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Abstract
In the present paper, we investigate the existence of ground state solutions to
the Sobolev critical nonlinear Schrödinger equation{

−∆u+λu= g(u)+ |u|2∗−2u in RN,´
RN |u|2dx= m2,

(Pm)

where N⩾ 3, m> 0, 2∗ := 2N
N−2 , λ is an unknown parameter that will appear as

a Lagrange multiplier, g is a mass critical or supercritical but Sobolev subcrit-
ical nonlinearity. With the aid of the minimization of the energy functional over
a linear combination of the Nehari and Pohozaev constraints intersected with
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the product of the closed balls in L2(RN) of radii m and the profile decompos-
ition, we obtain a couple of the normalized ground state solution to (Pm) that
is independent of the sign of the Lagrange multiplier. This result complements
and extends the paper by Bieganowski and Mederski (2021 J. Funct. Anal. 280
108989) concerning the above problem from the Sobolev subcritical setting
to the Sobolev critical framework. We also answer an open problem that was
proposed by Jeanjean and Lu (2020 Calc. Var. PDE 59 174). Furthermore, the
asymptotic behavior of the ground state energy map is also studied.

Keywords: normalized ground states, Pohozaev manifold,
profile decomposition, Sobolev critical exponent

Mathematics Subject Classification numbers: 35J20, 35J50, 35J70

1. Introduction and main results

In this paper, for given m> 0, we shall investigate the existence of (u,λ) ∈ H1(RN)×R
satisfying

−∆u+λu= g(u)+ |u|2
∗−2u, x ∈ RN, (1.1)

and ˆ
RN

|u|2dx= m2,

where

H1
(
RN

)
:=

{
u ∈ L2

(
RN

)
: |∇u| ∈ L2

(
RN

)}
is endowed with the natural norm

‖u‖ :=
[ˆ

RN

(
|∇u|2 + u2

)
dx

] 1
2

.

Such (u,λ) is called a couple of solution to the system (Pm).
It is well known that solutions of (1.1) are related to the existence of standing waves, which

can help us to understand the dynamics property to the following time-dependent nonlinear
Schrödinger equation

i
∂Ψ

∂t
=∆Ψ+ |Ψ|2

∗−2Ψ+ f(|Ψ|)Ψ, (1.2)

where i denotes the imaginary unit, Ψ =Ψ(t,x) ∈ C is the wave function, and f is an appro-
priate nonlinearity.

To study the standing wave solutions to problem (1.2), set

Ψ(t,x) = e−iλtu(x) ,

where u ∈ H1(RN), λ ∈ R is the frequency or the chemical potential. Then equation (1.2) can
be transformed to equation (1.1) with g(u) = f(|u|)u.

About the frequency λ in problem (1.1), there exist two substantially different points of
view. One is to regard λ as a given constant. At this time, we call (1.1) a fixed frequency
problem. For this class of nonlinear problems, existence, multiplicity and concentration of
solutions have already been studied. It seems almost impossible for us to give a complete list
of references. We refer the readers to [3, 4, 12, 29] and the references therein. The other point
of view is to regard λ as an unknown quantity to problem (1.1). At this moment, it becomes
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very natural to prescribe the value of the integral
´
RN |u|2dx so that λ can be interpreted as the

Lagrange multiplier, and
´
RN |u|2dx is referred to as the mass. This point of view has often a

powerful physical meaning. For example, it represents the power supply in nonlinear optics
and the total number of atoms in Bose–Einstein condensation. These are two basic fields of
application of nonlinear Schrödinger equations. In this way, a new critical exponent r= 2+ 4

N
named the L2-critical exponent (also named mass critical exponent) appears in (1.1). Which
is the threshold exponent for many dynamical properties, such as global existence, blow-up
and the stability or instability of ground states. Alternatively, the L2-critical exponent will
substantially affect the geometry structure of the energy functional, and will produce some
mathematical difficulties that make such type of study particularly interesting. Usually we say
that the region where r< 2+ 4

N is L2-subcritical, while r> 2+ 4
N signifies the L2-supercritical

regime.
It is of great interest to consider the solutions of problem (Pm) that admit prescribed L2-

norm, namely, for given m> 0, to study the solutions of (1.1) under the L2-norm constrained
manifold

S :=

{
u ∈ H1

(
RN

)
:

ˆ
RN

|u|2dx= m2

}
.

Physically, such type of solutions are known as normalized solutions to (Pm), which are the
critical points of the energy functional

I(u) :=
1
2

ˆ
RN

|∇u|2dx−
ˆ
RN

G(u)dx− 1
2∗

ˆ
RN

|u|2
∗
dx

restricted to the manifold S. At this time, the unknown frequency λ is determined as the
Lagrange multiplier associated to the constraint S. In addition, the mass is conserved along
the trajectories of (1.2), that is,ˆ

RN

|Ψ(t,x) |2dx=
ˆ
RN

|u|2dx

for all t> 0, and it can provide a good insight of the dynamical properties (such as, orbital
stability and instability) of solutions to problem (1.2) (see [11, 27]).

In recent years, in consideration of the strong physical background of normalized solu-
tions, more and more researchers began to pay attention to the study of normalized solutions
to elliptic PDEs and systems, especially normalized ground state solutions. This is because
they share further properties, like stability, positivity and symmetry, which are important for
both physical and mathematical point of view. If a nontrivial solution minimizes I among all
nontrivial solutions, we call it a normalized ground state solution to (Pm).

In [15], Jeanjean considered a semilinear elliptic Equation

−∆u+λu= g(u) , x ∈ RN, (1.3)

where N⩾ 1, λ ∈ R, and g satisfies

(g0) g ∈ C(R,R) and g is odd;
(g1) there exist α, β ∈ R with 2+ 4

N < α⩽ β < 2∗ such that

0< αG(t)⩽ g(t) t⩽ βG(t)

for all t ∈ R\{0}, where 2∗ = 2N
N−2 for N⩾ 3 and 2∗ := +∞ for N= 1, 2;

(g2) H(t) := g(t)t− 2G(t) ∈ C1(R,R) and
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h(t) t>

(
2+

4
N

)
H(t)

for all t ∈ R\{0}, where h := H ′.

It is easy to see that the corresponding energy functional is unbounded from below on S.
By making use of a minimax procedure, Jeanjean showed that for each m> 0, (1.3) possesses
at least one couple (um,λm) ∈ H1(RN)×R+ of weak solution with ‖um‖2 = m and um is radial
under (g0)–(g1) for N⩾ 2. Furthermore, when (g2) is also assumed, he obtained the existence
of ground states for N⩾ 1. But, afterwards, there was little progress about the study of nor-
malized solutions for a long time. One of the main reasons is that it is very difficult to prove
the boundedness of constrained Palais-Smale sequence when the functional is unbounded from
below on the constraint manifold. More recently, problems of such type began to receive much
attention. Still under (g0)–(g1), by virtue of a fountain theorem type argument, Bartsch and
de Valeriola [2] got a multiplicity result of (1.3) with ‖u‖2 = m> 0. About another proof for
this multiplicity result can be seen [14], and [7, 8] but requires the additional assumption (g2).
Soave [30] studied the existence and properties of ground states to the nonlinear Schrödinger
equation with combined power nonlinearities

−∆u+λu= µ|u|q−2u+ |u|p−2u, x ∈ RN

on S , where N⩾ 1, 2< q⩽ 2+ 4
N ⩽ p< 2∗. Which is more difficult and substantially differ-

ent with purely subcritical or supercritical cases, because the interplay between subcritical,
critical and supercritical nonlinearities has deep impacts on the geometry of the functional and
on the existence and properties of ground states. Recently, the idea of [30] was used to deal
with the fractional order case, see [24]. More results, we refer the readers to [6, 7, 13] for
normalized solutions to systems in the whole space RN, [26, 28] for normalized solutions on
bounded domains, [1, 17, 18, 20, 21, 23] for normalized solutions to the other equations, such
as fractional Schrödinger equations, Hartree equations and Kirchhoff equations.

All the papers mentioned above only deal with the Sobolev subcritical case. As far as we
know, it seems that there is few result for the normalized solutions to the Sobolev critical prob-
lem (Pm) which usually creates some thorny difficulties in using variational methods due to
the double lack of compactness (see remark 1.7). In 2020, Soave [31] considered the equation

{
−∆u+λu= µ|u|q−2u+ |u|2∗−2u, x ∈ RN,´
RN |u|2dx= m2,

(1.4)

where N⩾ 3. When 2+ 4
N < q< 2∗, he proved that there exists a constant α= α(N,q)> 0

such that if µ ·m(1−δq)q < α, then (1.4) possesses a couple (um,λm) ∈ H1
rad(RN)×R+ of weak

solution and um is a real valued, positive function, where

H1
rad

(
RN

)
:=

{
u ∈ H1

(
RN

)
: u(|x|) = u(x)

}
.

In particular, it is a critical point of mountain pass type, where δq = N( 12 −
1
q ). Noting that

Soave [31] only considered the case thatµ ·m(1−δq)q > 0 small. Recently,Wei andWu [32] also
considered the same problem (1.4). Especially, the first author and co-author in [22] obtained
the existence of ground states that does not depend on the range ofµ ·m(1−δq)q, which improves
and extends the result in [31]. Based on the direct minimization of the energy functional on
the linear combination of Nehari and Pohozaev constraints, Bieganowski and Mederski [5]
proposed a simple minimization method to prove the existence of normalized ground states
to (1.3) for the Sobolev subcritical equation. A natural problem produces:
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(Q1) Do the results of [5] concerning Sobolev subcritical equation can be extended to the
Sobolev critical equation (Pm)?

In this paper, wewill give an affirmative answer for problem (Q1). Before stating our results,
we make the following assumptions:

(A0) g,h ∈ C(R,R) and there exists a constant C> 0 such that

|h(t) |⩽ C
(
|t|+ |t|2

∗−1
)

for t ∈ R.

(A1) η := limsup
|t|→0

G(t)/|t|2+ 4
N <+∞.

(A2) lim
|t|→∞

G(t)/|t|2∗ =+∞.

(A3) lim
|t|→∞

G(t)/|t|2∗ = 0.

(A4) (2+ 4
N )H(t)⩽ h(t)t for any t ∈ R.

(A5) (2+ 4
N )G(t)⩽ g(t)t⩽ 2∗G(t) for any t ∈ R.

(A6) H(ζ0)> 0 for some ζ0 6= 0.

We point out that (A1) allows G to admit L2-critical growth G(t)∼ |t|2+ 4
N at 0, but (A2)

rules out the same behavior at infinity. Furthermore, (A2) allows G to possess L2-supercritical
growth, and (A3) allows G to have Sobolev subcritical growth at infinity. Alternatively, we
need the following relation:

Let f 1, f2 ∈ C(RN,R). Then f1 � f2 if and only if f1 ⩽ f2 and for each ε> 0 there exists
x ∈ RN with |x|< ε such that f1(x)< f2(x).

Hence, the pure L2-critical case for |t| small is ruled out by (A4,�) or the first part of
(A5,�).

Clearly, u solves (Pm), then u satisfies the following Pohozaev identity

P(u) : =
ˆ
RN

|∇u|2dx− N
2

ˆ
RN

[g(u)u− 2G(u)]dx−
ˆ
RN

|u|2
∗
dx

=

ˆ
RN

|∇u|2dx− N
2

ˆ
RN

H(u)dx−
ˆ
RN

|u|2
∗
dx.

For simplicity, we set

P :=
{
u ∈ H1

(
RN

)
\{0} : P(u) = 0

}
,

and

D :=
{
u ∈ H1

(
RN

)
: ‖u‖2 ⩽ m

}
.

The constraint P contains all the nontrivial solutions to (Pm) and does not depend on λ. And
any nontrivial (normalized) solution to (Pm) belongs to S ∩P ⊂D∩P . Hence, if u solves
(Pm) and I(u) = inf

S∩P
I, then u is a normalized ground state solution to (Pm). We have the

following theorems.

Theorem 1.1. Let (A0)–(A6) hold and

2∗ηC2∗
N,2∗m

4
N < 1. (1.5)

Then there exists u ∈ D∩P such that I(u) = inf
D∩P

I> 0, and if, in addition, g is odd, then u is

radially symmetric.

(i) Suppose that g(t)t� 2∗G(t) in (A5) holds. Then inf
D∩P

I= inf
S∩P

I.
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(1) If g ′(t) = o(1) as t→ 0, then u ∈ S ∩P is a normalized ground state solution to (Pm).
(2) If g is odd, then u ∈ S ∩P is a positive and radially symmetric normalized ground

state solution to (Pm).
(ii) Suppose that g is odd and N ∈ {3,4}. Then inf

D∩P
I= inf

S∩P
I. Alternatively, if g ′(t) = o(1)

as t→ 0, then u ∈ S ∩P is a positive and radially symmetric normalized ground state
solution to (Pm).

To study the asymptotic behavior of the ground state energy mapm 7→ inf
S∩P

I, for anym> 0,

let us set
Dm :=

{
u ∈ H1

(
RN

)
: ‖u‖2 ⩽ m

}
.

and
Sm :=

{
u ∈ H1

(
RN

)
: ‖u‖2 = m

}
.

Then, the following theorem holds.

Theorem 1.2. Let (A0)–(A6) and (1.5) hold,

(i) the ground state energy map m 7→ inf
Sm∩P

I is strictly decreasing;

(ii) if η= 0,
(1) the map m 7→ inf

Sm∩P
I is continuous;

(2) in addition, if lim
t→0

G(t)
|t|2∗ =+∞, then inf

Sm∩P
I→ 0+ as m→+∞.

Remark 1.3. It is easy to see that (A5) are weaker than (g1) that has been widely used, see [2,
7, 8, 15].

Remark 1.4. Suppose that (A5,�) holds or 4
NG(t)� H(t) for t ∈ R, Bieganowski and

Mederski [5] obtained a corresponding result to Sobolev subcritical normalized problem{
−∆u+λu= g(u) in RN,´
RN |u|2dx= m2.

In our paper, we do not need the condition 4
NG(t)� H(t) for t ∈ R. Furthermore, we consider

Sobolev critical case which can cause the lack of compactness.

Remark 1.5. Suppose that g satisfies (A0), (A1)with η= 0, (A2) and (A3) and the second part
of (A5), and the following conditions

(Ã4) t 7→ H(t)

|t|2+
4
N
is strictly decreasing on (−∞,0) and strictly increasing on (0,+∞).

(A7) lim
t→0

g(t)t
|t|2∗ =+∞,

Jeanjean and Lu [16] considered the following Sobolev subcritical problem
−∆u+λu= g(u) , x ∈ RN,´
RN |u|2dx= m2,

u ∈ H1
(
RN

)
and obtained the existence of ground states and the limit behavior of the ground state energy as
m> 0 varies. Our results extend their results from Sobolev subcritical case to Sobolev critical
case that is much more challenging and less straightforward. Furthermore, Jeanjean and Lu
[16] proposed the following open problem:

6
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(Q2) Does there exist an alternative approach, not relying on the sign of the Lagrange mul-
tiplier, to give more general existence results?

In our paper, the existence of normalized ground state solution to (Pm) is independent of the
sign of the Lagrange multiplier. Consequently, our result can answer the above open problem
proposed by Jeanjean and Lu [16].

Remark 1.6. We point out that (Ã4) is weaker than (g2), and (A5) is weaker than (g1). By
(A0), (A1) with η= 0, (A2), (Ã4) and lemma 2.3 in [16], we can deduce that

g(t) t>

(
2+

4
N

)
G(t)> 0, ∀t ∈ R\{0} ,

which is weaker than the first part of (g1) that is a technical and essential condition, see [22].

Remark 1.7. (i) Usually, we can take the space of radial functions H1
rad(RN) as the work-

ing space to overcome compactness that is caused by the whole space RN, and we can
use the concentration-compactness principle to overcome compactness that is caused by
the Sobolev critical exponent. In this paper, we neither work in H1

rad(RN) nor use the
concentration-compactness principle. Alternatively, we do not need to work with Palais-
Smale sequences. Consequently, we avoid the mini-max approach in P that has been
recently intensively used by many authors (see [6–8, 16, 24, 30, 31]). Which are neces-
sary in [8, 16]. A minimizing sequences of I on D∩P is directly considered. Which seen
impossible to mass critical and supercritical cases for a long time.

(ii) Profile decomposition is used to overcome the lack of the compactness which is caused by
the Sobolev critical exponent, but its calculation is complex.

2. Some lemmas

To begin with, we give some estimates. By (A0), (A1), (A3) and (A5), for any ε> 0, there
exists a constant Cε > 0 such that

H(t)⩽ (2∗ − 2)G(t)⩽ (2∗ − 2)
(
ε|t|2

∗
+(ε+ η) |t|2+ 4

N +Cε|t|q
)

(2.1)

for any t ∈ R, where q ∈ [2,2∗]. Alternatively, it follows from (A5) that

G(t) , H(t)⩾ 0, ∀t ∈ R. (2.2)

Let S be the best Sobolev constant for the embedding D1,2(RN) ↪→ L2∗(RN), i.e.

S := inf
u∈D1,2(RN)\{0}

‖∇u‖22
‖u‖22∗

.

For q ∈ (2,2∗], the following Gagliardo-Nirenberg inequality holds:

‖u‖q ⩽ CN,q‖u‖
1−δq
2 ‖∇u‖δq2 , ∀u ∈ H1

(
RN

)
,

where δq = N( 12 −
1
q ), CN,q > 0. Especially, when q= 2∗, it is easy to see that C2

N,2∗ = S−1.

By (A6) and arguing as in [3], for any R> 1 there exists a radial function u ∈ H1
0(B(0,R))∩

L∞(B(0,R)) such that
´
RNH(u)dx> 0.

Set

r2 (u) :=
N
2

´
RNH(u)dx+

´
RN |u|2

∗
dx´

RN |∇u|2dx
.

Then u(r(u)·) ∈ P , so P 6= ∅

7
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Lemma 2.1. Assume that (A0), (A1), (A3), (A5), (A6) and (1.5) hold. Then

inf
D∩P

‖∇u‖2 > 0.

Proof. Taking 2+ 4
N < p< 2∗. For any u ∈ D∩P ⊂D, by virtue of the Gagliardo-Nirenberg

inequality we have

‖u‖t ⩽ CN,t‖∇u‖δt2 ‖u‖
1−δt
2 ⩽ CN,tm

1−δt‖∇u‖δt2 , (2.3)

where δt = N( 12 −
1
t ), t ∈ (2,2∗]. Consequently, using (2.1)–(2.3) we derive that

‖∇u‖22 =
N
2

ˆ
RN

[g(u)u− 2G(u)]dx+
ˆ
RN

|u|2
∗
dx

=
N
2

ˆ
RN

H(u)dx+
ˆ
RN

|u|2
∗
dx

⩽N
2
(2∗ − 2)

ˆ
RN

[
ε|u|2

∗
+(ε+ η) |u|2+ 4

N +Cε|u|p
]
dx+

ˆ
RN

|u|2
∗
dx

=(2∗ε+ 1)‖u‖2
∗

2∗ + 2∗ (ε+ η)‖u‖2+
4
N

2+ 4
N
+ 2∗Cε‖u‖pp

⩽(2∗ε+ 1)S−
2∗
2 ‖∇u‖2

∗

2 + 2∗ (ε+ η)C2∗
N,2∗ ·m

4
N ‖∇u‖22

+ 2∗CεC
p
N,pm

p(1−δp)‖∇u‖pδp2 .

Taking ε <
1−2∗ηC2∗

N,2∗m
4
N

2∗C2∗
N,2∗m

4
N

and using (1.5), we can obtain that there exists a constant C> 0 such

that ‖∇u‖2 ⩾ C, since pδp = pN( 12 −
1
p ) =

N(p−2)
2 > 2.

Let u ∈ H1(RN)\{0} satisfy

2ηC2∗
N,2∗

(ˆ
RN

u2dx

) 2
N

< 1. (2.4)

For any λ> 0, set ϕ(λ) := I(λ
N
2 u(λ·)). We have the following lemma.

Lemma 2.2. Assume that u ∈ H1(RN)\{0} satisfies (2.4) and (A0) and (A1) and (A3)–
(A6) hold. Then there exists an interval [a,b]⊂ (0,+∞) such that any λ ∈ [a,b] is a global
maximizer for ϕ and ϕ is strictly increasing on (0,a) and strictly decreasing on (b,+∞).
Furthermore, P(λ

N
2 u(λ·)) = 0 if and only if λ ∈ [a,b], P(λ

N
2 u(λ·))> 0 if and only if λ ∈ (0,a),

and P(λ
N
2 u(λ·))< 0 if and only if λ ∈ (b,+∞).

Proof. Let u ∈ H1(RN)\{0} satisfy (2.4). By (A1) we have

ϕ(λ) =I
(
λ

N
2 u(λx)

)
=

1
2

ˆ
RN

∣∣∣∇[
λ

N
2 u(λx)

]∣∣∣2 dx− ˆ
RN

G
(
λ

N
2 u(λx)

)
dx− 1

2∗

ˆ
RN

|λ N
2 u(λx) |2

∗
dx

=
1
2
λ2
ˆ
RN

|∇u|2dx−
ˆ
RN

G
(
λ

N
2 u
)

λN
dx− 1

2∗
λ2∗
ˆ
RN

|u|2
∗
dx

→0

8
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as λ→ 0+, and from (2.2) one has ϕ(λ)→−∞ as λ→+∞. Set R := ‖u‖22 = ‖λ N
2 u(λ·)‖22 >

0. By using of (2.1), Sobolev embedding theorem and the Gagliardo–Nirenberg inequality, for
any ε> 0, there exists Cε > 0 such thatˆ

RN

G(u)dx⩽(ε+ η)‖u‖2+
4
N

2+ 4
N
+Cε‖u‖2

∗

2∗

⩽(ε+ η)C2∗
N,2∗R

2
N ‖∇u‖22 + S−

2∗
2 Cε‖∇u‖2

∗

2 .

Consequently,

ϕ(λ)

λ2
=

1
2

ˆ
RN

|∇u|2dx− 1
λ2

ˆ
RN

G
(
λ

N
2 u(λx)

)
dx− 1

2∗
λ2∗−2

ˆ
RN

|u|2
∗
dx

⩾1
2
‖∇u‖22 − (ε+ η)C2∗

N,2∗R
2
N ‖∇u‖22 − S−

2∗
2 Cελ

2∗−2‖∇u‖2
∗

2 − 1
2∗

λ2∗−2‖u‖2
∗

2∗

=
1
2
‖∇u‖22

[
1− 2(ε+ η)C2∗

N,2∗R
2
N

]
− S−

2∗
2 Cελ

2∗−2‖∇u‖2
∗

2 − 1
2∗

λ2∗−2‖u‖2
∗

2∗ .

Combining with (2.4) we get ϕ(λ)> 0 for sufficiently small ε> 0 and λ> 0. Therefore, there
exists an interval [a,b]⊂ (0,+∞) such that ϕ|[a,b] =maxϕ. It is easy to see that

ϕ ′ (λ) = λ

[
‖∇u‖22 −

N
2
λ−N−2

ˆ
RN

H
(
λ

N
2 u
)
dx−λ2∗−2‖u‖2

∗

2∗

]
,

and the function

λ ∈ (0,+∞) 7→ N
2
λ−N−2

ˆ
RN

H
(
λ

N
2 u
)
dx+λ2∗−2‖u‖2

∗

2∗

is strictly increasing by (A4) and tends to +∞ as λ→+∞. It follows that ϕ ′(λ)> 0 if λ ∈
(0,a) and ϕ ′(λ)< 0 if λ ∈ (b,+∞). Noting that

λϕ ′ (λ) = λ2‖∇u‖22 −
N
2
λ−N
ˆ
RN

H
(
λ

N
2 u
)
dx−λ2∗‖u‖2

∗

2∗ = P
(
λ

N
2 u(λ·)

)
,

which easily yields that the rest conclusions hold.

Lemma 2.3. Assume that (A0) and (A1), (A3)–(A6) and (1.5) hold. Then I is coercive on
D∩P .

Proof. For any u ∈ D∩P , by (A5) we get

I(u) =I(u)− 1
2
P(u)

=
N
4

ˆ
RN

[
g(u)u−

(
2+

4
N

)
G(u)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|u|2
∗
dx

⩾0.

(2.5)

Then I is bounded from below on D∩P . Argument by indirection. Suppose that there exist a
sequence {un} ⊂ D∩P and a positive number d> 0 such that ‖un‖→+∞ and I(un)⩽ d. By
the definition of D we see that ‖∇un‖22 →+∞ as n→∞. Set λn := 1

∥∇un∥2
→ 0+ as n→∞

and vn(·) = λ
N
2
n un(λn·). Thenˆ

RN

|vn|2dx= λNn

ˆ
RN

|un (λnx) |2dx=
ˆ
RN
|un|2dx⩽ m2

9
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and ˆ
RN

|∇vn|2dx= λ2
n

ˆ
RN

|∇un|2dx=
1

‖∇un‖22

ˆ
RN

|∇un|2dx= 1.

Consequently, vn ∈ D and {vn} is bounded inH1(RN). Since vn 6= 0, there exists a point y ∈ RN

such that ˆ
B1(y)

|vn|2
∗
dx := η > 0.

Set l(z) :=
´
B1(z)

|vn|2
∗
dx. It follows from the integral absolute continuity that l(z) is con-

tinuous on RN. Take a large R> 0 with
´
RN\BR(0) |vn|

2∗dx< η. Then, for any z ∈ RN\BR+1(0),

l(z) =
ˆ
B1(z)

|vn|2
∗
dx< η.

As a consequence,

sup
z∈RN

l(z) = sup
z∈BR+1(0)

l(z) .

Combining the continuity of l(·) and the compactness of BR+1(0) that we can conclude that
there exists yn ∈ BR+1(0) such that l(yn) = sup

z∈BR+1(0)

l(z). Consequently,

ˆ
B1(yn)

|vn|2
∗
dx= sup

z∈RN

ˆ
B1(z)

|vn|2
∗
dx.

Then,

limsup
n→∞

ˆ
B1(yn)

|vn|2
∗
dx> 0.

Otherwise,

lim
n→∞

ˆ
B1(yn)

|vn|2
∗
dx= 0.

Lemma 3.8 in [9] yields that vn → 0 in L2∗(RN). Making use of the interpolation inequality,
we obtain vn → 0 in L2+ 4

N (RN), which together with (2.1) and (2.2) implies thatˆ
RN

G
(
λ

N
2 vn (λx)

)
dx→ 0

as n→∞ for any λ> 0. Noting that for any u ∈ D∩P , by (1.5), u clearly satisfies the inequal-
ity (2.4). Hence, by lemma 2.2 we deduce that

d⩾I(un)⩾ I
(
λ

N
2 vn (λx)

)
=

1
2

ˆ
RN

|∇
[
λ

N
2 vn (λx)

]
|2dx−

ˆ
RN

G
(
λ

N
2 vn (λx)

)
dx− 1

2∗

ˆ
RN

|λ N
2 vn (λx) |2

∗
dx

=
1
2
λ2
ˆ
RN

|∇vn|2dx−
ˆ
RN

G
(
λ

N
2 vn (λx)

)
dx− 1

2∗
λ2∗
ˆ
RN

|vn|2
∗
dx

=
1
2
λ2 + o(1) .

10
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This is impossible for large λ. As a result, by (2.2) and (2.5) we deduce that

0⩽ λ2∗
n I(un) = λ2∗

n

[
1
2

ˆ
RN

|∇un|2dx−
ˆ
RN

G(un)dx−
1
2∗

ˆ
RN

|un|2
∗
dx

]
⩽ 1

2
λ2∗
n ‖∇un‖22 −

1
2∗

λ2∗
n

ˆ
RN

|un|2
∗
dx

=
1
2
λ2∗−2
n − 1

2∗

ˆ
RN

|vn|2
∗
dx

⩽ 1
2
λ2∗−2
n − 1

2∗

ˆ
B1(yn)

|vn|2
∗
dx

< 0

for large n, a contradiction.

Lemma 2.4. Assume that (A0) and (A1), (A3)–(A6) and (1.5) hold. Then c := inf
D∩P

I> 0.

Proof. For any u ∈ D, by (1.5) and (2.1) and the Gagliardo-Nirenberg inequality we haveˆ
RN

G(u)dx+
1
2∗

ˆ
RN

|u|2
∗
dx

⩽ (ε+ η)‖u‖2+
4
N

2+ 4
N
+(Cε + 1)‖u‖2

∗

2∗

⩽ (ε+ η)C2∗
N,2∗m

4
N ‖∇u‖22 +(Cε + 1)S−

2∗
2 ‖∇u‖2

∗

2

⩽
[
εC2∗

N,2∗m
4
N +(Cε + 1)S−

2∗
2 ‖∇u‖

4
N−2

2 + ηC2∗
N,2∗m

4
N

]
‖∇u‖22

⩽
[
εC2∗

N,2∗m
4
N +(Cε + 1)S−

2∗
2 ‖∇u‖

4
N−2

2 +
1
2∗

]
‖∇u‖22.

Taking

ε=
1

4NC2∗
N,2∗m

4
N

> 0 and δ =

[
1

4N(Cε + 1)S−
2∗
2

] N−2
4

> 0,

then when ‖∇u‖2 ⩽ δ we have
ˆ
RN

G(u)dx+
1
2∗

ˆ
RN

|u|2
∗
dx⩽

(
1
4N

+
1
4N

+
1
2∗

)
‖∇u‖22 =

(
1
2
− 1

2N

)
‖∇u‖22.

Then, when ‖∇u‖2 ⩽ δ,

I(u) =
1
2
‖∇u‖22 −

ˆ
RN

G(u)dx− 1
2∗

ˆ
RN

|u|2
∗
dx

⩾1
2
‖∇u‖22 −

(
1
2
− 1

2N

)
‖∇u‖22

=
1
2N

‖∇u‖22.

Again noting that for any u ∈ D∩P , by (1.5), u clearly satisfies the inequality (2.4).
Consequently, by lemma 2.2,

I(u)⩾ I
(
λ

N
2 u(λx)

)
:= I(v(·))

11
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for anyλ> 0, where v(·) := λ
N
2 u(λ·). Especially, takingλ= δ

∥∇u∥2
. It is easy to see that ‖v‖2 =

‖u‖2, ‖∇v‖2 = δ. Hence, from the above two inequalities we obtain

I(u)⩾ I(v)⩾ 1
2N

‖∇v‖22 =
1
2N

δ2 > 0.

Therefore, c= inf
u∈D∩P

I(u)⩾ 1
2Nδ

2 > 0.

Lemma 2.5. Assume that u ∈ H1(RN)\{0} satisfies (2.4) and (A0)–(A6) hold. Then,

c= inf
D∩P

I<
1
N
S

N
2 .

Proof. It is well known to us that the Aubin-Talanti babble

Uε (x) = [N(N− 2)]
N−2
4

(
ε

ε2 + |x|2

) N−2
2

is the unique solution to the following equation:
−∆u= u2

∗−1 in RN,
u(0) =max

x∈RN
u(x) ,

u(x)> 0,
u(x)→ 0 as |x| →+∞,

and satisfies

‖∇Uε‖22 = ‖Uε‖2
∗

2∗ = S
N
2 .

Let ϕ ∈ C∞
0 (RN, [0,1]) be such that ϕ(x)≡ 1 for |x|⩽ 1 and ϕ(x)≡ 0 for |x|⩾ 2. Set

vε (x) = ϕ(x)Uε (x) .

Then by [10, 19] we get that
ˆ
RN

|∇vε|2dx= S
N
2 +O

(
εN−2

)
,

ˆ
RN

|vε|2
∗
dx= S

N
2 +O

(
εN
)
,

´
RN |vε|2dx=

 C1ε
2 +O

(
εN−2

)
, N⩾ 5,

C1ε
2| lnε|+O

(
ε2
)
, N= 4,

C1ε, N= 3,

where C1 > 0. Set

uε (x) =
(
m−1‖vε‖2

) N−2
2 vε

(
m−1‖vε‖2x

)
.

Then it is easy to see that uε ∈ S and
ˆ
RN

|∇uε|2dx=
ˆ
RN

|∇vε|2dx= S
N
2 +O

(
εN−2

)
,

ˆ
RN

|uε|2
∗
dx=

ˆ
RN

|vε|2
∗
dx= S

N
2 +O

(
εN
)

12
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and
ˆ
RN

|uε|2∗dx=
(
m−1‖vε‖2

)− 4
N

ˆ
RN

|vε|2∗dx

⩾
(
m−1‖vε‖2

)− 4
N [N(N− 2)]

N2−4
2N

ˆ
B1(0)

(
ε

ε2 + |x|2

) N2−4
N

dx

=
(
m−1‖vε‖2

)− 4
N [N(N− 2)]

N2−4
2N ε

4
N

ˆ
B 1

ε
(0)

(
1

1+ |x|2

) N2−4
N

dx

⩾ C2
(
m−1‖vε‖2

)− 4
N ε

4
N

= C2m
4
N ε

4
N ‖vε‖

− 4
N

2

⩾ 1
2
C2C

− 2
N

1 m
4
N ·


1, N⩾ 5,∣∣ lnε∣∣− 2

N , N= 4,
ε

2
N , N= 3

for ε> 0 small enough. It follows from lemma 2.2 that there exists λε > 0 such that

λ
N
2
ε uε(λε·) ∈ P . Since uε ∈ S , λ

N
2
ε uε(λε·) ∈ S ∩P ⊂D∩P .

We claim that there exist two constants A1,A2 ∈ R+ independent of ε such that A1 ⩽ λε ⩽
A2. Indeed, by lemma 2.4 and (2.2) we know that

0<c⩽ I
(
λ

N
2
ε uε (λε·)

)
=

1
2
λ2
ε

ˆ
RN

|∇uε|2dx−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx− 1

2∗
λ2∗
ε

ˆ
RN

|uε|2
∗
dx

⩽1
2
λ2
ε

ˆ
RN

|∇uε|2dx−
1
2∗

λ2∗
ε

ˆ
RN

|uε|2
∗
dx,

which yields that the assertion holds.
As a consequence,

c= inf
D∩P

I⩽ I
(
λ

N
2
ε uε (λε·)

)
=

1
2
λ2
ε

ˆ
RN

|∇uε|2dx−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx− 1

2∗
λ2∗
ε

ˆ
RN

|uε|2
∗
dx

=
1
2
λ2
ε

(
S

N
2 +O

(
εN−2

))
−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx− 1

2∗
λ2∗
ε

(
S

N
2 +O

(
εN
))

⩽
(
1
2
λ2
ε −

1
2∗

λ2∗
ε

)
S

N
2 +

1
2
A2
2O

(
εN−2

)
− 1

2∗
A2∗
1 O

(
εN
)
−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx

⩽ sup
τ∈R

(
1
2
τ 2 − 1

2∗
τ 2∗

)
S

N
2 +

1
2
A2
2O

(
εN−2

)
− 1

2∗
A2∗
1 O

(
εN
)
−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx

=
1
N
S

N
2 +

1
2
A2
2O

(
εN−2

)
− 1

2∗
A2∗
1 O

(
εN
)
−
ˆ
RN

G
(
λ

N
2
ε uε (λε·)

)
dx

By (A2) and (2.2), for anyM> 0, there exists CM > 0 such that

G(t)⩾M|t|2∗ −CM|t|2, ∀t ∈ R.

13
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Then,

ˆ
RN

G
(
λ

N
2
ε uε (λεx)

)
dx⩾M

ˆ
RN

|λ
N
2
ε uε (λεx) |2∗dx−CM

ˆ
RN

|λ
N
2
ε uε (λεx) |2dx

=Mλ2
ε

ˆ
RN

|uε|2∗dx−CM

ˆ
RN

|uε|2dx

⩾MA2
1

ˆ
RN

|uε|2∗dx−CM

ˆ
RN

|uε|2dx

⩾1
2
MA2

1C2C
− 2

N
1 m

4
N ·


1, N⩾ 5,∣∣ lnε∣∣− 2

N , N= 4,
ε

2
N , N= 3

−CMm
2.

Consequently,

c⩽ 1
N
S

N
2 +

1
2
A2
2O

(
εN−2

)
− 1

2∗
A2∗
1 O

(
εN
)

− 1
2
MA2

1C2C
− 2

N
1 m

4
N ·


1, N⩾ 5,∣∣ lnε∣∣− 2

N , N= 4,
ε

2
N , N= 3

+CMm
2

<
1
N
S

N
2

for ε> 0 small enough and M big enough.

Theorem 2.6 ([25] Profile decomposition). Assume that {un} is bounded in H1(RN). Then,
there exist sequences {ũi}∞i=0 ⊂ H1(RN), {yin}∞i=0 ⊂ RN for any n⩾ 1, such that y0n = 0, |yin−
yjn| →+∞ as n→∞ for i 6= j, and up to a subsequence, the following conclusions hold for
any i ⩾ 0:

un
(
·+ yin

)
⇀ ũi in H

1
(
RN

)
as n→∞, (2.6)

lim
n→∞

ˆ
RN

|∇un|2 =
i∑

j=0

ˆ
RN

|∇ũj|2dx+ lim
n→∞

ˆ
RN

|∇vin|2dx, (2.7)

where vin(·) := un−
∑i

j=0 ũj(· − yjn) and

limsup
n→∞

ˆ
RN

H(un)dx=
∞∑
j=0

ˆ
RN

H(ũj)dx. (2.8)

Lemma 2.7. Assume that (A0)–(A6) and (1.5) hold. Then c= inf
D∩P

I is attained. If, in addition,

g is odd, then c is attained by a nonnegative and radially symmetric function in D∩P .

Proof. Let {un} ⊂ D∩P be such that I(un)→ c as n→∞. By lemma 2.3, {un} is bounded
in H1(RN). With the aid of theorem 2.6, we can find a profile decomposition of {un} satisfy-
ing (2.6)–(2.8). Set A := {i ⩾ 0 : ũi 6= 0}. If A= ∅, namely, for any i ⩾ 0, ũi = 0. By (2.2)
and (2.8),

lim
n→∞

ˆ
RN

H(un)dx= 0.

14
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Since un ∈ D∩P ⊂ P ,

ˆ
RN

|∇un|2dx−
ˆ
RN

|un|2
∗
dx= o(1) .

Up to a subsequence, denote by l⩾ 0 such that

ˆ
RN

|∇un|2dx→ l

and
ˆ
RN

|un|2
∗
dx→ l

as n→∞. If l> 0, then

S⩽ ‖∇un‖22
‖un‖22∗

→ l

l
2
2∗

= l
2
N ,

so l⩾ S
N
2 . Together with (A5) we see that

c= lim
n→∞

I(un)

= lim
n→∞

[
1
2

ˆ
RN

|∇un|2dx−
ˆ
RN

G(un)dx−
1
2∗

ˆ
RN

|un|2
∗
dx

]
=

(
1
2
− 1

2∗

)
l=

1
N
l⩾ 1

N
S

N
2 ,

a contradiction to lemma 2.5. Consequently, l= 0. Which yields that c= lim
n→∞

I(un) = 0, a

contradiction to lemma 2.4. Hence, A 6= ∅.
In the sequel, we assert that for every i ⩾ 0 there holds that

un
(
·+ yin

)
→ ũi (2.9)

in D1,2(RN) or

0<
ˆ
RN

|∇ũi|2dx⩽
N
2

ˆ
RN

H(ũi)dx+
ˆ
RN

|ũi|2
∗
dx. (2.10)

Argument by indirection. Suppose that there exists i ⩾ 0 such that

ν := lim
n→∞

ˆ
RN

|∇vn|2dx= lim
n→∞

ˆ
RN

|∇
[
un

(
x+ yin

)
− ũi (x)

]
|2dx> 0

and
ˆ
RN

|∇ũi|2dx>
N
2

ˆ
RN

H(ũi)dx+
ˆ
RN

|ũi|2
∗
dx, (2.11)

15
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where vn(·) := un(·+ yin)− ũi(·). Set F(·) = N
2H(·)+ | · |2∗ , with the aid of Vitali’s conver-

gence theorem, we know

ˆ
RN

[F(un)−F(vn)]dx=
ˆ
RN

ˆ 1

0
− d
ds
F(un− sũi)dsdx

=

ˆ
RN

ˆ 1

0
f(un− sũi) ũidsdx

→
ˆ 1

0

ˆ
RN

f(ũi− sũi) ũidxds

=

ˆ
RN

ˆ 1

0
− d
ds
F(ũi− sũi)dsdx

=

ˆ
RN

F(ũi)dx

as n→∞. There holds that
ˆ
RN

|∇vn|2dx+
ˆ
RN

|∇ũi|2dx

=
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx+

N
2

ˆ
RN

H(ũi)dx+
ˆ
RN

|ũi|2
∗
dx+ o(1) .

Consequently, by (2.11) we get

ˆ
RN

|∇vn|2dx⩽
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx+ o(1) . (2.12)

Taking

R2
n =

N
2

´
RNH(vn)dx+

´
RN |vn|2

∗
dx´

RN |∇vn|2dx
.

Then, vn(Rn·) ∈ P . In the following, we prove that Rn → 1 as n→∞. We divide the proof into
two cases.

Case (i): If

ˆ
RN

|∇vn|2dx>
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx

holds for a.e. n, then by (2.12) and the fact that ν > 0 we have Rn → 1 as n→∞.
Case (ii): If, up to a subsequence,

ˆ
RN

|∇vn|2dx⩽
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx,

then R2
n ⩾ 1. Noticing that

lim
n→∞

(
‖un‖22 −‖vn‖22

)
= ‖ũi‖22 > 0,

16
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so vn ∈ D for a.e. on n and hence vn(Rn·) ∈ D∩P for a.e. on n. Therefore, by Brézis-Lieb
lemma and (A5) we get

c= inf
D∩P

I⩽ I(vn (Rn·)) = I(vn (Rn·))−
1
2
P(vn (Rn·))

=
N
4

ˆ
RN

[
g(vn (Rnx))vn (Rnx)−

(
2+

4
N

)
G(vn (Rnx))

]
dx

+

(
1
2
− 1

2∗

)ˆ
RN

|vn (Rnx) |2
∗
dx

=
N
4
R−N
n

ˆ
RN

[
g(vn)vn−

(
2+

4
N

)
G(vn)

]
dx+

(
1
2
− 1

2∗

)
R−N
n

ˆ
RN

|vn|2
∗
dx

⩽N
4

ˆ
RN

[
g(vn)vn−

(
2+

4
N

)
G(vn)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|vn|2
∗
dx

=
N
4

ˆ
RN

[
g(un)un−

(
2+

4
N

)
G(un)

]
dx− N

4

ˆ
RN

[
g(ũi)ũi−

(
2+

4
N

)
G(ũi)

]
dx

+

(
1
2
− 1

2∗

)ˆ
RN

|un|2
∗
dx−

(
1
2
− 1

2∗

)ˆ
RN

|ũi|2
∗
dx+ o(1)

⩽N
4

ˆ
RN

[
g(un)un−

(
2+

4
N

)
G(un)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|un|2
∗
dx+ o(1)

=I(un)−
1
2
P(un)+ o(1)

=I(un)+ o(1) = c+ o(1),

which yields that Rn → 1 as n→∞.
As a result, by theorem 2.6 one has

ˆ
RN

|∇vn|2dx=
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx+ o(1)

=

ˆ
RN

|vn|2
∗
dx+ o(1) ,

which together with the definition of S implies that ν ⩾ S
N
2 . Since

I(un)− I(vn) = I(ũi)+ o(1) ,

and by (A5) we have

I(ũi) =I(ũi)−
1
2
P(ũi)

=
N
4

ˆ
RN

[
g(ũi) ũi−

(
2+

4
N

)
G(ũi)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|ũi|2
∗
dx⩾ 0.
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Thereby,

c= lim
n→∞

I(un)

= lim
n→∞

[I(vn)+ I(ũi)]

=I(ũi)+ lim
n→∞

[
1
2
‖∇vn‖22 −

ˆ
RN

G(vn)dx−
1
2∗

ˆ
RN

|vn|2
∗
dx

]
=I(ũi)+

(
1
2
− 1

2∗

)
ν

⩾ 1
N
ν ⩾ 1

N
S

N
2 ,

a contradiction to lemma 2.5.
In a word, for every i ⩾ 0, (2.9) or (2.10) holds. If (2.10) holds, there exists R⩾ 1 such that

ũi(R·) ∈ P and ũi(R·) ∈ D. Hence, by (A5) and Fatou lemma we deduce that

c⩽I(ũi (Rx)) = I(ũi (Rx))−
1
2
P(ũi (Rx))

=
N
4

ˆ
RN

[
g(ũi (Rx)) ũi (Rx)−

(
2+

4
N

)
G(ũi (Rx))

]
dx

+

(
1
2
− 1

2∗

)ˆ
RN

|ũi (Rx) |2
∗
dx

=
N
4
R−N
ˆ
RN

[
g(ũi) ũi−

(
2+

4
N

)
G(ũi)

]
dx+

(
1
2
− 1

2∗

)
R−N
ˆ
RN

|ũi|2
∗
dx

<
N
4

ˆ
RN

[
g(ũi) ũi−

(
2+

4
N

)
G(ũi)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|ũi|2
∗
dx

⩽N
4
liminf
n→∞

ˆ
RN

[
g(un)un−

(
2+

4
N

)
G(un)

]
dx+(

1
2
− 1

2∗
) liminf
n→∞

ˆ
RN

|un|2
∗
dx

⩽ lim
n→∞

[
I(un)−

1
2
P(un)

]
= lim

n→∞
I(un) = c,

(2.13)

a contradiction. Therefore, un(·+ yin)→ ũi in D1,2(RN). So un(·+ yin)→ ũi in L2∗(RN). Then,
it results by (2.1) that

ˆ
RN

H
(
un

(
·+ yin

))
dx→

ˆ
RN

H(ũi)dx

as n→∞. Thereby, by un ∈ D∩P we know that ũi ∈ D∩P . Arguing as before but withR= 1
we can prove that I(ũi) = c. If, in addition, g is odd, thenG(| · |) = G(·) andH(| · |) = H(·). Set
ṽi := |ũi|∗ as the Schwarz symmetrization of |ũi|. Then, ‖ṽi‖2 = ‖ũi‖2, so ṽi ∈ D. Furthermore,

ˆ
RN

|∇ṽi|2dx⩽
ˆ
RN

|∇ũi|2dx=
N
2

ˆ
RN

H(ũi)dx+
ˆ
RN

|ũi|2
∗
dx

=
N
2

ˆ
RN

H(ṽi)dx+
ˆ
RN

|ṽi|2
∗
dx.
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Then

r(ṽi) :=
N
2

´
RNH(ṽi)dx+

´
RN |ṽi|2

∗
dx´

RN |∇ṽi|2dx
⩾ 1

and ṽi(r(ṽi)·) ∈ P . If r(ṽi)> 1, with a similar argument as the proof in (2.13) we can obtain a
contradiction. As a consequence, r(ṽi) = 1, and so ṽi ∈ P , I(ṽi) = c.

Lemma 2.8. Assume that (A0)–(A6) and (1.5) hold. Alternative, suppose that

(a) g(t) t� 2∗G(t) for t ∈ R,

or

(b) g is odd and N ∈ {3, 4} .

For any u ∈ (D\S)∩P , inf
S∩P

I< I(u).

Proof. We argue by contradiction. Suppose that there exists ũ ∈ (D\S)∩P such that

inf
S∩P

I⩾ I(ũ) = c= inf
D∩P

I.

Which indicates that ũ is a local minimizer for I on D∩P . Since

D\S=
{
u ∈ H1

(
RN

)
: ‖u‖2 < m

}
is an open set in P , ũ is a local minimizer of I on P . Consequently, there exists a Lagrange
multiplier µ ∈ R such that

I ′ (ũ)v+µ

(ˆ
RN

∇ũ∇vdx− N
4

ˆ
RN

h(ũ)vdx− 2∗

2

ˆ
RN

|ũ|2
∗−2ũvdx

)
= 0

for any v ∈ H1(RN). Namely, ũ solves

−∆ũ− g(ũ)− |ũ|2
∗−2ũ+µ

(
−∆ũ− N

4
h(ũ)− 2∗

2
|ũ|2

∗−2ũ

)
= 0,

i.e.

−(1+µ)∆ũ= g(ũ)+
N
4
µh(ũ)+

(
1+

2∗

2
µ

)
|ũ|2

∗−2ũ.

Especially, ũ satisfies the following Nehari-type identity

(1+µ)

ˆ
RN

|∇ũ|2dx=
ˆ
RN

[
g(ũ) ũ+

N
4
µh(ũ) ũ+

(
1+

2∗

2
µ

)
|ũ|2

∗
]
dx.

If µ=−1, then

ˆ
RN

[
g(ũ) ũ− N

4
h(ũ) ũ+

(
1− 2∗

2

)
|ũ|2

∗
]
dx= 0.
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By (A4) and (A5),

0=
ˆ
RN

[
g(ũ) ũ− N

4
h(ũ) ũ+

(
1− 2∗

2

)
|ũ|2

∗
]
dx

⩽
ˆ
RN

[
g(ũ) ũ− N

4

(
2+

4
N

)
H(ũ)+

(
1− 2∗

2

)
|ũ|2

∗
]
dx

⩽
(
1− 2∗

2

)ˆ
RN

|ũ|2
∗
dx< 0,

a contradiction. Consequently, µ 6=−1. Since ũ ∈ P ,ˆ
RN

|∇ũ|2dx= N
2

ˆ
RN

H(ũ)dx+
ˆ
RN

|ũ|2
∗
dx.

On the other hand, ũ satisfies Pohozaev and Nehari identities. Hence,

(1+µ)

ˆ
RN

|∇ũ|2dx

=
N
2

ˆ
RN

[
H(ũ)+

N
4
µ(h(ũ) ũ− 2H(ũ))+

(
1− 2

2∗

)(
1+

2∗

2
µ

)
|ũ|2

∗
]
dx.

Combining there two identities we obtain

(1+µ)

[
N
2

ˆ
RN

H(ũ)dx+
ˆ
RN

|ũ|2
∗
dx

]
=
N
2

ˆ
RN

[
H(ũ)+

N
4
µ(h(ũ) ũ− 2H(ũ))+

(
1− 2

2∗

)(
1+

2∗

2
µ

)
|ũ|2

∗
]
dx.

If µ 6= 0, then ˆ
RN

[
h(ũ) ũ−

(
2+

4
N

)
H(ũ)

]
dx+

16
N2 (N− 2)

ˆ
RN

|ũ|2
∗
= 0.

It yields by (A4) that ũ= 0, a contradiction to ũ ∈ (D \ S)∩P . Consequently, µ= 0, and then
ũ solves

−∆ũ= g(ũ)+ |ũ|2
∗−2ũ

and ˆ
RN

|∇ũ|2dx=
ˆ
RN

g(ũ) ũdx+
ˆ
RN

|ũ|2
∗
dx.

Since ũ ∈ P , one hasˆ
RN

|∇ũ|2dx= N
2

ˆ
RN

H(ũ)dx+
ˆ
RN

|ũ|2
∗
dx.

Therefore, ˆ
RN

g(ũ) ũdx=
N
2

ˆ
RN

H(ũ)dx.

Which yields thatˆ
RN

[2∗G(ũ)− g(ũ) ũ]dx= 0.
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By the elliptic regularity theory, ũ is continuous on RN. By (A5),

2∗G(ũ(x)) = g(ũ(x)) ũ(x)

for x ∈ RN. By ũ ∈ H1(RN), there exists an open interval Λ⊂ R such that 0 ∈ Λ̄ and 2∗G(u) =
g(u)u for u ∈ Λ̄, which implies that there exists C> 0 such that

G(u) = C|u|2
∗
,

where u ∈ Λ̄. We next continue our arguments by distinguishing two cases.
Case (i): If the inequality g(t)t� 2∗G(t) for t ∈ R, then we can easily obtain a contradiction.
Case (ii): If g is odd and N ∈ {3, 4}, then by lemma 2.7, we may assume that ũ is nonneg-

ative and radially symmetric. Alternatively,

−∆ũ= (2∗C+ 1) |ũ|2
∗−2ũ. (2.14)

This is impossible, since the nonnegative and radial solution of (2.14) is a Aubin–Talenti
instanton, up to a scaling and a translation, which is not L2-integrable if N ∈ {3, 4}.

3. Proof of theorem 1.1

Proof of theorem 1.1. Taking into account of lemmas 2.7 and 2.8, c= inf
S∩P

I is attained at ũ ∈
S∩P . Consequently, there exist two Lagrange multipliers λ, µ ∈ R such that ũ solves

−∆ũ− g(ũ)− |ũ|2
∗−2ũ+λũ+µ

(
−∆ũ− N

4
h(ũ)− 2∗

2
|ũ|2

∗−2ũ

)
= 0,

i.e.

−(1+µ)∆ũ+λũ= g(ũ)+
N
4
µh(ũ)+

(
1+

2∗

2
µ

)
|ũ|2

∗−2ũ.

If µ=−1, then

λũ= g(ũ)− N
4
h(ũ)+

(
1− 2∗

2

)
|ũ|2

∗−2ũ.

In the sequel, we divide the following argument into two cases.

(a) Suppose g ′(t) = o(1) as t→ 0. By (A4) and (A5),

λ

ˆ
RN

|ũ|2dx=
ˆ
RN

[
g(ũ) ũ− N

4
h(ũ) ũ

]
dx+

(
1− 2∗

2

)ˆ
RN

|ũ|2
∗
dx

⩽
ˆ
RN

[
g(ũ) ũ−

(
N
2
+ 1

)
H(ũ)

]
dx+

(
1− 2∗

2

)ˆ
RN

|ũ|2
∗
dx

=
N
2

ˆ
RN

[(
2+

4
N

)
G(ũ)− g(ũ) ũ

]
dx+

(
1− 2∗

2

)ˆ
RN

|ũ|2
∗
dx

⩽
(
1− 2∗

2

)ˆ
RN

|ũ|2
∗
dx< 0,

which implies that λ< 0. On the other hand, set

Σ :=

{
x ∈ RN : λũ(x) = g(ũ(x))− N

4
h(ũ(x))+

(
1− 2∗

2

)
|ũ(x) |2

∗−2ũ(x)

}
,

Ω := {x ∈ Σ : ũ(x) 6= 0} .
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Then, |Ω|> 0. Set δ := ess inf
x∈Ω

|ũ(x)|⩾ 0. If δ > 0, since ũ ∈ L2(RN)\{0}, then Ω admits

finite positive measure and observe thatˆ
RN

|ũ(x+ h)− ũ(x) |2dx⩾ δ2
ˆ
RN

|χΩ (x+ h)−χΩ (x) |2dx

for any h ∈ RN, where χΩ is the characteristic function of Ω. Which means by theorem
2.1.6 in [33] that χΩ ∈ H1(RN), a contradiction to the fact that χΩ 6∈ H1(RN). Therefore,
there exists a sequence {xn} ⊂ Ω such that ũ(xn)→ 0 and

λ=
g(ũ(xn)) ũ(xn)− N

4 h(ũ(xn)) ũ(xn)

|ũ(xn) |2
+

(
1− 2∗

2

)
|ũ(xn) |2

∗−2

for any n ∈ N. By (A1) and (A5),

g(ũ(xn)) ũ(xn)
|ũ(xn) |2

=
H(ũ(xn))
|ũ(xn) |2

+
2G(ũ(xn))
|ũ(xn) |2

→ 0

as n→∞, which together with g ′(t) = o(1) as t→ 0 we see that

lim
n→∞

h(ũ(xn)) ũ(xn)
|ũ(xn) |2

= lim
n→∞

[
g ′ (ũ(xn))−

g(ũ(xn)) ũ(xn)
|ũ(xn) |2

]
= 0.

Then λ= 0. This contradicts with λ< 0.
(b) Assume that g is odd. Then, by lemma 2.7 and the strong maximum principle, we may

assume that ũ is positive and radially symmetric. Hence, by Strauss lemma ([29]) we may
assume that ũ is continuous and

λũ(x) = g(ũ(x))− N
4
h(ũ(x))+

(
1− 2∗

2

)
|ũ(x) |2

∗−2ũ(x)

holds for x ∈ RN. Since ũ is continuous and ũ ∈ H1(RN), there exists an open interval Λ
such that 0 ∈ Λ̄ and

λu= g(u)− N
4
h(u)+

(
1− 2∗

2

)
|u|2

∗−2u, u ∈ Λ̄.

Namely,

λu=g(u)− N
4
[g ′ (u)u− g(u)]+

(
1− 2∗

2

)
|u|2

∗−2u

=

(
1+

N
4

)
g(u)− N

4
g ′ (u)u+

(
1− 2∗

2

)
|u|2

∗−2u, u ∈ Λ̄.

Hence,

g(u) = C1|u|
4
N u+λu− |u|

4
N−2 u= C1|u|

4
N u+λu− |u|2

∗−2u, u ∈ Λ̄

for some C1 ∈ R. Then,

G(u) =
C1

2+ 4
N

|u|2+ 4
N +

1
2
λu2 − 1

2∗
|u|2

∗
, u ∈ Λ̄.

By (A1), we infer that λ= 0, then

g(u) = C1|u|
4
N u− |u|2

∗−2u, u ∈ Λ̄

and

G(u) =
C1

2+ 4
N

|u|2+ 4
N − 1

2∗
|u|2

∗
, u ∈ Λ̄.
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This contradicts with (A5).

From the above arguments, µ 6=−1. Since ũ satisfies Nehari and Pohozaev identities,
namely,

(1+µ)

ˆ
RN

|∇ũ|2dx

=

ˆ
RN

[
g(ũ)+

N
4
µh(ũ)

]
ũdx+

(
1+

2∗

2
µ

)ˆ
RN

|ũ|2
∗
dx−λ

ˆ
RN

|ũ|2dx

and

(1+µ)

ˆ
RN

|∇ũ|2dx

= 2∗
ˆ
RN

[
G(ũ)+

N
4
µH(ũ)+

(
1+

2∗

2
µ

)
· 1
2∗

|ũ|2
∗
− 1

2
λ|ũ|2

]
dx,

we can deduce that

(1+µ)

ˆ
RN

|∇ũ|2dx

=
N
2

ˆ
RN

[
H(ũ)+

N
4
µ(h(ũ) ũ− 2H(ũ))

]
dx+

(
1+

2∗

2
µ

)ˆ
RN

|ũ|2
∗
.

Since ũ ∈ S∩P ⊂ P , then

ˆ
RN

|∇ũ|2dx= N
2

ˆ
RN

H(ũ)dx+
ˆ
RN

|ũ|2
∗
dx.

Consequently,

(1+µ)

[
N
2

ˆ
RN

H(ũ)dx+
ˆ
RN

|ũ|2
∗
dx

]
=
N
2

ˆ
RN

[
H(ũ)+

N
4
µ(h(ũ) ũ− 2H(ũ))

]
dx+

(
1+

2∗

2
µ

)ˆ
RN

|ũ|2
∗
,

which yields that

µ

ˆ
RN

[
h(ũ) ũ−

(
2+

4
N

)
H(ũ)

]
+

16
N2 (N− 2)

µ

ˆ
RN

|ũ|2
∗
dx= 0.

Arguing as the proof of lemma 2.8 we can infer that µ= 0. As a result,

−∆ũ+λũ= g(ũ)+ |ũ|2
∗−2ũ.

Consequently, ũ ∈ S∩P is a normalized ground state solution to (Pm). Noting that if g is odd,
it follow from lemma 2.7 and the maximum principle that ũ is positive and radially symmetric.
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4. Proof of theorem 1.2

Proof of theorem 1.2. (i) For any m1 > m2 > 0, by Lemmas 2.7 and 2.8, there exists um1 ∈
Sm1 ∩P , um2 ∈ Sm2 ∩P such that Em1 = I(um1), Em2 = I(um2). Since m1 > m2 > 0, um2 ∈
(Dm1 \ Sm1)∩P . Again by lemma 2.8 we have

Em1 = inf
Sm1∩P

I< I(um2) = Em2 .

(ii) Assume that η= 0.
(1) Firstly, let us assume thatmn → m+ as n→+∞. By lemma 2.7, there exists un ∈ Dmn ∩

P such that I(un) = inf
Dmn∩P

I. Up to a translation and up to a subsequence, we obtain un ⇀ ũ

in H1(RN) and r(ũ)⩾ 1. Clearly, ũ(r(ũ)·) ∈ Dm ∩P . We claim that r(ũ) = 1. Otherwise, if
r(ũ)> 1, then by (A5), lemma 2.4, Fatou lemma and Dm ∩P ⊂Dmn ∩P we derive that

0< c= inf
Dm∩P

I

⩽I(ũ(r(ũ) ·)) = I(ũ(r(ũ) ·))− 1
2
P(ũ(r(ũ) ·))

=
N
4

ˆ
RN

[
g(ũ(r(ũ) ·)) ũ(r(ũ) ·)−

(
2+

4
N

)
G(ũ(r(ũ) ·))

]
dx

+

(
1
2
− 1

2∗

)ˆ
RN

|ũ(r(ũ) ·) |2
∗
dx

=
N
4
r−N (ũ)

ˆ
RN

[
g(ũ) ũ−

(
2+

4
N

)
G(ũ)

]
dx+

(
1
2
− 1

2∗

)
r−N(ũ)

ˆ
RN

|ũ|2
∗
dx

<
N
4

ˆ
RN

[
g(ũ)ũ− (2+

4
N
)G(ũ)

]
dx+

(
1
2
− 1

2∗

)ˆ
RN

|ũ|2
∗
dx

⩽N
4
liminf
n→∞

ˆ
RN

[
g(un)un−

(
2+

4
N

)
G(un)

]
dx+

(
1
2
− 1

2∗

)
liminf
n→∞

ˆ
RN

|un|2
∗
dx

⩽ lim
n→∞

[
I(un)−

1
2
P(un)

]
= lim

n→∞
I(un) = lim

n→∞
inf

Dmn∩P
I⩽ lim

n→∞
inf

Dm∩P
I= inf

Dm∩P
I.

This is impossible. Hence, r(ũ) = 1. And so the above proof yields that

c= inf
Dm∩P

I⩽ I(ũ)⩽ liminf
n→∞

I(un) = liminf
n→∞

inf
Dmn∩P

I⩽ liminf
n→∞

inf
Dm∩P

I= inf
Dm∩P

I,

which implies that

I(ũ) = inf
Dm∩P

I= lim
n→∞

inf
Dmn∩P

I.

Alternatively, suppose that mn → m− as n→∞. Take u ∈ Dm ∩P be such that I(u) =
inf

Dm∩P
I. Set sn :=

mn
m → 1− as n→∞, vn = snu. By lemma 2.2, there exists λn > 0 such that

λ
N
2
n vn(λn·) ∈ P . In the sequel, we assert that there exists λ> 0 such that λn → λ as n→∞.

Indeed, up to a subsequence, if λn →+∞ as n→∞, by λ
N
2
n vn(λn·) ∈ P and (A5) we see that

ˆ
RN

|∇u|2dx⩾ λ2∗−2
n s2

∗−2
n

ˆ
RN

|u|2
∗
dx→+∞
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as n→∞, a contradiction. Up to a subsequence, if λn → 0 as n→∞, again by λ
N
2
n vn(λn·) ∈ P

and Fatou lemma we obtain that

ˆ
RN

|∇u|2dx= N
2
s

4
N
n

ˆ
RN

H
(
λ

N
2
n snu(x)

)
|λ

N
2
n snu(x) |2+

4
N

|u|2+ 4
N dx+λ2∗−2

n s2
∗−2
n

ˆ
RN

|u|2
∗
dx

→ 0,

a contradiction. Consequently, the assertion is true, and so λ
N
2 u(λ·) ∈ P . By lemma 2.2 we

have

limsup
n→∞

inf
Dmn∩P

I

⩽ lim
n→∞

I
(
λ

N
2
n vn (λn·)

)
= lim

n→∞

[
1
2
λ2
ns

2
n

ˆ
RN

|∇u|2dx−λ−N
n

ˆ
RN

G
(
λ

N
2
n snu

)
dx− 1

2∗
λ2∗
n s

2∗
n

ˆ
RN

|u|2
∗
dx

]
=

1
2
λ2
ˆ
RN

|∇u|2dx−λ−N
ˆ
RN

G
(
λ

N
2 u
)
dx− 1

2∗
λ2∗
ˆ
RN

|u|2
∗
dx

= I
(
λ

N
2 u(λ·)

)
= I(u) = inf

Dm∩P
I.

Noting that Dmn ∩P ⊂Dm ∩P we derive that

inf
Dm∩P

I⩽ liminf
n→∞

inf
Dmn∩P

I⩽ limsup
n→∞

inf
Dmn∩P

I⩽ inf
Dm∩P

I,

i.e. lim
n→∞

inf
Dmn∩P

I= inf
Dm∩P

I. This ends the proof of the continuity of the ground state energy

map.
(2) Let mn →+∞ as n→∞. By lemmas 2.7 and 2.8, we may assume that u is a ground

state solution to (P1), i.e. I(u) = inf
D1∩P

I= inf
S1∩P

I. For simplicity, we may assume that mn >

1. Set un = mnu. Then, un ∈ Smn ⊂Dmn . With the aid of lemma 2.2, there exists λn > 0 such

that vn(·) := λ
N
2
n un(λn·) ∈ P . Then, ‖vn‖2 = ‖un‖2 = mn, i.e. vn ∈ Dmn ∩P . Consequently, by

lemma 2.4 one has

0< inf
Dmn∩P

I⩽ I(vn)⩽
1
2

ˆ
RN

|∇vn|2dx=
1
2
λ2
n ·m2

n

ˆ
RN

|∇u|2dx. (4.1)

Since vn ∈ P ,

λ2
n ·m2

n

ˆ
RN

|∇u|2dx=
ˆ
RN

|∇vn|2dx

=
N
2

ˆ
RN

H(vn)dx+
ˆ
RN

|vn|2
∗
dx

=
N
2

ˆ
RN

H
(
λ

N
2
n mnu(λnx)

)
dx+

ˆ
RN

|λ
N
2
n mnu(λnx) |2

∗
dx

=
N
2
λ−N
n

ˆ
RN

H
(
λ

N
2
n mnu

)
dx+λ2∗

n m
2∗
n

ˆ
RN

|u|2
∗
dx.
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Therefore,
ˆ
RN

|∇u|2dx= N
2
λ−N−2
n m−2

n

ˆ
RN

H
(
λ

N
2
n mnu

)
dx+λ2∗−2

n m2∗−2
n

ˆ
RN

|u|2
∗
dx

=
N
2
m

4
N
n

ˆ
RN

H
(
λ

N
2
n mnu

)
|λ

N
2
n mnu|2+

4
N

|u|2+ 4
N dx+(λnmn)

2∗−2
ˆ
RN

|u|2
∗
dx.

(4.2)

Consequently, by mn →+∞ as n→∞ we derive that

ˆ
RN

H
(
λ

N
2
n mnu

)
|λ

N
2
n mnu|2+

4
N

|u|2+ 4
N dx→ 0

as n→∞ and so λ
N
2
n mn → 0 as n→∞. Taking into account (A5) and the condition lim

t→0

G(t)
|t|2∗ =

+∞ we derive that for any η > 0, there exists δ > 0 such that when t ∈ (−δ,0)∪ (0, δ),

H(t)⩾ 4
N
G(t)⩾ η|t|2

∗
.

Therefore, by (4.2) one has
ˆ
RN

|∇u|2dx⩾N
2
λ−N−2
n m−2

n η

ˆ
RN

|λ
N
2
n mnu|2

∗
dx

=η
N
2
(λnmn)

2∗−2
ˆ
RN

|u|2
∗
dx,

(4.3)

which indicates that λnmn → 0 as n→∞. By (4.1) we see that inf
Dmn∩P

I→ 0 as n→∞.

Consequently, inf
Dm∩P

I→ 0+ as m→+∞.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

The research of Q Li was supported by the National Natural Science Foundation of
China (12261031), the Yunnan Province Applied Basic Research for General Project
(202301AT070141), Youth Outstanding-notch Talent Support Program in Yunnan Province
and the Project Funds of Xingdian Talent Support Program. The research of Vicentiu D
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