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Abstract
In this paper, we study a diffusion model of Kirchhoff-type driven by a 
nonlocal integro-differential operator. As a particular case, we consider the 
following diffusion problem



∂tu + M
(
[u]2s

)
(−∆)su = |u| p−2u in Ω× R+, ∂tu = ∂u/∂t,

u(x, t) = 0 in (RN \ Ω)× R+,
u(x, 0) = u0(x) in Ω,

where [u]s is the Gagliardo seminorm of u, Ω ⊂ RN is a bounded domain with 
Lipschitz boundary, (−∆)s is the fractional Laplacian with 0 < s < 1 < p < ∞, 
u0 : Ω → R+ is the initial function, and M : R+

0 → R+
0  is continuous. Under 

some appropriate conditions, the local existence of nonnegative solutions is 
obtained by employing the Galerkin method. Then, by virtue of a differential 
inequality technique, we prove that the local nonnegative solutions blow-up 
in finite time with arbitrary negative initial energy and suitable initial values. 
Moreover, we give an estimate for the lower and upper bounds of the blow-up 
time. The main novelty is that our results cover the degenerate case, that is, the 
coefficient of (−∆)s could be zero at the origin.
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1. Introduction and main results

In this paper, we study the local existence and blow-up phenomena for the following fractional 
Kirchhoff-type parabolic problem





∂tu + M
(
[u]2s

)
LKu = |u| p−2u in Ω× R+, ∂tu = ∂u/∂t,

u(x, t) = 0 in (RN \ Ω)× R+,
u(x, 0) = u0(x) in Ω,

 (1.1)
where [u]2s =

˜
R2N |u(x, t)− u(y, t)|2K(x − y)dxdy, Ω ⊂ RN is a bounded domain with 

Lipschitz boundary ∂Ω, M : R+
0 → R+

0  is a continuous function, u0 � 0 is the initial function 
on Ω, and LK is a nonlocal integro-differential operator, which (up to normalization factors) 
may be defined by

LKϕ(x) =
1
2

ˆ

RN
(2ϕ(x)− ϕ(x + y)− ϕ(x − y))K(y) dy, (1.2)

for all ϕ ∈ C∞
0 (RN), where K : RN \ {0} → R+ is a function with the following properties:

 (κ1) γK ∈ L1(RN), with γ(x) = min{|x|2, 1}; 
 (κ2) there exists K0  >  0 such that K(x) � K0|x|−N−2s for all x ∈ RN \ {0}.

A typical example for K is given by K(x)  =  |x|−N−2s. In this case, LK becomes the fractional 
Laplace operator (−∆)s; see [25] and the references therein for recent results on the fractional 
Laplace operator, and [11] for further details on the fractional Laplacian and on the fractional 
Sobolev space. Throughout the paper, without further mentioning, we always assume that 
s ∈ (0, 1), N  >  2s and K satisfies (κ1) and (κ2).

The interest in studying problems like (1.1) relies not only on mathematical purposes 
but also on their significance in real models, as explained by Caffarelli in [7] and Laskin 
in [21]. Actually, Applebaum [2] stated that the fractional Laplacian operator of the form 
(−∆)s, s ∈ (0, 1), is the infinitesimal generator of a stable Lévy process. Recently, Fiscella 
and Valdinoci [16] proposed a stationary Kirchhoff variational equation which models the 
nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of 
the string. Indeed, the stationary problem (1.1) is a fractional version of a model, the so-called 
stationary Kirchhoff equation, introduced by Kirchhoff in [20].

A usual model for anomalous diffusion is the following linear evolution equation involving 
the fractional Laplacian: ∂tu + (−∆)su = 0, which derives asymptotically from basic random 
walk models, see [35, 41] and their references. Another nonlinear anomalous diffusion equa-
tion is the fractional porous medium equation

∂tu + (−∆)s(um) = 0 (1.3)

with 0  <  s  <  1 and m  >  0, which was first proposed by De Pablo et al [13]. Many important results 
on these equations have been obtained, see the overview paper [41] and the references therein.

To explain the motivation of our problem (1.1), let us shortly introduce a prototype of non-
local problem like (1.1). Nonlocal evolution equations of the form
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∂tu =

ˆ

RN
(u(y, t)− u(x, t))K(x − y)dy, (1.4)

and variations of it, have been recently widely used to model diffusion processes. More pre-
cisely, as stated in [14], if u(x, t) is thought of as a density of population at the point x at time 
t and K(x − y) is thought of as the probability distribution of jumping from location y to 
location x, then 

´
RN u(y, t)K(x − y)dy is the rate at which individuals are arriving at position x 

from all other places and −
´
RN u(x, t)K(x − y)dy is the rate at which they are leaving location 

x to travel to all other sites. This consideration, in the absence of external or internal sources, 
leads immediately to the fact that the density u satisfies (1.4). For recent references on nonlo-
cal diffusion problems, see [3, 9, 12, 34].

If we consider the effects of total population, then equation (1.4) becomes

∂tu = M
(¨

RN
|u(x, t)− u(y, t)|2K(x − y)dxdy

)ˆ

RN
(u(y, t)− u(x, t))K(x − y)dy,

 (1.5)

where the coefficient M : R+
0 → R+ denotes the possible changes of total population in RN . This 

describes the behaviour of individual subject to total population, such as the diffusion process of 
bacteria. Model (1.5) is also meaningful, since the way of measurements are usually taken in aver-
age sense. In particular, if s ↗ 1− and K(x)  =  |x|−N−2s, then equation (1.5) reduces to

∂tu = −M
(ˆ

RN
|∇u|2dx

)
∆u. (1.6)

Models of the type (1.6) have been studied by many authors, see [18] and the references 
therein; see also [5, 30] for wave equations of Kirchhoff-type.

In [32], by using the sub-differential approach, Pucci et al obtained the well-posedness of 
solutions for problem (1.1) with f (x, t) instead of |u|p−2u. Moreover, the large-time behavior 
and extinction of solutions also are considered. With the help of potential well theory, Fu and 
Pucci [17] studied the existence of global weak solutions and established the vacuum isolat-
ing and blow-up of strong solutions, provided that M ≡ 1 and 2 < p � 2∗s = 2N/(N − 2s). 
However, the Kirchhoff function M is assumed to satisfy the non-degenerate condition in the 
above papers. In [26], Pan et al investigated for the first time the existence of global weak 
solutions for degenerate Kirchhoff-type diffusion problems involving fractional p-Laplacian, 
by combining the Galerkin method with potential well theory. In essence, the authors in [26] 
just considered that M is a special function, namely

M(t) = tθ−1 with θ ∈ (1, 2∗s /2), for all t ∈ R+
0 .

Motivated by the above works, we would like to consider more general conditions on M 
which cover the degenerate case M(0) = 0. More precisely, we assume that

 (M1) M : R+
0 → R+

0  is continuous and there exist constants m0  >  0 and θ > 1 such that

M(σ) � m0σ
θ−1 for all σ ∈ R+

0 .

A typical prototype for the Kirchhoff function M is given by

M(σ) = a + bσθ−1, a � 0, b > 0,

for all σ ∈ R+
0 . If M(0) = 0, then problem (1.1) is called degenerate Kirchhoff-type prob-

lem; if M(0) > 0, then problem (1.1) is non-degenerate. So the Kirchhoff-type problem (1.1) 

X Mingqi et alNonlinearity 31 (2018) 3228
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studied in this paper may be degenerate. Recently, a great attention has been paid to study the 
degenerate stationary Kirchhoff problems, see, e.g. [4, 8, 17, 23, 24, 31, 33, 42–44].

Definition 1.1. A function u ∈ L∞(0, T; L2(Ω))
⋂

L2(0, T; Z)
⋂

C(0, T; L2(Ω)) is called a 
weak solution of problem (1.1), if ∂tu ∈ L2(0, T; L2(Ω)) and the following equality holds

ˆ T

0

ˆ

Ω

∂u
∂t

ϕdxdt +
ˆ T

0
M(‖u‖2

Z)

ˆ

Q
(u(x, t)− u(x, y))(ϕ(x, t)− ϕ(y, t))K(x − y)dxdydt

=

ˆ T

0

ˆ

Ω

|u| p−2uϕdxdt,

for all ϕ ∈ L2(0, T; Z), where the space Z will be introduced in section 2.

Here we call u a global weak solution of problem (1.1), if the equality in definition 1.1 
holds for any 0 < T < ∞; u is a local weak solution, if there exists T0  >  0 such that the equal-
ity in definition 1.1 holds for 0 < T � T0.

The first result of our paper is the following.

Theorem 1.1. Let (M1) holds. Suppose that 0 � u0 ∈ Z  and 2 < p <
(2+2θ)2∗s −4θ

2∗s
< 2∗s . 

Then there exists T0  >  0 such that problem (1.1) admits at least a nontrivial, nonnegative weak 

solutions for all t ∈ (0, T0].

In order to describe our second result, we need the following assumption:

 (M2) There exists a constant µ � 1 such that

µM (σ) � M(σ)σ for all σ ∈ R+
0 ,

  where M (σ) =
´ σ

0 M(τ)dτ .

Note that condition (M2) has been used to get the existence of solutions for the stationary 
p(x)-Kirchhoff problems, see for example [10].

Set

I(u) = 1
2
M (‖u‖2

Z)−
1
p

ˆ

Ω

|u| pdx, (1.7)

for all u ∈ Z
⋂

L p(Ω).
The second result of our paper reads as follows.

Theorem 1.2. Let (M1) and (M2) hold. Assume that 0 � u0 ∈ Z  and u is a nontrivial, non-
negative weak solution of problem (1.1). If 2µ < p and I(u0) < 0, then the solution u blows 
up in finite time t*, where t* satisfies

0 < t∗ �
‖u0‖2

L2(Ω)

p(2 − p)I(u0)
.

Furthermore, we give a precise estimate for the lower bounds of the blow-up time t*.

Theorem 1.3. Suppose that all conditions in theorem 1.2 hold. In addition, if  8s/3  <  N  <  4s,

1 < µ < min

{
2∗

s

2
,

s2∗s
4(N − 2s)

+
1
2

}
, 2µ < p <

s2∗
s

2(N − 2s)
+ 1,

then
ˆ ∞

Φ(0)

dτ
k1 + k2τΛ

� t∗,

X Mingqi et alNonlinearity 31 (2018) 3228
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where

Φ(0) =
ˆ

Ω

u0(x)kdx > 0, max

{
2,

2(N − 2s)( p − 1)
s

,
N(θ − 1)

s

}
< k � 2∗s ,

k1 =

(
1 − 2(N − 2s)( p + k − 1)

k(2N − 3s)

)
|Ω|, k2 =

S− N
3N−8s (3N − 8s)

4(N − 2s)ε
N

3N−8s
,

ε =
8(N − 2s)

N
(k − 1)m0|Ω|

− 2(θ−1)(2∗s −k)
k2∗s S

1
2 , Λ =

3k(N − 2s)− 2N(θ − 1)
k(3N − 8s)

,

and S is the best constant of the embedding Z ↪→ L2∗s (Ω).

Remark 1.1. To the best of our knowledge, there are no results to investigate the blow-up of 
solutions in the study of fractional diffusion problems of Kirchhoff-type.

The rest of the paper is organized as follows. In section 2, we recall some necessary defini-
tions and properties of the fractional Sobolev spaces. In section 3, we obtain the local exist-
ence of weak solutions of problem (1.1) by the Galerkin method. In section 4, we show that 
the weak solutions of problem (1.1) blow-up in finite time under some appropriate conditions. 
Moreover, we give an estimate for the upper and lower bounds of the blow-up time.

2. Preliminaries

In this section, we first recall some necessary properties of fractional Sobolev spaces which 
will be used later, see [11, 37–39] for more details.

Let X be the linear space of Lebesgue measurable function u : RN → R whose restrictions 
to Ω belong to L2(Ω) and such that

the map (x, y) �→ |u(x)− u(y)|2K(x − y) is in L1(Q, dxdy),

where Q = R2N \ (CΩ× CΩ) and CΩ = RN \ Ω. The space X is endowed with the norm

‖ϕ‖X =

(
‖ϕ‖2

L2(Ω) +

¨

Q
|u(x)− u(y)|2K(x − y)dxdy

)1/2

, (2.1)

for all ϕ ∈ X . We observe that bounded and Lipschitz functions belong to X, thus X is not 
reduced to {0}; see [37] for further details on the space X.

The functional space Z denotes the closure of C∞
0 (Ω) in X. The scalar product defined for 

any ϕ,ψ ∈ Z as

〈ϕ,ψ〉Z =

¨

Q
(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))K(x − y)dxdy, (2.2)

makes Z a Hilbert space. The norm

‖ϕ‖Z =

(¨

Q
|ϕ(x)− ϕ(y)|2K(x − y)dxdy

)1/2

 (2.3)

is equivalent to the usual norm defined in (2.1), as proved in [36, lemma 6]. Note that in 
(2.1)–(2.3) the integrals can be extended to all RN  and R2N, since u  =  0 a.e. in CΩ. By lemma 
6 of [36] and (κ1), the Hilbert space Z = (Z, ‖ · ‖Z) is continuously embedded in Lr(Ω) for 
any r ∈ [1, 2∗s ]. Hence there exists Cr  >  0 such that

X Mingqi et alNonlinearity 31 (2018) 3228
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‖u‖Lr(Ω) ≤ Cr‖u‖Z for all u ∈ Z and r ∈ [1, 2∗s ]. (2.4)

Throughout the paper, the letters c, ci, C, Ci, i = 1, 2, · · · , denote positive constants which 
vary from line to line, but are independent of the terms that take part in any limit process.

We shall work on the Banach space L2(0,T;Z), endowed with the norm

‖u‖L2(0,T;Z) =

(ˆ T

0
‖u‖2

Zdt
)1/2

,

where T ∈ (0,∞) is a given constant. Obviously, L2(0, T, Z) is a Hilbert space, with the scalar 
product

〈u, v〉L2(0,T;Z) =

ˆ T

0
〈u, v〉Zdt for all u, v ∈ L2(0, T; Z).

It follows from [40, theorem 1.5] that the dual space of L2(0, T;Z) can be identified with 
L2(0, T; Z′).

Next, we consider the eigenvalue of the operator LK with homogeneous Dirichlet boundary 
data, namely the eigenvalue of the problem

{
−LKu = λu in Ω

u = 0 in RN \ Ω. (2.5)

More precisely, the following weak formulation of (2.5) is discussed: there is a function 
u ∈ Z  such that

¨

R2N
(u(x)− u(y))(v(x)− v(y))K(x − y)dxdy = λ

ˆ

Ω

u(x)ϕ(x)dx, (2.6)

for any ϕ ∈ Z. We recall that λ ∈ R  is an eigenvalue of −LK if there exists a non-trivial solu-
tion u ∈ Z  of problem (2.5) or its weak formulation (2.6), and any solution will be called an 
eigenfunction corresponding to the eigenvalue λ. Moreover, it easily follows from continuous 
embedding that the following Rayleigh quotient satisfies

λ1 = inf
u∈Z\{0}

‖u‖2
Z

‖u‖2
L2(Ω)

∈ (0,∞). (2.7)

Moreover, the sequence {ek}k  of eigenfunctions corresponding to {λk}k is an orthonormal 
basis in L2(Ω) and an orthogonal basis of Z, see [37, proposition 9] for more details.

Proposition 2.1 ([40, proposition 1.2]). Let V  be a Banach space which is dense and con-
tinuously embedded in the Hilbert space H. We identify H = H′ so that V ↪→ H = H′ ↪→ V ′. 
Then the Banach space Wp = {u ∈ L p(0, T; V) : u′ ∈ L p′(0, T; V ′)} is contained in C(0, T; H). 
Moreover, if u ∈ Wp then ‖u(·)‖L2(Ω) is absolutely continuous on [0, T], we have

d
dt
‖u(·)‖2

L2(Ω) = 2〈u′(·), u(·)〉L2(Ω) a.e. on [0, T],

and there is a constant C  >  0 such that

‖u‖C(0,T;H) � C‖u‖Wp for all u ∈ Wp.

X Mingqi et alNonlinearity 31 (2018) 3228
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Proposition  2.2 ([40, proposition 1.3]). Let B0, B, B1 be Banach spaces with  
B0 ⊂ B ⊂ B1. Assume that B0 ↪→ B is compact and B ↪→ B1 is continuous. Let 
1 < p < ∞, 1 < q < ∞, let B0 and B1 be reflexive, and define

W = {v : v ∈ L p(0, T; B0), ∂tu ∈ Lq(0, T; B1)} .

Then the embedding W ↪→ L p(0, T; B) is compact.

3. Proof of theorem 1.1

In this section, we prove the local existence of nonnegative weak solutions for problem (1.1).
Let {ej}j denote the eigenfunctions of problem (2.5). Then ‖ej‖L2(Ω) = 1, {ej}j is an ortho-

normal basis in L2(Ω) and an orthogonal basis of Z. Set Vn = span{e1, · · · , en}. Then {Vn}n 
is a dense subset of Z. Furthermore, we have the following property.

Lemma 3.1. For u0 ∈ Z , there exists a sequence {u0n}n with u0n ∈ Vn , such that u0n → u0 
in Z as n → ∞.

In order to prove the existence of weak solutions for problem (1.1) by applying the Galerkin 
method, we shall find the approximate solutions of the following equality:

un(x, t) =
n∑

j=1

(ηn(t))jej(x) for all n ∈ N,

with the unknown functions (ηn(t))j are determined by the system of ordinary differential 
equations

{
η′n(t) = In(t, ηn(t)), t ∈ R+,
ηn(0) = U0n, (3.1)

where U0n =
(´

Ω
u0n(x)e1(x)dx, · · · ,

´
Ω

u0n(x)en(x)dx
)
, u0n comes from lemma 3.1 and

(In(t, ηn))j = −M(‖un‖2
Z)

¨

Q
(un(x, t)− un(y, t))(ej(x)− ej(y))K(x − y)dxdy

+

ˆ

Ω

|u+n (x, t)| p−2u+n (x, t)ej(x)dx, j = 1, 2, · · · , n.

It follows from the continuity of M and the definition of In that In is continuous on R+
0 × Rn. 

The Peano theorem (see [19]) implies that there exists a local solution of problem (3.1) on 
[0,Tn] (0 < Tn < ∞).

Lemma 3.2 (A priori estimate). If 2 < p <
(2+2θ)2∗s −4θ

2∗s
< 2∗s , then there exists T*  >  0 de-

pending on N, p, m0, θ, ‖u0‖L2(Ω), such that
ˆ

Ω

|un(x, t)|2 dx +
ˆ t

0
‖un(x, t)‖2θ

Z dt � C,

for all t ∈ [0, T0] and T0 = T∗/2, where C  >  0 independent of t and n.

Proof. Multiplying (3.1) by (ηn(t))j and summing with respect to j from 1 to n, we obtain

d
dt

ˆ

Ω

∣∣un(x, t)
∣∣2dx + M(‖un‖2

Z)

¨

Q
|un(x, t)− un(y, t)|2K(x − y)dxdy =

ˆ

Ω

|u+n (x, t)| pdx.

 (3.2)

X Mingqi et alNonlinearity 31 (2018) 3228
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Since 2 < p <
(2+2θ)2∗s −4θ

2∗s
< 2∗s  and using the classical interpolation inequality (see [1,  

theorem 2.11]), we have

‖un(x, t)‖L p(Ω) � ‖un(x, t)‖κL2(Ω)‖un(x, t)‖1−κ

L2∗s (Ω)
,

for all t ∈ [0, Tn], where κ ∈ (0, 1) satisfies

1
p
=

κ

2
+

1 − κ

2∗s
.

We observe that

(1 − κ) p =
2∗

s ( p − 2)
2∗

s − 2
< 2θ

and

α :=
2θκp

2θ − (1 − κ)p
=

4θ(2∗
s − p)

2∗s (2θ − p + 2)− 4θ
> 2.

Hence (2.4) implies that
ˆ

Ω

|un(x, t)| pdx � ‖un(x, t)‖κp
L2(Ω)

‖un(x, t)‖(1−κ) p
L2∗s (Ω)

� C p
2∗s
‖un(x, t)‖κp

L2(Ω)
‖un(x, t)‖(1−κ) p

Z .
 (3.3)

For any ε ∈ (0, 1), the Young inequality yields

‖un(x, t)‖κp
L2(Ω)

‖un(x, t)‖(1−κ) p
Z � ε‖un(x, t)‖2θ

Z + C(ε)‖un(x, t)‖αL2(Ω).

Combining this inequality with (3.3), we get
ˆ

Ω

|un(x, t)| pdx � C p
2∗s
ε‖un(x, t)‖2θ

Z + C(ε)‖un(x, t)‖αL2(Ω). (3.4)

Inserting (3.4) in (3.2), we have

d
dt

ˆ

Ω

∣∣un(x, t)
∣∣2dx + M(‖un‖2

Z)

¨

Q
|un(x, t)− un(y, t)|2K(x − y)dxdy

� C p
2∗s
ε‖un(x, t)‖2θ

Z + C(ε)‖un(x, t)‖αL2(Ω).
 (3.5)

Taking ε = m0/(2C p
2∗s
) in (3.5), we conclude from (M1) that

d
dt

ˆ

Ω

∣∣un(x, t)
∣∣2dx +

m0

2
‖un(x, t)‖2θ

Z � C1‖un(x, t)‖αL2(Ω), (3.6)

where C1  >  0 is a constant. Moreover,

d
dt
‖un(x, t)‖2

L2(Ω) � C1‖un(x, t)‖αL2(Ω).
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Since α > 2, the above inequality yields

‖un(x, t)‖2
L2(Ω) �

[
C1−α

2
2 − C1

(α
2
− 1

)
t
] 2

2−α

,

only if t < T∗ := 2C(2−α)/2
2

C1(α−2) , where C2 = supn

´
Ω

u2
n(x, 0)dx ∈ (0,∞). It follows that

‖un(x, t)‖2
L2(Ω) � 2

2
α−2 C2 for all t � min{Tn, T∗/2}.

Therefore
ˆ

Ω

u2
n(x, Tn)dx � 22/(α−2)(C2 + 1).

Thus, we can replace u0n in (3.1) with un(x, Tn) and extend the solution to the interval [0, T*/2] 
by repeating the above process. We obtain

ˆ

Ω

u2
n(x, t)dx � 22/(α−2)C2 for all t ∈ [0, T∗/2].

Combining this inequality with (3.6), we have

d
dt

ˆ

Ω

∣∣un(x, t)
∣∣2dx +

a0

2
‖un(x, t)‖2θ

Z � C3. (3.7)

Fixing τ ∈ [0, T∗/2] and integrating (3.7) with respect to t over [0, τ ], we get
ˆ

Ω

∣∣un(x, τ)
∣∣2dx +

a0

2

ˆ τ

0
‖un(x, t)‖2θ

Z dt � C3T∗.

The assertion follows by the arbitrary of τ. □ 

Next, by lemma 3.2, we obtain the following property.

Lemma 3.3. There exists a constant C  >  0 independent of n such that
ˆ T0

0

ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dxdt � C

and
¨

Q
|un(x, t)− un(y, t)|2K(x − y)dxdy � C for all t ∈ [0, T0].

Proof. Multiplying (3.1) by (η′n(t))j and summing with respect to j from 1 to n, we obtain
ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dx + M(‖un‖2
Z)

¨

Q
(un(x, t)− un(y, t))

(∂un(x, t)
∂t

− ∂un(y, t)
∂t

)
K(x − y)dxdy

=

ˆ

Ω

|u+n (x, t)| p−2u+n (x, t)
∂un(x, t)

∂t
dx.

 
(3.8)
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Integrating (3.8) with respect to t over [0, τ ] (τ ∈ [0, T0]), we have
ˆ τ

0

ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dxdt +
1
2
M (‖un(x, τ)‖2

Z)−
λ

p

ˆ

Ω

|u+n (x, τ)| pdx

=
1
p

ˆ

Ω

|u+n (x, 0)| pdx +
1
2
M (‖un(x, 0)‖2

Z),
 (3.9)

where M (‖un(x, τ)‖2
Z) =

´ ‖un(x,τ)‖2
Z

0 M(σ)dσ. Here we have used the following fact:

d
dt

M (‖un(x, t)‖2
Z)

= 2M(‖un‖2
Z)

¨

Q
(un(x, t)− un(y, t))

(∂un(x, t)
∂t

− ∂un(y, t)
∂t

)
K(x − y)dxdy.

Notice that by lemma 3.1

un(x, 0) =
n∑

j=1

(ˆ

Ω

u0n(x)ej(x)dx
)

ej(x) = u0n(x) → u0, in Z,

as n → ∞. Thus, there exists a constant C3  >  0 such that ‖un(x, 0)‖2
Z � C3. Furthermore, the 

continuity of M implies that there exists a constant C4  >  0 such that

M (‖un(x, 0)‖2
Z) � C4.

Since 2 < p <
(2+2θ)2∗s −4θ

2∗s
< 2∗s , there exists Cp  >  0 such that

‖un(x, 0)‖L p(Ω) � Cp‖un(x, 0)‖Z ,

where Cp is the embedding constant of Z ↪→ L p(Ω). Thus, there exists C5  >  0 such that
ˆ

Ω

|u+n (x, 0)| pdx �
ˆ

Ω

|un(x, 0)| pdx � C5.

Combining the above inequalities with (3.9), we get
ˆ τ

0

ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dxdt +
1
2
M (‖un(x, τ)‖2

Z)−
1
p

ˆ

Ω

|u+n (x, τ)| pdx � C6,
 (3.10)

where C6 = C4/2 + C5/p. Inserting (3.4) into (3.10), we have for any ε ∈ (0, 1)
ˆ τ

0

ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dxdt +
1
2
M (‖un(x, τ)‖2

Z)

�
C p

2∗s

p
ε‖un(x, τ)‖2θ

Z + C(ε)‖un(x, τ)‖αL2(Ω) + C6.
 (3.11)

Taking ε = a0/(4pλC p
2∗s
) in (3.11), we conclude from (M1) and lemma 3.2 that

ˆ τ

0

ˆ

Ω

∣∣∂un(x, t)
∂t

∣∣2dxdt +
m0

4
‖un(x, τ)‖2θ

Z � C7

(
‖un(x, τ)‖αL2(Ω) + 1

)
� C8.

Hence the lemma is proved. □ 
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Remark 3.1. By (3.1), the following equality holds for all ϕ ∈ Z
ˆ

Ω

∂un(x, t)
∂t

ϕdx + M(‖un‖2
Z)

¨

Q
(un(x, t)− un(y, t))(ϕ(x)− ϕ(y))K(x − y)dxdy

=

ˆ

Ω

|u+
n | p−2u+

n ϕdx,

since {ej}j is an orthonormal basis in L2(Ω) and an orthogonal basis of Z.

Proof of theorem 1.1. By lemma 3.2, lemma 3.3 and the reflexivity of L2(0, T0; Z), there 
exist a subsequence of {un}n still denoted by {un}n and u ∈ L2(0, T0; Z)

⋂
L∞(0, T0; L2(Ω)) 

such that




un ⇀ u weakly ∗ in L∞(0, T0; L2(Ω)),
un ⇀ u weakly in L2(0, T0; Z),
un ⇀ u weakly ∗ in L∞(0, T0; Z),
∂un
∂t ⇀ ∂u

∂t weakly in L2(0, T0; L2(Ω)).

 (3.12)

Next, we show that u+
n → u+ strongly in L p(0, T0; L p(Ω)). Since {un}n ⊂ L2(0, T0; Z) 

and {∂un
∂t }n ⊂ L2(0, T0; L2(Ω)), proposition 2.2 implies that up to a subsequence, 

un → u strongly in L2(0, T0; L2(Ω)). Without loss of generality, we assume that 
un → u a.e. on Ω× [0, T0]. Hence u+

n → u+ a.e. on Ω× [0, T0]. Since p < 2∗s , we have 
‖un(x, t)− u(x, t)‖L2∗s (Ω) � C2∗s ‖un(x, t)− u(x, t)‖Z  for all t ∈ [0, T0]. Moreover, by 
un ∈ L∞(0, T0; Z), we deduce that

ˆ T0

0

ˆ

Ω

|un(x, t)− u(x, t)|2
∗
s dxdt � C,

where C  >  0 is a constant independent of n. For any measurable subset U ⊂ Ω× [0, T0], the 
Hölder inequality implies that

ˆ

U
|u+n − u+| pdxdt �

ˆ

U
|un − u| pdxdt �

∥∥|un − u| p
∥∥

L
2∗s
p (U)

‖1‖
L

2∗s
2∗s −p (U)

= ‖un − u‖ p
L2∗s (U)

‖1‖
L

2∗s
2∗s −p (U)

� C p|U|(2∗s −p)/2∗s ,

where |U| is the Lebesgue measure of set U. This yields that the sequence {|un − u| p}n is 
equi-integrable in Ω× [0, T0]. By u+

n → u+ a.e. on Ω× [0, T0], we have |u+n − u+| p → 0 a.e. 
on Ω× [0, T0]. Therefore, the Vitali convergence theorem implies

lim
n→∞

ˆ T0

0

ˆ

Ω

|u+
n (x, t)− u+(x, t)| pdxdt = 0. (3.13)

Hence, the Brézis–Lieb lemma yields
ˆ T0

0

ˆ

Ω

|u+
n (x, t)| pdxdt = lim

n→∞

ˆ T0

0

ˆ

Ω

|u+(x, t)| pdxdt. (3.14)
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Since {|u+n | p−2u+
n }n is bounded in L p/( p−1)(0, T0; L p/( p−1)(Ω)), |u+n | p−2u+n → |u+| p−2u+ 

a.e. on Ω× [0, T0], we conclude from the Brézis–Lieb lemma that

lim
n→∞

ˆ T0

0

ˆ

Ω

(∣∣|u+
n | p−2u+

n

∣∣ p/( p−1) −
∣∣|u+

n | p−2u+n − |u+| p−2u+
∣∣ p/( p−1)

)
dxdt

=

ˆ T0

0

ˆ

Ω

∣∣|u+| p−2u+
∣∣ p/( p−1)

dxdt.

Combining this information with (3.14) we conclude that

lim
n→∞

ˆ T0

0

ˆ

Ω

∣∣|u+
n (x, t)| p−2u+n (x, t)− |u+(x, t)| p−2u+(x, t)

∣∣ p/( p−1)
dxdt = 0,

 (3.15)

that is, |u+n (x, t)| p−2u+n (x, t) → |u+(x, t)| p−2u+(x, t) strongly in L p/( p−1)(0, T0; L p/( p−1)(Ω)).
Finally, we prove that un → u strongly in L2(0, T0; Z).
To this aim, we define the operator F : L2(0, T0; Z)× L2(0, T0; Z) → R by

F (ϕ,ψ) =
ˆ T0

0

¨

Q
(ϕ(x, t)− ϕ(y, t))(ψ(x, t)− ψ(y, t))K(x − y)dxdydt,

for all ϕ, ψ ∈ L2(0, T0; Z). Obviously, F  is a bilinear operator in L2(0, T0; Z)× L2(0, T; Z). 
The following fact implies that F  is continuous in L2(0, T0; Z)× L2(0, T0; Z):

|F (ϕ,ψ)| � ‖ϕ‖L2(0,T;Z)‖ψ‖L2(0,T0;Z) for all ϕ and ψ ∈ L2(0, T; Z),

by the Hölder inequality. Hence the fact that un converges to u weakly in L2(0, T0; Z) means 
that

lim
n→∞

F (un,ψ) = F (u,ψ) for all ψ ∈ L2(0, T0; Z).

Let us recall that a sequence { fj(t)}j is relatively compact in L1(0, T0) if and only if:

 (i) there exists a constant C  >  0 such that ‖fj‖L1(0,T0) � C  for all j; 
 (ii) for every ε > 0 there exists a constant δ = δ(ε) > 0 such that for any measurable subset 

E with |E| < δ, we have

ˆ

E
|fj(t)|dt < ε,

  uniformly for all j, see [29, proposition 1.3].

In the following, we show that {M(‖un‖2
Z)}n is relatively compact in L1(0, T0). By lemma 

3.3 and the continuity of M, there exists C  >  0 such that M(‖un‖2
Z) � C  for all n and t. Hence ´ T0

0 M(‖un‖2
Z)dt � CT0 for all n, that is, the assertion (i) holds. For any ε > 0 there exists 

δ = ε/C such that for any measurable subset E with |E| < δ
ˆ

E
M(‖un‖2

Z)dt � C|E| < ε.
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Thus, the assertion (ii) is satisfied. It follows that {M(‖un‖2
Z)}n is relatively compact in  

L1(0, T0). Therefore, up to a subsequence, M(‖un‖2
Z) converges to some function 

ξ(t) ∈ L1(0, T0) for a.e. t ∈ [0, T0]. Furthermore, the Lebesgue dominated convergence  
theorem implies that

lim
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))K(x − y)dxdydt

=

ˆ T0

0
ξ(t)
¨

Q
(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))K(x − y)dxdydt,

 

(3.16)

for all ϕ ∈ L2(0, T0; Z). Similarly,

lim
n→∞

ˆ T0

0

¨

Q
[M(‖un‖2

Z)− ξ(t)]2(u(x, t)− u(y, t))2K(x − y)dxdydt = 0,

which means that

M(‖un‖2
Z)u → ξ(t)u stongly in L2(0, T; Z). (3.17)

Combining (3.17) with the fact that un converges weakly to u in L2(0, T;Z), we obtain

lim
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t))(u(x, t)− u(y, t))K(x − y)dxdydt

=

ˆ T0

0
ξ(t)
¨

Q
(u(x, t)− u(y, t))2K(x − y)dxdydt.

 

(3.18)

By remark 3.1, we have
ˆ T0

0

ˆ

Ω

∂un

∂t
ϕdxdt

+

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t))(ϕ(x, t)− ϕ(y, t))K(x − y)dxdydt

=

ˆ T0

0

ˆ

Ω

|u+n | p−2u+
n ϕdxdt,

 

(3.19)

for all ϕ ∈ L2(0, T; Z). Letting n → ∞ in (3.19) and using (3.16), we have
ˆ T0

0

ˆ

Ω

∂u
∂t

ϕdxdt

+

ˆ T0

0
ξ(t)
¨

Q
(u(x, t)− u(y, t))(ϕ(x, t)− ϕ(y, t))K(x − y)dxdydt

=

ˆ T0

0

ˆ

Ω

|u+| p−2u+ϕdxdt,

 

(3.20)

for all ϕ ∈ L2(0, T; Z). Taking ϕ = u in (3.20) and using proposition 2.1, we arrive at the 
equality
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1
2

ˆ

Ω

|u(x, T0)|2 − |u0(x)|2dx +
ˆ T0

0
ξ(t)
¨

Q
(u(x, t)− u(y, t))2K(x − y)dxdydt

=

ˆ T0

0

ˆ

Ω

|u+(x, t)| pdxdt.

 

(3.21)

Since 
´
Ω

u2
n(x, T0)dx � C, there exist a subsequence of {un}n (still denoted by {un}n) and 

a function ũ in L2(Ω) such that un(x, T0) ⇀ ũ weakly in L2(Ω). Then for any ϕ(x) ∈ C∞
0 (Ω) 

and η(t) ∈ C1[0, T0], there holds
ˆ T0

0

ˆ

Ω

∂un

∂t
ϕηdxdt =

ˆ

Ω

un(x, T0)ϕη(T0)dx −
ˆ

Ω

un(x, 0)ϕη(0)dx

−
ˆ T0

0

ˆ

Ω

unϕ
dη(t)

dt
dxdt.

Letting n → ∞, we get by (3.12) and un(x, 0) → u0 strongly in Z,
ˆ T0

0

ˆ

Ω

∂u
∂t

ϕηdxdt =
ˆ

Ω

ũϕη(T0)dx −
ˆ

Ω

u0(x)ϕη(0)dx −
ˆ T0

0

ˆ

Ω

uϕ
dη(t)

dt
dxdt.

Integrating by parts, the left-hand side of above equality can be written as
ˆ

Ω

u(x, T0)ϕη(T0)dx −
ˆ

Ω

u(0, x)ϕη(0)dx −
ˆ T0

0

ˆ

Ω

uϕ
dη(t)

dt
dxdt.

Hence, we deduce that
ˆ

Ω

(ũ − u(x, T0))η(T0)ϕdx −
ˆ

Ω

(u0(x)− u(x, 0))η(0)ϕdx = 0.

Choosing η(T0) = 1, η(0) = 0 or η(T0) = 0, η(0) = 1, by the density of C∞
0 (Ω) in L2(Ω) we 

have ũ = u(x, T0) and u(x,0)  =  u0(x) a.e. in Ω. It follows that un(x, T0) ⇀ u(x, T0) weakly in 
L2(Ω) as n → ∞. Therefore

ˆ

Ω

u2(x, T0)dx � lim inf
n→∞

ˆ

Ω

u2
n(x, T0)dx. (3.22)

On the other hand, taking ϕ = un in (3.1), we have

1
2

ˆ

Ω

|un(x, T0)|2 − |un(x, 0)|2dx

+

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t))2K(x − y)dxdydt

=

ˆ T0

0

ˆ

Ω

|u+n (x, t)| pdxdt.

By (3.14), (3.16), (3.21), (3.22) and (3.18), we obtain
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lim sup
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t))2K(x − y)dxdydt

� −1
2

ˆ

Ω

|u(x, T0)|2 + |u0(x)|2dx +
ˆ T0

0

ˆ

Ω

|u(x, t)| pdxdt

=

ˆ T0

0
ξ(t)
¨

Q
(u(x, t)− u(y, t))2K(x − y)dxdydt

= lim
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t))(u(x, t)− u(y, t))K(x − y)dxdydt.

Hence,

lim sup
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t)− u(x, t)− u(y, t))2K(x − y)dxdydt � 0.

Since M(σ) � 0 for all σ � 0, the above inequality yields

lim
n→∞

ˆ T0

0
M(‖un‖2

Z)

¨

Q
(un(x, t)− un(y, t)− u(x, t)− u(y, t))2K(x − y)dxdydt = 0.

Thus, there exists a subsequence of {un}n still denoted by {un}n such that for a.e. t ∈ [0, T0]

lim
n→∞

M(‖un(x, t)‖2
Z)

¨

Q
(un(x, t)− un(y, t)− u(x, t)− u(y, t))2K(x − y)dxdy = 0.

Furthermore, we obtain

lim
n→∞

¨

Q
(un(x, t)− un(y, t)− u(x, t)− u(y, t))2K(x − y)dxdy = 0 for a.e. t ∈ [0, T0],

since M(σ) � a0σ
m0 for all σ � 0. Thus, for a.e. t ∈ [0, T0], we have un(x, t) → u(x, t) strongly 

in Z. It is easy to see that ‖un(x, t)‖2
Z → ‖u(x, t)‖2

Z a.e. on [0,T0]. Hence M(‖un‖2
Z) → M(‖u‖2

Z) 
a.e. on [0,T0], by the continuity of M. Therefore, we obtain that ξ(t) = M(‖u‖2

Z) a.e. on [0,T0].
It remains to show that u ∈ C(0, T0; L2(Ω)) and u � 0 a.e. on Ω× [0, T0]. Since

u ∈ L2(0, T0; L2(Ω)) and
∂u
∂t

∈ L2(0, T0; L2(Ω),

up to a set of measure zero, we obtain that u ∈ C(0, T0; L2(Ω)) by proposition 2.1.
Note that u− = max{0,−u} ∈ L2(0, T0; Z). Taking ϕ = −u−χ(0,τ) for τ ∈ (0, T0] as 

test  function in (3.20), where χ(0,τ) denotes the characteristic function of the set (0, τ), 
we obtain
ˆ τ

0

ˆ

Ω

∂u
∂t

(−u−)dxdt +
ˆ τ

0
M(‖u‖2

Z)

¨

Q
|u−(x, t)− u−(y, t)|2K(x − y)dxdydt � 0.

 (3.23)
It follows from (3.23) that

ˆ

Ω

|u−(x, τ)|2dx �
ˆ

Ω

|u−
0 (x)|2dx for all τ ∈ [0, T0].
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Combining this inequality with u0 � 0 in Ω, we get u−  =  0 a.e. on Ω× [0, T0]. Hence u � 0 
a.e. on Ω× [0, T0]. In conclusion, it follows from (3.20) that the theorem is proved. □ 

Corollary 3.1. The local solution u ∈ L2(0, T0; Z)
⋂

C(0, T0; L2(Ω)) obtained by theorem 
1.1 satisfies

ˆ

Ω

∂u(x, τ)
∂t

φdx + M(‖u‖2
Z)

¨

Q
(u(x, τ)− u(y, τ))(φ(x)− φ(y))K(x − y)dxdy

=

ˆ

Ω

u(x, τ) p−1φdx

 (3.24)

for almost every 0 < τ � T0 and all φ ∈ Z .

Proof. For τ ∈ (0, T0), we choose ∆τ  such that τ +∆τ ∈ (0, T0]. Without loss of general-
ity, we assume that ∆τ > 0. To prove (3.24), let us take ϕ = φχ(τ ,τ+∆τ) as a test function 
in (1.1), where χ(τ ,τ+∆τ) is the characteristic function of the set (τ , τ +∆τ) and φ ∈ Z . We 
obtain
ˆ τ+∆τ

τ

ˆ

Ω

∂u
∂t

φdxdt +
ˆ τ+∆τ

τ

M(‖u(x, t)‖2
Z)

¨

Q
(u(x, t)− u(y, t))(φ(x)− φ(y))K(x − y)dxdydt

=

ˆ τ+∆τ

τ

ˆ

Ω

|u(x, t)| pdxdt.

 

(3.25)

Taking into account that
∣∣∣∣
ˆ T0

0

ˆ

Ω

∂u(x, t)
∂t

u(x, t)dxdt
∣∣∣∣ �

∥∥∥∥
∂u(x, t)

∂t

∥∥∥∥
L2(0,T0;L2(Ω))

‖u‖L2(0,T0;L2(Ω)) < ∞,

ˆ τ+∆τ

τ

M(‖u(x, t)‖2
Z)

¨

Q
(u(x, t)− u(y, t))(φ(x)− φ(y))K(x − y)dxdydt

�
ˆ τ+∆τ

τ

M(‖u‖2
Z)‖u‖Z‖φ‖Zdt < ∞,

and
ˆ T0

0

ˆ

Ω

|u(x, t)| pdxdt < ∞,

we get with the aid of Lebesgue’s differential theorem

lim
∆τ→0

1
∆τ

ˆ τ+∆τ

τ

ˆ

Ω

∂u(x, t)
∂t

u(x, t)dxdt =
ˆ

Ω

∂u(x, τ)
∂t

u(x, τ)dx,

lim
∆τ→0

1
∆τ

ˆ τ+∆τ

τ

M(‖u(x, t)‖2
Z)

¨

Q
(u(x, t)− u(y, t))(φ(x)− φ(y))K(x − y)dxdydt

= M(‖u(x, τ)‖2
Z)

¨

Q
(u(x, τ)− u(y, τ))(φ(x)− φ(y))K(x − y)dxdy,

lim
∆τ→0

1
∆τ

ˆ τ+∆τ

τ

ˆ

Ω

|u(x, t)| pdxdt =
ˆ

Ω

|u(x, τ)| pdx,
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for a.e. τ ∈ (0, T0). Dividing (3.25) by ∆τ  and letting ∆τ → 0, we arrive at
ˆ

Ω

∂u
∂t

φdx + M(‖u(x, τ)‖2
Z)

¨

Q
(u(x, τ)− u(y, τ))(φ(x)− φ(y))K(x − y)dxdy

=

ˆ

Ω

|u(x, τ)| pdx,

for a.e. τ ∈ (0, T0). The proof is now complete. □ 

4. Global nonexistence via blow-up analysis

In this section, by means of a differential inequality technique, we prove that the local weak 
solutions of problem (1.1) blow up in finite time; see [15, 22, 28] and the references therein 

for some results on blow-up of solutions. In the following, we shortly use ut to denote ∂u
∂t  for 

convenience.

Definition 4.1. We say that the solution u(x, t) blows up in finite time if there exists 
t∗ ∈ (0,∞) such that

‖u(x, t)‖L2(Ω) → ∞ as t → t∗.

Proof of theorem 1.2. Let u be a nonnegative solution of problem (1.1). Set

f (t) = ‖u(x, t)‖2
L2(Ω)

and

I(u) = 1
2
M (‖u‖2

Z)−
1
p

ˆ

Ω

u pdx.

By corollary 3.1 and (M2), we obtain

f ′(t) = 2
ˆ

Ω

uutdx = −2M(‖u‖2
Z)‖u‖2

Z + 2
ˆ

Ω

u pdx

� −2µM (‖u‖2
Z)+2

ˆ

Ω

u pdx.

It follows from p > 2µ that

f ′(t) � −2µM (‖u‖2
Z) + 2

ˆ

Ω

u pdx � E(t), (4.1)

where

E(t) = −2pI(u) = −pM (‖u‖2
Z) + 2

ˆ

Ω

u pdx.
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Through straightforward computation we deduce that

E′(t) = 2p
[
−M(‖u‖2

Z)

ˆ

Ω

(u(x, t)− u(y, t))(ut(x, t)− ut(y, t))K(x − y)dxdy +
ˆ

Ω

u putdx
]

= 2p
[
−1

2
d
dt

M (‖u‖2
Z) +

1
p

d
dt

ˆ

Ω

u pdx
]

= 2p
ˆ

Ω

u2
t dx.

 (4.2)

Using the Hölder inequality and (4.2), we get

f (t)E′(t) = 2p‖u‖2
L2(Ω)‖ut‖2

L2(Ω) � 2p
(ˆ

Ω

uutdx
)2

=
p
2
( f ′(t))2. (4.3)

By (4.2), we know that E(t) is a nondecreasing function with respect to t. Note that 
E(t) = −2pI(u(x, t)). Thus, if I(u0) < 0, E(0) > 0, then E(t) > 0 for all t  >  0. Hence, it 
follows from (4.1) that

f (t)E′(t) �
p
2

f ′(t)E(t),

which can be rewritten as

E′(t)
E(t)

�
p
2

f ′(t)
f (t)

. (4.4)

Integrating (4.4) from 0 to t and using (4.1), we obtain the inequality

f ′(t)
[ f (t)]

p
2
�

E(0)
[ f (0)]

p
2

.

Integrating this inequality from 0 to t, we deduce

[ f (t)]1−
p
2 � [ f (0)]1−

p
2 −

(p
2
− 1

) E(0)
[ f (0)]

p
2

t. (4.5)

Since p > 2µ � 2, inequality (4.5) cannot hold for all t  >  0 and we conclude that u blows up 
at finite time t*, where

t∗ �
2f (0)

( p − 2)E(0)
=

‖u0‖2
L2(Ω)

p(2 − p)I(u0)
.

This ends the proof. □ 

Finally, we estimate the lower bound of blow-up time t*. Here we mainly employ some 
techniques from [6], see also [27].

Proof of theorem 1.3. Let 8s/3  <  N  <  4s and max{2, 2(N − 2s)( p − 1)/s, N(θ−1)
s } <  

k � 2∗s   and g(t)  =  tk−1 for all t � 0. Next we prove that

(a − b)(g(a)− g(b)) �
2(k − 1)

k
(a

k
2 − b

k
2 )2 for all a, b � 0. (4.6)
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For all a � b � 0, we have

(a − b)(g(a)− g(b)) = (a − b)
ˆ a

b
g′(τ)dτ

= (a − b)
ˆ a

b
[(g′(τ))

1
2 ]2dτ

�
ˆ a

b
(g′(τ))

1
2 dτ =

2(k − 1)
k

(a
k
2 − b

k
2 )2.

Since g is a increasing function, the above inequality still holds for 0 � a < b. Thus, (4.6) 
holds true. Taking φ = uk−1 as a test function in corollary 3.1, we get
ˆ

Ω

utuk−1dx + M(‖u‖2
Z)

¨

Q
(u(x, t)− u(y, t))(u(x, t)k−1 − u(y, t)k−1)K(x − y)dxdy

=

ˆ

Ω

u p+k−1dx.

 (4.7)

Let

Φ(t) =
ˆ

Ω

u(x, t)kdx.

Then a direct computation yields that

dΦ(t)
dt

= k
ˆ

Ω

uk−1utdx

=− kM(‖u‖2
Z)

¨

Q
(u(x, t)− u(y, t))(u(x, t)k−1

− u(y, t)k−1)K(x − y)dxdy + k
ˆ

Ω

u p+k−1dx.

It follows from (4.6) and (M1) that

dΦ(t)
dt

� −2(k − 1)m0‖u‖2(θ−1)
Z

¨

Q

(
u(x, t)

k
2 − u(y, t)

k
2

)2
K(x − y)dxdy + k

ˆ

Ω

u p+k−1dx.

 (4.8)

Since max{2, 2(N − 2s)( p − 1)/s, N(θ−1)
s } < k � 2∗s , we have

ˆ

Ω

ukdx � |Ω|
2∗s −k

2∗s

(ˆ

Ω

u2∗s dx
) k

2∗s
� |Ω|

2∗s −k
2∗s S− k

2 ‖u‖k
Z ,

where S is the best constant of the embedding Z ↪→ L2∗s (Ω). Thus,

‖u‖2(θ−1)
Z � |Ω|−

2(θ−1)(2∗s −k)
k2∗s Sθ−1

(ˆ

Ω

ukdx
) 2(θ−1)

k

.
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Inserting this inequality into (4.8), we get

dΦ(t)
dt

� −2(k − 1)m0|Ω|
− 2(θ−1)(2∗s −k)

k2∗s S
1
2

(ˆ

Ω

ukdx
) 2(θ−1)

k

‖u
k
2 ‖2

Z + k
ˆ

Ω

u p+k−1dx.

 (4.9)

Applying the Hölder and Young inequalities, we deduce that
ˆ

Ω

u p+k−1dx � |Ω|m1

(ˆ

Ω

u
k(2N−3s)
2(N−2s) dx

)m2

� m1|Ω|+ m2

ˆ

Ω

u
k(2N−3s)
2(N−2s) dx, (4.10)

where

m1 = 1 − 2(N − 2s)( p + k − 1)
k(2N − 3s)

, m2 =
2(N − 2s)( p + k − 1)

k(2N − 3s)
.

Putting (4.10) into (4.9), we arrive at the inequality

dΦ(t)
dt

� −2(k − 1)m0|Ω|
− 2(θ−1)(2∗s −k)

k2∗s S
1
2

(ˆ

Ω

ukdx
) 1

k

‖u
k
2 ‖2

Z

+ m1|Ω|+ m2

ˆ

Ω

u
k(2N−3)
2(N−2s) dx.

 (4.11)

Using the Hölder inequality, we obtain

ˆ

Ω

u
k(2N−3s)
2(N−2s) dx �

(ˆ

Ω

ukdx
) 1

2
(ˆ

Ω

u
k(N−s)

N−2s dx
) 1

2

�

(ˆ

Ω

ukdx
) 3

4
(ˆ

Ω

(
u

k
2

) 2N
(N−2s)

dx
) 1

4

.

From the fractional Sobolev embedding, we have

‖u
k
2 ‖

N
2(N−2s)

2∗s
� S− N

4(N−2s) ‖u
k
2 ‖

N
2(N−2s)
Z .

Thus,

ˆ

Ω

u
k(2N−3s)
2(N−2s) dx � S− N

4(N−2s)

(ˆ

Ω

ukdx
) 3

4

‖u
k
2 ‖

N
2(N−2s)
Z

= S− N
4(N−2s)

(ˆ

Ω

ukdx
) 3

4 −
(θ−1)N

2k(N−2s)
(ˆ

Ω

ukdx
) (θ−1)N

2k(N−2s)

‖u
k
2 ‖

N
2(N−2s)
Z .

Now the Young inequality means that

ˆ

Ω

u
k(2N−3s)
2(N−2s) dx �

S− N
3N−8s (3N − 8s)

4(N − 2s)ε
N

3N−8s

(ˆ

Ω

ukdx
) 3k(N−2s)−2N(θ−1)

k(3N−8s)

+
Nε

4(N − 2s)

(ˆ

Ω

ukdx
) 2(θ−1)

k

‖u
k
2 ‖2

Z ,

 (4.12)
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where ε is a positive constant to be determined later. Combining (4.11) with (4.12), we get

dΦ
dt

� k1 + k2Φ(t)
3k(N−2s)−2N(θ−1)

k(3N−8s) + k3

(ˆ

Ω

ukdx
) 2(θ−1)

k

‖u
k
2 ‖2

Z ,

where

k1 = m1|Ω|,

k2 =
S− N

3N−8s (3N − 8s)

4(N − 2s)ε
N

3N−8s
,

k3 =
Nε

4(N − 2s)
− 2(k − 1)m0|Ω|

− 2(θ−1)(2∗s −k)
k2∗s S

1
2 .

Now we choose ε such that k3  =  0, then we arrive at the inequality

dΦ
dt

� k1 + k2Φ
3k(N−2s)−2N(θ−1)

k(3N−8s) .

An integration of the above differential inequality from 0 to t yields
ˆ Φ(t)

Φ(0)

dτ

k1 + k2τ
3k(N−2s)−2N(θ−1)

k(3N−8s)

� t,

which together with limt→t∗ Φ(t) = ∞ implies that
ˆ ∞

Φ(0)

dτ
k1 + k2τΛ

� t∗,

where Λ = 3k(N−2s)−2N(θ−1)
k(3N−8s)  and

Φ(0) =
ˆ

Ω

uk
0dx > 0.

Note that 3k(N−2s)−2N(θ−1)
k(3N−8s) > 1 if k > N(θ−1)

s , hence the right-hand side of the above inequal-

ity is finite. Thus, the proof is complete. □ 

Remark 4.1. If M(σ) � m0 for all σ � 0, that is, if the problem is non-degenerate, then the re-

striction k � 2∗s  is not necessary. In this case, k satisfies max{2, 2(N − 2s)( p − 1)/s} < k < ∞, 

hence we can relax the condition 2µ < p <
2∗s s

2(N−2s) + 1 to 2µ < p < ∞.
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