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Abstract

In this paper, we study a diffusion model of Kirchhoff-type driven by a
nonlocal integro-differential operator. As a particular case, we consider the
following diffusion problem

Ou+M ([u)?) (=A)u=|ulP2u inQxRY, du=0u/or,
u(x,1) =0 in (RV\ Q) x RT,
u(x,0) = up(x) in £,

where [u], is the Gagliardo seminorm of u, Q C R" is a bounded domain with
Lipschitzboundary, (—A)*isthe fractional Laplacianwith0 < s < 1 < p < oo,
ug :  — R7 is the initial function, and M : Rf — R is continuous. Under
some appropriate conditions, the local existence of nonnegative solutions is
obtained by employing the Galerkin method. Then, by virtue of a differential
inequality technique, we prove that the local nonnegative solutions blow-up
in finite time with arbitrary negative initial energy and suitable initial values.
Moreover, we give an estimate for the lower and upper bounds of the blow-up
time. The main novelty is that our results cover the degenerate case, that is, the
coefficient of (—A)* could be zero at the origin.
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1. Introduction and main results

In this paper, we study the local existence and blow-up phenomena for the following fractional
Kirchhoff-type parabolic problem

Ou+M ([u)?) Lxku=|u|P™>u inQ xR, Ou=0u/or,

u(x,1) =0 in (RV\ Q) x RT,

u(x,0) = up(x) in Q, 0D
where [u]f = [[oon [u(x, 1) — u(y, t)?K(x — y)dxdy, @ CR" is a bounded domain with
Lipschitz boundary 0€2, M : Rar — Rar is a continuous function, ug > 0 is the initial function
on §2, and Lk is a nonlocal integro-differential operator, which (up to normalization factors)
may be defined by

Lp(w) = 3 [ (26 = ols-+3) = o= 3)KO) (12

for all ¢ € C5°(RY), where K : RV \ {0} — R7 is a function with the following properties:

(k1) YK € LY(RY), with y(x) = min{|x|?, 1};
(k2) there exists Ky > 0 such that K(x) > Ko|x| V=% for all x € RV \ {0}.

A typical example for K is given by K(x) = IxI~"~2. In this case, Lx becomes the fractional
Laplace operator (—A)*; see [25] and the references therein for recent results on the fractional
Laplace operator, and [11] for further details on the fractional Laplacian and on the fractional
Sobolev space. Throughout the paper, without further mentioning, we always assume that
s € (0,1), N> 2s and K satisfies (x;) and (k2).

The interest in studying problems like (1.1) relies not only on mathematical purposes
but also on their significance in real models, as explained by Caffarelli in [7] and Laskin
in [21]. Actually, Applebaum [2] stated that the fractional Laplacian operator of the form
(=A)*, s € (0,1), is the infinitesimal generator of a stable Lévy process. Recently, Fiscella
and Valdinoci [16] proposed a stationary Kirchhoff variational equation which models the
nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of
the string. Indeed, the stationary problem (1.1) is a fractional version of a model, the so-called
stationary Kirchhoff equation, introduced by Kirchhoff in [20].

A usual model for anomalous diffusion is the following linear evolution equation involving
the fractional Laplacian: O,u + (—A)*u = 0, which derives asymptotically from basic random
walk models, see [35, 41] and their references. Another nonlinear anomalous diffusion equa-
tion is the fractional porous medium equation

O+ (=AY W") =0 (1.3)

with 0 < s < 1 and m > 0, which was first proposed by De Pablo et al [13]. Many important results
on these equations have been obtained, see the overview paper [41] and the references therein.

To explain the motivation of our problem (1.1), let us shortly introduce a prototype of non-
local problem like (1.1). Nonlocal evolution equations of the form
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o= [ (wnn) ~ ule)K(x - )y (14
RN

and variations of it, have been recently widely used to model diffusion processes. More pre-
cisely, as stated in [14], if u(x, ) is thought of as a density of population at the point x at time
t and K(x — y) is thought of as the probability distribution of jumping from location y to
location x, then [, u(y, 7)K(x — y)dy is the rate at which individuals are arriving at position x
from all other places and — [, u(x, 1)K (x — y)dy is the rate at which they are leaving location
x to travel to all other sites. This consideration, in the absence of external or internal sources,
leads immediately to the fact that the density u satisfies (1.4). For recent references on nonlo-
cal diffusion problems, see [3, 9, 12, 34].
If we consider the effects of total population, then equation (1.4) becomes

o =M ( ] o) = utr PR - y)dxdy) | (wtt) =t )5 y)dy(’l.S)

where the coefficient M : R — R* denotes the possible changes of total population in RY. This
describes the behaviour of individual subject to total population, such as the diffusion process of
bacteria. Model (1.5) is also meaningful, since the way of measurements are usually taken in aver-
age sense. In particular, if s 1~ and K(x) = xI™~%, then equation (1.5) reduces to

ou=—M (/ |Vu|2dx) Au. (1.6)
RN

Models of the type (1.6) have been studied by many authors, see [18] and the references
therein; see also [5, 30] for wave equations of Kirchhoff-type.

In [32], by using the sub-differential approach, Pucci et al obtained the well-posedness of
solutions for problem (1.1) with f(x, r) instead of lulP~2u. Moreover, the large-time behavior
and extinction of solutions also are considered. With the help of potential well theory, Fu and
Pucci [17] studied the existence of global weak solutions and established the vacuum isolat-
ing and blow-up of strong solutions, provided that M = l and 2 < p < 2 = 2N/(N — 2s).
However, the Kirchhoff function M is assumed to satisfy the non-degenerate condition in the
above papers. In [26], Pan et al investigated for the first time the existence of global weak
solutions for degenerate Kirchhoff-type diffusion problems involving fractional p-Laplacian,
by combining the Galerkin method with potential well theory. In essence, the authors in [26]
just considered that M is a special function, namely

M(t) ="~ with 0 € (1,2¢/2), forallt € R].

Motivated by the above works, we would like to consider more general conditions on M
which cover the degenerate case M(0) = 0. More precisely, we assume that

M) M: ]Rg' — RJ is continuous and there exist constants my > 0 and 6 > 1 such that
M(o) = mpo?! forallo € RS,
A typical prototype for the Kirchhoff function M is given by

M(o)=a+bo®!, a>0,b>0,

for all ¢ € Ry". If M(0) = 0, then problem (1.1) is called degenerate Kirchhoff-type prob-
lem; if M(0) > 0, then problem (1.1) is non-degenerate. So the Kirchhoff-type problem (1.1)
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studied in this paper may be degenerate. Recently, a great attention has been paid to study the
degenerate stationary Kirchhoff problems, see, e.g. [4, 8, 17, 23, 24, 31, 33, 42-44].

Definition 1.1. A function u € L>(0,T; L*(2)) (L*(0, T3 Z) (N C(0, T; L*(2)) is called a
weak solution of problem (1.1), if d,u € L*(0, T; L*(€2)) and the following equality holds

[ Gresars [ an1u) | e —ute)oten - c0u0)K (- s

T
:/ /\u|p*2ug0dxdt,
e

for all p € L*(0, T; Z), where the space Z will be introduced in section 2.

Here we call u a global weak solution of problem (1.1), if the equality in definition 1.1
holds for any 0 < T < oo; u is a local weak solution, if there exists 7( > 0 such that the equal-
ity in definition 1.1 holds for 0 < T < T.

The first result of our paper is the following.

Theorem 1.1. Let (M;) holds. Suppose that 0 < ug € Z and 2 < p < (2-5—292)# < 2%

Then there exists Ty > 0 such that problem (1.1) admits at least a nontrivial, nonnegative weak
solutions for all t € (0, Ty).
In order to describe our second result, we need the following assumption:

(M3) There exists a constant i > 1 such that
wt (o) = M(o)o forall o € R,

where .4 (o) = [ M(7)dr.

Note that condition (M») has been used to get the existence of solutions for the stationary
p(x)-Kirchhoff problems, see for example [10].
Set

1 1
7lu) = g ()~ [ Jula (17)
PJa
forallu € Z(LP(Q).
The second result of our paper reads as follows.

Theorem 1.2. Let (M;) and (M>) hold. Assume that 0 < ug € Z and u is a nontrivial, non-
negative weak solution of problem (1.1). If 2p < p and Z(ugy) < 0, then the solution u blows
up in finite time t*, where t* satisfies

0<r < 7HM0H22(Q)
= p(2—p)I(uo)
Furthermore, we give a precise estimate for the lower bounds of the blow-up time #*.

Theorem 1.3.  Suppose that all conditions in theorem 1.2 hold. In addition, if 8s/3 <N < 4s,

PepemndZ, S5 MLy, g0 B
mln 7, AT A\ ~ 9 N7AT A~ N 9
a 274V —2s)  2f PSP o)

then

/Oo L<t*
s0) ki + kot T
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where
D(0) = /Quo(x)kdx >0, max {2, 2 - 2i)(p — 1), N(asi 1)} < k<2,
‘o — (1 2N -25)(ptk— 1)> QL k= S~ (3N —Ngs)’
k(2N — 3s) 4(N — 25)e -5
L 8(N}; 2s) k- l)mo\Q|_WS%, L —16(2;1)\]—7281;1)(0 -1

and S is the best constant of the embedding Z — L% ().

Remark 1.1. To the best of our knowledge, there are no results to investigate the blow-up of
solutions in the study of fractional diffusion problems of Kirchhoff-type.

The rest of the paper is organized as follows. In section 2, we recall some necessary defini-
tions and properties of the fractional Sobolev spaces. In section 3, we obtain the local exist-
ence of weak solutions of problem (1.1) by the Galerkin method. In section 4, we show that
the weak solutions of problem (1.1) blow-up in finite time under some appropriate conditions.
Moreover, we give an estimate for the upper and lower bounds of the blow-up time.

2. Preliminaries

In this section, we first recall some necessary properties of fractional Sobolev spaces which
will be used later, see [11, 37-39] for more details.

Let X be the linear space of Lebesgue measurable function u : RY — R whose restrictions
to 2 belong to L?(£2) and such that

the map (x,y) — |u(x) — u(y)|?K(x — y) is in L' (Q, dxdy),
where Q@ = R?V \ (CQ2 x C) and CQ = R \ Q. The space X is endowed with the norm

1/2
lellx = (IIs@IIiz(Q) +//Q|u(x) —u(y)IZK(x—y)dxdy> : Q2.1

for all ¢ € X. We observe that bounded and Lipschitz functions belong to X, thus X is not
reduced to {0}; see [37] for further details on the space X.

The functional space Z denotes the closure of C5°(€2) in X. The scalar product defined for
any ¢, € Z as

(ps)z = //Q (p(x) = () (W (x) — ¥ (y))K(x — y)dxdy, (2.2)

makes Z a Hilbert space. The norm

lollz = ( //Q () —so(y)zK(x—y)dxdy)l/z 23)

is equivalent to the usual norm defined in (2.1), as proved in [36, lemma 6]. Note that in
(2.1)—(2.3) the integrals can be extended to all RN and R?V, since u = 0 a.e. in CQ2. By lemma
6 of [36] and (k,), the Hilbert space Z = (Z, || - ||z) is continuously embedded in L"(?) for
any r € [1,2*]. Hence there exists C, > 0 such that
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ull ) < Crllullz forallu € Zand r € [1,27]. (2.4)

Throughout the paper, the letters ¢, c;, C, C;,i = 1,2, - - -, denote positive constants which
vary from line to line, but are independent of the terms that take part in any limit process.
We shall work on the Banach space LZ(O,T;Z), endowed with the norm

T 1/2
lllora = ( / ||u||§dr) ,

where T € (0, 00) is a given constant. Obviously, LX0, T, Z) is a Hilbert space, with the scalar
product

T
(U, V)2or2) = / (u,v)zdr forall u,v € LZ(O, T:7).
0

It follows from [40, theorem 1.5] that the dual space of L*0, T:Z) can be identified with
L*(0,T;Z").

Next, we consider the eigenvalue of the operator Lx with homogeneous Dirichlet boundary
data, namely the eigenvalue of the problem

—Lxu = A\u in
(2.5)

u=0 in RV \ Q.

More precisely, the following weak formulation of (2.5) is discussed: there is a function
u € Z such that

// (u(x) — u(y)) (v(x) — v(3))K (x — y)dxdy = A / W@edr,  (26)
R2V Q

for any ¢ € Z. We recall that A € R is an eigenvalue of — L if there exists a non-trivial solu-
tion u € Z of problem (2.5) or its weak formulation (2.6), and any solution will be called an
eigenfunction corresponding to the eigenvalue \. Moreover, it easily follows from continuous
embedding that the following Rayleigh quotient satisfies

. [lullZ
A= Iinf ——=%— €(0,00).
1 ueZ\ {0} ||u||i2(9) ( ) (27)

Moreover, the sequence {e;} of eigenfunctions corresponding to { s}« is an orthonormal
basis in L?(£2) and an orthogonal basis of Z, see [37, proposition 9] for more details.

Proposition 2.1 ([40, proposition 1.2]). LerV be a Banach space which is dense and con-
tinuously embedded in the Hilbert space H. We identify H = H' so that V — H = H — V'

Then the Banach space W, = {u € LP(0,T; V) : u' € L” (0, T; V') } is contained in C(0, T; H).
Moreover, if u € W, then ||u(-)||12(q) is absolutely continuous on [0, T}, we have

IOy = 2O )y 2 on 0,71

and there is a constant C > 0 such that

lullcorzy < Clluflw, forallu € W,.
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Proposition 2.2 ([40, proposition 1.3]). Letr By, B, By be Banach spaces with
By C B C By. Assume that By <— B is compact and B < By is continuous. Let
1 <p<oo, 1<q<oq let Byand B be reflexive, and define

W={v:velLP(0,T;By),0m € L0, T;B;)}.

Then the embedding W — LP(0, T; B) is compact.

3. Proof of theorem 1.1

In this section, we prove the local existence of nonnegative weak solutions for problem (1.1).

Let {e;}; denote the eigenfunctions of problem (2.5). Then ||¢;||;2() = 1, {¢;}; is an ortho-
normal basis in L?(£2) and an orthogonal basis of Z. Set V,, = span{ey,- - - ,e,}. Then {V,},
is a dense subset of Z. Furthermore, we have the following property.

Lemma 3.1. For uy € Z, there exists a sequence {ug, }» with ug, € V,, such that uo, — g
inZasn— oQ.

In order to prove the existence of weak solutions for problem (1.1) by applying the Galerkin
method, we shall find the approximate solutions of the following equality:

n

Uy (x, 1) = Z(nn(t))jej(x) foralln € N,

=1
with the unknown functions (7,(f)); are determined by the system of ordinary differential
equations

() = L(t.ma (1)), 1 €RT, G
77"(0) = UOn, ’
where Up, = ([, uon(x)er (x)dx, - -+, [, uon(x)e,(x)dx), ug, comes from lemma 3.1 and

= —M(||u|3 up(x,1) — uy(,1))(ej(x) — ¢ x—
(2 1)); = =M ({|uen| )//Q( (%, 7) = un(, 1)) (e (x) — €j(¥))K (x — y)dxdy
+/ |l (x, )| 772w} (x,1)ej(x)dx, j=1,2,--- ,n.
Q

It follows from the continuity of M and the definition of I, that /, is continuous on Rg‘ x R,
The Peano theorem (see [19]) implies that there exists a local solution of problem (3.1) on
[0,7,] (0 < T, < 00).

(2+4260)27 —40
2*

Lemma 3.2 (A priori estimate). If2 <p < < 2%, then there exists T* > 0 de-

pending on N, p,mo, 0, ||uo||12(q) such that

t
[ mtePas [ ol < c,
Q 0
forallt € [0,Ty] and Ty = T* /2, where C > 0 independent of t and n.

Proof. Multiplying (3.1) by (7,(¢)); and summing with respect to j from 1 to n, we obtain

d z 2 —u 2K(x — = w, (x,1)]|?
. 0o mt?) J] ) - . 0PK G- yyasay = [ i .
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. (2426)2F —46
Since 2 < p < ——7—

theorem 2.11]), we heive

< 27 and using the classical interpolation inequality (see [1,

e (e, 1)) < M (s )17 e (s 1)1 25y -
for all ¢ € [0, T,,], where k € (0, 1) satisfies

I n 1 -k

p 2 X
We observe that

25(p—2)

11— =2 <20

(L—k)p w2 <
and

26 40(2F —
- P 2-p .,

T2W-—(1-rp 2:20—-p+2)—49
Hence (2.4) implies that

(1=K)p

)1 < o) a5 ) 3
(I=r)p.

< CL. it ()32 g 1t (e )15

(3.3)

For any ¢ € (0, 1), the Young inequality yields

K, -k a
i (s 152 Nt (s O™ < el (s I + € () 1t (5,1

Combining this inequality with (3.3), we get

/Q Jun (22, 1)| Pdx < €.t (x,1)1Z” + €)1 (6, ) | 2 - (3.4)

Inserting (3.4) in (3.2), we have

((iit/Q’u”(x’t)|2dx+M(|un”%)//g|u”(x’t)_”"(y’t)2K(x—y)dxdy

p
< CZ;E

(3.5)

i (6, )11 4 C (&) (3. 1) |-
Taking ¢ = mo/(ZCZ*) in (3.5), we conclude from (M) that

G Ll s+ 5 DB < Cilln) (6
where C| > 0 is a constant. Moreover,

d o
&Hlln(x’ D72y < Cillun ()17 (-
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Since o > 2, the above inequality yields

2

ey < 3% = (5 - 1) 77

2C(2 a)/2
Cl( 2)°

[|un (x, t)||L2(Q) < 257G, forall 1 < min{7,, T*/2}.

onlyift < T* :=

where C, = sup, [, u;(x,0)dx € (0, 00). It follows that

Therefore

/ w3 (x, T,)dx < 2%/=2(C, +1).
Q

Thus, we can replace u, in (3.1) with u, (x, T,,) and extend the solution to the interval [0, T%/2]
by repeating the above process. We obtain

/ u? (x, )dx < 2%~ ¢, forall r € [0,T%/2).
Q
Combining this inequality with (3.6), we have
d 2 a
G [ e 0P+ Pl (el < s (.7)
tJo 2
Fixing 7 € [0, T* /2] and integrating (3.7) with respect to 7 over [0, 7], we get

/yun(x,r)|2dx+@/ i (e, 1|20t < 5T
Q 2 0

The assertion follows by the arbitrary of 7. O
Next, by lemma 3.2, we obtain the following property.

Lemma 3.3. There exists a constant C > 0 independent of n such that

T
/0/|8u"xt|dxdt c

// |t (%, 1) — un(y, £)|*K (x — y)dxdy < C forall ¢ € [0, Tp).
Q

and

Proof. Multiplying (3.1) by (77, (¢)); and summing with respect to j from 1 to n, we obtain
J 12D P ) [ et = )
Q o1 Q
<8un(x ) 3un(y, ))K( V)dxdy

Ouy(x, 1)
2,,+
/ luh (e, )P 2wk (x, 1) —2—= oy dx. (3.8)
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Integrating (3.8) with respect to ¢ over [0, 7] (7 € [0, Ty]), we have

T Oup(x,t 1 A
[ [ 12D P+ Lt - 2 [ i s

| | 3.9
= [ o+ a0,
PJa

where A (||un(x, 7)|%) = f”"” s llz M(o)do. Here we have used the following fact:

S ua))
. Oun(x, 1) Ouy(y,1)
= 200(Jul) ] o) — o) (G - P ) vy

Notice that by lemma 3.1

n

0 (x,0) = » ( /Q uo,,(x)ej(x)dx) ¢j(x) = uon(x) — ug, inZ,

j=1

as n — oo. Thus, there exists a constant C3 > 0 such that ||u,(x, 0)||3 < Cs. Furthermore, the
continuity of M implies that there exists a constant C4 > 0 such that

A ([[un(x,0)[17) < Ca.

Since 2 < p < % < 27, there exists C, > 0 such that

s

[[un (2, 0)[Lr (2) < Cplluta(x, 0)| 2,
where C, is the embedding constant of Z < L?((2). Thus, there exists Cs > 0 such that

/|M,T(x,0)|”dx</|un(x,0)|”dx<c5,
Q2 Q

Combining the above inequalities with (3.9), we get

//|a”"“|dxd+ ///|unx7Hfo/|u (x,7)|Pdx < Cé.
(3.10)

where C¢ = C4/2 + Cs/p. Inserting (3.4) into (3.10), we have for any ¢ € (0, 1)

, (x 1
/ / |3M (x t) |2dxdl‘+ 7%(HM,,(X,T)H%)
o Ja ot 2
) 3.11)
25 I
< el I + € a5, ) + Co

Taking € = ag/(4p\C). ) in (3.11), we conclude from (M) and lemma 3.2 that

8u,, (x,1) o
/ / | | dxdt + —||un(x 7')|| <G (||u,,(x, T)||L2(Q) + 1) < Cg.

Hence the lemma is proved. O
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Remark 3.1. By (3.1), the following equality holds for all ¢ € Z

| 2 s ) ] 050) =000 0) = ) K=
= [ i

since {e;}; is an orthonormal basis in L?($2) and an orthogonal basis of Z.

Proof of theorem 1.1. By lemma 3.2, lemma 3.3 and the reflexivity of L*(0, Tp; Z), there
exist a subsequence of {u,}, still denoted by {u,}, and u € L*(0, To; Z) (\L>°(0, To; L*(2))
such that

Uy, — u weakly x in L>(0, Ty; L*(12)),
U, — u weakly in L2(0, Ty; Z),
U, — u weakly x in L>°(0, Tp; Z)

% — % weakly in L2(0, To; L*(€2)).

(3.12)

Next, we show that uf — u™ strongly in L”(0, To; L”(Q)). Since {u,}, C L*(0,To;Z)
and {%}n C L2(0,To; L*(R2)), proposition 2.2 implies that up to a subsequence,
u, — u strongly in L2(0,Tp;L*(2)). Without loss of generality, we assume that
u, — u ae. on Qx[0,T;]. Hence u,f — ut ae. on Q x [0,Ty). Since p < 27, we have
llun(x,1) — u(x, )| 27 () < Cozllun(x,1) —u(x,1)||z  for all 1€ [0,Tol. Moreover, by
u, € L>=(0,Ty;Z), we deduce that

To
/ / Jut (x, 1) — u(x, 1) [* dxdr <

where C > 0 is a constant independent of n. For any measurable subset U C € x [0, Tg), the
Holder inequality implies that

/|u 7u+|pdxdt</|un7u|pdxdt | 14

= ||uy — ul| .

I 2
( L% 7P (U)
IIIH

L2 —"(U)
(ZZ‘*p)/Z.?’

X (U

where |U| is the Lebesgue measure of set U. This yields that the sequence {|u, — u|?}, is
equi-integrable in Q x [0, To). By u;t — u™ a.e. on  x [0, Tp), we have |t —u™|? — 0 a.e.
on ) x [0, Ty]. Therefore, the Vitali convergence theorem implies

To
lim / |l (x,£) — u™ (x,1)|Pdxdt = 0. (3.13)
Q

n—o0 0

Hence, the Brézis—Lieb lemma yields

T[) TO
/ / it (x, £)|Pdxdt = Tim / luct (x, 1) Pdxdr. (3.14)
0o Ja n—=eo Jo  Ja
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Since {|u,f|?~2u;}}, is bounded in LP/(P=1(0, To; LP/(P=D(Q)), |}t |P~2u}f — |ut|P~2ut
a.e. on ) x [0, Tp], we conclude from the Brézis—Lieb lemma that

To
lim / / <Hu;:‘|17—2u2-|1’/(1’_1) _ ||u,':'|"_2u;:‘ _ |u+|p—2u+’1’/(ﬁ—1)) dxds
o Ja

n—o0

To _
[ e
0 Q

Combining this information with (3.14) we conclude that

To
lim /Hﬁuﬁvﬂﬁuﬁ—mﬂLm%hﬂLm”W”Mm:Q
n— o0 Q

0 (3.15)

thatis, [} (x, 1) [P~ 2w} (x, 1) — |ut (x, £)|?~2ut (x, £) strongly in LP/(P=1)(0, To; LP/(P=1)(Q)).
Finally, we prove that u, — u strongly in L2(0, Ty; Z).
To this aim, we define the operator . : L*(0, To; Z) x L*(0,To; Z) — R by

Fpu) = / 0 //Q () — (0 ) (0. ) — (3. 1)K (x — y)dxdydr,

for all ¢, ¥ € L*(0, Ty; Z). Obviously, .Z is a bilinear operator in L?(0, To; Z) x L*(0,T; Z).
The following fact implies that .% is continuous in L*(0, To; Z) x L*(0, To; Z):

|7 (@, 9)] < ||<PHL2(0,T;Z)||¢||L2(0,TU;Z) forall p and ¢ € LZ(O’ T;7),

by the Holder inequality. Hence the fact that u, converges to u weakly in L2(0, Ty; Z) means
that

lim Z (un, ) = F(u,9) forall o € L*(0,Ty; Z).

n—oo

Let us recall that a sequence { f;(¢)}; is relatively compact in L'(0, Tp) if and only if:

(i) there exists a constant C > 0 such that ||| .10,y < C for all j;
(ii) for every € > 0 there exists a constant 6 = d(¢) > 0 such that for any measurable subset
E with |[E| < 0, we have

/ Ifi(1)|dt < e,

uniformly for all j, see [29, proposition 1.3].

In the following, we show that {M(||u,||3)} is relatively compact in L'(0, Tp). By lemma
3.3 and the continuity of M, there exists C > 0 such that M(||u,||%) < C for all n and ¢. Hence

fOT° M(||u,)|2)dt < CTy for all n, that is, the assertion (i) holds. For any £ > 0 there exists
0 = €/C such that for any measurable subset E with |E| < 0

/Mmmgmgqm<a
E
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Thus, the assertion (ii) is satisfied. It follows that {M(||u,||%)}. is relatively compact in
L'(0,Ty). Therefore, up to a subsequence, M(||u,||%2) converges to some function
&(t) € L'(0,Ty) for ae. t € [0,Ty]. Furthermore, the Lebesgue dominated convergence
theorem implies that

im [ () // (1) — u(y 1)) () — (3 1)K (x — y)ddydr

7b
= / &(1) // (u(x, ) —u(y,1)(@(x,1) — @(y.1))K(x — y)dxdydz, ~ (3.16)
0 Q
for all p € L*(0, To; Z). Similarly,

n— o0

im " u,,%— 2(u(x, 1) — u(y,1))*K(x — =0,
im | //Q M (a12) — EOP (1) — uy, 1)K (x — y)dadyde = 0

which means that

M(||u,]|3)u — £(f)u stongly in L*(0,T; Z). (3.17)

Combining (3.17) with the fact that u, converges weakly to u in L*0, T:Z), we obtain

tim [0 1B) ] ) = ) ) = )K=

To
_ _ 2p(y 3.18
/o 5([)//Q(u(x,t) u(y,1))°K(x — y)dxdydr. (3.18)
By remark 3.1, we have
To
/ 8”" odxdr
2 _ _ _
T / M([lua]2) //Q (tn (1) — a3, 1) (65, ) — (3, 1)K (x — y)chadydl
Ty
= / / lul|P~2ut pdxdr, (3.19)
0 Q

for all p € L*(0,T;Z). Letting n — oo in (3.19) and using (3.16), we have
To Ou
— dxdt
/0 /Q o’
To
+/ &) //Q(u(x, 1) —u(y, 1)) (e(x1) — @(y,1))K(x — y)dxdyds
0

Ty
= / / lu™|P~2ut pdxds, (3.20)
0 Q

for all ¢ € L2(0,T;Z). Taking » = u in (3.20) and using proposition 2.1, we arrive at the
equality
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3 [ o) = ot >2dx+/T0£<t // (5,1) — (1)K x — y)drdydr

To
_ / e+ (x, 1)) Pdxdr (3.21)
0 Q

Since [, u2(x, To)dx < C, there exist a subsequence of {u,}, (still denoted by {u,},) and
a function & in L*(Q) such that u,(x, To) — &t weakly in L*(2). Then for any ¢(x) € C5°(£2)
and 7(t) € C'[0, Ty], there holds

e
o Jo O

/ un (x, To) on(To)dx — / (x,0)¢n(0)dx

/ " / d” 1Y) dxar.

Letting n — oo, we get by (3.12) and u,(x,0) — u strongly in Z,

To ou To
/ / —ndxdt = / ipn(Ty)dx — / up(x)n(0)dx — / / dxdt
0o Ja Ot

Integrating by parts, the left-hand side of above equality can be written as

To
/ u(x, To)pn(To)dx — / u(0,x)n(0)dx — / / dxdt

Hence, we deduce that
[ @ Tt ede~ [ (o) — ut 0)m(0)pce = 0.
Q Q

Choosing 1(Tp) = 1,7(0) = 0 or n(Tp) = 0,7(0) = 1, by the density of C5°(£2) in L*(Q2) we
have it = u(x, Tp) and u(x,0) = up(x) a.e. in 2. It follows that u,(x, Tp) — u(x, Ty) weakly in
L2() as n — oc. Therefore

n—o0

/ u?(x, To)dx < lim inf / u?(x, To)dx. (3.22)
Q Q
On the other hand, taking ¢ = u, in (3.1), we have

1
7/ 6 (5, To) 2 — [t (v, 0) [P
2 /o

+/0TOM(||Mn||%)//Q(un(x,t) — up(y, 1)K (x — y)dxdyds
= /0 "’ /Q Ju,f (x, 1)| Pdxdt.

By (3.14), (3.16), (3.21), (3.22) and (3.18), we obtain
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lim sup / "M () // (tn (5, 1) — 1 (3, 1)K (x — y)dxdyd

n—oo

_,/ lu(x, To) > + [uo(x) |2dx+/ /|uxt|pdxdt
_ /0 ") //Q (u(x,1) — u(y, 1)K (x — y)drdyde

= tim [ M1 ] 05 = 000 0)000) = ) K e ).
Hence,

To
i sop [ M) ] (0050) < 000) ) = )R~ s <0

n— o0

Since M ( ) > 0 for all ¢ > 0, the above inequality yields
oy " M) // (3, ) — 1y, 1) — (5, 1) — 1a(y, 1)K (x — y)dxdydr = 0.

Thus, there exists a subsequence of {u, }, still denoted by {u,}, such that for a.e. t € [0, Tp)

tim M(]Jun e, 1)[12) // n( 1) — (s 7) — 4, 1) — u(y, 1)K (x — y)dady = 0,

n— oo

Furthermore, we obtain

lim //Q(un(x ) — uy(y,1) — u(x,t) — u(y,1))’K(x — y)dxdy = 0 fora.e. r € [0, Ty,

n— oo

since M(o) > apo™ forall o > 0. Thus, fora.e.t € [0, Ty], we have u, (x, 1) — u(x, ) strongly

in Z. It is easy to see that ||un(x N3 u(x, t)||3 a.e. on [0,Tp]. Hence M(||u,||2) — M(||ul|3)

a.e. on [0,Tp], by the continuity of M. Therefore, we obtain that £(t) = M(||u||3) a.e. on [0,Tp].
It remains to show that u € C(0, To; L*(Q2)) and u > 0 a.e. on Q x [0, T Since

u € L*(0,To; L*(Q)) and % € L*(0, To; L*(Q2),

up to a set of measure zero, we obtain that u € C(0, To; L*(Q2)) by proposition 2.1.

Note that u~ = max{0, —u} € L*(0,To;Z). Taking ¢ = —u"x(o) for 7 € (0,Ty] as
test function in (3.20), where X(0.7) denotes the characteristic function of the set (0, 1),
we obtain

/OT/QZ’;(u)dxdt+/oTM(||u||§)//Q|u(x,t)u(y,t)|2K(xy)dxdydt<0.

(3.23)
It follows from (3.23) that

/Q|u*(x, 7)[?dx < /Q |uy (x)[*dx for all T € [0, Tp).
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Combining this inequality with ug > 0 in Q, we get u~ = 0 a.e. on  x [0, Tp]. Hence u > 0
a.e. on ) x [0, Tp]. In conclusion, it follows from (3.20) that the theorem is proved. O

Corollary 3.1.  The local solution u € L*(0, Ty; Z) () C(0, To; L*(2)) obtained by theorem
1.1 satisfies

/Q QT e ) //Q (u(e,7) — u(y. 7)) (B(x) — H())K (x — y)dady

= / u(x, )P~ pdx
“ (3.24)
Sfor almost every 0 < 7 < Toand all ¢ € Z.

Proof. For 7 € (0,Tp), we choose AT such that T + At € (0, Ty]. Without loss of general-
ity, we assume that A7 > 0. To prove (3.24), let us take ¢ = @X(rr4+a-) as a test function

in (1.1), where x(; -+ar) is the characteristic function of the set (7,7 4+ A7) and ¢ € Z. We
obtain

T+AT T+AT
—_—_ ulx. 2 u\x. — U X) — X —
/ /g pudadr + / Mz, 1)) //Q (1) — u(y, 1) (6(x) — H(3))K (x — y)drdydr
T+AT
:/+ /m@mmm. (3.25)
T Q

Taking into account that

To 814

f)dxde| < llutl| 22 (0.7:22(52)) < 00,

L2(0.To:L*(£2))

ot

Hw@ﬂ

T+AT
/ M(ue.0)[3) // (1) — w3, 1)) (D) — D)) K (x — y)ddydr
T Q
T+AT
<[ MRl < .

and

To
/ / lu(x, )| Pdxdr < oo,
0o Jo

we get with the aid of Lebesgue’s differential theorem

THAT 8u Ou(x
s | st = [ 2G Tt

TH+AT
Jim o [ M0 lR) //Q (1) — (. ))(B() — 60))K (x — y)dndydr

= M([Ju(x.7)lI2) // (e, 7) = u(y, 7)) (P(x) — d())K (x — y)dxdy,

T+AT
- p
AH—M)AT/ /|uxt\dxdt /|ux7'
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fora.e. 7 € (0, Tp). Dividing (3.25) by A7 and letting A7 — 0, we arrive at

[ Gros-s Mt 7)) [ (uts.7) = )00 60— 3y

_ /Q lu(x, 7)|Pdx,

fora.e. 7 € (0, Tp). The proof is now complete. [l

4. Global nonexistence via blow-up analysis

In this section, by means of a differential inequality technique, we prove that the local weak
solutions of problem (1.1) blow up in finite time; see [15, 22, 28] and the references therein

for some results on blow-up of solutions. In the following, we shortly use u, to denote % for
convenience.

Definition 4.1. We say that the solution u(x,#) blows up in finite time if there exists
t* € (0, 00) such that

lu(x, )|l 2(q) — 00 ast — 1.

Proof of theorem 1.2. Let u be a nonnegative solution of problem (1.1). Set
F() = llu(x )70

and

Tl = 5. (Jul}) o | wras.

By corollary 3.1 and (M), we obtain
70 =2 [ s = <2M(Jul)ul +2 [ wras
> 2 (ul)+2 | wras
It follows from p > 2y that
70> 2 () +2 | wrde> (). @

where

E(t) = —2pT(u) = —pat (Jull3) +2 /Q uPdr.
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Through straightforward computation we deduce that
E'(t)=2p [—M(IIM%) / (u(x, 1) = u(y, 1)) (s (x 1) = wi(y, 1)) K (x — y)dxdy + / u”uzdx]
Q

1d 1d
A+ 25 [ wa

= 2 _——
i [ 2 dr
=2p / utdx.
Q
4.2)
Using the Holder inequality and (4.2), we get
2
p
FOE ) =l il 2 ( [ wax) =5/wp. @

By (4.2), we know that E(z) is a nondecreasing function with respect to t. Note that
—2pZ(u(x,t)). Thus, if Z(up) < 0, E(0) > 0, then E(¢r) > 0 for all # > 0. Hence, it

E(t) =
follows from (4.1) that
p
FOE (1) = S (DE®),
which can be rewritten as
E'(t (¢
0 pf'() w
E@) ~ 2/()
Integrating (4.4) from O to ¢ and using (4.1), we obtain the inequality

1) E()
F(0]F 7 [£(0)]

.

or

b (4.5)

ot <o)t - (4

L.

[F(0))2

Integrating this inequality from O to 7, we deduce
) E(0)

Since p > 2u > 2, inequality (4.5) cannot hold for all # > 0 and we conclude that u blows up

at finite time 1, where
4o |1%2 Q)

.0
" S -2E0)  p2-p)Tw)
[l

This ends the proof.
Finally, we estimate the lower bound of blow-up time #*. Here we mainly employ some

techniques from [6], see also [27].
Proof of theorem 1.3. Let 853 <N <4s and max{2,2(N —2s)(p — 1)/s, Y=} <

k < 2* and g(r) = #*~! for all ¢ > 0. Next we prove that
2(k—1
(@~ b)(ata) — g0)) > D at - @6
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Foralla > b > 0, we have

Since g is a increasing function, the above inequality still holds for 0 < a < b. Thus, (4.6)
holds true. Taking ¢ = u*~! as a test function in corollary 3.1, we get

k—1 2 —u ule. 1 — =1\K (x —
/Q =\ + M(ul2) //Q (1) — u(y, 1) e 0" — u(y, ) YK (x — y)dady

= / uPt=ldx,
Q

Let

4.7)

(ID(t):/Qu(x,t)kdx.

Then a direct computation yields that

dd(r _
7(15) :k/ u* lu,dx

— — kM () //Q (1) — 1)) (o, 1)

—u(y, t)k_l)K(x—y)dxdy—I-k/ uP =1y,
Q

It follows from (4.6) and (M) that

B < 2k = Dol 3 [ () — ) K= sy k[ urhia
Q Q
(4.8)

Since max{2,2(N — 2s)(p — 1)/s, @} < k < 2%, we have
e C\F i
[ atax<ior ([ a) " <10l sl
Q Q

where S is the best constant of the embedding Z < L% (£2). Thus,

2(0—1)

2(0—1)(2F —k) k
u 2(9_1) ; Q - k¥ 5071 ukdx
llullz
Q
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Inserting this inequality into (4.8), we get

2(6—1)
o _2(971)(23‘4)
do (1) < —2(k—DmplQ|”~ = §2 (/ ukdx)
Q

k
o+ & [t
dr “ o

(4.9)

Applying the Holder and Young inequalities, we deduce that
k(2N —3s5) mz k(2N —35)
/ uPt=1qy < |Q‘m| </ u20—2) dx) < m1|Q| —|—m2/ w22 dx, (4.10)
Q Q Q

where

2(N=2s)(p+k—1) 2(N=2s)(p+k—1)

m=l e TN T3 ™ T T kN = 3y)

Putting (4.10) into (4.9), we arrive at the inequality

1

d(I) t _2(8—1)(2:*—1() 13
R T A W

dr @11

k(2N—3)
+my|Q +my [ w2 dx.
Q

Using the Holder inequality, we obtain
k(2N —3s) X > K(N—s) 3
/ u20=2 dx < / udx u V== dx
Q Q Q
3 N 1
< ([atar) ([ ()™ ar)
Q Q

From the fractional Sobolev embedding, we have

TSy N

k z(/vl\izs) —
a3 < 577

Thus,
3

k(2N —3s) N 1 k N_
/ w2 dx < §”IW- ( ukdx> HuiHé(N—zn
Q

:S_M<

Now the Young inequality means that

3 (6—DN (0—1)N

3T %MN—2) UN—25) . N _
ukdx> ( / ukdx> b | .
Q

S~ 5—

3k(N—25) —2N(6 —1)

/ B g  TTTON 85 ( / ukdx)
Q2 4(N — 2s)gm Q

2(0—1)
Ne k ' k2

- - dx 2 s
s (/ ) 2
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where ¢ is a positive constant to be determined later. Combining (4.11) with (4.12), we get

2(0—1)

do HW=29) W (O-1) 3 v
& < e I (e
Q

where
k] = m1|Q|,
N S % (3N — 8s)
e
4(N = 25)e™®
N. 72(971)(2;* —k)
= (k- m|Q|T T = st

4(N —2s)

Now we choose ¢ such that k3 = 0, then we arrive at the inequality

dd 3k(N—25) —2N(0—1)
E < kl + kZ(I) k(3N —8s) A

An integration of the above differential inequality from O to ¢ yields

&0 dr
/ 3k(N—25) —2N(6—1) St
20) ki + ko1 k(3N —35)

which together with lim,_,« ® () = oo implies that

/oo diT <t*
o) ki + kot T

where A = % and
®(0) = / ugdx > 0.
Q
Note that W > lifk > w, hence the right-hand side of the above inequal-
ity is finite. Thus, the proof is complete. [

Remark4.1. If M(o) > mgforalle > 0,thatis,if the problemis non-degenerate, then the re-
strictionk < 2¥isnotnecessary. Inthis case, ksatisfiesmax{2,2(N — 2s)(p — 1) /s} < k < o0,

Xs

hence we can relax the condition 2u < p < uzijs) +1to2u < p < oo.
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