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1. Introduction

We study the following parametric (p, q)-equation with Robin boundary condition
⎧⎨
⎩

−Δpu(z) − Δqu(z) + ξ(z)|u(z)|p−2u(z) = λf(z, u(z)) in Ω,
∂u

∂npq
+ β(z)|u|p−2u = 0 on ∂Ω, 1 < q < p, λ > 0. (Pλ)

In this problem, Ω ⊆ RN is a bounded domain with a C2-boundary ∂Ω. For 1 < r <

+∞ we denote by Δr the r-Laplace differential operator defined by

Δru = div
(
|Du|r−2Du

)
for all u ∈ W 1,r(Ω).

In problem (Pλ), in the left-hand side we have the sum of two such operators. So, 
the differential operator in (Pλ) is not homogeneous. There is also a potential term 
ξ(z)|u|p−2u with ξ ≥ 0. The reaction (right-hand side of (Pλ)) is parametric with λ > 0
being the parameter and f(z, x) is a Carathéodory function (that is, for all x ∈ R, 
z �→ f(z, x) is measurable and for a.a. z ∈ Ω, x �→ f(z, x) is continuous).

In contrast to most similar works in the literature, f(z, ·) can be sign-changing. 
In the boundary condition ∂u

∂npq
denotes the conormal derivative corresponding to the 

differential operator u �→ −Δpu − Δqu (the (p, q)-Laplacian). We interpret this direc-
tional derivative using the nonlinear Green’s identity (see [21, p. 35]). We know that if 
u ∈ C1(Ω), then

∂u

∂npq
= (|Du|p−2 + |Du|q−2)∂u

∂n

with n(·) being the outward unit normal.
So, problem (Pλ) is a kind of a nonlinear eigenvalue problem for the Robin (p, q)-

Laplacian plus a potential term. We want to find those parameter values for which 
problem (Pλ) has solutions and provide sign information for all of them. Our work here 
complements those of Gasiński & Papageorgiou [8], Li & Yang [12], Papageorgiou & 
Rădulescu [15], Papageorgiou, Rădulescu & Repovš [20]. In these works the reaction 
f(z, ·) is (p − 1)-superlinear as x → ±∞ and they focus only on the existence of pos-
itive solutions. In addition, Gasiński & Papageorgiou [8] and Li & Yang [12] deal with 
equations driven by the Dirichlet p-Laplacian only. Related to our work, is also the last 
part in the paper of Gasiński & Papageorgiou [6], who consider equations driven by the 
Dirichlet p-Laplacian and a sign-changing reaction satisfying more restrictive conditions. 
They prove a bifurcation type result describing the changes in the set of positive solu-
tions as the parameter λ moves on 

◦
R+ = (0, +∞). We also mention the recent work of 

Papageorgiou & Zhang [23], on positive solutions of resonant (p, q)-equations.
Under minimal conditions of f(z, ·), we show that for all λ > 0 problem (Pλ) has 

constant sign smooth solutions. If the parameter λ > 0 is restricted to be big enough 
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(we determine the lower bound of the values of λ using the data of the problem), then 
we can show the existence of a smooth nodal solution. Under a symmetry condition of 
f(z, ·), we show the existence of a sequence of nodal solutions. When q = 2 (case of 
(p, 2)-equations), then we are able to show the existence of a second nodal solution. Our 
tools are variational from critical point theory, combined with truncation and comparison 
techniques and critical groups.

The double-phase problem (Pλ) is motivated by numerous models arising in mathe-
matical physics. For instance, we can refer to the following Born-Infeld equation [1] that 
appears in electromagnetism:

−div
(

∇u

(1 − 2|∇u|2)1/2
)

= h(u) in Ω.

Indeed, by the Taylor formula, we have

(1 − x)−1/2 = 1 + x

2 + 3
2 · 22x

2 + 5!!
3! · 23x

3 + · · · + (2n− 3)!!
(n− 1)!2n−1x

n−1 + · · · for |x| < 1.

Taking x = 2|∇u|2 and adopting the first order approximation, we obtain problem (Pλ)
for p = 4 and q = 2. Furthermore, the n-th order approximation problem is driven by 
the multi-phase differential operator

−Δu− Δ4u− 3
2Δ6u− · · · − (2n− 3)!!

(n− 1)! Δ2nu.

Our work here appears to be the first one on nonlinear eigenvalue problems driven by 
the (p, q)-Laplacian with Robin boundary condition. Our hypotheses on the reaction are 
minimal, very general, and they include the case of sign-changing forcing term. Moreover, 
we provide sign information for all solutions produced.

2. Background material and hypotheses

The main spaces in the analysis of problem (Pλ), are the Sobolev space W 1,p(Ω), the 
Banach space C1(Ω) and the “boundary” Lebesgue spaces Ls(∂Ω), 1 ≤ s ≤ +∞.

By ‖ · ‖ we denote the norm of the Sobolev space W 1,p(Ω). We have

‖u‖ =
(
‖u‖pp + ‖Du‖pp

)1/p
.

The space C1(Ω) is an ordered Banach space with positive (order) cone

C+ =
{
u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by



4 N.S. Papageorgiou et al. / Bull. Sci. math. 172 (2021) 103039
intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using 
this measure, we can define in the usual way the “boundary” Lebesgue spaces Ls(∂Ω)
(1 ≤ s ≤ +∞). From the theory of Sobolev spaces, we know that there exists a unique 
continuous linear map γ0 : W 1,p(Ω) �→ Lp(∂Ω), known as the “trace map”. We know 

that if u ∈ W 1,p(Ω) ∩C(Ω), then γ0(u) = u
∣∣∣
∂Ω

. So, the trace map extends to all Sobolev 

functions the notion of boundary values. We know that γ0(·) is compact into Ls(∂Ω), 
for all 1 ≤ s < (N−1)p

N−p if p < N and into Ls(∂Ω) for all 1 ≤ s < +∞ if N ≤ p. Moreover, 
we have

imγ0 = W
1
p′ ,p(∂Ω)

(
1
p′

+ 1
p

= 1
)

and kerγ0 = W 1,p
0 (Ω).

In what follows for the sake of notational economy, we drop the use of the trace map 
γ0(·). All restrictions of the Sobolev functions on ∂Ω are understood in the sense of 
traces.

If we consider the q-Laplace differential operator with Neumann boundary condition, 
then λ̂1(q) = 0 is the first eigenvalue with corresponding eigenspace R (the constant 
functions). The positive Lq(Ω)-normalized principal eigenfunction is û1(q) = 1

|Ω|N with 

| ·|N being the Lebesgue measure on RN . By λ̂2(q) we denote the first positive eigenvalue. 
We have the following variational characterization of λ̂2(q) (see Cuesta, de Figueiredo & 
Gossez [3] (Dirichlet problems), Mugnai & Papageorgiou [14], Neumann problems with 
indefinite potential). We set ∂BLq

1 = {u ∈ Lq(Ω) : ‖u‖q = 1}, M = W 1,p(Ω) ∩∂BLq

1 and 
Γ = {γ ∈ C ([−1, 1],M) : γ(−1) = −û1(q), γ(1) = û1(q)}.

Proposition 2.1. λ̂2(q) = inf
γ∈Γ

max
−1≤t≤1

‖Dγ(t)‖qq.

If q = 2, then we know that −Δ with Neumann boundary condition has a sequence 
of distinct eigenvalues {λ̂m(2)}m∈N which satisfy λ̂m(2) → +∞ as m → ∞ and describe 
completely the spectrum of the operator. Of course λ̂1(2) = 0. There is a corresponding 
sequence {ûn}n∈N ⊆ H1

0 (Ω) of eigenfunctions which are an orthonormal basis for H1(Ω). 
By E(λ̂m(2)) we denote the eigenspace corresponding to the eigenvalue λ̂m(2). These 
items have the following properties:

(a) E(λ̂m(2)) (m ∈ N) is finite dimensional and E(λ̂m(2)) ⊆ C1(Ω) (see Brezis [2])
(b) Each eigenspace has the so-called “Unique Continuation Property” (UCP for short), 

which means that if u ∈ E(λ̂m(2)) vanishes on A with |A|N > 0, then u ≡ 0.
(c) H1(Ω) = ⊕

m≥1
E(λ̂m(2)) (orthogonal direct sum decomposition) and

λ̂1(2) = inf
{
‖Du‖2

2
2 : u ∈ H1(Ω), u �= 0

}
= 0 (1)
‖u‖2
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λ̂n(2) = sup
{
‖Du‖2

2
‖u‖2

2
: u ∈ Hn, u �= 0

}
= inf

{
‖Du‖2

2
‖u‖2

2
: u ∈ Ĥn, u �= 0

}
(2)

where Hn =
n
⊕

m=1
E(λ̂m(2)), Ĥn = ⊕

m≥n
E(λ̂m(2)), n ∈ N (see Papageorgiou & 

Rădulescu [18]).

The infimum in (1) is clearly attained on R (the eigenspace of λ̂1(2) = 0), while 
both the supremum and infimum in (2) are realized on E(λ̂m(2)). All eigenvalues λ̂m(2)
(m ≥ 2) have nodal eigenfunctions.

Using the orthogonality of the eigenspaces, the UCP and (1), (2) we have the following 
Lemma (see Papageorgiou & Winkert [22]).

Lemma 2.2.

(a) If m ∈ N, ϑ ∈ L∞(Ω), ϑ(z) ≥ λ̂m(2) for a.a. z ∈ Ω and the inequality is strict on a 
set A with |A|N > 0, then

C1‖u‖2
H1(Ω) ≤

∫
Ω

ϑ(z)u2dz − ‖Du‖2
2

for some C1 > 0, all u ∈ Hm.
(b) If m ∈ N, ϑ ∈ L∞(Ω), ϑ ≤ λ̂m(2) for a.a. z ∈ Ω and the inequality is strict on a set 

A with |A|N > 0, then

C2‖u‖2
H1(Ω) ≤ ‖Du‖2

2 −
∫
Ω

ϑ(z)u2dz

for some C2 > 0 all u ∈ Ĥm.

Our hypotheses on the potential function ξ(·) and the boundary coefficient β(·) are 
the following:

H0: ξ ∈ L∞(Ω), β ∈ C0,α(∂Ω) with 0 < α < 1, ξ(z) ≥ 0 for a.a. z ∈ Ω, β(z) ≥ 0 for 
all z ∈ ∂Ω and ξ �= 0 or β �= 0.

If kp : W 1,p(Ω) �→ R is the C1-functional defined by

kp(u) = ‖Du‖pp +
∫
Ω

ξ(z)|u|pdz +
∫
∂Ω

β(z)|u|pdσ,

then using the hypotheses H0, Lemma 4.11 of Mugnai & Papageorgiou [14] and Propo-
sition 2.4 of Gasiński & Papageorgiou [6], we have

C0‖u‖p ≤ kp(u) for some C0 > 0, all W 1,p(Ω). (3)
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In particular, the nonlinear eigenvalue problem:
⎧⎨
⎩

−Δpu + ξ(z)|u|p−2u = λ̃|u|p−2u in Ω,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂Ω,

has a positive smallest eigenvalue λ̃1(p) which is isolated, simple and

λ̃1(p) = inf
{
kp(u)
‖u‖pp

: u ∈ W 1,p(Ω), u �= 0
}

> 0

(see Papageorgiou & Rădulescu [18]).

If u, v : Ω �→ R are measurable functions such that v(z) ≤ u(z) for a.a. z ∈ Ω, then 
we introduce the following order interval in W 1,p(Ω)

[v, u] =
{
h ∈ W 1,p(Ω) : v(z) ≤ h(z) ≤ u(z) for a.a. z ∈ Ω

}
.

By intC1(Ω)[v, u] we denote the interior of [v, u] ∩ C1(Ω) in C1(Ω).
If u ∈ W 1,p(Ω), we set u± = max{±u, 0}. We know that u± ∈ W 1,p(Ω), u = u+−u−, 

|u| = u+ + u−.
Given r ∈ (1, +∞), we denote by Ar : W 1,r(Ω) → W 1,r(Ω)∗ the nonlinear operator 

defined by

〈Ar(u), h〉 =
∫
Ω

|Du|r−2(Du,Dh)RN dz for all u, h ∈ W 1,r(Ω).

This operator is continuous, monotone (hence maximal monotone) and of type (S)+, 
that is,

“if un
w→ u in W 1,r(Ω) and lim sup

n→∞
〈Ar(un), un − u〉 ≤ 0,

then un → u in W 1,r(Ω).”

This property is a consequence of the Kadec-Klee property (also known as the Radon-
Riesz property) of uniformly convex spaces. This property says that if X is uniformly 
convex and xn

w→ x, ‖xn‖ → ‖x‖, then xn → x.
Let X be a Banach space, ϕ ∈ C1(X) and c ∈ R. We define

Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}, ϕc = {u ∈ X : ϕ(u) ≤ c}.

We say that ϕ(·) satisfies the “PS-condition”, if:

“Every sequence {un}n∈N such that
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{ϕ(un)}n∈N ⊆ R is bounded

and ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence”.

Finally let Y2 ⊆ Y1 ⊆ X. By Hk(Y1, Y2) (k ∈ N0), we denote the kth-relative singular 
homology, group with integer coefficients. If u ∈ Kϕ is isolated, then the critical groups 
of ϕ at u are defined by

Ck(ϕ, u) = Hk (ϕc ∩ U,ϕc ∩ U \ {u})

with c = ϕ(u), k ∈ N0 and U an open neighborhood of u such that ϕc ∩Kϕ ∩ U = {u}. 
The excision property of singular homology implies that this definition is independent 
of the isolating neighborhood U . Suppose that ϕ satisfies the PS-condition and that Kϕ

is finite. Then the critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc)

for all k ∈ N0 with c < inf ϕ(Kϕ). The Second Deformation Theorem (see [21, p. 386]), 
implies that this definition is independent of the choice of c < inf ϕ(Kϕ). We define

M(t, u) =
∑
k≥0

rankCk(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k≥0

rankCk(ϕ,∞)tk for all t ∈ R.

The Morse relation says that
∑

u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R

with Q(t) =
∑
k≥0

βkt
k a formal series in t with nonnegative integer coefficients.

Next we introduce the hypotheses on f(z, x):
H1: f : Ω × R �→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω

and

(i) |f(z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω),

p < r < p∗ =

⎧⎨
⎩

Np

N − p
, if p < N

+∞, if N ≤ p
;

(ii) lim sup f(z, x)
p−2 ≤ 0 uniformly for a.a. z ∈ Ω;
x→+∞ |x| x
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(iii) there exists ϑ > 0 such that

ϑ ≤ lim inf
x→0

f(z, x)
|x|q−2x

uniformly for a.a. z ∈ Ω.

Remark 2.3. Evidently the hypotheses on f are very general and include also functions 
which may change sign as x → ±∞. Note that near zero f(z, x)x ≥ 0 for a.a. z ∈ Ω.

Let F (z, x) =
∫ x

0 f(z, s)ds (the primitive of f(z, ·)). We introduce the C1-functionals 
ϕλ, ϕ

±
λ : W 1,p(Ω) �→ R defined by

ϕλ(u) = 1
p
kp(u) + 1

q
‖Du‖qq − λ

∫
Ω

F (z, u)dz,

ϕ±
λ (u) = 1

p
kp(u) + 1

q
‖Du‖qq − λ

∫
Ω

F (z,±u±)dz for all u ∈ W 1,p(Ω).

3. Constant sign solutions

First we show that (Pλ) has constant sign solutions for all λ > 0.

Proposition 3.1. If hypotheses H0, H1 hold, then for every λ > 0 problem (Pλ) has at 
least two constant sign solutions uλ ∈ intC+, vλ ∈ −intC+.

Proof. First we show the existence of a positive solution. On account of hypotheses 
H1(i), (ii) given ε > 0, we can find Cε > 0 such that

F (z, x) ≤ ε

p
|x|p + Cε for a.a. z ∈ Ω, all x ∈ R. (4)

Then for all u ∈ W 1,p(Ω) we have

ϕ+
λ (u) ≥ 1

p

(
kp(u) − λε‖u‖pp

)
− C3 for some C3 = C3(ε) > 0 (see (4))

≥ 1
p

(C0 − λε) ‖u‖p − C3 (see (3)).

Choosing ε ∈
(
0, C0

λ

)
, we see that

ϕ+
λ (·) is coercive.

The Sobolev embedding theorem and the compactness of the trace map, imply that ϕ+
λ

is sequentially weakly lower semicontinuous. Thus, by the Weierstrass-Tonelli theorem, 
we can find uλ ∈ W 1,p(Ω) such that
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ϕ+
λ (uλ) = inf

{
ϕ+
λ (u) : u ∈ W 1,p(Ω)

}
. (5)

Hypothesis H1(iii) implies that given ε ∈ (0, ϑ), we can find δ = δ(ε) ∈ (0, 1) such 
that

F (z, x) ≥ 1
q

(ϑ− ε) |x|q for a.a. z ∈ Ω, all |x| ≤ δ. (6)

Let η ∈ (0, δ). Then

ϕ+
λ (η) ≤ ηp

p

⎛
⎝∫

Ω

ξ(z)dz +
∫
∂Ω

β(z)dσ

⎞
⎠− ηq

q
λ(ϑ− ε) (see (6))

= C4η
p − C5η

q for some C4, C5 > 0. (7)

Since q < p, choosing η ∈ (0, δ) even smaller if necessary we have

ϕ+
λ (η) < 0 (see (7)),

⇒ ϕ+
λ (uλ) < 0 = ϕ+

λ (0) (see (5)),

⇒ uλ �= 0.

From (5) we have

(
ϕ+
λ

)′ (uλ) = 0,

⇒ 〈k′p(uλ), h〉 + 〈Aq(uλ), h〉 = λ

∫
Ω

f(z, u+
λ )hdz (8)

for all h ∈ W 1,p(Ω).
In (8) we choose h = −u−

λ ∈ W 1,p(Ω) and obtain

kp(u−
λ ) ≤ 0,

⇒ C0‖u−
λ ‖p ≤ 0 (see (3)),

⇒ uλ ≥ 0, uλ �= 0.

Therefore uλ is a positive solution of (Pλ). Proposition 2.10 of Papageorgiou & 
Rădulescu [17], implies that uλ ∈ L∞(Ω). Then using the nonlinear regularity theory of 
Lieberman [11], we have uλ ∈ C+ \ {0}. Let ρ = ‖uλ‖∞. Hypotheses H1(i), (iii) imply 
that we can find ξ̂ρ > 0 such that

f(z, x)x + ξ̂ρ|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.
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We have

Δpuλ + Δquλ ≤
(
‖ξ‖∞ + λξ̂ρ

)
up−1
λ in Ω.

Then the maximum principle of Pucci & Serrin [24, pp. 111, 120], implies that uλ ∈
intC+.

Similarly working with ϕ−
λ , we produce a negative solution vλ ∈ −intC+. �

In fact we can show the existence of a smallest positive solution and of a biggest 
negative solution. We will need these extremal constant sign solutions in order to produce 
a nodal one (see Section 4).

To produce these extremal constant sign solutions, we need to do some preparatory 
work. Hypotheses H1(i), (iii) imply that given ε ∈ (0, ϑ), we can find C6 = C6(ε) > 0
such that

f(z, x)x ≥ (ϑ− ε) |x|q − C6|x|r for a.a. z ∈ Ω, all x ∈ R. (9)

This unilateral growth condition on f(z, ·) leads to the following auxiliary Robin 
problem

⎧⎨
⎩

−Δpu− Δqu + ξ(z)|u|p−2u = λ
(
(ϑ− ε)|u|q−2u− C6|u|r−2u

)
in Ω,

∂u

∂npq
+ β(z)|u|p−2u = 0 on ∂Ω, λ > 0, ε ∈ (0, ϑ). (10λ)

Proposition 3.2. If hypotheses H0 hold, then for every λ > 0 problem (10λ) has a unique 
positive solution uλ ∈ intC+ and since the equation is odd vλ = −uλ ∈ −intC+ is the 
unique negative solution of problem (10λ).

Proof. First we show the existence of a positive solution.
So, we consider the C1-functional ψ+

λ : W 1,p(Ω) �→ R defined by

ψ+
λ (u) = 1

p
kp(u) + 1

q
‖Du‖qq −

λ(ϑ− ε)
q

‖u+‖qq + λC6

r
‖u+‖rr

for all u ∈ W 1,p(Ω).
Since q < p < r, it is clear that

ψ+
λ is coercive.

Also, it is sequentially weakly lower semicontinuous. So, we can find uλ ∈ W 1,p(Ω)
such that

ψ+
λ (uλ) = inf

{
ψ+
λ (u) : u ∈ W 1,p(Ω)

}
. (10)
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Since ε ∈ (0, ϑ) and q < p < r, we see that for η ∈ (0, 1) small we have

ψ+
λ (η) < 0

⇒ ψ+
λ (uλ) < 0 = ψ+

λ (0) (see (10)),

⇒ uλ �= 0.

From (10) we have

(
ψ+
λ

)′ (uλ) = 0,

⇒ 〈k′p(uλ), h〉 + 〈Aq(uλ), h〉 = λ

∫
Ω

(
(ϑ− ε)|uλ|q−2uλ − C6|uλ|r−2uλ

)
hdz (11)

for all h ∈ W 1,p(Ω).
In (11) we use the test function h = −u−

λ ∈ W 1,p(Ω) and using (3) we obtain that 
uλ ≥ 0, uλ �= 0. This implies that uλ is a positive solution of (10λ). As before the 
nonlinear regularity theory and the nonlinear maximum principle imply that uλ ∈ intC+.

In what follows, k̂p : W 1,p(Ω) → R is the C1-functional defined by

k̂p(u) = ‖Du‖pp +
∫
Ω

ξ(z)|u|pdz for all u ∈ W 1,p(Ω).

Next, we show the uniqueness of this positive solution. To this end, we introduce the 
integral functional j : L1(Ω) �→ R = R ∪ {+∞} defined by

j(u) =

⎧⎨
⎩

1
p
k̂p

(
u1/q

)
+ 1

q
‖Du1/q‖qq, if u ≥ 0, u1/q ∈ W 1,p(Ω)

+∞, otherwise.

Let dom j =
{
u ∈ L1(Ω) : j(u) < +∞

}
(the effective domain of j(·)). We introduce 

function G0 : R+ �→ R+ defined by

G0(t) = 1
p
tp + 1

q
tq for all t ≥ 0

Evidently G0(·) is increasing and t �→ G0(t1/q) is convex. We set G(y) = G0(|y|) for 
all y ∈ RN . Clearly G(·) is convex. So, if u1, u2 ∈ dom j and u = (tu1 + (1 − t)u2)1/q, 
t ∈ [0, 1], then from Diaz & Saa [4, Lemma 1], we have

|Du| ≤
(
t
∣∣∣Du

1/q
1

∣∣∣q + (1 − t)
∣∣∣Du

1/q
2

∣∣∣q)1/q

⇒ G0 (|Du|) ≤ G0

((
t
∣∣∣Du

1/q
1

∣∣∣q + (1 − t)
∣∣∣Du

1/q
2

∣∣∣q)1/q)
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(since G0(·) is increasing),

≤ tG0

(∣∣∣Du
1/q
1

∣∣∣) + (1 − t)G0

(∣∣∣Du
1/q
2

∣∣∣)
(since t �→ G0(t1/q) is convex),

⇒ G(Du) ≤ tG
(
Du

1/q
1

)
+ (1 − t)G

(
Du

1/q
2

)
,

⇒ j(·) is convex (recall that q < p and see hypotheses H0).

Also, by Fatou’s lemma we see that j(·) is lower semicontinuous.
Suppose ũλ is another positive solution of problem (10λ). Again we have ũλ ∈ intC+. 

Hence using Proposition 4.1.22 of Papageorgiou, Rădulescu & Repovš [21, p. 274], we 
have

uλ

ũλ
∈ L∞(Ω) and ũλ

uλ
∈ L∞(Ω).

Let h = uq
λ − ũq

λ. Then for |t| < 1 small we have

uq
λ + th ∈ dom j, ũq

λ + th ∈ dom j.

Then we can calculate the Gâteaux (directional) derivative of j(·) at uq
λ and at ũq

λ in 
the direction h. In fact, using the chain rule and reasoning as in Gasiński and Papageor-
giou [7, p. 492], we have

j′(uq
λ)(h) = 1

q

⎡
⎣〈

Ap(uλ), h

uq−1
λ

〉
+

〈
Aq(uλ), h

uq−1
λ

〉
+

∫
Ω

ξ(z)up−1
λ

uq−1
λ

hdz

⎤
⎦

= 1
q

∫
Ω

−Δpuλ − Δquλ + ξ(z)up−1
λ

uq−1
λ

hdz

= 1
q

∫
Ω

λ
(
(ϑ− ε) − C6u

r−q
λ

)
hdz

(using Green’s identity, see [21, p. 35]).

Similarly we have

j′(ũq
λ)(h) = 1

q

∫
Ω

λ
(
(ϑ− ε) − C6ũ

r−q
λ

)
hdz.

The convexity of j(·) implies the monotonicity of j′(·). Hence

0 ≤ λC6

∫
Ω

(
ũr−q
λ − ur−q

λ

)
(uq

λ − ũq
λ)dz,

⇒ uλ = ũλ.
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This proves the uniqueness of the positive solution uλ ∈ intC+ of problem (10λ).
Since the equation is odd, then vλ = −uλ ∈ −intC+ is the unique negative solution 

of problem (10λ). �
We introduce the following two sets

S+
λ = set of positive solutions of (Pλ),

S−
λ = set of negative solutions of (Pλ).

From Proposition 3.1 and its proof, we know that for all λ > 0, we have

∅ �= S+
λ ⊆ intC+ and ∅ �= S−

λ ⊆ −intC+.

The solutions of (10λ) produced in Proposition 3.2 provide bounds for the two solution 
sets S+

λ , S−
λ .

Proposition 3.3. If hypotheses H0, H1 hold and λ > 0, then uλ ≤ u for all u ∈ S+
λ and 

v ≤ vλ for all v ∈ S−
λ .

Proof. Let u ∈ S+
λ ⊆ intC+. We consider the Carathéodory function l(z, x) defined by

l(z, x) =
{

(ϑ− ε)(x+)q−1 − C6(x+)r−1, if x ≤ u(z)
(ϑ− ε)u(z)q−1 − C6u(z)r−1, if u(z) < x

(12)

(recall that ε ∈ (0, ϑ)). We set L(z, x) =
x∫

0

l(z, s)ds and consider the C1-functional 

ψ̂λ : W 1,p(Ω) → R defined by

ψ̂λ(u) = 1
p
kp(u) + 1

q
‖Du‖qq − λ

∫
Ω

L(z, u)dz for all u ∈ W 1,p(Ω).

From (3) and (12), it is clear that ψ̂(·) is coercive. Also it is sequentially weakly lower 
semicontinuous. So, we can find ũλ ∈ W 1,p(Ω) such that

ψ̂λ(ũλ) = inf
{
ψ̂λ(u) : u ∈ W 1,p(Ω)

}
. (13)

Since q < p < r, for η ∈ (0, 1) small we will have

ψ̂λ(η) < 0,

⇒ ψ̂λ(ũλ) < 0 = ψ̂λ(0),

⇒ ũλ �= 0.
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From (13) we have

ψ̂′
λ(ũλ) = 0,

⇒ 〈k′p(ũλ), h〉 + 〈Aq(ũλ), h〉 =
∫
Ω

λl(z, u)hdz (14)

for all h ∈ W 1,p(Ω).
Using h = −ũ−

λ we obtain ũλ ≥ 0, ũλ �= 0. If we use h = (ũλ − u)+ ∈ W 1,p(Ω), then

〈k′p(ũλ), (ũλ − u)+〉 + 〈Aq(ũλ), (ũλ − u)+〉

= λ

∫
Ω

[
(ϑ− ε)uq−1 − C6u

r−1] (ũλ − u)+dz

≤ λ

∫
Ω

f(z, u)(ũλ − u)+dz (see (9))

= 〈k′p(u), (ũλ − u)+〉 + 〈Aq(u), (ũλ − u)+〉 (since u ∈ S+
λ ),

⇒ ũλ ≤ u.

So, we have proved that

ũλ ∈ [0, u], ũλ �= 0. (15)

From (15), (12) and (14) we see that

ũλ is a positive solution of problem (10λ),

⇒ ũλ = uλ ∈ intC+ (see Proposition 3.2).

Similarly we show that v ≤ vλ for all v ∈ S−
λ ⊆ −intC+. �

From Papageorgiou, Rădulescu & Repovš [19] (see the proof of Proposition 7), we 
know that S+

λ is downward directed (that is, if u1, u2 ∈ S+
λ , then there exists u ∈ S+

λ

such that u ≤ u1, u ≤ u2) while S−
λ is upward directed (that is, if v1, v2 ∈ S−

λ , then 
there exists v ∈ S−

λ such that v1 ≤ v, v2 ≤ v). In the next proposition we establish the 
existence of extremal constant sign solutions.

Proposition 3.4. If hypotheses H0, H1 hold and λ > 0, then problem (Pλ) has a smallest 
positive solution u∗

λ ∈ S+
λ ⊆ intC+ (that is, u∗

λ ≤ u for all u ∈ S+
λ ) and a biggest negative 

solution v∗λ ∈ S−
λ ⊆ −intC+ (that is, v ≤ v∗λ for all S−

λ ).

Proof. Using Lemma 3.10 of Hu & Papageorgiou [9], we can find a decreasing sequence 
{un}n∈N ⊆ S+

λ such that
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inf
n∈N

un = inf S+
λ .

We have

〈k′p(un), h〉 + 〈Aq(un), h〉 = λ

∫
Ω

f(z, un)hdz (16)

for all h ∈ W 1,p(Ω), all n ∈ N,

uλ ≤ un ≤ u1 for all n ∈ N (see Proposition 3.3). (17)

In (16) we use the test function h = un ∈ W 1,p(Ω). Then we have

C0‖un‖p ≤ kp(un) ≤ C7 for some C7 > 0, all n ∈ N

(see (17) and hypothesis H1(i)),

⇒ {un}n∈N ⊆ W 1,p(Ω) is bounded.

So, we may assume that

un
w→ u∗

λ in W 1,p(Ω) and un → u∗
λ in Lp(Ω) and in Lp(∂Ω) (18)

In (16) we use h = un − u∗
λ ∈ W 1,p(Ω), pass to the limit as n → ∞ and use (18). We 

obtain

lim
n→∞

(〈Ap(un), un − u∗
λ〉 + 〈Aq(un), un − u∗

λ〉) = 0,

⇒ lim sup (〈Ap(un), un − u∗
λ〉 + 〈Aq(u∗

λ), un − u∗
λ〉) ≤ 0

(since Aq(·) is monotone),

⇒ lim sup
n→∞

〈Ap(un), un − u∗
λ〉 ≤ 0 (see (18)),

⇒ un → u∗
λ in W 1,p(Ω) (by the (S)+ -property of Ap(·)) (19)

If in (16) we pass to the limit as n → ∞ and use (19), then

〈k′p(u∗
λ), h〉 + 〈Aq(u∗

λ), h〉 = λ

∫
Ω

f(z, u∗
λ)hdz for all h ∈ W 1,p(Ω),

uλ ≤ u∗
λ.

It follows that u∗
λ ∈ S+

λ ⊆ intC+ and u∗
λ = inf S+

λ .
Similarly we produce maximal negative solution v∗λ ∈ S−

λ ⊆ −intC+. In this case we 
can find an increasing sequence {vn}n∈N ⊆ S−

λ such that sup
n∈N

vn = supS−
λ . �

In the next section we use these extremal constant sign solutions in order to produce 
a nodal one.
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4. Nodal solutions

To produce a nodal (sign-changing) solution, we look for nontrivial solutions of prob-
lem (Pλ) in the order interval [v∗λ, u∗

λ] distinct from u∗
λ and v∗λ. On account of the 

extremality of u∗
λ and v∗λ, any such solution is necessarily nodal. To limit ourselves 

on the order interval [v∗λ, u∗
λ], we use truncations techniques. For this method to lead to 

the desired nodal solution, we need to restrict the parameter λ > 0.
Let u∗

λ ∈ intC+ and v∗λ ∈ −intC+ be the two extremal constant sign solutions pro-
duced in Proposition 3.4. We introduce the following truncation of f(z, ·)

f̂(z, x) =

⎧⎪⎨
⎪⎩

f(z, v∗λ(z)), if x < v∗λ(z)
f(z, x), if v∗λ(z) ≤ x ≤ u∗

λ(z)
f(z, u∗

λ(z)), if u∗
λ(z) < x.

(20)

This is a Carathéodory function. We also consider the positive and negative trunca-
tions of f(z, ·), namely the Carathéodory functions

f̂±(z, x) = f̂(z,±x±). (21)

We set F̂ (z, x) =
x∫

0

f̂(z, s)ds and F̂±(z, x) =
x∫

0

f̂±(z, s)ds and introduce the C1-

functionals ϕ̂λ, ϕ̂
±
λ : W 1,p(Ω) �→ R defined by

ϕ̂λ(u) = 1
p
kp(u) + 1

q
‖Du‖qq − λ

∫
Ω

F̂ (z, u)dz

ϕ̂±
λ (u) = 1

p
kp(u) + 1

q
‖Du‖qq − λ

∫
Ω

F̂±(z, u)dz for all u ∈ W 1,p(Ω).

From (20), (21) and the extremality of u∗
λ, v∗λ, we obtain easily the following result.

Proposition 4.1. If hypotheses H0, H1 hold and λ > 0, then Kϕ̂λ
⊆ [v∗λ, u∗

λ] ∩ C1(Ω), 
Kϕ̂+

λ
= {0, u∗

λ}, Kϕ̂−
λ

= {0, v∗λ}.

Now we are ready to prove the existence of a nodal solution.

Proposition 4.2. If hypotheses H0, H1 hold and λ > λ̂2(q)
ϑ + 1, then problem (Pλ) has a 

nodal solution

yλ ∈ [v∗λ, u∗
λ] ∩ C1(Ω).

Proof. First we show that u∗
λ and v∗λ are local minimizers of ϕ̂λ(·).
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From (20) and (21) it is clear that ϕ̂+
λ (·) is coercive. Also, it is sequentially weakly 

lower semicontinuous. Hence we can find ũ∗
λ ∈ W 1,p(Ω) such that

ϕ̂+
λ (ũ∗

λ) = inf
{
ϕ̂+
λ (u) : u ∈ W 1,p(Ω)

}
< 0 = ϕ̂+

λ (0)

(see the proof of Proposition 3.1),

⇒ ũ∗
λ �= 0.

It follows that ũ∗
λ ∈ Kϕ̂+

λ
\ {0} and so using Proposition 4.1 we infer that

ũ∗
λ = u∗

λ ∈ intC+. (22)

From (20) and (21), we see that

ϕ̂+
λ

∣∣∣
C+

= ϕ̂λ

∣∣∣
C+

.

But then (22) implies that

u∗
λ is a local C1(Ω)-minimizer of ϕ̂λ(·)

⇒ u∗
λ is a local W 1,p(Ω)-minimizer of ϕ̂λ(·). (23)

(see Papageorgiou & Rădulescu [17, Proposition 2.12]).

Similarly, using the functional ϕ̂−
λ , we show

v∗λ is a local W 1,p(Ω)-minimizer of ϕ̂λ(·). (24)

We may assume that ϕ̂λ(v∗λ) ≤ ϕ̂λ(u∗
λ). The reasoning is the same if the opposite 

inequality holds, using (24) instead of (23).
From Proposition 4.1, we see that we may assume that

Kϕ̂λ
is finite. (25)

Otherwise we already have a sequence of distinct smooth nodal solutions so we are 
done.

From (23), (25) and Theorem 5.7.6 of Papageorgiou, Rădulescu & Repovš [21, p. 449], 
we can find ρ ∈ (0, 1) small such that

ϕ̂λ(v∗λ) ≤ ϕ̂λ(u∗
λ) < inf {ϕ̂λ(u) : ‖u− u∗

λ‖ = ρ} = m̂λ, ‖v∗λ − u∗
λ‖ > ρ. (26)

From [21] it follows that ϕ̂λ(·) is coercive. Hence by Proposition 5.1.15 of [21, p. 369]
we obtain that

ϕ̂λ(·) satisfies the PS-condition. (27)
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Then on account of (26) and (27), we see that we can apply the Mountain Pass Theorem 
and produce yλ ∈ W 1,p(Ω) such that

yk ∈ Kϕ̂λ
⊆ [v∗λ, u∗

λ] ∩ C1(Ω) (see Proposition 4.1) and m̂λ ≤ ϕ̂λ(yλ) (see (26)),

⇒ yλ /∈ {u∗
λ, v

∗
λ}.

So, if we can show that yλ �= 0, then we can conclude that yλ ∈ C1(Ω) is a nodal 
solution of problem (Pλ).

From the Mountain Pass Theorem, we know that

ϕ̂λ(yλ) = inf
γ∈Γ

max
−1≤t≤1

ϕ̂λ(γ(t)), (28)

with Γ =
{
γ ∈ C

(
[−1, 1],W 1,p(Ω)

)
: γ(−1) = v∗λ, γ(1) = u∗

λ

}
.

Let ∂BLq

1 , M be the manifolds from Proposition 2.1 and Mc = M ∩ C1(Ω). We 
introduce the following two sets of paths:

Γ̂ = {γ̂ ∈ C ([−1, 1],M) : γ̂(−1) = −û1(q), γ̂(1) = û1(q)} ,
Γ̂c = {γ̂ ∈ C ([−1, 1],Mc) : γ̂(−1) = −û1(q), γ̂(1) = û1(q)} .

Claim: Γ̂c is dense in Γ̂.
Let γ̂ ∈ Γ̂ and ε ∈ (0, 1). We introduce the multifunction Ĥε : [−1, 1] �→ 2C1(Ω) defined 

by

Ĥε(t) =
{

{u ∈ C1(Ω) : ‖u− γ̂(t)‖ < ε}, if t ∈ (−1, 1)
{±û1(q)}, if t = ±1.

Evidently Ĥε(·) has nonempty convex values. Moreover, for t ∈ (−1, 1), Ĥε(t) is 
open, while Ĥε(±1) are singletons. In addition the continuity of γ̂(·) implies the lower 
semicontinuity of the multifunction Ĥε(·) (see Proposition 2.6 of Hu & Papageorgiou [9, 
p. 37]). Therefore we can use Theorem 3.1′′′ of Michael [13] and have a continuous map 
γ̂ε : [−1, 1] �→ C1(Ω) such that γ̂ε(t) ∈ Ĥε(t) for all t ∈ [−1, 1].

Now let εn = 1
n and γ̂n = γ̂εn n ∈ N as above. We have

‖γ̂n(t) − γ̂(t)‖ <
1
n

for all t ∈ [−1, 1]. (29)

Recall that γ̂(t) ∈ ∂BLq

1 for all t ∈ [−1, 1]. So, from (29) we see that we may assume 
that γ̂n(t) �= 0 for all t ∈ [−1, 1], all n ∈ N. We set

γ̃n(t) = γ̂n(t)
‖γ̂n(t)‖q

for all t ∈ [−1, 1], all n ∈ N.

We see that γ̃n ∈ C ([−1, 1],Mc), γ̃n(±1) = ±û1(q) for all n ∈ N.



N.S. Papageorgiou et al. / Bull. Sci. math. 172 (2021) 103039 19
Also we have

‖γ̃n(t) − γ̂(t)‖ ≤ ‖γ̃n(t) − γ̂n(t)‖ + ‖γ̂n(t) − γ̂(t)‖

≤ |1 − ‖γ̂n(t)‖q|
‖γ̂n(t)‖q

‖γ̂n(t)‖ + 1
n

(30)

for all t ∈ [−1, 1], all n ∈ N.

Note that

max
−1≤t≤1

|1 − ‖γ̂n(t)‖q|

= max
−1≤t≤1

|‖γ̂(t)‖q − ‖γ̂n(t)‖q| (recall that γ̂ ∈ Γ̂)

≤ max
−1≤t≤1

‖γ̂(t) − γ̂n(t)‖q

≤ C8 max
−1≤t≤1

‖γ̂(t) − γ̂n(t)‖ for some C8 > 0
(

since W 1,p(Ω) ↪→ Lq(Ω)
)
.

≤ C8
1
n

for all n ∈ N (see (29)).

Let m∗ = max
−1≤t≤1

‖γ̂(t)‖ and m∗
n = max

−1≤t≤1
‖γ̂n(t)‖. We know that

‖γ̂n(t)‖ ≤ 1
n

+ ‖γ̂(t)‖

for all t ∈ [−1, 1], all n ∈ N (see (29)),

⇒ m∗
n ≤ 1

n
+ m∗,

⇒ sup
n∈N

m∗
n ≤ 1 + m∗.

Also we have ‖γ̂(t)‖q = 1 (since γ̂ ∈ Γ̂) and from (29) and since W 1,p(Ω) ↪→ Lq(Ω), 
we have

‖γ̂n(t) − γ̂(t)‖q ≤ C9

n
for some C9 > 0, all n ∈ N,

⇒ 1 ≤ C9

n
+ ‖γ̂n(t)‖.

So, if mn
∗ = min

−1≤t≤1
‖γ̂n(t)‖, then 1 ≤ inf

n∈N
mn

∗ . Returning to (30), we have

‖γ̃n(t) − γ̂(t)‖ ≤ 1
n

(C8(1 + m∗) + 1) ,

⇒ Γ̂c is dense in Γ.

This proves the Claim.
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Using the Claim and Proposition 2.1, we see that given η ∈ (0, ϑ), we can find γ̂ ∈ Γ̂c

such that

‖Dγ̂(t)‖qq ≤ λ̂2(q) + η. (31)

Hypothesis H1(iii) implies that we can find δ > 0 such that

F (z, x) ≥ η

q
|x|q for a.a. z ∈ Ω, all |x| ≤ δ. (32)

The set γ̂ ([−1, 1]) ⊆ Mc is compact. Recall that u∗
λ ∈ intC+, v∗λ ∈ −intC+. So, using 

Proposition 4.1.22 of [21, p. 274] we can find μ ∈ (0, 1) small such that
{

μγ̂(t) ∈ [v∗λ, u∗
λ] ∩ C1(Ω), for all t ∈ [−1, 1],

|μγ̂(t)(z)| ≤ δ, for all z ∈ Ω, all t ∈ [−1, 1].
(33)

Let u ∈ μγ̂ ([−1, 1]). We have u = μû with û ∈ γ ([−1, 1]). Then

ϕ̂λ(u) ≤ μp

p
kp(û) + μq

q

(
‖Dû‖qq − λη‖û‖qq

)
(see (32), (33))

≤ μp

p
kp(û) + μq

q

(
λ̂2(q) + η − λη

)
(see (31) and recall that ‖û‖q = 1).

But λ > λ̂2(q)
ϑ + 1 ⇒ ϑ(λ − 1) > λ̂2(q) ⇒ η(λ − 1) > λ̂2(q) for η near ϑ. Therefore we 

have

ϕ̂λ(u) ≤ C10μ
p − C11μ

q for some C10, C11 > 0.

Since q < p, choosing μ ∈ (0, 1) even smaller if necessary we have

ϕ̂λ(u) < 0 for all u ∈ μγ̂ ([−1, 1]) . (34)

We set γ0 = μγ̂. Then γ0 is a continuous path connecting −μû1(q) and μû1(q) and

ϕ̂λ

∣∣∣
γ0

< 0 (see (34)). (35)

Next, we produce a continuous path connecting μû1(q) and u∗
λ and along this path 

ϕ̂λ is negative.
So, let a = ϕ̂+

λ (u∗
λ) = ϕλ(u∗

λ), b = 0 = ϕ̂+
λ (0) = ϕλ(0). Recall that a < 0 = b. Using 

Proposition 4.1, we have

Ka
+ = {u∗

λ}, K◦
+ = {0} and ϕ̂+

λ

(
Kϕ̂+

)
∩ (a, 0) = ∅.
ϕ̂λ ϕ̂λ λ
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Using the Second Deformation Theorem (see [21], Theorem 5.3.12, p. 386), we produce 
a deformation ĥ : [0, 1] ×

(
(ϕ̂+

λ )◦ \ {0} → (ϕ̂+
λ )◦

)
such that

ĥ(0, u) = u for all u ∈ (ϕ̂+
λ )◦ \ {0} (36)

ĥ(1, u) = u∗
λ for all u ∈ (ϕ̂+

λ )◦ \ {0} (37)

ĥ(t, u∗
λ) = u∗

λ for all t ∈ [0, 1] (38)

ϕ̂+
λ (ĥ(t, u)) ≤ ϕ̂+

λ (ĥ(s, u)) (39)

for all 0 ≤ s ≤ t ≤ 1, all u ∈ (ϕ̂+
λ )◦ \ {0}

(recall from Section 2, that (ϕ̂+
λ )0 = {u ∈ W 1,p(Ω) : ϕ̂+

λ (u) ≤ 0}).
From (36), (37), (38) we see that Ka

ϕ̂+
λ

= {u∗
λ} is a strong deformation retract of 

(ϕ̂+
λ )◦\{0} = (ϕ̂+

λ )◦\K◦
ϕ̂+

λ

and from (39) it follows that the deformation is ϕ̂+
λ -decreasing.

We set γ+(t) = ĥ(t, μû1(q))+ for all 0 ≤ t ≤ 1. This is a continuous path in W 1,p(Ω)
and since μû1(q) ∈ (ϕ̂+

λ )◦ \ {0} (see (35)), we have

γ+(0) = μû1(q) (see (36)), γ+(1) = u∗
λ (see (37))

ϕ̂λ(γ+(t)) = ϕ̂+
λ (γ+(t)) ≤ ϕ̂+

λ (γ+(0)) = ϕ̂+
λ (μû1(q))

= ϕ̂λ(μû1(q)) < 0 for all t ∈ [0, 1] (see (35)),

⇒ ϕ̂λ

∣∣∣
γ+

< 0. (40)

In a similar fashion we produce another continuous path γ−(·) in W 1,p(Ω) connecting 
−μû1(q) and v∗λ such that

ϕ̂λ

∣∣∣
γ−

< 0. (41)

We concatenate γ−, γ0, γ+ and produce a path γ∗ ∈ Γ such that

ϕ̂λ

∣∣∣
γ∗

< 0 (see (35), (40), (41)),

⇒ ϕ̂λ(yλ) < 0 = ϕ̂λ(0) (see (28)),

⇒ yλ �= 0.

Therefore yλ ∈ [v∗λ, u∗
λ] ∩ C1(Ω) is a nodal solution of problem (Pλ). �

So, summarizing, we can state the following multiplicity theorem for problem (Pλ). 
Note that we provide sign information for all solutions and the solutions are ordered.

Theorem 4.3. If hypotheses H0, H1 hold, then
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(a) for all λ > 0 problem (Pλ) has constant sign solutions

uλ ∈ intC+ and vλ ∈ −intC+;

(b) for all λ > λ̂2(q)
ϑ + 1 problem (Pλ) has at least three nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+, yλ ∈ [vλ, uλ] ∩ C1(Ω) nodal.

If we introduce a symmetry hypothesis on f(z, ·), we can have a whole sequence of 
nodal solutions converging to zero in C1(Ω) and the result is valid for every parameter 
value λ > 0. We introduce the following stronger version of hypothesis H1.

H′
1: for a.a. z ∈ Ω, f(z, ·) is odd, hypotheses H1(i), (ii) hold and

(iii) lim
x→0

f(z, x)
|x|q−2x

= +∞ uniformly for a.a. z ∈ Ω.

Proposition 4.4. If hypotheses H0, H′
1 hold and λ > 0, then problem (Pλ) has a sequence 

{un}n∈N ⊆ C1(Ω) of nodal solutions such that un → 0 in C1(Ω).

Proof. From Proposition 3.4, we know that there exist extremal constant sign solutions

u∗
λ ∈ intC+ and v∗λ ∈ −intC+.

The energy functional ϕλ is even (see hypotheses H′
1) and coercive, thus it is bounded 

below. Hypothesis H′
1(iii) implies that given any η > 0, we can find δ = δ(η) > 0 such 

that

F (z, x) ≥ η

q
|x|q for a.a. z ∈ Ω, all |x| ≤ δ. (42)

Let V ⊆ W 1,p(Ω) be a finite dimensional subspace. Then on V all norms are equivalent 
and so we can find ρV ∈ (0, 1) such that

u ∈ V and ‖u‖ ≤ ρV ⇒ |u(z)| ≤ δ for a.a. z ∈ Ω. (43)

If u ∈ V with ‖u‖ = ρV , then using (42) and (43) we have

ϕλ(u) ≤ 1
p
kp(u) + 1

q

(
‖Du‖qq − η‖u‖qq

)
≤ C10ρ

p
V + 1

q
(C11 − ηCV ) ρqV

for some C10, C11, CV > 0 (since all norms on V are equivalent).
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Recall that η > 0 is arbitrary. So, we choose η > C11
CV

and have

ϕλ(u) ≤ C10ρ
p
V − C12ρ

q
V for some C12 > 0.

Since q < p, choosing ρV ∈ (0, 1) small we have

sup {ϕλ(u) : u ∈ V, ‖u‖ = ρV } < 0.

Then we can apply Theorem 1 of Kajikiya [10] and produce a sequence {un}n∈N ⊆
Kϕλ

such that

ϕλ(un) ≤ 0 and ‖un‖ → 0. (44)

The nonlinear regularity theory (see Lieberman [11]) implies that we can find α ∈ (0, 1)
and C13 > 0 such that

un ∈ C1,α(Ω), ‖un‖C1,α(Ω) ≤ C13 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and using (44), we have

un → 0 in C1(Ω),

⇒ un ∈ [v∗λ, u∗
λ] ∩ C1(Ω) for all n ≥ n0,

⇒ {un}n≥n0 is a sequence of nodal solutions of problem (Pλ).

This completes the proof. �
Using the same tools we can also treat the Dirichlet problem. So, now the problem 

under consideration is the following:
{

−Δpu(z) − Δqu(z) = λf(z, u(z)) in Ω,

u
∣∣∣
∂Ω

= 0, 1 < q < p, λ > 0. (P ′
λ)

We know that the q-Laplace differential operator with Dirichlet boundary condition, 
has a smallest eigenvalue λ̂1(q) > 0. Then Theorem 4.3 takes the following form.

Theorem 4.5. If hypotheses H1 hold, then

(a) for all λ > λ̂1(q) problem (P ′
λ) has constant sign solutions

uλ ∈ intC+ and vλ ∈ −intC+;

(b) for all λ > λ̂2(q)
ϑ + 1 problem (P ′

λ) has at least three nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+ and yλ ∈ [vλ, uλ] ∩ C1(Ω) nodal.
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Similarly Proposition 4.4 is also valid but with λ > λ̂1(q).

Proposition 4.6. If hypotheses H0, H′
1 hold and λ > λ̂1(q), then problem (P ′

λ) has a 
sequence {un}n∈N ⊆ C1(Ω) of nodal solutions such that un → 0 in C1(Ω).

5. (p, 2)–equations

When q = 2 (that is, we deal with a (p, 2)-equation) and we strengthen the regularity 
of f(z, ·), then we can produce a second nodal solution, for a total of four nontrivial 
smooth solutions all with sign information.

So, the Robin problem under consideration, is the following
{

−Δpu(z) − Δu(z) + ξ(z)|u(z)|p−2u(z) = λf(z, u(z)) in Ω,
∂u

∂np2
+ β(z)|u|p−2u = 0 on ∂Ω, 1 < 2 < p, λ > 0. (Qλ)

Now the hypotheses of the reaction f(z, x) are the following:
H2: f : Ω × R �→ R is a measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0, 

f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ≤ a(z) 

(
1 + |x|r−2) for a.a. z ∈ Ω, all x ∈ R with a ∈ L∞(Ω) and p < r <

p∗;

(ii) lim sup
x→±∞

f(z, x)
|x|p−2x

≤ 0 uniformly for a.a. z ∈ Ω;

(iii) there exists m ∈ N, m ≥ 2 such that

f ′
x(z, 0) ∈

[
λ̂m(2), λ̂m+1(2)

]
for a.a. z ∈ Ω,

f ′
x(·, 0) �≡ λ̂m(2), f ′

x(·, 0) �≡ λ̂m+1(2).

f ′
x(z, 0) = lim

x→0

f(z, x)
x

uniformly for a.a. z ∈ Ω.

We introduce the functional τ̂λ : H1(Ω) �→ R defined by

τ̂λ(u) = 1
2‖Du‖2

2 − λ

∫
Ω

F (z, u)dz for all u ∈ H1(Ω).

Note that τ̂λ ∈ C2(H1(Ω)). We consider the functional

τλ = τ̂λ

∣∣∣
W 1,p(Ω)

(recall that 2 < p).

Proposition 5.1. If hypotheses H2 hold, then Ck(τλ, 0) = δk,dm
Z for all k ∈ N0, with 

dm = dimHm.
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Proof. As we already mentioned, τ̂k ∈ C2(H1(Ω)) and if by 〈·, ·〉H1 we denote the duality 
brackets for the pair 

(
H1(Ω), H1(Ω)∗

)
, we have

〈τ̂ ′′λ (u)v, h〉H1 =
∫
Ω

(Dv,Dh)RN dz − λ

∫
Ω

f ′
x(z, u)vhdz (45)

for all u, v, h ∈ H1(Ω).

Suppose that v ∈ N (τ̂ ′′λ (0)) = ker (τ̂ ′′λ (0)). We have the unique orthogonal decompo-
sition v = v+ v̂ with v ∈ Hm and v̂ ∈ Ĥm+1 = H

⊥
m. In (45) let u = 0, v ∈ N (τ̂ ′′λ (0)) and 

choose h = v̂. Exploiting the orthogonality of Hm and Ĥm+1 and hypothesis H2(iii), 
we obtain

‖Dv̂‖2
2 =

∫
Ω

f ′
x(z, 0)v̂2dz ≤ λ̂m+1(2)‖v̂‖2

2, (46)

⇒ v̂ ∈ E(λ̂m+1(2)) (see (2)).

If v̂ �= 0, then by the UCP (see de Figueiredo & Gossez [5]) we have that v̂(z) �= 0 for 
a.a. z ∈ Ω and so from (46) and hypothesis H2(iii), we have

‖Dv̂‖2
2 < λ̂m+1(2)‖v̂‖2

2,

a contradiction (see (2)). Hence v̂ = 0. Similarly, we show that v = 0 and so finally 
v = 0. Therefore u = 0 is nondegenerate critical point of τ̂λ with Morse index d̂m and so 
from Proposition 6.2.6 of [21, p. 479], we have

Ck(τ̂λ, 0) = δk,dm
Z for all k ∈ N0. (47)

We know that W 1,p(Ω) ↪→ H1(Ω) densely and so by Theorem 6.6.26 of [21, p. 545], 
we have

Ck(τλ, 0) = Ck(τ̂λ, 0) for all k ∈ N0,

⇒ Ck(τλ, 0) = δk,dm
Z for all k ∈ N0 (see (47)).

The proof is now complete. �
Using this proposition, we can have a second nodal solution.

Proposition 5.2. If hypotheses H0, H2 hold and λ > λ̂2(2)
λ̂m(2) + 1, then problem (Qλ) has 

at least two nodal solutions

yλ, ŷλ ∈ intC1(Ω)[v
∗
λ, u

∗
λ].



26 N.S. Papageorgiou et al. / Bull. Sci. math. 172 (2021) 103039
Proof. From Theorem 4.3 we already have a nodal solution

yλ ∈ [v∗λ, u∗
λ] ∩ C1(Ω).

Let a : RN → RN be the map defined by

a(y) = |y|p−2y + y for all y ∈ RN .

Since p > 2, we see that a ∈ C1(RN , RN ) and

∇a(y) = |y|p−2
[
id + (p− 2)y ⊗ y

|y|2
]

+ id for all y ∈ RN \ {0}.

We have

(∇a(y)ξ, ξ)RN ≥ |ξ|2 for all y ∈ RN \ {0}, ξ ∈ RN .

Since u∗
λ ∈ intC+ and v∗λ ∈ −intC+, using the tangency principle of Pucci & Serrin 

[24, p. 35], we have

v∗λ(z) < yλ(z) < u∗
λ(z) for all z ∈ Ω.

Consider the following open cone in C1(Ω)

D+ =
{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω∩u−1(0)

< 0
}
.

From Proposition 3.2 of Gasiński & Papageorgiou [8], we have u∗
λ − yλ ∈ D+ and 

yλ − v∗λ ∈ D+. Therefore

yλ ∈ intC1(Ω)[v
∗
λ, u

∗
λ]. (48)

Using (48) and the standard homotopy invariance argument, we obtain

Ck(ϕλ, yλ) = Ck(ϕ̂λ, yλ) for all k ∈ N0, (49)

with ϕλ(·) and ϕ̂λ(·) as before, only now q = 2. Recall that yλ is a critical point of 
mountain pass-type for ϕ̂λ(·), hence

C1(ϕ̂λ, yλ) �= 0 (see [21, p. 527]). (50)

We assume that Kϕ̂λ
is finite or otherwise we already have an infinity of nodal solutions 

and so we are done. Since now on account of hypotheses H2, ϕλ ∈ C2 (
W 1,p(Ω)

)
, as in 

Papageorgiou & Rădulescu [16] (p. 414, Claim 3), using (49) and (50), we have
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Ck(ϕλ, yλ) = δk,1Z for all k ∈ N0,

⇒ Ck(ϕ̂λ, yλ) = δk,1Z for all k ∈ N0 (see (49)). (51)

The C1-continuity property of critical groups (see [21, p. 503]) implies that

Ck(ϕλ, 0) = Ck(τλ, 0) for all k ∈ N0,

⇒ Ck(ϕλ, 0) = δk,dm
Z for all k ∈ N0

(see Proposition 5.1),

⇒ Ck(ϕ̂λ, 0) = δk,dm
Z for all k ∈ N0 (see (49)). (52)

From the proof of Proposition 4.2, we know that u∗
λ and v∗λ are local minimizers of 

ϕ̂λ(·). Hence

Ck(ϕ̂λ, u
∗
λ) = Ck(ϕ̂λ, v

∗
λ) = δk,0Z for all k ∈ N0. (53)

Recall that ϕ̂λ(·) is coercive (see (20)). Therefore

Ck(ϕ̂λ,∞) = δk,0Z for all k ∈ N0 (see [21, p. 491]). (54)

Suppose Kϕ̂λ
= {yλ, 0, u∗

λ, v
∗
λ}. From (51), (52), (53), (54) and the Morse relation (see 

Section 2), with t = −1, we have

(−1)1 + (−1)dm + 2(−1)0 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists ŷλ ∈ Kϕ̂λ
, ŷλ /∈ {yλ, 0, u∗

λ, v
∗
λ}. We have

ŷλ ∈ [v∗λ, u∗
λ] ∩ C1(Ω) (see Proposition 4.1),

⇒ ŷλ ∈ C1(Ω) is a nodal solution of problem (Qλ).

Moreover, as we did for yλ, we show that

ŷλ ∈ intC1(Ω)[v
∗
λ, u

∗
λ].

This completes the proof. �
So, for the problem (Qλ) we can state the following multiplicity theorem.

Theorem 5.3. If hypotheses H0, H2 hold and λ > λ̂2(2)
λ̂m(2) + 1, then problem (Qλ) has at 

least four nontrivial solutions
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uλ ∈ intC+, vλ ∈ −intC+,

yλ, ŷλ ∈ intC1(Ω)[vλ, uλ] nodal.

The same multiplicity theorem is also true for the Dirichlet problem
{

−Δpu(z) − Δu(z) = λf(z, u(z)) in Ω,

u
∣∣∣
∂Ω

= 0, 2 < p, λ > 0. (Q′
λ)

Theorem 5.4. If hypotheses H2 hold and λ > λ̂2(2)
λ̂m(2) + 1, then problem (Q′

λ) has at least 
four nontrivial solutions

uλ ∈ intC+, vλ ∈ −intC+

yλ, ŷλ ∈ intC1
0
(Ω)[vλ, uλ] nodal.

Remark 5.5. Another multiplicity theorem for (p, 2)-equations under different hypotheses 
can be found in [22].
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