MULTI-VALUED BOUNDARY VALUE PROBLEMS INVOLVING LERAY-LIONS OPERATORS,... 1

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo L (2001), pp. ???

MULTI-VALUED BOUNDARY VALUE PROBLEMS INVOLVING LERAY-LIONS OPERATORS AND DISCONTINUOUS NONLINEARITIES

SIMONA DĂBULEANU - VICENȚIU RĂDULESCU

We prove an existence result for a class of Dirichlet boundary value problems with discontinuous nonlinearity and involving a Leray-Lions operator. The proof combines monotonicity methods for elliptic problems, variational inequality techniques and basic tools related to monotone operators. Our work generalizes a result obtained in Carl [4].

Key words: sub- and super-solution, Leray-Lions operator, maximal monotone graph, pseudo-monotone operator, variational inequality.

2000 Mathematics Subject Classification: 35J65, 47H10, 47J25, 58J32.

1. Introduction and the main result.

Let $\Omega \subset \mathbf{R}^N$ be a bounded domain with smooth boundary. Consider the boundary value problem

$$(P) \begin{cases} -\operatorname{div} \left(a(x, \nabla u(x)) \right) = f(u(x)), & \text{if } x \in \Omega \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$

where $a: \Omega \times \mathbf{R}^N \to \mathbf{R}^N$ is a Carathéodory function having the properties

- (*a*₁) there exist p > 1 and $\lambda > 0$ such that $a(x, \xi) \cdot \xi \ge \lambda \cdot ||\xi||^p$, for a.e. $x \in \Omega$ and for any $\xi \in \mathbf{R}^N$;
- (a_2) $(a(x,\xi) a(x,\eta)) \cdot (\xi \eta) > 0$, for any $\xi, \eta \in \mathbf{R}^N, \xi \neq \eta$;
- (*a*₃) there exist $\alpha \in \mathbf{R}^+$ and $k \in L^{p'}(\Omega)$ such that $|a(x, \xi)| \le \alpha(k(x) + |\xi|^{p-1})$, for a.e. $x \in \Omega$ and for any $\xi \in \mathbf{R}^N$.

Assume that the nonlinearity $f : \mathbf{R} \to \mathbf{R}$ satisfies the hypothesis

(*H*₁) there exist nondecreasing functions $f, g : \mathbf{R} \to \mathbf{R}$ such that f = g - h.

Let $\beta : \mathbf{R} \to 2^{\mathbf{R}}$ be the maximal monotone graph associated with the nondecreasing function *h* (see Brezis [3]). More exactly,

$$\beta(s) := [h^{-}(s), h^{+}(s)], \qquad \text{for all } s \in \mathbf{R},$$

where

$$h^{-}(s) = \lim_{\varepsilon \to 0+} h(s - \varepsilon), \quad h^{+}(s) = \lim_{\varepsilon \to 0+} h(s + \varepsilon).$$

Under this assumption we reformulate the problem (P) as follows

$$(P') \begin{cases} -\operatorname{div} \left(a(x, \nabla(x)) \right) + \beta(u(x)) \ni g(u(x)), & \text{if } x \in \Omega \\ u = 0, & \text{on } \partial\Omega. \end{cases}$$

Denote by G the Nemitskii operator associated with g, that is, G(u)(x) = g(u(x)).

DEFINITION 1. A function $u \in W_0^{1,p}(\Omega)$ is called a solution of the problem (P') if there exists $v \in L^{p'}(\Omega)$ such that

i)
$$v(x) \in \beta(u(x))$$
 a.e. in Ω ,
ii) $\int_{\Omega} a(x, \nabla u) \cdot \nabla w \, dx + \int_{\Omega} v \cdot w \, dx = \int_{\Omega} G(u) \cdot w \, dx$, for any $w \in W_0^{1,p}(\Omega)$.

Let L_{+}^{p} be the set of nonnegative elements of $L^{p}(\Omega)$. For any $v, w \in \Omega$ such that $v \leq w$, we set

$$[v, w] = \{ u \in L^p(\Omega) / v \le u \le w \}.$$

DEFINITION 2. A function $\overline{u} \in W^{1,p}(\Omega)$ is called an upper solution of the problem (P') if there exists a function $\overline{v} \in L^{p'}(\Omega)$ such that

i)
$$\overline{v}(x) \in \beta(\overline{u}(x)) \ a.e. \ in \Omega,$$

ii) $\overline{u} \ge 0 \ on \ \partial\Omega,$
iii) $\int_{\Omega} a(x, \nabla \overline{u}) \cdot \nabla w \ dx + \int_{\Omega} \overline{v} \cdot w \ dx \ge \int_{\Omega} G(\overline{u}) \cdot w \ dx \ for \ all$
 $w \in W_0^{1,p}(\Omega) \cap L_+^p(\Omega).$

DEFINITION 3. A function $\overline{u} \in W^{1,p}(\Omega)$ is called a lower solution of the problem (P') if there exists a function $\overline{v} \in L^{p'}(\Omega)$ such that

i)
$$\underline{v}(x) \in \beta(\underline{u}(x))$$
 a.e. in Ω ,

$$\begin{array}{ll} ii) \ \underline{u} \leq 0 \ on \ \partial\Omega, \\ iii) \ \int\limits_{\Omega} a(x, \nabla \underline{u}) \ \cdot \ \nabla w \ dx \ + \ \int\limits_{\Omega} \underline{v} \ \cdot \ w \ dx \ \leq \ \int\limits_{\Omega} G(\underline{u}) \ \cdot \ w \ dx \ for \ any \\ w \in W_0^{1,p}(\Omega) \cap L_+^p(\Omega). \end{array}$$

In the sequel the following hypothesis will be needed:

(*H*₂) There exist an upper solution \overline{u} and a lower solution \underline{u} of the problem (*P*') such that $\underline{u} \leq \overline{u}$, and $G(\underline{u})$, $G(\overline{u})$, $H^+(\overline{u})$, $H^-(\underline{u}) \in L^{p'}(\Omega)$.

The following is a generalization of the main result in Carl [4].

THEOREM 1. Assume hypothesis (H_1) and (H_2) hold and that g is right (resp. left) continuous. Then there exists a maximal (resp. minimal) solution $u \in [\underline{u}, \overline{u}]$ of the problem (P').

2. Proof of Theorem 1.

We first reformulate the problem (P') in terms of variational inequalities using the subdifferential theory in the sense of convex analysis.

Let $j : \mathbf{R} \to (-\infty, \infty]$ be a convex, proper and lower semicontinuous function. Let ∂j be the subdifferential of j, that is

(1)
$$\partial j(r) = \{\hat{r} \in \mathbf{R} : j(s) \ge j(r) + \hat{r}(s-r) \quad \text{for all } s \in \mathbf{R}\}.$$

We recall the following result concerning maximal monotone graphs in \mathbf{R}^2 (see Brezis [3] [Corollary 2.10], p. 43)

LEMMA 1. Let $\beta : \mathbf{R} \to 2^{\mathbf{R}}$ be a maximal monotone graph in \mathbf{R}^2 . Then there exists a convex, proper and lower semicontinuous function $j : \mathbf{R} \to (-\infty, +\infty]$ such that $\beta = \partial j$. Moreover, the function j is uniquely determined up to an additive constant.

We observe that the function *h* appearing in (H_1) can always be chosen so that h(0) = 0. Then the maximal monotone graph β has the properties

(2)
$$D(\beta) = \mathbf{R} \text{ and } 0 \in \beta(0).$$

Since the function j related to β according to Lemma 1 is uniquely determined up to an additive constant we can assume that

(3)
$$j(0) = 0$$
.

So, by (1), (2) and (3) it follows that

(4)
$$j(s) \ge 0$$
 for all $s \in \mathbf{R}$.

Define $J: L^p(\Omega) \to (-\infty, +\infty]$ by

$$J(v) = \begin{cases} \int j(v(x)) \, dx, & \text{for } j(v(\cdot)) \in L^1(\Omega) \\ \\ \Omega \\ +\infty & \text{otherwise.} \end{cases}$$

Then J is convex, proper and lower semicontinuous (see Barbu [1]).

Under the above assertions we can reformulate the problem (P') in terms of variational inequalities as follows: find $u \in W_0^{1,p}(\Omega)$ such that

(5)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) \, dx + J(w) - J(u) \ge \int_{\Omega} G(u)(w - u) \, dx$$
for all $w \in W_0^{1, p}(\Omega)$

LEMMA 2. Let hypotheses (H_1) and (H_2) be fulfilled. Then $u \in [\underline{u}, \overline{u}]$ is a solution of (5) if and only if u is a solution of the problem (P').

Proof. Let
$$u \in [\underline{u}, \overline{u}]$$
 satisfy the variational inequality (5). Then

$$J(w) \ge J(u) + \int_{\Omega} G(u) \cdot (w - u) \, dx - \int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) \, dx.$$

It follows that

(6)
$$\operatorname{div} (a(x, \nabla u)) + G(u) \in \partial J(u) \qquad \text{in } W^{-1, p'}(\Omega)$$

It follows by Brezis [2] [Corollaire 1] that any subgradient $v \in \partial J(u)$ of the functional $J : W_0^{1,p}(\Omega) \to (-\infty, +\infty]$ at $u \in W_0^{1,p}(\Omega)$ belongs to $L^1(\Omega)$ and satisfies

(7)
$$v(x) \in \partial j(u(x)) = \beta(u(x))$$
 a.e. in Ω .

Furthermore

$$h^{-}(\underline{u}(x)) \le h^{-}(u(x)) \le \beta(u(x)) \le h^{+}(\overline{u}(x)) \le h^{+}(\overline{u}(x))$$
 a.e. in Ω

Thus

(8)
$$|v| \le |H^+(\overline{u})| + |H^-(\underline{u})|.$$

By (H_2) , the right-hand side of (8) belongs to $L^{p'}(\Omega)$. It follows that $v \in L^{p'}(\Omega)$. Thus there exists $v \in L^{p'}(\Omega)$ such that

$$\operatorname{div}(a(x, \nabla u)) + G(u) = v \quad \text{in } W^{-1, p'}(\Omega)$$

or, equivalently,

(9)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla w \, dx + \int_{\Omega} v \cdot w \, dx = \int_{\Omega} G(u) w \, dx$$
for all $w \in W_0^{1, p}(\Omega)$

Relations (7) and (9) imply that $u \in W_0^{1,p}(\Omega)$ is a solution of the problem (P').

Conversely, let $u \in [\underline{u}, \overline{u}]$ be a solution of the problem (P'). Then there exists $v \in L^{p'}(\Omega)$ such that $v \in \beta(u) = \partial j(u(x))$ and the relation (9) is fulfilled. Since $v(x) \in \partial j(u(x))$ we have

(10)
$$j(s) \ge j(u(x)) + v(x)(s - u(x)).$$

Taking s = 0 in (10) we obtain, by means of (3) and (4) that $0 \le j(u(x)) \le v(x)u(x)$. Thus

(11)
$$j(u(\cdot)) \in L^1(\Omega)$$
 and $J(u) = \int_{\Omega} j(u(x)) dx$.

Let $w \in W_0^{1,p}(\Omega)$. Taking s = w(x) in (10) we obtain

(12)
$$\int_{\Omega} j(w(x)) dx - \int_{\Omega} j(u(x)) dx \ge \int_{\Omega} v(x)(w(x) - u(x)) dx.$$

From (9), substituting w by $w - u \in W_0^{1,p}(\Omega)$ we get, by means of (12)

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) \, dx + J(w) - J(u) \ge \int_{\Omega} G(u) \cdot (w - u) \, dx$$

for all $w \in W_0^{1, p}(\Omega)$.

This means that u is a solution of the variational inequality (5).

Remark 1. If u is a solution of (P') then, by (11), $J(u) < +\infty$. The result also holds also if we replace u by a super-solution \overline{u} or by a sub-solution \underline{u} .

Set $v^+ = \max\{v, 0\}$.

LEMMA 3. Let $u, v \in L^{p}(\Omega)$ such that J(u) and J(v) are finite. Then (13) $J(u - (u - v)^{+}) - J(u) + J(v + (u - v)^{+}) - J(v) = 0.$ *Proof.* Let $\Omega_+ := \{x \in \Omega | u > v\}$ and $\Omega_- := \{x \in \Omega | u \le v\}$. Since $(u - v)^+ = 0$ in Ω_- and $(u - v)^+ = u - v$ in Ω_+ we obtain

(14)
$$J(u - (u - v)^{+}) = \int_{\Omega_{+}} j(v) \, dx + \int_{\Omega_{-}} j(u) \, dx \le \infty$$

(15)
$$J(v + (u - v)^{+}) = \int_{\Omega_{+}} j(u) \, dx + \int_{\Omega_{-}} j(v) \, dx \le \infty$$

By (14) and (15) we obtain (13).

Consider now the following variational inequality: given $z \in L^{p}(\Omega)$, find $u \in W_{0}^{1,p}(\Omega)$ such that

(16)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) + J(w) - J(u) \ge \int_{\Omega} G(z)(w - u) \, dx$$
for all $w \in W_0^{1, p}(\Omega)$

The variational inequality (16) defines a mapping $T : z \to u$ and each fixed point of T yields a solution of (5) and conversely.

LEMMA 4. Let hypotheses (H_1) and (H_2) be satisfied. Then for each $z \in [\underline{u}, \overline{u}]$ the variational inequality (16) has a unique solution $u = Tz \in [\underline{u}, \overline{u}]$. Moreover, there is a constant C > 0 such that $||Tz||_{W_0^{1,p}(\Omega)} \leq C$, for any $z \in [\underline{u}, \overline{u}]$.

Proof. Existence. Let $z \in [\underline{u}, \overline{u}]$ be arbitrarily given. Then G(z) is measurable and $G(z) \in L^{p'}(\Omega)$, due to the estimate

$$|G(z)| \le |G(\overline{u})| + |G(\underline{u})|$$

and after observing that the right-hand side of the above inequality is in $L^{p'}(\Omega)$, by (H_2) .

We now apply Theorem II.8.5 in Lions [5]. We first observe that the above assertions show that the mapping $W_0^{1,p}(\Omega) \ni u \to \int_{\Omega} G(z)u$ is in $W^{-1,p'}(\Omega)$.

Consider the Leray-Lions operator $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ defined by

$$\langle Au, w \rangle = \int_{\Omega} a(x, \nabla u) \cdot \nabla w \, dx \, .$$

We show that A is a pseudo-monotone operator. For this aim it is enough to prove that A is bounded, monotone and hemi-continuous (see Lions [5] [Prop. II.2.5]).

Condition (a_3) yields the boundedness of A. Indeed

$$\|Au\|_{W^{-1,p'}}(\Omega) \le C(\|k\|_{L^{p'}(\Omega)} + \|\nabla u\|_{L^{p}(\Omega)}^{p-1})$$

We also observe that (a_2) implies that A is a monotone operator.

In order to justify the hemi-continuity of A, let us consider a sequence $(\lambda_n)_{n\geq 1}$ converging to λ . Then, for given $u, v, w \in W_0^{1,p}(\Omega)$, we have

$$a(x, \nabla(u + \lambda_n v)) \cdot \nabla w \to a(x, \nabla(u + \lambda v)) \cdot \nabla w$$
 a.e. in Ω .

From the boundedness of $\{\lambda_n\}$ and condition (a_3) we obtain that the sequence $\{|a(x, \nabla(u + \lambda_n v))\nabla w|\}$ is bounded by a function which belongs to $L^1(\Omega)$. Using the Lebesgue dominated convergence theorem it follows that

$$\langle A(u+\lambda_n v), w \rangle \to \langle A(u+\lambda_n v), w \rangle$$
 as $n \to \infty$.

Hence the application $\lambda \rightarrow \langle A(u + \lambda v, w) \rangle$ is continuous.

It follows that all assumptions of Theorem II.8.5 in [5] are fulfilled, so the problem (16) has at least a solution.

Uniqueness. Let u_1 and u_2 be two solutions of (16). Then taking $w = u_2$ as a test function for the solution u_1 , we obtain

$$\int_{\Omega} a(x, \nabla u_1) \cdot \nabla (u_2 - u_1) \, dx + J(u_2) - J(u_1) \ge \int_{\Omega} G(z)(u_2 - u_1) \, dx \, dx.$$

Similarly we find

$$\int_{\Omega} a(x, \nabla u_2) \cdot \nabla(u_1 - u_2) \, dx + J(u_1) - J(u_2) \ge \int_{\Omega} G(z)(u_1 - u_2) \, dx \, .$$

Therefore

$$\int_{\Omega} (a(x, \nabla u_1) - a(x, \nabla u_2)) \cdot (\nabla u_1 - \nabla u_2) \, dx \le 0$$

So, by (a_2) , it follows that $\nabla u_1 = \nabla u_2$, so $u_1 = u_2 + C$ in Ω . Since $u_1 = u_2 = 0$ on $\partial \Omega$, it follows that $u_1 = u_2$ in Ω .

From (3) and (4) we deduce that J(0) = 0 and $J(u) \ge 0$. Moreover, the variational inequality (16) implies

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(-u) \, dx + J(0) - J(u) \ge -\int_{\Omega} G(z) u \, dx \, .$$

Thus

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla u \, dx \leq \int_{\Omega} G(z) u \, dx \, .$$

This last inequality, assumption (a_1) and Hölder's inequality yield

$$\begin{split} \lambda \cdot \|u\|_{W_0^{1,p}(\Omega)}^p &\leq \int_{\Omega} G(z)u \, dx \leq \|G(z)\|_{L^{p'}(\Omega)} \cdot \|u\|_{L^p} \\ &\leq C_1 \left(\|G(\overline{u})\|_{L^{p'}(\Omega)} + \|G(\underline{u})\|_{L^{p'}(\Omega)}\right) \|u\|_{W_0^{1,p}(\Omega)} \, dx \end{split}$$

Thus u = Tz verifies

$$\|u\|_{W_0^{1,p}(\Omega)}^{p-1} \leq C_1(\|G(\overline{u})\|_{L^{p'}(\Omega)} + \|G(\underline{u})\|_{L^{p'}(\Omega)}) = C_2.$$

This implies that there exists a universal constant C > 0 such that

$$||u||_{W_0^{1,p}(\Omega)} \leq C$$
.

So, in order to conclude our proof, it is enough to show that $u \in [\underline{u}, \overline{u}]$. But, by the definition of an upper solution, there exists $\overline{v} \in L^{p'}(\Omega)$ such that $\overline{v} \in \beta(\overline{u}(x))$ and

(17)
$$\int_{\Omega} a(x, \nabla \overline{u}) \cdot \nabla w \, dx + \int_{\Omega} \overline{v} \cdot w \, dx \ge \int_{\Omega} G(\overline{u}) w \, dx,$$
for all $w \in W_0^{1,p}(\Omega) \cap L_+^p(\Omega).$

The solution u = Tz of the variational inequality (16) satisfies

(18)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) \, dx + J(w) - J(u) \ge \int_{\Omega} G(z)(w - u) \, dx$$
for all $w \in W_0^{1, p}(\Omega)$.

Setting $\overline{v} \in \beta(\overline{u}) = \partial j(\overline{u})$, we have

(19)
$$j(s) \ge j(\overline{u}(x)) + \overline{v}(x)(s - \overline{u}(x))$$
 for all $s \in \mathbf{R}$

Taking $s := \overline{u}(x) + (u(x) - \overline{u}(x))^+$ in (19) we find by integration

(20)
$$J(\overline{u} + (u - \overline{u})^+) \ge J(\overline{u}) + \int_{\Omega} \overline{v}(u - \overline{u})^+ dx.$$

Choosing now $w = (u - \overline{u})^+$ in (17) we obtain

(21)
$$\int_{\Omega} a(x, \nabla \overline{u}) \cdot \nabla (u - \overline{u})^+ dx + \int_{\Omega} \overline{v} \cdot (u - \overline{u})^+ dx \ge \int_{\Omega} G(\overline{u}) \cdot (u - \overline{u})^+ dx.$$

Relations (20) and (21) yield

(22)
$$\int_{\Omega} a(x, \nabla \overline{u}) \nabla (u - \overline{u})^+ dx + J(\overline{u} + (u - \overline{u})^+) - J(\overline{u}) \ge \int_{\Omega} G(\overline{u}) \cdot (u - \overline{u})^+ dx.$$

Taking $w = u - (u - \overline{u})^+$ in (18), we obtain

$$\int_{\Omega} a(x, \nabla u) \cdot (-\nabla (u - \overline{u})^{+}) \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) \ge -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) = -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) = -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) = -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) = -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+}) - J(u) = -\int_{\Omega} G(z)(u - \overline{u})^{+} \, dx + J(u - (u - \overline{u})^{+} \, dx + J(u - \overline{u})^{+} \, dx$$

Since $z \in [\underline{u}, \overline{u}]$ and $G : L^p(\Omega) \to L^p(\Omega)$ is nondecreasing, it follows that

(23)
$$\int_{\Omega} a(x, \nabla u) \cdot \nabla (u - \overline{u})^{+} dx + J(u - (u - \overline{u})^{+}) - J(u)$$
$$\geq -\int_{\Omega} G(\overline{u})(u - \overline{u})^{+} dx.$$

From (22), (23) and Lemma 3 we have

(24)
$$\int_{\Omega} (a(x, \nabla u) - a(x, \nabla \overline{u}) \cdot \nabla (u - \overline{u})^+ dx \le 0.$$

Let $\Omega_+ = \{x \in \Omega \mid u \le \overline{u}\}$ and $\Omega_- = \{x \in \Omega \mid u > \overline{u}\}$. Since $(u - \overline{u})^+ = 0$ in Ω_+ and $(u - \overline{u})^+ = u - \overline{u}$ in Ω_- , it follows by (24) that

$$\int_{\Omega_{-}} (a(x, \nabla u) - a(x, \nabla \overline{u}) \cdot \nabla (u - \overline{u})^{+} dx \leq 0.$$

So, by (a_2) and the definition of Ω_- , we obtain meas $(\Omega^-) = 0$, hence $u \leq \overline{u}$ a.e. in Ω . Proceeding in the same way we prove that $\underline{u} \leq u$. \Box

LEMMA 5. The operator T defines a monotone nondecreasing mapping from $[\underline{u}, \overline{u}]$ to $[\underline{u}, \overline{u}]$.

Proof. Let $z_1, z_2 \in [\underline{u}, \overline{u}]$ be such that $z_1 \leq z_2$. By Lemma 4, we obtain that $Tz_1, Tz_2 \in [\underline{u}, \overline{u}]$ and

(25)
$$\int_{\Omega} a(x, \nabla T z_1) \cdot \nabla (w - T z_1) \, dx + J(w) - J(T z_1) \\ \geq \int_{\Omega} G(z_1) (w - T z_1) \, dx$$

(26)
$$\int_{\Omega} a(x, \nabla T z_2) \cdot \nabla (w - T z_2) \, dx + J(w) - J(T z_1)$$
$$\geq \int_{\Omega} G(z_2)(w - T z_2) \, dx \, .$$

Taking $w = Tz_1 - (Tz_1 - Tz_2)^+$ in (25) and $w = Tz_2 + (Tz_1 - Tz_2)^+$ in (26), we get

$$-\int_{\Omega} a(x, \nabla Tz_1) \cdot \nabla (Tz_1 - Tz_2)^+ dx + J(Tz_1 - (Tz_1 - Tz_2)^+) - J(Tz_1)$$

$$\geq \int_{\Omega} G(z_1)(-(Tz_1 - Tz_2)^+) dx$$

$$\int_{\Omega} a(x, \nabla Tz_2) \cdot \nabla (Tz_1 - Tz_2)^+ dx + J(Tz_2 + (Tz_1 - Tz_2)^+) - J(Tz_2)$$

$$\geq \int_{\Omega} G(z_2) (Tz_1 - Tz_2)^+ dx .$$

Summing up these inequalities we get, by means of (13),

$$\int_{\Omega} (a(x, \nabla Tz_1) - a(x, \nabla Tz_2)) \cdot \nabla (Tz_1 - Tz_2)^+ dx$$

$$\leq \int_{\Omega} (G(z_1) - G(z_2)) (Tz_1 - Tz_2)^+ dx.$$

But $G(z_1) \leq G(z_2)$, since G is a nondecreasing operator. Therefore, by the

above inequality we obtain

$$\int_{\Omega} a(x, (\nabla Tz_1) - a(x, \nabla Tz_2)) \cdot \nabla (Tz_1 - Tz_2)^+ dx \le 0.$$

With the same argument as for proving (24) we obtain $Tz_1 \leq Tz_2$.

Proof of Theorem 1 completed. Assume that g is right continuous. Define

$$u^{n+1} = T u^n,$$

where $u^0 = \overline{u}$. Then, by Lemma 4, $\{u^n\}$ is nondecreasing, $u^n \in [\underline{u}, \overline{u}]$, and there is a constant *C* such that

(28)
$$||u^n||_{W_0^{1,p}(\Omega)} \le C.$$

The compact embedding $W_0^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ and (28) ensure that there exists $u \in W_0^{1,p}(\Omega)$ such that, up to a subsequence,

$$u^n \to u$$
 strongly in $L^p(\Omega)$
 $u^n \to u$ weakly in $W_0^{1,p}(\Omega)$
 $u_n \to u$ a.e. in Ω .

By Lemma 4, there exists $u' \in W_0^{1,p}(\Omega)$, $u' \in [\underline{u}, \overline{u}]$ such that u' = Tu. We prove in what follows that u is a fixed point of T i.e. u' = u.

From (27) and by the definition of T we obtain

$$(29) \int_{\Omega} a(x, \nabla u^{n+1}) \nabla (w - u^{n+1}) dx + J(w) - J(u^{n+1}) \ge \int_{\Omega} G(u^n) (w - u^{n+1})$$

for all $w \in W_0^{1, p}(\Omega)$.

Also, from Tu = u', we have

(30)
$$\int_{\Omega} a(x, \nabla u') \nabla (w - u') \, dx + J(w) - J(u') \ge \int_{\Omega} G(u) \cdot (w - u') \, dx$$
for all $w \in W_0^{1, p}(\Omega)$.

Taking w = u' in (29) and $w = u^{n+1}$ in (30), we get

$$\int_{\Omega} a(x, \nabla u^{n+1}) \nabla (u' - u^{n+1}) \, dx + J(u') - J(u^{n+1}) \ge \int_{\Omega} G(u^n) \cdot (u' - u^{n+1}) \, dx$$

$$\int_{\Omega} a(x, \nabla u') \nabla (u^{n+1} - u') \, dx + J(u^{n+1}) - J(u') \ge \int_{\Omega} G(u) \cdot (u^{n+1} - u') \, dx \, .$$

So, by (29) and (30), $J(u') < \infty$ and $J(u^{n+1}) < \infty$. Summing up the last two inequalities we obtain

(31)
$$\int_{\Omega} (a(x, \nabla u') - a(x, \nabla u^{n+1}) \cdot \nabla (u' - u^{n+1}) dx \\\leq \int_{\Omega} (G(u) - G(u^n)) (u' - u^{n+1}) dx.$$

Since G is right continuous we have $G(u^n) \to G(u)$ in Ω . We also have

$$|G(u) - G(u^{n})| \left(u - u^{n+1} \right) \le 2 \left(|G(\underline{u})| + |G(\overline{u})| \right) \left(|\underline{u}| + |\overline{u}| \right) \in L^{1}(\Omega).$$

By (a_2) and the Lebesgue dominated convergence theorem, we deduce from (31) that

(32)
$$\int_{\Omega} (a(x, \nabla u') - a(x, \nabla u^n) \cdot \nabla (u' - u^n) \, dx \to 0.$$

This implies that $\nabla u^n \to \nabla u'$ a.e. in Ω .

Relation (32) implies that (up to a subsequence)

(33)
$$(a(x, \nabla u') - a(x, \nabla u^n)) \cdot \nabla (u' - u^n) \to 0 \qquad \text{a.e. } x \in \Omega.$$

This leads to $\nabla u^n \to \nabla u'$ a.e. in Ω . Indeed, if not, there exists $x \in \Omega$ such that (up to a subsequence), $\nabla u^n(x) \to \xi \in \overline{\mathbf{R}}^N$ for $\xi \neq \nabla u'$. Passing to the limit in (33) we obtain

$$(a(x, \nabla u') - a(x, \xi)) \cdot (\nabla u' - \xi) = 0,$$

which contradicts (a_2) . So, we have proved that $\nabla u^n \to \nabla u$. Using the fact that $u^n \to u$ weakly in $W_0^{1,p}(\Omega)$, we conclude that $\nabla u' = \nabla u$, thus u' = u. Replacing u' by u in (30) we get

$$\int_{\Omega} a(x, \nabla u) \cdot \nabla(w - u) \, dx + J(w) - J(u) \ge \int_{\Omega} G(u)(w - u) \, dx$$

for all $w \in W_0^{1, p}(\Omega)$.

Hence u is a fixed point of T and a solution for the problem (P').

In order to prove that u is a maximal solution of (3) with respect to the order interval $[\underline{u}, \overline{u}]$, take any other solution $\hat{u} \in [\underline{u}, \overline{u}]$ of the problem (P').

Then \hat{u} is in particular a sub-solution satisfying $\hat{u} \leq \bar{u}$. Starting again the iteration (27) with $u^0 = \bar{u}$ we obtain

$$\hat{u} \leq \cdots \leq u^{n+1} \leq u^n \leq \cdots \leq u^0 = \bar{u}$$
.

It follows that $\hat{u} \leq u$, which concludes our proof.

REFERENCES

- [1] Barbu V., Precupanu Th., *Convexity and Optimization in Banach Spaces*, Sijthoff Noordoff, International Publishers, 1978.
- [2] Brezis H., Integrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9-23.
- [3] Brezis H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North Holland, 1973.
- [4] Carl S., A combined variational-monotone iterative method for elliptic boundary value problems with discontinuous nonlinearity, Appl. Anal., **43** (1992), 21-45.
- [5] Lions J. L., *Quelques méthodes de résolution des problèmes aux limites non linéaires*, Gauthier-Villars, Paris, 1969.

Pervenuto il 1 agosto 2002

Simona Dăbuleanu – Vicențiu Rădulescu Department of Mathematics University of Craiova 1100 Craiova, Romania E-mail: vicrad@yahoo.com