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Department of Mathematics, University of Craiova
Street A. I. Cuza No. 13, 200 585 Craiova, Romania
radulescu@inf.ucv.ro

Abstract We consider an eigenvalue variational inequality problem arising in the
earthquake initiation. Our purpose is twofold. Firstly, in the symmet-
ric case, we establish the existence of infinitely many distinct solutions.
Next, in the case where the problem is affected by a non-symmetric
perturbation, we prove that the number of solutions of the perturbed
problem becomes larger and larger if the perturbation “tends” to zero
with respect to a suitable topology. Since the canonical energy func-
tionals are included neither in the theory of monotone operators, nor in
their Lipschitz perturbations, the proofs of the main results rely on non-
smooth critical point theories in the sense of De Giorgi and Degiovanni
combined with methods from algebraic topology.
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Introduction
The purpose of this paper is twofold: first, we establish a multiplicity

result for a nonlinear symmetric variational inequality; next, we study
the effect of an arbitrary perturbation. For related results and further
comments we refer to our recent papers [11] (for an appropriate varia-
tional inequality) and [2, 5, 14] for the hemivariational framework.

We have been inspired in this work by the following simple phe-
nomenon which occurs in elementary mathematics. Usually, an equation
with a certain symmetry admits infinitely many solutions. For instance,
the equation sinx = 1/2 (x ∈ R) has an infinite number of solutions. In
this case, the “symmetry” is given by periodicity. If the above equation
is affected in an arbitrary non-symmetric way by a certain perturba-
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tion, then the number of solutions of the new equation becomes larger
and larger if the perturbation “tends to zero” in a suitable sense. For
instance, the equation

sinx =
1
2

+ ε x2, x ∈ R (1)

has finitely many solutions, for any ε > 0. However, the number of
solutions of (1) tends to infinity if ε tends to 0.

Our purpose in this work is to illustrate the above elementary phe-
nomenon to the study of a nonlinear eigenvalue variational inequality
arising in earthquake initiation. More precisely, using a multiplicity
result of Lusternik-Schnirelmann type combined with the fact that an
adequate function space is infinite dimensional, we first establish the
existence of infinitely many solutions. Next, we are concerned with the
study of the effect of a small non-symmetric perturbation and we prove
that the number of solutions of the perturbed tends to infinity if the
perturbation tends to zero with respect to an appropriate topology. The
main novelty in our framework is the presence of the convex cone of
functions with non-negative jump across an internal boundary which is
composed of a finite number of bounded connected arcs.

1. Main Results and Physical Motivation
Let Ω ⊂ RN be a domain, not necessarily bounded, containing a

finite number of cuts. Its boundary ∂Ω is supposed to be smooth and
divided into two disjoint parts: the exterior boundary Γd = ∂Ω̄ and the
internal one Γ composed by Nf bounded connected arcs Γi

f , i = 1, .., Nf ,
called cracks or faults. On Γ we denote by [ ] the jump across Γ, (i.e.
[w] = w+ −w−) and by ∂n = ∇ · n the corresponding normal derivative
with the unit normal n outwards the positive side.

Set V = {v ∈ H1(Ω); v = 0 on Γd}. Denote by ‖ · ‖ the norm in
the space V , and by Λ0 : L2(Ω) → L2(Ω)∗ and Λ1 : V → V ∗ the duality
isomorphisms Λ0u(v) =

∫
Ω uvdx, for any u, v ∈ L2(Ω), and Λ1u(v) =∫

Ω∇u · ∇vdx, for any u, v ∈ V. Consider the Lipschitz map γ = i ◦ η :
V → L2(Γ), where η : V → H1/2(Γ) is the trace operator, η(v) = [v] on
Γ and i : H1/2(Γ) → L2(Γ) is the embedding operator. Let K be the
convex closed cone defined by K = {v ∈ V ; [v] ≥ 0 on Γ}.

Consider the nonlinear eigenvalue problem




find u ∈ K and λ ∈ R such that∫

Ω
∇u · ∇(v − u)dx +

∫

Γ
j′ (γ(u(x)); γ(v(x))− γ(u(x))) dσ+

λ

∫

Ω
u(v − u)dx ≥ 0, ∀v ∈ K,

(2)
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where j(t) = −β
2 t2, t ∈ R, for some real constant β.

If N = 2, then any solution of problem (2) can be viewed as a station-
ary solution of an appropriate evolution variational inequality that de-
scribes the slip-dependent friction law introduced in the geophysical con-
text of earthquake modelling (see [1], [3]). We look for w : R+×Ω → R
solution of the wave equation

∂ttw(t) = c2∆w(t) in Ω,

with the boundary condition

w(t) = 0 on Γd.

On the contact zone Γ we have [∂nw] = 0 and the following slip depen-
dent friction law (introduced in the geophysical context of earthquakes
modelling) is assumed (see [1], [3])

G∂nw(t) = −µ(|[w(t)]|))Ssign([∂tw(t)])− q, if [∂tw(t)] 6= 0,

|G∂nw(t) + q| ≤ µ(|[w(t)]|)S if ∂t[w(t)] = 0,

where G denotes the elastic medium shear rigidity, ρ is the density,
and c =

√
G/ρ is the shear velocity. The non-vanishing shear stress

components are σzx = τ∞x + G∂xw, σzy = τ∞y + G∂yw, σxx = σyy = −S
(S > 0 is the normal stress on the fault plane), and q = τ∞x nx + τ∞y ny.
The initial conditions are

w(0) = w0, ∂tw(0) = w1 in Ω.

Any solution of the above problem satisfies the following nonlinear
eigenvalue problem: find w : [0, T ] → V such that

∫

Ω

1
c2

∂ttw(t)(v − ∂tw(t) dx +
∫

Ω
∇w(t) · ∇(v − ∂tw(t)) dx + (3)

∫

Γ

S

G
µ(|[w(t)]|)(|[v]| − |[∂tw(t)]|) dσ ≥

∫

Γ

1
G

q([v]− [∂tw(t)]) dσ,

for all v ∈ V .
The main difficulty in the study of problem (3) is the non-monotone

dependence of µ with respect to the slip |[w]|. However, in modelling
unstable phenomena, as earthquakes, we have to expect “bad” math-
ematical properties of the operators involved in the abstract problem.
The existence of a solution w ∈ W 1,∞(0, T, V ) ∩ W 2,∞(0, T, L2(Ω)) (if
N = 2) was recently proved by Ionescu et al. [10]. The uniqueness
was obtained only in the one-dimensional case. Since our intention is to
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study the evolution of the elastic system near an unstable equilibrium
position, we shall suppose that q = µ(0)S. We remark that w ≡ 0 is
an equilibrium solution of (3), and w0, w1 may be considered as small
perturbations of it. For simplicity, let us assume in the following that
the friction law is homogeneous on the fault plane having the form of a
piecewise linear function (see [13]) :

µ(x, u) = µs − µs − µd

2Dc
u if u ≤ 2Dc, µ(x, u) = µd if u > 2Dc, (4)

where u is the relative slip, µs and µd (µs > µd) are the static and
dynamic friction coefficients, and Dc is the critical slip. Since the ini-
tial perturbation (w0, w1) of the equilibrium (w ≡ 0) is small we have
[w(t, x))] ≤ 2Dc for t ∈ [0, Tc] for all x ∈ Γ, where Tc is a critical time
for which the slip on the fault reaches the critical value 2Dc at least at
one point. Hence for a first period [0, Tc], called the initiation phase, we
deal with a linear function µ. Our aim is to analyze the evolution of the
perturbation during this initial phase. That is why we are interested in
the existence of solutions of the type

w(t, x) = sinh(|λ|ct)u(x), w(t, x) = sin(|λ|ct)u(x) (5)

during the initiation phase t ∈ [0, Tc]. If we put the above expression
in (3) and we have in mind that from (4) we have µ(s) = µs − (µs −
µd)/(2Dc)s then we deduce that (u, λ) is solution of the problem (2),
where β = (µs − µd)S/(2DcG) > 0. The first type of solution described
by (5) has an exponential growth in time and corresponds to λ > 0.
The second one has the same amplitude during the initiation phase and
corresponds to λ < 0.

Returning to problem (2), we observe that, due to its homogeneity,
we can reformulate this problem in terms of a constrained inequality
problem as follows. For any fixed r > 0, consider the smooth manifold
M =

{
u ∈ V ;

∫
Ω u2dx = r2

}
. We shall study the problem





find u ∈ K ∩M and λ ∈ R such that∫

Ω
∇u · ∇(v − u)dx +

∫

Γ
j′ (γ(u(x)); γ(v(x))− γ(u(x))) dσ+

λ

∫

Ω
u(v − u)dx ≥ 0, ∀v ∈ K.

(6)

The multiplicity of solutions to problem (6) is described in

Theorem 1 Problem (6) has infinitely many solutions (u, λ) and the
set of eigenvalues {λ} is bounded from above and its infimum equals to
−∞. Let λ0 = sup{λ}. Then there exists u0 such that (u0, λ0) is a
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solution of (6). Moreover the function β 7−→ λ0(β) is convex and the
following inequality holds

∫

Ω
|∇v|2 dx + λ0(β)

∫

Ω
v2 dx ≥ β

∫

Γ
[v]2 dσ, ∀v ∈ K. (7)

Our next purpose is to describe the effect of an arbitrary perturbation
in problem (2). More precisely, we consider the problem





find uε ∈ K and λε ∈ R such that∫

Ω
∇uε · ∇(v − uε)dx+

∫

Γ

(
j′ + εg′

)
(γ(uε(x)); γ(v(x))− γ(uε(x))) dσ+

λε

∫

Ω
uε(v − uε)dx ≥ 0, ∀v ∈ K,

(8)

where ε > 0 and g : R → R is a continuous function with no symmetry
hypothesis, but satisfying the growth assumption

∃ a > 0, ∃ 2 ≤ p ≤ 2(N − 1)
N − 2

: |g(t)| ≤ a(1 + |t|p) , if N ≥ 3;

∃ a > 0, ∃ 2 ≤ p < +∞ : |g(t)| ≤ a(1 + |t|p) , if N = 2.
(9)

This hypothesis is motivated by the following embedding inequality of
Ionescu [9] that will be used in an essential manner in the proof.

Lemma 2 (Lemma 5.1 in [9]). Let 2 ≤ α ≤ 2(N − 1)/(N − 2) if N ≥ 3
and 2 ≤ α < +∞ if N = 2. Then for β = [(α− 2)N + 2]/(2α) if N ≥ 3
or if N = 2 and α = 2 and for all (α − 1)/α < β < 1 if N = 2 and
α > 2, there exists C = C(β) such that

(∫

Γ
|[u]|αdσ

)1/α

≤ C

(∫

Ω
u2dx

)(1−β)/2 (∫

Ω
|∇u|2dx

)β/2

, (10)

for any u ∈ V .

Our perturbation result is

Theorem 3 For every positive integer n, there exists εn > 0 such that
problem (8) has at least n distinct solutions (uε, λε) if ε < εn. There
exists and is finite λ0ε = sup{λε} and there exists u0ε such that (u0ε, λ0ε)
is a solution of (8). Moreover, λ0ε converges to λ0 as ε tends to 0, where
λ0 was defined in Theorem 1.
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2. Proofs
We first recall some of the notions used in the proofs of Theorems 1

and 3. An important role in our arguments in order to locate the solution
of problem (6) is played by the indicator function of M , that is,

IM (u) =
{

0 , if u ∈ M
+∞ , if u ∈ V \M.

Then IM is lower semicontinuous. However, since the natural energy
functional associated to problem (6) is neither smooth nor convex, it
is necessary to introduce a more general concept of gradient. We shall
employ the following notion of lower subdifferential which is due to De
Giorgi, Marino and Tosques [8].

Definition 4 Let X be a Banach space and let f : X → R ∪ {+∞}
be an arbitrary proper functional. Let x ∈ D(f). The Fréchet (regular)
subdifferential of f at x is the (possibly empty) set

∂−f(x) =
{

ξ ∈ X∗; lim inf
y→x

f(y)− f(x)− ξ(y − x)
‖y − x‖ ≥ 0

}
.

An element ξ ∈ ∂−f(x) is called a lower subgradient of f at x.
Accordingly, we say that x ∈ D(f) is a critical (lower stationary)

point of f if 0 ∈ ∂−f(x).

Then ∂−f(x) is a convex set. If ∂−f(x) 6= ∅ we denote by grad−f(x)
the element of minimal norm of ∂−f(x), that is,

grad−f(x) = min{‖ξ‖X∗ ; ξ ∈ ∂−f(x)}.
This notion plays a central role in the statement of the following basic
compactness condition.

Definition 5 Let f : X → R ∪ {+∞} be an arbitrary functional. We
say that (xn) ⊂ D(f) is a Palais-Smale sequence if supn |f(xn)| < +∞
and limn→∞ grad−f(xn) = 0. The functional f is said to satisfy the
Palais-Smale condition provided that any Palais-Smale sequence is rela-
tively compact.

Definition 4 implies that if g : X → R is Fréchet differentiable and
f : X → R ∪ {+∞} is an arbitrary proper function then

∂−(f + g)(x) =
{
ξ + g′(x); ξ ∈ ∂−f(x)

}
,

for any x ∈ D(f).
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We also point out that in [4] it is proved the formula

∂−IM (u) = {λΛ0u; λ ∈ R} ⊂ L2(Ω)∗ ⊂ V ∗, (11)

for any u ∈ M , where Λ0 : L2(Ω) → L2(Ω)∗ denotes the canonical
duality isomorphism.

2.1 Proof of Theorem 1
Define E = F + G : V → R ∪ {+∞}, where

F (u) =





1
2

∫

Ω
|∇u|2dx , if u ∈ K

+∞ , if u 6∈ K

and

G(u) = −β

2

∫

Γ
[γ(u(x))]2dσ.

Then E+IM is lower semicontinuous. Moreover, E+IM is the canonical
energy functional associated to problem (6). This assertion is refined in
the following auxiliary result.

Lemma 6 Let (u, λ) be an arbitrary solution of problem (6). Then 0 ∈
∂−(E + IM )(u). Conversely, let u be a critical point of E + IM and
denote λ = −2E(u)r−2. Then (u, λ) is a solution of problem (6).

Proof of Lemma 6. If (u, λ) is a solution of problem (6) then, by the
definition of the lower subdifferential,

−λu ∈ ∂−E(u). (12)

On the other hand,

∂−(E + IM )(u) = ∂−E(u) + ∂−IM (u), for any u ∈ K ∩M. (13)

So, by (11) and (12), 0 ∈ ∂−(E + IM )(u).
Conversely, let 0 ∈ ∂−(E + IM )(u). Thus, by (11) and (13), there

exists λ ∈ R such that (u, λ) is a solution of problem (6). If we put
v = 0 in (6) then we deduce λr2 ≤ −2E(u) and for v = 2u we get
λr2 ≥ −2E(u), that is λ = −2E(u)r−2.

The next step in our proof consists in showing that the functional E+
IM satisfies the Palais-Smale condition. This is done by using standard
arguments, but applied in the framework of the non-smooth critical point
theory in the sense of De Giorgi, Marino and Tosques.
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Due to the symmetry of problem (6), we can extend our study to the
symmetric cone (−K). More precisely, if (u, λ) is a solution of (6) then
u0 := −u ∈ (−K) ∩M satisfies

∫

Ω
∇u0 · ∇(v − u0)dx +

∫

Γ
j′ (γ(u0(x)); γ(v(x))− γ(u0(x))) dσ+

λ

∫

Ω
u0(v − u0)dx ≥ 0, for all v ∈ (−K).

This means that we can extend the energy functional associated to prob-
lem (6) to the symmetric set K̃ := K ∪ (−K). We put, by definition,

Ẽ(u) =





E(u) , if u ∈ K
E(−u) , if u ∈ (−K)
+∞ , otherwise.

We are interested in finding the lower stationary points of the extended
energy functional J := Ẽ + IM .

We endow the set K̃ ∩M with the graph metric of Ẽ defined by

d(u, v) = ‖u− v‖+ |Ẽ(u)− Ẽ(v)|, for any u, v ∈ K̃ ∩M.

Denote by X the metric space (K̃ ∩M,d).
The next step in the proof of Theorem 1 consists in showing

Lemma 7 We have CatX (K̃ ∩M) = +∞.

The proof is straightforward and is accomplished by using adequate
tools from Algebraic Topology.

The above results enable us to apply the Lusternik-Schnirelmann the-
orem in the sense established by Marino and Scolozzi [12]. This implies
that problem (6) admits infinitely many solutions (u, λ). Next, we ob-
serve that the set of eigenvalues is bounded from above. Indeed, if (u, λ)
is a solution of our problem then choosing v = 0 in (6) and using (10), it
follows that λr2 ≤ −2‖u‖2 + β

2 ‖u‖2
L2(Γ) ≤ C, where C does not depend

on u.
It remains to prove that

inf{λ; λ is an eigenvalue of problem (6)} = −∞.

For this purpose, it is sufficient to show that

sup{J(u); u ∈ K̃ ∩M} = +∞.

But this follows directly from (10) after observing that

sup
u∈K̃∩M

∫

Ω
|∇u|2dx = +∞.
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In order to prove the last part of the theorem we remark that −λ0, as a
function of β, is the upper bound of a family of affine functions

−λ0(β) = inf
v∈K∩M

1
r2

{∫

Ω
|∇v|2 dx− β

∫

Γ
[v]2 dσ

}
, (14)

hence it is a concave function. Thus β 7−→ λ0(β) is convex and (7)
yields. This completes the proof of Theorem 1.

2.2 Proof of Theorem 3
The main idea is to establish the multiplicity result with respect to a

prescribed level of energy. More precisely, let us fix r > 0. Consider the
manifold N = {u ∈ V ;

∫
Γ[u]pdσ = rp} , where p is as in (9).

We reformulate problem (8) as follows:




find uε ∈ K ∩N and λε ∈ R such that∫

Ω
∇uε · ∇(v − uε)dx+

∫

Γ

(
j′ + εg′

)
(γ(uε(x)); γ(v(x))− γ(uε(x))) dσ+

λε

∫

Ω
uε(v − uε)dx ≥ 0, ∀v ∈ K.

(15)

We start with the preliminary result

Lemma 8 There exists a sequence (bn) of essential values of E such that
bn → +∞ as n →∞.

Proof of Lemma 8. For any n ≥ 1, set an = infS∈Γn supu∈S E(u), where
Γn is the family of compact subsets of K ∩N of the form φ(Sn−1), with
φ : Sn−1 → K ∩ N continuous and odd. The function E restricted to
K ∩ N is continuous, even and bounded from below. So, by Theorem
2.12 in [7], it is sufficient to prove that an → +∞ as n →∞. But, as in
the preceding section, the functional E restricted to K ∩N satisfies the
Palais-Smale condition. So, taking into account Theorem 3.5 in [6] and
Theorem 3.9 in [7], we deduce that the set Ec has finite genus for any
c ∈ R. Using now the definition of the genus combined with the fact
that K∩N is a weakly locally contractible metric space, we deduce that
an → +∞. This completes our proof.

The canonical energy associated to problem (15) is the functional J
restricted to K ∩N , where J = E + Φ and Φ is defined by

Φ(u) = ε

∫

Γ
g(γ(u(x)))dσ.
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A straightforward computation with the same arguments as in the proof
of Lemma 6 shows that if u is a lower stationary point of J then there
exists λ ∈ R such that (u, λ) is a solution of problem (15). In virtue of
this result, it is sufficient for concluding the proof of Theorem 3 to show
that the functional J has at least n distinct critical values, provided that
ε > 0 is sufficiently small. We first prove that J is a small perturbation
of E. More precisely, we have

Lemma 9 For every η > 0, there exists δ = δη > 0 such that for any
ε ≤ δ, supu∈K∩N |J(u)− E(u)| ≤ η.

Proof of Lemma 9. We have

|J(u)− E(u)| = |Φ(u)| ≤ ε

∫

Γ
|g(γ(u(x)))| dσ.

So, by (9) and Lemma 2,

|J(u)−E(u)| ≤ ε a

∫

Γ
(1 + [u(x)]p) dσ ≤ Cε ≤ η,

if ε is sufficiently small.

By Lemma 8, there exists a sequence (bn) of essential values of E|K∩N

such that bn → +∞. Without loss of generality we can assume that
bi < bj if i < j. Fix an integer n ≥ 1 and choose ε0 > 0 such that
ε0 < 1/2min2≤i≤n(bi− bi−1). Applying now [7, Theorem 2.6], we obtain
that for any 1 ≤ j ≤ n, there exists ηj > 0 such that if supK∩N |J(u)−
E(u)| < ηj then J|K∩N has an essential value cj ∈ (bj − ε0, bj + ε0). So,
by Lemma 9 applied for η = min{η1, . . . , ηn}, there exists δn > 0 such
that supK∩N |J(u)− E(u)| < η, provided that ε ≤ δn. This shows that
the energy functional J has at least n distinct essential values c1, . . . , cn

in (b1 − ε0, bn + ε0).
The next step consists in showing that c1, . . . , cn are critical values of

J|K∩N . Arguing by contradiction, let us suppose that cj is not a critical
value of J|K∩N . We show in what follows that
(A1) There exists δ̄ > 0 such that J|K∩N has no critical value in (cj −
δ̄, cj + δ̄).
(A2) For every a, b ∈ (cj − δ̄, cj + δ̄) with a < b, the pair (Jb

|K∩N , Ja
|K∩N )

is trivial.
Suppose, by contradiction, that (A1) is no valid. Then there exists

a sequence (dk) of critical values of J|K∩N with dk → cj as k → ∞.
Since dk is a critical value, it follows that there exists uk ∈ K ∩ N
such that J(uk) = dk and 0 ∈ ∂−J(uk). Using now the fact that J
satisfies the Palais-Smale condition at the level cj , it follows that, up to
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a subsequence, (uk) converges to some u ∈ K ∩ N as k → ∞. So, by
the continuity of J and the lower semicontinuity of gradJ( · ), we obtain
J(u) = cj and 0 ∈ ∂−J(u), which contradicts the initial assumption
on cj .

Let us now prove assertion (A2). For this purpose we apply the Non-
critical Point Theorem (see [6], Theorem 2.15]). So, there exists a con-
tinuous map χ : (K ∩N)× [0, 1] → K ∩N such that

χ(u, 0) = u, J(χ(u, t)) ≤ J(u),
J(u) ≤ b ⇒ J(χ(u, 1)) ≤ a, J(u) ≤ a ⇒ χ(u, t) = u.

(16)

Define the map ρ : Jb
|K∩N → Ja

|K∩N by ρ(u) = χ(u, 1). From (16) we
obtain that ρ is well defined and it is a retraction. Set

J : Jb
|K∩N × [0, 1] → Jb

|K∩N , J (u, t) = χ(u, t).

The definition of J implies that, for every u ∈ Jb
|K∩N ,

J (u, 0) = u and J (u, 1) = ρ(u) (17)

and, for any (u, t) ∈ Ja
|K∩N × [0, 1],

J (u, t) = J (u, 0). (18)

From (17) and (18) it follows that J is Ja
|K∩N -homotopic to the identity

of Ja
|K∩N , that is, J is a strong deformation retraction, so the pair

(Jb
|K∩N , Ja

|K∩N ) is trivial. Assertions (A1), and (A2) show that cj is not
an essential value of J|K∩N . This contradiction concludes the proof of
Theorem 3.
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for a double eigenvalue hemivariational inequality and applications. J. Global
Optimiz., 14:137–156, 1999.

[3] M. Campillo and I.-R. Ionescu. Initiation of antiplane shear instability under
slip dependent friction. J. Geophys. Res., 122:20363–20371, 1997.

[4] G. Chobanov, A. Marino, and D. Scolozzi. Multiplicity of eigenvalues for the
laplace operator with respect to an obstacle and non-tangency conditions. Non-
linear Analysis, 15:199–215, 1990.
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