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Abstract. We study the existence and multiplicity of positive solutions for the following
class of quasilinear problems

−div (a(|∇u|p)|∇u|p−2∇u) + V (εx)b(|u|p)|u|p−2u = f(u) in RN ,

where ε is a positive parameter. We assume that V : RN → R is a continuous potential and
f : R→ R is a smooth reaction term with critical exponential growth.
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1. INTRODUCTION AND MAIN RESULT

In this paper, we are concerned with the existence of positive solutions for the following
class of quasilinear problems

{
−div (a(|∇u|p)|∇u|p−2∇u) + V (εx)b(|u|p)|u|p−2u = f(u) in RN ,
u > 0 in RN ,

(Pε)

where ε > 0 and 1 < p < N . The hypotheses on the functions a, b, V and f are
the following:
(a1) the function a is of class C1 and there exist constants k1, k2 ≥ 0 such that

k1t
p + tN ≤ a(tp)tp ≤ k2t

p + tN for all t > 0;

(a2) the mapping t 7→ A(tp) is convex on (0,∞), where A(t) =
∫ t

0 a(s)ds;
(a3) the mapping t 7→ a(tp)

tN−p is nonincreasing for t > 0.
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As a direct consequence of (a3) we obtain that the map a and its derivative a′ satisfy

a′(t)t ≤ (N − p)
p

a(t) for all t > 0. (1.1)

Now if we define the function h(t) = a(t)t− N
p A(t), using (1.1) we can prove that the

function h is decreasing. Then, there exists a positive real constant γ ≥ N
p such that

1
γ
a(t)t ≤ A(t) for all t ≥ 0. (1.2)

(b1) The function b is of class C1 and there exist constants k3, k4 ≥ 0 such that

k3t
p + tN ≤ b(tp)tp ≤ k4t

p + tN for all t > 0;

(b2) the mapping t 7→ B(tp) is convex on (0,∞), where B(t) =
∫ t

0 b(s)ds;
(b3) the mapping t 7→ b(tp)

tN−p is nonincreasing for t > 0.

Using the hypothesis (b3) and arguing as (1.1) and (1.2), we also can prove that
there exists γ ≥ N

p such that

1
γ
b(t)t ≤ B(t) for all t ≥ 0. (1.3)

We assume that V is a continuous potential such that

V∞ = lim inf
|x|→∞

V (x) > V0 = inf
RN

V (x) > 0. (V )

This kind of hypothesis was introduced by Rabinowitz in [22]. The nonsmooth setting
was considered by Gazzola and Rădulescu [11].

In this paper, an important role is played by the existence of solutions to the
problem

{
−k2∆pu−∆Nu+ V ∗k4|u|p−2u+ V ∗|u|N−2u = |u|r−2u in RN ,
u(z) > 0 for all z ∈ RN .

(Pr)

where r > N , k2 appears in hypothesis (a1), k4 appears in hypothesis (b1), and V ∗ is
a real number. The energy functional associated to this problem is Φ ∈W 1,p(RN ) ∩
W 1,N (RN ) and is defined by

Φ(u) = k2
p

∫

RN

|∇u|pdx+ 1
N

∫

RN

|∇u|Ndx

+ k4
p
V ∗
∫

RN

|u|pdx+ 1
N
V ∗
∫

RN

|u|Ndx− 1
r

∫

RN

|u|rdx.
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SinceW 1,p(RN )∩W 1,N (RN ) is continuously embedded into Lr(RN ), we can repeat the
computation developed in Lemmas 2.1–2.3, Proposition 2.1 and Proposition 2.2 of [4]
in order to obtain that wr ∈W 1,p(RN )∩W 1,N (RN ) is a ground state solution of (Pr),
that is,

Φ(wr) = cr and Φ′(wr) = 0.
Note that

cr = Φ(wr) = Φ(wr)−
1
N

Φ′(wr)wr ≥
r −N
pN

∫

RN

|u|rdx. (1.4)

The nonlinearity f has critical exponential growth at +∞, that is, f behaves
exp(α0|t|N/N−1) for some α0. More precisely, there exists α0 > 0 such that the
function f satisfies

lim
t→∞

f(t)
exp(α|t|N/N−1)− SN−2(α, t) = 0 for α > α0

and
lim
t→∞

f(t)
exp(α|t|N/N−1)− SN−2(α, t) =∞ for α < α0,

where

SN−2(α, t) =
N−2∑

k=0

αk

k! |t|
N/(N−1)k.

Moreover, we assume the following growth conditions in the origin and at infinity
for the continuous function f : R→ R:
(f1) the following limit holds:

lim
t→0+

f(t)
tN−1 = 0;

(f2) there exists C > 0 such that

|f(t)| ≤ exp(αN |t|N/N−1)− SN−2(αN , t),

for all t > 0, where αN := Nw
1/N−1
N−1 and wN−1 is the (N − 1)-dimensional

measure of (N − 1) sphere;
(f3) there exist θ > pγ (with the same γ as in (1.3)) such that

0 < θF (t) ≤ f(t)t

for all t > 0;
(f4) the function t 7→ f(t)

tN−1 is increasing in (0,+∞);
(f5) there exist r > N , τ > τ∗, s > 1 and δ > 0 such that

f(t) ≥ τtr−1,

for all t ≥ 0, where

τ > τ∗ :=
[ 2N

min{k1, k3, 1}
θpγcrNr(r − p)

(θ − pγ)(r −N)pr

](r−p)/p
.
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We denote by M and Mδ the following sets:

M = {x ∈ RN : V (x) = V0}

and
Mδ = {x ∈ RN : dist (x,M) ≤ δ} for δ > 0.

Our main theorem is the following.
Theorem 1.1. Suppose that hypotheses (a1)–(a3), (b1)–(b3), (f1)–(f5) and (V ) are
fulfilled. Then, for any δ > 0, there exists εδ > 0 such that problem (Pε) has at least
catMδ

(M) positive solutions, for any 0 < ε < εδ. Moreover, if uε denotes one of these
positive solutions and ηε ∈ RN is its global maximum point, then

lim
ε→0

V (ηε) = V0.

In this work, we use the following version of the Trudinger–Moser inequality in the
whole Euclidean space RN , which is due do Ó [7] (for the case N = 2, see Cao [9]).
Proposition 1.2. If N ≥ 2, α > 0 and u ∈W 1,N (RN ), then

∫

RN

[
exp

(
α|u|(N/N−1)

)
− SN−2(α, u)

]
<∞.

Moreover, if |∇u|NLN ≤ 1, |u|LN ≤ K <∞ and α < αN , then there exists a constant
C = C(N,K,α), which depends only on N,K and α, such that

∫

RN

[
exp

(
α|u|(N/N−1)

)
− SN−2(α, u)

]
≤ C.

We give in what follows some examples of functions a in order to illustrate the
degree of generality of the kind of problems studied here.

Considering a(t) = t
N−p
p , b(t) = t

N−p
p we deduce that a and b satisfy the hypotheses

(a1)–(a3), (b1)–(b3) with k1 = k3 = k5 = k7 = 0 and k2 = k4 = k6 = k8 = 1. Hence,
Theorem 1.1 is valid for the problem

−∆Nu+ V (εx)|u|N−2u = f(u) in RN . (nL)

Considering a(t) = 1 + t
N−p
p , b(t) = 1 + t

N−p
p then the functions a, b satisfy the

hypotheses (a1)–(a3), (b1)–(b3) with k1 = k2 = k3 = k4 = 1. Hence, Theorem 1.1 is
valid for the problem

−∆pu−∆Nu+ V (εx)(|u|p−2u+ |u|N−2u) = f(u) in Ω. (pnL)

This class of equations comes, for example, from a general reaction-diffusion system:

ut = div [D(u)∇u] + c(x, u), (1.5)

where D(u) = (|∇u|p−2 + |∇u|N−2).
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This system has a wide range of applications in physics and related sciences, such
as biophysics, plasma physics and chemical reaction design. In such applications, the
function u describes a concentration, the first term on the right-hand side of (1.5)
corresponds to the diffusion with a diffusion coefficient D(u); whereas the second one
is the reaction and relates to source and loss processes. Typically, in chemical and
biological applications, the reaction term c(x, u) is a polynomial of u with variable
coefficients (see [10,13,18–20]).

Other examples that are also interesting from mathematical point of view are now
presented. Considering

a(t) = 1 + t
N−p
p + 1

(1 + t)
p−2
p

, b(t) = 1 + t
N−p
p + 1

(1 + t)
p−2
p

,

it follows that the functions a, b satisfy the hypotheses (a1)–(a3), (b1)–(b3) with
k1 = k3 = 1, and k2 = k4 = 2. Hence, Theorem 1.1 is valid for the problem

−∆pu−∆Nu− div
(
|∇u|p−2∇u

(1 + |∇u|p)
p−2
p

)

+ V (εx)
(
|u|p−2u+ |u|N−2u+

(
|u|p−2u

(1 + |u|p)
p−2
p

))
= f(u) in RN .

Other combinations can be made with the functions presented in the examples
above, generating very interesting elliptic problems from the mathematical point of
view. For the abstract methods used in this paper we refer to the recent monograph
by Papageorgiou, Rădulescu and Repovš [21].

2. A PERIODIC PROBLEM

The main objective of this section is to study the existence of solutions for the problem
{
−div (a(|∇u|p)|∇u|p−2∇u) +W (x)b(|u|p)|u|p−2u = f(u) in RN ,
u(z) > 0 for all z ∈ RN ,

(PW )

where W : RN → R is a continuous 1-periodic function. More precisely, we have
W (x+ y) = W (x) for all y ∈ ZN , and V ∗ ≥ W (x) ≥ W0 > 0 for all x ∈ RN , where
V ∗ = V∞ if V∞ < ∞ or V ∗ = V0 if V∞ = ∞. Without loss of generality, we can
assume that W0 = 1.

Let us consider the space

XW = W 1,p(RN ) ∩W 1,N (RN )

endowed with the norm ‖u‖W = ‖u‖p,W + ‖u‖N,W , where

‖u‖m,W =
( ∫

RN

|∇u|mdx+
∫

RN

W (x)|u|mdx
)1/m

.
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Note that, by hypotheses (a1) and (b1), we have A(tp) ≤ k2t
p+tN and B(tp) ≤ k4t

p+tN
for t > 0. Thus, the functional JW : XW → R given by

JW (u) = 1
p

∫

RN

A(|∇u|p)dx+ 1
p

∫

RN

W (x)B(|u|p)dx−
∫

RN

F (u)dx

is well-defined. Moreover, note that

J ′W (u)φ =
∫

RN

a(|∇u|p)|∇u|p−2∇u∇φ dx

+
∫

RN

W (x)b(|u|p)|u|p−2uφ dx−
∫

RN

f(u)φ dx

for all φ ∈ XW . We conclude that JW is a C1 functional on XW and its critical points
are weak solution of (PW ). The Nehari manifold associated to the functional JW is
given by

M =
{
u ∈ X\{0} :

∫

RN

a(|∇u|p)|∇u|pdx+
∫

RN

W (x)b(|u|p)|u|pdx =
∫

RN

f(u)u dx
}
.

Since we are looking for positive solutions, we consider f(t) = 0, for all t ≤ 0.
Note that from (f1) and (f2), given Υ > 0, q ≥ 0 and α ≥ 1, there exists CΥ > 0

such that for all u ∈ XW∫

RN

f(u)udx ≤ Υ
∫

RN

|u|pdx+ CΥ

∫

RN

|u|q[exp(ααN |u|
N
N−1 )− SN−2(ααN , u)]dx (2.1)

and∫

RN

F (u)dx ≤ Υ
p

∫

RN

|u|pdx+ C̃Υ

∫

RN

|u|q[exp(ααN |u|
N
N−1 )− SN−2(ααN , u)]dx. (2.2)

The next result concerns with the mountain pass geometry of J .
Lemma 2.1. The functional JW satisfies the following properties:
(i) there exist ρ, η > 0, such that JW (u) ≥ η, if ‖u‖W = ρ;
(ii) for any u ∈ XW \{0} with u ≥ 0, JW (tu)→ −∞ as t→ +∞.
Proof. (i) Note that from (a1), (b1) and (2.2) we get

JW (u) ≥ k1
p

∫

RN

|∇u|pdx+ k3
p

∫

RN

W (x)|u|pdx

+ 1
N

∫

RN

|∇u|Ndx+ 1
N

∫

RN

W (x)|u|Ndx

− Υ
p

∫

RN

|u|pdx− C̃Υ

∫

RN

|u|q[exp(ααN |u|
N
N−1 )− SN−2(ααN , u)]dx.
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Using Hölder’s inequality with 1
s + 1

s′ = 1 we obtain

JW (u) ≥ k1
p

∫

RN

|∇u|pdx+ k3
p

∫

RN

W (x)|u|pdx

+ 1
N

∫

RN

|∇u|Ndx+ 1
N

∫

RN

W (x)|u|Ndx− Υ
p

∫

RN

|u|pdx

− C̃Υ

( ∫

RN

|u|qs′dx
)1/s′

· C
∫

RN

[
exp
(
sααN‖u‖

N
N−1
W

( |u|
‖u‖W

) N
N−1

)
− SN−2(sααN , u)

]
dx.

By the Sobolev embedding theorem, there are positive constants C1, C2, C3 such that

JW (u) ≥ C1‖u‖pp,W + C2‖u‖NN,W

− C3‖u‖qW
∫

RN

[
exp
(
αs‖u‖

N
N−1
W

( |u|
‖u‖W

) N
N−1

)
− SN−2(sα, u)

]
dx.

Considering ‖u‖W = ρ, where 0 < ρ < min{1, αNαs }, then

‖u‖Np,W ≤ ‖u‖pp,W , |∇u|NLN ≤ 1, |u|NL ≤ K and ρN/N−1sα < 1.

By Proposition 1.2, there are positive constants C4, C5 such that

JW (u) ≥ C4ρ
N − C5ρ

q.

Since q > N the proof of (i) is over.
(ii) For any u ∈ XW \{0}, from (a1), (b1), (f5) we conclude that

JW (tu) ≤ tpK2
p

∫

RN

|∇u|pdx+ tN

N

∫

RN

|∇u|Ndx+ tpk4
p

∫

RN

W (x)|u|pdx

+ tN

N

∫

RN

W (x)|u|Ndx− tr

r

∫

RN

|u|rdx.

Since r > N > p, the proof is finished.

Now, in view of lemma above, we can apply the Ambrosetti–Rabinowitz mountain
pass theorem without the Palais–Smale condition [25, Theorem 1.15] in order to get
a sequence (un) ⊂ XW verifying

JW (un)→ cW and J ′W (un)→ 0 as n→∞,
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where the level cW is characterized by

cW = inf
γ∈Γ

max
t∈[0,1]

JW (γ(t))

and
Γ = {γ ∈ C([0, 1], XW ) : JW (0) = 0, JW (γ(1)) < 0}.

Lemma 2.2. Let (un) be a (PS)cW sequence for JW . Then

(i) cW ∈ [η, (r−p)
prτp/(r−p)

crNr
(r−N) ],

(ii) un ⇀ u0 in XW ,
(iii) J ′W (u0) = 0,
(iv) un ≥ 0 for n ∈ N.
Proof. (i) In view of Lemma 2.1, cW ≥ η. Note that, by the hypotheses (a1), (b1)
and (f5), we have

∫

RN

a(|∇wr|p)|∇wr|pdx+
∫

RN

W (x)b(|wr|p)|wr|pdx

≤ k2

∫

RN

|∇wr|pdx+
∫

RN

|∇wr|Ndx+ k4V
∗
∫

RN

|wr|pdx+ V ∗
∫

RN

|wr|Ndx

=
∫

RN

|wr|r ≤
∫

RN

f(wr)wrdx.

This inequality implies that J ′W (wr)wr ≤ 0. Thus, there exists β ∈ (0, 1) such that
βwr ∈M. Using (a1), (b1) and (f5) again, we obtain

cW ≤ J(βwr) ≤
k3
p
βp
∫

RN

|∇wr|pdx+ k4
N
βN

∫

RN

|∇wr|Ndx+ k7
p
βpV ∗

∫

RN

|wr|pdx

+ k8
N
βNV ∗

∫

RN

|wr|Ndx−
τ

r
βr
∫

RN

|wr|rdx.

Since β ∈ (0, 1), we get

cW ≤ J(βwr) ≤
βp

p

[
k2

∫

RN

|∇wr|pdx+
∫

RN

|∇wr|Ndx+ k4V
∗
∫

RN

|wr|pdx

+ V ∗
∫

RN

|wr|Ndx
]
− τ

r
βr
∫

RN

|wr|rdx.

Since Φ′r(wr) = 0, we conclude that

cW ≤
[βp
p
− τ β

r

r

] ∫

RN

|wr|rdx.
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Using (1.4), we have

cW ≤
[βp
p
− τ β

r

r

] crNr

(r −N) ≤ max
s≥0

[sp
p
− τ s

r

r

] crNr

(r −N) .

By standard algebraic manipulations, we get

cW ≤
[ (r − p)
prτp/(r−p)

] crNr

(r −N)

and the result follows.
(ii) Note that from (f3) we obtain

cW ≥
1
p

∫

RN

A(|∇un|p)dx−
1
θ

∫

RN

a(|∇un|p)|∇un|pdx

+ 1
p

∫

RN

W (x)B(|un|p)dx−
1
θ

∫

RN

W (x)b(|un|p)|un|pdx.

Using (1.3) we get

cW ≥
(

1
pγ
− 1
θ

)[ ∫

RN

a(|∇un|p)|∇un|pdx+
∫

RN

W (x)b(|un|p)|un|pdx
]
.

Using now (a1), (b1), we obtain

cW ≥
(

1
pγ
− 1
θ

)[
k1

∫

RN

|∇un|pdx+
∫

RN

|∇un|Ndx

+K3

∫

RN

W (x)|un|pdx+
∫

RN

W (x)|un|Ndx
]
.

(2.3)

Then there are positive constants C1, C2 such that

cW ≥ C1‖u‖pp,W + C2‖u‖NN,W .

Arguing by contradiction, we assume that, up to a subsequence, ‖un‖W → +∞.
It occurs one of the following situations:

(a) ‖un‖p,W → +∞ and ‖un‖N,W → +∞;
(b) ‖un‖p,N → +∞ and ‖un‖N,W is bounded;
(c) ‖un‖p,W is bounded and ‖un‖N,W → +∞.

But in all the cases, we obtain a contradiction with (i). Thus, for a subsequence
still denoted by (un), there is u0 ∈ XW such that un ⇀ u0 in XW .
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(iii) We have un → u0 in Lsloc(RN ) for s ≥ N and un(x) → u0(x) a.e in RN .
Now considering the inequality (2.3) we obtain

‖un‖pp,W + ‖un‖NN,W ≤
1

min{k1, k3, 1}
θpγ

(θ − pγ)CW .

Using (i), we get

‖un‖pp,W + ‖un‖NN,W ≤
1

min{k1, k3, 1}
θpγ

(θ − pγ)
(r − p)

prτp/(r−p)
crNr

(r −N) .

Using now (f5), we obtain

‖un‖pp,W + ‖un‖NN,W ≤
1

2N

and ∫

RN

|∇un|Ndx ≤
1

2N .

Then, ‖u‖W ≤ 1 with
∫
RN |∇un|Ndx < 1 and

∫
RN |un|Ndx ≤ C, for some C > 0.

By Proposition 1.2, there exist C > 0, α ≥ 1 sufficiently close to 1, such that
the sequence (hn) given by

hn(x) = exp
( α

2N αN
∣∣∣∣
un
‖un‖

∣∣∣
N/N−1)

− SN−2

( α

2N αN , un
)

belongs to Lr(RN ) and |hn|r ≤ C. Combining this fact with the Brezis–Lieb lemma
[8] (see also [14, Lemma 4.6]) we deduce that

∫

RN

f(un)φ→
∫

RN

f(u0)φ for all φ ∈ XW . (2.4)

From now on, the proof of (iii) and (iv) follows by [4, Lemma 2.3].

The next proposition is a version of a Lions-type result in the framework of
the critical exponential growth in RN (for the case N = 2, see [5]).

Proposition 2.3. Assume that (f1)–(f3) hold and let (un) ⊂ XW be a sequence with
un ⇀ 0 and lim supn→+∞ ‖un‖N < 1. Assume that there exists R > 0 such that

lim inf
n→+∞

sup
y∈RN

∫

BR(y)

|un|N = 0.

Then ∫

RN

f(un)un → 0 and
∫

RN

F (un)→ 0.
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Proof. By hypothesis
lim inf
n→+∞

sup
y∈RN

∫

BR(y)

|un|N = 0,

combined with Lemma 8.4 in [15], we deduce that

un → 0 in Lt(RN ) for all t ∈ (N,+∞).

From (2.1), for each Υ > 0, q = 1 and α > 1 closed to 1, it follows that
∫

RN

f(un)undx ≤ Υ
∫

RN

|un|pdx+ CΥ

∫

RN

|un|[exp(ααN |un|
N
N−1 )− SN−2(ααN , un)]dx.

By Proposition 1.2, there exists γ enough large such that
∫

RN

f(un)un ≤ ΥC + C
( ∫

RN

|un|γ
)1/γ

→ 0.

Thus, in view of assumption (f3),
∫

RN

F (un)→ 0.

This concludes the proof.

Proposition 2.4. Suppose that 0 ≤ W0 ≤ W (x) ≤ V0 and that (f1)–(f6) occur.
Then problem (PW ) has a solution in C1,α(RN ), with 0 < α < 1.
Proof. By Lemmas 2.1 and 2.2, there exists u0 ∈ XW such that J ′(u0) = 0 and u0 ≥ 0.
Suppose that u0 6≡ 0. Adapting arguments found in [12, Theorem 1.11], we deduce that
u ∈ L∞(RN )∩C1,α(RN ) for some 0 < α < 1, and therefore, from Harnack’s inequality
[23] it follows that u0(x) > 0 for all x ∈ RN . If u0 ≡ 0, we have the following claim:
Claim. There is a sequence (yn) ∈ RN , and R,α > 0 such that

lim inf
n→+∞

sup
y∈RN

∫

BR(y)

|un|N > α. (2.5)

This claim is true, because for the contrary case, using the Proposition 2.3, we have
∫

RN

f(un)un → 0,

which implies that un converges strongly to zero, and consequently, cW = 0. Thus,
the last limit does not hold, and the claim is proved. It is clear that we may assume,
without loss of generality, that (yn) ∈ ZN . Now, letting ũn(x) = un(x− yn), since W
is 1-periodic function, by a routine calculus we obtain ‖ũn‖ = ‖un‖, JW (ũn) = JW (un)
and J ′W (ũn) = 0. Thus, there exists ũ0 such that ũn ⇀ ũ0 weakly in XW and as
before it follows that J ′(ũ0) = 0. Now, by (2.5), taking a subsequence and bigger R,
we conclude that ũ0 is nontrivial and the proposition is proved.
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3. THE NONPERIODIC PROBLEM

The main tool employed to prove Theorem 1.1 is the variational method, namely
to find critical points of the functional

Iε(u) = 1
p

∫

RN

A(|∇u|p) + 1
p

∫

RN

V (εx)B(|u|p)−
∫

RN

F (u).

It is obvious that Iε is well defined on the Banach space Wε given by

Wε =
{
u ∈W 1,p(RN ) ∩W 1,N (RN ) :

∫

RN

V (εx)(|u|p + |u|N ) <∞
}
,

endowed with the norm
‖u‖ε = ‖u‖V,p + ‖u‖V,N ,

where
‖u‖mV,m =

∫

RN

|∇u|m +
∫

RN

V (εx)|u|m.

Let Nε denote the Nehari manifold related to Iε given by

Nε = {u ∈Wε \ {0} : I ′ε(u)u = 0}.

In the next result we prove that if (un) is a sequence in N , then (un) cannot
converge to 0.
Lemma 3.1. There exists a constant C > 0 such that 0 < C ≤ ‖u‖ε for every u ∈ Nε.
Proof. Suppose, by contradiction, that there is (un) ⊂ Nε such that

un → 0 in Wε. (3.1)

From (a1), (b1) and (2.1), for each Υ > 0, q > N and α > 1 closed to 1, it follows that

k1‖un‖pV,p + ‖un‖NV,N

≤ Υ
∫

RN

|un|pdx+ CΥ

∫

RN

|un|q[exp(ααN |un|
N
N−1 )− SN−2(ααN , un)]dx.

Using Sobolev embeddings and since ‖u‖N−pV,p ≤ 1, there exists C1 > 0 such that

C1(‖un‖NV,p + ‖un‖NV,N ) ≤ CΥ

∫

RN

|un|q exp
(
ααN‖un‖N/N−1

ε

( |un|
‖un‖ε

)N/N−1)
dx.

By Hölder’s inequality with s′, s > 1 we find C2 > 0 such that

C2‖un‖Nε ≤ CΥ

( ∫

RN

|un|qs
′
dx

)1/s′( ∫

RN

exp
(
αsαN‖un‖N/N−1

ε

( un
‖un‖ε

)N/N−1)
dx

)1/s

.
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Note that by (3.1), there exists n0 ∈ N such that

‖un‖ ≤
[ 1
αs

]N−1/N

for all n ≥ n0. Thus, by Proposition 1.2 and Sobolev embeddings, we have

C2‖un‖Nε ≤MCΥ

( ∫

RN

|un|qs
′
dx
)1/s′

≤MCΥC‖un‖qε .

This inequality implies
C2

MCΥC
≤ ‖un‖q−Nε .

Since q > N , the above inequality contradicts (3.1) and the lemma is proved.

3.1. TECHNICAL RESULTS

In this subsection, we establish some properties concerning the functional Iε. Arguing
as in Lemma 2.1, we can show that Iε satisfies the mountain pass geometry. This fact
is stated in the below lemma.
Lemma 3.2. The functional Iε satisfies the following conditions:
(i) there exists α, ρ > 0 such that

Iε(u) ≥ η for all u ∈Wε with ‖u‖ε = ρ;

(ii) there exists e ∈ Bcρ(0) with Iε(e) < 0.
By the mountain pass theorem of Ambrosetti and Rabinowitz without (PS)

condition [25, Theorem 1.15], it follows that there exists a (PS)cε sequence (un) ⊂Wε,
that is,

Iε(un)→ cε and I ′ε(un)→ 0,
where cε is the minimax level of mountain pass theorem applied to Iε. Arguing as in
the proof of Lemma 2.2, we can show that for each n, un is nonnegative and that (un)
is bounded. Thus, there exist a subsequence, still denoted by (un), and u ∈Wε such
that

un ⇀ u in Wε and un(x)→ u(x) a.e in RN .

As in [4, Lemma 2.2], we obtain the following equivalent characterization of cε,
which is more adequate to our purpose:

cε = inf
u∈Wε\{0}

sup
t≥0

Iε(tu) = inf
u∈Nε

Iε(u).

Remark 3.3. It is easy to check that for each nonzero nonnegative u ∈ Wε, there
exists a unique t0 = t0(u) such that

Iε(t0u) = max
t≥0

Iε(tu).
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3.2. A COMPACTNESS CONDITION

In this section, we prove some important lemmas to establish a compactness condition.

Lemma 3.4. Let (un) be a sequence in W 1,N (RN ) with supn∈N ‖un‖N ≤ 1/22N+3

and u its weak limit in W 1,N (RN ). If vn = un−u and (f1)–(f5) hold, then the following
properties hold:

(I) we have ∫

RN

|F (vn + u)− F (vn)− F (u)| = on(1)

where F is the primite of f ;
(II) there exists r ≥ 1, r closed to 1, such that

∫

RN

|f(vn + u)− f(vn)− f(u)|r = on(1).

Proof. The proof follows by similar arguments as in [3, Lemma 7].

Lemma 3.5. Assume that V∞ < +∞ and let (vn) be a (PS)d sequence for Iε in
Wε with lim supn→+∞ ‖∇vn‖NLN ≤ m < 1 and vn ⇀ 0 in W 1,p(RN ). If vn 6→ 0
in W 1,N (RN ), then d ≥ cV∞ , where cV∞ is the minimax level of JV∞ .

Proof. The proof follows by using similar arguments as in [4, Lemma 3.3].

3.3. PALAIS–SMALE CONDITION

In order to apply the Lusternik–Schnirelman category theory, we need to prove
that Iε satisfies the Palais–Smale condition on Nε. Since the Sobolev embedding
W 1,N (RN ) ⊂ Ls(RN ) (s ≥ N) is continuous but is not compact, it is well known
that, in general, such a condition is not fulfilled. Nevertheless, we still can prove
(Proposition 3.7) that the Palais–Smale condition holds at a suitable sublevel, related
to the ground energy “at infinity”.

Proposition 3.6. Let (un) be a sequence (PS)c for Iε, with ‖∇un‖NLN ≤ 1/2N
for all n ∈ N, and assume that c < cV∞ when V∞ < ∞, or c ∈ R if V∞ = ∞. Then
(un) has a convergent subsequence in Wε.

Proof. It follows from [4, Lemmas 3.5 and 3.6]

Proposition 3.7. Let (un) be a sequence (PS)c for Iε restricted to Nε, with
‖∇un‖NLN ≤ 1/2N for all n ∈ N, and assume that c < cV∞ when V∞ < ∞, or
c ∈ R if V∞ =∞. Then (un) has a convergent subsequence in Wε.

Proof. Let (un) ⊂ Nε be such that Iε(un) → c and ‖I ′ε(un)‖∗ = on(1). Then there
exists (λn) ⊂ R such that

I ′ε(un) = λnJ
′
ε(un) + on(1), (3.2)



Nonhomogeneous equations with critical exponential growth and lack of compactness 85

where Jε : Xε → R is given by

Jε(u) =
∫

RN

a(|∇u|p)|∇u|p +
∫

RN

V (εx)b(|u|p)|u|p −
∫

RN

f(u)u.

Note that by (a3), (b3) and (f4),

J ′ε(un)un = p

∫

RN

a′(|∇un|p)|∇un|2p + p

∫

RN

a(|∇un|p)|∇un|p

+ p

∫

RN

V (εx)b′(|un|p)|un|2p + p

∫

RN

V (εx)b(|un|p)|un|p

−
∫

RN

f(un)un −
∫

RN

f ′(un)(un)2

≤
∫

RN

(N − 1)f(un)un −
∫

RN

f ′(un)(un)2 ≤ 0,

which implies that lim supn→+∞ J ′ε(un)un = l ≤ 0.
Arguing as in the proof of Proposition 2.4, we can consider that un ⇀ u 6= 0

in Wε. Then, l 6= 0, leading to λn = on(1). From (3.2), I ′ε(un) = on(1), hence (un)
is a (PS)c sequence for Iε and the result follows from Proposition 3.6.

Corollary 3.8. The critical points of Iε on Nε are critical points of Iε in Wε.
Proof. The proof follows by using similar arguments as in the previous proof.

4. EXISTENCE OF A GROUND STATE SOLUTION

In this section, we prove the existence of a nonnegative ground state solution to
problem (Pε), that is, a nonnegative solution uε of (Pε) satisfying Iε(uε) = cε and
I ′ε(uε) = 0. To this end, we adapt some ideas developed in [6].
Theorem 4.1. Suppose that a, b and f verify (a1)–(a3), (b1)–(b3), (V0) and (f1)–(f5),
respectively. Then, there exists ε̄ > 0 such that problem (Pε) has a nonnegative ground
state solution uε for all 0 < ε < ε̄.
Proof. From Lemma 3.2, Iε verifies the mountain pass geometry. Then, there exists
a bounded sequence (un) ⊂Wε satisfying

Iε(un)→ cε and I ′ε(un)→ 0.

We show that there exists ε > 0 such that cε < cV0 , for all ε ∈ (0, ε). Since
cV0 < cV∞ when V∞ < ∞, from Proposition 3.6, we conclude that Iε satisfies the
(PS)cε condition. Thus, there exists u ∈Wε such that

Iε(u) = cε and I ′ε(u) = 0.
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If V∞ <∞, let us consider without loss of generality that

V (0) = V0 = inf
x∈RN

V (x).

Let µ ∈ R such that V0 < µ < V∞. Since cV0 < cµ < c∞, there exists a nonnegative
function w ∈ Xµ with compact support such that Jµ(w) = maxt≥0 Jµ(tw) and
Jµ(w) < c∞. The condition (V0) implies that for some ε > 0

V (εx) ≤ µ for all x ∈ suppw and ε ≤ ε,

so
∫

RN

V (εx)B(|tw|p) ≤
∫

RN

µB(|tw|p) for all ε ≤ ε and t > 0.

Consequently
Iε(tw) ≤ Jµ(tw) ≤ Jµ(w) for all t > 0

from where it follows that
max
t>0

Iε(tw) ≤ Jµ(w),

showing that cε < c∞. Therefore, the theorem follows from Proposition 3.6.

5. MULTIPLICITY OF SOLUTIONS TO (Pε)

In this section, our main goal is to show the existence of multiple solutions and to
study the behavior of its maximum points in relationship with the set M .

5.1. PRELIMINARY RESULTS

Let δ > 0 be fixed and w be a ground state solution of problem (PV0), that is,
JV0(w) = cV0 and J ′V0

(w) = 0. Let η be a smooth nonincreasing cut-off function
defined in [0,∞) such that η(s) = 1 if 0 ≤ s ≤ δ

2 and η(s) = 0 if s ≥ δ.
For any y ∈M , let us define

Ψε,y(x) = η(| εx− y |)w
(εx− y

ε

)
.

and Φε : M → Nε by
Φε(y) = tεΨε,y.

where tε > 0 verifies

max
t≥0

Iε(tΨε,y) = Iε(tεΨε,y).

By construction, Φε(y) has compact support for any y ∈M .
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Lemma 5.1. The function Φε satisfies

lim
ε→0

Iε(Φε(y)) = cV0 , uniformly in y ∈M.

Proof. Suppose by contradiction that the lemma is false. Then there exist δ0 > 0,
(yn) ⊂M and εn → 0 such that

|Iεn(Φεn(yn))− cV0 | ≥ δ0. (5.1)

Repeating the same arguments as in [1], it is possible to check that tεn → 1. Next,
by Lebesgue’s theorem,

lim
n→∞

‖ Ψεn,yn ‖εn=
(∫

Rn
(|∇w|p + V0|w|p)

) 1
p +

(∫

Rn
(|∇w|N + V0|w|N )

) 1
N

and

lim
n→∞

∫

RN

F (Ψεn,yn) =
∫

RN

F (w).

From the above limits, we obtain

lim
n→∞

Iεn(Φεn(yn)) = JV0(w) = cV0 ,

which contradicts (5.1), and the proof of the lemma is finished.

For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → RN be
defined as χ(x) = x for |x| ≤ ρ and χ(x) = ρx/|x| for |x| ≥ ρ. Finally, let us consider
β : Nε → RN given by

β(u) =
∫
RN χ(εx)|u(x)|p∫

RN |u(x)|p .

The next three lemmas follow by using the same arguments found in [2, Lemma 4.3].
For this reason, we omit their proofs.
Lemma 5.2. The function Φε verifies the following limit

lim
ε→0

β(Φε(y)) = y, uniformly in y ∈M.

Lemma 5.3 (A compactness principle). Let (un) ⊂ M be a sequence satisfying
JV0(un)→ cV0 . Then the following alternative holds:

(a) (un) has a subsequence strongly convergent in XV0

or

(b) there exists a sequence (ỹn) ⊂ RN such that, up to a subsequence, vn(x) = un(x+ỹn)
converges strongly in XV0 .

In particular, there exists a minimizer for cV0 .
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Proposition 5.4. Let εn → 0 and (un) ⊂ Nεn be such that Iεn(un) → c0. Then
there exists a sequence (ỹn) ⊂ RN such that vn(x) = un(x + ỹn) has a convergent
subsequence in XV0 . Moreover, up to a subsequence, yn → y ∈M , where yn = εnỹn.

Corollary 5.5. Given ξ > 0, there exists R > 0 and n0 ∈ N such that

‖un‖XV0 (RN\BR(ỹn)) < ξ for all n ≥ n0.

Proof. By Proposition 5.4, there exists v ∈ XV0 such that vn → v in XV0 , that is,
( ∫

RN

|∇(un(x+ ỹn)− v)|p
)1/p

+
( ∫

RN

|∇(un(x+ ỹn)− v)|N
)1/N

+
( ∫

RN

|un(x+ ỹn)− v|p
)1/p

+
( ∫

RN

|un(x+ ỹn)− v|N
)1/N

→ 0.

Consequently ∫

RN\BR(0)

|un(x+ ỹn)− v|p → 0

and ∫

RN\BR(0)

|un(x+ ỹn)− v|N → 0.

By the change of variable z = x+ ỹn, we obtain
∫

RN\BR(ỹn)

|un(z)− v(z − ỹn)|p → 0 (5.2)

and
∫

RN\BR(ỹn)

|un(z)− v(z − ỹn)|N → 0. (5.3)

On the other hand, given ξ > 0, there exists R > 0 such that
∫

RN\BR(ỹn)

|v(x− ỹn)|p =
∫

N\BR(0)

|v|p < ξ

2

and ∫

RN\BR(ỹn)

|v(x− ỹn)|N =
∫

RN\BR(0)

|v|N <
ξ

2

for all n ∈ N. Hence, by (5.2) and (5.3), there exists n0 ∈ N such that

|un|Lp(RN\BR(ỹn)) < ξ for all n ≥ n0
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and
|un|LN (RN\BR(ỹn)) < ξ for all n ≥ n0.

Similar arguments show that

|∇un|Lp(RN\BR(ỹn)) < ξ for all n ≥ n0,

and
|∇un|LN (RN\BR(ỹn)) < ξ for all n ≥ n0,

which completes the proof.

Let h : R+ → R+ be a positive function tending to 0 such that h(ε)→ 0 as ε→ 0
and let

Ñε = {u ∈ Nε : Iε(u) ≤ dV0 + h(ε)}.

Lemma 5.6. Let δ > 0 and Mδ = {x ∈ RN : dist (x,M) ≤ δ}. Then

lim
ε→0

sup
u∈Ñε

inf
y∈Mδ

|β(u)− y| = 0.

Proof. The proof follows by using the same arguments found in [2].

5.2. PROOF OF THEOREM 1.1

We divide the proof in two parts.
Part I: Multiplicity of solutions. In the sequel, ε > 0 is small enough. Then, by
Lemmas 5.1 and 5.6, we have β ◦ Φε is homotopic to the inclusion map id : M →Mδ.
This fact implies

catÑε(Ñε) ≥ catMδ
(M).

Since that functional Iε satisfies the (PS)c condition for c ∈ (c0, c0 + h(ε)), by the
Lusternik–Schnirelman theory of critical points (see [25]), we can conclude that Iε has
at least catMδ

(M) critical points on Nε. Consequently by Corollary 3.8, Iε has at least
catMδ

(M) critical points in Xε.
Part II: The behavior of maximum points. The next two lemmas play an important
role in the study of the behavior of the maximum points of the solutions. In the proof
of the next lemma, we adapted some arguments found in [12] and [13], which are
related to the Moser iteration method [16].

Lemma 5.7. Let un be a solution of the following problem




−div (a(|∇un|p)|∇un|p−2∇un) + V (εnx)b(|un|p)|un|p−2un = f(un) in RN ,
un ∈ Xεn , 1 < p < N,

un(z) > 0 for all z ∈ RN .
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Then, for each n, un ∈ L∞(RN ) and there exists C > 0 such that |un|L∞(RN ) ≤ C
for all n ∈ N. Furthermore, given ξ > 0, there exists R > 0 and n0 ∈ N such that

|un|L∞(RN\BR(ỹn)) < ξ for all n ≥ n0,

where {ỹn} was given in Proposition 5.4.

Proof. It is sufficient to use (a1), (b1) and [3, Lemma 15].

Lemma 5.8. There exists δ > 0 such that |un|L∞(|x−ỹn|<R) ≥ δ for all n ≥ n0.

Proof. If |un|L∞(|x−ỹn|<R) → 0, by Lemma 5.7, we have |un|L∞(RN ) → 0. Fixed
ε0 = V0

2 , it follows from (f5) that there exists n0 ∈ N such that

f(un)
|un|N−1 < ε0 for n ≥ n0.

Therefore ∫

RN

a(|∇un|p)|∇un|p +
∫

RN

V (εnx)b(|un|p)|un|p ≤ 0,

that is,
‖un‖Xεn = 0 for all n ≥ n0,

which is absurd, because un 6= 0 for all n ∈ N. Thus, there exists δ > 0 such that
|un|L∞(|x−ỹn|<R) ≥ δ, for all n ≥ n0.

Considering vn(x) = un(x+ ỹn), by Lemmas 5.7 and 5.8, we have that

|vn|L∞(|x|≥R) < ξ for all n ≥ n0

and

|vn|L∞(|x|≤R) ≥ δ for all n ≥ n0.

Thus, there exists qn∈BR(0) such that v(qn)=maxz∈RN vn(z) and v(qn) = un(qn+ỹn).
Hence, xn = qn + ỹn is a maximum point of {un} and

lim
n→∞

εnxn = lim
n→∞

εnỹn = y ∈M.

Since V is a continuous functions, we get

lim
n→∞

V (εnxn) = V (y) = V0.

The proof is now complete.
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