up − u−α) = 0 in B1,

u > 0 in B1,

u = 0 on ∂B1,

where 0 < α, p < 1, λ > 0 and B1 is the unit ball in RN . He showed that there exists λ1 > λ0 > 0
such that the above problem has no solutions for λ < λ0, one solution for λ = λ0 or λ > λ1, two
solutions for λ1 ≥ λ > λ0.

We refer to the papers [16]–[22] for related results on stationary equations with singular
nonlinearity.

2 A problem of H. Brezis

Consider the problem
∆u + au = b(x)f(u) in Ω, (2.1)

a ∈ R, b ∈ C0,µ(Ω), 0 < µ < 1, b ≥ 0, b 6≡ 0 dans Ω. Assume that f ∈ C1[0,∞) satisfies

(A1) f ≥ 0 and f(u)/u is increasing on (0,∞).

(A2)
∫ ∞

1

dt√
F (t)

< ∞ , F (t) =
∫ t

0
f(s) ds.

Examples:
(i) f(u) = eu − 1; (ii) f(u) = up, p > 1; (iii) f(u) = u[ln (u + 1)]p, p > 2.

Problem, H. Brezis, 2001. Find a necessary and sufficient condition such that problem
(2.1) has a blow-up boundary solution

Set
Ω0 = int {x ∈ Ω : b(x) = 0}

and assume that Ω0 ⊂ Ω and b > 0 in Ω \ Ω0.
Denote λ1(Ω0) the first eigenvalue of (−∆) in Ω0 and set λ1(Ω0) = ∞ if Ω0 = ∅.
Alama & Tarantello (1996) studied in [23] the same equation under the Dirichlet condition

u = 0 on ∂Ω: there is a positive solution ua if and only if a ∈ (λ1(Ω), λ1(Ω0)).

Theorem 2.1. (Cı̂rstea & Rădulescu, CRAS, 2003, [24]) Assume f satisfies (A1) and (A2).
Then problem (2.1) has a blow-up boundary solution if and only if a ∈ (−∞, λ1(Ω0)).
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2.1 Karamata’s regular variation theory

Definition 2.1. R : [D,∞) → [0,∞) measurable has regular variation at +∞ of index q ∈ R
(notation: R ∈ RVq) provided that for all ξ > 0,

lim
u→∞R(ξu)/R(u) = ξq.

q = 0: weak variation.

R ∈ RVq =⇒ R(u) = uqL(u), L ∈ RV0.

Examples: (i) R(u) = uq, R ∈ RVq.
(ii) The mappings ln(1 + u), ln ln(e + u), exp {(lnu)α}, α ∈ (0, 1) are in RV0.

Lemma 2.1. Assume (A1). The following properties are equivalent:
a)f ′ ∈ RVρ

b) limu→∞ uf ′(u)/f(u) := ϑ < ∞
c) limu→∞ (F/f)′ (u) := γ > 0.

Remark 2.1. We have:
(i) ρ ≥ 0;
(ii) γ = 1/(ρ + 2) = 1/(ϑ + 1);
(iii) If ρ 6= 0, then (K − O). Converse not true: f(u) = u ln4(u + 1). It may happen that

ρ = 0 and (K −O) is fulfilled, so Eq. (2.1) does not have blow-up boundary solutions. Examples:
f(u) = u, f(u) = u ln(u + 1).

Karamata’s class. Let K denote the class of functions k : (0, ν) → (0,∞) of class C1,

increasing and such that limt→0+

(∫ t
0 k(s) ds

k(t)

)(i)

:= `i, i = 0, 1.

Then `0 = 0 and `1 ∈ [0, 1], for all k ∈ K.

Lemma 2.2. Assume S ∈ C1[D,∞) such that S′ ∈ RVq, q > −1. Then
a) If k(t) = exp {−S(1/t)} ∀t ≤ 1/D, then k ∈ K and `1 = 0.
b) If k(t) = 1/S(1/t) ∀t ≤ 1/D, then k ∈ K and `1 = 1/(q + 2) ∈ (0, 1).
c) If k(t) = 1/ ln S(1/t) ∀t ≤ 1/D, then k ∈ K and `1 = 1.

Remark 2.2. If S ∈ C1[D,∞), then S′ ∈ RVq with q > −1 if and only if ∃m > 0, C > 0
and B > D such that S(u) = Cumexp

{∫ u
B

y(t)
t dt

}
, ∀u ≥ B, where y ∈ C[B,∞) satisfies

limu→∞ y(u) = 0. In such a case, S′ ∈ RVq with q = m− 1.

Theorem 2.2. (Cı̂rstea & Rădulescu, 2004, [25]). Assume (A1) and f ′ ∈ RVρ, with ρ > 0.
Suppose b ≡ 0 on ∂Ω such that

(B) b(x) = c k2(d(x)) + o(k2(d(x))) as d(x) → 0, where c > 0 and k ∈ K .
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Then, for any a ∈ (−∞, λ∞,1), Eq. (2.1) has a unique blow-up boundary solution ua. More-
over,

lim
d(x)→0

ua(x)
h(d(x))

= ξ0, (2.2)

where ξ0 =
(

2 + `1ρ

c(2 + ρ)

)1/ρ

and h is defined by

∫ ∞

h(t)

ds√
2F (s)

=
∫ t

0
k(s) ds, ∀t ∈ (0, ν). (2.3)

Examples of admissible functions k:
k(t) = −1/ ln t, k(t) = tα, k(t) = exp {−1/tα},
k(t) = exp

{− ln(1 + 1
t )/tα

}
,

k(t) = exp
{− [

arctan
(

1
t

)]
/tα

}
,

k(t) = tα/ ln(1 + 1
t ), where α > 0.

2.2 An example





−∆u = p(d(x))g(u) + λ|∇u|a + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(2.4)

Notation: d(x) = dist(x, ∂Ω), λ ∈ R, µ > 0, and 0 < a ≤ 2.
We assume that g ∈ C1(0,∞) verifies

(g1) g is a positive decreasing function such that limt↘0 g(t) = +∞.

The standard example: g(t) = t−α, with α > 0.

We also assume that f : Ω × [0,∞) → [0,∞) is a Hölder continuous function which is
nondecreasing with respect to the second variable and such that f is positive in Ω× (0,∞).

The case a = 2 is a special one, since by the change of variable (often called Gelfand transform)
v = eλu − 1 we obtain a new singular problem without gradient term. If f(x, u) depends on u,
this change of variable does not preserve neither the sublinearity conditions (f1)− (f2) on f , nor
the monotonicity of g.

Let
m := lim

t→∞ g(t) ∈ [0,∞).

Theorem 2.3. Assume that a = 2, λ ≥ 0, µ > 0 and p ≡ 1, f ≡ 1.

(i) The problem (2.4) has a solution if and only if λ(m + µ) < λ1;
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(ii) Assume µ > 0 is fixed and let λ∗ = λ1/(m + µ). Then (2.4) has a unique solution uλ for
every 0 ≤ λ < λ∗ and the sequence (uλ)0≤λ<λ∗ is increasing with respect to λ. Moreover, if
lim sups↘0 sαg(s) < ∞, for some α ∈ (0, 1), then the sequence of solutions (uλ)0≤λ<λ∗ has
the following properties:

(ii1) there exist two positive constants c1, c2 depending on λ such that c1d(x) ≤ uλ ≤ c2d(x)
in Ω;

(ii2) uλ ∈ C1,1−α(Ω) ∩ C2(Ω);

(ii3) limλ↗λ∗ uλ = ∞ uniformly on compact subsets of Ω.

Fig. 1 corresponds to (i) and a = 0 (resp., a > 0), while Fig. 2 is related to (ii), λ > 0 and
µ = fixed.

Figure 1: The bifurcation diagrams in Theorem 2.3 (i).

3 Singular Lane-Emden-Fowler equations

Consider the problem




−∆u± p(d(x))g(u) = λf(x, u) + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P )±

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary, d(x) = dist(x, ∂Ω), λ > 0,
µ ∈ R, and 0 < a ≤ 2.

We assume that
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Figure 2: The bifurcation diagram in Theorem 2.3 (ii).

• g ∈ C1(0,∞) is a positive decreasing function and

(g1) lim
t→0+

g(t) = +∞.

• f : Ω× [0,∞) → [0,∞) is a Hölder continuous function which is nondecreasing with respect
to the second variable and such that f is positive on Ω × (0,∞). Furthermore, f is either
linear or f is sublinear with respect to the second variable. This last case means that f

fulfills the hypotheses

(f1) (0,∞) 3 t 7−→ f(x, t)
t

is nonincreasing,

for all x ∈ Ω;

(f2) lim
t→0+

f(x, t)
t

= +∞ and lim
t→+∞

f(x, t)
t

= 0, uniformly for x ∈ Ω.

• p : (0,+∞) → (0, +∞) is nonincreasing and Hölder continuous.

Such singular boundary value problems arise in the context of chemical heterogeneous catalysts
and chemical catalyst kinetics, in the theory of heat conduction in electrically conducting materi-
als, singular minimal surfaces, as well as in the study of non-Newtonian fluids or boundary layer
phenomena for viscous fluids. Due to the meaning of the unknowns (concentrations, populations,
etc.), only the positive solutions are relevant in most cases.

We show that a necessary condition in order to have classical solution is
∫ 1

0
p(t)g(t)dt < +∞. (3.1)
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In the case where f is sublinear, that is, f fulfills the hypotheses (f1) and (f2), condition (3.1) is
also sufficient for existence of a classical solutions of (P )+ provided λ and µ belong to a certain
range Obviously, (3.1) implies the following Keller-Osserman type condition around the origin

(KO)
∫ 1

0

(∫ t

0
Φ(s)ds

)−1/2

dt < +∞ , where Φ(s) = p(s)g(s), for all s > 0.

As proved by Bénilan, Brezis and Crandall, condition (KO) is equivalent to the property of
compact support: for every h ∈ L1(RN ) with compact support, there exists a unique u ∈ W 1,1(RN )
with compact support such that ∆u ∈ L1(RN ) and

−∆u + Φ(u) = h a.e. in RN .

We prove that assumption ∫ 1

0
tp(t)dt < +∞ (3.2)

is necessary in order that problem (P )− has classical solutions. Furthermore, the existence of
solutions of (P )− (when f is sublinear) depends on the asymptotic behavior of the gradient term
|∇u|a. In this sense, if 0 < a < 1, then (P )− has at least one classical solution for all µ ∈ R. In
turn, if 1 < a ≤ 2, then (P )− has no solutions for large values of µ.

Limiting case: a = 1. We prove that if Ω is a ball centered at the origin, then (P )− has at
least one solution for all µ ∈ R.

3.1 Problem (P )+

Theorem 3.1. Assume that
∫ 1

0
p(t)g(t)dt = +∞. Let Φ : Ω× [0, +∞) → R be a Hölder contin-

uous function. Then the inequality boundary value problem




−∆u + p(d(x))g(u) ≤ Φ(x, u) + C |∇u|2 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.3)

has no classical solutions.

Corollary 3.1. Assume that
∫ 1

0
p(t)g(t)dt = +∞. Then problem (P )+ has no classical solutions.

Auxiliary tool in the proof:

Lemma 3.1. Let Ψ : Ω × (0,+∞) → R be a Hölder continuous function such that the mapping

(0,+∞) 3 s 7−→ Ψ(x, s)
s

is strictly decreasing for each x ∈ Ω. Assume that there exist v, w ∈
C2(Ω) ∩ C(Ω) such that

(a) ∆w + Ψ(x,w) ≤ 0 ≤ ∆v + Ψ(x, v) in Ω;
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(b) v, w > 0 in Ω and v ≤ w on ∂Ω;
(c) ∆v ∈ L1(Ω) or ∆w ∈ L1(Ω).
Then v ≤ w in Ω.

The next result shows that (3.1) is sufficient for the existence of a classical solution to (P )+

provided µ ≤ 0 and λ > 0 is sufficiently large.

Theorem 3.2. Assume that
∫ 1

0
p(t)g(t)dt < +∞.

(i) If µ = −1, then there exists λ∗ > 0 such that (P )+ has at least one classical solution if
λ > λ∗ and no solution exists if 0 < λ < λ∗.

(ii) If µ = +1 and 0 < a < 1, then there exists λ∗ > 0 such that (P )+ has at least one classical
solution for all λ > λ∗ and no solution exists if 0 < λ < λ∗.

Proof. (i) Step 1: Existence of a solution for λ large.

Lemma 3.2. There exist two positive constants c > 0 and M > 0 such that uλ := Mh(cϕ1) is a
sub-solution of (P )+ provided λ > 0 is large enough.

Step 2: Nonexistence for λ > 0 small.

Step 3: Dependence on λ > 0. Set

A =
{
λ > 0; (P )+ has a classical solution

}
.

Then A is nonempty and λ∗ := inf A is positive. We show that if λ ∈ A, then (λ,+∞) ⊆ A.

(ii) Step 1: Existence of a solution for λ large.

Step 2: Nonexistence for λ > 0 small.
We extend Lemma 3.1 in the following way:

Lemma 3.3. Let 0 < a < 1 and Ψ : Ω× (0, +∞) → R be a Hölder continuous function such that

the mapping (0,+∞) 3 s 7−→ Ψ(x, s)
s

is strictly decreasing for each x ∈ Ω. Assume that there

exist v, w ∈ C2(Ω) ∩ C(Ω) such that
(a) ∆w + Ψ(x,w) + |∇w|a ≤ 0 ≤ ∆v + Ψ(x, v) + |∇v|a in Ω;
(b) v, w > 0 in Ω and v < w on ∂Ω.

Then v ≤ w in Ω.
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3.2 Problem (P )−

Theorem 3.3. Assume that
∫ 1

0
tp(t)dt = +∞. Then the inequality boundary value problem





−∆u + C|∇u|2 ≥ p(d(x))g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.4)

has no classical solutions.

Corollary 3.2. Assume that
∫ 1

0
tp(t)dt = +∞. Then the problem (P )− has no classical solu-

tions.

3.3 Problem (P )− in the sublinear case

In this case the existence of a solution is strongly dependent on the exponent a. To better
understand this dependence, we assume λ = 1 but the same results hold for any λ > 0 (note only
that the bifurcation point µ∗ in the following theorem is dependent on λ).

Theorem 3.4. Assume λ = 1,
∫ 1
0 tp(t)dt < +∞ and conditions (f1), (f2), (g1) and 0 < a ≤ 2

are fulfilled.

(i) If 0 < a < 1, then problem (P )− has at least one solution, for all µ ∈ R;

(ii) If 1 < a ≤ 2, then there exists µ∗ > 0 such that (P )− has at least one classical solution for
all µ < µ∗ and no solution exists if µ > µ∗.

Corollary 3.3. Assume µ = ±1,
∫ 1
0 tp(t)dt < +∞ and conditions (f1), (f2), (g1) and 0 < a ≤ 2

are fulfilled.

(i) If 0 < a < 1, then problem (P )− has at least one solution, for all λ > 0;

(ii) If < 1 < a ≤ 2 and µ = −1, then problem (P )− has at least one solution, for all λ > 0;

(iii) If 1 < a ≤ 2 and µ = +1, then there exists λ∗ > 0 such that (P )− has at least one classical
solution for all λ > λ∗ and no solution exists if λ < λ∗.

3.4 Critical case: a = 1

Assume Ω = BR(0) for some R > 0. Problem (P )− becomes




−∆u = p(R− |x|)g(u) + f(x, u) + µ|∇u| |x| < R,

u > 0 |x| < R,

u = 0 |x| = R.

(3.5)
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Theorem 3.5. Assume that
∫ 1
0 tp(t)dt < +∞. Then the problem (3.5) has at least one solution

for all µ ∈ R.

3.5 Existence results for (P )− in the linear case

Consider the problem




−∆u = p(d(x))g(u) + λu + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.6)

where λ > 0 and p, g are as in the previous sections. We assume in what follows that 0 < a < 1.

Theorem 3.6. Assume that
∫ 1
0 tp(t)dt < +∞ and conditions (g1), 0 < a < 1 are fulfilled. Then

for µ ≥ 0 the problem (3.6) has solutions if and only if λ < λ1.

3.6 An application

Consider the problem




−∆u = d(x)−αu−β + f(x, u) + µ|∇u|a in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3.7)

Recall that if
∫ 1
0 tp(t)dt < +∞ and µ belongs to a certain range, then Theorem 3.4 asserts

that (3.7) has at least one classical solution uµ.

Theorem 3.7. The following properties hold true.

(i) If α ≥ 2, then the problem (3.7) has no classical solutions.

(ii) If α < 2, then there exists µ∗ ∈ (0,+∞] (with µ∗ = +∞ if 0 < a < 1) such that problem (3.7)
has at least one classical solution uµ, for all −∞ < µ < µ∗. Moreover, for all 0 < µ < µ∗,
there exist 0 < δ < 1 and C1, C2 > 0 such that uµ satisfies

(ii1) If α + β > 1, then

C1d(x)
2−α
1+β ≤ uµ(x) ≤ C2d(x)

2−α
1+β , for all x ∈ Ω; (3.8)

(ii2) If α + β = 1, then

C1d(x)(− ln d(x))
1

2−α ≤ uµ(x) ≤ C2d(x)(− ln d(x))
1

2−α , (3.9)

for all x ∈ Ω with d(x) < δ;

(ii3) If α + β < 1, then

C1d(x) ≤ uµ(x) ≤ C2d(x), for all x ∈ Ω. (3.10)
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4 Singular elliptic problems with nonmonotone nonlinearity

Classical framework. Let f : [0,∞) → [0,∞) be a smooth, increasing, such that f(0) = 0
and f > 0 on (0,∞). Then (Keller, Osserman, 1957) the problem





∆u = f(u) in Ω,

u > 0 in Ω,

u = +∞ on ∂Ω

has a solution if and only if
∫∞
1 [F (t)]−1/2 dt < ∞ , where F (t) =

∫ t
0 f(s) ds (=⇒ f “super-linear”).

Examples:
(i) f(u) = eu − 1;
(ii) f(u) = up, p > 1;
(ii) f(u) = up ln(u + 1), p > 1;
(iv) f(u) = up arctanu, p > 1;
(v) f(u) = u[ln (u + 1)]p, p > 2.

Let f : [0,+∞) → [0, +∞) be such that f(0) = 0.
{

∆u = f(u) in Ω,

u = +∞ on ∂Ω,
(4.1)

Φ(α) =
1√
2

∫ ∞

α

ds√
F (s)− F (α)

, F (s) =
∫ s

0
f(t) dt

We say that f satisfies the Keller-Osserman condition if

∃α > 0 such that Φ(α) < ∞. (4.2)

We say that f satisfies the strong Keller-Osserman condition if

lim inf
α→∞ Φ(α) = 0. (4.3)

Example: the function f(u) = u2(1 + cosu) satisfies the strong Keller-Osserman condition
and lim supα→∞Φ(α) = +∞.

Theorem 4.1. The function f satisfies the Keller-Osserman condition if and only if the BVP
(4.1) admits at least one positive large solution on some ball.

Theorem 4.2. The function f satisfies the strong Keller-Osserman condition if and only if the
BVP (4.1) has at least one positive large solution on each smooth bounded domain Ω.
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Theorem 4.3. Assume that the strong Keller-Osserman condition is fulfilled and let u be a
positive large solution of (4.1). Then

lim
x→x0

∫ ∞

u(x)

dt√
2F (t)

δ(x)
= 1,

where δ(x) = dist(x, ∂Ω).

Open problem. Maximum principle with less of monotonicity.

Classical framework: if u : Ω → R is a smooth function such that




−∆u ≥ 0 in Ω

u ≥ 0 on ∂Ω

then u ≥ 0 in Ω.

Stampacchia’s generalized maximum principle: the above result is still true if

−∆ 7−→ −∆ + a(x)I coercive , a ∈ L∞(Ω).

Let f : [0,+∞) → R be continuous non-decreasing such that f(0) = 0 and
∫ 1
0 (F (t))−1/2 dt =

+∞, where F (t) =
∫ t
0 f(s)ds.

Example: f(u) = up, with p ≥ 1.

Vázquez’ maximum principle: if u ∈ C2(Ω) ∩ C(Ω) satisfies




−∆u + f(u) ≥ 0 in Ω

u ≥ 0 in Ω

then the following alternative holds:
either u ≡ 0 in Ω

or
u > 0 in Ω.

Open problem. Establish the Vázquez maximum principle with no monotonicity assump-
tion on f .

Acknowledgments. The author has been supported by Grant GAR 315/2007 with the
Romanian Academy.
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pp. 349-362.
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[25] F. Ĉırstea and V. Rădulescu, Extremal singular solutions for degenerate logistic-type equa-
tions in anisotropic media, C. R. Acad. Sci. Paris, Ser. I 339 (2004), 119-124.

15


