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Abstract. In the present paper, we investigate the existence and multiplicity
properties of the normalized solutions to the following Kirchhoff-type equation
with Sobolev critical growth

(P )

{
−

(
a+ b

∫
R3 |∇u|2dx

)
Δu+ λu = μ|u|p−2u+ |u|4u, in R

3,

u > 0,
∫
R3 |u|2dx = c2, in R

3,

where a, b, c, μ > 0 and 4 < p < 6. We consider both the L2-subcritical and
the L2-supercritical cases. Precisely, in the L2-subcritical case, by combining
the truncation method, the concentration-compactness principle and genus
theory, we obtain the multiplicity of the normalized solutions for problem
(P ). In the L2-supercritical case, by using a fiber map and the concentration-
compactness principle, we obtain a couple of normalized solutions for problem
(P ), as well as their asymptotic behavior. These results extend and com-
plement the existing results from Sobolev subcritical growth to the critical

Sobolev setting.

1. Introduction and main results

In the past years, the following nonlinear Kirchhoff-type equations

(1.1) −
(
a+ b

∫
R3

|∇u|2dx
)
Δu+ λu = f(u), x ∈ R

3

have attracted considerable attention, where a, b > 0 and λ ∈ R. The appear-
ance of the nonlocal term

( ∫
R3 |∇u|2dx

)
Δu causes several mathematical difficulties

that make the study of (1.1) particularly interesting. Furthermore, the interest
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of studying Kirchhoff-type equations comes from the physical background of equa-
tions. Usually, u denotes the displacement, f(u) is the external force, b is the initial
tension, while a is related to the intrinsic properties of the string, such as Young’
modulus.

The Kirchhoff equation was introduced by Kirchhoff [11] in 1883 in the one-
dimensional case. This first model is without forcing term and with Dirichlet
boundary conditions and it describes the transversal free vibrations of a clamped
string in which the dependence of the tension on the deformation cannot be ne-
glected. This is a quasilinear partial differential equation, namely the nonlinear part
of the equation contains as many derivatives as the linear differential operator. The
Kirchhoff equation is an extension of the classical d’Alembert wave equation for free
vibrations of elastic strings. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations. We refer to Arosio and
Panizzi [3] and D’Ancona and Spagnolo [6] for more details.

At present, there are two substantially different view points in terms of the
frequency λ in problem (1.1). One is to regard the frequency λ as a given constant.
In this situation, solutions of Eq. (1.1) are critical points of the corresponding action
functional on the working space. We point out that the existence, multiplicity and
concentration of solutions for (1.1) involving subcritical, critical and supercritical
exponents have been extensively studied under different assumptions about the
nonlinearity f , see [9] and their references therein. The other one is to regard the
frequency λ as an unknown quantity to the problem (1.1). In this situation, it is
natural to prescribe the value of the mass so that λ can be interpreted as a Lagrange
multiplier. Nowadays, some physicists are very interested in the solutions satisfying∫

R3

|u|2dx = c2 > 0

for a priori given c, since the mass admits a clear physical meaning. For example,
from a physical point of view, the mass ‖u‖22 may represent the number of particles
of each component in Bose-Einstein condensates or the power supply in the non-
linear optics framework. In addition, such solutions can give a better insight of the
dynamical properties, like orbital stability or instability, and can describe attrac-
tive Bose-Einstein condensates. This type of solutions is usually called prescribed
L2-norm solutions or normalized solutions in mathematics, and the above condition
is called normalized condition. In order to study the solution of Eq. (1.1) satisfying
the normalized condition

∫
R3 |u|2dx = c2, it suffices to consider the critical point of

the functional

E(u) =
1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − ∫

R3

F (u)dx

on the constrained manifold

S(c) :=

{
u ∈ H1(R3) :

∫
R3

|u|2dx = c2
}
.

In recent years, Guo et al. [8] studied the existence and blow-up behavior of the
normalized solutions for the equation

(1.2) −
(
a+ b

∫
RN

|∇u|2dx
)
Δu+ V (x)u = μ|u|p−2u+ λu,
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where 1 ≤ N ≤ 4 and 2 < p < 2∗. Ye [17] pointed out that 2 + 8
N is the L2-critical

exponent for (1.2), and she studied in [18] the existence of normalized solutions to
(1.2) with p = 2 + 8

N and V ≡ 0. Zeng and Zhang [20] obtained the existence and
uniqueness of normalized solutions to the equation (1.2) with V ≡ 0, μ = 1 and
2 < p < 2∗. Li and Ye [15] studied the existence and concentration phenomenon
of the normalized solutions to (1.2), and they also assumed that 2 < p < 2∗. Li,
Hao and Shi [13] also obtained the existence of normalized solutions to (1.2) with
N = 4 by fine calculations. By using a minimax procedure, Luo and Wang [14]
studied the multiplicity of normalized solutions to (1.2) with V ≡ 0, μ = 1 and
14
3 < p < 6. Chen et al. [5] established the existence of the normalized solutions
for Kirchhoff-type equation

−
(
a+ b

∫
R3

|∇u|2dx
)
Δu− λu = K(x)f(u),

where f ∈ C(R,R) satisfies general L2-supercritical or L2-subcritical condition.
From the commentaries above, the existing work is mainly focused on the exis-

tence of normalized solutions for Kirchhoff-type equations with Sobolev subcritical
growth. But there is very few result about Sobolev critical case. Motivated by
the works aforementioned and [1, 2], where they all considered the local semilinear
equations, we study the normalized solutions to the nonlocal and Sobolev critical
problem (P ).

Set

H1(R3) = {u ∈ L2(R3) : |∇u| ∈ L2(R3)}
with the inner product

〈u, v〉 =
∫
R3

[a∇u · ∇v + uv]dx

and the norm

‖u‖ = 〈u, u〉1/2.
We are now in a position to state the first two main results of this paper. Es-

sentially, these results establish the existence of normalized solutions for high per-
turbations of the forcing term. Our analysis covers both the L2-subcritical and
the L2-supercritical cases. In the first setting, following some arguments in [7], we
obtain the multiplicity of the normalized solutions, while in the L2-supercritical
case we find a couple of normalized solutions.

Theorem 1.1. If 4 < p < 14
3 , for given k ∈ N, there exist α > 0 independent

of k and μk := μ(k) such that problem (P ) possesses at least k couples (uj , λj) ∈
H1(R3)×R of weak solutions for μ ≥ μk and c ∈

(
0, (αμ )

2
6−p

]
with

∫
R3 |uj |2dx = c2,

λj > 0 for all j ∈ [1, k].

Theorem 1.2. If 14
3 < p < 6, there exists μ∗ = μ∗(c) > 0 such that as μ ≥

μ∗, problem (P ) possesses a couple (uc, λc) ∈ H1(R3) × R of weak solutions with∫
R3 |uc|2dx = c2 and λc > 0.

Remark 1.3. It is well known that problem (P ) on the whole space R
3 is invariant

under translations, which leads to the lack of compactness. In order to overcome
it, we can take the space H1

rad(R
3) of radial functions as the working space, where

H1
rad(R

3) := {u ∈ H1(R3) : u is radial},
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and by Proposition 1.7.1 in [4] we know that H1
rad(R

3) ↪→ Lt(R3) is compact for
any 2 < t < 6. To be precise, we will consider the functional I : H1

rad(R
3) → R

given by

I(u) =
1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − μ

p

∫
R3

|u|pdx− 1

6

∫
R3

|u|6dx,

restricted to the following sphere in L2(R3)

S(c) := {u ∈ H1
rad(R

3) : ‖u‖2 = c}.

Moreover, we give the asymptotic behavior of solution uc as c → +∞. Our main
result in this aspect is Theorem 1.4.

Theorem 1.4. If uc is the solution obtained in Theorem 1.2, then limc→+∞ I(uc) =
0.

Remark 1.5. The Sobolev critical exponent also leads to the lack of compactness.
Even the embedding of the radially symmetric space of H1

rad(R
3) into L6(R3) is not

compact. Furthermore, H1
rad(R

3) ↪→ L2(R3) is also not compact. Then, the weak
limit of Palais-Smale sequences could leave the constrained manifold S(c). Hence,
we need to estimate finely the Lagrange multiplier, which is vital in obtaining com-
pactness. With the aid of the concentration-compactness principle, we overcome
the difficulty.

Remark 1.6. No matter 4 < p < 14
3 or 14

3 < p < 6, I(u) on the constrained manifold
S(c) is all unbounded from below. Hence, it is unlikely to obtain a solution to
problem (P ) by minimizing method. We adopt some ideas from [1, 2] to overcome
the difficulty.

Remark 1.7. To the best of our knowledge, the main results in this paper are new.
They extend the main results in the above mentioned references except [19] from
Sobolev subcritical growth to Sobolev critical growth. When 14

3 < p < 6, Zhang
and Han [19] considered the existence of normalized solutions for problem (P ) by
calculating the threshold of the mountain pass level. Our approach is different and
easier than their approach. Alternatively, we also consider the L2-subcritical case.
We point out that p > 4 only ensures the corresponding Lagrange multiplier is
negative, see the proof of Lemma 2.1(iii).

2. The subcritical case

We first recall the definition of genus. Let X be a Banach space and A be a
subset of X. The set A is said to be symmetric if u ∈ A implies that −u ∈ A.
Denote by Σ the family of closed symmetric subsets A of X such that 0 �∈ A, i.e.,

Σ = {A ⊂ X\{0} : A is closed and symmetric with respect to the origin}.
For A ∈ Σ, define

γ(A) =

⎧⎪⎪⎨
⎪⎪⎩
0, if A = ∅,

inf
{
k ∈ N : ∃ an odd ϕ ∈ C

(
A,Rk\{0}

)}
,

+∞, if no such an odd map,

and Σk = {A ∈ Σ : γ(A) ≥ k}.
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For u ∈ S(c), by the Gagliardo-Nirenberg inequality and the Sobolev embedding
theorem we have

I(u) =
1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − μ

p

∫
R3

|u|pdx− 1

6

∫
R3

|u|6dx

≥1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − μ

p
Cpc

6−p
2 ‖∇u‖

3(p−2)
2

2 − 1

6S3
‖∇u‖62

:=M(‖∇u‖2),
where

M(t) =
1

2
at2 +

b

4
t4 − μ

p
Cpc

6−p
2 t

3(p−2)
2 − 1

6S3
t6.

Since 4 < p < 14
3 , we obtain 3(p−2)

2 < 4 < 6, and there exists α > 0 such that

as μc
6−p
2 ≤ α, the function M(·) attains its positive local maximum. More pre-

cisely, there exist two constants 0 < R1 < R2 < +∞ such that M(·) < 0 in
the intervals (0, R1) and (R2,+∞), and M(·) > 0 in the interval (R1, R2). Let
τ (·) ∈ C∞(R+, [0, 1]) be a nonincreasing function such that τ (t) = 1 for t ≤ R1 and
τ (t) = 0 for t ≥ R2.

2.1. Proof of Theorem 1.1. Define the truncated functional

Iτ (u) =
1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − μ

p

∫
R3

|u|pdx− τ (‖∇u‖2)
6

∫
R3

|u|6dx.

For u ∈ S(c), again by the Gagliardo-Nirenberg inequality and the Sobolev embed-
ding theorem one has

Iτ (u) ≥
1

2
a

∫
R3

|∇u|2dx+
b

4

( ∫
R3

|∇u|2dx
)2 − μ

p
Cpc

6−p
2 ‖∇u‖

3(p−2)
2

2

− τ (‖∇u‖2)
6S3

‖∇u‖62

:=M̃(‖∇u‖2),
where

M̃(t) =
1

2
at2 +

b

4
t4 − μ

p
Cpc

6−p
2 t

3(p−2)
2 − τ (t)

6S3
t6.

Then the definition of τ (·) implies that when c ∈
(
0, (αμ )

2
6−p

]
, M̃(·) < 0 in the

interval (0, R1) and M̃(·) > 0 in the interval (R1,+∞). In the following, we always

assume c ∈
(
0, (αμ )

2
6−p

]
. Without loss of generality, we may assume that

(2.1)
1

2
ar2 +

b

4
r4 − 1

6S3
r6 ≥ 0 for r ∈ [0, R1] and R2

1 < a
1
2S

3
2 .

Lemma 2.1.

(i) Iτ ∈ C1(H1
rad(R

3),R).
(ii) Iτ is coercive and bounded from below on S(c). Moreover, if Iτ ≤ 0, then

‖∇u‖2 ≤ R1 and Iτ (u) = I(u).
(iii) Iτ |S(c) satisfies the (PS)d condition for all d < 0.

Proof. The proofs of (i) and (ii) are easy. For (iii), let {un} be a (PS)d sequence
of Iτ |S(c) with d < 0, i.e., Iτ (un) → d < 0 and ‖Iτ |′S(c)(un)‖ → 0 as n → ∞. By

(ii), ‖∇un‖2 ≤ R1 for large n, and {un} is also a (PS)d sequence of I|S(c) with

d < 0. Then, {un} is bounded in H1
rad(R

3). Hence, up to a subsequence, there
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exists u ∈ H1
rad(R

3) such that un ⇀ u in H1
rad(R

3) and un → u in Lt(R3) for
2 < t < 6 and un(x) → u(x) a.e. x ∈ R

3. Since 4 < p < 14
3 ,

lim
n→∞

∫
R3

|un|pdx =

∫
R3

|u|pdx.

We assert that u �≡ 0. Otherwise, limn→∞
∫
R3 |un|pdx = 0, and whence by (2.1)

we have

0 >d = lim
n→∞

I(un)

= lim
n→∞

[1
2
a

∫
R3

|∇un|2dx+
b

4

( ∫
R3

|∇un|2dx
)2 − μ

p

∫
R3

|un|pdx− 1

6

∫
R3

|un|6dx
]

≥ lim
n→∞

[1
2
a‖∇un‖22 +

b

4
‖∇un‖42 −

μ

p

∫
R3

|un|pdx− 1

6S3
‖∇un‖62

]
≥− μ

p
lim
n→∞

∫
R3

|un|pdx = 0,

a contradiction. On the other hand, let Φ(v) := 1
2

∫
R3 |v|2dx, ∀v ∈ H1(R3), then

S(c) = Φ−1({ c2

2 }). By Proposition 5.12 in [16], there exists a sequence {λn} ⊂ R

such that ‖I ′(un)− λnΦ
′(un)‖ → 0 as n → ∞, which means that

(2.2) −
(
a+b

∫
R3

|∇un|2dx
)
Δun−μ|un|p−2un−|un|4un = λnun+o(1) in H−1

rad(R
3).

Therefore, for ϕ ∈ H1
rad(R

3),
(2.3)(

a+ b

∫
R3

|∇un|2dx
) ∫

R3

∇un · ∇ϕdx− μ

∫
R3

|un|p−2unϕdx−
∫
R3

|un|4unϕdx

=λn

∫
R3

unϕdx+ o(1)‖ϕ‖.

Especially,(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

|∇un|2dx− μ

∫
R3

|un|pdx−
∫
R3

|un|6dx = λnc
2 + o(1).

The boundedness of {‖un‖} yields that {λn} is bounded in R. Then, up to a
subsequence, there exists λc ∈ R such that λn → λc as n → ∞. We claim that
λc < 0. Indeed, by the above identity and I(un) → d < 0 as n → ∞ and p > 4 we
know that

λnc
2 + o(1) < 4d+

4− p

p
μ

∫
R3

|un|pdx− 1

3

∫
R3

|un|6dx+ o(1) ≤ 4d+ o(1).

Let n → ∞, we have λc < 0.
In the sequel, we shall prove un → u in L6(R3) by using the concentration-

compactness principle due to Lions [12]. In fact, there exist two positive measures
μ, ν ∈ M(R3) such that |∇un|2 ⇀ μ and |un|6 ⇀ ν in M(R3) as n → ∞, and for
an at most countable index set J , we have⎧⎪⎨

⎪⎩
ν = |u|6 +

∑
j∈J νjδxj

, νj > 0,

μ ≥ |∇u|2 +
∑

j∈J μjδxj
, μj > 0,

Sν
1
3
j ≤ μj , ∀j ∈ J.
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Suppose that J is nonempty but finite. Let ϕρ ∈ C∞(R3) be a cut-off function
with ϕρ(x) = 1 for |x − xj | ≤ 1

2ρ, ϕρ(x) = 0 for |x − xj | ≥ ρ and |∇ϕρ| ≤ 1√
ρ .

By the boundedness of {un} in H1
rad(R

3) we know that {ϕρun} is also bounded in
H1

rad(R
3). Therefore,

o(1) =〈I ′(un), ϕρun〉

=
(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

∇un · ∇(ϕρun)dx−μ

∫
R3

ϕρ|un|pdx−
∫
R3

ϕρ|un|6dx.

Clearly, ∫
R3

∇un · ∇(ϕρun)dx =

∫
R3

|∇un|2ϕρdx+

∫
R3

un∇un · ∇ϕρdx.

By Hölder inequality we derive that

(2.4)

∣∣∣ ∫
R3

un∇un · ∇ϕρdx
∣∣∣

≤
(∫

R3

u2
n|∇ϕρ|2dx

) 1
2 ·

(∫
R3

|∇un|2dx
) 1

2

≤C
(∫

R3

u2
n|∇ϕρ|2dx

) 1
2

= C
(∫

Bρ(xj)\B ρ
2
(xj)

u2
n|∇ϕρ|2dx

) 1
2

.

Noting that

∣∣∣ ∫
Bρ(xj)\B ρ

2
(xj)

u2
n|∇ϕρ|2dx−

∫
Bρ(xj)\B ρ

2
(xj)

u2|∇ϕρ|2dx
∣∣∣

≤1

ρ

∫
Bρ(xj)\B ρ

2
(xj)

|un + u||un − u|dx

≤1

ρ

(∫
R3

|un − u|pdx
) 1

p
(∫

R3

|un + u|6dx
) 1

6
(∫

Bρ(xj)

dx
) 5

6−
1
p

≤Cρ3(
5
6−

1
p )−1

(∫
R3

|un − u|pdx
) 1

p

.

By the absolute continuity of the Lebesgue integral, it implies that

lim
ρ→0

lim
n→∞

∫
Bρ(xj)\B ρ

2
(xj)

u2
n|∇ϕρ|2dx = lim

ρ→0

∫
Bρ(xj)\B ρ

2
(xj)

u2|∇ϕρ|2dx

≤ lim
ρ→0

[1
ρ

( ∫
Bρ(xj)

|u|6dx
) 1

3 (

∫
Bρ(xj)

dx)
2
3

]
= 0.

By (2.4), limρ→0 limn→∞
∫
R3 un∇un ·∇ϕρdx = 0. Again by the absolute continuity

of the Lebesgue integral we have

lim
ρ→0

lim
n→∞

∫
R3

|un|pϕρdx = lim
ρ→0

∫
R3

|u|pϕρdx = 0.
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All together with the above estimates, we get that

lim
ρ→0

[ ∫
R3

|u|6ϕρdx+
∑
j∈J

∫
R3

νjδxj
ϕρdx

]

= lim
ρ→0

∫
R3

ϕρdν = lim
ρ→0

lim
n→∞

∫
R3

|un|6ϕρdx

= lim
ρ→0

lim
n→∞

(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

|∇un|2ϕρdx

≥a lim
ρ→0

lim
n→∞

∫
R3

|∇un|2ϕρdx = a lim
ρ→0

∫
R3

ϕρdμ

≥a lim
ρ→0

[ ∫
R3

|∇u|2ϕρdx+
∑
j∈J

∫
R3

μjδxj
ϕρdx

]
.

Hence, νj ≥ aμj . Then, μj ≥ Sν
1
3
j ≥ S(aμj)

1
3 , i.e., μj ≥ a

1
2S

3
2 , so

R2
1 ≥ lim sup

n→∞
‖∇un‖22 ≥ lim sup

n→∞

∫
R3

|∇un|2ϕρdx =

∫
R3

ϕρdμ

≥
∫
R3

|∇u|2ϕρdx+
∑
j∈J

∫
R3

μjδxj
ϕρdx ≥ μj ≥ a

1
2S

3
2 ,

a contradiction with (2.1). Hence, J = ∅. Then,

lim
n→∞

∫
R3

|un|6ϕρdx =

∫
R3

ϕρdν =

∫
R3

|u|6ϕρdx,

so un → u in L6
loc(R

3).
On the other hand, since un ∈ H1

rad(R
3) and {un} is bounded in H1(R3),

|un(x)| ≤ ‖un‖
|x| ≤ C

|x| for every |x| ≥ 1. So |un(x)|6 ≤ C
|x|6 for every |x| ≥ 1.

Since 1
|·|6 ∈ L1(R3\BR(0) and un(x) → u(x) a.e. on R

3\BR(0), by the Lebesgue

dominated convergence theorem, un → u in L6(R3\BR(0)).
Consequently, un → u in L6(R3). Along a subsequence if necessary, set B :=

limn→∞ ‖∇un‖22 ≥ 0. Then 0 < ‖∇u‖22 ≤ B. By (2.3),

(
a+ bB

) ∫
R3

∇u · ∇ϕdx− μ

∫
R3

|u|p−2uϕdx−
∫
R3

|u|4uϕdx = λc

∫
R3

uϕdx.

Consequently,

lim
n→∞

[(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

|∇un|2dx− λn‖un‖22
]

= lim
n→∞

[
μ‖un‖pp + ‖un‖66

]
=μ‖u‖pp + ‖u‖66 =

(
a+ bB

) ∫
R3

|∇u|2dx− λc‖u‖22.

By λc < 0 we deduce that

lim
n→∞

−λc‖un‖22 = −λc‖u‖22, a lim
n→∞

∫
R3

|∇un|2dx = a

∫
R3

|∇u|2dx.

Hence, un → u in H1
rad(R

3) and ‖u‖2 = c. �
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For ε > 0, set

I−ε
τ = {u ∈ H1

rad(R
3) ∩ S(c) : Iτ (u) ≤ −ε} ⊂ H1

rad(R
3).

By the fact that Iτ is even and continuous onH1
rad(R

3), I−ε
τ is closed and symmetric.

Then, we have Lemma 2.2, whose proof is similar to the Lemma 3.2 in [1].

Lemma 2.2. Given n ∈ N, there exist εn := ε(n) > 0 and μn := μ(n) > 0 such
that γ(I−ε

τ ) ≥ n for 0 < ε ≤ εn and μ ≥ μn.

Set

Σk := {D ⊂ H1
rad(R

3) ∩ S(c) : D is closed and symmetric, γ(D) ≥ k},

and dk := infD∈Σk
supu∈D Iτ (u) > −∞ for all k ∈ N by Lemma 2.1 (ii) and

Kd := {u ∈ H1
rad(R

3) ∩ S(c) : I ′τ (u) = 0, Iτ (u) = d}.

Then, the following lemmas holds.

Lemma 2.3. If d = dk = dk+1 = · · · = dk+r, then γ(Kd) ≥ r + 1. In particular,
Iτ possesses at least r + 1 nontrivial critical points.

Proof. For ε > 0, it is easy to see that I−ε
τ ∈ Σ. For any k ∈ N, by the previous

lemma there exist εk = ε(k) > 0 and μk = μ(k) > 0 such that if 0 < ε ≤ εk and
μ ≥ μk, we get γ(I

−ε
τ ) ≥ k. Then I−εk

τ ∈ Σk, and dk ≤ sup
u∈I

−εk
τ

Iτ (u) = −εk < 0.

Suppose that 0 > d = dk = dk+1 = · · · = dk+r, then Lemma 2.1 (iii) implies that
Iτ satisfies the (PS)d condition. Hence, Kd is a compact set. By [1, Theorem 2.1],
Iτ |S(c) possesses at least r + 1 critical points. �

Proof of Theorem 1.1. By Lemma 2.1 (ii), the critical points of Iτ founded in
Lemma 2.3 are the critical points of I. So Theorem 1.1 is proved. �

3. The supercritical case

In this section, we consider the case 14
3 < p < 6. At this time, 3(p−2)

2 > 4.
It follows that the truncated functional Iτ in Section 2 is still unbounded from
below on S(c). Therefore, we cannot use the truncation technique from Section 2
to study problem (P ) when 14

3 < p < 6. Inspired by [2], for convenience, we set

f(t) = μ|t|p−2t+ |t|4t for all t ∈ R, and introduce the following auxiliary functional

Ĩ : S(c)× R → R, (u, τ ) �→ I(τ ∗ u),

where (τ ∗ u)(x) := e
3
2 τu(eτx). Then∫

R3

|∇(τ ∗ u)|2dx = e2τ
∫
R3

|∇u|2dx

and ∫
R3

|τ ∗ u|qdx = e
q−2
2 3τ

∫
R3

|u|qdx, ∀q ∈ [2, 6].
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Then

Ĩ(u, τ ) =I(τ ∗ u) = I
(
e

3
2 τu(eτx)

)
=
1

2
a

∫
R3

∣∣∇(τ ∗ u)
∣∣2dx+

b

4

(∫
R3

∣∣∇(τ ∗ u)
∣∣2dx)2

−
∫
R3

F (τ ∗ u)dx

=
1

2
ae2τ

∫
R3

|∇u|2dx+
b

4
e4τ

(∫
R3

|∇u|2dx
)2

− e−3τ

∫
R3

F
(
e

3τ
2 u(x)

)
dx

=
1

2
ae2τ

∫
R3

|∇u|2dx+
b

4
e4τ

(∫
R3

|∇u|2dx
)2

− μ

p
· e

3(p−2)
2 τ

∫
R3

|u|pdx

− 1

6
· e6τ

∫
R3

|u|6dx.

Clearly, the above estimates imply the Lemma 3.1.

Lemma 3.1 ([19, Lemma 3.1]). Let u ∈ S(c) be arbitrary but fixed. Then

(i)
∫
R3

∣∣∇(τ ∗ u)
∣∣2dx → 0 and Ĩ(u, τ ) → 0 as τ → −∞.

(ii)
∫
R3

∣∣∇(τ ∗ u)
∣∣2dx → +∞ and Ĩ(u, τ ) → −∞ as τ → +∞.

With the aid of the Gagliardo-Nirenberg inequality we can obtain the next
lemma.

Lemma 3.2 ([19, Lemma 3.2]). There exists K(c) > 0 sufficiently small such that

I(u) > 0 for u ∈ A and 0 < sup
u∈A

I(u) < inf
u∈B

I(u),

where

A := {u ∈ S(c) :

∫
R3

|∇u|2dx ≤ K(c)}

and

B := {u ∈ S(c) :

∫
R3

|∇u|2dx = 2K(c)}.

As a consequence of Lemmas 3.1 and 3.2, we see that for fixed u0 ∈ S(c), there
exist two constants τ1, τ2 satisfying τ1 < 0 < τ2 such that∫

R3

|∇u1|2dx <
K(c)

2
,

∫
R3

|∇u2|2dx > 2K(c)

and

I(u1) > 0, I(u2) < 0,

where u1 := τ1 ∗ u0 ∈ S(c) and u2 := τ2 ∗ u0 ∈ S(c). In the following, denote the
mountain pass level γμ(c) by

γμ(c) := inf
g∈Γ

max
t∈[0,1]

I(g(t)),

where

Γ := {g ∈ C([0, 1], S(c)) : g(0) = u1, g(1) = u2}.
Then for any g ∈ Γ,

max
t∈[0,1]

I(g(t)) > max{I(u1), I(u2)}.

It yields that γμ(c) > 0. About γμ(c), Lemma 3.3 holds.

Lemma 3.3. limμ→+∞ γμ(c) = 0.
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Proof. Taking g0(t) :=
[
(1− t)τ1 + tτ2

]
∗ u0 ∈ Γ, then

0 <γμ(c) ≤ max
t∈[0,1]

I(g0(t)) = max
t∈[0,1]

I
([

(1− t)τ1 + tτ2
]
∗ u0

)
= max

t∈[0,1]

{1

2
ae2

[
(1−t)τ1+tτ2

] ∫
R3

|∇u0|2dx+
b

4
e4
[
(1−t)τ1+tτ2

]( ∫
R3

|∇u0|2dx
)2

− μ

p
· e

3(p−2)
2

[
(1−t)τ1+tτ2

] ∫
R3

|u0|pdx− 1

6
· e6

[
(1−t)τ1+tτ2

] ∫
R3

|u0|6dx
}

≤max
r≥0

{1

2
ar2

∫
R3

|∇u0|2dx+
b

4
r4
( ∫

R3

|∇u0|2dx
)2 − μ

p
· r

3(p−2)
2

∫
R3

|u0|pdx

− 1

6
r6

∫
R3

|u0|6dx
}

≤max
r≥0

{1

2
ar2

∫
R3

|∇u0|2dx+
b

4
r4
( ∫

R3

|∇u0|2dx
)2 − μ

p
· r

3(p−2)
2

∫
R3

|u0|pdx
}

:=A.

If r2
∫
R3 |∇u0|2dx ≥ 1, then

A ≤max
r≥0

{1

2
ar4

( ∫
R3

|∇u0|2dx
)2

+
b

4
r4
( ∫

R3

|∇u0|2dx
)2 − μ

p
· r

3(p−2)
2

∫
R3

|u0|pdx
}

≤C(
1

μ
)

8
3p−14 → 0 (μ → +∞).

If r2
∫
R3 |∇u0|2dx < 1, then

A ≤max
r≥0

{1

2
ar2

∫
R3

|∇u0|2dx+
b

4
r2

∫
R3

|∇u0|2dx− μ

p
· r

3(p−2)
2

∫
R3

|u0|pdx
}

≤C(
1

μ
)

4
3p−10 → 0 (μ → +∞).

�
By Proposition 2.2 in [10] or Proposition 3.5 in [19], there exists a sequence

{un} ⊂ S(c) satisfying

I(un) → γμ(c) and ‖I ′|S(c)(un)‖ → 0 and Q(un) → 0

as n → ∞, where

Q(un) = a

∫
R3

|∇un|2dx+ b
( ∫

R3

|∇un|2dx
)2

+ 3

∫
R3

F (un)dx− 3

2

∫
R3

f(un)undx.

Arguing as the proof of Lemmas 2.3-2.4 of [10], we know that {un} is bounded in

H1
rad(R

3). Set Φ(v) := 1
2

∫
R3 |v|2dx, ∀v ∈ H1(R3), then S(c) = Φ−1

(
{ c2

2 }
)
. By

Proposition 5.12 in [16], there exists a sequence {λn} ⊂ R such that

‖I ′(un)− λnΦ
′(un)‖ → 0

as n → ∞, which implies that

(3.1) −
(
a+ b

∫
R3

|∇un|2dx
)
Δun − f(un) = λnun + o(1) in H−1

rad(R
3).

Therefore, for ϕ ∈ H1
rad(R

3),
(3.2)(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

∇un · ∇ϕdx−
∫
R3

f(un)ϕdx = λn

∫
R3

unϕdx+ o(1)‖ϕ‖.
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We can estimate λn as follows.

Lemma 3.4. {λn} is bounded in R and λn = − 1
c2 · 6−p

2p μ
∫
R3 |un|pdx+ o(1).

Proof. By (3.2) and un ∈ S(c),

(a+b

∫
R3

|∇un|2dx)
∫
R3

|∇un|2dx−
∫
R3

f(un)undx=λn

∫
R3

|un|2dx+o(1)=λnc
2 + o(1),

which indicates that

λn =
1

c2

[(
a+ b

∫
R3

|∇un|2dx
) ∫

R3

|∇un|2dx−
∫
R3

f(un)undx
]
+ o(1).

By the boundedness of {un} in H1
rad(R

3), we know that {λn} is bounded in R.
Moreover, combining with Q(un) → 0 as n → ∞ we see that

λn =
1

c2

[3
2

∫
R3

f(un)undx− 3

∫
R3

F (un)dx−
∫
R3

f(un)undx
]
+ o(1)

=
1

c2

[1
2

∫
R3

f(un)undx− 3

∫
R3

F (un)dx
]
+ o(1)

=
1

c2

[1
2

∫
R3

(
μ|un|p + |un|6

)
dx− 3

∫
R3

(μ
p
|un|p +

1

6
|un|6

)
dx

]
+ o(1)

=− 1

c2
· 6− p

2p
· μ

∫
R3

|un|pdx+ o(1).

�

From the boundedness of {un} in H1
rad(R

3), up to a subsequence, there exists
u ∈ H1

rad(R
3) such that un ⇀ u in H1

rad(R
3) and un → u in Lt(R3) for 2 < t < 6

and un(x) → u(x) a.e. x ∈ R
3. Since 14

3 < p < 6, then

(3.3) lim
n→∞

∫
R3

|un|pdx =

∫
R3

|u|pdx.

Lemma 3.5. There exists μ∗ = μ∗(c) > 0 such that u �= 0 for all μ ≥ μ∗.

Proof. Suppose that u = 0. Then taking into account of (3.3) and Lemma 3.4 one
has limn→∞

∫
R3 |un|pdx = 0 and limn→∞ λn = 0. Combining with (3.2), we get

that

a

∫
R3

|∇un|2dx+ b
( ∫

R3

|∇un|2dx
)2 − ‖un‖66 = o(1).

Up to a subsequence,

a

∫
R3

|∇un|2dx+ b
( ∫

R3

|∇un|2dx
)2 → l ≥ 0 and ‖un‖66 → l

as n → ∞. If l = 0, we can deduce from the expression of I(un) that γμ(c) = 0. It
is a contradiction. Hence, l > 0. By the definition of S, we have

S ≤
∫
R3 |∇un|2dx

‖un‖26
≤ 1

a
·
a
∫
R3 |∇un|2dx+ b

( ∫
R3 |∇un|2dx

)2
‖un‖26

→ 1

a
· l 2

3
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as n → ∞. It follows that l ≥ a
3
2S

3
2 . Consequently, by (3.3) we have

γμ(c)= lim
n→∞

I(un)

= lim
n→∞

{1

2
a

∫
R3

|∇un|2dx+
b

4

( ∫
R3

|∇un|2dx
)2−μ

p

∫
R3

|un|pdx−
1

6

∫
R3

|un|6dx
}

≥ 1

12
l ≥ 1

12
a

3
2S

3
2 ,

a contradiction. �

Subsequently, by virtue of the concentration-compactness principle due to Lions
[12], we can obtain Lemma 3.6.

Lemma 3.6. un → u in L6(R3) for μ ≥ μ∗.

Proof. We follow the proof of Lemma 2.1 (iii). Indeed, it suffices to prove that
J = ∅, where J appears in Lemma 2.1 (iii). We argue by contradiction, assume
that J is nonempty but finite. From the proof of Lemma 2.1 (iii) we can infer that

lim supn→∞ ‖∇un‖22 ≥ a
1
2S

3
2 . As a result,

γμ(c) + o(1) = I(un)−
2

3p− 6
Q(un)

= (
1

2
− 2

3p− 6
)a

∫
R3

|∇un|2dx

+ (
1

4
− 2

3p− 6
)b
( ∫

R3

|∇un|2dx
)2

+ (
2

3p− 6
− 1

6
)

∫
R3

|un|6dx,

which implies that

γμ(c) ≥ (
1

2
− 2

3p− 6
)a lim sup

n→∞
‖∇un‖22 ≥ (

1

2
− 2

3p− 6
)a

3
2S

3
2 .

Evidently, from Lemma 3.3 we can see that this is impossible. Consequently, J =
∅. �

3.1. Proof of Theorem 1.2. Fix μ ≥ μ∗. By Lemma 3.4, we may assume that
λn → λc as n → ∞. Combining with Lemma 3.5 and (3.3), it is easy to see that

lim
n→∞

λn = − 1

c2
· 6− p

2p
μ lim

n→∞

∫
R3

|un|pdx = − 1

c2
· 6− p

2p
μ

∫
R3

|u|pdx < 0,

and so λc < 0. By (3.2) and arguments from Section 2, together with λc < 0 we
can derive that

lim
n→∞

a

∫
R3

|∇un|2dx = a

∫
R3

|∇u|2dx and lim
n→∞

‖un‖22 = ‖u‖22.

Hence, un → u in H1
rad(R

3) and ‖u‖2 = c. �

4. Asymptotic analysis in the supercritical case

In this section, we study the asymptotic behavior when c tends infinity under
the case 14

3 < p < 6. By Theorem 1.2, for any c > 0, there exists μ∗ = μ∗(c) > 0

such that as μ ≥ μ∗, problem (P ) possesses a couple (uc, λc) ∈ H1(R3)×R of weak
solutions with

∫
R3 |uc|2dx = c2, λc > 0, and by its proof we know I(uc) = γμ(c).
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4.1. Proof of Theorem 1.4. We firstly give some lemmas.

Lemma 4.1. For any u ∈ H1(R3)\{0},
(i) there exists a unique τ (u) ∈ R such that Q(τ (u) ∗ u) = 0.
(ii) I(τ (u) ∗ u) > I(τ ∗ u) for any τ �= τ (u).

Proof. (i) It is easy to see that

d

dτ
I(τ ∗ u) =ae2τ

∫
R3

|∇u|2dx+ be4τ (

∫
R3

|∇u|2dx)2 − e6τ
∫
R3

|u|6dx

− 3μ(p− 2)

2p
e

3(p−2)
2 τ

∫
R3

|u|pdx

=Q(τ ∗ u).

It follows from Lemma 3.1 that I(τ ∗ u) reaches the global maximum at some
τ (u) ∈ R, and so

Q(τ (u) ∗ u) = d

dτ
I(τ (u) ∗ u) = 0.

In the sequel, we prove that such τ (u) is unique. Argument by indirection. Suppose
that there exist τ1(u) < τ2(u) such that Q(τi(u) ∗ u) = 0, where i = 1, 2. Then a
simple calculation yields that

a[
1

e2τ1(u)
− 1

e2τ2(u)
]

∫
R3

|∇u|2dx

=
3μ(p− 2)

2p
[e

3(p−2)
2 τ1(u)−4τ1(u) − e

3(p−2)
2 τ2(u)−4τ2(u)]

∫
R3

|u|pdx

+ [e2τ1(u) − e2τ2(u)]

∫
R3

|u|6dx,

which makes no sense in view of the fact that 3(p−2)
2 > 4.

(ii) This is a direct consequence of (i). �

Set

Q(c) = {u ∈ S(c) : Q(u) = 0}.
Then we have

Lemma 4.2. γμ(c) ≤ infu∈Q(c) I(u).

Proof. For any u ∈ Q(c), then u ∈ S(c) and Q(u) = 0. The above argument
between Lemmas 3.2 and 3.3 implies that there exist τ1(u) < 0 < τ2(u) such that

τ1(u) ∗ u ∈ S(c) and τ2(u) ∗ u ∈ S(c).

Taking

g(t) = [(1− t)τ1(u) + tτ2(u)] ∗ u ∈ Γ, ∀t ∈ [0, 1].

Then, by Lemma 4.1 we get that

γμ(c) ≤ max
t∈[0,1]

I(g(t)) = max
t∈[0,1]

I([(1− t)τ1(u) + tτ2(u)] ∗ u) = I(u),

which implies that the conclusion holds. �

Lemma 4.3. γμ(c) → 0 as c → +∞.
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Proof. Take u ∈ S1 ∩ L∞(RN ) and set uc := cu ∈ S(c) for any c > 1. By virtue of
Lemma 4.1 (i), there exists a unique τ1(c) ∈ R such that τ1(c) ∗ uc ∈ Q(c). As a
consequence, by Lemma 4.2 one has

0 <γμ(c) ≤ inf
u∈Q(c)

I(u) ≤ I(τ1(c) ∗ uc)

≤ac2

2
e2τ1(c)

∫
R3

|∇u|2dx+
b

4
c4e4τ1(c)(

∫
R3

|∇u|2dx)2.

In what follows, it suffices to prove

lim
c→+∞

c2e2τ1(c) = 0.

As a matter of fact, by Q(τ1(c) ∗ uc) = 0 we know that

ae2τ1(c)c2
∫
R3

|∇u|2dx+ be4τ1(c)c4(

∫
R3

|∇u|2dx)2

=
3μ(p− 2)

2p
e

3(p−2)
2 τ1(c)cp

∫
R3

|u|pdx+ e6τ1(c)c6
∫
R3

|u|6dx,

namely

a

∫
R3

|∇u|2dx+ be2τ1(c)c2(

∫
R3

|∇u|2dx)2

=
3μ(p− 2)

2p
e[

3(p−2)
2 −2]τ1(c)cp−2

∫
R3

|u|pdx+ e4τ1(c)c4
∫
R3

|u|6dx

=
3μ(p− 2)

2p
[c2e2τ1(c)]

3p−10
4 c

6−p
2

∫
R3

|u|pdx+ e4τ1(c)c4
∫
R3

|u|6dx.

Since limc→+∞ c
6−p
2 = +∞, we can conclude that limc→+∞ c2e2τ1(c) = 0. Thereby,

the conclusion holds. �

Proof of Theorem 1.4. This is a direct consequence of Lemma 4.3. �
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