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with n(·) being the outward unit normal on ∂Ω. This map is uniformly continuous
from C1(Ω) into Lp(∂Ω) (in fact, locally Lipschitz if p ≥ 2 and Hölder continuous if
1 < p < 2). Also, C1(Ω) is dense inW 1,p(Ω). So, this map admits a unique extension
to the whole Sobolev space. We refer for details to Lemma 3 and Theorem 1 in
Casas & Fernández [5] (see also Papageorgiou, Rădulescu & Repovš [20, p. 28] for
the classical case).

Our aim in this paper is to study the nonexistence, existence and multiplicity of
positive solutions for problem (Pλ) as the parameter λ moves on the positive semi-
axis (0,+∞). We prove a bifurcation-type result for large values of the parameter.
More precisely, we show that there is a critical parameter value λ∗ > 0 such that
(i) for all λ > λ∗, problem (Pλ) has at least two positive solutions;
(ii) for all λ = λ∗, problem (Pλ) has at least one positive solution;
(iii) for all 0 < λ < λ∗, problem (Pλ) has no positive solutions.

Moreover, we show that for every admissible parameter λ ∈ [λ∗,+∞), problem
(Pλ) has a smallest positive solution uλ and we examine the continuity and mono-
tocicity properties of the map λ 7→ uλ.

The first such bifurcation-type result for parametric elliptic equations with com-
peting nonlinearities was proved by Ambrosetti, Brezis & Cerami [2] (semilinear
Dirichlet problems with concave-convex reaction). Their work was extended to
Dirichlet p-Laplace equations by Garcia Azorero, Manfredi & Peral Alonso [7], Guo
& Zhang [10], Hu & Papageorgiou [12]. For equations of logistic type there are the
works of Rădulescu & Repovš [21] (semilinear Dirichlet problems) and Cardinali,
Papageorgiou & Rubbioni [4] (nonlinear Neumann problems). For Robin problems,
we mention the work of Papageorgiou & Rădulescu [16]. In all aforementioned
works the differential operator is coercive and the reaction has a different pair of
competing nonlinearities. In the present paper we distinguish a new class of com-
petition phenomena, which lead to bifurcation-type results. In fact, the behaviour
of the set of positive solutions as the parameter λ > 0 varies, is similar to that of
superdiffusive logistic equations, since the “bifurcation” occurs for large values of
λ > 0.

Our method of proof uses variational tools from critical point theory together
with suitable truncation, perturbation and comparison arguments.

2. Mathematical background and hypotheses

Suppose that X is a Banach space. We denote by X∗ the topological dual of X
and by ⟨·, ·⟩ the duality brackets for the pair (X∗, X).

Given φ ∈ C1(X,R) we say that φ satisfies the “Palais-Smale condition” (the
“PS-condition” for short) if the following property holds:

“Every sequence {un}n≥1 ⊆ Xsuch that
{φ(un)}n≥1 ⊆ R is bounded and φ′(un) → 0 in X∗ as n→ ∞,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional φ. Using this condition,
one can prove a deformation theorem from which follows the minimax theory for
the critical values of φ. Prominent in this theory is the so-called “mountain pass
theorem”, which we recall here because we will use it in the sequel.
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Theorem 2.1. Assume that φ ∈ C1(X,R) satisfies the PS-condition, u0, u1 ∈ X,
||u1 − u0|| > ρ > 0,

max{φ(u0), φ(u1)} < inf{φ(u) : ||u− u0|| = ρ} = mρ

and c = inf
γ∈Γ

max
0≤t≤1

φ(γ(t)), where

Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ≥ mρ and c is a critical value of φ (that is, we can find û ∈ X such that
φ′(û) = 0 and φ(û) = c).

Remark 2.2. We mention that if φ′ = A+K, with A : X → X∗ a continuous map

of type (S)+ (that is, if un
w−→ u in X and lim supn→∞⟨A(un), un − u⟩ ≤ 0, then

un → u in X) and K : X → X∗ is completely continuous (that is, if un
w−→ u in

X, then K(un) → K(u) in X∗), then φ satisfies the PS-condition (see Marano &
Papageorgiou [14, Proposition 2.2]). This is the case in our setting.

The analysis of problem (Pλ) involves the Sobolev space W 1,p(Ω), the Banach
space C1(Ω) and the “boundary” Lebesgue space Lp(∂Ω).

We denote by || · || the norm of the Sobolev space W 1,p(Ω) defined by

||u|| =
(
||u||pp + ||Du||pp

) 1
p for all u ∈W 1,p(Ω).

The space C1(Ω) is an ordered Banach space with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we introduce the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using σ(·) we can define in the usual way the boundary Lebesgue spaces Lq(∂Ω), 1 ≤
q ≤ ∞. From the theory of Sobolev spaces we know that there exists a unique
continuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω), known as the “trace map”, such
that

γ0(u) = u|∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω).
So, the trace map gives meaning to the notion of “boundary values” for any

Sobolev function. The trace map is not surjective (in fact, im γ0 =W
1
p′ ,p(∂Ω), with

1
p + 1

p′ = 1) and ker γ0 = W 1,p
0 (Ω). Moreover, γ0 is compact into Lq(∂Ω) for all

q ∈ [1, (N−1)p
N−p ) if p < N and into Lp(∂Ω) for all 1 ≤ q <∞ if N ≤ p. In the sequel,

for the sake of notational simplicity, we will drop the use of the trace map γ0. All
restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

Let A :W 1,p(Ω) →W 1,p(Ω)∗ be the nonlinear map defined by

⟨A(u), h⟩ =
∫
Ω
|Du|p−2(Du,Dh)RNdz for all u, h ∈W 1,p(Ω).

In the next proposition, we have collected the main properties of this map (see
Gasinski & Papageorgiou [9, p. 279]).
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Proposition 2.3. The map A(·) is bounded (that is, maps bounded sets to bounded
sets), continuous, monotone (thus, maximal monotone, too) and of type (S)+.

Now we introduce our conditions on the potential function ξ(·) and on the bound-
ary coefficient β(·).
H(ξ) : ξ ∈ L∞(Ω)

H(β) : β ∈ C0,α(∂Ω) for some 0 < α < 1 and β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 2.4. When β ≡ 0, we have the Neumann problem.

Let γp :W
1,p(Ω) → R be the C1-functional defined by

γp(u) = ||Du||pp +
∫
Ω
ξ(z)|u|pdz +

∫
∂Ω
β(z)|u|pdσ for all u ∈W 1,p(Ω).

Also, let f0 : Ω× R → R be a Carathéodory function that satisfies

|f0(z, x)| ≤ a(z)(1 + |x|r−1) for almost all z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r ≤ p∗ =

{ Np
N−p if p < N

+∞ if N ≤ p
(the critical Sobolev exponent).

We set F0(z, x) =
∫ x
0 f0(z, s)ds and consider the C1-functional φ0 :W

1,p(Ω) → R
defined by

φ0(u) =
1

p
γp(u)−

∫
Ω
F0(z, u)dz for all u ∈W 1,p(Ω).

In the framework of variational methods, the local minimizers of φ0 play an
important role. As we will see in the sequel, solutions of the problem are often
generated by minimizing φ0 on a constrained set defined by using the usual pointwise
order on W 1,p(Ω) (this is done, via truncation of f0(z, ·)). It is well-known that the
order cone

W+ = {u ∈W 1,p(Ω) : u(z) ≥ 0 for almost all z ∈ Ω}
of W 1,p(Ω) has an empty interior. So, it is not clear if the constrained minimizer is
in fact an unconstrained local minimizer of φ0 over all of W 1,p(Ω).

The next result is helpful in this direction. It is a particular case of a more general
result that can be found in Papageorgiou & Rădulescu [17]. The first to prove this
relation between Hölder and Sobolev local minimizers were Brezis & Nirenberg [3].

Proposition 2.5. Assume that u0 ∈ W 1,p(Ω) is a local C1(Ω)-minimizer of φ0,
that is, there exists ρ0 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) ≤ ρ0.

Then u0 ∈ C1,ϑ(Ω) with ϑ ∈ (0, 1) and u0 is also a local W 1,p(Ω)-minimizer of φ0,
that is, there exists ρ1 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈W 1,p(Ω)with ||h|| ≤ ρ1.

As we already mentioned in the first section of this paper, our approach involves
also comparison arguments. The next proposition will be helpful in this direction.
It is a special case of a more general result of Papageorgiou, Rădulescu & Repovš
[19].
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Proposition 2.6. Assume that h1, h2, ϑ ∈ L∞(Ω), ϑ(z) ≥ 0 for almost all z ∈ Ω

0 < η ≤ h2(z)− h1(z) for almost all z ∈ Ω

and u1, u2 ∈ C1,µ(Ω) with 0 < µ ≤ 1 are such that u1 ≤ u2 and

−∆pu1 + ϑ(z)|u1|p−2u1 = h1,
−∆pu2 + ϑ(z)|u2|p−2u2 = h2 for almost all z ∈ Ω.

Then u2 − u1 ∈ int Ĉ+ =
{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω, ∂u

∂n |∂Ω∩u−1(0) < 0
}
.

Next, we consider the following nonlinear eigenvalue problem

(2.1)

{
−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u
∂np

+ β(z)|u|p−2u = 0 on ∂Ω.

}
We say that λ̂ ∈ R is an “eigenvalue” if problem (2.1) admits a nontrivial solution

û, which is known as an “eigenfunction” corresponding to λ̂. We denote by σ̂(p) the
set of eigenvalues of problem (2.1). It is easy to see that σ̂(p) ⊆ R is closed and has

a smallest element λ̂1 = λ̂1(p, ξ, β) ∈ R (first eigenvalue), which has the following
properties (for details, we refer to Papageorgiou & Rădulescu [16] and Fragnelli,
Mugnai & Papageorgiou [6]).

Proposition 2.7. If hypotheses H(ξ),H(β) are satisfied, then problem (2.1) has a

smallest eigenvalue λ̂1 ∈ R such that

(a) λ̂1 is isolated in σ̂(p) (that is, there exists ϵ > 0 such that (λ̂1, λ̂,+ϵ)∩σ̂(p) =
∅);

(b) λ̂1 is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1, then
û = ηv̂ for some η ∈ R\{0});

(2.2)

(c) λ̂1 = inf

{
γ0(u)

||u||pp
: u ∈W 1,p(Ω), u ̸= 0

}
.

Remark 2.8. The infimum in (2.2) is realized on the corresponding one-dimensional
eigenspace.

It follows from (2.2) that the elements of this eigenspace have fixed sign. We
denote by û1 the positive, Lp-normalized (that is, ||û1||p = 1) eigenfunction corre-

sponding to λ̂1. We know that û1 ∈ D+ (see [16], [6]). Also, every eigenvalue differ-

ent from λ̂1 has eigenfunctions in C1(Ω) which are nodal (that is, sign-changing).
Finally, if ξ ∈ L∞(Ω), ξ(z) ≥ 0 for almost all z ∈ Ω and either ξ ̸≡ 0 or β ̸≡ 0, then

λ̂1 > 0.
An easy consequence of the above properties is the following lemma (see Mugnai

& Papageorgiou [15, Lemma 4.11]).

Lemma 2.9. If hypotheses H(ξ),H(β) hold, η ∈ L∞(Ω), η(z) ≤ λ̂1 for almost all
z ∈ Ω and the inequality is strict on a set of positive measure, then there exists
c0 > 0 such that

c0||u||p ≤ γp(u)−
∫
Ω
η(z)|u|pdz for all u ∈W 1,p(Ω).
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The hypotheses on the two terms of the reaction of (Pλ) are the following.

H(f) f : Ω × R × (0,+∞) → R is a Carathéodory function such that for all
λ > 0, f(z, x, λ) ≥ 0 for almost all z ∈ Ω, all x ≥ 0, f(z, 0, λ) = 0 for almost all
z ∈ Ω, and

(i) for every ρ > 0 and every λ0 > 0, there exists aρ,λ0 ∈ L∞(Ω) such that

0 ≤ f(z, x, λ) ≤ aρ,λ0(z) for almost all z ∈ Ω, all 0 ≤ x ≤ ρ, 0 < λ ≤ λ0;

(ii) for every λ > 0, we have

lim
x→+∞

f(z, x, λ)

xp−1
= lim

x→0+

f(z, x, λ)

xp−1
= 0 uniformly for almost all z ∈ Ω;

(iii) if F (z, x, λ) =
∫ x
0 f(z, s, λ)ds, then there exist v0 ∈ Lp(Ω) and λ̃ > 0 such

that
∫
Ω F (z, v0(z), λ)dz > 0 for all λ > λ̃;

(iv) • we have f(z, x, λ) → 0+ as λ → 0+ uniformly for almost all z ∈ Ω, all
x ∈ C ⊆ R+ bounded, f(z, x, λ) → +∞ as λ → +∞ for almost all z ∈ Ω,
all x > 0;
• for every s > 0, we can find η̃s > 0 such that

0 < η̃s ≤ f(z, x, µ)− f(z, x, λ) for almost all z ∈ Ω, all x ≥ s, all 0 < λ < µ.

Remark 2.10. Since we are looking for positive solutions and all the above hy-
potheses concern the positive semiaxis R+ = [0,+∞), we may assume without any
loss of generality that

(2.3) f(z, ·, λ)|(−∞,0] = 0 for almost all z ∈ Ω, all λ > 0.

Note that hypothesis H(f)(ii) implies that f(z, ·, λ) is strictly (p − 1)-sublinear

near +∞ and also near 0+. Hypothesis H(f)(iii) is satisfied if there exists λ̃ > 0
such that L(z) = {x ∈ R : f(z, x, λ) > 0} is nonempty for almost all z ∈ Ω, all

λ > λ̃. Finally, note that hypothesis H(f)(iv) implies that for almost all z ∈ Ω, all
x > 0, the mapping λ 7→ f(z, x, λ) is strictly increasing.

H(g): g : Ω×R → R is a Carathéodory function such that g(z, 0) = 0 for almost
all z ∈ Ω and

(i) there exist a ∈ L∞(Ω) and p ≤ r < p∗ such that

(g(z, x)) ≤ a(1)(1 + xr−1) for almost all z ∈ Ω, all x ≥ 0;

(ii) there exists a function η0 ∈ L∞(Ω) such that η0(z) ≤ λ̂1 for almost all

z ∈ Ω, η0 ̸≡ λ̂1, lim supx→+∞
g(z,x)
xp−1 ≤ η0(z) and lim supx→0+

g(z,x)
xp−1 ≤ η0(z)

uniformly for almost all z ∈ Ω;

(iii) for almost all z ∈ Ω the mapping x 7→ g(z,x)
xp−1 is nondecreasing on (0,+∞).

Remark 2.11. As we did for f(z, ·, λ), without any loss of generality, we may
assume that

(2.4) g(z, ·)|(−∞,0] = 0 for almost all z ∈ Ω.

Hypothesis H(g)(ii) says that asymptotically at +∞ and at 0+ we have nonuni-

form nonresonance with respect to λ̂1 from the left.
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H0 : for every ρ > 0 and every λ̃ > 0, we can find ξ̂λ̃0 > 0 such that for almost

all z ∈ Ω and all 0 < λ ≤ λ0, the function x 7→ f(z, x, λ) + g(z, x) + ξ̂λ̂ρx
p−1 is

nondecreasing on [0, ρ].

Remark 2.12. This hypothesis is satisfied if, for example, for almost all z ∈ Ω and
every λ > 0, the functions f(z, ·, λ) and g(z, ·) are differentiable and for every ρ > 0

and λ̂ > 0, there exists ξ̂λ̃ρ > 0 such that

(f ′(z, x, λ) + g′x(z, x))x ≥ −ξ̂λ̃ρxp−1 for almost all z ∈ Ω, all 0 ≤ x ≤ ρ.

Examples.The following pairs of functions f and g satisfy hypothesesH(f), H(g), H0.
For the sake of simplicity we drop the z-dependence. Also recall (2.3) and (2.4).

f1(x, λ) =

{
λxp−1 ln(1 + x) if 0 ≤ x ≤ 1
λxq−1 if 1 < x

1 < q < p

g1(x) = ηxp−1 for x ≥ 0, η < λ̂1,

f2(x, λ) =

{
λxr−1 if 0 ≤ x ≤ 1
λxq−1 if 1 < x

1 < q < p < r,

g2(x) =

{
cxτ−1 − xq−1 if 0 ≤ x ≤ 1
ηxp−1 + (c− 1− η) if 1 < x

1 < q < p ≤ τ, η < λ̂1,

c > max{η + 1, 0},

f3(x, λ) =

{
λ(xτ−1 − xr−1) if 0 ≤ x ≤ 1
λxq−1 lnx if 1 < x

1 < q < p < τ < r,

g3(x) =

{
η(xp−1 + xr−1) if 0 ≤ x ≤ 1
η(xp−1 + xq−1) if 1 < x

1 < q < p < r, η < λ̂1,

f4(x, λ) =

{
xτ−1 if 0 ≤ x ≤ ρ(λ)
xq−1 + µ(λ) if ρ(λ) < x

g4(x) = ηxp−1

with ρ : (0,+∞) → (0,+∞) strictly increasing, continuous, ρ(λ) → 0+ as λ → 0+,

ρ(λ) → +∞ as λ→ +∞, µ(λ) = [ρ(λ)τ−1 − 1]ρ(λ)q−1, 1 < q < p < τ and η < λ̂1.
Finally, we fix some basic notation which we will use throughout this work. Let

x ∈ R and set x± = max{±x, 0}. Then for u ∈ W 1,p(Ω) we define u±(·) = u(·)±.
We know that

u± ∈W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Also, if u, û ∈W 1,p(Ω) and u ≤ û, then

[u, û] = {v ∈W 1,p(Ω) : u(z) ≤ v(z) ≤ û(z) for almost all z ∈ Ω}.

We denote by intC1(Ω)[u, û] the interior in C1(Ω) of [u, û] ∩ C1(Ω).

Under the hypotheses on the data of problem (Pλ), the main result of this paper
is the following bifurcation-type theorem.
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Theorem. Assume that hypotheses H(ξ),H(β),H(f),H(g),H0 hold. Then
there exists λ∗ > 0 such that

(a) for all λ > λ∗ problem (Pλ) has at least two positive solutions

u0, û ∈ D+;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution

uλ∗ ∈ D+;

(c) for all λ ∈ (0, λ∗) problem (Pλ) has no positive solution.

Finally, if φ ∈ C1(X,R), then by Kφ we denote the critical set of φ, that is,

Kφ = {u ∈ X : φ′(u) = 0}.

3. Positive solutions

Throughout the rest of the paper we assume that hypotheses H(ξ), H(β), H(f),
H(g), H0 are fulfilled.

We introduce the two following two sets:

L = {λ > 0 : problem (Pλ) admits a positive solution},
S(λ) = the set of positive solutions for problem (Pλ).

We set λ∗ = inf L with the usual convention that inf ∅ = +∞.

Proposition 3.1. We have L ̸= ∅ and so 0 ≤ λ∗ < +∞.

Proof. From hypotheses H(f)(i), (ii), we see that given ϵ > 0 and λ > 0, we can
find c1 = c1(ϵ, λ) > 0 such that

(3.1) F (z, x, λ) ≤ ϵ

p
xp + c1 for almost all z ∈ Ω, all x ≥ 0.

Similarly, hypotheses H(g)(i), (ii) imply that we can find c2 = c2(ϵ) > 0 such
that

(3.2) G(z, x) ≤ (η0(z) + ϵ)xp + c2 for almost all z ∈ Ω, all x ≥ 0.

Let µ > ||ξ||∞ (see hypothesis H(ξ)) and consider the Carathéodory function
kλ(z, x) defined by

kλ(z, x) = f(z, x, λ) + g(z, x) for all (z, x) ∈ Ω× R, λ > 0 (see (2.3), (2.4)).

We set Kλ(z, x) =
∫ x
0 kλ(z, s)ds and consider the C1-functional Ψλ : W 1,p(Ω) →

R defined by

Ψλ(u) =
1

p
γp(u) +

µ

p
||u−||pp −

∫
Ω
Kλ(z, u)dz for all u ∈W 1,p(Ω).

Using (3.1) and (3.2), we have for all u ∈W 1,p(Ω).

Ψλ(u) ≥ c3||u−||p +
1

p
γp(u

+)− 1

p

∫
Ω
(η0(z) + 2ϵ) (u+)pdz − c4

for some c3, c4 > 0 (recall that µ > ||ξ||∞)
≥ c3||u−||p + (c0 − 2ϵ) ||u+||p − c4.

Choosing ϵ ∈ (0, c02 ), we obtain

Ψλ(u) ≥ c5||u||p − c4 for some c5 > 0, all u ∈W 1,p(Ω),
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⇒ Ψλ(·) is coercive.
Also, using the Sobolev embedding theorem and the compactness of the trace

map, we see that

Ψλ(·) is sequentially weakly lower semicontinuous.

By the Weierstrass-Tonelli theorem, we can find uλ ∈W 1,p(Ω) such that

(3.3) Ψλ(uλ) = inf
{
Ψλ(u) : u ∈W 1,p(Ω)

}
.

Hypotheses H(f)(i), (ii) imply that for every λ > 0, we can find c6 = c6(λ) > 0
such that

0 ≤ F (z, x, λ) ≤ c6x
p for almost all z ∈ Ω, all x ≥ 0.

Evidently, in hypothesis H(f)(iii) we can have v0 ≥ 0 (see (2.3)). Consider the
continuous integral functional iλ : Lp(Ω) → R defined by

iλ(v) =

∫
Ω
F (z, v(z), λ)dz for all v ∈ Lp(Ω),

⇒ iλ(v0) > 0 for all λ > λ̃ > 0 (see hypothesis H(f)(iii)).

Exploiting the density of W 1,p(Ω) in Lp(Ω), we can find ṽ0 ∈ W 1,p(Ω), ṽ0 ≥ 0,
ṽ0 ̸= 0 such that

iλ(ṽ0) > 0 for all λ > λ̃.

Then using hypothesis H(f)(iv) and Fatou’s lemma, we infer that

(3.4) lim
λ→+∞

∫
Ω
F (z, ṽ0, λ)dz = +∞.

On the other hand, hypothesis H(g)(i) implies that if G(z, x) =
∫ x
0 g(z, s)ds, then

(3.5)

∣∣∣∣∫
Ω
G(z, ṽ0)dz

∣∣∣∣ ≤ c7 for some c7 > 0.

Then from (3.4) and (3.5) we see that for large enough λ > λ̃, we have

Ψλ(ṽ0) < 0,

⇒ Ψλ(uλ) < 0 = Ψλ(0) (see (3.3))

⇒ uλ ̸= 0.

From (3.3) we have

Ψ′
λ(uλ) = 0,

⇒ ⟨A(uλ), h⟩+
∫
Ω
ξ(z)|uλ|p−2uλhdσ

∫
∂Ω
β(z)|uλ|p−2uλhdσ −

∫
Ω
µ(u−λ )

p−1hdσ

=

∫
Ω
[f(z, uλ, λ) + g(z, uλ)]hdz for all h ∈W 1,p(Ω).(3.6)

In (3.6) we choose h = −u−λ ∈W 1,p(Ω). Then

γp(u
−
λ ) + µ||u−λ ||

p
p = 0 (see (2.3), (2.4)),

⇒ c8||u−λ ||
p ≤ 0 for some c8 > 0 (recall that µ > ||ξ||∞),

⇒ uλ ≥ 0, uλ ̸= 0.
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Then it follows from (3.6) that uλ ∈ Sλ ⊆ D+ and so for large enough λ > λ̃, we
have λ ∈ L, hence L ̸= ∅. □
Proposition 3.2. For every λ ∈ L we have S(λ) ⊆ D+ and λ∗ > 0.

Proof. Let λ ∈ L and let u ∈ S(λ). Reasoning as in Papageorgiou & Rădulescu [16]
using the nonlinear Green identity, we have
(3.7){ −∆pu(z) + ξ(z)u(z)p−1 = f(z, u(z), λ) + g(z, u(z)) for almost all z ∈ Ω,

∂u
∂np

+ β(z)up−1 = 0 on ∂Ω.

}
By (3.7) and Papageorgiou & Rădulescu [17] (see Proposition 2.10) we have

u ∈ L∞(Ω).

Invoking Theorem 2 of Lieberman [13], we infer that

u ∈ C+\{0}.

Let ρ = ||u||∞ and let ξ̂λρ > 0 be as postulated by hypothesis H0. Then

(3.8) ∆pu(z) ≤
(
||ξ||∞ + ξ̂λρ

)
u(z)p−1 for almost all z ∈ Ω.

From (3.8) and the nonlinear maximum principle (see, for example, Gasinski &
Papageorgiou [8, p. 738]), we have

u ∈ D+,
⇒ S(λ) ⊆ D+ for all λ > 0.

Next, we show that λ∗ = inf L > 0. Hypotheses H(f)(i), (ii), (iv) imply that
given ϵ > 0, we can find λ > 0 such that

(3.9) 0 ≤ f(z, x, λ) ≤ ϵxp−1 for almost all z ∈ Ω, all x ≥ 0.

Hypothesis H(g)(ii) implies that we can find M, δ > 0 such that

(3.10) g(z, x) ≤ (η0(z) + ϵ)xp−1 for almost all z ∈ Ω, all x ≥M, 0 ≤ x ≤ δ.

On the other hand, by hypothesis H(g)(iii), we have for almost all z ∈ Ω and all
δ ≤ x ≤M

g(z,x)
xp−1 ≤ g(z,M)

Mp−1
,

⇒ g(z, x) ≤ g(z,M)

Mp−1
xp−1

≤ (η0(z) + ϵ)xp−1 (see (3.10)).(3.11)

So, by (3.10) and (3.11), we infer that

(3.12) g(z, x) ≤ (η0(z) + ϵ)xp−1 for almost all z ∈ Ω, all x ≥ 0.

Let λ ∈ (0, λ) (see (3.9)) and assume that λ ∈ L. Then from the first part of the
proof, we know that we can find uλ ∈ S(λ) ⊆ D+. For every h ∈ W 1,p(Ω), h ≥ 0
we have

⟨A(uλ), h⟩+
∫
Ω
ξ(z)up−1

λ hdz +

∫
∂Ω
β(z)up−1

λ hdσ
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=

∫
Ω
[f(z, uλ, λ) + g(z, uλ)]hdz

≤
∫
Ω
(η0(z) + 2ϵ)up−1

λ hdz (see (3.9), (3.12) and hypothesis H(f)(iv)).(3.13)

In (3.13) we choose h = uλ ∈W 1,p(Ω), uλ ≥ 0. Then

γp(uλ)−
∫
Ω η0(z)u

p−1
λ dz ≤ 2ϵ||uλ||p,

⇒ c0 ≤ 2ϵ (see Lemma 2.9),

Choosing ϵ ∈ (0, c02 ), we get a contradiction. Therefore λ ̸∈ L and so

0 < λ ≤ λ∗.

The proof is now complete. □
Next, we show that L is half-line.

Proposition 3.3. Assume that λ ∈ L. Then [λ,+∞) ⊆ L.

Proof. Since λ ∈ L, we can find uλ ∈ S(λ) ⊆ D+ (see Proposition 3.2). Let ϑ > λ
and consider the following truncation-perturbation of the reaction in problem (Pϑ):

k̂ϑ(z, x) =

{
f(z, uλ(z), ϑ) + g(z, uλ(z)) + µuλ(z)

p−1 if x ≤ uλ(z)
f(z, x, ϑ) + g(z, x) + µxp−1 if uλ(z) < x.

(3.14)

Recall that µ > ||ξ||∞. We set K̂ϑ(z, x) =
∫ x
0 k̂ϑ(z, s)ds and consider the C1-

functional ψ̂ϑ :W 1,p(Ω) → R defined by

ψ̂ϑ(u) =
1

p
γp(u) +

µ

p
||u||pp −

∫
Ω
K̂ϑ(z, u)dz for all u ∈W 1,p(Ω).

Reasoning as in the proof of Proposition 3.1, we can show that

• ψ̂ϑ(·) is coercive;
• ψ̂ϑ(·) is sequentially weakly lower semicontinuous.

So, we can find uϑ ∈W 1,p(Ω) such that

ψ̂ϑ(uϑ) = inf
{
ψ̂ϑ(u) : u ∈W 1,p(Ω)

}
,

⇒ ψ̂′
ϑ(uϑ) = 0,

⇒ ⟨A(uϑ), h⟩+
∫
Ω
(ξ(z) + µ)|uϑ|p−2uϑhdz +

∫
∂Ω
β(z)|uϑ|p−2uϑhdσ =∫

Ω
k̂ϑ(z, uϑ)hdz for all W 1,p(Ω).(3.15)

In (3.15) we choose h = (uλ − uϑ)
+ ∈W 1,p(Ω). Then we have⟨

A(uϑ), (uλ − uϑ)
+
⟩
+

∫
Ω
(ξ(z) + µ)|uϑ|p−2uϑ(uλ − uϑ)

+dz +∫
∂Ω
β(z)|uϑ|p−2uϑ(uλ − uϑ)

+dσ

=

∫
Ω
[f(z, uλ, ϑ) + g(z, uλ) + µup−1

λ ](uλ − uϑ)
+dz (see (3.14))
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≥
∫
Ω
[f(z, uλ, λ) + g(z, uλ) + µp−1

λ ](uλ − uϑ)
+dz (since λ < ϑ,

see hypothesis H(f)(iv))

=
⟨
A(uλ), (uλ − uϑ)

+
⟩
+

∫
Ω
(ξ(z) + µ)up−1

λ (uλ − uϑ)
+dz

+

∫
∂Ω
β(z)up−1

λ (uλ − uϑ)
+dσ

(since uλ ∈ S(λ)),

⇒ uλ ≤ uϑ (see Proposition 2.3 and recall that µ > ||ξ||∞).

Then equation (3.15) becomes

⟨A(uϑ), h⟩+
∫
Ω
ξ(z)up−1

ϑ hdz +

∫
∂Ω
β(z)up−1

ϑ hdσ

=

∫
Ω
[f(z, uϑ, ϑ) + g(z, uϑ)]hdz

for all h ∈W 1,p(Ω),

⇒ uϑ ∈ S(ϑ) ⊆ D+ and so ϑ ∈ L.
Therefore we conclude that

[λ,+∞) ⊆ L.
The proof is now complete. □

An interesting byproduct of the above proof is the following corollary.

Corollary 3.4. If hypotheses H(ξ),H(β),H(f),H(g),H0 hold, λ ∈ L, ϑ > λ and
uλ ∈ S(λ) ⊆ D+, then ϑ ∈ L and we can find uϑ ∈ S(ϑ) ⊆ D+ such that uλ ≤
uϑ, uϑ ̸= uλ.

In fact, we can improve the conclusion of this corollary as follows.

Proposition 3.5. Assume that λ ∈ L, ϑ > λ and uλ ∈ S(λ) ⊆ D+. Then ϑ ∈ L
and we can find uϑ ∈ S(ϑ) ⊆ D+ such that uϑ − uλ ∈ int Ĉ+.

Proof. From Corollary 3.4 we already know that ϑ ∈ L and that there exists uϑ ∈
S(ϑ) ⊆ D+ such that

uϑ − uλ ∈ C+\{0}.
Let ρ = ||uϑ||∞ and ξ̂ϑρ > 0 as in H0. We can always assume that ξ̂ϑρ > ||ξ||∞.

We have

−∆puλ + (ξ(z) + ξ̂ϑρ )u
p−1
λ

= f(z, uλ, λ) + g(z, uλ) + ξ̂ϑρu
p−1
λ

≤ f(z, uϑ, λ) + g(z, uϑ) + ξ̂ϑρu
p−1
ϑ (see hypothesis H0 and recall that λ < ϑ)

= f(z, uϑ, ϑ) + g(z, uϑ) + ξ̂ϑρu
p−1
ϑ − [f(z, uϑ, ϑ)− f(z, uϑ, λ)]

≤ f(z, uϑ, ϑ) + g(z, uϑ) + ξ̂ϑρu
p−1
ϑ − η̃s

with 0 < s = min
Ω
uϑ (recall that uϑ ∈ D+ and see hypothesis H(f)(iv))
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< f(z, uϑ, ϑ) + g(z, uϑ) + ξ̂ϑρu
p−1
ϑ

= −∆puϑ + (ξ(z) + ξ̂ϑρ )u
p−1
ϑ for almost all z ∈ Ω (since uϑ ∈ S(ϑ)).(3.16)

Since η̃s > 0, from (3.16) and Proposition 2.6, we infer that

uϑ − uλ ∈ int Ĉ+.

The proof is complete. □
Now let λ > λ∗. By Proposition 3.3 we know that λ ∈ L. We show that problem

(Pλ) has at least two positive solutions.

Proposition 3.6. If λ > λ∗, then problem (Pλ) has at least two positive solutions

u0, û ∈ D+, u0 ̸= û.

Proof. As we have already mentioned, λ ∈ L. Let λ∗ < η < λ < ϑ. We have η, ϑ ∈ L
(see Proposition 3.3). According to Proposition 3.5, there are uϑ ∈ S(ϑ) ⊆ D+ and
uµ ∈ S(µ) ⊆ D+ such that

uϑ − uµ ∈ int Ĉ+.

We introduce the Carathéodory function lλ(z, x) defined by

lλ(z, x)=

f(z, uη(z), λ) + g(z, uη(z)) + µuη(z)
p−1 if x < uη(z)

f(z, x, λ) + g(z, x) + µxp−1 if uη(z) ≤ x ≤ uϑ(z)
f(z, uϑ(z), λ) + g(z, x) + µuϑ(z)

p−1 if uϑ(z) < x.
(3.17)

Recall that µ > ||ξ||∞. We set Lλ(z, x) =
∫ x
0 lλ(z, s)ds and consider the C1-

functional φ̂λ :W 1,p(Ω) → R defined by

φ̂λ(u) =
1

p
γp(u) +

µ

p
||u||pp −

∫
Ω
Lλ(z, u)dz for all u ∈W 1,p(Ω).

Since µ > ||ξ||∞, it is clear from (3.17) that φ̂λ(·) is coercive. Also, it is sequen-
tially weakly lower semicontinuous. So, we can find u0 ∈W 1,p(Ω) such that

φ̂λ(u0) = inf
{
φ̂λ(u) : u ∈W 1,p(Ω)

}
,

⇒ φ̂′
λ(u0) = 0,

⇒ ⟨A(u0), h⟩+
∫
Ω
(ξ(z) + µ)|u0|p−2u0hdz +

∫
∂Ω
β(z)|u0|p−2u0hdσ =∫

Ω
lλ(z, u0)hdz for all h ∈W 1,p(Ω).(3.18)

In (3.18) we first choose h = (u0 − uϑ)
+ ∈W 1,p(Ω). Then⟨

A(u0), (u0 − uϑ)
+
⟩
+

∫
Ω
(ξ(z) + µ)up−1

0 (u0 − uϑ)
+dz

+

∫
∂Ω
β(z)up−1

0 (u0 − uϑ)
+dσ

=

∫
Ω
[f(z, uϑ, λ) + g(z, uϑ) + µup−1

ϑ ](u0 − uϑ)
+dz (see (3.17))

≤
∫
Ω
[f(z, uϑ, ϑ) + g(z, uϑ) + µup−1

ϑ ](u0 − uϑ)
+dz



1230 N. S. PAPAGEORGIOU, V. D. RĂDULESCU, AND D. D. REPOVŠ

(see hypothesis H(f)(iv) and recall that λ < ϑ)

=
⟨
A(uϑ), (u0 − uϑ)

+
⟩
+

∫
Ω
(ξ(z) + µ)up−1

ϑ (u0 − uϑ)
+dz

+

∫
∂Ω
β(z)up−1

ϑ (u0 − uϑ)
+dσ

(since uϑ ∈ S(ϑ)),

⇒ u0 ≤ uϑ (see Proposition 2.3 and recall that µ > ||ξ||∞).

Similarly, if in (3.18) we choose h = (uη − u0)
+ ∈W 1,p(Ω), we can show that

uη ≤ u0.

So, we have proved that

(3.19) u0 ∈ [uη, uϑ].

Then it follows from (3.17), (3.18) and (3.19) that u0 ∈ S(λ) ⊆ D+. Moreover,
arguing as in the proof of Proposition 3.5, via Proposition 2.6, we show that

uϑ − u0 ∈ int Ĉ+ and u0 − uη ∈ int Ĉ+,

⇒ u0 ∈ intC1(Ω)[uη, uϑ].(3.20)

Let ψλ :W 1,p(Ω) → R be the C1-functional introduced in the proof of Proposition
3.1. From (3.17) it is clear that

(3.21) ψλ|[uη ,uϑ] = φ̂λ|[uη ,uϑ] + k̂λ with k̂λ ∈ R.

From (3.20) and (3.21) it follows that

u0 is local C1(Ω)−minimizer of ψλ,

⇒ u0 is local W 1,p(Ω)−minimizer of ψλ (see Proposition 2.5).(3.22)

Hypotheses H(f)(ii) and H(g)(ii) imply that given ϵ > 0, we can find δ > 0 such
that
(3.23)

F (z, x, λ) ≤ ϵ

p
xp, G(z, x) ≤ 1

p
(η0(z) + ϵ)xp for almost all z ∈ Ω, all 0 ≤ x ≤ δ.

For all u ∈ C1(Ω) with ||u||C1(Ω) ≤ δ, we have

ψλ(u) ≥
1

p
γp(u

−) +
µ

p
||u−||pp +

1

p
γp(u

+)− 1

p

∫
Ω
η0(z)(u

+)pdz − 2ϵ

p
||u+||pp

(see (3.23) and recall the definition of ψλ in the proof of Proposition 3.1)

≥ c9||u−||p +
1

p
(c0 − 2ϵ) ||u+||p for some c9 > 0

(recall that µ > ||ξ||∞ and use Lemma 2.9).

Choosing ϵ ∈
(
0, c02

)
, we conclude that

ψλ(u) ≥ c10||u||p for some c10 > 0, all u ∈ C1(Ω) with ||u||C1(Ω) ≤ δ,

⇒ u = 0 is a local C1(Ω)−minimizer of ψλ,

⇒ u = 0 is a local W 1,p(Ω)−minimizer of ψλ (see Proposition 2.5).(3.24)
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Without any loss of generality, we may assume that

0 = ψλ(0) ≤ ψλ(u0).

The analysis is similar if the opposite inequality holds using (3.24) instead of
(3.22). In addition, we may assume that Kψλ

is finite. Otherwise since Kψλ
⊆

D+ ∪ {0}, we see that we already have an infinity of positive solutions for problem
(Pλ) and so we are done. Then on account of (3.22), we can find ρ ∈ (0, 1) small
such that

(3.25) 0 = ψλ(0) ≤ ψλ(u0) < inf{ψλ(u) : ||u− u0|| = ρ} = mλ, ||u0|| > ρ

(see Aizicovici, Papageorgiou & Staicu [1], proof of Proposition 29).
From the proof of Proposition 3.1 we know that

ψλ(·) is coercive,
⇒ ψλ(·) satisfies the PS-condition (see Section 2).(3.26)

From (3.25) and (3.26) it follows that we can use Theorem 2.1 (the mountain
pass theorem). So, we can find û ∈W 1,p(Ω) such that

û ∈ Kψλ
⊆ D+ ∪ {0} and 0 < mλ ≤ ψλ(û),

⇒ û ∈ S(λ) ⊆ D+ and û ̸= u0 (see (3.25)).

The proof is now complete. □

Next, we show that the critical parameter value λ∗ > 0 is also admissible (that
is, λ∗ ∈ L).

Proposition 3.7. We have that λ∗ ∈ L.

Proof. Let {λn}n≥1 ⊆ (λ∗,+∞) be such that λn → (λ∗)+ as n → ∞. From the
proof of Proposition 3.5, we know that we can find un ∈ S(λn) ⊆ D+ (n ∈ N)
decreasing. We have

0 ≤ un ≤ u1 for all n ∈ N,(3.27)

⟨A(un), h⟩+
∫
Ω
ξ(z)up−1

n hdz +

∫
∂Ω
β(z)up−1

n hdσ

=

∫
Ω
[f(z, un, λn) + g(z, un)]hdz

for all h ∈W 1,p(Ω), all n ∈ N.(3.28)

In (3.28) we choose h = un ∈W 1,p(Ω). Using (3.27) and hypotheses H(ξ),H(β),
H(f)(i), H(g)(i), we see that

{un}n≥1 ⊆W 1,p(Ω) is bounded.

Therefore, by passing to a subsequence if necessary, we may assume that

(3.29) un
w→ uλ∗ in W 1,p(Ω) and un → uλ∗ in Lp(Ω) and in Lp(∂Ω).

For every n ∈ N, we have
−∆pun(z) + ξ(z)un(z)

p−1 = f(z, un(z), λn) + g(z, un(z)) for almost all z ∈ Ω,
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(3.30)
∂u

∂np
+ β(z)up−1

n = 0 on ∂Ω (see Papageorgiou & Rădulescu [16]).

From Papageorgiou & Rădulescu [17, Proposition 7] and (3.30), we know that we
can find c11 > 0 such that

||un||∞ ≤ c11 for all n ∈ N.
Then invoking Theorem 2 of Lieberman [13], we can find γ ∈ (0, 1) and c12 > 0

such that

(3.31) un ∈ C1,γ(Ω) and ||un||C1,γ(Ω) ≤ c12 for all n ∈ N.

Since C1,γ(Ω) is compactly embedded in C1(Ω), from (3.29) and (3.31), we have

(3.32) un → uλ∗ in C1(Ω).

Passing to the limit as n→ ∞ in (3.28) and using (3.32), we obtain

⟨A(uλ∗), h⟩+
∫
Ω
ξ(z)up−1

λ∗ hdz +

∫
∂Ω
β(z)up−1

λ∗ hdσ =∫
Ω
[f(z, uλ∗ , λ

∗) + g(z, uλ∗)]hdz for all h ∈W 1,p(Ω),(3.33)

⇒ uλ∗ is a nonnegative solution of (Pλ∗).

We need to show that uλ∗ ̸= 0. Then we will have uλ∗ ∈ S(λ∗) ⊆ D+ and λ∗ ∈ L.
Arguing by contradiction, suppose that uλ∗ = 0. Then from (3.32) we have

(3.34) un → 0 in C1(Ω).

Hypotheses H(f)(ii) and H(g)(ii) imply that given ϵ > 0, we can find δ = δ(ϵ) >
0 such that
(3.35)
f(z, x, λ1)x ≤ ϵxp, g(z, x)x ≤ (η0(z) + ϵ)xp for almost all z ∈ Ω, all 0 ≤ x ≤ δ.

In (3.33) we choose h = un ∈W 1,p(Ω). Then

γp(un) =

∫
Ω
[f(z, un, λn) + g(z, un)]undz

≤
∫
Ω
[f(z, un, λ1) + g(z, un)]undz for all n ∈ N (see hypothesis H(f)(iv)).(3.36)

From (3.34), we see that we can find n0 ∈ N such that

(3.37) un(z) ∈ (0, δ] for all z ∈ Ω, all n ≥ n0.

Then from (3.35), (3.36), (3.37), we see that

γp(un)−
∫
Ω
η0(z)u

p
ndz ≤ 2ϵ||un||pp for all n ≥ n0,

⇒ c0||un||p ≤ 2ϵ||un||pp for all n ≥ n0 (see Lemma 2.9),

⇒ c0 ≤ 2ϵ.

Since ϵ > 0 is arbitrary, choosing ϵ ∈
(
0, c02

)
, we have a contradiction. Therefore

uλ∗ ̸= 0 and so uλ∗ ∈ S(λ∗) ⊆ D+, hence λ
∗ ∈ L. □
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So, we conclude that

L = [λ∗,+∞) .

4. Minimal positive solutions

In this section we show that for every λ ∈ L, problem (Pλ) has a smallest positive
solution ūλ ∈ D+ and we study the monotonicity and continuity properties of the
map λ 7→ ūλ.

From Papageorgiou, Rădulescu & Repovš [18] (see the proof of Proposition 7),
we know that S(λ) is downward directed, that is, if u1, u2 ∈ S(λ), then we can find
u ∈ S(λ) such that u ≤ u1, u ≤ u2.

Proposition 4.1. Assume that λ ∈ L = [λ∗,+∞). Then problem (Pλ) admits a
smallest positive solution ūλ ∈ S(λ) ⊆ D+ (that is, ūλ ≤ u for all u ∈ S(λ)).

Proof. According to Lemma 3.10 of Hu & Papageorgiou [11, p. 178] and since S(λ)
is downward directed, we can find {un}n≥1 ⊆ S(λ) decreasing such that

inf S(λ) = inf
n≥1

un.

We have

0 ≤ un ≤ u1 for all n ∈ N,(4.1)

⟨A(un), h⟩+
∫
Ω
ξ(z)up−1

n hdz +

∫
∂Ω
β(z)up−1

n hdσ =∫
Ω
[f(z, un.λ) + g(z, un)]hdz for all h ∈W 1,p(Ω), all n ∈ N.(4.2)

Then reasoning as in the proof of Proposition 3.7 (see the part of the proof after
(3.28)) and using (4.1) and (4.2), we obtain

un → ūλ in C1(Ω) with ūλ ∈ S(λ),

⇒ ūλ = inf S(λ).

The proof is complete. □

Proposition 4.2. The map λ 7→ ūλ from
o
L = (λ∗,+∞) into C1(Ω) has the follow-

ing properties:

• is strictly monotone in the sense that
o
L ∋ λ < ϑ⇒ ūϑ − ūλ ∈ int Ĉ+;

• it is left continuous.

Proof. First, we show the strict monotonicity of the map. So, let λ ∈
o
L and ϑ > λ.

Then ϑ ∈ L and let ūϑ ∈ S(ϑ) ⊆ D+ be the minimal solution of problem (Pϑ).
From the proof of Proposition 3.6, we know that we can find uλ ∈ S(λ) ⊆ D+ such
that

ūϑ − uλ ∈ int Ĉ+ (see (3.20)),

⇒ ūϑ − ūλ ∈ int Ĉ+ (since ūλ ≤ uλ).
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This proves the strict monotonicity of the map λ 7→ ūλ from
o
L = (λ∗,+∞) into

C1(Ω).

Next, we show the left continuity of this map. So, let {λn}n≥1 ⊆
o
L and assume

that λn → λ−. From the first part of the proof, we have

0 ≤ ūλn ≤ ūλ for all n ≥ 1

Then as before (see the proof of Proposition 3.7), we can say that

(4.3) ūλn → ũλ in C1(Ω) as n→ ∞

and

ũλ ∈ S(λ) ⊆ D+.

Suppose that ũλ ̸= ūλ. Then we can find z0 ∈ Ω such that

ūλ(z0) < ũλ(z0),

⇒ ūλ(z0) < ūλn(z0) for all n ≥ n0,

which contradicts the first part of the proposition. Therefore

ũλ = ūλ,

⇒ λ 7→ ūλ is continuous from
o
L into C1(Ω).

The proof is now complete. □

Remark 4.3. In our setting the equation was nonuniformly nonresonant as x →
+∞ (see hypotheses H(f)(ii),H(g)(ii)). Is it possible to treat also the resonant
case, that is,

lim sup
x→+∞

g(z, x)

xp−1
≤ λ̂1 uniformly for almost all z ∈ Ω.

Moreover, what is the situation of asymptotical behavior as x → +∞ we are
nonresonant with respect to λ̂1, but from above the principal eigenvalue, that is,

lim inf
x→+∞

g(z, x)

xp−1
≥ η̂ > λ̂1 uniformly for almost all z ∈ Ω.

A careful inspection of the arguments of this paper, reveals that for the nonres-
onant case but from above λ̂1, if a bifurcation-type result holds, then it will be for
small values of λ > 0. This also suggests that if we want to extend the results of
this paper to the resonant case, we must have resonance from the left of λ̂1, in the
sense that

λ̂1x
p−1 − [f(z, x, λ) + g(z, x)] → +∞ uniformly for almost all z ∈ Ω, as x→ +∞.

In this way we can preserve the coercivity of the energy functional and we hope
to be able to extend the results of paper to the resonant case.
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