
London Mathematical Society Nonlinearity

Nonlinearity 34 (2021) 5319–5343 https://doi.org/10.1088/1361-6544/ac0612

Anisotropic(p, q)-equations with gradient
dependent reaction

Nikolaos S Papageorgiou1, Vicenţiu D Rădulescu2,3,∗ and
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Abstract
We consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian and
a reaction with gradient dependence (convection). The presence of the gradient
in the source term excludes from consideration a variational approach in dealing
with the qualitative analysis of this problem with unbalanced growth. Using the
frozen variable method and eventually a fixed point theorem, the main result of
this paper establishes that the problem has a positive smooth solution.

Keywords: anisotropic (p, q)-Laplacian, convection, nonvariational problem,
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1. Introduction and statement of the problem

In this paper, we are concerned with the study of a nonlinear anisotropic problem whose
features are the following:

(a) The presence of several differential operators with different growth, which generates a
double phase associated energy;
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(b) The reaction combines the multiple effects produced by a convection (gradient) term and
a nonlinearity with nonuniform nonresonance near the principal eigenvalue;

(c) The problem has both a nonvariational structure (generated by the convection nonlinearity)
and an anisotropic framework (created by the presence of two differential operators with
variable exponent and a gradient term with variable potential);

(d) Due to the particular structure of the problem studied in this paper, we develop an approach
based on the frozen variable method.

Roughly speaking, the main result of this paper establishes the following properties:

(a) The minimal solution map is compact;
(b) The problem has a positive smooth solution, which is a fixed point of the minimal solution

map.

Summarizing, this paper is concerned with the refined qualitative analysis of solutions for
a class of nonvariation problems driven by anisotropic differential operators with unbalanced
anisotropic growth.

We recall in what follows some of the outstanding contributions of the Italian school to
the study of unbalanced integral functionals and double phase problems. We first refer to the
pioneering contributions of Marcellini [31–33] who studied lower semicontinuity and regu-
larity properties of minimizers of certain quasiconvex integrals. Problems of this type arise in
nonlinear elasticity and are connected with the deformation of an elastic body, cf Ball [4, 5].
We also refer to Fusco and Sbordone [22] for the study of regularity of minima of anisotropic
integrals.

In order to recall the roots of double phase problems, let us assume that Ω is a bounded
domain in R

N (N � 2) with smooth boundary. If u : Ω→R
N is the displacement and if Du is

the N × N matrix of the deformation gradient, then the total energy can be represented by an
integral of the type

I(u) =
∫
Ω

f (x, Du(x))dx, (1)

where the energy function f = f (x, ξ) : Ω× R
N×N → R is quasiconvex with respect to ξ. One

of the simplest examples considered by Ball is given by functions f of the type

f (ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegativeconvex functions,
which satisfy the growth conditions

g(ξ) � c1 |ξ|q; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1 < q < N. The condition q < N is necessary to study
the existence of equilibrium solutions with cavities, that is, minima of the integral (1) that are
discontinuous at one point where a cavity forms; in fact, every u with finite energy belongs to
the Sobolev space W1,q(Ω,RN), and thus it is a continuous function if q > N. In accordance
with these problems arising in nonlinear elasticity, Marcellini [31, 32] considered continuous
functions f = f (x, u) with unbalanced growth that satisfy

c1 |u|q � | f (x, u)| � c2 (1 + |u|p) for all (x, u) ∈ Ω× R,

where c1, c2 are positive constants and 1 � q � p. Regularity and existence of solutions of
elliptic equations with p, q–growth conditions were studied in [32].
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The study of non-autonomous functionals characterized by the fact that the energy den-
sity changes its ellipticity and growth properties according to the point has been continued
in a series of remarkable papers by Mingione et al [6–8, 12–14]. We also refer to Mingione
and Rădulescu [34] for an overview of recent results concerning elliptic variational problems
with nonstandard growth conditions and related to different kinds of nonuniformly elliptic
operators. These contributions are in relationship with the works of Zhikov [48], in order to
describe the behavior of phenomena arising in nonlinear elasticity. In fact, Zhikov intended
to provide models for strongly anisotropic materials in the context of homogenisation. In par-
ticular, Zhikov considered the following model of functional in relationship to the Lavrentiev
phenomenon:

Pp,q(u) :=
∫
Ω

(|∇u|q + a(x)|∇u|p)dx, 0 � a(x) � L, 1 < q < p.

In this functional, the modulating coefficient a(x) dictates the geometry of the composite made
by two differential materials, with hardening exponents p and q, respectively.

The functional Pp,q falls in the realm of the so-called functionals with nonstandard growth
conditions of (p, q)-type, according to Marcellini’s terminology. This is a functional of the type
in (1), where the energy density satisfies

|ξ|q � f (x, ξ) � |ξ|p + 1, 1 � q � p.

Another significant model example of a functional with (p, q)-growth studied by Mingione
et al is given by

u �→
∫
Ω

|∇u|q log(1 + |∇u|)dx, q � 1,

which is a logarithmic perturbation of the p-Dirichlet energy.
The purpose of this paper is to study the following anisotropic Dirichlet problem with a

reaction which depends on the gradient (convection):{
−Δp(z)u(z) −Δq(z)u(z) = r̂(z)|Du(z)|τ (z)−1 + f (z, u(z)) in Ω,

u|∂Ω = 0, u � 0, q(·) < p(·),
(2)

where Ω ⊆ R
N is a bounded domain with a C2-boundary ∂Ω.

For r ∈ C(Ω) we define

r− = min
Ω

r and r+ = max
Ω

r.

We consider the set E1 = {r̂ ∈ C(Ω) : 1 < r−}. For r ∈ E1, we denote by Δr(z) the r-
Laplace differential operator defined by

Δr(z)u = div(|Du|r(z)−2Du) for all u ∈ W1,r(z)
0 (Ω).

In problem (2), the differential operator is the sum of two such operators (anisotropic (p, q)-
equation or anisotropic double phase problem). The reaction (right-hand side of (2)) depends
also on the gradient of u (convection). This makes the problem nonvariational, which means
that eventually our proof should be topological, based on the fixed point theory. We assume
that q+ < p−.
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Recently there have been some existence results for elliptic equations driven by the (p, q)-
Laplacian (or even more general nonhomogeneous operators) and a gradient dependent reac-
tion. We mention the works of Bai [2], Bai, Gasiński and Papageorgiou [3], Candito, Gasiński
and Papageorgiou [10], Faria, Miyagaki and Motreanu [20], Gasiński, Krech and Papageor-
giou [23], Gasiński and Winkert [26], Liu and Papageorgiou [29], Marano and Winkert
[30], Papageorgiou, Rădulescu and Repovš [37], Papageorgiou, Vetro and Vetro [39], and
Zeng, Liu and Migorski [46]. All the aforementioned papers deal with isotropic equations.
To the best of our knowledge, there are no works in the literature dealing with anisotropic
(p, q)-equations with convection. It appears that our existence theorem here is the first such
result.

We mention that equations driven by sum of two differential operators of different nature,
appear in mathematical models of physical processes. We refer to the works of Bahrouni,
Rădulescu and Repovš [1], Cencelj, Rădulescu and Repovš [11], Rădulescu [41], Zhikov [49]
and the references therein.

Our approach is based on the so-called ‘frozen variable method’. According to this method,
in the reaction we fix (freeze) the gradient term and in this way we have a variational problem,
which can be treated using tools from the critical point theory. We need to find a canonical way
to choose a solution from the solution set of the ‘frozen problem’. To this end, we show that
the ‘frozen problem’ has a smallest positive solution (minimal positive solution). In this way
we can define the minimal solution map. Using an iterative process, we show that this map is
compact and then using the Leray–Schauder alternative principle, we produce a fixed point for
the minimal solution map. This fixed point is the desired positive solution of (2).

The main features of this paper are the presence of the convection term |Du|r(·)−1 (inducing
a nonvariational structure of the problem) and the combined effects generated by the variable
exponents p(·) and q(·) (producing an anisotropic abstract setting, which describes patterns
associated with strongly anisotropic materials). We also highlight that the growth of the vari-
able exponent τ (·) associated with the convection term is consistent with the literature (we only
restrict τ+ < p−, see hypotheses H0). We recall that in the case of the usual Laplace operator,
as remarked by Serrin [43], Choquet-Bruhat and Leray [15], and Kazdan and Warner [28],
a basic requirement is that the convection term grows at most quadratically; this is a natural
hypothesis in order to apply the maximum principle.

2. Mathematical background and hypotheses

The analysis of problem (2) uses Lebesgue and Sobolev spaces with variable exponents. A
comprehensive treatment of such spaces can be found in the book of Diening, Harjulehto,
Hästo and Ruzicka [16].

Let M(Ω) be the space of all measurable functions u : Ω→ R. As usual, we identify two
such functions which differ only on a Lebesgue null set. Let r ∈ E1. Then the variable exponent
Lebesgue space Lr(z)(Ω) is defined as follows

Lr(z)(Ω) =

{
u ∈ M(Ω) :

∫
Ω

|u|r(z) dz < ∞
}
.

This space is equipped with the so called ‘Luxemburg norm’ defined by

‖u‖r(z) = inf

{
λ > 0 :

∫
Ω

[
|u|
λ

]r(z)

dz � 1

}
.
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The space
(
Lr(z)(Ω), ‖ · ‖r(z)

)
is separable and uniformly convex (thus, reflexive by the Mil-

man–Pettis theorem, see theorem 3.4.28 of Papageorgiou and Winkert [40, p 225]). Let r′

∈ E1 be defined by r′(z) = r(z)
r(z)−1 z ∈ Ω (the conjugate variable exponent to r(·)). We have

Lr(z)(Ω)∗ = Lr ′ (z)(Ω) and also the following version of the Hölder inequality is true∫
Ω

|uv|dz �
[

1
r−

+
1
r′−

]
‖u‖r(z)‖v‖r′(z)

for all u ∈ Lr(z)(Ω), v ∈ Lr ′ (z)(Ω).
Suppose that r1, r2 ∈ E1 and we have r1(z) � r2(z) for all z ∈ Ω. Then

Lr2(z)(Ω) ↪→ Lr1(z)(Ω) continuously.

Having the variable exponent Lebesgue spaces, we can define in the usual way the corre-
sponding variable exponent Sobolev spaces. So, given r ∈ E1 the variable exponent Sobolev
space W1,r(z)(Ω) is defined by

W1,r(z)(Ω) =
{

u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)
}
.

Here, the gradient du is understood in the weak sense. The space W1,r(z)(Ω) is furnished with
the norm

‖u‖1,r(z) = ‖u‖r(z) + ‖ |Du| ‖r(z) for all u ∈ W1,r(z)(Ω).

For simplicity, in the sequel we write ‖Du‖r(z) = ‖|Du|‖r(z).
Also, if r ∈ E1 is Lipschitz continuous (that is, r ∈ E1 ∩ C0,1(Ω)), then we define

W1,r(z)
0 (Ω) = C∞

c (Ω)‖·‖1,r(z) .

Both spaces W1,r(z)(Ω) and W1,r(z)
0 (Ω) are separable and uniformly convex (thus, reflexive).

For the space W1,r(z)
0 (Ω) the Poincaré inequality is valid, namely there exists Ĉ > 0 such that

‖u‖r(z) � Ĉ‖Du‖r(z) for all u ∈ W1,r(z)
0 (Ω).

This means that on W1,r(z)
0 (Ω) we can consider the equivalent norm

‖u‖1,r(z) = ‖Du‖r(z) for all u ∈ W1,r(z)
0 (Ω).

Given r ∈ E1, we introduce the critical variable exponent r∗(·) corresponding to r(·), defined
by

r∗(z) =

⎧⎨⎩
Nr(z)

N − r(z)
, if r(z) < N

+∞, if N � r(z)
for all z ∈ Ω.

Consider r ∈ E1 ∩ C0,1(Ω), q ∈ E1 with q+ < N and assume that 1 < q(z) � r∗(z) (resp.,
1 < q(z) < r∗(z)) for all z ∈ Ω. Then we have the following embeddings (anisotropic Sobolev
embedding theorem):

W1,r(z)
0 (Ω) ↪→ Lq(z)(Ω) continuously(
resp., W1,r(z)

0 (Ω) ↪→ Lq(z)(Ω) compactly
)
.
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The following modular function is very useful in the study of the variable exponent spaces

ρr(u) =
∫
Ω

|u|r(z)dz for all u ∈ Lr(z)(Ω) (r ∈ E1).

Again we write ρr(Du) = ρr(|Du|).
This function is closely related to the norm.

Proposition 1. If r ∈ E1 and {u, un}n∈N ⊆ Lr(z)(Ω), then

(a) ‖u‖r(z) = μ ⇔ ρr

(
u
μ

)
= 1;

(b) ‖u‖r(z) < 1 (resp. = 1, > 1) ⇔ ρr(u) < 1 (resp. = 1, > 1);
(c) ‖u‖r(z) < 1 ⇒ ‖u‖r+

r(z) � ρr(u) � ‖u‖r−
r(z);

(d) ‖u‖r(z) > 1 ⇒ ‖u‖r−
r(z) � ρr(u) � ‖u‖r+

r(z);
(e) ‖un‖r(z) → 0 ⇔ ρr(un) → 0;
( f ) ‖un‖r(z) →+∞ ⇔ ρr(un) →+∞.

Given r ∈ E1 ∩ C0,1(Ω), we have

W1,r(z)
0 (Ω)∗ = W−1,r′(z)(Ω).

Then we introduce the nonlinear map Ar(z) : W1,r(z)
0 (Ω) → W−1,r′(z)(Ω) = W1,r(z)

0 (Ω)∗ defined
by

〈Ar(z)(u), h〉 =
∫
Ω

|Du|r(z)−2(Du, Dh)RN dz

for all u, h ∈ W1,r(z)
0 (Ω).

This operator has the following properties (see Gasiński and Papageorgiou [25,
proposition 2.5] and Rădulescu-Repovš [42, p 40]).

Proposition 2. The operator Ar(z) : W1,r(z)
0 (Ω) → W−1,r′(z)(Ω) is bounded (that is, maps

bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone too)
and of type (S)+, that is,

“un
w−→ u in W1,r(z)

0 (Ω) and lim sup
n→∞

〈Ar(z)(un), un − u〉 � 0

⇓

un → u in W1,r(z)
0 (Ω)”.

We will also use the Banach space C1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. This is an ordered

Banach space with positive cone C+ =
{

u ∈ C1
0(Ω) : u(z) � 0 for all z ∈ Ω

}
. This cone has a

nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u
∂n

|∂Ω < 0

}
with n(·) being the outward unit normal on ∂Ω.

Consider the following anisotropic eigenvalue problem

−Δp(z)u(z) = λ̂|u(z)|p(z)−2u(z) inΩ, u|∂Ω = 0, (3)
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with p ∈ E1. We say that (λ̂, û) ∈ R×
(

W1,r(z)
0 (Ω)\{0}

)
is an ‘eigenpair’ for problem (3), if

〈Ap(z)(û), h〉 = λ̂

∫
Ω

|û(z)|p(z)−2û(z)h(z)dz for all h ∈ W1,r(z)
0 (Ω).

Then λ̂ is an ‘eigenvalue’ and û �= 0 is a corresponding ‘eigenfunction’. We let

L = {λ̂ ∈ R : λ̂ is an eigenvalue of (3)}.

For the anisotropic eigenvalue problem, in contrast to the isotropic one, we can have
inf L = 0 (see Fan, Zhang and Zhao [18, theorem 3.1]). If we can find η ∈ R

N (N > 1) such
that for all z ∈ Ω, the function t �→ ϑ(t) = p(z + tη) is monotone on Tz = {t ∈ R : z + tη ∈ Ω}
and p ∈ C1(Ω), then problem (3) has a principal eigenvalue λ̂1 > 0 with corresponding pos-
itive eigenfunction û1 ∈ int C+ (see Fan, Zhang and Zhao [18, theorem 3.3]) (see also Byun
and Ko [9] and Fan [17]). We have

0 < λ̂1 =
ρp(Dû1)
ρp(û1)

� ρp(Du)
ρp(u)

for all μ ∈ W1,r(z)
0 (Ω), u �= 0. (4)

As we already mentioned in the Introduction, our approach is eventually topological and
uses the ‘Leray–Schauder alternative principle’.

Given a Banach space X, a map ξ : X → X is said to be ‘compact’ if it is continuous and
maps bounded sets into relatively compact sets. If X is reflexive and ξ : X → X is completely
continuous (that is, xn

w−→x in X ⇒ ξ(xn) → ξ(x)), then ξ(·) is compact (see proposition 3.1.7
of Gasiński and Papageorgiou [24, p 268]). The Leray–Schauder alternative principle asserts
the following property.

Theorem 3. If X is a Banach space, ξ : X → X is compact and

D(ξ) = {u ∈ X : u = tξ(u), 0 < t < 1},

then one of the following statements is true:

(a) D(ξ) is unbounded;
(b) ξ(·) has a fixed point.

Throughout this paper we will use the following notation. By ‖ · ‖ we denote the norm of
the Sobolev space W1,p(z)

0 (Ω). If p ∈ E1 ∩ C0,1(Ω), then by the Poincaré inequality, we have

‖u‖ = ‖Du‖p(z) for all u ∈ W1,p(z)
0 (Ω).

Given u ∈ W1,p(z)
0 (Ω), u � 0, we denote by [0, u] the order interval

[0, u] =
{

h ∈ W1,p(z)
0 (Ω) : 0 � h(z) � u(z) for a.a. z ∈ Ω

}
.

Let g : Ω× R→ R be a measurable function. By Ng(·) we denote the Nemytski (superpo-
sition) operator defined by

Ng(u)(·) = g(·, u(·)) for all u : Ω→ Rmeasurable.

Evidently, z �→ Ng(u)(z) is measurable. Recall that if g : Ω× R→R is a Carathéodory
function (that is, for all x ∈ R, the mapping z �→ g(z, x) is measurable and for a. a. z ∈ Ω,
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the mapping x �→ g(z, x) is continuous), then (z, x) �→ g(z, x) is measurable (see Gasiński and
Papageorgiou [24, p 405]).

For every x ∈ R, we set x± = max{±x, 0} and then for u ∈ W1,p(z)
0 (Ω) we define u±(·) =

u(·)±. We know that

u± ∈ W1,p(z)
0 (Ω), u = u+ − u−, |u| = u+ + u−.

A set S ⊆ W1,p(z)
0 (Ω) is said to be ‘downward directed’, if for every pair u1, u2 ∈ S, we can

find u ∈ S such that u � u1, u � u2.
Our hypotheses on the data of problem (2) are the following:
H0: p ∈ C1(Ω), there exists a vector η̂ ∈ R

N such that for all z ∈ Ω, the function t �→ p(z +
tη̂) is monotone on Iz = {t ∈ R : z + tη̂ ∈ Ω}, q ∈ E1 ∩ C0,1(Ω), τ ∈ E1, τ+ < p− � p+ <
p∗−, 0 � p+ − p− � 1, q+ < p−, and r̂ ∈ L∞(Ω), r̂(z) � 0 for a. a. z ∈ Ω, r̂ �= 0.

Remark 1. As we already mentioned earlier in this section, the hypotheses on the exponent
p(·), imply that the eigenvalue problem (3) has a principal eigenvalue λ̂1 > 0 and an associated
positive eigenfunction û1 ∈ int C+ (see Fan, Zhang and Zhao [18], Fan [17], and Byun and Ko
[9]).

The hypotheses on the perturbation f (z, x) are:
H1: f : Ω× R→ R is a Carathéodory function, f (z, 0) = 0 for a. a. z ∈ Ω and

(a) For every ρ > 0, there exists aρ ∈ L∞(Ω) such that

0 � f (z, x) � aρ(z) for a.a. z ∈ Ω, all 0 � x � ρ;

(b) There exists a function ϑ ∈ L∞(Ω) such that

ϑ(z) � λ̂1 for a.a. z ∈ Ω,ϑ ≡/ λ̂1,

lim sup
x→+∞

f (z, x)
xp(z)−1

� ϑ(z) and lim sup
x→+∞

p+F(z, x)
xp(z)

� ϑ(z)

uniformly for a.a. z ∈ Ω, with F(z, x) =
∫ x

0 f (z, s)ds;
(c) There exist η0 > 0 and M > 0 such that

−η0 � λ̂1xp(z) − p+F(z, x) for a.a. z ∈ Ω, all x � M;

(d) There exist μ ∈ E1 with μ+ < q− and δ > 0 such that

C0xμ(z)−1 � f (z, x) for a.a. z ∈ Ω, all 0 � x � δ, some C0 > 0;

(e) For a. a. z ∈ Ω, all x ∈ R and all t ∈ (0, 1) we have

f

(
z,

1
t

x

)
� 1

tp(z)−1
f (z, x).

Remark 2. Hypothesis H1(b) implies that at +∞ we have nonuniform nonresonance with
respect to the principal eigenvalue λ̂1 > 0. Hypothesis H1(d) implies the presence of a concave
term near zero. Hypothesis H1(e) is satisfied if for example for a.a. z ∈ Ω the quotient function

x �→ f (z,x)
xp(z)−1 is nondecreasing on

◦
R+ = (0,+∞).
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The following lemma will help us to exploit the nonuniform nonresonance condition in
hypothesis H1(b).

Lemma 4. If ϑ ∈ L∞(Ω), ϑ(z) � λ̂1 for a.a. z ∈ Ω and ϑ ≡ λ̂1, then there exists C1 ∈ (0, 1)
such that

C1ρp(Du) � ρp(Du) −
∫
Ω

ϑ(z)|u|p(z)dz

for all u ∈ W1,p(z)
0 (Ω).

Proof. Consider the eigenvalue problem{
−Δp(z)u = λ̃ϑ(z)|u|p(z)−2u in Ω

u = 0 on ∂Ω.

From Fan, Zhang and Zhao [18], we know that this anisotropic eigenvalue problem has a
principal eigenvalue λ̂1 > 1 and we have

ρp(Du) � λ̂1

∫
Ω

ϑ(z)|u|p(z)dz for all u ∈ W1,p(z)
0 (Ω).

Then for all u ∈ W1,p(z)
0 (Ω), we have

ρp(Du) −
∫
Ω

ϑ(z)|u|p(z)dz �
(

1 − 1

λ̂1

)
ρp(Du) = C1ρp(Du),

with C1 = λ̂1−1
λ̂1

∈ (0, 1). This proves the lemma. �

Remark 3. We have a similar inequality for the corresponding norms. Indeed, if

‖u‖∗ = inf

{
λ > 0;

∫
Ω

ϑ(z)

∣∣∣∣u(z)
λ

∣∣∣∣p(z)

dz � 1

}
,

then there exists C ∈ (0, 1) such that ‖u‖∗ � C‖u‖ for all u ∈ W1,p(z)
0 (Ω). Arguing by contra-

diction, suppose we could find {un}n∈N ⊆ W1,p(z)
0 (Ω) such that

‖un‖∗ >
(

1 − 1
n

)
‖un‖ for all n ∈ N.

We may assume that ‖un‖ = 1 for all n ∈ N and so we can say (at least for a subsequence) that

un
w−→u in W1,p(z)

0 (Ω), un → u in Lp(z)(Ω).

We have

‖u‖∗ � 1 � ‖u‖,

⇒ λ̂1ρp(u) �
∫
Ω

ϑ(z)|u|p(z)dz � ρp(Du),

⇒ u = û1 ∈ int C+.

But then λ̂1ρp(u) > ρp(Du), contradicting (4).
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On account of hypothesis H0, the function space on which we will conduct the analysis of
problem (2) is W1,p(z)

0 (Ω). Since q+ < p−, we have W1,p(z)
0 (Ω) ↪→ W1,q(z)

0 (Ω).
By a solution of problem (2), we understand a weak solution, namely a function u ∈

W1,p(z)
0 (Ω) such that

〈Ap(z)(u), h〉+ 〈Aq(z)(u), h〉 =
∫
Ω

r̂(z)|Du|τ (z)−1h dz

+

∫
Ω

f (z, u)h dz for all h ∈ W1,p(z)
0 (Ω).

Eventually, the anisotropic regularity theory will imply that the positive solution of problem
(2) is in int C+.

3. Analysis of the ‘frozen’ problem

As we already explained in the Introduction, we will fix (‘freeze’) the gradient term in the
reaction. So, let v ∈ C1

0(Ω) and consider the Carathéodory function gv(z, x) defined by

gv(z, x) = r̂(z)|Dv(z)|τ (z)−1 + f (z, x).

Using this function as forcing (source) term, we consider the following anisotropic Dirichlet
problem

−Δp(z)u(z) −Δq(z)u(z) = gv(z, u(z)) inΩ, u|∂Ω = 0, u � 0. (5)

This problem is variational. Setting Gv(z, x) =
∫ x

0 gv(z, s)ds, we consider the C1-functional

Ψv : W1,p(z)
0 (Ω) → R defined by

Ψv(u) =
∫
Ω

1
p(z)

|Du|p(z)dz +
∫
Ω

1
q(z)

|Du|q(z)dz −
∫
Ω

Gv(z, u+)dz

for all u ∈ W1,p(z)
0 (Ω).

Proposition 5. If hypotheses H0, H1 hold, then the functional Ψv(·) is coercive.

Proof. We proceed indirectly. So, suppose that Ψv(·) is not coercive. Then we can find
{un}n∈N ⊆ W1,p(z)

0 (Ω) such that

‖un‖→∞ as n →∞ and Ψv(un) � C2 for some C2 > 0, all n ∈ N. (6)

From (5) we have∫
Ω

1
p(z)

|Dun|p(z)dz −
∫
Ω

F(z, u+
n )dz � C3 for some C3 > 0, all n ∈ N,

⇒ 1
p+

∫
Ω

|Dun|p(z)dz −
∫
Ω

F(z, u+
n )dz � C3 for all n ∈ N,

⇒ 1
p+

∫
Ω

̂

λ1(u+
n )p(z)dz −

∫
Ω

F(z, u+
n )dz

+
1

p+
ρp(Du−

n ) � C3 for all n ∈ N (see (4)),
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⇒ 1
p+

∫
Ω

[
̂

λ1(u+
n )p(z) − p+F(z, u+

n )

]
dz

+
1

p+
ρp(Du−

n ) � C3 for all n ∈ N,

⇒ ρp(Du−
n ) � C4 for some C4 > 0, all n ∈ N (see hypotesis H1(c)),

⇒ {u−
n }n∈N ⊆ W1,p(z)

0 (Ω) is bounded (see Proposition 1). (7)

From (6) and (7) it follows that

‖u+
n ‖ →∞,

⇒ ρp(Du+
n ) →∞ (see Proposition 1). (8)

We set yn = u+n
ρp(Du+n )1/p(z) ∈ W1,p(z)

0 (Ω). From proof of lemma 4, we have that

{ρp(Dyn)}n∈N is bounded, (9)

⇒ {yn}n∈N ⊆ W1,p(z)
0 (Ω) is bounded, yn � 0 for all n ∈ N.

We may assume that

yn
w−→y in W1,p(z)

0 (Ω) and yn → y in Lp(z)(Ω), y � 0. (10)

From (6) and (7), we have

1
p+

[
ρp(Du+

n ) −
∫
Ω

p+F(z, u+
n )dz

]
� C5 for some C5 > 0, all n ∈ N,

⇒ 1
p+

[
ρp(Dyn) − Ĉn −

∫
Ω

p+F(z, u+
n )

ρp(Du+
n )

dz

]
� C5

ρp(Du+
n )

for all n ∈ N

⇒ ρp(Dyn) � p+C5

ρp(Du+
n )

+

∫
Ω

p+F(z, u+
n )

ρp(Du+
n )

dz + Ĉn for all n ∈ N.

From the sequential weak lower semicontinuity of the modular function ρp(·) (it is contin-
uous and convex), we have

ρp(Dy) � lim inf
n→∞

ρp(Dyn) (see (9)). (11)

Also, from (8) we have

C5

ρp(Du+
n )

→ 0 as n →∞. (12)

Moreover, note that

p+F(z, u+
n )

ρp(Du+
n )

=
p+F(z, u+

n )
(u+

n )p(z)

[
u+

n

ρp(Du+
n )1/p(z)

]p(z)

=
p+F(z, u+

n )
(u+

n )p(z)
yp(z)

n for all n ∈ N.
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From hypothesis H1(b), we have

lim sup
n→∞

p+F(z, u+
n (z))

(u+
n )p(z)

� ϑ(z) for a.a. z ∈ {y > 0},

⇒lim sup
n→∞

∫
Ω

p+F(z, u+
n )

(u+
n )p(z)

yp(z)
n dz �

∫
Ω

ϑ(z)yp(z)dz (13)

(by Fatou’s lemma).

We return to (11), pass to the limit as n →∞ and use (11), (12) and (13). We obtain

ρp(Dy) −
∫
Ω

ϑ(z)yp(z)dz � 0,

⇒ C1ρp(Dy) � 0 (see Lemma 4),

⇒ y = 0 (by Poincaré’s inequality).

Then from (9) and (10), we obtain

ρp(Dyn) → 0. (14)

But using (8) we see that

ρp(Dyn) � C6 > 0 for all n � n0. (15)

Comparing (14) and (15) we have a contradiction. �
Let S+

v denote the set of positive solutions of problem (5) (the ‘frozen problem’).

Proposition 6. If hypotheses H0, H1 hold, then ∅ �= S+
v ⊆ int C+.

Proof. From proposition 5, we know that Ψv(·) is coercive. Also it is sequentially weakly
lower semicontinuous. Therefore by the Weierstrass–Tonelli theorem, we can find u0 ∈
W1,p(z)

0 (Ω) such that

Ψv(u0) = min
{
Ψv(u) : u ∈ W1,p(z)

0 (Ω)
}
. (16)

Let u ∈ int C+ and let δ > 0 be as postulated by hypothesis H1(d). We choose t ∈ (0, 1)
small such that

0 � tu(z) � δ for all z ∈ Ω.

We have

Ψt(tu) � tq−

q−

[
ρp(Du) + ρq(Du)

]
− tμ+

μ+
ρμ(u)

(see hypothesis H1(d) and recall that t ∈ (0, 1)).

Since t ∈ (0, 1) and μ+ < q− < p−, by choosing t ∈ (0, 1) even smaller, we have

Ψv(tu) < 0,

⇒ Ψv(u0) < 0 = Ψv(0)(see (16)),

⇒ u0 �= 0.
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From (16) we have

Ψ′
v(u0) = 0,

⇒ 〈Ap(z)(u0), h〉+ 〈Aq(z)(u0), h〉 =
∫
Ω

gv(z, u+
0 )h dz for all h ∈ W1,p(z)

0 (Ω). (17)

In (17) we choose h = −u−
0 ∈ W1,p(z)

0 (Ω). We obtain

ρp(Du−
0 ) + ρq(Du−

0 ) � 0,

⇒ u0 � 0, u0 �= 0.

From (17) it follows that u0 ∈ S+
v �= ∅.

Then theorem 4.1 of Fan and Zhao [19] (see also Gasiński and Papageorgiou [25,
proposition 3.1] and Papageorgiou, Rădulescu and Zhang [38, Proposition A1]), we have that
u0 ∈ L∞(Ω). Then corollary 3.1 of Tan and Fang [45] implies that u0 ∈ C+\{0}. Finally, the
anisotropic maximum principle of Papageorgiou, Rădulescu and Zhang [38, proposition A2]
(see also Zhang [47]), implies that u0 ∈ int C+.

We conclude that ∅ �= S+
v ⊆ int C+.

Hypotheses H1(a), (b) imply that

0 � f (z, x) � C7

[
1 + xp(z)−1

]
for a.a. z ∈ Ω, all x � 0, some C7 > 0.

This growth condition combined with hypothesis H1(d), imply that given r ∈ (p+, p∗−), we
can find C8 = C8(r) > 0 such that

f (z, x) � C1xμ(z)−1 − C8xr−1 for a.a. z ∈ Ω, all x � 0,

⇒ gv(z, x) � C1xμ(z)−1 − C8xr−1 for a.a. z ∈ Ω, all x � 0 (18)

(see hypotheses H0).

This unilateral growth condition on gv(z, ·) leads to the following auxiliary Dirichlet
problem {−Δp(z)u(z) −Δq(z)u(z) = C1u(z)μ(z)−1 − C8u(z)r−1 in Ω,

u|∂Ω = 0, u � 0.
(19)

Proposition 7. If hypotheses H0 hold, then problem (19) admits a unique positive solution

u ∈ int C+.

Proof. First we show the existence of a positive solution. To this end we consider the C1-
functional τ0 : W1,p(z)

0 (Ω) → R defined by

τ0(u) =
∫
Ω

1
p(z)

|Du|p(z)dz +
∫
Ω

1
q(z)

|Du|q(z)dz

+
C8

r
‖u+‖r

r −
∫
Ω

C1

μ(z)
(u+)μ(z)dz

for all u ∈ W1,p(z)
0 (Ω).
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Since μ+ < q−, we see that τ 0(·) is coercive. Also it is sequentially weakly lower semicon-
tinuous. So, we can find u ∈ W1,p(z)

0 (Ω) such that

τ0(u) = min
{
τ (u) : u ∈ W1,p(z)

0 (Ω)
}
< 0 = τ0(0) (20)

(recall that μ+ < q− < p+ < r),

⇒ u �= 0.

From (20) we have

τ ′0(u) = 0,

⇒ 〈Ap(z)(u), h〉+ 〈Aq(z)(u), h〉 =
∫
Ω

C1(u+)μ(z)−1h dz −
∫
Ω

C8(u+)r+h dz (21)

for all h ∈ W1,p(z)
0 (Ω).

In (21) we use h = −u− ∈ W1,p(z)
0 (Ω) and obtain

ρp(Du−) + ρq(Du−) = 0,

⇒ u � 0, u �= 0.

It follows that u ∈ W1,p(z)
0 (Ω) is a positive solution of (19). As before (see the proof of

proposition 6), the anisotropic regularity theory and the maximum principle imply that u ∈
int C+.

Next, we show the uniqueness of this positive solution of problem (19). To this end, we
introduce the integral functional j : L1(Ω) →R = R ∪ {+∞} defined by

j(u) =

⎧⎨⎩
∫
Ω

1
p(z)

∣∣∣Du1/μ+
∣∣∣ dz +

∫
Ω

1
q(z)

∣∣∣Du1/μ+
∣∣∣ dz, if u � 0, u1/μ+ ∈ W1,p(z)

0 (Ω),

+∞, otherwise.

We set dom j =
{

u ∈ L1(Ω) : j(u) < +∞
}

(the effective domain of j(·)). Theorem 2.2 of
Takač and Giacomoni [44], implies that j(·) is convex.

Suppose that v ∈ W1,p(z)
0 (Ω) is another positive solution of problem (19). Again we have

v ∈ int C+. Then using proposition 4.1.22 of Papageorgiou, Rădulescu and Repovš [36, p 274],
we have

u
v

,
v

u
∈ L∞(Ω).

Let h = uμ+ − vμ+ ∈ W1,p(z)
0 (Ω). For |t| < 1 small, we have

uμ+ + th ∈ dom j, vμ+ + th ∈ dom j.

Then the convexity of j(·) implies the Gâteaux differentiability of j(·) at uμ+ and at vμ+ in
the direction h. Moreover, using Green’s identity we obtain

j′(uμ+)(h) =
1
μ+

∫
Ω

−Δp(z)u −Δq(z)u
uμ+−1 h dz

=
1
μ+

∫
Ω

[
C1

uμ+−μ(z) − C8ur−μ+

]
h dz
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j′(vμ+)(h) =
1
μ+

∫
Ω

−Δp(z)v −Δq(z)v

vμ+−1 h dz

=
1
μ+

∫
Ω

[
C1

vμ+−μ(z) − C8v
r−μ+

]
h dz.

The convexity of j(·) implies the monotonicity of j′(·). So, we have

0 �
∫
Ω

[
1

uμ+−μ(z) −
1

vμ+−μ(z)

]
(uμ+ − vμ+ )dz

+

∫
Ω

C8
[
vr−μ+ − ur−μ+

]
(uμ+ − vμ+ )dz � 0,

⇒ u = v.

Therefore u ∈ int C+ is the unique positive solution of problem (19). �

Proposition 8. If hypotheses H0, H1 hold, then u � u for all u ∈ S+
v .

Proof. Let u ∈ S+
v . We introduce the Carathéodory function k(z, x) defined by

k(z, x) =

{
C1(x+)μ(z)−1 − C8(x+)r−1, if x � u(z)

C1u(z)μ(z)−1 − C8u(z)r−1, if u(z) < x.
(22)

We set K(z, x) =
∫ x

0 k(z, s)ds and consider the C1-functional τ̂ : W1,p(z)
0 (Ω) → R defined by

τ̂ (u) =
∫
Ω

1
p(z)

|Du|p(z)dz +
∫
Ω

1
q(z)

|Du|q(z)dz −
∫
Ω

K(z, u)dz

for all u ∈ W1,p(z)
0 (Ω).

From (22) and Poincaré’s inequality, we see that τ̂ (·) is coercive. Also, it is sequentially
weakly lower semicontinuous. So, we can find û ∈ W1,p(z)

0 (Ω) such that

τ̂ (û) = min
{
τ̂ (u) : u ∈ W1,p(z)

0 (Ω)
}
< 0 = τ̂ (0) (23)

(as before, since μ+ < q− < p+ < r),

⇒ û �= 0.

From (23) we have

τ̂ ′(û) = 0,

⇒ 〈Ap(z)(û), h〉+ 〈Aq(z)(û), h〉 =
∫
Ω

k(z, û)hdz for all h ∈ W1,p(z)
0 (Ω). (24)

In (24) first we choose h = −û− ∈ W1,p(z)
0 (Ω) and obtain û � 0, û �= 0. Next, in (24) we use

h = (û − u)+ ∈ W1,p(z)
0 (Ω). We have

〈Ap(z)(û), (û − u)+〉+ 〈Aq(z)(û), (û − u)+〉

=

∫
Ω

[
C1uμ(z)−1 − C8ur−1

]
(û − u)+dz (see (22))
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�
∫
Ω

gv(z, u)(û − u)+dz (see (18))

= 〈Ap(z)(u), (û − u)+〉+ 〈Aq(z), (û − u)+〉(since u ∈ S+
v ),

⇒ û � u.

So, we have proved that

û ∈ [0, u], û �= 0. (25)

From (25), (22), (24) and proposition 7 we infer that

û = u ∈ int C+,

⇒ u � u for all u ∈ S+
v (see (25)).

The proof is now complete. �
Using this lower bound, we can show that S+

v has a smallest element (minimal positive
solution). So, we have a canonical way to choose an element from the solution set S+

v as v
varies (a selection of the solution multifunction v �→ S+

v ).

Proposition 9. If hypotheses H0, H1 hold, then there exists ũv ∈ S+
v such that ũv � u for

all u ∈ S+
v .

Proof. From Papageorgiou, Rădulescu and Repovš [35] (see the proof of proposition 7), we
know that S+

v is downward directed. So using lemma 3.10 of Hu and Papageorgiou [27, p 178],
we can find a decreasing sequence {un}n∈N ⊆ S+

v such that

inf
n∈N

un = inf S+
v .

We have

〈Ap(z)(un), h〉+ 〈Aq(z)(un), h〉

=

∫
Ω

gv(z, un)h dz for all h ∈ W1,p(z)
0 (Ω), all n ∈ N, (26)

u � un � u1 for all n ∈ N (see Proposition 8). (27)

In (26) we choose h = un ∈ W1,p(z)
0 (Ω). Using (27) and hypothesis H1(a) we infer that

{un}n∈N ⊆ W1,p(z)
0 (Ω) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

un
w−→ũv in W1,p(z)

0 (Ω) and un → ũv in Lp(z)(Ω). (28)

In (26) we choose the test function h = un − ũn ∈ W1,p(z)
0 (Ω), pass to the limit as n →∞

and use (28). Then

lim
n→∞

[
〈Ap(z)(un), un −

˜
uv〉+ 〈Aq(z)(un), un −

˜
uv〉
]
= 0,

⇒ limsup
n→∞

[
〈Ap(z)(un), un −

˜
uv〉+ 〈Aq(z)(u), un −

˜
uv

]
� 0
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(since Aq(z)(·) is monotone),

⇒ limsup
n→∞

〈Ap(z)(un), un −
˜
uv〉 � 0 (see (28)),

⇒ un →
˜
uv in W1,p(z)

0 (Ω) (see Proposition 2). (29)

In (26) we pass to the limit as n →∞ and use (29). Then

〈Ap(z)(ũv), h〉+ 〈Aq(z)(ũv), h〉 =
∫
Ω

gv(z, ũv)h dz for all h ∈ W1,p(z)
0 (Ω),

u � ũv.

In follows that ũv ∈ S+
v and ũv = inf S+

v . �
So, we define the minimal solution map β : C1

0(Ω) → C1
0(Ω) by

β(v) = ũv ∈ int C+ for all v ∈ C1
0(Ω).

Clearly, a fixed point of this map will be the positive solution of problem (2). To produce
a fixed point of β(·), we use the Leray–Schauder alternative principle (see theorem 3). This
theorem requires that the minimal solution map β(·) is compact. We prove this property in the
next section.

4. The minimal solution map

In this section we show that the minimal solution map β : C1
0(Ω) → C1

0(Ω) is compact. To this
end the following proposition is helpful.

Proposition 10. If hypotheses H0, H1 hold, vn → v in C1
0(Ω) and u ∈ S+

v , then we can find
un ∈ S+

vn
n ∈ N such that un → u in C1

0(Ω).

Proof. First we consider the following anisotropic Dirichlet problem

−Δp(z)y(z) −Δq(z)y(z) = gvn(z, u(z)) inΩ, y|∂Ω = 0, y � 0, n ∈ N. (30)

Hypotheses H0, H1(a) imply that gvn(·, u(·)) ∈ L∞(Ω). We consider the nonlinear operator
V : W1,p(z)

0 (Ω) → W−1,p′(z)(Ω) = W1,p(z)
0 (Ω)∗ defined by

V(u) = Ap(z)(u) + Aq(z)(u) for all u ∈ W1,p(z)
0 (Ω).

By proposition 2, V(·) is continuous, strictly monotone (thus, maximal monotone too) and
also we have

〈V(u), u〉 = ρp(Du) + ρq(Du) for all u ∈ W1,p(z)
0 (Ω),

⇒ V(·) is coercive (see Proposition 1).

Therefore V(·) is surjective (see corollary 2.8.7 of Papageorgiou, Rădulescu and Repovš
[36, p 135]). So, we can find yn ∈ W1,p(z)

0 (Ω), yn � 0, yn �= 0 such that

V(yn) = Ngvn
(u) for all n ∈ N. (31)
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The strict monotonicity of V(·) implies that this solution of problem (30) is unique. On
(31) we act with yn ∈ W1,p(z)

0 (Ω) and obtain that {yn}n∈N ⊆ W1,p(z)
0 (Ω) is bounded. Then the

anisotropic regularity theory (see [19, 38]) implies that

yn ∈ L∞(Ω), ‖yn‖∞ � C9 for some C9 > 0, all n ∈ N. (32)

Then invoking lemma 3.3 of Fukagai and Narukawa [21], we can findα ∈ (0, 1) and C10 > 0
such that

yn ∈ C1,α
0 (Ω), ‖yn‖C1,α

0 (Ω) � C10 for all n ∈ N.

We know that C1,α
0 (Ω) ↪→ C1

0(Ω) compactly. Therefore by passing to a subsequence if
necessary, we can have

yn → ũ in C1
0(Ω) as n →∞. (33)

Passing to the limit as n →∞ in (31) and using (33), we obtain

V(ũ) = Ngv (u).

⇒ ũ = u (from the uniqueness of the solution).

Therefore for the original sequence we have

yn → u in C1
0(Ω).

Next, we consider the following anisotropic Dirichlet problem

−Δp(z)w(z) −Δq(z)w(z) = gvn(z, yn(z)) inΩ, w|∂Ω = 0, w � 0.

Reasoning as above, we infer that this problem has a unique positive solution w1
n ∈ int C+

and

w1
n → u in C1

0(Ω) as n →∞.

Setting w0
n = yn and continuing this way, we generate a sequence {wk

n}n∈N0 ⊆ int C+ such
that

V(wk
n) = Ngvn

(wk−1
n ) in W1,p(z)

0 (Ω)∗ for all k, n ∈ N, (34)

wk
n → u in C1

0(Ω) as n →∞ for every k ∈ N. (35)

Claim. For every n ∈ N, the sequence {wk
n}k∈N ⊆ W1,p(z)

0 (Ω) is bounded.
To prove the claim, we argue by contradiction. So, suppose that at least for a subsequence,

we have

‖wk
n‖→∞ as k →+∞.

Then, we can say that

ρp(Dwk
n) →+∞ as k →+∞,

{
ρp(Dwk

n)
}

k∈N is nondecreasing. (36)
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We set x̂k =
wk

n
ρp(Dwk

n)1/p(z) ∈ W1,p(z)
0 (Ω), k ∈ N0. On (34) we act with wk

n ∈ W1,p(z)
0 (Ω) and

obtain

ρp(Dwk
n) + ρq(Dwk

n) =
∫
Ω

gvn(z,wk−1
n )wk

ndz

⇒ ρp(Dx̂k) − Ĉk +

∫
Ω

1

ρp(Dwk
n)

p(z)−q(z)
p(z)

[
|Dwk

n|
ρp(Dwk

n)
1

p(z)

]q(z)

dz

=

∫
Ω

gvn(z,wk−1
n )

ρp(Dwk
n)1− 1

p(z)
x̂kdz

�
∫
Ω

gvn(z,wk−1
n )

ρp(Dwk−1
n )1− 1

p(z)
x̂kdz (see (36))

=

∫
Ω

gvn(z,wk−1
n )

(wk−1
n )p(z)−1

[
wk−1

n

ρp(Dwk−1
n )

1
p(z)

]p(z)−1

x̂kdz

=

∫
Ω

gvn(z,wk−1
n )

(wk−1
n )p(z)−1

x̂ p(z)−1
k−1 x̂k dz,

⇒ ρ(Dx̂k) �
∫
Ω

gvn(z,wk−1
n )

(wk−1
n )p(z)−1

x̂ p(z)−1
k−1 x̂kdz

+ Ĉk for all k ∈ N. (37)

From the proof of lemma 4, we know that

0 < C11 � ‖x̂k‖ � C12 for all k � k0, some 0 < C11 � C12. (38)

So we may assume that

x̂k
w−→ x̂ in W1,p(z)

0 (Ω) and x̂k → x̂ in Lp(z)(Ω) as k →∞. (39)

We return to (37), pass to the limit as k →∞ and use (39), the fact that ρp(·) is sequentially
weakly lower semicontinuous (being continuous convex) and hypothesis H1(b). We obtain

ρp(Dx̂) �
∫
Ω

ϑ(z)x̂ p(z)dz,

⇒ C1ρp(Dx̂) � 0 (see Lemma 4),

⇒ x̂ = 0.

So, from (37) we have that

ρp(Dx̂k) → 0 as k →∞,

⇒x̂k → 0 in W1,p(z)
0 (Ω) (see Proposition 1),

which contradicts (38).
This proves the claim.
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As before, using the claim and the anisotropic regularity theory, we can find α ∈ (0, 1) and
C13 > 0 such that

wk
n ∈ C1,α

0 (Ω), ‖wk
n‖C1,α

0 (Ω) � C13 for all k ∈ N.

Since C1,α
0 (Ω) ↪→ C1

0(Ω) compactly, at least for a subsequence we have

wk
n → un in C1

0(Ω) as k →∞, un �= 0 for all n ∈ N.

From (34) in the limit as k →∞, we obtain

V(un) = Ngvn
(un) in W1,p(z)

0 (Ω)∗ for all n ∈ N,

⇒ un ∈ S+
vn

for all n ∈ N. (40)

As we did in the proof of the claim, via a contradiction argument, we also show that
{un}n∈N ⊆ W1,p(z)

0 (Ω) is bounded and from this we infer that {un}n∈N ⊆ C1
0(Ω) is relatively

compact. So, we can say that

un → ũ in C1
0(Ω) as n →∞.

The double limit lemma (see proposition A.2.35 of Gasiński and Papageorgiou [24, p 906]),
implies that ũ = u and so finally we have

un → u in C1
0(Ω) and un ∈ S+

v for all n ∈ N(see (40)).

The proof is now complete. �
Using this proposition, we can show the compactness of the minimal solution map β(·).

Proposition 11. If hypotheses H0, H1 hold, then the minimal map β(·) : C1
0(Ω) → C1

0(Ω) is
compact.

Proof. First we show that β(·) maps bounded sets in C1
0(Ω) onto relatively compact subsets

of C1
0(Ω).

So, let B ∈ C1
0(Ω) be bounded. Hypotheses H1(a), (b) imply that given ε > 0, we can find

Cε > 0 such that

0 � f (z, x) � [ϑ(z) + ε]xp(z)−1 + Cε for a.a. z ∈ Ω, all x � 0. (41)

For v ∈ B, we write β(v) = ũv ∈ int C+. We have

〈Ap(z)(ũv), h〉+ 〈Aq(z)(ũv), h〉

=

∫
Ω

[
r̂(z)|Dv|τ (z)−1 + f (z, ũv)

]
h dz

�
∫
Ω

[
r̂(z)|Dv|τ (z)−1 + (ϑ(z) + ε)ũτ (z)−1

v + Cε

]
h dz (42)

for all h ∈ W1,p(z)
0 (Ω), h � 0 see (41).

In (42) we choose h = ũv ∈ W1,p(z)
0 (Ω), h � 0. We obtain
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ρp(D
˜
uv) −

∫
Ω

ϑ(z)
˜
up(z)
v dz − ερp(

˜
uv) � C14

[
1 + ρp(D

˜
uv)1/p−

]
for some C14 > 0,

⇒

⎡⎣C1 −
ε
̂

λ1

⎤⎦ ρp(D
˜
uv) � C14

[
1 + ρp(D

˜
uv)1/p−

]
(43)

(see (4) and Lemma 4).

Choosing ε ∈
(

0, λ̂1C1

)
, since p− > 1, from (43) we infer that

{ρp(Dũv)}v∈B ⊆ R+ is bounded,

⇒ {ũv}v∈B ⊆ W1,p(z)
0 (Ω) is bounded (see Proposition 1).

From this as before we obtain that

{ũv = β(v)}v∈B ⊆ C1
0(Ω) is relatively compact.

Next, we show that β(·) is continuous. Suppose that vn → v in C1
0(Ω). According to

proposition 10, we can find un ∈ S+
vn
⊆ int C+ n ∈ N such that

un → β(v) = ũv in C1
0(Ω) as n →∞. (44)

From the first part of the proof, we have that

{β(vn)}n∈N ⊆ C1
0(Ω) is relatively compact.

So, for at least a subsequence we have

β(vn) → ũ∗ in C1
0(Ω) as n →∞. (45)

Recall that u � β(vn) for all n ∈ N (see proposition 8). Hence u � ũ∗ and so using (45) we
conclude that ũ∗ ∈ S+

v ⊆ int C+. Then

β(v) � ũ∗. (46)

On the other hand, we have

β(vn) � un for all n ∈ N,

⇒ ˜
u∗ � β(v) =

˜
uv (see (45) and (44))

⇒ ˜
u∗ = β(v)(see (46))

⇒ β(vn) → β(v) in C1
0(Ω̄) (see (45)),

⇒ β(·) is compact.

The proof is now complete. �
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5. Positive solution

In this section using the Leray–Schauder alternative principle (see theorem 3) on the minimal
solution map β(·), we produce a fixed point which is a positive solution of problem (2).

We introduce the set

D = {u ∈ C1
0(Ω) : u = tβ(u), 0 < t < 1}.

Proposition 12. If hypotheses H0, H1 hold, then D ⊆ C1
0(Ω) is bounded.

Proof. Let u ∈ D. Then u ∈ int C+ and

1
t

u = β(u) with 0 < t < 1.

So, we have

〈Ap(z)

(
1
t

u

)
, h〉+ 〈Aq(z)

(
1
t

u

)
, h〉

=

∫
Ω

r̂(z)|Du|τ (z)−1h dz +
∫
Ω

f

(
z,

1
t

u

)
h dz (47)

for all h ∈ W1,p(z)
0 (Ω).

In (47) we choose h = u ∈ W1,p(z)
0 (Ω). Then

1
tp−

ρp(Du) �
∫
Ω

r̂(z)|Du|τ (z)−1u dz +
∫
Ω

f

(
z,

1
t

u

)
u dz

�
∫
Ω

r̂(z)|Du|τ (z)−1u dz +
1

tp+−1

∫
Ω

f (z, u)u dz

(see hypothesis H1(v)),

⇒ ρp(Du) �
∫
Ω

r̂(z)|Du|τ (z)−1u dz + t1−(p+−p−)
∫
Ω

f (z, u)u dz

�
∫
Ω

r̂(z)|Du|τ (z)−1u dz +
∫
Ω

f (z, u)u dz

(since, by hypotheses H0, 0 � p+ − p− � 1 and t ∈ (0, 1)),

⇒ ρp(Du) −
∫
Ω

ϑ(z)up(z) dz − ερp(u) �
∫
Ω

r̂(z)|Du|τ (z)−1u dz + C15

for some C15 = C15(ε) > 0 (see (41)).

Using lemma 4 and choosing ε ∈ (0, λ̂1C1) (see (4)), we obtain

ρp(Du) � C16

[
1 +

∫
Ω

r̂(z)|Du|τ (z)−1u dz

]
for some C16 > 0. (48)

Using Hölder’s inequality and the Sobolev embedding theorem (see section 2), we have∫
Ω

r̂(z)|Du|τ (z)−1u dz � C17‖|Du|τ (z)−1‖τ ′(z)‖u‖ (49)
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for some C17 > 0.
We may assume that

‖ |Du|τ (z)−1‖τ ′(z) � 1, ‖u‖ � 1. (50)

Then from (49) it follows that∫
Ω

r̂(z)|Du|τ (z)−1u dz

� C18ρτ ′
(
|Du|τ (z)−1

) 1
τ ′+ ‖u‖ for some C18 > 0.

(see (50) and Proposition 1)

� C19ρτ ′
(
|Du|τ (z)−1

) 1
τ ′
+ ρp(Du)

1
p+ (51)

(using the Poincaré inequality (50) and Proposition 1).

We return to (48) and use (51). We obtain

ρp(Du)
1− 1

p+ � C20

[
1 + ‖Du‖τ+−1

τ+

]
for some C20 > 0 (see Proposition 1),

⇒ ‖u‖
p−
p+

(p+−1) � C21
[
1 + ‖u‖τ+−1

]
(52)

for some C21 > 0 (see (50) and Proposition 1).

But p−
p+

[p+ − 1] � p− − 1 > τ+ − 1 (see hypotheses H0). So, from (52) it follows that

D ⊆ W1,p(z)
0 (Ω) is bounded.

As before (see the proof of proposition 6), using the anisotropic regularity theory, we infer
that

D ⊆ C1
0(Ω) is relatively compact, thus bounded.

The proof is now complete. �
Therefore we have proved that

• The minimal solution map β(·) is compact (see proposition 11);
• D ⊆ C1

0(Ω) is bounded (see proposition 12).

So, we can apply theorem 3 (the Leray–Schauder alternative principle) and have the
following existence theorem for problem (2).

Theorem 13. If hypotheses H0, H1 hold, then problem (2) has a positive solution û ∈ int C+,
u � û.
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[23] Gasiński L, Krech I and Papageorgiou N S 2020 Nonlinear nonhomogeneous Robin problems with
gradient dependent reaction Nonlinear Anal. 55 103135
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